drm/i915: Optimize DIV_ROUND_CLOSEST call
[platform/kernel/linux-stable.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static void i8xx_disable_fbc(struct drm_device *dev)
48 {
49         struct drm_i915_private *dev_priv = dev->dev_private;
50         u32 fbc_ctl;
51
52         /* Disable compression */
53         fbc_ctl = I915_READ(FBC_CONTROL);
54         if ((fbc_ctl & FBC_CTL_EN) == 0)
55                 return;
56
57         fbc_ctl &= ~FBC_CTL_EN;
58         I915_WRITE(FBC_CONTROL, fbc_ctl);
59
60         /* Wait for compressing bit to clear */
61         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
62                 DRM_DEBUG_KMS("FBC idle timed out\n");
63                 return;
64         }
65
66         DRM_DEBUG_KMS("disabled FBC\n");
67 }
68
69 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
70 {
71         struct drm_device *dev = crtc->dev;
72         struct drm_i915_private *dev_priv = dev->dev_private;
73         struct drm_framebuffer *fb = crtc->fb;
74         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
75         struct drm_i915_gem_object *obj = intel_fb->obj;
76         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
77         int cfb_pitch;
78         int plane, i;
79         u32 fbc_ctl, fbc_ctl2;
80
81         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
82         if (fb->pitches[0] < cfb_pitch)
83                 cfb_pitch = fb->pitches[0];
84
85         /* FBC_CTL wants 64B units */
86         cfb_pitch = (cfb_pitch / 64) - 1;
87         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
88
89         /* Clear old tags */
90         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
91                 I915_WRITE(FBC_TAG + (i * 4), 0);
92
93         /* Set it up... */
94         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
95         fbc_ctl2 |= plane;
96         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
97         I915_WRITE(FBC_FENCE_OFF, crtc->y);
98
99         /* enable it... */
100         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
101         if (IS_I945GM(dev))
102                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
103         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
104         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
105         fbc_ctl |= obj->fence_reg;
106         I915_WRITE(FBC_CONTROL, fbc_ctl);
107
108         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
109                       cfb_pitch, crtc->y, intel_crtc->plane);
110 }
111
112 static bool i8xx_fbc_enabled(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115
116         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
117 }
118
119 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
120 {
121         struct drm_device *dev = crtc->dev;
122         struct drm_i915_private *dev_priv = dev->dev_private;
123         struct drm_framebuffer *fb = crtc->fb;
124         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
125         struct drm_i915_gem_object *obj = intel_fb->obj;
126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
127         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
128         unsigned long stall_watermark = 200;
129         u32 dpfc_ctl;
130
131         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
132         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
133         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
134
135         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
136                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
137                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
138         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
139
140         /* enable it... */
141         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
142
143         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
144 }
145
146 static void g4x_disable_fbc(struct drm_device *dev)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         u32 dpfc_ctl;
150
151         /* Disable compression */
152         dpfc_ctl = I915_READ(DPFC_CONTROL);
153         if (dpfc_ctl & DPFC_CTL_EN) {
154                 dpfc_ctl &= ~DPFC_CTL_EN;
155                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
156
157                 DRM_DEBUG_KMS("disabled FBC\n");
158         }
159 }
160
161 static bool g4x_fbc_enabled(struct drm_device *dev)
162 {
163         struct drm_i915_private *dev_priv = dev->dev_private;
164
165         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
166 }
167
168 static void sandybridge_blit_fbc_update(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171         u32 blt_ecoskpd;
172
173         /* Make sure blitter notifies FBC of writes */
174         gen6_gt_force_wake_get(dev_priv);
175         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
176         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
177                 GEN6_BLITTER_LOCK_SHIFT;
178         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
180         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
181         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
182                          GEN6_BLITTER_LOCK_SHIFT);
183         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
184         POSTING_READ(GEN6_BLITTER_ECOSKPD);
185         gen6_gt_force_wake_put(dev_priv);
186 }
187
188 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
189 {
190         struct drm_device *dev = crtc->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct drm_framebuffer *fb = crtc->fb;
193         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
194         struct drm_i915_gem_object *obj = intel_fb->obj;
195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
196         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
197         unsigned long stall_watermark = 200;
198         u32 dpfc_ctl;
199
200         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
201         dpfc_ctl &= DPFC_RESERVED;
202         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
203         /* Set persistent mode for front-buffer rendering, ala X. */
204         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
205         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
206         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
207
208         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
209                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
210                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
211         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
212         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
213         /* enable it... */
214         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
215
216         if (IS_GEN6(dev)) {
217                 I915_WRITE(SNB_DPFC_CTL_SA,
218                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
219                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
220                 sandybridge_blit_fbc_update(dev);
221         }
222
223         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
224 }
225
226 static void ironlake_disable_fbc(struct drm_device *dev)
227 {
228         struct drm_i915_private *dev_priv = dev->dev_private;
229         u32 dpfc_ctl;
230
231         /* Disable compression */
232         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
233         if (dpfc_ctl & DPFC_CTL_EN) {
234                 dpfc_ctl &= ~DPFC_CTL_EN;
235                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
236
237                 DRM_DEBUG_KMS("disabled FBC\n");
238         }
239 }
240
241 static bool ironlake_fbc_enabled(struct drm_device *dev)
242 {
243         struct drm_i915_private *dev_priv = dev->dev_private;
244
245         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
246 }
247
248 bool intel_fbc_enabled(struct drm_device *dev)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251
252         if (!dev_priv->display.fbc_enabled)
253                 return false;
254
255         return dev_priv->display.fbc_enabled(dev);
256 }
257
258 static void intel_fbc_work_fn(struct work_struct *__work)
259 {
260         struct intel_fbc_work *work =
261                 container_of(to_delayed_work(__work),
262                              struct intel_fbc_work, work);
263         struct drm_device *dev = work->crtc->dev;
264         struct drm_i915_private *dev_priv = dev->dev_private;
265
266         mutex_lock(&dev->struct_mutex);
267         if (work == dev_priv->fbc_work) {
268                 /* Double check that we haven't switched fb without cancelling
269                  * the prior work.
270                  */
271                 if (work->crtc->fb == work->fb) {
272                         dev_priv->display.enable_fbc(work->crtc,
273                                                      work->interval);
274
275                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
276                         dev_priv->cfb_fb = work->crtc->fb->base.id;
277                         dev_priv->cfb_y = work->crtc->y;
278                 }
279
280                 dev_priv->fbc_work = NULL;
281         }
282         mutex_unlock(&dev->struct_mutex);
283
284         kfree(work);
285 }
286
287 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
288 {
289         if (dev_priv->fbc_work == NULL)
290                 return;
291
292         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
293
294         /* Synchronisation is provided by struct_mutex and checking of
295          * dev_priv->fbc_work, so we can perform the cancellation
296          * entirely asynchronously.
297          */
298         if (cancel_delayed_work(&dev_priv->fbc_work->work))
299                 /* tasklet was killed before being run, clean up */
300                 kfree(dev_priv->fbc_work);
301
302         /* Mark the work as no longer wanted so that if it does
303          * wake-up (because the work was already running and waiting
304          * for our mutex), it will discover that is no longer
305          * necessary to run.
306          */
307         dev_priv->fbc_work = NULL;
308 }
309
310 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
311 {
312         struct intel_fbc_work *work;
313         struct drm_device *dev = crtc->dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         if (!dev_priv->display.enable_fbc)
317                 return;
318
319         intel_cancel_fbc_work(dev_priv);
320
321         work = kzalloc(sizeof *work, GFP_KERNEL);
322         if (work == NULL) {
323                 dev_priv->display.enable_fbc(crtc, interval);
324                 return;
325         }
326
327         work->crtc = crtc;
328         work->fb = crtc->fb;
329         work->interval = interval;
330         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
331
332         dev_priv->fbc_work = work;
333
334         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
335
336         /* Delay the actual enabling to let pageflipping cease and the
337          * display to settle before starting the compression. Note that
338          * this delay also serves a second purpose: it allows for a
339          * vblank to pass after disabling the FBC before we attempt
340          * to modify the control registers.
341          *
342          * A more complicated solution would involve tracking vblanks
343          * following the termination of the page-flipping sequence
344          * and indeed performing the enable as a co-routine and not
345          * waiting synchronously upon the vblank.
346          */
347         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
348 }
349
350 void intel_disable_fbc(struct drm_device *dev)
351 {
352         struct drm_i915_private *dev_priv = dev->dev_private;
353
354         intel_cancel_fbc_work(dev_priv);
355
356         if (!dev_priv->display.disable_fbc)
357                 return;
358
359         dev_priv->display.disable_fbc(dev);
360         dev_priv->cfb_plane = -1;
361 }
362
363 /**
364  * intel_update_fbc - enable/disable FBC as needed
365  * @dev: the drm_device
366  *
367  * Set up the framebuffer compression hardware at mode set time.  We
368  * enable it if possible:
369  *   - plane A only (on pre-965)
370  *   - no pixel mulitply/line duplication
371  *   - no alpha buffer discard
372  *   - no dual wide
373  *   - framebuffer <= 2048 in width, 1536 in height
374  *
375  * We can't assume that any compression will take place (worst case),
376  * so the compressed buffer has to be the same size as the uncompressed
377  * one.  It also must reside (along with the line length buffer) in
378  * stolen memory.
379  *
380  * We need to enable/disable FBC on a global basis.
381  */
382 void intel_update_fbc(struct drm_device *dev)
383 {
384         struct drm_i915_private *dev_priv = dev->dev_private;
385         struct drm_crtc *crtc = NULL, *tmp_crtc;
386         struct intel_crtc *intel_crtc;
387         struct drm_framebuffer *fb;
388         struct intel_framebuffer *intel_fb;
389         struct drm_i915_gem_object *obj;
390         int enable_fbc;
391
392         if (!i915_powersave)
393                 return;
394
395         if (!I915_HAS_FBC(dev))
396                 return;
397
398         /*
399          * If FBC is already on, we just have to verify that we can
400          * keep it that way...
401          * Need to disable if:
402          *   - more than one pipe is active
403          *   - changing FBC params (stride, fence, mode)
404          *   - new fb is too large to fit in compressed buffer
405          *   - going to an unsupported config (interlace, pixel multiply, etc.)
406          */
407         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
408                 if (tmp_crtc->enabled &&
409                     !to_intel_crtc(tmp_crtc)->primary_disabled &&
410                     tmp_crtc->fb) {
411                         if (crtc) {
412                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
413                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
414                                 goto out_disable;
415                         }
416                         crtc = tmp_crtc;
417                 }
418         }
419
420         if (!crtc || crtc->fb == NULL) {
421                 DRM_DEBUG_KMS("no output, disabling\n");
422                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
423                 goto out_disable;
424         }
425
426         intel_crtc = to_intel_crtc(crtc);
427         fb = crtc->fb;
428         intel_fb = to_intel_framebuffer(fb);
429         obj = intel_fb->obj;
430
431         enable_fbc = i915_enable_fbc;
432         if (enable_fbc < 0) {
433                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
434                 enable_fbc = 1;
435                 if (INTEL_INFO(dev)->gen <= 6)
436                         enable_fbc = 0;
437         }
438         if (!enable_fbc) {
439                 DRM_DEBUG_KMS("fbc disabled per module param\n");
440                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
441                 goto out_disable;
442         }
443         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
444                 DRM_DEBUG_KMS("framebuffer too large, disabling "
445                               "compression\n");
446                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
447                 goto out_disable;
448         }
449         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
450             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
451                 DRM_DEBUG_KMS("mode incompatible with compression, "
452                               "disabling\n");
453                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
454                 goto out_disable;
455         }
456         if ((crtc->mode.hdisplay > 2048) ||
457             (crtc->mode.vdisplay > 1536)) {
458                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
459                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
460                 goto out_disable;
461         }
462         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
463                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
464                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
465                 goto out_disable;
466         }
467
468         /* The use of a CPU fence is mandatory in order to detect writes
469          * by the CPU to the scanout and trigger updates to the FBC.
470          */
471         if (obj->tiling_mode != I915_TILING_X ||
472             obj->fence_reg == I915_FENCE_REG_NONE) {
473                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
474                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
475                 goto out_disable;
476         }
477
478         /* If the kernel debugger is active, always disable compression */
479         if (in_dbg_master())
480                 goto out_disable;
481
482         /* If the scanout has not changed, don't modify the FBC settings.
483          * Note that we make the fundamental assumption that the fb->obj
484          * cannot be unpinned (and have its GTT offset and fence revoked)
485          * without first being decoupled from the scanout and FBC disabled.
486          */
487         if (dev_priv->cfb_plane == intel_crtc->plane &&
488             dev_priv->cfb_fb == fb->base.id &&
489             dev_priv->cfb_y == crtc->y)
490                 return;
491
492         if (intel_fbc_enabled(dev)) {
493                 /* We update FBC along two paths, after changing fb/crtc
494                  * configuration (modeswitching) and after page-flipping
495                  * finishes. For the latter, we know that not only did
496                  * we disable the FBC at the start of the page-flip
497                  * sequence, but also more than one vblank has passed.
498                  *
499                  * For the former case of modeswitching, it is possible
500                  * to switch between two FBC valid configurations
501                  * instantaneously so we do need to disable the FBC
502                  * before we can modify its control registers. We also
503                  * have to wait for the next vblank for that to take
504                  * effect. However, since we delay enabling FBC we can
505                  * assume that a vblank has passed since disabling and
506                  * that we can safely alter the registers in the deferred
507                  * callback.
508                  *
509                  * In the scenario that we go from a valid to invalid
510                  * and then back to valid FBC configuration we have
511                  * no strict enforcement that a vblank occurred since
512                  * disabling the FBC. However, along all current pipe
513                  * disabling paths we do need to wait for a vblank at
514                  * some point. And we wait before enabling FBC anyway.
515                  */
516                 DRM_DEBUG_KMS("disabling active FBC for update\n");
517                 intel_disable_fbc(dev);
518         }
519
520         intel_enable_fbc(crtc, 500);
521         return;
522
523 out_disable:
524         /* Multiple disables should be harmless */
525         if (intel_fbc_enabled(dev)) {
526                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
527                 intel_disable_fbc(dev);
528         }
529 }
530
531 static void i915_pineview_get_mem_freq(struct drm_device *dev)
532 {
533         drm_i915_private_t *dev_priv = dev->dev_private;
534         u32 tmp;
535
536         tmp = I915_READ(CLKCFG);
537
538         switch (tmp & CLKCFG_FSB_MASK) {
539         case CLKCFG_FSB_533:
540                 dev_priv->fsb_freq = 533; /* 133*4 */
541                 break;
542         case CLKCFG_FSB_800:
543                 dev_priv->fsb_freq = 800; /* 200*4 */
544                 break;
545         case CLKCFG_FSB_667:
546                 dev_priv->fsb_freq =  667; /* 167*4 */
547                 break;
548         case CLKCFG_FSB_400:
549                 dev_priv->fsb_freq = 400; /* 100*4 */
550                 break;
551         }
552
553         switch (tmp & CLKCFG_MEM_MASK) {
554         case CLKCFG_MEM_533:
555                 dev_priv->mem_freq = 533;
556                 break;
557         case CLKCFG_MEM_667:
558                 dev_priv->mem_freq = 667;
559                 break;
560         case CLKCFG_MEM_800:
561                 dev_priv->mem_freq = 800;
562                 break;
563         }
564
565         /* detect pineview DDR3 setting */
566         tmp = I915_READ(CSHRDDR3CTL);
567         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
568 }
569
570 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
571 {
572         drm_i915_private_t *dev_priv = dev->dev_private;
573         u16 ddrpll, csipll;
574
575         ddrpll = I915_READ16(DDRMPLL1);
576         csipll = I915_READ16(CSIPLL0);
577
578         switch (ddrpll & 0xff) {
579         case 0xc:
580                 dev_priv->mem_freq = 800;
581                 break;
582         case 0x10:
583                 dev_priv->mem_freq = 1066;
584                 break;
585         case 0x14:
586                 dev_priv->mem_freq = 1333;
587                 break;
588         case 0x18:
589                 dev_priv->mem_freq = 1600;
590                 break;
591         default:
592                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
593                                  ddrpll & 0xff);
594                 dev_priv->mem_freq = 0;
595                 break;
596         }
597
598         dev_priv->ips.r_t = dev_priv->mem_freq;
599
600         switch (csipll & 0x3ff) {
601         case 0x00c:
602                 dev_priv->fsb_freq = 3200;
603                 break;
604         case 0x00e:
605                 dev_priv->fsb_freq = 3733;
606                 break;
607         case 0x010:
608                 dev_priv->fsb_freq = 4266;
609                 break;
610         case 0x012:
611                 dev_priv->fsb_freq = 4800;
612                 break;
613         case 0x014:
614                 dev_priv->fsb_freq = 5333;
615                 break;
616         case 0x016:
617                 dev_priv->fsb_freq = 5866;
618                 break;
619         case 0x018:
620                 dev_priv->fsb_freq = 6400;
621                 break;
622         default:
623                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
624                                  csipll & 0x3ff);
625                 dev_priv->fsb_freq = 0;
626                 break;
627         }
628
629         if (dev_priv->fsb_freq == 3200) {
630                 dev_priv->ips.c_m = 0;
631         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
632                 dev_priv->ips.c_m = 1;
633         } else {
634                 dev_priv->ips.c_m = 2;
635         }
636 }
637
638 static const struct cxsr_latency cxsr_latency_table[] = {
639         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
640         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
641         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
642         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
643         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
644
645         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
646         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
647         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
648         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
649         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
650
651         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
652         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
653         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
654         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
655         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
656
657         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
658         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
659         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
660         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
661         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
662
663         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
664         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
665         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
666         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
667         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
668
669         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
670         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
671         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
672         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
673         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
674 };
675
676 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
677                                                          int is_ddr3,
678                                                          int fsb,
679                                                          int mem)
680 {
681         const struct cxsr_latency *latency;
682         int i;
683
684         if (fsb == 0 || mem == 0)
685                 return NULL;
686
687         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
688                 latency = &cxsr_latency_table[i];
689                 if (is_desktop == latency->is_desktop &&
690                     is_ddr3 == latency->is_ddr3 &&
691                     fsb == latency->fsb_freq && mem == latency->mem_freq)
692                         return latency;
693         }
694
695         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
696
697         return NULL;
698 }
699
700 static void pineview_disable_cxsr(struct drm_device *dev)
701 {
702         struct drm_i915_private *dev_priv = dev->dev_private;
703
704         /* deactivate cxsr */
705         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
706 }
707
708 /*
709  * Latency for FIFO fetches is dependent on several factors:
710  *   - memory configuration (speed, channels)
711  *   - chipset
712  *   - current MCH state
713  * It can be fairly high in some situations, so here we assume a fairly
714  * pessimal value.  It's a tradeoff between extra memory fetches (if we
715  * set this value too high, the FIFO will fetch frequently to stay full)
716  * and power consumption (set it too low to save power and we might see
717  * FIFO underruns and display "flicker").
718  *
719  * A value of 5us seems to be a good balance; safe for very low end
720  * platforms but not overly aggressive on lower latency configs.
721  */
722 static const int latency_ns = 5000;
723
724 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
725 {
726         struct drm_i915_private *dev_priv = dev->dev_private;
727         uint32_t dsparb = I915_READ(DSPARB);
728         int size;
729
730         size = dsparb & 0x7f;
731         if (plane)
732                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
733
734         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
735                       plane ? "B" : "A", size);
736
737         return size;
738 }
739
740 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
741 {
742         struct drm_i915_private *dev_priv = dev->dev_private;
743         uint32_t dsparb = I915_READ(DSPARB);
744         int size;
745
746         size = dsparb & 0x1ff;
747         if (plane)
748                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
749         size >>= 1; /* Convert to cachelines */
750
751         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
752                       plane ? "B" : "A", size);
753
754         return size;
755 }
756
757 static int i845_get_fifo_size(struct drm_device *dev, int plane)
758 {
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         uint32_t dsparb = I915_READ(DSPARB);
761         int size;
762
763         size = dsparb & 0x7f;
764         size >>= 2; /* Convert to cachelines */
765
766         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
767                       plane ? "B" : "A",
768                       size);
769
770         return size;
771 }
772
773 static int i830_get_fifo_size(struct drm_device *dev, int plane)
774 {
775         struct drm_i915_private *dev_priv = dev->dev_private;
776         uint32_t dsparb = I915_READ(DSPARB);
777         int size;
778
779         size = dsparb & 0x7f;
780         size >>= 1; /* Convert to cachelines */
781
782         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
783                       plane ? "B" : "A", size);
784
785         return size;
786 }
787
788 /* Pineview has different values for various configs */
789 static const struct intel_watermark_params pineview_display_wm = {
790         PINEVIEW_DISPLAY_FIFO,
791         PINEVIEW_MAX_WM,
792         PINEVIEW_DFT_WM,
793         PINEVIEW_GUARD_WM,
794         PINEVIEW_FIFO_LINE_SIZE
795 };
796 static const struct intel_watermark_params pineview_display_hplloff_wm = {
797         PINEVIEW_DISPLAY_FIFO,
798         PINEVIEW_MAX_WM,
799         PINEVIEW_DFT_HPLLOFF_WM,
800         PINEVIEW_GUARD_WM,
801         PINEVIEW_FIFO_LINE_SIZE
802 };
803 static const struct intel_watermark_params pineview_cursor_wm = {
804         PINEVIEW_CURSOR_FIFO,
805         PINEVIEW_CURSOR_MAX_WM,
806         PINEVIEW_CURSOR_DFT_WM,
807         PINEVIEW_CURSOR_GUARD_WM,
808         PINEVIEW_FIFO_LINE_SIZE,
809 };
810 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
811         PINEVIEW_CURSOR_FIFO,
812         PINEVIEW_CURSOR_MAX_WM,
813         PINEVIEW_CURSOR_DFT_WM,
814         PINEVIEW_CURSOR_GUARD_WM,
815         PINEVIEW_FIFO_LINE_SIZE
816 };
817 static const struct intel_watermark_params g4x_wm_info = {
818         G4X_FIFO_SIZE,
819         G4X_MAX_WM,
820         G4X_MAX_WM,
821         2,
822         G4X_FIFO_LINE_SIZE,
823 };
824 static const struct intel_watermark_params g4x_cursor_wm_info = {
825         I965_CURSOR_FIFO,
826         I965_CURSOR_MAX_WM,
827         I965_CURSOR_DFT_WM,
828         2,
829         G4X_FIFO_LINE_SIZE,
830 };
831 static const struct intel_watermark_params valleyview_wm_info = {
832         VALLEYVIEW_FIFO_SIZE,
833         VALLEYVIEW_MAX_WM,
834         VALLEYVIEW_MAX_WM,
835         2,
836         G4X_FIFO_LINE_SIZE,
837 };
838 static const struct intel_watermark_params valleyview_cursor_wm_info = {
839         I965_CURSOR_FIFO,
840         VALLEYVIEW_CURSOR_MAX_WM,
841         I965_CURSOR_DFT_WM,
842         2,
843         G4X_FIFO_LINE_SIZE,
844 };
845 static const struct intel_watermark_params i965_cursor_wm_info = {
846         I965_CURSOR_FIFO,
847         I965_CURSOR_MAX_WM,
848         I965_CURSOR_DFT_WM,
849         2,
850         I915_FIFO_LINE_SIZE,
851 };
852 static const struct intel_watermark_params i945_wm_info = {
853         I945_FIFO_SIZE,
854         I915_MAX_WM,
855         1,
856         2,
857         I915_FIFO_LINE_SIZE
858 };
859 static const struct intel_watermark_params i915_wm_info = {
860         I915_FIFO_SIZE,
861         I915_MAX_WM,
862         1,
863         2,
864         I915_FIFO_LINE_SIZE
865 };
866 static const struct intel_watermark_params i855_wm_info = {
867         I855GM_FIFO_SIZE,
868         I915_MAX_WM,
869         1,
870         2,
871         I830_FIFO_LINE_SIZE
872 };
873 static const struct intel_watermark_params i830_wm_info = {
874         I830_FIFO_SIZE,
875         I915_MAX_WM,
876         1,
877         2,
878         I830_FIFO_LINE_SIZE
879 };
880
881 static const struct intel_watermark_params ironlake_display_wm_info = {
882         ILK_DISPLAY_FIFO,
883         ILK_DISPLAY_MAXWM,
884         ILK_DISPLAY_DFTWM,
885         2,
886         ILK_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params ironlake_cursor_wm_info = {
889         ILK_CURSOR_FIFO,
890         ILK_CURSOR_MAXWM,
891         ILK_CURSOR_DFTWM,
892         2,
893         ILK_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params ironlake_display_srwm_info = {
896         ILK_DISPLAY_SR_FIFO,
897         ILK_DISPLAY_MAX_SRWM,
898         ILK_DISPLAY_DFT_SRWM,
899         2,
900         ILK_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
903         ILK_CURSOR_SR_FIFO,
904         ILK_CURSOR_MAX_SRWM,
905         ILK_CURSOR_DFT_SRWM,
906         2,
907         ILK_FIFO_LINE_SIZE
908 };
909
910 static const struct intel_watermark_params sandybridge_display_wm_info = {
911         SNB_DISPLAY_FIFO,
912         SNB_DISPLAY_MAXWM,
913         SNB_DISPLAY_DFTWM,
914         2,
915         SNB_FIFO_LINE_SIZE
916 };
917 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
918         SNB_CURSOR_FIFO,
919         SNB_CURSOR_MAXWM,
920         SNB_CURSOR_DFTWM,
921         2,
922         SNB_FIFO_LINE_SIZE
923 };
924 static const struct intel_watermark_params sandybridge_display_srwm_info = {
925         SNB_DISPLAY_SR_FIFO,
926         SNB_DISPLAY_MAX_SRWM,
927         SNB_DISPLAY_DFT_SRWM,
928         2,
929         SNB_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
932         SNB_CURSOR_SR_FIFO,
933         SNB_CURSOR_MAX_SRWM,
934         SNB_CURSOR_DFT_SRWM,
935         2,
936         SNB_FIFO_LINE_SIZE
937 };
938
939
940 /**
941  * intel_calculate_wm - calculate watermark level
942  * @clock_in_khz: pixel clock
943  * @wm: chip FIFO params
944  * @pixel_size: display pixel size
945  * @latency_ns: memory latency for the platform
946  *
947  * Calculate the watermark level (the level at which the display plane will
948  * start fetching from memory again).  Each chip has a different display
949  * FIFO size and allocation, so the caller needs to figure that out and pass
950  * in the correct intel_watermark_params structure.
951  *
952  * As the pixel clock runs, the FIFO will be drained at a rate that depends
953  * on the pixel size.  When it reaches the watermark level, it'll start
954  * fetching FIFO line sized based chunks from memory until the FIFO fills
955  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
956  * will occur, and a display engine hang could result.
957  */
958 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
959                                         const struct intel_watermark_params *wm,
960                                         int fifo_size,
961                                         int pixel_size,
962                                         unsigned long latency_ns)
963 {
964         long entries_required, wm_size;
965
966         /*
967          * Note: we need to make sure we don't overflow for various clock &
968          * latency values.
969          * clocks go from a few thousand to several hundred thousand.
970          * latency is usually a few thousand
971          */
972         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
973                 1000;
974         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
975
976         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
977
978         wm_size = fifo_size - (entries_required + wm->guard_size);
979
980         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
981
982         /* Don't promote wm_size to unsigned... */
983         if (wm_size > (long)wm->max_wm)
984                 wm_size = wm->max_wm;
985         if (wm_size <= 0)
986                 wm_size = wm->default_wm;
987         return wm_size;
988 }
989
990 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
991 {
992         struct drm_crtc *crtc, *enabled = NULL;
993
994         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
995                 if (crtc->enabled && crtc->fb) {
996                         if (enabled)
997                                 return NULL;
998                         enabled = crtc;
999                 }
1000         }
1001
1002         return enabled;
1003 }
1004
1005 static void pineview_update_wm(struct drm_device *dev)
1006 {
1007         struct drm_i915_private *dev_priv = dev->dev_private;
1008         struct drm_crtc *crtc;
1009         const struct cxsr_latency *latency;
1010         u32 reg;
1011         unsigned long wm;
1012
1013         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1014                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1015         if (!latency) {
1016                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1017                 pineview_disable_cxsr(dev);
1018                 return;
1019         }
1020
1021         crtc = single_enabled_crtc(dev);
1022         if (crtc) {
1023                 int clock = crtc->mode.clock;
1024                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1025
1026                 /* Display SR */
1027                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1028                                         pineview_display_wm.fifo_size,
1029                                         pixel_size, latency->display_sr);
1030                 reg = I915_READ(DSPFW1);
1031                 reg &= ~DSPFW_SR_MASK;
1032                 reg |= wm << DSPFW_SR_SHIFT;
1033                 I915_WRITE(DSPFW1, reg);
1034                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1035
1036                 /* cursor SR */
1037                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1038                                         pineview_display_wm.fifo_size,
1039                                         pixel_size, latency->cursor_sr);
1040                 reg = I915_READ(DSPFW3);
1041                 reg &= ~DSPFW_CURSOR_SR_MASK;
1042                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1043                 I915_WRITE(DSPFW3, reg);
1044
1045                 /* Display HPLL off SR */
1046                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1047                                         pineview_display_hplloff_wm.fifo_size,
1048                                         pixel_size, latency->display_hpll_disable);
1049                 reg = I915_READ(DSPFW3);
1050                 reg &= ~DSPFW_HPLL_SR_MASK;
1051                 reg |= wm & DSPFW_HPLL_SR_MASK;
1052                 I915_WRITE(DSPFW3, reg);
1053
1054                 /* cursor HPLL off SR */
1055                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1056                                         pineview_display_hplloff_wm.fifo_size,
1057                                         pixel_size, latency->cursor_hpll_disable);
1058                 reg = I915_READ(DSPFW3);
1059                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1060                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1061                 I915_WRITE(DSPFW3, reg);
1062                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1063
1064                 /* activate cxsr */
1065                 I915_WRITE(DSPFW3,
1066                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1067                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1068         } else {
1069                 pineview_disable_cxsr(dev);
1070                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1071         }
1072 }
1073
1074 static bool g4x_compute_wm0(struct drm_device *dev,
1075                             int plane,
1076                             const struct intel_watermark_params *display,
1077                             int display_latency_ns,
1078                             const struct intel_watermark_params *cursor,
1079                             int cursor_latency_ns,
1080                             int *plane_wm,
1081                             int *cursor_wm)
1082 {
1083         struct drm_crtc *crtc;
1084         int htotal, hdisplay, clock, pixel_size;
1085         int line_time_us, line_count;
1086         int entries, tlb_miss;
1087
1088         crtc = intel_get_crtc_for_plane(dev, plane);
1089         if (crtc->fb == NULL || !crtc->enabled) {
1090                 *cursor_wm = cursor->guard_size;
1091                 *plane_wm = display->guard_size;
1092                 return false;
1093         }
1094
1095         htotal = crtc->mode.htotal;
1096         hdisplay = crtc->mode.hdisplay;
1097         clock = crtc->mode.clock;
1098         pixel_size = crtc->fb->bits_per_pixel / 8;
1099
1100         /* Use the small buffer method to calculate plane watermark */
1101         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1102         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1103         if (tlb_miss > 0)
1104                 entries += tlb_miss;
1105         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1106         *plane_wm = entries + display->guard_size;
1107         if (*plane_wm > (int)display->max_wm)
1108                 *plane_wm = display->max_wm;
1109
1110         /* Use the large buffer method to calculate cursor watermark */
1111         line_time_us = ((htotal * 1000) / clock);
1112         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1113         entries = line_count * 64 * pixel_size;
1114         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1115         if (tlb_miss > 0)
1116                 entries += tlb_miss;
1117         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1118         *cursor_wm = entries + cursor->guard_size;
1119         if (*cursor_wm > (int)cursor->max_wm)
1120                 *cursor_wm = (int)cursor->max_wm;
1121
1122         return true;
1123 }
1124
1125 /*
1126  * Check the wm result.
1127  *
1128  * If any calculated watermark values is larger than the maximum value that
1129  * can be programmed into the associated watermark register, that watermark
1130  * must be disabled.
1131  */
1132 static bool g4x_check_srwm(struct drm_device *dev,
1133                            int display_wm, int cursor_wm,
1134                            const struct intel_watermark_params *display,
1135                            const struct intel_watermark_params *cursor)
1136 {
1137         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1138                       display_wm, cursor_wm);
1139
1140         if (display_wm > display->max_wm) {
1141                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1142                               display_wm, display->max_wm);
1143                 return false;
1144         }
1145
1146         if (cursor_wm > cursor->max_wm) {
1147                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1148                               cursor_wm, cursor->max_wm);
1149                 return false;
1150         }
1151
1152         if (!(display_wm || cursor_wm)) {
1153                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1154                 return false;
1155         }
1156
1157         return true;
1158 }
1159
1160 static bool g4x_compute_srwm(struct drm_device *dev,
1161                              int plane,
1162                              int latency_ns,
1163                              const struct intel_watermark_params *display,
1164                              const struct intel_watermark_params *cursor,
1165                              int *display_wm, int *cursor_wm)
1166 {
1167         struct drm_crtc *crtc;
1168         int hdisplay, htotal, pixel_size, clock;
1169         unsigned long line_time_us;
1170         int line_count, line_size;
1171         int small, large;
1172         int entries;
1173
1174         if (!latency_ns) {
1175                 *display_wm = *cursor_wm = 0;
1176                 return false;
1177         }
1178
1179         crtc = intel_get_crtc_for_plane(dev, plane);
1180         hdisplay = crtc->mode.hdisplay;
1181         htotal = crtc->mode.htotal;
1182         clock = crtc->mode.clock;
1183         pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185         line_time_us = (htotal * 1000) / clock;
1186         line_count = (latency_ns / line_time_us + 1000) / 1000;
1187         line_size = hdisplay * pixel_size;
1188
1189         /* Use the minimum of the small and large buffer method for primary */
1190         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1191         large = line_count * line_size;
1192
1193         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1194         *display_wm = entries + display->guard_size;
1195
1196         /* calculate the self-refresh watermark for display cursor */
1197         entries = line_count * pixel_size * 64;
1198         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1199         *cursor_wm = entries + cursor->guard_size;
1200
1201         return g4x_check_srwm(dev,
1202                               *display_wm, *cursor_wm,
1203                               display, cursor);
1204 }
1205
1206 static bool vlv_compute_drain_latency(struct drm_device *dev,
1207                                      int plane,
1208                                      int *plane_prec_mult,
1209                                      int *plane_dl,
1210                                      int *cursor_prec_mult,
1211                                      int *cursor_dl)
1212 {
1213         struct drm_crtc *crtc;
1214         int clock, pixel_size;
1215         int entries;
1216
1217         crtc = intel_get_crtc_for_plane(dev, plane);
1218         if (crtc->fb == NULL || !crtc->enabled)
1219                 return false;
1220
1221         clock = crtc->mode.clock;       /* VESA DOT Clock */
1222         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1223
1224         entries = (clock / 1000) * pixel_size;
1225         *plane_prec_mult = (entries > 256) ?
1226                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1227         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1228                                                      pixel_size);
1229
1230         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1231         *cursor_prec_mult = (entries > 256) ?
1232                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1233         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1234
1235         return true;
1236 }
1237
1238 /*
1239  * Update drain latency registers of memory arbiter
1240  *
1241  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1242  * to be programmed. Each plane has a drain latency multiplier and a drain
1243  * latency value.
1244  */
1245
1246 static void vlv_update_drain_latency(struct drm_device *dev)
1247 {
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1250         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1251         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1252                                                         either 16 or 32 */
1253
1254         /* For plane A, Cursor A */
1255         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1256                                       &cursor_prec_mult, &cursora_dl)) {
1257                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1259                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1260                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1261
1262                 I915_WRITE(VLV_DDL1, cursora_prec |
1263                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1264                                 planea_prec | planea_dl);
1265         }
1266
1267         /* For plane B, Cursor B */
1268         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1269                                       &cursor_prec_mult, &cursorb_dl)) {
1270                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1272                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1273                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1274
1275                 I915_WRITE(VLV_DDL2, cursorb_prec |
1276                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1277                                 planeb_prec | planeb_dl);
1278         }
1279 }
1280
1281 #define single_plane_enabled(mask) is_power_of_2(mask)
1282
1283 static void valleyview_update_wm(struct drm_device *dev)
1284 {
1285         static const int sr_latency_ns = 12000;
1286         struct drm_i915_private *dev_priv = dev->dev_private;
1287         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1288         int plane_sr, cursor_sr;
1289         unsigned int enabled = 0;
1290
1291         vlv_update_drain_latency(dev);
1292
1293         if (g4x_compute_wm0(dev, 0,
1294                             &valleyview_wm_info, latency_ns,
1295                             &valleyview_cursor_wm_info, latency_ns,
1296                             &planea_wm, &cursora_wm))
1297                 enabled |= 1;
1298
1299         if (g4x_compute_wm0(dev, 1,
1300                             &valleyview_wm_info, latency_ns,
1301                             &valleyview_cursor_wm_info, latency_ns,
1302                             &planeb_wm, &cursorb_wm))
1303                 enabled |= 2;
1304
1305         plane_sr = cursor_sr = 0;
1306         if (single_plane_enabled(enabled) &&
1307             g4x_compute_srwm(dev, ffs(enabled) - 1,
1308                              sr_latency_ns,
1309                              &valleyview_wm_info,
1310                              &valleyview_cursor_wm_info,
1311                              &plane_sr, &cursor_sr))
1312                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1313         else
1314                 I915_WRITE(FW_BLC_SELF_VLV,
1315                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1316
1317         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1318                       planea_wm, cursora_wm,
1319                       planeb_wm, cursorb_wm,
1320                       plane_sr, cursor_sr);
1321
1322         I915_WRITE(DSPFW1,
1323                    (plane_sr << DSPFW_SR_SHIFT) |
1324                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1325                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1326                    planea_wm);
1327         I915_WRITE(DSPFW2,
1328                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1329                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1330         I915_WRITE(DSPFW3,
1331                    (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1332 }
1333
1334 static void g4x_update_wm(struct drm_device *dev)
1335 {
1336         static const int sr_latency_ns = 12000;
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1339         int plane_sr, cursor_sr;
1340         unsigned int enabled = 0;
1341
1342         if (g4x_compute_wm0(dev, 0,
1343                             &g4x_wm_info, latency_ns,
1344                             &g4x_cursor_wm_info, latency_ns,
1345                             &planea_wm, &cursora_wm))
1346                 enabled |= 1;
1347
1348         if (g4x_compute_wm0(dev, 1,
1349                             &g4x_wm_info, latency_ns,
1350                             &g4x_cursor_wm_info, latency_ns,
1351                             &planeb_wm, &cursorb_wm))
1352                 enabled |= 2;
1353
1354         plane_sr = cursor_sr = 0;
1355         if (single_plane_enabled(enabled) &&
1356             g4x_compute_srwm(dev, ffs(enabled) - 1,
1357                              sr_latency_ns,
1358                              &g4x_wm_info,
1359                              &g4x_cursor_wm_info,
1360                              &plane_sr, &cursor_sr))
1361                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1362         else
1363                 I915_WRITE(FW_BLC_SELF,
1364                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1365
1366         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1367                       planea_wm, cursora_wm,
1368                       planeb_wm, cursorb_wm,
1369                       plane_sr, cursor_sr);
1370
1371         I915_WRITE(DSPFW1,
1372                    (plane_sr << DSPFW_SR_SHIFT) |
1373                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1374                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1375                    planea_wm);
1376         I915_WRITE(DSPFW2,
1377                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1378                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1379         /* HPLL off in SR has some issues on G4x... disable it */
1380         I915_WRITE(DSPFW3,
1381                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1382                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1383 }
1384
1385 static void i965_update_wm(struct drm_device *dev)
1386 {
1387         struct drm_i915_private *dev_priv = dev->dev_private;
1388         struct drm_crtc *crtc;
1389         int srwm = 1;
1390         int cursor_sr = 16;
1391
1392         /* Calc sr entries for one plane configs */
1393         crtc = single_enabled_crtc(dev);
1394         if (crtc) {
1395                 /* self-refresh has much higher latency */
1396                 static const int sr_latency_ns = 12000;
1397                 int clock = crtc->mode.clock;
1398                 int htotal = crtc->mode.htotal;
1399                 int hdisplay = crtc->mode.hdisplay;
1400                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1401                 unsigned long line_time_us;
1402                 int entries;
1403
1404                 line_time_us = ((htotal * 1000) / clock);
1405
1406                 /* Use ns/us then divide to preserve precision */
1407                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1408                         pixel_size * hdisplay;
1409                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1410                 srwm = I965_FIFO_SIZE - entries;
1411                 if (srwm < 0)
1412                         srwm = 1;
1413                 srwm &= 0x1ff;
1414                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1415                               entries, srwm);
1416
1417                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1418                         pixel_size * 64;
1419                 entries = DIV_ROUND_UP(entries,
1420                                           i965_cursor_wm_info.cacheline_size);
1421                 cursor_sr = i965_cursor_wm_info.fifo_size -
1422                         (entries + i965_cursor_wm_info.guard_size);
1423
1424                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1425                         cursor_sr = i965_cursor_wm_info.max_wm;
1426
1427                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1428                               "cursor %d\n", srwm, cursor_sr);
1429
1430                 if (IS_CRESTLINE(dev))
1431                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1432         } else {
1433                 /* Turn off self refresh if both pipes are enabled */
1434                 if (IS_CRESTLINE(dev))
1435                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1436                                    & ~FW_BLC_SELF_EN);
1437         }
1438
1439         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1440                       srwm);
1441
1442         /* 965 has limitations... */
1443         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1444                    (8 << 16) | (8 << 8) | (8 << 0));
1445         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1446         /* update cursor SR watermark */
1447         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1448 }
1449
1450 static void i9xx_update_wm(struct drm_device *dev)
1451 {
1452         struct drm_i915_private *dev_priv = dev->dev_private;
1453         const struct intel_watermark_params *wm_info;
1454         uint32_t fwater_lo;
1455         uint32_t fwater_hi;
1456         int cwm, srwm = 1;
1457         int fifo_size;
1458         int planea_wm, planeb_wm;
1459         struct drm_crtc *crtc, *enabled = NULL;
1460
1461         if (IS_I945GM(dev))
1462                 wm_info = &i945_wm_info;
1463         else if (!IS_GEN2(dev))
1464                 wm_info = &i915_wm_info;
1465         else
1466                 wm_info = &i855_wm_info;
1467
1468         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1469         crtc = intel_get_crtc_for_plane(dev, 0);
1470         if (crtc->enabled && crtc->fb) {
1471                 int cpp = crtc->fb->bits_per_pixel / 8;
1472                 if (IS_GEN2(dev))
1473                         cpp = 4;
1474
1475                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1476                                                wm_info, fifo_size, cpp,
1477                                                latency_ns);
1478                 enabled = crtc;
1479         } else
1480                 planea_wm = fifo_size - wm_info->guard_size;
1481
1482         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1483         crtc = intel_get_crtc_for_plane(dev, 1);
1484         if (crtc->enabled && crtc->fb) {
1485                 int cpp = crtc->fb->bits_per_pixel / 8;
1486                 if (IS_GEN2(dev))
1487                         cpp = 4;
1488
1489                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1490                                                wm_info, fifo_size, cpp,
1491                                                latency_ns);
1492                 if (enabled == NULL)
1493                         enabled = crtc;
1494                 else
1495                         enabled = NULL;
1496         } else
1497                 planeb_wm = fifo_size - wm_info->guard_size;
1498
1499         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1500
1501         /*
1502          * Overlay gets an aggressive default since video jitter is bad.
1503          */
1504         cwm = 2;
1505
1506         /* Play safe and disable self-refresh before adjusting watermarks. */
1507         if (IS_I945G(dev) || IS_I945GM(dev))
1508                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1509         else if (IS_I915GM(dev))
1510                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1511
1512         /* Calc sr entries for one plane configs */
1513         if (HAS_FW_BLC(dev) && enabled) {
1514                 /* self-refresh has much higher latency */
1515                 static const int sr_latency_ns = 6000;
1516                 int clock = enabled->mode.clock;
1517                 int htotal = enabled->mode.htotal;
1518                 int hdisplay = enabled->mode.hdisplay;
1519                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1520                 unsigned long line_time_us;
1521                 int entries;
1522
1523                 line_time_us = (htotal * 1000) / clock;
1524
1525                 /* Use ns/us then divide to preserve precision */
1526                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1527                         pixel_size * hdisplay;
1528                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1529                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1530                 srwm = wm_info->fifo_size - entries;
1531                 if (srwm < 0)
1532                         srwm = 1;
1533
1534                 if (IS_I945G(dev) || IS_I945GM(dev))
1535                         I915_WRITE(FW_BLC_SELF,
1536                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1537                 else if (IS_I915GM(dev))
1538                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1539         }
1540
1541         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1542                       planea_wm, planeb_wm, cwm, srwm);
1543
1544         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1545         fwater_hi = (cwm & 0x1f);
1546
1547         /* Set request length to 8 cachelines per fetch */
1548         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1549         fwater_hi = fwater_hi | (1 << 8);
1550
1551         I915_WRITE(FW_BLC, fwater_lo);
1552         I915_WRITE(FW_BLC2, fwater_hi);
1553
1554         if (HAS_FW_BLC(dev)) {
1555                 if (enabled) {
1556                         if (IS_I945G(dev) || IS_I945GM(dev))
1557                                 I915_WRITE(FW_BLC_SELF,
1558                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1559                         else if (IS_I915GM(dev))
1560                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1561                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1562                 } else
1563                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1564         }
1565 }
1566
1567 static void i830_update_wm(struct drm_device *dev)
1568 {
1569         struct drm_i915_private *dev_priv = dev->dev_private;
1570         struct drm_crtc *crtc;
1571         uint32_t fwater_lo;
1572         int planea_wm;
1573
1574         crtc = single_enabled_crtc(dev);
1575         if (crtc == NULL)
1576                 return;
1577
1578         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1579                                        dev_priv->display.get_fifo_size(dev, 0),
1580                                        4, latency_ns);
1581         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1582         fwater_lo |= (3<<8) | planea_wm;
1583
1584         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1585
1586         I915_WRITE(FW_BLC, fwater_lo);
1587 }
1588
1589 #define ILK_LP0_PLANE_LATENCY           700
1590 #define ILK_LP0_CURSOR_LATENCY          1300
1591
1592 /*
1593  * Check the wm result.
1594  *
1595  * If any calculated watermark values is larger than the maximum value that
1596  * can be programmed into the associated watermark register, that watermark
1597  * must be disabled.
1598  */
1599 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1600                                 int fbc_wm, int display_wm, int cursor_wm,
1601                                 const struct intel_watermark_params *display,
1602                                 const struct intel_watermark_params *cursor)
1603 {
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605
1606         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1607                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1608
1609         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1610                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1611                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1612
1613                 /* fbc has it's own way to disable FBC WM */
1614                 I915_WRITE(DISP_ARB_CTL,
1615                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1616                 return false;
1617         }
1618
1619         if (display_wm > display->max_wm) {
1620                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1621                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1622                 return false;
1623         }
1624
1625         if (cursor_wm > cursor->max_wm) {
1626                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1627                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1628                 return false;
1629         }
1630
1631         if (!(fbc_wm || display_wm || cursor_wm)) {
1632                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1633                 return false;
1634         }
1635
1636         return true;
1637 }
1638
1639 /*
1640  * Compute watermark values of WM[1-3],
1641  */
1642 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1643                                   int latency_ns,
1644                                   const struct intel_watermark_params *display,
1645                                   const struct intel_watermark_params *cursor,
1646                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1647 {
1648         struct drm_crtc *crtc;
1649         unsigned long line_time_us;
1650         int hdisplay, htotal, pixel_size, clock;
1651         int line_count, line_size;
1652         int small, large;
1653         int entries;
1654
1655         if (!latency_ns) {
1656                 *fbc_wm = *display_wm = *cursor_wm = 0;
1657                 return false;
1658         }
1659
1660         crtc = intel_get_crtc_for_plane(dev, plane);
1661         hdisplay = crtc->mode.hdisplay;
1662         htotal = crtc->mode.htotal;
1663         clock = crtc->mode.clock;
1664         pixel_size = crtc->fb->bits_per_pixel / 8;
1665
1666         line_time_us = (htotal * 1000) / clock;
1667         line_count = (latency_ns / line_time_us + 1000) / 1000;
1668         line_size = hdisplay * pixel_size;
1669
1670         /* Use the minimum of the small and large buffer method for primary */
1671         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1672         large = line_count * line_size;
1673
1674         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1675         *display_wm = entries + display->guard_size;
1676
1677         /*
1678          * Spec says:
1679          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1680          */
1681         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1682
1683         /* calculate the self-refresh watermark for display cursor */
1684         entries = line_count * pixel_size * 64;
1685         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1686         *cursor_wm = entries + cursor->guard_size;
1687
1688         return ironlake_check_srwm(dev, level,
1689                                    *fbc_wm, *display_wm, *cursor_wm,
1690                                    display, cursor);
1691 }
1692
1693 static void ironlake_update_wm(struct drm_device *dev)
1694 {
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         int fbc_wm, plane_wm, cursor_wm;
1697         unsigned int enabled;
1698
1699         enabled = 0;
1700         if (g4x_compute_wm0(dev, 0,
1701                             &ironlake_display_wm_info,
1702                             ILK_LP0_PLANE_LATENCY,
1703                             &ironlake_cursor_wm_info,
1704                             ILK_LP0_CURSOR_LATENCY,
1705                             &plane_wm, &cursor_wm)) {
1706                 I915_WRITE(WM0_PIPEA_ILK,
1707                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1708                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1709                               " plane %d, " "cursor: %d\n",
1710                               plane_wm, cursor_wm);
1711                 enabled |= 1;
1712         }
1713
1714         if (g4x_compute_wm0(dev, 1,
1715                             &ironlake_display_wm_info,
1716                             ILK_LP0_PLANE_LATENCY,
1717                             &ironlake_cursor_wm_info,
1718                             ILK_LP0_CURSOR_LATENCY,
1719                             &plane_wm, &cursor_wm)) {
1720                 I915_WRITE(WM0_PIPEB_ILK,
1721                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1722                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1723                               " plane %d, cursor: %d\n",
1724                               plane_wm, cursor_wm);
1725                 enabled |= 2;
1726         }
1727
1728         /*
1729          * Calculate and update the self-refresh watermark only when one
1730          * display plane is used.
1731          */
1732         I915_WRITE(WM3_LP_ILK, 0);
1733         I915_WRITE(WM2_LP_ILK, 0);
1734         I915_WRITE(WM1_LP_ILK, 0);
1735
1736         if (!single_plane_enabled(enabled))
1737                 return;
1738         enabled = ffs(enabled) - 1;
1739
1740         /* WM1 */
1741         if (!ironlake_compute_srwm(dev, 1, enabled,
1742                                    ILK_READ_WM1_LATENCY() * 500,
1743                                    &ironlake_display_srwm_info,
1744                                    &ironlake_cursor_srwm_info,
1745                                    &fbc_wm, &plane_wm, &cursor_wm))
1746                 return;
1747
1748         I915_WRITE(WM1_LP_ILK,
1749                    WM1_LP_SR_EN |
1750                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1751                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1752                    (plane_wm << WM1_LP_SR_SHIFT) |
1753                    cursor_wm);
1754
1755         /* WM2 */
1756         if (!ironlake_compute_srwm(dev, 2, enabled,
1757                                    ILK_READ_WM2_LATENCY() * 500,
1758                                    &ironlake_display_srwm_info,
1759                                    &ironlake_cursor_srwm_info,
1760                                    &fbc_wm, &plane_wm, &cursor_wm))
1761                 return;
1762
1763         I915_WRITE(WM2_LP_ILK,
1764                    WM2_LP_EN |
1765                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1766                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1767                    (plane_wm << WM1_LP_SR_SHIFT) |
1768                    cursor_wm);
1769
1770         /*
1771          * WM3 is unsupported on ILK, probably because we don't have latency
1772          * data for that power state
1773          */
1774 }
1775
1776 static void sandybridge_update_wm(struct drm_device *dev)
1777 {
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1780         u32 val;
1781         int fbc_wm, plane_wm, cursor_wm;
1782         unsigned int enabled;
1783
1784         enabled = 0;
1785         if (g4x_compute_wm0(dev, 0,
1786                             &sandybridge_display_wm_info, latency,
1787                             &sandybridge_cursor_wm_info, latency,
1788                             &plane_wm, &cursor_wm)) {
1789                 val = I915_READ(WM0_PIPEA_ILK);
1790                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1791                 I915_WRITE(WM0_PIPEA_ILK, val |
1792                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1793                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1794                               " plane %d, " "cursor: %d\n",
1795                               plane_wm, cursor_wm);
1796                 enabled |= 1;
1797         }
1798
1799         if (g4x_compute_wm0(dev, 1,
1800                             &sandybridge_display_wm_info, latency,
1801                             &sandybridge_cursor_wm_info, latency,
1802                             &plane_wm, &cursor_wm)) {
1803                 val = I915_READ(WM0_PIPEB_ILK);
1804                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1805                 I915_WRITE(WM0_PIPEB_ILK, val |
1806                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1807                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1808                               " plane %d, cursor: %d\n",
1809                               plane_wm, cursor_wm);
1810                 enabled |= 2;
1811         }
1812
1813         if ((dev_priv->num_pipe == 3) &&
1814             g4x_compute_wm0(dev, 2,
1815                             &sandybridge_display_wm_info, latency,
1816                             &sandybridge_cursor_wm_info, latency,
1817                             &plane_wm, &cursor_wm)) {
1818                 val = I915_READ(WM0_PIPEC_IVB);
1819                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1820                 I915_WRITE(WM0_PIPEC_IVB, val |
1821                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1822                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1823                               " plane %d, cursor: %d\n",
1824                               plane_wm, cursor_wm);
1825                 enabled |= 3;
1826         }
1827
1828         /*
1829          * Calculate and update the self-refresh watermark only when one
1830          * display plane is used.
1831          *
1832          * SNB support 3 levels of watermark.
1833          *
1834          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1835          * and disabled in the descending order
1836          *
1837          */
1838         I915_WRITE(WM3_LP_ILK, 0);
1839         I915_WRITE(WM2_LP_ILK, 0);
1840         I915_WRITE(WM1_LP_ILK, 0);
1841
1842         if (!single_plane_enabled(enabled) ||
1843             dev_priv->sprite_scaling_enabled)
1844                 return;
1845         enabled = ffs(enabled) - 1;
1846
1847         /* WM1 */
1848         if (!ironlake_compute_srwm(dev, 1, enabled,
1849                                    SNB_READ_WM1_LATENCY() * 500,
1850                                    &sandybridge_display_srwm_info,
1851                                    &sandybridge_cursor_srwm_info,
1852                                    &fbc_wm, &plane_wm, &cursor_wm))
1853                 return;
1854
1855         I915_WRITE(WM1_LP_ILK,
1856                    WM1_LP_SR_EN |
1857                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1858                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1859                    (plane_wm << WM1_LP_SR_SHIFT) |
1860                    cursor_wm);
1861
1862         /* WM2 */
1863         if (!ironlake_compute_srwm(dev, 2, enabled,
1864                                    SNB_READ_WM2_LATENCY() * 500,
1865                                    &sandybridge_display_srwm_info,
1866                                    &sandybridge_cursor_srwm_info,
1867                                    &fbc_wm, &plane_wm, &cursor_wm))
1868                 return;
1869
1870         I915_WRITE(WM2_LP_ILK,
1871                    WM2_LP_EN |
1872                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1873                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1874                    (plane_wm << WM1_LP_SR_SHIFT) |
1875                    cursor_wm);
1876
1877         /* WM3 */
1878         if (!ironlake_compute_srwm(dev, 3, enabled,
1879                                    SNB_READ_WM3_LATENCY() * 500,
1880                                    &sandybridge_display_srwm_info,
1881                                    &sandybridge_cursor_srwm_info,
1882                                    &fbc_wm, &plane_wm, &cursor_wm))
1883                 return;
1884
1885         I915_WRITE(WM3_LP_ILK,
1886                    WM3_LP_EN |
1887                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1888                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1889                    (plane_wm << WM1_LP_SR_SHIFT) |
1890                    cursor_wm);
1891 }
1892
1893 static void
1894 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1895                                  struct drm_display_mode *mode)
1896 {
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         u32 temp;
1899
1900         temp = I915_READ(PIPE_WM_LINETIME(pipe));
1901         temp &= ~PIPE_WM_LINETIME_MASK;
1902
1903         /* The WM are computed with base on how long it takes to fill a single
1904          * row at the given clock rate, multiplied by 8.
1905          * */
1906         temp |= PIPE_WM_LINETIME_TIME(
1907                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1908
1909         /* IPS watermarks are only used by pipe A, and are ignored by
1910          * pipes B and C.  They are calculated similarly to the common
1911          * linetime values, except that we are using CD clock frequency
1912          * in MHz instead of pixel rate for the division.
1913          *
1914          * This is a placeholder for the IPS watermark calculation code.
1915          */
1916
1917         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1918 }
1919
1920 static bool
1921 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1922                               uint32_t sprite_width, int pixel_size,
1923                               const struct intel_watermark_params *display,
1924                               int display_latency_ns, int *sprite_wm)
1925 {
1926         struct drm_crtc *crtc;
1927         int clock;
1928         int entries, tlb_miss;
1929
1930         crtc = intel_get_crtc_for_plane(dev, plane);
1931         if (crtc->fb == NULL || !crtc->enabled) {
1932                 *sprite_wm = display->guard_size;
1933                 return false;
1934         }
1935
1936         clock = crtc->mode.clock;
1937
1938         /* Use the small buffer method to calculate the sprite watermark */
1939         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1940         tlb_miss = display->fifo_size*display->cacheline_size -
1941                 sprite_width * 8;
1942         if (tlb_miss > 0)
1943                 entries += tlb_miss;
1944         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1945         *sprite_wm = entries + display->guard_size;
1946         if (*sprite_wm > (int)display->max_wm)
1947                 *sprite_wm = display->max_wm;
1948
1949         return true;
1950 }
1951
1952 static bool
1953 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1954                                 uint32_t sprite_width, int pixel_size,
1955                                 const struct intel_watermark_params *display,
1956                                 int latency_ns, int *sprite_wm)
1957 {
1958         struct drm_crtc *crtc;
1959         unsigned long line_time_us;
1960         int clock;
1961         int line_count, line_size;
1962         int small, large;
1963         int entries;
1964
1965         if (!latency_ns) {
1966                 *sprite_wm = 0;
1967                 return false;
1968         }
1969
1970         crtc = intel_get_crtc_for_plane(dev, plane);
1971         clock = crtc->mode.clock;
1972         if (!clock) {
1973                 *sprite_wm = 0;
1974                 return false;
1975         }
1976
1977         line_time_us = (sprite_width * 1000) / clock;
1978         if (!line_time_us) {
1979                 *sprite_wm = 0;
1980                 return false;
1981         }
1982
1983         line_count = (latency_ns / line_time_us + 1000) / 1000;
1984         line_size = sprite_width * pixel_size;
1985
1986         /* Use the minimum of the small and large buffer method for primary */
1987         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1988         large = line_count * line_size;
1989
1990         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1991         *sprite_wm = entries + display->guard_size;
1992
1993         return *sprite_wm > 0x3ff ? false : true;
1994 }
1995
1996 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1997                                          uint32_t sprite_width, int pixel_size)
1998 {
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2001         u32 val;
2002         int sprite_wm, reg;
2003         int ret;
2004
2005         switch (pipe) {
2006         case 0:
2007                 reg = WM0_PIPEA_ILK;
2008                 break;
2009         case 1:
2010                 reg = WM0_PIPEB_ILK;
2011                 break;
2012         case 2:
2013                 reg = WM0_PIPEC_IVB;
2014                 break;
2015         default:
2016                 return; /* bad pipe */
2017         }
2018
2019         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2020                                             &sandybridge_display_wm_info,
2021                                             latency, &sprite_wm);
2022         if (!ret) {
2023                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2024                               pipe);
2025                 return;
2026         }
2027
2028         val = I915_READ(reg);
2029         val &= ~WM0_PIPE_SPRITE_MASK;
2030         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2031         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2032
2033
2034         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2035                                               pixel_size,
2036                                               &sandybridge_display_srwm_info,
2037                                               SNB_READ_WM1_LATENCY() * 500,
2038                                               &sprite_wm);
2039         if (!ret) {
2040                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2041                               pipe);
2042                 return;
2043         }
2044         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2045
2046         /* Only IVB has two more LP watermarks for sprite */
2047         if (!IS_IVYBRIDGE(dev))
2048                 return;
2049
2050         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2051                                               pixel_size,
2052                                               &sandybridge_display_srwm_info,
2053                                               SNB_READ_WM2_LATENCY() * 500,
2054                                               &sprite_wm);
2055         if (!ret) {
2056                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2057                               pipe);
2058                 return;
2059         }
2060         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2061
2062         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2063                                               pixel_size,
2064                                               &sandybridge_display_srwm_info,
2065                                               SNB_READ_WM3_LATENCY() * 500,
2066                                               &sprite_wm);
2067         if (!ret) {
2068                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2069                               pipe);
2070                 return;
2071         }
2072         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2073 }
2074
2075 /**
2076  * intel_update_watermarks - update FIFO watermark values based on current modes
2077  *
2078  * Calculate watermark values for the various WM regs based on current mode
2079  * and plane configuration.
2080  *
2081  * There are several cases to deal with here:
2082  *   - normal (i.e. non-self-refresh)
2083  *   - self-refresh (SR) mode
2084  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2085  *   - lines are small relative to FIFO size (buffer can hold more than 2
2086  *     lines), so need to account for TLB latency
2087  *
2088  *   The normal calculation is:
2089  *     watermark = dotclock * bytes per pixel * latency
2090  *   where latency is platform & configuration dependent (we assume pessimal
2091  *   values here).
2092  *
2093  *   The SR calculation is:
2094  *     watermark = (trunc(latency/line time)+1) * surface width *
2095  *       bytes per pixel
2096  *   where
2097  *     line time = htotal / dotclock
2098  *     surface width = hdisplay for normal plane and 64 for cursor
2099  *   and latency is assumed to be high, as above.
2100  *
2101  * The final value programmed to the register should always be rounded up,
2102  * and include an extra 2 entries to account for clock crossings.
2103  *
2104  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2105  * to set the non-SR watermarks to 8.
2106  */
2107 void intel_update_watermarks(struct drm_device *dev)
2108 {
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110
2111         if (dev_priv->display.update_wm)
2112                 dev_priv->display.update_wm(dev);
2113 }
2114
2115 void intel_update_linetime_watermarks(struct drm_device *dev,
2116                 int pipe, struct drm_display_mode *mode)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119
2120         if (dev_priv->display.update_linetime_wm)
2121                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2122 }
2123
2124 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2125                                     uint32_t sprite_width, int pixel_size)
2126 {
2127         struct drm_i915_private *dev_priv = dev->dev_private;
2128
2129         if (dev_priv->display.update_sprite_wm)
2130                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2131                                                    pixel_size);
2132 }
2133
2134 static struct drm_i915_gem_object *
2135 intel_alloc_context_page(struct drm_device *dev)
2136 {
2137         struct drm_i915_gem_object *ctx;
2138         int ret;
2139
2140         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2141
2142         ctx = i915_gem_alloc_object(dev, 4096);
2143         if (!ctx) {
2144                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2145                 return NULL;
2146         }
2147
2148         ret = i915_gem_object_pin(ctx, 4096, true, false);
2149         if (ret) {
2150                 DRM_ERROR("failed to pin power context: %d\n", ret);
2151                 goto err_unref;
2152         }
2153
2154         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2155         if (ret) {
2156                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2157                 goto err_unpin;
2158         }
2159
2160         return ctx;
2161
2162 err_unpin:
2163         i915_gem_object_unpin(ctx);
2164 err_unref:
2165         drm_gem_object_unreference(&ctx->base);
2166         mutex_unlock(&dev->struct_mutex);
2167         return NULL;
2168 }
2169
2170 /**
2171  * Lock protecting IPS related data structures
2172  */
2173 DEFINE_SPINLOCK(mchdev_lock);
2174
2175 /* Global for IPS driver to get at the current i915 device. Protected by
2176  * mchdev_lock. */
2177 static struct drm_i915_private *i915_mch_dev;
2178
2179 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2180 {
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         u16 rgvswctl;
2183
2184         assert_spin_locked(&mchdev_lock);
2185
2186         rgvswctl = I915_READ16(MEMSWCTL);
2187         if (rgvswctl & MEMCTL_CMD_STS) {
2188                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2189                 return false; /* still busy with another command */
2190         }
2191
2192         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2193                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2194         I915_WRITE16(MEMSWCTL, rgvswctl);
2195         POSTING_READ16(MEMSWCTL);
2196
2197         rgvswctl |= MEMCTL_CMD_STS;
2198         I915_WRITE16(MEMSWCTL, rgvswctl);
2199
2200         return true;
2201 }
2202
2203 static void ironlake_enable_drps(struct drm_device *dev)
2204 {
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         u32 rgvmodectl = I915_READ(MEMMODECTL);
2207         u8 fmax, fmin, fstart, vstart;
2208
2209         spin_lock_irq(&mchdev_lock);
2210
2211         /* Enable temp reporting */
2212         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2213         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2214
2215         /* 100ms RC evaluation intervals */
2216         I915_WRITE(RCUPEI, 100000);
2217         I915_WRITE(RCDNEI, 100000);
2218
2219         /* Set max/min thresholds to 90ms and 80ms respectively */
2220         I915_WRITE(RCBMAXAVG, 90000);
2221         I915_WRITE(RCBMINAVG, 80000);
2222
2223         I915_WRITE(MEMIHYST, 1);
2224
2225         /* Set up min, max, and cur for interrupt handling */
2226         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2227         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2228         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2229                 MEMMODE_FSTART_SHIFT;
2230
2231         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2232                 PXVFREQ_PX_SHIFT;
2233
2234         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2235         dev_priv->ips.fstart = fstart;
2236
2237         dev_priv->ips.max_delay = fstart;
2238         dev_priv->ips.min_delay = fmin;
2239         dev_priv->ips.cur_delay = fstart;
2240
2241         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2242                          fmax, fmin, fstart);
2243
2244         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2245
2246         /*
2247          * Interrupts will be enabled in ironlake_irq_postinstall
2248          */
2249
2250         I915_WRITE(VIDSTART, vstart);
2251         POSTING_READ(VIDSTART);
2252
2253         rgvmodectl |= MEMMODE_SWMODE_EN;
2254         I915_WRITE(MEMMODECTL, rgvmodectl);
2255
2256         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2257                 DRM_ERROR("stuck trying to change perf mode\n");
2258         mdelay(1);
2259
2260         ironlake_set_drps(dev, fstart);
2261
2262         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2263                 I915_READ(0x112e0);
2264         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2265         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2266         getrawmonotonic(&dev_priv->ips.last_time2);
2267
2268         spin_unlock_irq(&mchdev_lock);
2269 }
2270
2271 static void ironlake_disable_drps(struct drm_device *dev)
2272 {
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         u16 rgvswctl;
2275
2276         spin_lock_irq(&mchdev_lock);
2277
2278         rgvswctl = I915_READ16(MEMSWCTL);
2279
2280         /* Ack interrupts, disable EFC interrupt */
2281         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2282         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2283         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2284         I915_WRITE(DEIIR, DE_PCU_EVENT);
2285         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2286
2287         /* Go back to the starting frequency */
2288         ironlake_set_drps(dev, dev_priv->ips.fstart);
2289         mdelay(1);
2290         rgvswctl |= MEMCTL_CMD_STS;
2291         I915_WRITE(MEMSWCTL, rgvswctl);
2292         mdelay(1);
2293
2294         spin_unlock_irq(&mchdev_lock);
2295 }
2296
2297 /* There's a funny hw issue where the hw returns all 0 when reading from
2298  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2299  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2300  * all limits and the gpu stuck at whatever frequency it is at atm).
2301  */
2302 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2303 {
2304         u32 limits;
2305
2306         limits = 0;
2307
2308         if (*val >= dev_priv->rps.max_delay)
2309                 *val = dev_priv->rps.max_delay;
2310         limits |= dev_priv->rps.max_delay << 24;
2311
2312         /* Only set the down limit when we've reached the lowest level to avoid
2313          * getting more interrupts, otherwise leave this clear. This prevents a
2314          * race in the hw when coming out of rc6: There's a tiny window where
2315          * the hw runs at the minimal clock before selecting the desired
2316          * frequency, if the down threshold expires in that window we will not
2317          * receive a down interrupt. */
2318         if (*val <= dev_priv->rps.min_delay) {
2319                 *val = dev_priv->rps.min_delay;
2320                 limits |= dev_priv->rps.min_delay << 16;
2321         }
2322
2323         return limits;
2324 }
2325
2326 void gen6_set_rps(struct drm_device *dev, u8 val)
2327 {
2328         struct drm_i915_private *dev_priv = dev->dev_private;
2329         u32 limits = gen6_rps_limits(dev_priv, &val);
2330
2331         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2332         WARN_ON(val > dev_priv->rps.max_delay);
2333         WARN_ON(val < dev_priv->rps.min_delay);
2334
2335         if (val == dev_priv->rps.cur_delay)
2336                 return;
2337
2338         I915_WRITE(GEN6_RPNSWREQ,
2339                    GEN6_FREQUENCY(val) |
2340                    GEN6_OFFSET(0) |
2341                    GEN6_AGGRESSIVE_TURBO);
2342
2343         /* Make sure we continue to get interrupts
2344          * until we hit the minimum or maximum frequencies.
2345          */
2346         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2347
2348         POSTING_READ(GEN6_RPNSWREQ);
2349
2350         dev_priv->rps.cur_delay = val;
2351
2352         trace_intel_gpu_freq_change(val * 50);
2353 }
2354
2355 static void gen6_disable_rps(struct drm_device *dev)
2356 {
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358
2359         I915_WRITE(GEN6_RC_CONTROL, 0);
2360         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2361         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2362         I915_WRITE(GEN6_PMIER, 0);
2363         /* Complete PM interrupt masking here doesn't race with the rps work
2364          * item again unmasking PM interrupts because that is using a different
2365          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2366          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2367
2368         spin_lock_irq(&dev_priv->rps.lock);
2369         dev_priv->rps.pm_iir = 0;
2370         spin_unlock_irq(&dev_priv->rps.lock);
2371
2372         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2373 }
2374
2375 int intel_enable_rc6(const struct drm_device *dev)
2376 {
2377         /* Respect the kernel parameter if it is set */
2378         if (i915_enable_rc6 >= 0)
2379                 return i915_enable_rc6;
2380
2381         if (INTEL_INFO(dev)->gen == 5) {
2382 #ifdef CONFIG_INTEL_IOMMU
2383                 /* Disable rc6 on ilk if VT-d is on. */
2384                 if (intel_iommu_gfx_mapped)
2385                         return false;
2386 #endif
2387                 DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
2388                 return INTEL_RC6_ENABLE;
2389         }
2390
2391         if (IS_HASWELL(dev)) {
2392                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2393                 return INTEL_RC6_ENABLE;
2394         }
2395
2396         /* snb/ivb have more than one rc6 state. */
2397         if (INTEL_INFO(dev)->gen == 6) {
2398                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2399                 return INTEL_RC6_ENABLE;
2400         }
2401
2402         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2403         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2404 }
2405
2406 static void gen6_enable_rps(struct drm_device *dev)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_ring_buffer *ring;
2410         u32 rp_state_cap;
2411         u32 gt_perf_status;
2412         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2413         u32 gtfifodbg;
2414         int rc6_mode;
2415         int i, ret;
2416
2417         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2418
2419         /* Here begins a magic sequence of register writes to enable
2420          * auto-downclocking.
2421          *
2422          * Perhaps there might be some value in exposing these to
2423          * userspace...
2424          */
2425         I915_WRITE(GEN6_RC_STATE, 0);
2426
2427         /* Clear the DBG now so we don't confuse earlier errors */
2428         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2429                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2430                 I915_WRITE(GTFIFODBG, gtfifodbg);
2431         }
2432
2433         gen6_gt_force_wake_get(dev_priv);
2434
2435         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2436         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2437
2438         /* In units of 100MHz */
2439         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2440         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2441         dev_priv->rps.cur_delay = 0;
2442
2443         /* disable the counters and set deterministic thresholds */
2444         I915_WRITE(GEN6_RC_CONTROL, 0);
2445
2446         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2447         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2448         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2449         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2450         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2451
2452         for_each_ring(ring, dev_priv, i)
2453                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2454
2455         I915_WRITE(GEN6_RC_SLEEP, 0);
2456         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2457         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2458         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2459         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2460
2461         /* Check if we are enabling RC6 */
2462         rc6_mode = intel_enable_rc6(dev_priv->dev);
2463         if (rc6_mode & INTEL_RC6_ENABLE)
2464                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2465
2466         /* We don't use those on Haswell */
2467         if (!IS_HASWELL(dev)) {
2468                 if (rc6_mode & INTEL_RC6p_ENABLE)
2469                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2470
2471                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2472                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2473         }
2474
2475         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2476                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2477                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2478                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2479
2480         I915_WRITE(GEN6_RC_CONTROL,
2481                    rc6_mask |
2482                    GEN6_RC_CTL_EI_MODE(1) |
2483                    GEN6_RC_CTL_HW_ENABLE);
2484
2485         I915_WRITE(GEN6_RPNSWREQ,
2486                    GEN6_FREQUENCY(10) |
2487                    GEN6_OFFSET(0) |
2488                    GEN6_AGGRESSIVE_TURBO);
2489         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2490                    GEN6_FREQUENCY(12));
2491
2492         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2493         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2494                    dev_priv->rps.max_delay << 24 |
2495                    dev_priv->rps.min_delay << 16);
2496
2497         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2498         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2499         I915_WRITE(GEN6_RP_UP_EI, 66000);
2500         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2501
2502         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2503         I915_WRITE(GEN6_RP_CONTROL,
2504                    GEN6_RP_MEDIA_TURBO |
2505                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2506                    GEN6_RP_MEDIA_IS_GFX |
2507                    GEN6_RP_ENABLE |
2508                    GEN6_RP_UP_BUSY_AVG |
2509                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2510
2511         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2512         if (!ret) {
2513                 pcu_mbox = 0;
2514                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2515                 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2516                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2517                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2518                 }
2519         } else {
2520                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2521         }
2522
2523         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2524
2525         /* requires MSI enabled */
2526         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2527         spin_lock_irq(&dev_priv->rps.lock);
2528         WARN_ON(dev_priv->rps.pm_iir != 0);
2529         I915_WRITE(GEN6_PMIMR, 0);
2530         spin_unlock_irq(&dev_priv->rps.lock);
2531         /* enable all PM interrupts */
2532         I915_WRITE(GEN6_PMINTRMSK, 0);
2533
2534         rc6vids = 0;
2535         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2536         if (IS_GEN6(dev) && ret) {
2537                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2538         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2539                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2540                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2541                 rc6vids &= 0xffff00;
2542                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2543                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2544                 if (ret)
2545                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2546         }
2547
2548         gen6_gt_force_wake_put(dev_priv);
2549 }
2550
2551 static void gen6_update_ring_freq(struct drm_device *dev)
2552 {
2553         struct drm_i915_private *dev_priv = dev->dev_private;
2554         int min_freq = 15;
2555         int gpu_freq;
2556         unsigned int ia_freq, max_ia_freq;
2557         int scaling_factor = 180;
2558
2559         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2560
2561         max_ia_freq = cpufreq_quick_get_max(0);
2562         /*
2563          * Default to measured freq if none found, PCU will ensure we don't go
2564          * over
2565          */
2566         if (!max_ia_freq)
2567                 max_ia_freq = tsc_khz;
2568
2569         /* Convert from kHz to MHz */
2570         max_ia_freq /= 1000;
2571
2572         /*
2573          * For each potential GPU frequency, load a ring frequency we'd like
2574          * to use for memory access.  We do this by specifying the IA frequency
2575          * the PCU should use as a reference to determine the ring frequency.
2576          */
2577         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2578              gpu_freq--) {
2579                 int diff = dev_priv->rps.max_delay - gpu_freq;
2580
2581                 /*
2582                  * For GPU frequencies less than 750MHz, just use the lowest
2583                  * ring freq.
2584                  */
2585                 if (gpu_freq < min_freq)
2586                         ia_freq = 800;
2587                 else
2588                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2589                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2590                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2591
2592                 sandybridge_pcode_write(dev_priv,
2593                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2594                                         ia_freq | gpu_freq);
2595         }
2596 }
2597
2598 void ironlake_teardown_rc6(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601
2602         if (dev_priv->ips.renderctx) {
2603                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2604                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2605                 dev_priv->ips.renderctx = NULL;
2606         }
2607
2608         if (dev_priv->ips.pwrctx) {
2609                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2610                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2611                 dev_priv->ips.pwrctx = NULL;
2612         }
2613 }
2614
2615 static void ironlake_disable_rc6(struct drm_device *dev)
2616 {
2617         struct drm_i915_private *dev_priv = dev->dev_private;
2618
2619         if (I915_READ(PWRCTXA)) {
2620                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2621                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2622                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2623                          50);
2624
2625                 I915_WRITE(PWRCTXA, 0);
2626                 POSTING_READ(PWRCTXA);
2627
2628                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2629                 POSTING_READ(RSTDBYCTL);
2630         }
2631 }
2632
2633 static int ironlake_setup_rc6(struct drm_device *dev)
2634 {
2635         struct drm_i915_private *dev_priv = dev->dev_private;
2636
2637         if (dev_priv->ips.renderctx == NULL)
2638                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2639         if (!dev_priv->ips.renderctx)
2640                 return -ENOMEM;
2641
2642         if (dev_priv->ips.pwrctx == NULL)
2643                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2644         if (!dev_priv->ips.pwrctx) {
2645                 ironlake_teardown_rc6(dev);
2646                 return -ENOMEM;
2647         }
2648
2649         return 0;
2650 }
2651
2652 static void ironlake_enable_rc6(struct drm_device *dev)
2653 {
2654         struct drm_i915_private *dev_priv = dev->dev_private;
2655         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2656         int ret;
2657
2658         /* rc6 disabled by default due to repeated reports of hanging during
2659          * boot and resume.
2660          */
2661         if (!intel_enable_rc6(dev))
2662                 return;
2663
2664         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2665
2666         ret = ironlake_setup_rc6(dev);
2667         if (ret)
2668                 return;
2669
2670         /*
2671          * GPU can automatically power down the render unit if given a page
2672          * to save state.
2673          */
2674         ret = intel_ring_begin(ring, 6);
2675         if (ret) {
2676                 ironlake_teardown_rc6(dev);
2677                 return;
2678         }
2679
2680         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2681         intel_ring_emit(ring, MI_SET_CONTEXT);
2682         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2683                         MI_MM_SPACE_GTT |
2684                         MI_SAVE_EXT_STATE_EN |
2685                         MI_RESTORE_EXT_STATE_EN |
2686                         MI_RESTORE_INHIBIT);
2687         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2688         intel_ring_emit(ring, MI_NOOP);
2689         intel_ring_emit(ring, MI_FLUSH);
2690         intel_ring_advance(ring);
2691
2692         /*
2693          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2694          * does an implicit flush, combined with MI_FLUSH above, it should be
2695          * safe to assume that renderctx is valid
2696          */
2697         ret = intel_wait_ring_idle(ring);
2698         if (ret) {
2699                 DRM_ERROR("failed to enable ironlake power power savings\n");
2700                 ironlake_teardown_rc6(dev);
2701                 return;
2702         }
2703
2704         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2705         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2706 }
2707
2708 static unsigned long intel_pxfreq(u32 vidfreq)
2709 {
2710         unsigned long freq;
2711         int div = (vidfreq & 0x3f0000) >> 16;
2712         int post = (vidfreq & 0x3000) >> 12;
2713         int pre = (vidfreq & 0x7);
2714
2715         if (!pre)
2716                 return 0;
2717
2718         freq = ((div * 133333) / ((1<<post) * pre));
2719
2720         return freq;
2721 }
2722
2723 static const struct cparams {
2724         u16 i;
2725         u16 t;
2726         u16 m;
2727         u16 c;
2728 } cparams[] = {
2729         { 1, 1333, 301, 28664 },
2730         { 1, 1066, 294, 24460 },
2731         { 1, 800, 294, 25192 },
2732         { 0, 1333, 276, 27605 },
2733         { 0, 1066, 276, 27605 },
2734         { 0, 800, 231, 23784 },
2735 };
2736
2737 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2738 {
2739         u64 total_count, diff, ret;
2740         u32 count1, count2, count3, m = 0, c = 0;
2741         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2742         int i;
2743
2744         assert_spin_locked(&mchdev_lock);
2745
2746         diff1 = now - dev_priv->ips.last_time1;
2747
2748         /* Prevent division-by-zero if we are asking too fast.
2749          * Also, we don't get interesting results if we are polling
2750          * faster than once in 10ms, so just return the saved value
2751          * in such cases.
2752          */
2753         if (diff1 <= 10)
2754                 return dev_priv->ips.chipset_power;
2755
2756         count1 = I915_READ(DMIEC);
2757         count2 = I915_READ(DDREC);
2758         count3 = I915_READ(CSIEC);
2759
2760         total_count = count1 + count2 + count3;
2761
2762         /* FIXME: handle per-counter overflow */
2763         if (total_count < dev_priv->ips.last_count1) {
2764                 diff = ~0UL - dev_priv->ips.last_count1;
2765                 diff += total_count;
2766         } else {
2767                 diff = total_count - dev_priv->ips.last_count1;
2768         }
2769
2770         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2771                 if (cparams[i].i == dev_priv->ips.c_m &&
2772                     cparams[i].t == dev_priv->ips.r_t) {
2773                         m = cparams[i].m;
2774                         c = cparams[i].c;
2775                         break;
2776                 }
2777         }
2778
2779         diff = div_u64(diff, diff1);
2780         ret = ((m * diff) + c);
2781         ret = div_u64(ret, 10);
2782
2783         dev_priv->ips.last_count1 = total_count;
2784         dev_priv->ips.last_time1 = now;
2785
2786         dev_priv->ips.chipset_power = ret;
2787
2788         return ret;
2789 }
2790
2791 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2792 {
2793         unsigned long val;
2794
2795         if (dev_priv->info->gen != 5)
2796                 return 0;
2797
2798         spin_lock_irq(&mchdev_lock);
2799
2800         val = __i915_chipset_val(dev_priv);
2801
2802         spin_unlock_irq(&mchdev_lock);
2803
2804         return val;
2805 }
2806
2807 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2808 {
2809         unsigned long m, x, b;
2810         u32 tsfs;
2811
2812         tsfs = I915_READ(TSFS);
2813
2814         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2815         x = I915_READ8(TR1);
2816
2817         b = tsfs & TSFS_INTR_MASK;
2818
2819         return ((m * x) / 127) - b;
2820 }
2821
2822 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2823 {
2824         static const struct v_table {
2825                 u16 vd; /* in .1 mil */
2826                 u16 vm; /* in .1 mil */
2827         } v_table[] = {
2828                 { 0, 0, },
2829                 { 375, 0, },
2830                 { 500, 0, },
2831                 { 625, 0, },
2832                 { 750, 0, },
2833                 { 875, 0, },
2834                 { 1000, 0, },
2835                 { 1125, 0, },
2836                 { 4125, 3000, },
2837                 { 4125, 3000, },
2838                 { 4125, 3000, },
2839                 { 4125, 3000, },
2840                 { 4125, 3000, },
2841                 { 4125, 3000, },
2842                 { 4125, 3000, },
2843                 { 4125, 3000, },
2844                 { 4125, 3000, },
2845                 { 4125, 3000, },
2846                 { 4125, 3000, },
2847                 { 4125, 3000, },
2848                 { 4125, 3000, },
2849                 { 4125, 3000, },
2850                 { 4125, 3000, },
2851                 { 4125, 3000, },
2852                 { 4125, 3000, },
2853                 { 4125, 3000, },
2854                 { 4125, 3000, },
2855                 { 4125, 3000, },
2856                 { 4125, 3000, },
2857                 { 4125, 3000, },
2858                 { 4125, 3000, },
2859                 { 4125, 3000, },
2860                 { 4250, 3125, },
2861                 { 4375, 3250, },
2862                 { 4500, 3375, },
2863                 { 4625, 3500, },
2864                 { 4750, 3625, },
2865                 { 4875, 3750, },
2866                 { 5000, 3875, },
2867                 { 5125, 4000, },
2868                 { 5250, 4125, },
2869                 { 5375, 4250, },
2870                 { 5500, 4375, },
2871                 { 5625, 4500, },
2872                 { 5750, 4625, },
2873                 { 5875, 4750, },
2874                 { 6000, 4875, },
2875                 { 6125, 5000, },
2876                 { 6250, 5125, },
2877                 { 6375, 5250, },
2878                 { 6500, 5375, },
2879                 { 6625, 5500, },
2880                 { 6750, 5625, },
2881                 { 6875, 5750, },
2882                 { 7000, 5875, },
2883                 { 7125, 6000, },
2884                 { 7250, 6125, },
2885                 { 7375, 6250, },
2886                 { 7500, 6375, },
2887                 { 7625, 6500, },
2888                 { 7750, 6625, },
2889                 { 7875, 6750, },
2890                 { 8000, 6875, },
2891                 { 8125, 7000, },
2892                 { 8250, 7125, },
2893                 { 8375, 7250, },
2894                 { 8500, 7375, },
2895                 { 8625, 7500, },
2896                 { 8750, 7625, },
2897                 { 8875, 7750, },
2898                 { 9000, 7875, },
2899                 { 9125, 8000, },
2900                 { 9250, 8125, },
2901                 { 9375, 8250, },
2902                 { 9500, 8375, },
2903                 { 9625, 8500, },
2904                 { 9750, 8625, },
2905                 { 9875, 8750, },
2906                 { 10000, 8875, },
2907                 { 10125, 9000, },
2908                 { 10250, 9125, },
2909                 { 10375, 9250, },
2910                 { 10500, 9375, },
2911                 { 10625, 9500, },
2912                 { 10750, 9625, },
2913                 { 10875, 9750, },
2914                 { 11000, 9875, },
2915                 { 11125, 10000, },
2916                 { 11250, 10125, },
2917                 { 11375, 10250, },
2918                 { 11500, 10375, },
2919                 { 11625, 10500, },
2920                 { 11750, 10625, },
2921                 { 11875, 10750, },
2922                 { 12000, 10875, },
2923                 { 12125, 11000, },
2924                 { 12250, 11125, },
2925                 { 12375, 11250, },
2926                 { 12500, 11375, },
2927                 { 12625, 11500, },
2928                 { 12750, 11625, },
2929                 { 12875, 11750, },
2930                 { 13000, 11875, },
2931                 { 13125, 12000, },
2932                 { 13250, 12125, },
2933                 { 13375, 12250, },
2934                 { 13500, 12375, },
2935                 { 13625, 12500, },
2936                 { 13750, 12625, },
2937                 { 13875, 12750, },
2938                 { 14000, 12875, },
2939                 { 14125, 13000, },
2940                 { 14250, 13125, },
2941                 { 14375, 13250, },
2942                 { 14500, 13375, },
2943                 { 14625, 13500, },
2944                 { 14750, 13625, },
2945                 { 14875, 13750, },
2946                 { 15000, 13875, },
2947                 { 15125, 14000, },
2948                 { 15250, 14125, },
2949                 { 15375, 14250, },
2950                 { 15500, 14375, },
2951                 { 15625, 14500, },
2952                 { 15750, 14625, },
2953                 { 15875, 14750, },
2954                 { 16000, 14875, },
2955                 { 16125, 15000, },
2956         };
2957         if (dev_priv->info->is_mobile)
2958                 return v_table[pxvid].vm;
2959         else
2960                 return v_table[pxvid].vd;
2961 }
2962
2963 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
2964 {
2965         struct timespec now, diff1;
2966         u64 diff;
2967         unsigned long diffms;
2968         u32 count;
2969
2970         assert_spin_locked(&mchdev_lock);
2971
2972         getrawmonotonic(&now);
2973         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
2974
2975         /* Don't divide by 0 */
2976         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2977         if (!diffms)
2978                 return;
2979
2980         count = I915_READ(GFXEC);
2981
2982         if (count < dev_priv->ips.last_count2) {
2983                 diff = ~0UL - dev_priv->ips.last_count2;
2984                 diff += count;
2985         } else {
2986                 diff = count - dev_priv->ips.last_count2;
2987         }
2988
2989         dev_priv->ips.last_count2 = count;
2990         dev_priv->ips.last_time2 = now;
2991
2992         /* More magic constants... */
2993         diff = diff * 1181;
2994         diff = div_u64(diff, diffms * 10);
2995         dev_priv->ips.gfx_power = diff;
2996 }
2997
2998 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2999 {
3000         if (dev_priv->info->gen != 5)
3001                 return;
3002
3003         spin_lock_irq(&mchdev_lock);
3004
3005         __i915_update_gfx_val(dev_priv);
3006
3007         spin_unlock_irq(&mchdev_lock);
3008 }
3009
3010 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3011 {
3012         unsigned long t, corr, state1, corr2, state2;
3013         u32 pxvid, ext_v;
3014
3015         assert_spin_locked(&mchdev_lock);
3016
3017         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3018         pxvid = (pxvid >> 24) & 0x7f;
3019         ext_v = pvid_to_extvid(dev_priv, pxvid);
3020
3021         state1 = ext_v;
3022
3023         t = i915_mch_val(dev_priv);
3024
3025         /* Revel in the empirically derived constants */
3026
3027         /* Correction factor in 1/100000 units */
3028         if (t > 80)
3029                 corr = ((t * 2349) + 135940);
3030         else if (t >= 50)
3031                 corr = ((t * 964) + 29317);
3032         else /* < 50 */
3033                 corr = ((t * 301) + 1004);
3034
3035         corr = corr * ((150142 * state1) / 10000 - 78642);
3036         corr /= 100000;
3037         corr2 = (corr * dev_priv->ips.corr);
3038
3039         state2 = (corr2 * state1) / 10000;
3040         state2 /= 100; /* convert to mW */
3041
3042         __i915_update_gfx_val(dev_priv);
3043
3044         return dev_priv->ips.gfx_power + state2;
3045 }
3046
3047 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3048 {
3049         unsigned long val;
3050
3051         if (dev_priv->info->gen != 5)
3052                 return 0;
3053
3054         spin_lock_irq(&mchdev_lock);
3055
3056         val = __i915_gfx_val(dev_priv);
3057
3058         spin_unlock_irq(&mchdev_lock);
3059
3060         return val;
3061 }
3062
3063 /**
3064  * i915_read_mch_val - return value for IPS use
3065  *
3066  * Calculate and return a value for the IPS driver to use when deciding whether
3067  * we have thermal and power headroom to increase CPU or GPU power budget.
3068  */
3069 unsigned long i915_read_mch_val(void)
3070 {
3071         struct drm_i915_private *dev_priv;
3072         unsigned long chipset_val, graphics_val, ret = 0;
3073
3074         spin_lock_irq(&mchdev_lock);
3075         if (!i915_mch_dev)
3076                 goto out_unlock;
3077         dev_priv = i915_mch_dev;
3078
3079         chipset_val = __i915_chipset_val(dev_priv);
3080         graphics_val = __i915_gfx_val(dev_priv);
3081
3082         ret = chipset_val + graphics_val;
3083
3084 out_unlock:
3085         spin_unlock_irq(&mchdev_lock);
3086
3087         return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3090
3091 /**
3092  * i915_gpu_raise - raise GPU frequency limit
3093  *
3094  * Raise the limit; IPS indicates we have thermal headroom.
3095  */
3096 bool i915_gpu_raise(void)
3097 {
3098         struct drm_i915_private *dev_priv;
3099         bool ret = true;
3100
3101         spin_lock_irq(&mchdev_lock);
3102         if (!i915_mch_dev) {
3103                 ret = false;
3104                 goto out_unlock;
3105         }
3106         dev_priv = i915_mch_dev;
3107
3108         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3109                 dev_priv->ips.max_delay--;
3110
3111 out_unlock:
3112         spin_unlock_irq(&mchdev_lock);
3113
3114         return ret;
3115 }
3116 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3117
3118 /**
3119  * i915_gpu_lower - lower GPU frequency limit
3120  *
3121  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3122  * frequency maximum.
3123  */
3124 bool i915_gpu_lower(void)
3125 {
3126         struct drm_i915_private *dev_priv;
3127         bool ret = true;
3128
3129         spin_lock_irq(&mchdev_lock);
3130         if (!i915_mch_dev) {
3131                 ret = false;
3132                 goto out_unlock;
3133         }
3134         dev_priv = i915_mch_dev;
3135
3136         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3137                 dev_priv->ips.max_delay++;
3138
3139 out_unlock:
3140         spin_unlock_irq(&mchdev_lock);
3141
3142         return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3145
3146 /**
3147  * i915_gpu_busy - indicate GPU business to IPS
3148  *
3149  * Tell the IPS driver whether or not the GPU is busy.
3150  */
3151 bool i915_gpu_busy(void)
3152 {
3153         struct drm_i915_private *dev_priv;
3154         struct intel_ring_buffer *ring;
3155         bool ret = false;
3156         int i;
3157
3158         spin_lock_irq(&mchdev_lock);
3159         if (!i915_mch_dev)
3160                 goto out_unlock;
3161         dev_priv = i915_mch_dev;
3162
3163         for_each_ring(ring, dev_priv, i)
3164                 ret |= !list_empty(&ring->request_list);
3165
3166 out_unlock:
3167         spin_unlock_irq(&mchdev_lock);
3168
3169         return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3172
3173 /**
3174  * i915_gpu_turbo_disable - disable graphics turbo
3175  *
3176  * Disable graphics turbo by resetting the max frequency and setting the
3177  * current frequency to the default.
3178  */
3179 bool i915_gpu_turbo_disable(void)
3180 {
3181         struct drm_i915_private *dev_priv;
3182         bool ret = true;
3183
3184         spin_lock_irq(&mchdev_lock);
3185         if (!i915_mch_dev) {
3186                 ret = false;
3187                 goto out_unlock;
3188         }
3189         dev_priv = i915_mch_dev;
3190
3191         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3192
3193         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3194                 ret = false;
3195
3196 out_unlock:
3197         spin_unlock_irq(&mchdev_lock);
3198
3199         return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3202
3203 /**
3204  * Tells the intel_ips driver that the i915 driver is now loaded, if
3205  * IPS got loaded first.
3206  *
3207  * This awkward dance is so that neither module has to depend on the
3208  * other in order for IPS to do the appropriate communication of
3209  * GPU turbo limits to i915.
3210  */
3211 static void
3212 ips_ping_for_i915_load(void)
3213 {
3214         void (*link)(void);
3215
3216         link = symbol_get(ips_link_to_i915_driver);
3217         if (link) {
3218                 link();
3219                 symbol_put(ips_link_to_i915_driver);
3220         }
3221 }
3222
3223 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3224 {
3225         /* We only register the i915 ips part with intel-ips once everything is
3226          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3227         spin_lock_irq(&mchdev_lock);
3228         i915_mch_dev = dev_priv;
3229         spin_unlock_irq(&mchdev_lock);
3230
3231         ips_ping_for_i915_load();
3232 }
3233
3234 void intel_gpu_ips_teardown(void)
3235 {
3236         spin_lock_irq(&mchdev_lock);
3237         i915_mch_dev = NULL;
3238         spin_unlock_irq(&mchdev_lock);
3239 }
3240 static void intel_init_emon(struct drm_device *dev)
3241 {
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         u32 lcfuse;
3244         u8 pxw[16];
3245         int i;
3246
3247         /* Disable to program */
3248         I915_WRITE(ECR, 0);
3249         POSTING_READ(ECR);
3250
3251         /* Program energy weights for various events */
3252         I915_WRITE(SDEW, 0x15040d00);
3253         I915_WRITE(CSIEW0, 0x007f0000);
3254         I915_WRITE(CSIEW1, 0x1e220004);
3255         I915_WRITE(CSIEW2, 0x04000004);
3256
3257         for (i = 0; i < 5; i++)
3258                 I915_WRITE(PEW + (i * 4), 0);
3259         for (i = 0; i < 3; i++)
3260                 I915_WRITE(DEW + (i * 4), 0);
3261
3262         /* Program P-state weights to account for frequency power adjustment */
3263         for (i = 0; i < 16; i++) {
3264                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3265                 unsigned long freq = intel_pxfreq(pxvidfreq);
3266                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3267                         PXVFREQ_PX_SHIFT;
3268                 unsigned long val;
3269
3270                 val = vid * vid;
3271                 val *= (freq / 1000);
3272                 val *= 255;
3273                 val /= (127*127*900);
3274                 if (val > 0xff)
3275                         DRM_ERROR("bad pxval: %ld\n", val);
3276                 pxw[i] = val;
3277         }
3278         /* Render standby states get 0 weight */
3279         pxw[14] = 0;
3280         pxw[15] = 0;
3281
3282         for (i = 0; i < 4; i++) {
3283                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3284                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3285                 I915_WRITE(PXW + (i * 4), val);
3286         }
3287
3288         /* Adjust magic regs to magic values (more experimental results) */
3289         I915_WRITE(OGW0, 0);
3290         I915_WRITE(OGW1, 0);
3291         I915_WRITE(EG0, 0x00007f00);
3292         I915_WRITE(EG1, 0x0000000e);
3293         I915_WRITE(EG2, 0x000e0000);
3294         I915_WRITE(EG3, 0x68000300);
3295         I915_WRITE(EG4, 0x42000000);
3296         I915_WRITE(EG5, 0x00140031);
3297         I915_WRITE(EG6, 0);
3298         I915_WRITE(EG7, 0);
3299
3300         for (i = 0; i < 8; i++)
3301                 I915_WRITE(PXWL + (i * 4), 0);
3302
3303         /* Enable PMON + select events */
3304         I915_WRITE(ECR, 0x80000019);
3305
3306         lcfuse = I915_READ(LCFUSE02);
3307
3308         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3309 }
3310
3311 void intel_disable_gt_powersave(struct drm_device *dev)
3312 {
3313         struct drm_i915_private *dev_priv = dev->dev_private;
3314
3315         if (IS_IRONLAKE_M(dev)) {
3316                 ironlake_disable_drps(dev);
3317                 ironlake_disable_rc6(dev);
3318         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3319                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3320                 mutex_lock(&dev_priv->rps.hw_lock);
3321                 gen6_disable_rps(dev);
3322                 mutex_unlock(&dev_priv->rps.hw_lock);
3323         }
3324 }
3325
3326 static void intel_gen6_powersave_work(struct work_struct *work)
3327 {
3328         struct drm_i915_private *dev_priv =
3329                 container_of(work, struct drm_i915_private,
3330                              rps.delayed_resume_work.work);
3331         struct drm_device *dev = dev_priv->dev;
3332
3333         mutex_lock(&dev_priv->rps.hw_lock);
3334         gen6_enable_rps(dev);
3335         gen6_update_ring_freq(dev);
3336         mutex_unlock(&dev_priv->rps.hw_lock);
3337 }
3338
3339 void intel_enable_gt_powersave(struct drm_device *dev)
3340 {
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342
3343         if (IS_IRONLAKE_M(dev)) {
3344                 ironlake_enable_drps(dev);
3345                 ironlake_enable_rc6(dev);
3346                 intel_init_emon(dev);
3347         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3348                 /*
3349                  * PCU communication is slow and this doesn't need to be
3350                  * done at any specific time, so do this out of our fast path
3351                  * to make resume and init faster.
3352                  */
3353                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3354                                       round_jiffies_up_relative(HZ));
3355         }
3356 }
3357
3358 static void ibx_init_clock_gating(struct drm_device *dev)
3359 {
3360         struct drm_i915_private *dev_priv = dev->dev_private;
3361
3362         /*
3363          * On Ibex Peak and Cougar Point, we need to disable clock
3364          * gating for the panel power sequencer or it will fail to
3365          * start up when no ports are active.
3366          */
3367         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3368 }
3369
3370 static void ironlake_init_clock_gating(struct drm_device *dev)
3371 {
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3374
3375         /* Required for FBC */
3376         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3377                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3378                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3379
3380         I915_WRITE(PCH_3DCGDIS0,
3381                    MARIUNIT_CLOCK_GATE_DISABLE |
3382                    SVSMUNIT_CLOCK_GATE_DISABLE);
3383         I915_WRITE(PCH_3DCGDIS1,
3384                    VFMUNIT_CLOCK_GATE_DISABLE);
3385
3386         /*
3387          * According to the spec the following bits should be set in
3388          * order to enable memory self-refresh
3389          * The bit 22/21 of 0x42004
3390          * The bit 5 of 0x42020
3391          * The bit 15 of 0x45000
3392          */
3393         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3394                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3395                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3396         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3397         I915_WRITE(DISP_ARB_CTL,
3398                    (I915_READ(DISP_ARB_CTL) |
3399                     DISP_FBC_WM_DIS));
3400         I915_WRITE(WM3_LP_ILK, 0);
3401         I915_WRITE(WM2_LP_ILK, 0);
3402         I915_WRITE(WM1_LP_ILK, 0);
3403
3404         /*
3405          * Based on the document from hardware guys the following bits
3406          * should be set unconditionally in order to enable FBC.
3407          * The bit 22 of 0x42000
3408          * The bit 22 of 0x42004
3409          * The bit 7,8,9 of 0x42020.
3410          */
3411         if (IS_IRONLAKE_M(dev)) {
3412                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3413                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3414                            ILK_FBCQ_DIS);
3415                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3416                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3417                            ILK_DPARB_GATE);
3418         }
3419
3420         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3421
3422         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3423                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3424                    ILK_ELPIN_409_SELECT);
3425         I915_WRITE(_3D_CHICKEN2,
3426                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3427                    _3D_CHICKEN2_WM_READ_PIPELINED);
3428
3429         /* WaDisableRenderCachePipelinedFlush */
3430         I915_WRITE(CACHE_MODE_0,
3431                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3432
3433         ibx_init_clock_gating(dev);
3434 }
3435
3436 static void cpt_init_clock_gating(struct drm_device *dev)
3437 {
3438         struct drm_i915_private *dev_priv = dev->dev_private;
3439         int pipe;
3440
3441         /*
3442          * On Ibex Peak and Cougar Point, we need to disable clock
3443          * gating for the panel power sequencer or it will fail to
3444          * start up when no ports are active.
3445          */
3446         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3447         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3448                    DPLS_EDP_PPS_FIX_DIS);
3449         /* WADP0ClockGatingDisable */
3450         for_each_pipe(pipe) {
3451                 I915_WRITE(TRANS_CHICKEN1(pipe),
3452                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3453         }
3454 }
3455
3456 static void gen6_init_clock_gating(struct drm_device *dev)
3457 {
3458         struct drm_i915_private *dev_priv = dev->dev_private;
3459         int pipe;
3460         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3461
3462         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3463
3464         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3465                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3466                    ILK_ELPIN_409_SELECT);
3467
3468         I915_WRITE(WM3_LP_ILK, 0);
3469         I915_WRITE(WM2_LP_ILK, 0);
3470         I915_WRITE(WM1_LP_ILK, 0);
3471
3472         I915_WRITE(CACHE_MODE_0,
3473                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3474
3475         I915_WRITE(GEN6_UCGCTL1,
3476                    I915_READ(GEN6_UCGCTL1) |
3477                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3478                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3479
3480         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3481          * gating disable must be set.  Failure to set it results in
3482          * flickering pixels due to Z write ordering failures after
3483          * some amount of runtime in the Mesa "fire" demo, and Unigine
3484          * Sanctuary and Tropics, and apparently anything else with
3485          * alpha test or pixel discard.
3486          *
3487          * According to the spec, bit 11 (RCCUNIT) must also be set,
3488          * but we didn't debug actual testcases to find it out.
3489          *
3490          * Also apply WaDisableVDSUnitClockGating and
3491          * WaDisableRCPBUnitClockGating.
3492          */
3493         I915_WRITE(GEN6_UCGCTL2,
3494                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3495                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3496                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3497
3498         /* Bspec says we need to always set all mask bits. */
3499         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3500                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3501
3502         /*
3503          * According to the spec the following bits should be
3504          * set in order to enable memory self-refresh and fbc:
3505          * The bit21 and bit22 of 0x42000
3506          * The bit21 and bit22 of 0x42004
3507          * The bit5 and bit7 of 0x42020
3508          * The bit14 of 0x70180
3509          * The bit14 of 0x71180
3510          */
3511         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3512                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3513                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3514         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3515                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3516                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3517         I915_WRITE(ILK_DSPCLK_GATE_D,
3518                    I915_READ(ILK_DSPCLK_GATE_D) |
3519                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3520                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3521
3522         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3523                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3524
3525         for_each_pipe(pipe) {
3526                 I915_WRITE(DSPCNTR(pipe),
3527                            I915_READ(DSPCNTR(pipe)) |
3528                            DISPPLANE_TRICKLE_FEED_DISABLE);
3529                 intel_flush_display_plane(dev_priv, pipe);
3530         }
3531
3532         /* The default value should be 0x200 according to docs, but the two
3533          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3534         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3535         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3536
3537         cpt_init_clock_gating(dev);
3538 }
3539
3540 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3541 {
3542         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3543
3544         reg &= ~GEN7_FF_SCHED_MASK;
3545         reg |= GEN7_FF_TS_SCHED_HW;
3546         reg |= GEN7_FF_VS_SCHED_HW;
3547         reg |= GEN7_FF_DS_SCHED_HW;
3548
3549         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3550 }
3551
3552 static void haswell_init_clock_gating(struct drm_device *dev)
3553 {
3554         struct drm_i915_private *dev_priv = dev->dev_private;
3555         int pipe;
3556
3557         I915_WRITE(WM3_LP_ILK, 0);
3558         I915_WRITE(WM2_LP_ILK, 0);
3559         I915_WRITE(WM1_LP_ILK, 0);
3560
3561         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3562          * This implements the WaDisableRCZUnitClockGating workaround.
3563          */
3564         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3565
3566         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3567         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3568                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3569
3570         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3571         I915_WRITE(GEN7_L3CNTLREG1,
3572                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3573         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3574                         GEN7_WA_L3_CHICKEN_MODE);
3575
3576         /* This is required by WaCatErrorRejectionIssue */
3577         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3578                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3579                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3580
3581         for_each_pipe(pipe) {
3582                 I915_WRITE(DSPCNTR(pipe),
3583                            I915_READ(DSPCNTR(pipe)) |
3584                            DISPPLANE_TRICKLE_FEED_DISABLE);
3585                 intel_flush_display_plane(dev_priv, pipe);
3586         }
3587
3588         gen7_setup_fixed_func_scheduler(dev_priv);
3589
3590         /* WaDisable4x2SubspanOptimization */
3591         I915_WRITE(CACHE_MODE_1,
3592                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3593
3594         /* XXX: This is a workaround for early silicon revisions and should be
3595          * removed later.
3596          */
3597         I915_WRITE(WM_DBG,
3598                         I915_READ(WM_DBG) |
3599                         WM_DBG_DISALLOW_MULTIPLE_LP |
3600                         WM_DBG_DISALLOW_SPRITE |
3601                         WM_DBG_DISALLOW_MAXFIFO);
3602
3603 }
3604
3605 static void ivybridge_init_clock_gating(struct drm_device *dev)
3606 {
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         int pipe;
3609         uint32_t snpcr;
3610
3611         I915_WRITE(WM3_LP_ILK, 0);
3612         I915_WRITE(WM2_LP_ILK, 0);
3613         I915_WRITE(WM1_LP_ILK, 0);
3614
3615         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3616
3617         /* WaDisableEarlyCull */
3618         I915_WRITE(_3D_CHICKEN3,
3619                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3620
3621         /* WaDisableBackToBackFlipFix */
3622         I915_WRITE(IVB_CHICKEN3,
3623                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3624                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3625
3626         /* WaDisablePSDDualDispatchEnable */
3627         if (IS_IVB_GT1(dev))
3628                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3629                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3630         else
3631                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3632                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3633
3634         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3635         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3636                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3637
3638         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3639         I915_WRITE(GEN7_L3CNTLREG1,
3640                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3641         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3642                    GEN7_WA_L3_CHICKEN_MODE);
3643         if (IS_IVB_GT1(dev))
3644                 I915_WRITE(GEN7_ROW_CHICKEN2,
3645                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3646         else
3647                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3648                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3649
3650
3651         /* WaForceL3Serialization */
3652         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3653                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3654
3655         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3656          * gating disable must be set.  Failure to set it results in
3657          * flickering pixels due to Z write ordering failures after
3658          * some amount of runtime in the Mesa "fire" demo, and Unigine
3659          * Sanctuary and Tropics, and apparently anything else with
3660          * alpha test or pixel discard.
3661          *
3662          * According to the spec, bit 11 (RCCUNIT) must also be set,
3663          * but we didn't debug actual testcases to find it out.
3664          *
3665          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3666          * This implements the WaDisableRCZUnitClockGating workaround.
3667          */
3668         I915_WRITE(GEN6_UCGCTL2,
3669                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3670                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3671
3672         /* This is required by WaCatErrorRejectionIssue */
3673         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3674                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3675                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3676
3677         for_each_pipe(pipe) {
3678                 I915_WRITE(DSPCNTR(pipe),
3679                            I915_READ(DSPCNTR(pipe)) |
3680                            DISPPLANE_TRICKLE_FEED_DISABLE);
3681                 intel_flush_display_plane(dev_priv, pipe);
3682         }
3683
3684         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3685                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3686
3687         gen7_setup_fixed_func_scheduler(dev_priv);
3688
3689         /* WaDisable4x2SubspanOptimization */
3690         I915_WRITE(CACHE_MODE_1,
3691                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3692
3693         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3694         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3695         snpcr |= GEN6_MBC_SNPCR_MED;
3696         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3697
3698         cpt_init_clock_gating(dev);
3699 }
3700
3701 static void valleyview_init_clock_gating(struct drm_device *dev)
3702 {
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         int pipe;
3705
3706         I915_WRITE(WM3_LP_ILK, 0);
3707         I915_WRITE(WM2_LP_ILK, 0);
3708         I915_WRITE(WM1_LP_ILK, 0);
3709
3710         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3711
3712         /* WaDisableEarlyCull */
3713         I915_WRITE(_3D_CHICKEN3,
3714                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3715
3716         /* WaDisableBackToBackFlipFix */
3717         I915_WRITE(IVB_CHICKEN3,
3718                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3719                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3720
3721         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3722                    _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3723
3724         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3725         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3726                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3727
3728         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3729         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3730         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3731
3732         /* WaForceL3Serialization */
3733         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3734                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3735
3736         /* WaDisableDopClockGating */
3737         I915_WRITE(GEN7_ROW_CHICKEN2,
3738                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3739
3740         /* WaForceL3Serialization */
3741         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3742                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3743
3744         /* This is required by WaCatErrorRejectionIssue */
3745         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3746                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3747                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3748
3749         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3750                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3751
3752
3753         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3754          * gating disable must be set.  Failure to set it results in
3755          * flickering pixels due to Z write ordering failures after
3756          * some amount of runtime in the Mesa "fire" demo, and Unigine
3757          * Sanctuary and Tropics, and apparently anything else with
3758          * alpha test or pixel discard.
3759          *
3760          * According to the spec, bit 11 (RCCUNIT) must also be set,
3761          * but we didn't debug actual testcases to find it out.
3762          *
3763          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3764          * This implements the WaDisableRCZUnitClockGating workaround.
3765          *
3766          * Also apply WaDisableVDSUnitClockGating and
3767          * WaDisableRCPBUnitClockGating.
3768          */
3769         I915_WRITE(GEN6_UCGCTL2,
3770                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3771                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3772                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3773                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3774                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3775
3776         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3777
3778         for_each_pipe(pipe) {
3779                 I915_WRITE(DSPCNTR(pipe),
3780                            I915_READ(DSPCNTR(pipe)) |
3781                            DISPPLANE_TRICKLE_FEED_DISABLE);
3782                 intel_flush_display_plane(dev_priv, pipe);
3783         }
3784
3785         I915_WRITE(CACHE_MODE_1,
3786                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3787
3788         /*
3789          * On ValleyView, the GUnit needs to signal the GT
3790          * when flip and other events complete.  So enable
3791          * all the GUnit->GT interrupts here
3792          */
3793         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3794                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3795                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3796                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3797                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3798                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3799                    PLANEA_FLIPDONE_INT_EN);
3800
3801         /*
3802          * WaDisableVLVClockGating_VBIIssue
3803          * Disable clock gating on th GCFG unit to prevent a delay
3804          * in the reporting of vblank events.
3805          */
3806         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3807 }
3808
3809 static void g4x_init_clock_gating(struct drm_device *dev)
3810 {
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         uint32_t dspclk_gate;
3813
3814         I915_WRITE(RENCLK_GATE_D1, 0);
3815         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3816                    GS_UNIT_CLOCK_GATE_DISABLE |
3817                    CL_UNIT_CLOCK_GATE_DISABLE);
3818         I915_WRITE(RAMCLK_GATE_D, 0);
3819         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3820                 OVRUNIT_CLOCK_GATE_DISABLE |
3821                 OVCUNIT_CLOCK_GATE_DISABLE;
3822         if (IS_GM45(dev))
3823                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3824         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3825
3826         /* WaDisableRenderCachePipelinedFlush */
3827         I915_WRITE(CACHE_MODE_0,
3828                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3829 }
3830
3831 static void crestline_init_clock_gating(struct drm_device *dev)
3832 {
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834
3835         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3836         I915_WRITE(RENCLK_GATE_D2, 0);
3837         I915_WRITE(DSPCLK_GATE_D, 0);
3838         I915_WRITE(RAMCLK_GATE_D, 0);
3839         I915_WRITE16(DEUC, 0);
3840 }
3841
3842 static void broadwater_init_clock_gating(struct drm_device *dev)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845
3846         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3847                    I965_RCC_CLOCK_GATE_DISABLE |
3848                    I965_RCPB_CLOCK_GATE_DISABLE |
3849                    I965_ISC_CLOCK_GATE_DISABLE |
3850                    I965_FBC_CLOCK_GATE_DISABLE);
3851         I915_WRITE(RENCLK_GATE_D2, 0);
3852 }
3853
3854 static void gen3_init_clock_gating(struct drm_device *dev)
3855 {
3856         struct drm_i915_private *dev_priv = dev->dev_private;
3857         u32 dstate = I915_READ(D_STATE);
3858
3859         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3860                 DSTATE_DOT_CLOCK_GATING;
3861         I915_WRITE(D_STATE, dstate);
3862
3863         if (IS_PINEVIEW(dev))
3864                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3865
3866         /* IIR "flip pending" means done if this bit is set */
3867         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3868 }
3869
3870 static void i85x_init_clock_gating(struct drm_device *dev)
3871 {
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873
3874         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3875 }
3876
3877 static void i830_init_clock_gating(struct drm_device *dev)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880
3881         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3882 }
3883
3884 void intel_init_clock_gating(struct drm_device *dev)
3885 {
3886         struct drm_i915_private *dev_priv = dev->dev_private;
3887
3888         dev_priv->display.init_clock_gating(dev);
3889 }
3890
3891 /* Starting with Haswell, we have different power wells for
3892  * different parts of the GPU. This attempts to enable them all.
3893  */
3894 void intel_init_power_wells(struct drm_device *dev)
3895 {
3896         struct drm_i915_private *dev_priv = dev->dev_private;
3897         unsigned long power_wells[] = {
3898                 HSW_PWR_WELL_CTL1,
3899                 HSW_PWR_WELL_CTL2,
3900                 HSW_PWR_WELL_CTL4
3901         };
3902         int i;
3903
3904         if (!IS_HASWELL(dev))
3905                 return;
3906
3907         mutex_lock(&dev->struct_mutex);
3908
3909         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3910                 int well = I915_READ(power_wells[i]);
3911
3912                 if ((well & HSW_PWR_WELL_STATE) == 0) {
3913                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3914                         if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
3915                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3916                 }
3917         }
3918
3919         mutex_unlock(&dev->struct_mutex);
3920 }
3921
3922 /* Set up chip specific power management-related functions */
3923 void intel_init_pm(struct drm_device *dev)
3924 {
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926
3927         if (I915_HAS_FBC(dev)) {
3928                 if (HAS_PCH_SPLIT(dev)) {
3929                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3930                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
3931                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
3932                 } else if (IS_GM45(dev)) {
3933                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3934                         dev_priv->display.enable_fbc = g4x_enable_fbc;
3935                         dev_priv->display.disable_fbc = g4x_disable_fbc;
3936                 } else if (IS_CRESTLINE(dev)) {
3937                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3938                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
3939                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
3940                 }
3941                 /* 855GM needs testing */
3942         }
3943
3944         /* For cxsr */
3945         if (IS_PINEVIEW(dev))
3946                 i915_pineview_get_mem_freq(dev);
3947         else if (IS_GEN5(dev))
3948                 i915_ironlake_get_mem_freq(dev);
3949
3950         /* For FIFO watermark updates */
3951         if (HAS_PCH_SPLIT(dev)) {
3952                 if (IS_GEN5(dev)) {
3953                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3954                                 dev_priv->display.update_wm = ironlake_update_wm;
3955                         else {
3956                                 DRM_DEBUG_KMS("Failed to get proper latency. "
3957                                               "Disable CxSR\n");
3958                                 dev_priv->display.update_wm = NULL;
3959                         }
3960                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3961                 } else if (IS_GEN6(dev)) {
3962                         if (SNB_READ_WM0_LATENCY()) {
3963                                 dev_priv->display.update_wm = sandybridge_update_wm;
3964                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3965                         } else {
3966                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3967                                               "Disable CxSR\n");
3968                                 dev_priv->display.update_wm = NULL;
3969                         }
3970                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3971                 } else if (IS_IVYBRIDGE(dev)) {
3972                         /* FIXME: detect B0+ stepping and use auto training */
3973                         if (SNB_READ_WM0_LATENCY()) {
3974                                 dev_priv->display.update_wm = sandybridge_update_wm;
3975                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3976                         } else {
3977                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3978                                               "Disable CxSR\n");
3979                                 dev_priv->display.update_wm = NULL;
3980                         }
3981                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3982                 } else if (IS_HASWELL(dev)) {
3983                         if (SNB_READ_WM0_LATENCY()) {
3984                                 dev_priv->display.update_wm = sandybridge_update_wm;
3985                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3986                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3987                         } else {
3988                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3989                                               "Disable CxSR\n");
3990                                 dev_priv->display.update_wm = NULL;
3991                         }
3992                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3993                 } else
3994                         dev_priv->display.update_wm = NULL;
3995         } else if (IS_VALLEYVIEW(dev)) {
3996                 dev_priv->display.update_wm = valleyview_update_wm;
3997                 dev_priv->display.init_clock_gating =
3998                         valleyview_init_clock_gating;
3999         } else if (IS_PINEVIEW(dev)) {
4000                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4001                                             dev_priv->is_ddr3,
4002                                             dev_priv->fsb_freq,
4003                                             dev_priv->mem_freq)) {
4004                         DRM_INFO("failed to find known CxSR latency "
4005                                  "(found ddr%s fsb freq %d, mem freq %d), "
4006                                  "disabling CxSR\n",
4007                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4008                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4009                         /* Disable CxSR and never update its watermark again */
4010                         pineview_disable_cxsr(dev);
4011                         dev_priv->display.update_wm = NULL;
4012                 } else
4013                         dev_priv->display.update_wm = pineview_update_wm;
4014                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4015         } else if (IS_G4X(dev)) {
4016                 dev_priv->display.update_wm = g4x_update_wm;
4017                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4018         } else if (IS_GEN4(dev)) {
4019                 dev_priv->display.update_wm = i965_update_wm;
4020                 if (IS_CRESTLINE(dev))
4021                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4022                 else if (IS_BROADWATER(dev))
4023                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4024         } else if (IS_GEN3(dev)) {
4025                 dev_priv->display.update_wm = i9xx_update_wm;
4026                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4027                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4028         } else if (IS_I865G(dev)) {
4029                 dev_priv->display.update_wm = i830_update_wm;
4030                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4031                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4032         } else if (IS_I85X(dev)) {
4033                 dev_priv->display.update_wm = i9xx_update_wm;
4034                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4035                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4036         } else {
4037                 dev_priv->display.update_wm = i830_update_wm;
4038                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4039                 if (IS_845G(dev))
4040                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4041                 else
4042                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4043         }
4044 }
4045
4046 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4047 {
4048         u32 gt_thread_status_mask;
4049
4050         if (IS_HASWELL(dev_priv->dev))
4051                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4052         else
4053                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4054
4055         /* w/a for a sporadic read returning 0 by waiting for the GT
4056          * thread to wake up.
4057          */
4058         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4059                 DRM_ERROR("GT thread status wait timed out\n");
4060 }
4061
4062 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4063 {
4064         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4065         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4066 }
4067
4068 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4069 {
4070         u32 forcewake_ack;
4071
4072         if (IS_HASWELL(dev_priv->dev))
4073                 forcewake_ack = FORCEWAKE_ACK_HSW;
4074         else
4075                 forcewake_ack = FORCEWAKE_ACK;
4076
4077         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4078                             FORCEWAKE_ACK_TIMEOUT_MS))
4079                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4080
4081         I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4082         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4083
4084         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4085                             FORCEWAKE_ACK_TIMEOUT_MS))
4086                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4087
4088         __gen6_gt_wait_for_thread_c0(dev_priv);
4089 }
4090
4091 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4092 {
4093         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4094         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4095 }
4096
4097 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4098 {
4099         u32 forcewake_ack;
4100
4101         if (IS_HASWELL(dev_priv->dev))
4102                 forcewake_ack = FORCEWAKE_ACK_HSW;
4103         else
4104                 forcewake_ack = FORCEWAKE_MT_ACK;
4105
4106         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4107                             FORCEWAKE_ACK_TIMEOUT_MS))
4108                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4109
4110         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4111         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4112
4113         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4114                             FORCEWAKE_ACK_TIMEOUT_MS))
4115                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4116
4117         __gen6_gt_wait_for_thread_c0(dev_priv);
4118 }
4119
4120 /*
4121  * Generally this is called implicitly by the register read function. However,
4122  * if some sequence requires the GT to not power down then this function should
4123  * be called at the beginning of the sequence followed by a call to
4124  * gen6_gt_force_wake_put() at the end of the sequence.
4125  */
4126 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4127 {
4128         unsigned long irqflags;
4129
4130         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4131         if (dev_priv->forcewake_count++ == 0)
4132                 dev_priv->gt.force_wake_get(dev_priv);
4133         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4134 }
4135
4136 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4137 {
4138         u32 gtfifodbg;
4139         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4140         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4141              "MMIO read or write has been dropped %x\n", gtfifodbg))
4142                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4143 }
4144
4145 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4146 {
4147         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4148         /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4149         gen6_gt_check_fifodbg(dev_priv);
4150 }
4151
4152 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4153 {
4154         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4155         /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4156         gen6_gt_check_fifodbg(dev_priv);
4157 }
4158
4159 /*
4160  * see gen6_gt_force_wake_get()
4161  */
4162 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4163 {
4164         unsigned long irqflags;
4165
4166         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4167         if (--dev_priv->forcewake_count == 0)
4168                 dev_priv->gt.force_wake_put(dev_priv);
4169         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4170 }
4171
4172 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4173 {
4174         int ret = 0;
4175
4176         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4177                 int loop = 500;
4178                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4179                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4180                         udelay(10);
4181                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4182                 }
4183                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4184                         ++ret;
4185                 dev_priv->gt_fifo_count = fifo;
4186         }
4187         dev_priv->gt_fifo_count--;
4188
4189         return ret;
4190 }
4191
4192 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4193 {
4194         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4195 }
4196
4197 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4198 {
4199         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4200                             FORCEWAKE_ACK_TIMEOUT_MS))
4201                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4202
4203         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4204
4205         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4206                             FORCEWAKE_ACK_TIMEOUT_MS))
4207                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4208
4209         __gen6_gt_wait_for_thread_c0(dev_priv);
4210 }
4211
4212 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4213 {
4214         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4215         /* The below doubles as a POSTING_READ */
4216         gen6_gt_check_fifodbg(dev_priv);
4217 }
4218
4219 void intel_gt_reset(struct drm_device *dev)
4220 {
4221         struct drm_i915_private *dev_priv = dev->dev_private;
4222
4223         if (IS_VALLEYVIEW(dev)) {
4224                 vlv_force_wake_reset(dev_priv);
4225         } else if (INTEL_INFO(dev)->gen >= 6) {
4226                 __gen6_gt_force_wake_reset(dev_priv);
4227                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4228                         __gen6_gt_force_wake_mt_reset(dev_priv);
4229         }
4230 }
4231
4232 void intel_gt_init(struct drm_device *dev)
4233 {
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235
4236         spin_lock_init(&dev_priv->gt_lock);
4237
4238         intel_gt_reset(dev);
4239
4240         if (IS_VALLEYVIEW(dev)) {
4241                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4242                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4243         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4244                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4245                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4246         } else if (IS_GEN6(dev)) {
4247                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4248                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4249         }
4250         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4251                           intel_gen6_powersave_work);
4252 }
4253
4254 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4255 {
4256         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4257
4258         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4259                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4260                 return -EAGAIN;
4261         }
4262
4263         I915_WRITE(GEN6_PCODE_DATA, *val);
4264         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4265
4266         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4267                      500)) {
4268                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4269                 return -ETIMEDOUT;
4270         }
4271
4272         *val = I915_READ(GEN6_PCODE_DATA);
4273         I915_WRITE(GEN6_PCODE_DATA, 0);
4274
4275         return 0;
4276 }
4277
4278 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4279 {
4280         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4281
4282         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4283                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4284                 return -EAGAIN;
4285         }
4286
4287         I915_WRITE(GEN6_PCODE_DATA, val);
4288         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4289
4290         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4291                      500)) {
4292                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4293                 return -ETIMEDOUT;
4294         }
4295
4296         I915_WRITE(GEN6_PCODE_DATA, 0);
4297
4298         return 0;
4299 }