Merge tag 'drm-misc-fixes-2017-01-23' of git://anongit.freedesktop.org/git/drm-misc...
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234                                 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236                                      struct i915_gem_context *ctx,
237                                      struct intel_engine_cs *engine,
238                                      struct intel_ring *ring);
239
240 /**
241  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242  * @dev_priv: i915 device private
243  * @enable_execlists: value of i915.enable_execlists module parameter.
244  *
245  * Only certain platforms support Execlists (the prerequisites being
246  * support for Logical Ring Contexts and Aliasing PPGTT or better).
247  *
248  * Return: 1 if Execlists is supported and has to be enabled.
249  */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252         /* On platforms with execlist available, vGPU will only
253          * support execlist mode, no ring buffer mode.
254          */
255         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256                 return 1;
257
258         if (INTEL_GEN(dev_priv) >= 9)
259                 return 1;
260
261         if (enable_execlists == 0)
262                 return 0;
263
264         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265             USES_PPGTT(dev_priv) &&
266             i915.use_mmio_flip >= 0)
267                 return 1;
268
269         return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275         struct drm_i915_private *dev_priv = engine->i915;
276
277         engine->disable_lite_restore_wa =
278                 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279                 (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         if (IS_GEN8(dev_priv))
283                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285
286         /* TODO: WaDisableLiteRestore when we start using semaphore
287          * signalling between Command Streamers */
288         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292         if (engine->disable_lite_restore_wa)
293                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295
296 /**
297  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298  *                                        descriptor for a pinned context
299  * @ctx: Context to work on
300  * @engine: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB::
308  *
309  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
310  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
311  *      bits 32-52:    ctx ID, a globally unique tag
312  *      bits 53-54:    mbz, reserved for use by hardware
313  *      bits 55-63:    group ID, currently unused and set to 0
314  */
315 static void
316 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317                                    struct intel_engine_cs *engine)
318 {
319         struct intel_context *ce = &ctx->engine[engine->id];
320         u64 desc;
321
322         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323
324         desc = ctx->desc_template;                              /* bits  3-4  */
325         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
326         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327                                                                 /* bits 12-31 */
328         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
329
330         ce->lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334                                      struct intel_engine_cs *engine)
335 {
336         return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static inline void
340 execlists_context_status_change(struct drm_i915_gem_request *rq,
341                                 unsigned long status)
342 {
343         /*
344          * Only used when GVT-g is enabled now. When GVT-g is disabled,
345          * The compiler should eliminate this function as dead-code.
346          */
347         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348                 return;
349
350         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 }
352
353 static void
354 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355 {
356         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 }
361
362 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366         u32 *reg_state = ce->lrc_reg_state;
367
368         reg_state[CTX_RING_TAIL+1] = rq->tail;
369
370         /* True 32b PPGTT with dynamic page allocation: update PDP
371          * registers and point the unallocated PDPs to scratch page.
372          * PML4 is allocated during ppgtt init, so this is not needed
373          * in 48-bit mode.
374          */
375         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376                 execlists_update_context_pdps(ppgtt, reg_state);
377
378         return ce->lrc_desc;
379 }
380
381 static void execlists_submit_ports(struct intel_engine_cs *engine)
382 {
383         struct drm_i915_private *dev_priv = engine->i915;
384         struct execlist_port *port = engine->execlist_port;
385         u32 __iomem *elsp =
386                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387         u64 desc[2];
388
389         if (!port[0].count)
390                 execlists_context_status_change(port[0].request,
391                                                 INTEL_CONTEXT_SCHEDULE_IN);
392         desc[0] = execlists_update_context(port[0].request);
393         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395         if (port[1].request) {
396                 GEM_BUG_ON(port[1].count);
397                 execlists_context_status_change(port[1].request,
398                                                 INTEL_CONTEXT_SCHEDULE_IN);
399                 desc[1] = execlists_update_context(port[1].request);
400                 port[1].count = 1;
401         } else {
402                 desc[1] = 0;
403         }
404         GEM_BUG_ON(desc[0] == desc[1]);
405
406         /* You must always write both descriptors in the order below. */
407         writel(upper_32_bits(desc[1]), elsp);
408         writel(lower_32_bits(desc[1]), elsp);
409
410         writel(upper_32_bits(desc[0]), elsp);
411         /* The context is automatically loaded after the following */
412         writel(lower_32_bits(desc[0]), elsp);
413 }
414
415 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416 {
417         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418                 ctx->execlists_force_single_submission);
419 }
420
421 static bool can_merge_ctx(const struct i915_gem_context *prev,
422                           const struct i915_gem_context *next)
423 {
424         if (prev != next)
425                 return false;
426
427         if (ctx_single_port_submission(prev))
428                 return false;
429
430         return true;
431 }
432
433 static void execlists_dequeue(struct intel_engine_cs *engine)
434 {
435         struct drm_i915_gem_request *last;
436         struct execlist_port *port = engine->execlist_port;
437         unsigned long flags;
438         struct rb_node *rb;
439         bool submit = false;
440
441         last = port->request;
442         if (last)
443                 /* WaIdleLiteRestore:bdw,skl
444                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445                  * as we resubmit the request. See gen8_emit_breadcrumb()
446                  * for where we prepare the padding after the end of the
447                  * request.
448                  */
449                 last->tail = last->wa_tail;
450
451         GEM_BUG_ON(port[1].request);
452
453         /* Hardware submission is through 2 ports. Conceptually each port
454          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
455          * static for a context, and unique to each, so we only execute
456          * requests belonging to a single context from each ring. RING_HEAD
457          * is maintained by the CS in the context image, it marks the place
458          * where it got up to last time, and through RING_TAIL we tell the CS
459          * where we want to execute up to this time.
460          *
461          * In this list the requests are in order of execution. Consecutive
462          * requests from the same context are adjacent in the ringbuffer. We
463          * can combine these requests into a single RING_TAIL update:
464          *
465          *              RING_HEAD...req1...req2
466          *                                    ^- RING_TAIL
467          * since to execute req2 the CS must first execute req1.
468          *
469          * Our goal then is to point each port to the end of a consecutive
470          * sequence of requests as being the most optimal (fewest wake ups
471          * and context switches) submission.
472          */
473
474         spin_lock_irqsave(&engine->timeline->lock, flags);
475         rb = engine->execlist_first;
476         while (rb) {
477                 struct drm_i915_gem_request *cursor =
478                         rb_entry(rb, typeof(*cursor), priotree.node);
479
480                 /* Can we combine this request with the current port? It has to
481                  * be the same context/ringbuffer and not have any exceptions
482                  * (e.g. GVT saying never to combine contexts).
483                  *
484                  * If we can combine the requests, we can execute both by
485                  * updating the RING_TAIL to point to the end of the second
486                  * request, and so we never need to tell the hardware about
487                  * the first.
488                  */
489                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
490                         /* If we are on the second port and cannot combine
491                          * this request with the last, then we are done.
492                          */
493                         if (port != engine->execlist_port)
494                                 break;
495
496                         /* If GVT overrides us we only ever submit port[0],
497                          * leaving port[1] empty. Note that we also have
498                          * to be careful that we don't queue the same
499                          * context (even though a different request) to
500                          * the second port.
501                          */
502                         if (ctx_single_port_submission(last->ctx) ||
503                             ctx_single_port_submission(cursor->ctx))
504                                 break;
505
506                         GEM_BUG_ON(last->ctx == cursor->ctx);
507
508                         i915_gem_request_assign(&port->request, last);
509                         port++;
510                 }
511
512                 rb = rb_next(rb);
513                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
514                 RB_CLEAR_NODE(&cursor->priotree.node);
515                 cursor->priotree.priority = INT_MAX;
516
517                 /* We keep the previous context alive until we retire the
518                  * following request. This ensures that any the context object
519                  * is still pinned for any residual writes the HW makes into it
520                  * on the context switch into the next object following the
521                  * breadcrumb. Otherwise, we may retire the context too early.
522                  */
523                 cursor->previous_context = engine->last_context;
524                 engine->last_context = cursor->ctx;
525
526                 __i915_gem_request_submit(cursor);
527                 last = cursor;
528                 submit = true;
529         }
530         if (submit) {
531                 i915_gem_request_assign(&port->request, last);
532                 engine->execlist_first = rb;
533         }
534         spin_unlock_irqrestore(&engine->timeline->lock, flags);
535
536         if (submit)
537                 execlists_submit_ports(engine);
538 }
539
540 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
541 {
542         return !engine->execlist_port[0].request;
543 }
544
545 /**
546  * intel_execlists_idle() - Determine if all engine submission ports are idle
547  * @dev_priv: i915 device private
548  *
549  * Return true if there are no requests pending on any of the submission ports
550  * of any engines.
551  */
552 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
553 {
554         struct intel_engine_cs *engine;
555         enum intel_engine_id id;
556
557         if (!i915.enable_execlists)
558                 return true;
559
560         for_each_engine(engine, dev_priv, id)
561                 if (!execlists_elsp_idle(engine))
562                         return false;
563
564         return true;
565 }
566
567 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
568 {
569         int port;
570
571         port = 1; /* wait for a free slot */
572         if (engine->disable_lite_restore_wa || engine->preempt_wa)
573                 port = 0; /* wait for GPU to be idle before continuing */
574
575         return !engine->execlist_port[port].request;
576 }
577
578 /*
579  * Check the unread Context Status Buffers and manage the submission of new
580  * contexts to the ELSP accordingly.
581  */
582 static void intel_lrc_irq_handler(unsigned long data)
583 {
584         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
585         struct execlist_port *port = engine->execlist_port;
586         struct drm_i915_private *dev_priv = engine->i915;
587
588         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
589
590         if (!execlists_elsp_idle(engine)) {
591                 u32 __iomem *csb_mmio =
592                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
593                 u32 __iomem *buf =
594                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
595                 unsigned int csb, head, tail;
596
597                 csb = readl(csb_mmio);
598                 head = GEN8_CSB_READ_PTR(csb);
599                 tail = GEN8_CSB_WRITE_PTR(csb);
600                 if (tail < head)
601                         tail += GEN8_CSB_ENTRIES;
602                 while (head < tail) {
603                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
604                         unsigned int status = readl(buf + 2 * idx);
605
606                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
607                                 continue;
608
609                         GEM_BUG_ON(port[0].count == 0);
610                         if (--port[0].count == 0) {
611                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
612                                 execlists_context_status_change(port[0].request,
613                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
614
615                                 i915_gem_request_put(port[0].request);
616                                 port[0] = port[1];
617                                 memset(&port[1], 0, sizeof(port[1]));
618
619                                 engine->preempt_wa = false;
620                         }
621
622                         GEM_BUG_ON(port[0].count == 0 &&
623                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
624                 }
625
626                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
627                                      GEN8_CSB_WRITE_PTR(csb) << 8),
628                        csb_mmio);
629         }
630
631         if (execlists_elsp_ready(engine))
632                 execlists_dequeue(engine);
633
634         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
635 }
636
637 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
638 {
639         struct rb_node **p, *rb;
640         bool first = true;
641
642         /* most positive priority is scheduled first, equal priorities fifo */
643         rb = NULL;
644         p = &root->rb_node;
645         while (*p) {
646                 struct i915_priotree *pos;
647
648                 rb = *p;
649                 pos = rb_entry(rb, typeof(*pos), node);
650                 if (pt->priority > pos->priority) {
651                         p = &rb->rb_left;
652                 } else {
653                         p = &rb->rb_right;
654                         first = false;
655                 }
656         }
657         rb_link_node(&pt->node, rb, p);
658         rb_insert_color(&pt->node, root);
659
660         return first;
661 }
662
663 static void execlists_submit_request(struct drm_i915_gem_request *request)
664 {
665         struct intel_engine_cs *engine = request->engine;
666         unsigned long flags;
667
668         /* Will be called from irq-context when using foreign fences. */
669         spin_lock_irqsave(&engine->timeline->lock, flags);
670
671         if (insert_request(&request->priotree, &engine->execlist_queue))
672                 engine->execlist_first = &request->priotree.node;
673         if (execlists_elsp_idle(engine))
674                 tasklet_hi_schedule(&engine->irq_tasklet);
675
676         spin_unlock_irqrestore(&engine->timeline->lock, flags);
677 }
678
679 static struct intel_engine_cs *
680 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
681 {
682         struct intel_engine_cs *engine;
683
684         engine = container_of(pt,
685                               struct drm_i915_gem_request,
686                               priotree)->engine;
687         if (engine != locked) {
688                 if (locked)
689                         spin_unlock_irq(&locked->timeline->lock);
690                 spin_lock_irq(&engine->timeline->lock);
691         }
692
693         return engine;
694 }
695
696 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
697 {
698         static DEFINE_MUTEX(lock);
699         struct intel_engine_cs *engine = NULL;
700         struct i915_dependency *dep, *p;
701         struct i915_dependency stack;
702         LIST_HEAD(dfs);
703
704         if (prio <= READ_ONCE(request->priotree.priority))
705                 return;
706
707         /* Need global lock to use the temporary link inside i915_dependency */
708         mutex_lock(&lock);
709
710         stack.signaler = &request->priotree;
711         list_add(&stack.dfs_link, &dfs);
712
713         /* Recursively bump all dependent priorities to match the new request.
714          *
715          * A naive approach would be to use recursion:
716          * static void update_priorities(struct i915_priotree *pt, prio) {
717          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
718          *              update_priorities(dep->signal, prio)
719          *      insert_request(pt);
720          * }
721          * but that may have unlimited recursion depth and so runs a very
722          * real risk of overunning the kernel stack. Instead, we build
723          * a flat list of all dependencies starting with the current request.
724          * As we walk the list of dependencies, we add all of its dependencies
725          * to the end of the list (this may include an already visited
726          * request) and continue to walk onwards onto the new dependencies. The
727          * end result is a topological list of requests in reverse order, the
728          * last element in the list is the request we must execute first.
729          */
730         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
731                 struct i915_priotree *pt = dep->signaler;
732
733                 list_for_each_entry(p, &pt->signalers_list, signal_link)
734                         if (prio > READ_ONCE(p->signaler->priority))
735                                 list_move_tail(&p->dfs_link, &dfs);
736
737                 p = list_next_entry(dep, dfs_link);
738                 if (!RB_EMPTY_NODE(&pt->node))
739                         continue;
740
741                 engine = pt_lock_engine(pt, engine);
742
743                 /* If it is not already in the rbtree, we can update the
744                  * priority inplace and skip over it (and its dependencies)
745                  * if it is referenced *again* as we descend the dfs.
746                  */
747                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
748                         pt->priority = prio;
749                         list_del_init(&dep->dfs_link);
750                 }
751         }
752
753         /* Fifo and depth-first replacement ensure our deps execute before us */
754         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
755                 struct i915_priotree *pt = dep->signaler;
756
757                 INIT_LIST_HEAD(&dep->dfs_link);
758
759                 engine = pt_lock_engine(pt, engine);
760
761                 if (prio <= pt->priority)
762                         continue;
763
764                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
765
766                 pt->priority = prio;
767                 rb_erase(&pt->node, &engine->execlist_queue);
768                 if (insert_request(pt, &engine->execlist_queue))
769                         engine->execlist_first = &pt->node;
770         }
771
772         if (engine)
773                 spin_unlock_irq(&engine->timeline->lock);
774
775         mutex_unlock(&lock);
776
777         /* XXX Do we need to preempt to make room for us and our deps? */
778 }
779
780 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
781 {
782         struct intel_engine_cs *engine = request->engine;
783         struct intel_context *ce = &request->ctx->engine[engine->id];
784         int ret;
785
786         /* Flush enough space to reduce the likelihood of waiting after
787          * we start building the request - in which case we will just
788          * have to repeat work.
789          */
790         request->reserved_space += EXECLISTS_REQUEST_SIZE;
791
792         if (!ce->state) {
793                 ret = execlists_context_deferred_alloc(request->ctx, engine);
794                 if (ret)
795                         return ret;
796         }
797
798         request->ring = ce->ring;
799
800         ret = intel_lr_context_pin(request->ctx, engine);
801         if (ret)
802                 return ret;
803
804         if (i915.enable_guc_submission) {
805                 /*
806                  * Check that the GuC has space for the request before
807                  * going any further, as the i915_add_request() call
808                  * later on mustn't fail ...
809                  */
810                 ret = i915_guc_wq_reserve(request);
811                 if (ret)
812                         goto err_unpin;
813         }
814
815         ret = intel_ring_begin(request, 0);
816         if (ret)
817                 goto err_unreserve;
818
819         if (!ce->initialised) {
820                 ret = engine->init_context(request);
821                 if (ret)
822                         goto err_unreserve;
823
824                 ce->initialised = true;
825         }
826
827         /* Note that after this point, we have committed to using
828          * this request as it is being used to both track the
829          * state of engine initialisation and liveness of the
830          * golden renderstate above. Think twice before you try
831          * to cancel/unwind this request now.
832          */
833
834         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
835         return 0;
836
837 err_unreserve:
838         if (i915.enable_guc_submission)
839                 i915_guc_wq_unreserve(request);
840 err_unpin:
841         intel_lr_context_unpin(request->ctx, engine);
842         return ret;
843 }
844
845 static int intel_lr_context_pin(struct i915_gem_context *ctx,
846                                 struct intel_engine_cs *engine)
847 {
848         struct intel_context *ce = &ctx->engine[engine->id];
849         void *vaddr;
850         int ret;
851
852         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
853
854         if (ce->pin_count++)
855                 return 0;
856
857         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
858                            PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
859         if (ret)
860                 goto err;
861
862         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
863         if (IS_ERR(vaddr)) {
864                 ret = PTR_ERR(vaddr);
865                 goto unpin_vma;
866         }
867
868         ret = intel_ring_pin(ce->ring);
869         if (ret)
870                 goto unpin_map;
871
872         intel_lr_context_descriptor_update(ctx, engine);
873
874         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
875         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
876                 i915_ggtt_offset(ce->ring->vma);
877
878         ce->state->obj->mm.dirty = true;
879
880         /* Invalidate GuC TLB. */
881         if (i915.enable_guc_submission) {
882                 struct drm_i915_private *dev_priv = ctx->i915;
883                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
884         }
885
886         i915_gem_context_get(ctx);
887         return 0;
888
889 unpin_map:
890         i915_gem_object_unpin_map(ce->state->obj);
891 unpin_vma:
892         __i915_vma_unpin(ce->state);
893 err:
894         ce->pin_count = 0;
895         return ret;
896 }
897
898 void intel_lr_context_unpin(struct i915_gem_context *ctx,
899                             struct intel_engine_cs *engine)
900 {
901         struct intel_context *ce = &ctx->engine[engine->id];
902
903         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
904         GEM_BUG_ON(ce->pin_count == 0);
905
906         if (--ce->pin_count)
907                 return;
908
909         intel_ring_unpin(ce->ring);
910
911         i915_gem_object_unpin_map(ce->state->obj);
912         i915_vma_unpin(ce->state);
913
914         i915_gem_context_put(ctx);
915 }
916
917 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
918 {
919         int ret, i;
920         struct intel_ring *ring = req->ring;
921         struct i915_workarounds *w = &req->i915->workarounds;
922
923         if (w->count == 0)
924                 return 0;
925
926         ret = req->engine->emit_flush(req, EMIT_BARRIER);
927         if (ret)
928                 return ret;
929
930         ret = intel_ring_begin(req, w->count * 2 + 2);
931         if (ret)
932                 return ret;
933
934         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
935         for (i = 0; i < w->count; i++) {
936                 intel_ring_emit_reg(ring, w->reg[i].addr);
937                 intel_ring_emit(ring, w->reg[i].value);
938         }
939         intel_ring_emit(ring, MI_NOOP);
940
941         intel_ring_advance(ring);
942
943         ret = req->engine->emit_flush(req, EMIT_BARRIER);
944         if (ret)
945                 return ret;
946
947         return 0;
948 }
949
950 #define wa_ctx_emit(batch, index, cmd)                                  \
951         do {                                                            \
952                 int __index = (index)++;                                \
953                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
954                         return -ENOSPC;                                 \
955                 }                                                       \
956                 batch[__index] = (cmd);                                 \
957         } while (0)
958
959 #define wa_ctx_emit_reg(batch, index, reg) \
960         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
961
962 /*
963  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
964  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
965  * but there is a slight complication as this is applied in WA batch where the
966  * values are only initialized once so we cannot take register value at the
967  * beginning and reuse it further; hence we save its value to memory, upload a
968  * constant value with bit21 set and then we restore it back with the saved value.
969  * To simplify the WA, a constant value is formed by using the default value
970  * of this register. This shouldn't be a problem because we are only modifying
971  * it for a short period and this batch in non-premptible. We can ofcourse
972  * use additional instructions that read the actual value of the register
973  * at that time and set our bit of interest but it makes the WA complicated.
974  *
975  * This WA is also required for Gen9 so extracting as a function avoids
976  * code duplication.
977  */
978 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
979                                                 uint32_t *batch,
980                                                 uint32_t index)
981 {
982         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
983
984         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
985                                    MI_SRM_LRM_GLOBAL_GTT));
986         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
987         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
988         wa_ctx_emit(batch, index, 0);
989
990         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
991         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
992         wa_ctx_emit(batch, index, l3sqc4_flush);
993
994         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
995         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
996                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
997         wa_ctx_emit(batch, index, 0);
998         wa_ctx_emit(batch, index, 0);
999         wa_ctx_emit(batch, index, 0);
1000         wa_ctx_emit(batch, index, 0);
1001
1002         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1003                                    MI_SRM_LRM_GLOBAL_GTT));
1004         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1005         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1006         wa_ctx_emit(batch, index, 0);
1007
1008         return index;
1009 }
1010
1011 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1012                                     uint32_t offset,
1013                                     uint32_t start_alignment)
1014 {
1015         return wa_ctx->offset = ALIGN(offset, start_alignment);
1016 }
1017
1018 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1019                              uint32_t offset,
1020                              uint32_t size_alignment)
1021 {
1022         wa_ctx->size = offset - wa_ctx->offset;
1023
1024         WARN(wa_ctx->size % size_alignment,
1025              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1026              wa_ctx->size, size_alignment);
1027         return 0;
1028 }
1029
1030 /*
1031  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1032  * initialized at the beginning and shared across all contexts but this field
1033  * helps us to have multiple batches at different offsets and select them based
1034  * on a criteria. At the moment this batch always start at the beginning of the page
1035  * and at this point we don't have multiple wa_ctx batch buffers.
1036  *
1037  * The number of WA applied are not known at the beginning; we use this field
1038  * to return the no of DWORDS written.
1039  *
1040  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1041  * so it adds NOOPs as padding to make it cacheline aligned.
1042  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1043  * makes a complete batch buffer.
1044  */
1045 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1046                                     struct i915_wa_ctx_bb *wa_ctx,
1047                                     uint32_t *batch,
1048                                     uint32_t *offset)
1049 {
1050         uint32_t scratch_addr;
1051         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1052
1053         /* WaDisableCtxRestoreArbitration:bdw,chv */
1054         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1055
1056         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1057         if (IS_BROADWELL(engine->i915)) {
1058                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1059                 if (rc < 0)
1060                         return rc;
1061                 index = rc;
1062         }
1063
1064         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1065         /* Actual scratch location is at 128 bytes offset */
1066         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1067
1068         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1069         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1070                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1071                                    PIPE_CONTROL_CS_STALL |
1072                                    PIPE_CONTROL_QW_WRITE));
1073         wa_ctx_emit(batch, index, scratch_addr);
1074         wa_ctx_emit(batch, index, 0);
1075         wa_ctx_emit(batch, index, 0);
1076         wa_ctx_emit(batch, index, 0);
1077
1078         /* Pad to end of cacheline */
1079         while (index % CACHELINE_DWORDS)
1080                 wa_ctx_emit(batch, index, MI_NOOP);
1081
1082         /*
1083          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1084          * execution depends on the length specified in terms of cache lines
1085          * in the register CTX_RCS_INDIRECT_CTX
1086          */
1087
1088         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1089 }
1090
1091 /*
1092  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1093  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1094  *
1095  *  The number of DWORDS written are returned using this field.
1096  *
1097  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1098  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1099  */
1100 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1101                                struct i915_wa_ctx_bb *wa_ctx,
1102                                uint32_t *batch,
1103                                uint32_t *offset)
1104 {
1105         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1106
1107         /* WaDisableCtxRestoreArbitration:bdw,chv */
1108         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1109
1110         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1111
1112         return wa_ctx_end(wa_ctx, *offset = index, 1);
1113 }
1114
1115 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1116                                     struct i915_wa_ctx_bb *wa_ctx,
1117                                     uint32_t *batch,
1118                                     uint32_t *offset)
1119 {
1120         int ret;
1121         struct drm_i915_private *dev_priv = engine->i915;
1122         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1123
1124         /* WaDisableCtxRestoreArbitration:bxt */
1125         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1126                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1127
1128         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1129         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1130         if (ret < 0)
1131                 return ret;
1132         index = ret;
1133
1134         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1135         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1136         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1137         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1138                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1139         wa_ctx_emit(batch, index, MI_NOOP);
1140
1141         /* WaClearSlmSpaceAtContextSwitch:kbl */
1142         /* Actual scratch location is at 128 bytes offset */
1143         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1144                 u32 scratch_addr =
1145                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1146
1147                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1148                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1149                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1150                                            PIPE_CONTROL_CS_STALL |
1151                                            PIPE_CONTROL_QW_WRITE));
1152                 wa_ctx_emit(batch, index, scratch_addr);
1153                 wa_ctx_emit(batch, index, 0);
1154                 wa_ctx_emit(batch, index, 0);
1155                 wa_ctx_emit(batch, index, 0);
1156         }
1157
1158         /* WaMediaPoolStateCmdInWABB:bxt */
1159         if (HAS_POOLED_EU(engine->i915)) {
1160                 /*
1161                  * EU pool configuration is setup along with golden context
1162                  * during context initialization. This value depends on
1163                  * device type (2x6 or 3x6) and needs to be updated based
1164                  * on which subslice is disabled especially for 2x6
1165                  * devices, however it is safe to load default
1166                  * configuration of 3x6 device instead of masking off
1167                  * corresponding bits because HW ignores bits of a disabled
1168                  * subslice and drops down to appropriate config. Please
1169                  * see render_state_setup() in i915_gem_render_state.c for
1170                  * possible configurations, to avoid duplication they are
1171                  * not shown here again.
1172                  */
1173                 u32 eu_pool_config = 0x00777000;
1174                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1175                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1176                 wa_ctx_emit(batch, index, eu_pool_config);
1177                 wa_ctx_emit(batch, index, 0);
1178                 wa_ctx_emit(batch, index, 0);
1179                 wa_ctx_emit(batch, index, 0);
1180         }
1181
1182         /* Pad to end of cacheline */
1183         while (index % CACHELINE_DWORDS)
1184                 wa_ctx_emit(batch, index, MI_NOOP);
1185
1186         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1187 }
1188
1189 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1190                                struct i915_wa_ctx_bb *wa_ctx,
1191                                uint32_t *batch,
1192                                uint32_t *offset)
1193 {
1194         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1195
1196         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1197         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1198                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1199                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1200                 wa_ctx_emit(batch, index,
1201                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1202                 wa_ctx_emit(batch, index, MI_NOOP);
1203         }
1204
1205         /* WaClearTdlStateAckDirtyBits:bxt */
1206         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1207                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1208
1209                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1210                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1211
1212                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1213                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1214
1215                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1216                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1217
1218                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1219                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1220                 wa_ctx_emit(batch, index, 0x0);
1221                 wa_ctx_emit(batch, index, MI_NOOP);
1222         }
1223
1224         /* WaDisableCtxRestoreArbitration:bxt */
1225         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1226                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1227
1228         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1229
1230         return wa_ctx_end(wa_ctx, *offset = index, 1);
1231 }
1232
1233 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1234 {
1235         struct drm_i915_gem_object *obj;
1236         struct i915_vma *vma;
1237         int err;
1238
1239         obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1240         if (IS_ERR(obj))
1241                 return PTR_ERR(obj);
1242
1243         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1244         if (IS_ERR(vma)) {
1245                 err = PTR_ERR(vma);
1246                 goto err;
1247         }
1248
1249         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1250         if (err)
1251                 goto err;
1252
1253         engine->wa_ctx.vma = vma;
1254         return 0;
1255
1256 err:
1257         i915_gem_object_put(obj);
1258         return err;
1259 }
1260
1261 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1262 {
1263         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1264 }
1265
1266 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1267 {
1268         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1269         uint32_t *batch;
1270         uint32_t offset;
1271         struct page *page;
1272         int ret;
1273
1274         WARN_ON(engine->id != RCS);
1275
1276         /* update this when WA for higher Gen are added */
1277         if (INTEL_GEN(engine->i915) > 9) {
1278                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1279                           INTEL_GEN(engine->i915));
1280                 return 0;
1281         }
1282
1283         /* some WA perform writes to scratch page, ensure it is valid */
1284         if (!engine->scratch) {
1285                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1286                 return -EINVAL;
1287         }
1288
1289         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1290         if (ret) {
1291                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1292                 return ret;
1293         }
1294
1295         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1296         batch = kmap_atomic(page);
1297         offset = 0;
1298
1299         if (IS_GEN8(engine->i915)) {
1300                 ret = gen8_init_indirectctx_bb(engine,
1301                                                &wa_ctx->indirect_ctx,
1302                                                batch,
1303                                                &offset);
1304                 if (ret)
1305                         goto out;
1306
1307                 ret = gen8_init_perctx_bb(engine,
1308                                           &wa_ctx->per_ctx,
1309                                           batch,
1310                                           &offset);
1311                 if (ret)
1312                         goto out;
1313         } else if (IS_GEN9(engine->i915)) {
1314                 ret = gen9_init_indirectctx_bb(engine,
1315                                                &wa_ctx->indirect_ctx,
1316                                                batch,
1317                                                &offset);
1318                 if (ret)
1319                         goto out;
1320
1321                 ret = gen9_init_perctx_bb(engine,
1322                                           &wa_ctx->per_ctx,
1323                                           batch,
1324                                           &offset);
1325                 if (ret)
1326                         goto out;
1327         }
1328
1329 out:
1330         kunmap_atomic(batch);
1331         if (ret)
1332                 lrc_destroy_wa_ctx_obj(engine);
1333
1334         return ret;
1335 }
1336
1337 static void lrc_init_hws(struct intel_engine_cs *engine)
1338 {
1339         struct drm_i915_private *dev_priv = engine->i915;
1340
1341         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1342                    engine->status_page.ggtt_offset);
1343         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1344 }
1345
1346 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1347 {
1348         struct drm_i915_private *dev_priv = engine->i915;
1349         int ret;
1350
1351         ret = intel_mocs_init_engine(engine);
1352         if (ret)
1353                 return ret;
1354
1355         lrc_init_hws(engine);
1356
1357         intel_engine_reset_breadcrumbs(engine);
1358
1359         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1360
1361         I915_WRITE(RING_MODE_GEN7(engine),
1362                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1363                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1364
1365         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1366
1367         intel_engine_init_hangcheck(engine);
1368
1369         /* After a GPU reset, we may have requests to replay */
1370         if (!execlists_elsp_idle(engine)) {
1371                 engine->execlist_port[0].count = 0;
1372                 engine->execlist_port[1].count = 0;
1373                 execlists_submit_ports(engine);
1374         }
1375
1376         return 0;
1377 }
1378
1379 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1380 {
1381         struct drm_i915_private *dev_priv = engine->i915;
1382         int ret;
1383
1384         ret = gen8_init_common_ring(engine);
1385         if (ret)
1386                 return ret;
1387
1388         /* We need to disable the AsyncFlip performance optimisations in order
1389          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1390          * programmed to '1' on all products.
1391          *
1392          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1393          */
1394         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1395
1396         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1397
1398         return init_workarounds_ring(engine);
1399 }
1400
1401 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1402 {
1403         int ret;
1404
1405         ret = gen8_init_common_ring(engine);
1406         if (ret)
1407                 return ret;
1408
1409         return init_workarounds_ring(engine);
1410 }
1411
1412 static void reset_common_ring(struct intel_engine_cs *engine,
1413                               struct drm_i915_gem_request *request)
1414 {
1415         struct drm_i915_private *dev_priv = engine->i915;
1416         struct execlist_port *port = engine->execlist_port;
1417         struct intel_context *ce = &request->ctx->engine[engine->id];
1418
1419         /* We want a simple context + ring to execute the breadcrumb update.
1420          * We cannot rely on the context being intact across the GPU hang,
1421          * so clear it and rebuild just what we need for the breadcrumb.
1422          * All pending requests for this context will be zapped, and any
1423          * future request will be after userspace has had the opportunity
1424          * to recreate its own state.
1425          */
1426         execlists_init_reg_state(ce->lrc_reg_state,
1427                                  request->ctx, engine, ce->ring);
1428
1429         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1430         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1431                 i915_ggtt_offset(ce->ring->vma);
1432         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1433
1434         request->ring->head = request->postfix;
1435         request->ring->last_retired_head = -1;
1436         intel_ring_update_space(request->ring);
1437
1438         if (i915.enable_guc_submission)
1439                 return;
1440
1441         /* Catch up with any missed context-switch interrupts */
1442         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1443         if (request->ctx != port[0].request->ctx) {
1444                 i915_gem_request_put(port[0].request);
1445                 port[0] = port[1];
1446                 memset(&port[1], 0, sizeof(port[1]));
1447         }
1448
1449         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1450
1451         /* Reset WaIdleLiteRestore:bdw,skl as well */
1452         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1453 }
1454
1455 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1456 {
1457         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1458         struct intel_ring *ring = req->ring;
1459         struct intel_engine_cs *engine = req->engine;
1460         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1461         int i, ret;
1462
1463         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1464         if (ret)
1465                 return ret;
1466
1467         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1468         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1469                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1470
1471                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1472                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1473                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1474                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1475         }
1476
1477         intel_ring_emit(ring, MI_NOOP);
1478         intel_ring_advance(ring);
1479
1480         return 0;
1481 }
1482
1483 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1484                               u64 offset, u32 len,
1485                               unsigned int dispatch_flags)
1486 {
1487         struct intel_ring *ring = req->ring;
1488         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1489         int ret;
1490
1491         /* Don't rely in hw updating PDPs, specially in lite-restore.
1492          * Ideally, we should set Force PD Restore in ctx descriptor,
1493          * but we can't. Force Restore would be a second option, but
1494          * it is unsafe in case of lite-restore (because the ctx is
1495          * not idle). PML4 is allocated during ppgtt init so this is
1496          * not needed in 48-bit.*/
1497         if (req->ctx->ppgtt &&
1498             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1499                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1500                     !intel_vgpu_active(req->i915)) {
1501                         ret = intel_logical_ring_emit_pdps(req);
1502                         if (ret)
1503                                 return ret;
1504                 }
1505
1506                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1507         }
1508
1509         ret = intel_ring_begin(req, 4);
1510         if (ret)
1511                 return ret;
1512
1513         /* FIXME(BDW): Address space and security selectors. */
1514         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1515                         (ppgtt<<8) |
1516                         (dispatch_flags & I915_DISPATCH_RS ?
1517                          MI_BATCH_RESOURCE_STREAMER : 0));
1518         intel_ring_emit(ring, lower_32_bits(offset));
1519         intel_ring_emit(ring, upper_32_bits(offset));
1520         intel_ring_emit(ring, MI_NOOP);
1521         intel_ring_advance(ring);
1522
1523         return 0;
1524 }
1525
1526 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1527 {
1528         struct drm_i915_private *dev_priv = engine->i915;
1529         I915_WRITE_IMR(engine,
1530                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1531         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1532 }
1533
1534 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1535 {
1536         struct drm_i915_private *dev_priv = engine->i915;
1537         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1538 }
1539
1540 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1541 {
1542         struct intel_ring *ring = request->ring;
1543         u32 cmd;
1544         int ret;
1545
1546         ret = intel_ring_begin(request, 4);
1547         if (ret)
1548                 return ret;
1549
1550         cmd = MI_FLUSH_DW + 1;
1551
1552         /* We always require a command barrier so that subsequent
1553          * commands, such as breadcrumb interrupts, are strictly ordered
1554          * wrt the contents of the write cache being flushed to memory
1555          * (and thus being coherent from the CPU).
1556          */
1557         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1558
1559         if (mode & EMIT_INVALIDATE) {
1560                 cmd |= MI_INVALIDATE_TLB;
1561                 if (request->engine->id == VCS)
1562                         cmd |= MI_INVALIDATE_BSD;
1563         }
1564
1565         intel_ring_emit(ring, cmd);
1566         intel_ring_emit(ring,
1567                         I915_GEM_HWS_SCRATCH_ADDR |
1568                         MI_FLUSH_DW_USE_GTT);
1569         intel_ring_emit(ring, 0); /* upper addr */
1570         intel_ring_emit(ring, 0); /* value */
1571         intel_ring_advance(ring);
1572
1573         return 0;
1574 }
1575
1576 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1577                                   u32 mode)
1578 {
1579         struct intel_ring *ring = request->ring;
1580         struct intel_engine_cs *engine = request->engine;
1581         u32 scratch_addr =
1582                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1583         bool vf_flush_wa = false, dc_flush_wa = false;
1584         u32 flags = 0;
1585         int ret;
1586         int len;
1587
1588         flags |= PIPE_CONTROL_CS_STALL;
1589
1590         if (mode & EMIT_FLUSH) {
1591                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1592                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1593                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1594                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1595         }
1596
1597         if (mode & EMIT_INVALIDATE) {
1598                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1599                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1600                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1601                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1602                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1603                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1604                 flags |= PIPE_CONTROL_QW_WRITE;
1605                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1606
1607                 /*
1608                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1609                  * pipe control.
1610                  */
1611                 if (IS_GEN9(request->i915))
1612                         vf_flush_wa = true;
1613
1614                 /* WaForGAMHang:kbl */
1615                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1616                         dc_flush_wa = true;
1617         }
1618
1619         len = 6;
1620
1621         if (vf_flush_wa)
1622                 len += 6;
1623
1624         if (dc_flush_wa)
1625                 len += 12;
1626
1627         ret = intel_ring_begin(request, len);
1628         if (ret)
1629                 return ret;
1630
1631         if (vf_flush_wa) {
1632                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1633                 intel_ring_emit(ring, 0);
1634                 intel_ring_emit(ring, 0);
1635                 intel_ring_emit(ring, 0);
1636                 intel_ring_emit(ring, 0);
1637                 intel_ring_emit(ring, 0);
1638         }
1639
1640         if (dc_flush_wa) {
1641                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1642                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1643                 intel_ring_emit(ring, 0);
1644                 intel_ring_emit(ring, 0);
1645                 intel_ring_emit(ring, 0);
1646                 intel_ring_emit(ring, 0);
1647         }
1648
1649         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1650         intel_ring_emit(ring, flags);
1651         intel_ring_emit(ring, scratch_addr);
1652         intel_ring_emit(ring, 0);
1653         intel_ring_emit(ring, 0);
1654         intel_ring_emit(ring, 0);
1655
1656         if (dc_flush_wa) {
1657                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1658                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1659                 intel_ring_emit(ring, 0);
1660                 intel_ring_emit(ring, 0);
1661                 intel_ring_emit(ring, 0);
1662                 intel_ring_emit(ring, 0);
1663         }
1664
1665         intel_ring_advance(ring);
1666
1667         return 0;
1668 }
1669
1670 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1671 {
1672         /*
1673          * On BXT A steppings there is a HW coherency issue whereby the
1674          * MI_STORE_DATA_IMM storing the completed request's seqno
1675          * occasionally doesn't invalidate the CPU cache. Work around this by
1676          * clflushing the corresponding cacheline whenever the caller wants
1677          * the coherency to be guaranteed. Note that this cacheline is known
1678          * to be clean at this point, since we only write it in
1679          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1680          * this clflush in practice becomes an invalidate operation.
1681          */
1682         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1683 }
1684
1685 /*
1686  * Reserve space for 2 NOOPs at the end of each request to be
1687  * used as a workaround for not being allowed to do lite
1688  * restore with HEAD==TAIL (WaIdleLiteRestore).
1689  */
1690 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1691 {
1692         *out++ = MI_NOOP;
1693         *out++ = MI_NOOP;
1694         request->wa_tail = intel_ring_offset(request->ring, out);
1695 }
1696
1697 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1698                                  u32 *out)
1699 {
1700         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1701         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1702
1703         *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1704         *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1705         *out++ = 0;
1706         *out++ = request->global_seqno;
1707         *out++ = MI_USER_INTERRUPT;
1708         *out++ = MI_NOOP;
1709         request->tail = intel_ring_offset(request->ring, out);
1710
1711         gen8_emit_wa_tail(request, out);
1712 }
1713
1714 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1715
1716 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1717                                         u32 *out)
1718 {
1719         /* We're using qword write, seqno should be aligned to 8 bytes. */
1720         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1721
1722         /* w/a for post sync ops following a GPGPU operation we
1723          * need a prior CS_STALL, which is emitted by the flush
1724          * following the batch.
1725          */
1726         *out++ = GFX_OP_PIPE_CONTROL(6);
1727         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1728                   PIPE_CONTROL_CS_STALL |
1729                   PIPE_CONTROL_QW_WRITE);
1730         *out++ = intel_hws_seqno_address(request->engine);
1731         *out++ = 0;
1732         *out++ = request->global_seqno;
1733         /* We're thrashing one dword of HWS. */
1734         *out++ = 0;
1735         *out++ = MI_USER_INTERRUPT;
1736         *out++ = MI_NOOP;
1737         request->tail = intel_ring_offset(request->ring, out);
1738
1739         gen8_emit_wa_tail(request, out);
1740 }
1741
1742 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1743
1744 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1745 {
1746         int ret;
1747
1748         ret = intel_logical_ring_workarounds_emit(req);
1749         if (ret)
1750                 return ret;
1751
1752         ret = intel_rcs_context_init_mocs(req);
1753         /*
1754          * Failing to program the MOCS is non-fatal.The system will not
1755          * run at peak performance. So generate an error and carry on.
1756          */
1757         if (ret)
1758                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1759
1760         return i915_gem_render_state_emit(req);
1761 }
1762
1763 /**
1764  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1765  * @engine: Engine Command Streamer.
1766  */
1767 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1768 {
1769         struct drm_i915_private *dev_priv;
1770
1771         /*
1772          * Tasklet cannot be active at this point due intel_mark_active/idle
1773          * so this is just for documentation.
1774          */
1775         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1776                 tasklet_kill(&engine->irq_tasklet);
1777
1778         dev_priv = engine->i915;
1779
1780         if (engine->buffer) {
1781                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1782         }
1783
1784         if (engine->cleanup)
1785                 engine->cleanup(engine);
1786
1787         intel_engine_cleanup_common(engine);
1788
1789         if (engine->status_page.vma) {
1790                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1791                 engine->status_page.vma = NULL;
1792         }
1793         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1794
1795         lrc_destroy_wa_ctx_obj(engine);
1796         engine->i915 = NULL;
1797         dev_priv->engine[engine->id] = NULL;
1798         kfree(engine);
1799 }
1800
1801 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1802 {
1803         struct intel_engine_cs *engine;
1804         enum intel_engine_id id;
1805
1806         for_each_engine(engine, dev_priv, id) {
1807                 engine->submit_request = execlists_submit_request;
1808                 engine->schedule = execlists_schedule;
1809         }
1810 }
1811
1812 static void
1813 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1814 {
1815         /* Default vfuncs which can be overriden by each engine. */
1816         engine->init_hw = gen8_init_common_ring;
1817         engine->reset_hw = reset_common_ring;
1818         engine->emit_flush = gen8_emit_flush;
1819         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1820         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1821         engine->submit_request = execlists_submit_request;
1822         engine->schedule = execlists_schedule;
1823
1824         engine->irq_enable = gen8_logical_ring_enable_irq;
1825         engine->irq_disable = gen8_logical_ring_disable_irq;
1826         engine->emit_bb_start = gen8_emit_bb_start;
1827         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1828                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1829 }
1830
1831 static inline void
1832 logical_ring_default_irqs(struct intel_engine_cs *engine)
1833 {
1834         unsigned shift = engine->irq_shift;
1835         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1836         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1837 }
1838
1839 static int
1840 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1841 {
1842         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1843         void *hws;
1844
1845         /* The HWSP is part of the default context object in LRC mode. */
1846         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1847         if (IS_ERR(hws))
1848                 return PTR_ERR(hws);
1849
1850         engine->status_page.page_addr = hws + hws_offset;
1851         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1852         engine->status_page.vma = vma;
1853
1854         return 0;
1855 }
1856
1857 static void
1858 logical_ring_setup(struct intel_engine_cs *engine)
1859 {
1860         struct drm_i915_private *dev_priv = engine->i915;
1861         enum forcewake_domains fw_domains;
1862
1863         intel_engine_setup_common(engine);
1864
1865         /* Intentionally left blank. */
1866         engine->buffer = NULL;
1867
1868         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1869                                                     RING_ELSP(engine),
1870                                                     FW_REG_WRITE);
1871
1872         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1873                                                      RING_CONTEXT_STATUS_PTR(engine),
1874                                                      FW_REG_READ | FW_REG_WRITE);
1875
1876         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1877                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1878                                                      FW_REG_READ);
1879
1880         engine->fw_domains = fw_domains;
1881
1882         tasklet_init(&engine->irq_tasklet,
1883                      intel_lrc_irq_handler, (unsigned long)engine);
1884
1885         logical_ring_init_platform_invariants(engine);
1886         logical_ring_default_vfuncs(engine);
1887         logical_ring_default_irqs(engine);
1888 }
1889
1890 static int
1891 logical_ring_init(struct intel_engine_cs *engine)
1892 {
1893         struct i915_gem_context *dctx = engine->i915->kernel_context;
1894         int ret;
1895
1896         ret = intel_engine_init_common(engine);
1897         if (ret)
1898                 goto error;
1899
1900         ret = execlists_context_deferred_alloc(dctx, engine);
1901         if (ret)
1902                 goto error;
1903
1904         /* As this is the default context, always pin it */
1905         ret = intel_lr_context_pin(dctx, engine);
1906         if (ret) {
1907                 DRM_ERROR("Failed to pin context for %s: %d\n",
1908                           engine->name, ret);
1909                 goto error;
1910         }
1911
1912         /* And setup the hardware status page. */
1913         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1914         if (ret) {
1915                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1916                 goto error;
1917         }
1918
1919         return 0;
1920
1921 error:
1922         intel_logical_ring_cleanup(engine);
1923         return ret;
1924 }
1925
1926 int logical_render_ring_init(struct intel_engine_cs *engine)
1927 {
1928         struct drm_i915_private *dev_priv = engine->i915;
1929         int ret;
1930
1931         logical_ring_setup(engine);
1932
1933         if (HAS_L3_DPF(dev_priv))
1934                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1935
1936         /* Override some for render ring. */
1937         if (INTEL_GEN(dev_priv) >= 9)
1938                 engine->init_hw = gen9_init_render_ring;
1939         else
1940                 engine->init_hw = gen8_init_render_ring;
1941         engine->init_context = gen8_init_rcs_context;
1942         engine->emit_flush = gen8_emit_flush_render;
1943         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1944         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1945
1946         ret = intel_engine_create_scratch(engine, 4096);
1947         if (ret)
1948                 return ret;
1949
1950         ret = intel_init_workaround_bb(engine);
1951         if (ret) {
1952                 /*
1953                  * We continue even if we fail to initialize WA batch
1954                  * because we only expect rare glitches but nothing
1955                  * critical to prevent us from using GPU
1956                  */
1957                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1958                           ret);
1959         }
1960
1961         return logical_ring_init(engine);
1962 }
1963
1964 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1965 {
1966         logical_ring_setup(engine);
1967
1968         return logical_ring_init(engine);
1969 }
1970
1971 static u32
1972 make_rpcs(struct drm_i915_private *dev_priv)
1973 {
1974         u32 rpcs = 0;
1975
1976         /*
1977          * No explicit RPCS request is needed to ensure full
1978          * slice/subslice/EU enablement prior to Gen9.
1979         */
1980         if (INTEL_GEN(dev_priv) < 9)
1981                 return 0;
1982
1983         /*
1984          * Starting in Gen9, render power gating can leave
1985          * slice/subslice/EU in a partially enabled state. We
1986          * must make an explicit request through RPCS for full
1987          * enablement.
1988         */
1989         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1990                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1991                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1992                         GEN8_RPCS_S_CNT_SHIFT;
1993                 rpcs |= GEN8_RPCS_ENABLE;
1994         }
1995
1996         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1997                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1998                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1999                         GEN8_RPCS_SS_CNT_SHIFT;
2000                 rpcs |= GEN8_RPCS_ENABLE;
2001         }
2002
2003         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2004                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2005                         GEN8_RPCS_EU_MIN_SHIFT;
2006                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2007                         GEN8_RPCS_EU_MAX_SHIFT;
2008                 rpcs |= GEN8_RPCS_ENABLE;
2009         }
2010
2011         return rpcs;
2012 }
2013
2014 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2015 {
2016         u32 indirect_ctx_offset;
2017
2018         switch (INTEL_GEN(engine->i915)) {
2019         default:
2020                 MISSING_CASE(INTEL_GEN(engine->i915));
2021                 /* fall through */
2022         case 9:
2023                 indirect_ctx_offset =
2024                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2025                 break;
2026         case 8:
2027                 indirect_ctx_offset =
2028                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2029                 break;
2030         }
2031
2032         return indirect_ctx_offset;
2033 }
2034
2035 static void execlists_init_reg_state(u32 *reg_state,
2036                                      struct i915_gem_context *ctx,
2037                                      struct intel_engine_cs *engine,
2038                                      struct intel_ring *ring)
2039 {
2040         struct drm_i915_private *dev_priv = engine->i915;
2041         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2042
2043         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2044          * commands followed by (reg, value) pairs. The values we are setting here are
2045          * only for the first context restore: on a subsequent save, the GPU will
2046          * recreate this batchbuffer with new values (including all the missing
2047          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2048         reg_state[CTX_LRI_HEADER_0] =
2049                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2050         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2051                        RING_CONTEXT_CONTROL(engine),
2052                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2053                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2054                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2055                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
2056         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2057                        0);
2058         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2059                        0);
2060         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2061                        RING_START(engine->mmio_base), 0);
2062         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2063                        RING_CTL(engine->mmio_base),
2064                        RING_CTL_SIZE(ring->size) | RING_VALID);
2065         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2066                        RING_BBADDR_UDW(engine->mmio_base), 0);
2067         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2068                        RING_BBADDR(engine->mmio_base), 0);
2069         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2070                        RING_BBSTATE(engine->mmio_base),
2071                        RING_BB_PPGTT);
2072         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2073                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2074         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2075                        RING_SBBADDR(engine->mmio_base), 0);
2076         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2077                        RING_SBBSTATE(engine->mmio_base), 0);
2078         if (engine->id == RCS) {
2079                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2080                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2081                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2082                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2083                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2084                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2085                 if (engine->wa_ctx.vma) {
2086                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2087                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2088
2089                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2090                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2091                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2092
2093                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2094                                 intel_lr_indirect_ctx_offset(engine) << 6;
2095
2096                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2097                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2098                                 0x01;
2099                 }
2100         }
2101         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2102         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2103                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2104         /* PDP values well be assigned later if needed */
2105         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2106                        0);
2107         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2108                        0);
2109         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2110                        0);
2111         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2112                        0);
2113         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2114                        0);
2115         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2116                        0);
2117         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2118                        0);
2119         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2120                        0);
2121
2122         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2123                 /* 64b PPGTT (48bit canonical)
2124                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2125                  * other PDP Descriptors are ignored.
2126                  */
2127                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2128         } else {
2129                 /* 32b PPGTT
2130                  * PDP*_DESCRIPTOR contains the base address of space supported.
2131                  * With dynamic page allocation, PDPs may not be allocated at
2132                  * this point. Point the unallocated PDPs to the scratch page
2133                  */
2134                 execlists_update_context_pdps(ppgtt, reg_state);
2135         }
2136
2137         if (engine->id == RCS) {
2138                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2139                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2140                                make_rpcs(dev_priv));
2141         }
2142 }
2143
2144 static int
2145 populate_lr_context(struct i915_gem_context *ctx,
2146                     struct drm_i915_gem_object *ctx_obj,
2147                     struct intel_engine_cs *engine,
2148                     struct intel_ring *ring)
2149 {
2150         void *vaddr;
2151         int ret;
2152
2153         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2154         if (ret) {
2155                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2156                 return ret;
2157         }
2158
2159         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2160         if (IS_ERR(vaddr)) {
2161                 ret = PTR_ERR(vaddr);
2162                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2163                 return ret;
2164         }
2165         ctx_obj->mm.dirty = true;
2166
2167         /* The second page of the context object contains some fields which must
2168          * be set up prior to the first execution. */
2169
2170         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2171                                  ctx, engine, ring);
2172
2173         i915_gem_object_unpin_map(ctx_obj);
2174
2175         return 0;
2176 }
2177
2178 /**
2179  * intel_lr_context_size() - return the size of the context for an engine
2180  * @engine: which engine to find the context size for
2181  *
2182  * Each engine may require a different amount of space for a context image,
2183  * so when allocating (or copying) an image, this function can be used to
2184  * find the right size for the specific engine.
2185  *
2186  * Return: size (in bytes) of an engine-specific context image
2187  *
2188  * Note: this size includes the HWSP, which is part of the context image
2189  * in LRC mode, but does not include the "shared data page" used with
2190  * GuC submission. The caller should account for this if using the GuC.
2191  */
2192 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2193 {
2194         int ret = 0;
2195
2196         WARN_ON(INTEL_GEN(engine->i915) < 8);
2197
2198         switch (engine->id) {
2199         case RCS:
2200                 if (INTEL_GEN(engine->i915) >= 9)
2201                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2202                 else
2203                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2204                 break;
2205         case VCS:
2206         case BCS:
2207         case VECS:
2208         case VCS2:
2209                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2210                 break;
2211         }
2212
2213         return ret;
2214 }
2215
2216 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2217                                             struct intel_engine_cs *engine)
2218 {
2219         struct drm_i915_gem_object *ctx_obj;
2220         struct intel_context *ce = &ctx->engine[engine->id];
2221         struct i915_vma *vma;
2222         uint32_t context_size;
2223         struct intel_ring *ring;
2224         int ret;
2225
2226         WARN_ON(ce->state);
2227
2228         context_size = round_up(intel_lr_context_size(engine), 4096);
2229
2230         /* One extra page as the sharing data between driver and GuC */
2231         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2232
2233         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2234         if (IS_ERR(ctx_obj)) {
2235                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2236                 return PTR_ERR(ctx_obj);
2237         }
2238
2239         vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2240         if (IS_ERR(vma)) {
2241                 ret = PTR_ERR(vma);
2242                 goto error_deref_obj;
2243         }
2244
2245         ring = intel_engine_create_ring(engine, ctx->ring_size);
2246         if (IS_ERR(ring)) {
2247                 ret = PTR_ERR(ring);
2248                 goto error_deref_obj;
2249         }
2250
2251         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2252         if (ret) {
2253                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2254                 goto error_ring_free;
2255         }
2256
2257         ce->ring = ring;
2258         ce->state = vma;
2259         ce->initialised = engine->init_context == NULL;
2260
2261         return 0;
2262
2263 error_ring_free:
2264         intel_ring_free(ring);
2265 error_deref_obj:
2266         i915_gem_object_put(ctx_obj);
2267         return ret;
2268 }
2269
2270 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2271 {
2272         struct intel_engine_cs *engine;
2273         struct i915_gem_context *ctx;
2274         enum intel_engine_id id;
2275
2276         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2277          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2278          * that stored in context. As we only write new commands from
2279          * ce->ring->tail onwards, everything before that is junk. If the GPU
2280          * starts reading from its RING_HEAD from the context, it may try to
2281          * execute that junk and die.
2282          *
2283          * So to avoid that we reset the context images upon resume. For
2284          * simplicity, we just zero everything out.
2285          */
2286         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2287                 for_each_engine(engine, dev_priv, id) {
2288                         struct intel_context *ce = &ctx->engine[engine->id];
2289                         u32 *reg;
2290
2291                         if (!ce->state)
2292                                 continue;
2293
2294                         reg = i915_gem_object_pin_map(ce->state->obj,
2295                                                       I915_MAP_WB);
2296                         if (WARN_ON(IS_ERR(reg)))
2297                                 continue;
2298
2299                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2300                         reg[CTX_RING_HEAD+1] = 0;
2301                         reg[CTX_RING_TAIL+1] = 0;
2302
2303                         ce->state->obj->mm.dirty = true;
2304                         i915_gem_object_unpin_map(ce->state->obj);
2305
2306                         ce->ring->head = ce->ring->tail = 0;
2307                         ce->ring->last_retired_head = -1;
2308                         intel_ring_update_space(ce->ring);
2309                 }
2310         }
2311 }