drm/i915: Assert that the request->tail is always qword aligned
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
210 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
211
212 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
213 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
215 #define WA_TAIL_DWORDS 2
216
217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218                                             struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220                                      struct i915_gem_context *ctx,
221                                      struct intel_engine_cs *engine,
222                                      struct intel_ring *ring);
223
224 /**
225  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226  * @dev_priv: i915 device private
227  * @enable_execlists: value of i915.enable_execlists module parameter.
228  *
229  * Only certain platforms support Execlists (the prerequisites being
230  * support for Logical Ring Contexts and Aliasing PPGTT or better).
231  *
232  * Return: 1 if Execlists is supported and has to be enabled.
233  */
234 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235 {
236         /* On platforms with execlist available, vGPU will only
237          * support execlist mode, no ring buffer mode.
238          */
239         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240                 return 1;
241
242         if (INTEL_GEN(dev_priv) >= 9)
243                 return 1;
244
245         if (enable_execlists == 0)
246                 return 0;
247
248         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249             USES_PPGTT(dev_priv) &&
250             i915.use_mmio_flip >= 0)
251                 return 1;
252
253         return 0;
254 }
255
256 /**
257  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258  *                                        descriptor for a pinned context
259  * @ctx: Context to work on
260  * @engine: Engine the descriptor will be used with
261  *
262  * The context descriptor encodes various attributes of a context,
263  * including its GTT address and some flags. Because it's fairly
264  * expensive to calculate, we'll just do it once and cache the result,
265  * which remains valid until the context is unpinned.
266  *
267  * This is what a descriptor looks like, from LSB to MSB::
268  *
269  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
271  *      bits 32-52:    ctx ID, a globally unique tag
272  *      bits 53-54:    mbz, reserved for use by hardware
273  *      bits 55-63:    group ID, currently unused and set to 0
274  */
275 static void
276 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277                                    struct intel_engine_cs *engine)
278 {
279         struct intel_context *ce = &ctx->engine[engine->id];
280         u64 desc;
281
282         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283
284         desc = ctx->desc_template;                              /* bits  0-11 */
285         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286                                                                 /* bits 12-31 */
287         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
288
289         ce->lrc_desc = desc;
290 }
291
292 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293                                      struct intel_engine_cs *engine)
294 {
295         return ctx->engine[engine->id].lrc_desc;
296 }
297
298 static inline void
299 execlists_context_status_change(struct drm_i915_gem_request *rq,
300                                 unsigned long status)
301 {
302         /*
303          * Only used when GVT-g is enabled now. When GVT-g is disabled,
304          * The compiler should eliminate this function as dead-code.
305          */
306         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307                 return;
308
309         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 }
311
312 static void
313 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
314 {
315         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
316         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
317         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
318         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
319 }
320
321 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322 {
323         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324         struct i915_hw_ppgtt *ppgtt =
325                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
326         u32 *reg_state = ce->lrc_reg_state;
327
328         GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
329         reg_state[CTX_RING_TAIL+1] = rq->tail;
330
331         /* True 32b PPGTT with dynamic page allocation: update PDP
332          * registers and point the unallocated PDPs to scratch page.
333          * PML4 is allocated during ppgtt init, so this is not needed
334          * in 48-bit mode.
335          */
336         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
337                 execlists_update_context_pdps(ppgtt, reg_state);
338
339         return ce->lrc_desc;
340 }
341
342 static void execlists_submit_ports(struct intel_engine_cs *engine)
343 {
344         struct drm_i915_private *dev_priv = engine->i915;
345         struct execlist_port *port = engine->execlist_port;
346         u32 __iomem *elsp =
347                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
348         u64 desc[2];
349
350         GEM_BUG_ON(port[0].count > 1);
351         if (!port[0].count)
352                 execlists_context_status_change(port[0].request,
353                                                 INTEL_CONTEXT_SCHEDULE_IN);
354         desc[0] = execlists_update_context(port[0].request);
355         GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
356         port[0].count++;
357
358         if (port[1].request) {
359                 GEM_BUG_ON(port[1].count);
360                 execlists_context_status_change(port[1].request,
361                                                 INTEL_CONTEXT_SCHEDULE_IN);
362                 desc[1] = execlists_update_context(port[1].request);
363                 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
364                 port[1].count = 1;
365         } else {
366                 desc[1] = 0;
367         }
368         GEM_BUG_ON(desc[0] == desc[1]);
369
370         /* You must always write both descriptors in the order below. */
371         writel(upper_32_bits(desc[1]), elsp);
372         writel(lower_32_bits(desc[1]), elsp);
373
374         writel(upper_32_bits(desc[0]), elsp);
375         /* The context is automatically loaded after the following */
376         writel(lower_32_bits(desc[0]), elsp);
377 }
378
379 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
380 {
381         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
382                 i915_gem_context_force_single_submission(ctx));
383 }
384
385 static bool can_merge_ctx(const struct i915_gem_context *prev,
386                           const struct i915_gem_context *next)
387 {
388         if (prev != next)
389                 return false;
390
391         if (ctx_single_port_submission(prev))
392                 return false;
393
394         return true;
395 }
396
397 static void execlists_dequeue(struct intel_engine_cs *engine)
398 {
399         struct drm_i915_gem_request *last;
400         struct execlist_port *port = engine->execlist_port;
401         unsigned long flags;
402         struct rb_node *rb;
403         bool submit = false;
404
405         last = port->request;
406         if (last)
407                 /* WaIdleLiteRestore:bdw,skl
408                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409                  * as we resubmit the request. See gen8_emit_breadcrumb()
410                  * for where we prepare the padding after the end of the
411                  * request.
412                  */
413                 last->tail = last->wa_tail;
414
415         GEM_BUG_ON(port[1].request);
416
417         /* Hardware submission is through 2 ports. Conceptually each port
418          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419          * static for a context, and unique to each, so we only execute
420          * requests belonging to a single context from each ring. RING_HEAD
421          * is maintained by the CS in the context image, it marks the place
422          * where it got up to last time, and through RING_TAIL we tell the CS
423          * where we want to execute up to this time.
424          *
425          * In this list the requests are in order of execution. Consecutive
426          * requests from the same context are adjacent in the ringbuffer. We
427          * can combine these requests into a single RING_TAIL update:
428          *
429          *              RING_HEAD...req1...req2
430          *                                    ^- RING_TAIL
431          * since to execute req2 the CS must first execute req1.
432          *
433          * Our goal then is to point each port to the end of a consecutive
434          * sequence of requests as being the most optimal (fewest wake ups
435          * and context switches) submission.
436          */
437
438         spin_lock_irqsave(&engine->timeline->lock, flags);
439         rb = engine->execlist_first;
440         while (rb) {
441                 struct drm_i915_gem_request *cursor =
442                         rb_entry(rb, typeof(*cursor), priotree.node);
443
444                 /* Can we combine this request with the current port? It has to
445                  * be the same context/ringbuffer and not have any exceptions
446                  * (e.g. GVT saying never to combine contexts).
447                  *
448                  * If we can combine the requests, we can execute both by
449                  * updating the RING_TAIL to point to the end of the second
450                  * request, and so we never need to tell the hardware about
451                  * the first.
452                  */
453                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
454                         /* If we are on the second port and cannot combine
455                          * this request with the last, then we are done.
456                          */
457                         if (port != engine->execlist_port)
458                                 break;
459
460                         /* If GVT overrides us we only ever submit port[0],
461                          * leaving port[1] empty. Note that we also have
462                          * to be careful that we don't queue the same
463                          * context (even though a different request) to
464                          * the second port.
465                          */
466                         if (ctx_single_port_submission(last->ctx) ||
467                             ctx_single_port_submission(cursor->ctx))
468                                 break;
469
470                         GEM_BUG_ON(last->ctx == cursor->ctx);
471
472                         i915_gem_request_assign(&port->request, last);
473                         port++;
474                 }
475
476                 rb = rb_next(rb);
477                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
478                 RB_CLEAR_NODE(&cursor->priotree.node);
479                 cursor->priotree.priority = INT_MAX;
480
481                 __i915_gem_request_submit(cursor);
482                 last = cursor;
483                 submit = true;
484         }
485         if (submit) {
486                 i915_gem_request_assign(&port->request, last);
487                 engine->execlist_first = rb;
488         }
489         spin_unlock_irqrestore(&engine->timeline->lock, flags);
490
491         if (submit)
492                 execlists_submit_ports(engine);
493 }
494
495 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
496 {
497         return !engine->execlist_port[0].request;
498 }
499
500 /**
501  * intel_execlists_idle() - Determine if all engine submission ports are idle
502  * @dev_priv: i915 device private
503  *
504  * Return true if there are no requests pending on any of the submission ports
505  * of any engines.
506  */
507 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
508 {
509         struct intel_engine_cs *engine;
510         enum intel_engine_id id;
511
512         if (!i915.enable_execlists)
513                 return true;
514
515         for_each_engine(engine, dev_priv, id) {
516                 /* Interrupt/tasklet pending? */
517                 if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
518                         return false;
519
520                 /* Both ports drained, no more ELSP submission? */
521                 if (!execlists_elsp_idle(engine))
522                         return false;
523         }
524
525         return true;
526 }
527
528 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
529 {
530         const struct execlist_port *port = engine->execlist_port;
531
532         return port[0].count + port[1].count < 2;
533 }
534
535 /*
536  * Check the unread Context Status Buffers and manage the submission of new
537  * contexts to the ELSP accordingly.
538  */
539 static void intel_lrc_irq_handler(unsigned long data)
540 {
541         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
542         struct execlist_port *port = engine->execlist_port;
543         struct drm_i915_private *dev_priv = engine->i915;
544
545         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
546
547         while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
548                 u32 __iomem *csb_mmio =
549                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
550                 u32 __iomem *buf =
551                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
552                 unsigned int csb, head, tail;
553
554                 csb = readl(csb_mmio);
555                 head = GEN8_CSB_READ_PTR(csb);
556                 tail = GEN8_CSB_WRITE_PTR(csb);
557                 if (head == tail)
558                         break;
559
560                 if (tail < head)
561                         tail += GEN8_CSB_ENTRIES;
562                 do {
563                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
564                         unsigned int status = readl(buf + 2 * idx);
565
566                         /* We are flying near dragons again.
567                          *
568                          * We hold a reference to the request in execlist_port[]
569                          * but no more than that. We are operating in softirq
570                          * context and so cannot hold any mutex or sleep. That
571                          * prevents us stopping the requests we are processing
572                          * in port[] from being retired simultaneously (the
573                          * breadcrumb will be complete before we see the
574                          * context-switch). As we only hold the reference to the
575                          * request, any pointer chasing underneath the request
576                          * is subject to a potential use-after-free. Thus we
577                          * store all of the bookkeeping within port[] as
578                          * required, and avoid using unguarded pointers beneath
579                          * request itself. The same applies to the atomic
580                          * status notifier.
581                          */
582
583                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
584                                 continue;
585
586                         /* Check the context/desc id for this event matches */
587                         GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
588                                          port[0].context_id);
589
590                         GEM_BUG_ON(port[0].count == 0);
591                         if (--port[0].count == 0) {
592                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
593                                 execlists_context_status_change(port[0].request,
594                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
595
596                                 i915_gem_request_put(port[0].request);
597                                 port[0] = port[1];
598                                 memset(&port[1], 0, sizeof(port[1]));
599                         }
600
601                         GEM_BUG_ON(port[0].count == 0 &&
602                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
603                 } while (head < tail);
604
605                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
606                                      GEN8_CSB_WRITE_PTR(csb) << 8),
607                        csb_mmio);
608         }
609
610         if (execlists_elsp_ready(engine))
611                 execlists_dequeue(engine);
612
613         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
614 }
615
616 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
617 {
618         struct rb_node **p, *rb;
619         bool first = true;
620
621         /* most positive priority is scheduled first, equal priorities fifo */
622         rb = NULL;
623         p = &root->rb_node;
624         while (*p) {
625                 struct i915_priotree *pos;
626
627                 rb = *p;
628                 pos = rb_entry(rb, typeof(*pos), node);
629                 if (pt->priority > pos->priority) {
630                         p = &rb->rb_left;
631                 } else {
632                         p = &rb->rb_right;
633                         first = false;
634                 }
635         }
636         rb_link_node(&pt->node, rb, p);
637         rb_insert_color(&pt->node, root);
638
639         return first;
640 }
641
642 static void execlists_submit_request(struct drm_i915_gem_request *request)
643 {
644         struct intel_engine_cs *engine = request->engine;
645         unsigned long flags;
646
647         /* Will be called from irq-context when using foreign fences. */
648         spin_lock_irqsave(&engine->timeline->lock, flags);
649
650         if (insert_request(&request->priotree, &engine->execlist_queue)) {
651                 engine->execlist_first = &request->priotree.node;
652                 if (execlists_elsp_ready(engine))
653                         tasklet_hi_schedule(&engine->irq_tasklet);
654         }
655
656         spin_unlock_irqrestore(&engine->timeline->lock, flags);
657 }
658
659 static struct intel_engine_cs *
660 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
661 {
662         struct intel_engine_cs *engine;
663
664         engine = container_of(pt,
665                               struct drm_i915_gem_request,
666                               priotree)->engine;
667         if (engine != locked) {
668                 if (locked)
669                         spin_unlock_irq(&locked->timeline->lock);
670                 spin_lock_irq(&engine->timeline->lock);
671         }
672
673         return engine;
674 }
675
676 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
677 {
678         struct intel_engine_cs *engine = NULL;
679         struct i915_dependency *dep, *p;
680         struct i915_dependency stack;
681         LIST_HEAD(dfs);
682
683         if (prio <= READ_ONCE(request->priotree.priority))
684                 return;
685
686         /* Need BKL in order to use the temporary link inside i915_dependency */
687         lockdep_assert_held(&request->i915->drm.struct_mutex);
688
689         stack.signaler = &request->priotree;
690         list_add(&stack.dfs_link, &dfs);
691
692         /* Recursively bump all dependent priorities to match the new request.
693          *
694          * A naive approach would be to use recursion:
695          * static void update_priorities(struct i915_priotree *pt, prio) {
696          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
697          *              update_priorities(dep->signal, prio)
698          *      insert_request(pt);
699          * }
700          * but that may have unlimited recursion depth and so runs a very
701          * real risk of overunning the kernel stack. Instead, we build
702          * a flat list of all dependencies starting with the current request.
703          * As we walk the list of dependencies, we add all of its dependencies
704          * to the end of the list (this may include an already visited
705          * request) and continue to walk onwards onto the new dependencies. The
706          * end result is a topological list of requests in reverse order, the
707          * last element in the list is the request we must execute first.
708          */
709         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
710                 struct i915_priotree *pt = dep->signaler;
711
712                 list_for_each_entry(p, &pt->signalers_list, signal_link)
713                         if (prio > READ_ONCE(p->signaler->priority))
714                                 list_move_tail(&p->dfs_link, &dfs);
715
716                 list_safe_reset_next(dep, p, dfs_link);
717                 if (!RB_EMPTY_NODE(&pt->node))
718                         continue;
719
720                 engine = pt_lock_engine(pt, engine);
721
722                 /* If it is not already in the rbtree, we can update the
723                  * priority inplace and skip over it (and its dependencies)
724                  * if it is referenced *again* as we descend the dfs.
725                  */
726                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
727                         pt->priority = prio;
728                         list_del_init(&dep->dfs_link);
729                 }
730         }
731
732         /* Fifo and depth-first replacement ensure our deps execute before us */
733         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
734                 struct i915_priotree *pt = dep->signaler;
735
736                 INIT_LIST_HEAD(&dep->dfs_link);
737
738                 engine = pt_lock_engine(pt, engine);
739
740                 if (prio <= pt->priority)
741                         continue;
742
743                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
744
745                 pt->priority = prio;
746                 rb_erase(&pt->node, &engine->execlist_queue);
747                 if (insert_request(pt, &engine->execlist_queue))
748                         engine->execlist_first = &pt->node;
749         }
750
751         if (engine)
752                 spin_unlock_irq(&engine->timeline->lock);
753
754         /* XXX Do we need to preempt to make room for us and our deps? */
755 }
756
757 static int execlists_context_pin(struct intel_engine_cs *engine,
758                                  struct i915_gem_context *ctx)
759 {
760         struct intel_context *ce = &ctx->engine[engine->id];
761         unsigned int flags;
762         void *vaddr;
763         int ret;
764
765         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
766
767         if (ce->pin_count++)
768                 return 0;
769
770         if (!ce->state) {
771                 ret = execlists_context_deferred_alloc(ctx, engine);
772                 if (ret)
773                         goto err;
774         }
775         GEM_BUG_ON(!ce->state);
776
777         flags = PIN_GLOBAL | PIN_HIGH;
778         if (ctx->ggtt_offset_bias)
779                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
780
781         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
782         if (ret)
783                 goto err;
784
785         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
786         if (IS_ERR(vaddr)) {
787                 ret = PTR_ERR(vaddr);
788                 goto unpin_vma;
789         }
790
791         ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
792         if (ret)
793                 goto unpin_map;
794
795         intel_lr_context_descriptor_update(ctx, engine);
796
797         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
798         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
799                 i915_ggtt_offset(ce->ring->vma);
800
801         ce->state->obj->mm.dirty = true;
802
803         i915_gem_context_get(ctx);
804         return 0;
805
806 unpin_map:
807         i915_gem_object_unpin_map(ce->state->obj);
808 unpin_vma:
809         __i915_vma_unpin(ce->state);
810 err:
811         ce->pin_count = 0;
812         return ret;
813 }
814
815 static void execlists_context_unpin(struct intel_engine_cs *engine,
816                                     struct i915_gem_context *ctx)
817 {
818         struct intel_context *ce = &ctx->engine[engine->id];
819
820         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
821         GEM_BUG_ON(ce->pin_count == 0);
822
823         if (--ce->pin_count)
824                 return;
825
826         intel_ring_unpin(ce->ring);
827
828         i915_gem_object_unpin_map(ce->state->obj);
829         i915_vma_unpin(ce->state);
830
831         i915_gem_context_put(ctx);
832 }
833
834 static int execlists_request_alloc(struct drm_i915_gem_request *request)
835 {
836         struct intel_engine_cs *engine = request->engine;
837         struct intel_context *ce = &request->ctx->engine[engine->id];
838         u32 *cs;
839         int ret;
840
841         GEM_BUG_ON(!ce->pin_count);
842
843         /* Flush enough space to reduce the likelihood of waiting after
844          * we start building the request - in which case we will just
845          * have to repeat work.
846          */
847         request->reserved_space += EXECLISTS_REQUEST_SIZE;
848
849         GEM_BUG_ON(!ce->ring);
850         request->ring = ce->ring;
851
852         if (i915.enable_guc_submission) {
853                 /*
854                  * Check that the GuC has space for the request before
855                  * going any further, as the i915_add_request() call
856                  * later on mustn't fail ...
857                  */
858                 ret = i915_guc_wq_reserve(request);
859                 if (ret)
860                         goto err;
861         }
862
863         cs = intel_ring_begin(request, 0);
864         if (IS_ERR(cs)) {
865                 ret = PTR_ERR(cs);
866                 goto err_unreserve;
867         }
868
869         if (!ce->initialised) {
870                 ret = engine->init_context(request);
871                 if (ret)
872                         goto err_unreserve;
873
874                 ce->initialised = true;
875         }
876
877         /* Note that after this point, we have committed to using
878          * this request as it is being used to both track the
879          * state of engine initialisation and liveness of the
880          * golden renderstate above. Think twice before you try
881          * to cancel/unwind this request now.
882          */
883
884         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
885         return 0;
886
887 err_unreserve:
888         if (i915.enable_guc_submission)
889                 i915_guc_wq_unreserve(request);
890 err:
891         return ret;
892 }
893
894 /*
895  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
896  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
897  * but there is a slight complication as this is applied in WA batch where the
898  * values are only initialized once so we cannot take register value at the
899  * beginning and reuse it further; hence we save its value to memory, upload a
900  * constant value with bit21 set and then we restore it back with the saved value.
901  * To simplify the WA, a constant value is formed by using the default value
902  * of this register. This shouldn't be a problem because we are only modifying
903  * it for a short period and this batch in non-premptible. We can ofcourse
904  * use additional instructions that read the actual value of the register
905  * at that time and set our bit of interest but it makes the WA complicated.
906  *
907  * This WA is also required for Gen9 so extracting as a function avoids
908  * code duplication.
909  */
910 static u32 *
911 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
912 {
913         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
914         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
916         *batch++ = 0;
917
918         *batch++ = MI_LOAD_REGISTER_IMM(1);
919         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
920         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
921
922         batch = gen8_emit_pipe_control(batch,
923                                        PIPE_CONTROL_CS_STALL |
924                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
925                                        0);
926
927         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
928         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
929         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
930         *batch++ = 0;
931
932         return batch;
933 }
934
935 /*
936  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
937  * initialized at the beginning and shared across all contexts but this field
938  * helps us to have multiple batches at different offsets and select them based
939  * on a criteria. At the moment this batch always start at the beginning of the page
940  * and at this point we don't have multiple wa_ctx batch buffers.
941  *
942  * The number of WA applied are not known at the beginning; we use this field
943  * to return the no of DWORDS written.
944  *
945  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
946  * so it adds NOOPs as padding to make it cacheline aligned.
947  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
948  * makes a complete batch buffer.
949  */
950 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
951 {
952         /* WaDisableCtxRestoreArbitration:bdw,chv */
953         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
954
955         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
956         if (IS_BROADWELL(engine->i915))
957                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
958
959         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
960         /* Actual scratch location is at 128 bytes offset */
961         batch = gen8_emit_pipe_control(batch,
962                                        PIPE_CONTROL_FLUSH_L3 |
963                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
964                                        PIPE_CONTROL_CS_STALL |
965                                        PIPE_CONTROL_QW_WRITE,
966                                        i915_ggtt_offset(engine->scratch) +
967                                        2 * CACHELINE_BYTES);
968
969         /* Pad to end of cacheline */
970         while ((unsigned long)batch % CACHELINE_BYTES)
971                 *batch++ = MI_NOOP;
972
973         /*
974          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
975          * execution depends on the length specified in terms of cache lines
976          * in the register CTX_RCS_INDIRECT_CTX
977          */
978
979         return batch;
980 }
981
982 /*
983  *  This batch is started immediately after indirect_ctx batch. Since we ensure
984  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
985  *
986  *  The number of DWORDS written are returned using this field.
987  *
988  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
989  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
990  */
991 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
992 {
993         /* WaDisableCtxRestoreArbitration:bdw,chv */
994         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
995         *batch++ = MI_BATCH_BUFFER_END;
996
997         return batch;
998 }
999
1000 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1001 {
1002         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1003         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1004
1005         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1006         *batch++ = MI_LOAD_REGISTER_IMM(1);
1007         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1008         *batch++ = _MASKED_BIT_DISABLE(
1009                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1010         *batch++ = MI_NOOP;
1011
1012         /* WaClearSlmSpaceAtContextSwitch:kbl */
1013         /* Actual scratch location is at 128 bytes offset */
1014         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1015                 batch = gen8_emit_pipe_control(batch,
1016                                                PIPE_CONTROL_FLUSH_L3 |
1017                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1018                                                PIPE_CONTROL_CS_STALL |
1019                                                PIPE_CONTROL_QW_WRITE,
1020                                                i915_ggtt_offset(engine->scratch)
1021                                                + 2 * CACHELINE_BYTES);
1022         }
1023
1024         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1025         if (HAS_POOLED_EU(engine->i915)) {
1026                 /*
1027                  * EU pool configuration is setup along with golden context
1028                  * during context initialization. This value depends on
1029                  * device type (2x6 or 3x6) and needs to be updated based
1030                  * on which subslice is disabled especially for 2x6
1031                  * devices, however it is safe to load default
1032                  * configuration of 3x6 device instead of masking off
1033                  * corresponding bits because HW ignores bits of a disabled
1034                  * subslice and drops down to appropriate config. Please
1035                  * see render_state_setup() in i915_gem_render_state.c for
1036                  * possible configurations, to avoid duplication they are
1037                  * not shown here again.
1038                  */
1039                 *batch++ = GEN9_MEDIA_POOL_STATE;
1040                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1041                 *batch++ = 0x00777000;
1042                 *batch++ = 0;
1043                 *batch++ = 0;
1044                 *batch++ = 0;
1045         }
1046
1047         /* Pad to end of cacheline */
1048         while ((unsigned long)batch % CACHELINE_BYTES)
1049                 *batch++ = MI_NOOP;
1050
1051         return batch;
1052 }
1053
1054 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1055 {
1056         *batch++ = MI_BATCH_BUFFER_END;
1057
1058         return batch;
1059 }
1060
1061 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1062
1063 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1064 {
1065         struct drm_i915_gem_object *obj;
1066         struct i915_vma *vma;
1067         int err;
1068
1069         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1070         if (IS_ERR(obj))
1071                 return PTR_ERR(obj);
1072
1073         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1074         if (IS_ERR(vma)) {
1075                 err = PTR_ERR(vma);
1076                 goto err;
1077         }
1078
1079         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1080         if (err)
1081                 goto err;
1082
1083         engine->wa_ctx.vma = vma;
1084         return 0;
1085
1086 err:
1087         i915_gem_object_put(obj);
1088         return err;
1089 }
1090
1091 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1092 {
1093         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1094 }
1095
1096 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1097
1098 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1099 {
1100         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1101         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1102                                             &wa_ctx->per_ctx };
1103         wa_bb_func_t wa_bb_fn[2];
1104         struct page *page;
1105         void *batch, *batch_ptr;
1106         unsigned int i;
1107         int ret;
1108
1109         if (WARN_ON(engine->id != RCS || !engine->scratch))
1110                 return -EINVAL;
1111
1112         switch (INTEL_GEN(engine->i915)) {
1113         case 9:
1114                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1115                 wa_bb_fn[1] = gen9_init_perctx_bb;
1116                 break;
1117         case 8:
1118                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1119                 wa_bb_fn[1] = gen8_init_perctx_bb;
1120                 break;
1121         default:
1122                 MISSING_CASE(INTEL_GEN(engine->i915));
1123                 return 0;
1124         }
1125
1126         ret = lrc_setup_wa_ctx(engine);
1127         if (ret) {
1128                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1129                 return ret;
1130         }
1131
1132         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1133         batch = batch_ptr = kmap_atomic(page);
1134
1135         /*
1136          * Emit the two workaround batch buffers, recording the offset from the
1137          * start of the workaround batch buffer object for each and their
1138          * respective sizes.
1139          */
1140         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1141                 wa_bb[i]->offset = batch_ptr - batch;
1142                 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1143                         ret = -EINVAL;
1144                         break;
1145                 }
1146                 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1147                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1148         }
1149
1150         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1151
1152         kunmap_atomic(batch);
1153         if (ret)
1154                 lrc_destroy_wa_ctx(engine);
1155
1156         return ret;
1157 }
1158
1159 static u32 port_seqno(struct execlist_port *port)
1160 {
1161         return port->request ? port->request->global_seqno : 0;
1162 }
1163
1164 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1165 {
1166         struct drm_i915_private *dev_priv = engine->i915;
1167         int ret;
1168
1169         ret = intel_mocs_init_engine(engine);
1170         if (ret)
1171                 return ret;
1172
1173         intel_engine_reset_breadcrumbs(engine);
1174         intel_engine_init_hangcheck(engine);
1175
1176         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1177         I915_WRITE(RING_MODE_GEN7(engine),
1178                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1179                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1180         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1181                    engine->status_page.ggtt_offset);
1182         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1183
1184         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1185
1186         /* After a GPU reset, we may have requests to replay */
1187         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1188         if (!execlists_elsp_idle(engine)) {
1189                 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1190                                  engine->name,
1191                                  port_seqno(&engine->execlist_port[0]),
1192                                  port_seqno(&engine->execlist_port[1]));
1193                 engine->execlist_port[0].count = 0;
1194                 engine->execlist_port[1].count = 0;
1195                 execlists_submit_ports(engine);
1196         }
1197
1198         return 0;
1199 }
1200
1201 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1202 {
1203         struct drm_i915_private *dev_priv = engine->i915;
1204         int ret;
1205
1206         ret = gen8_init_common_ring(engine);
1207         if (ret)
1208                 return ret;
1209
1210         /* We need to disable the AsyncFlip performance optimisations in order
1211          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212          * programmed to '1' on all products.
1213          *
1214          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1215          */
1216         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1217
1218         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1219
1220         return init_workarounds_ring(engine);
1221 }
1222
1223 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1224 {
1225         int ret;
1226
1227         ret = gen8_init_common_ring(engine);
1228         if (ret)
1229                 return ret;
1230
1231         return init_workarounds_ring(engine);
1232 }
1233
1234 static void reset_common_ring(struct intel_engine_cs *engine,
1235                               struct drm_i915_gem_request *request)
1236 {
1237         struct execlist_port *port = engine->execlist_port;
1238         struct intel_context *ce;
1239
1240         /* If the request was innocent, we leave the request in the ELSP
1241          * and will try to replay it on restarting. The context image may
1242          * have been corrupted by the reset, in which case we may have
1243          * to service a new GPU hang, but more likely we can continue on
1244          * without impact.
1245          *
1246          * If the request was guilty, we presume the context is corrupt
1247          * and have to at least restore the RING register in the context
1248          * image back to the expected values to skip over the guilty request.
1249          */
1250         if (!request || request->fence.error != -EIO)
1251                 return;
1252
1253         /* We want a simple context + ring to execute the breadcrumb update.
1254          * We cannot rely on the context being intact across the GPU hang,
1255          * so clear it and rebuild just what we need for the breadcrumb.
1256          * All pending requests for this context will be zapped, and any
1257          * future request will be after userspace has had the opportunity
1258          * to recreate its own state.
1259          */
1260         ce = &request->ctx->engine[engine->id];
1261         execlists_init_reg_state(ce->lrc_reg_state,
1262                                  request->ctx, engine, ce->ring);
1263
1264         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1265         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1266                 i915_ggtt_offset(ce->ring->vma);
1267         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1268
1269         request->ring->head = request->postfix;
1270         request->ring->last_retired_head = -1;
1271         intel_ring_update_space(request->ring);
1272
1273         if (i915.enable_guc_submission)
1274                 return;
1275
1276         /* Catch up with any missed context-switch interrupts */
1277         if (request->ctx != port[0].request->ctx) {
1278                 i915_gem_request_put(port[0].request);
1279                 port[0] = port[1];
1280                 memset(&port[1], 0, sizeof(port[1]));
1281         }
1282
1283         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1284
1285         /* Reset WaIdleLiteRestore:bdw,skl as well */
1286         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1287         GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1288 }
1289
1290 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1291 {
1292         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1293         struct intel_engine_cs *engine = req->engine;
1294         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1295         u32 *cs;
1296         int i;
1297
1298         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1299         if (IS_ERR(cs))
1300                 return PTR_ERR(cs);
1301
1302         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1303         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1304                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1305
1306                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1307                 *cs++ = upper_32_bits(pd_daddr);
1308                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1309                 *cs++ = lower_32_bits(pd_daddr);
1310         }
1311
1312         *cs++ = MI_NOOP;
1313         intel_ring_advance(req, cs);
1314
1315         return 0;
1316 }
1317
1318 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1319                               u64 offset, u32 len,
1320                               unsigned int dispatch_flags)
1321 {
1322         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1323         u32 *cs;
1324         int ret;
1325
1326         /* Don't rely in hw updating PDPs, specially in lite-restore.
1327          * Ideally, we should set Force PD Restore in ctx descriptor,
1328          * but we can't. Force Restore would be a second option, but
1329          * it is unsafe in case of lite-restore (because the ctx is
1330          * not idle). PML4 is allocated during ppgtt init so this is
1331          * not needed in 48-bit.*/
1332         if (req->ctx->ppgtt &&
1333             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1334                 if (!i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1335                     !intel_vgpu_active(req->i915)) {
1336                         ret = intel_logical_ring_emit_pdps(req);
1337                         if (ret)
1338                                 return ret;
1339                 }
1340
1341                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1342         }
1343
1344         cs = intel_ring_begin(req, 4);
1345         if (IS_ERR(cs))
1346                 return PTR_ERR(cs);
1347
1348         /* FIXME(BDW): Address space and security selectors. */
1349         *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1350                 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1351         *cs++ = lower_32_bits(offset);
1352         *cs++ = upper_32_bits(offset);
1353         *cs++ = MI_NOOP;
1354         intel_ring_advance(req, cs);
1355
1356         return 0;
1357 }
1358
1359 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1360 {
1361         struct drm_i915_private *dev_priv = engine->i915;
1362         I915_WRITE_IMR(engine,
1363                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1364         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1365 }
1366
1367 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1368 {
1369         struct drm_i915_private *dev_priv = engine->i915;
1370         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1371 }
1372
1373 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1374 {
1375         u32 cmd, *cs;
1376
1377         cs = intel_ring_begin(request, 4);
1378         if (IS_ERR(cs))
1379                 return PTR_ERR(cs);
1380
1381         cmd = MI_FLUSH_DW + 1;
1382
1383         /* We always require a command barrier so that subsequent
1384          * commands, such as breadcrumb interrupts, are strictly ordered
1385          * wrt the contents of the write cache being flushed to memory
1386          * (and thus being coherent from the CPU).
1387          */
1388         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1389
1390         if (mode & EMIT_INVALIDATE) {
1391                 cmd |= MI_INVALIDATE_TLB;
1392                 if (request->engine->id == VCS)
1393                         cmd |= MI_INVALIDATE_BSD;
1394         }
1395
1396         *cs++ = cmd;
1397         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1398         *cs++ = 0; /* upper addr */
1399         *cs++ = 0; /* value */
1400         intel_ring_advance(request, cs);
1401
1402         return 0;
1403 }
1404
1405 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1406                                   u32 mode)
1407 {
1408         struct intel_engine_cs *engine = request->engine;
1409         u32 scratch_addr =
1410                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1411         bool vf_flush_wa = false, dc_flush_wa = false;
1412         u32 *cs, flags = 0;
1413         int len;
1414
1415         flags |= PIPE_CONTROL_CS_STALL;
1416
1417         if (mode & EMIT_FLUSH) {
1418                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1419                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1420                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1421                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1422         }
1423
1424         if (mode & EMIT_INVALIDATE) {
1425                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1426                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1427                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1428                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1429                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1430                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1431                 flags |= PIPE_CONTROL_QW_WRITE;
1432                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1433
1434                 /*
1435                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1436                  * pipe control.
1437                  */
1438                 if (IS_GEN9(request->i915))
1439                         vf_flush_wa = true;
1440
1441                 /* WaForGAMHang:kbl */
1442                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1443                         dc_flush_wa = true;
1444         }
1445
1446         len = 6;
1447
1448         if (vf_flush_wa)
1449                 len += 6;
1450
1451         if (dc_flush_wa)
1452                 len += 12;
1453
1454         cs = intel_ring_begin(request, len);
1455         if (IS_ERR(cs))
1456                 return PTR_ERR(cs);
1457
1458         if (vf_flush_wa)
1459                 cs = gen8_emit_pipe_control(cs, 0, 0);
1460
1461         if (dc_flush_wa)
1462                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1463                                             0);
1464
1465         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1466
1467         if (dc_flush_wa)
1468                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1469
1470         intel_ring_advance(request, cs);
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * Reserve space for 2 NOOPs at the end of each request to be
1477  * used as a workaround for not being allowed to do lite
1478  * restore with HEAD==TAIL (WaIdleLiteRestore).
1479  */
1480 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1481 {
1482         *cs++ = MI_NOOP;
1483         *cs++ = MI_NOOP;
1484         request->wa_tail = intel_ring_offset(request, cs);
1485 }
1486
1487 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1488 {
1489         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1490         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1491
1492         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1493         *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1494         *cs++ = 0;
1495         *cs++ = request->global_seqno;
1496         *cs++ = MI_USER_INTERRUPT;
1497         *cs++ = MI_NOOP;
1498         request->tail = intel_ring_offset(request, cs);
1499         GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1500
1501         gen8_emit_wa_tail(request, cs);
1502 }
1503
1504 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1505
1506 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1507                                         u32 *cs)
1508 {
1509         /* We're using qword write, seqno should be aligned to 8 bytes. */
1510         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1511
1512         /* w/a for post sync ops following a GPGPU operation we
1513          * need a prior CS_STALL, which is emitted by the flush
1514          * following the batch.
1515          */
1516         *cs++ = GFX_OP_PIPE_CONTROL(6);
1517         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1518                 PIPE_CONTROL_QW_WRITE;
1519         *cs++ = intel_hws_seqno_address(request->engine);
1520         *cs++ = 0;
1521         *cs++ = request->global_seqno;
1522         /* We're thrashing one dword of HWS. */
1523         *cs++ = 0;
1524         *cs++ = MI_USER_INTERRUPT;
1525         *cs++ = MI_NOOP;
1526         request->tail = intel_ring_offset(request, cs);
1527         GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1528
1529         gen8_emit_wa_tail(request, cs);
1530 }
1531
1532 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1533
1534 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1535 {
1536         int ret;
1537
1538         ret = intel_ring_workarounds_emit(req);
1539         if (ret)
1540                 return ret;
1541
1542         ret = intel_rcs_context_init_mocs(req);
1543         /*
1544          * Failing to program the MOCS is non-fatal.The system will not
1545          * run at peak performance. So generate an error and carry on.
1546          */
1547         if (ret)
1548                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1549
1550         return i915_gem_render_state_emit(req);
1551 }
1552
1553 /**
1554  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1555  * @engine: Engine Command Streamer.
1556  */
1557 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1558 {
1559         struct drm_i915_private *dev_priv;
1560
1561         /*
1562          * Tasklet cannot be active at this point due intel_mark_active/idle
1563          * so this is just for documentation.
1564          */
1565         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1566                 tasklet_kill(&engine->irq_tasklet);
1567
1568         dev_priv = engine->i915;
1569
1570         if (engine->buffer) {
1571                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1572         }
1573
1574         if (engine->cleanup)
1575                 engine->cleanup(engine);
1576
1577         if (engine->status_page.vma) {
1578                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1579                 engine->status_page.vma = NULL;
1580         }
1581
1582         intel_engine_cleanup_common(engine);
1583
1584         lrc_destroy_wa_ctx(engine);
1585         engine->i915 = NULL;
1586         dev_priv->engine[engine->id] = NULL;
1587         kfree(engine);
1588 }
1589
1590 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1591 {
1592         struct intel_engine_cs *engine;
1593         enum intel_engine_id id;
1594
1595         for_each_engine(engine, dev_priv, id) {
1596                 engine->submit_request = execlists_submit_request;
1597                 engine->schedule = execlists_schedule;
1598         }
1599 }
1600
1601 static void
1602 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1603 {
1604         /* Default vfuncs which can be overriden by each engine. */
1605         engine->init_hw = gen8_init_common_ring;
1606         engine->reset_hw = reset_common_ring;
1607
1608         engine->context_pin = execlists_context_pin;
1609         engine->context_unpin = execlists_context_unpin;
1610
1611         engine->request_alloc = execlists_request_alloc;
1612
1613         engine->emit_flush = gen8_emit_flush;
1614         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1615         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1616         engine->submit_request = execlists_submit_request;
1617         engine->schedule = execlists_schedule;
1618
1619         engine->irq_enable = gen8_logical_ring_enable_irq;
1620         engine->irq_disable = gen8_logical_ring_disable_irq;
1621         engine->emit_bb_start = gen8_emit_bb_start;
1622 }
1623
1624 static inline void
1625 logical_ring_default_irqs(struct intel_engine_cs *engine)
1626 {
1627         unsigned shift = engine->irq_shift;
1628         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1629         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1630 }
1631
1632 static int
1633 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1634 {
1635         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1636         void *hws;
1637
1638         /* The HWSP is part of the default context object in LRC mode. */
1639         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1640         if (IS_ERR(hws))
1641                 return PTR_ERR(hws);
1642
1643         engine->status_page.page_addr = hws + hws_offset;
1644         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1645         engine->status_page.vma = vma;
1646
1647         return 0;
1648 }
1649
1650 static void
1651 logical_ring_setup(struct intel_engine_cs *engine)
1652 {
1653         struct drm_i915_private *dev_priv = engine->i915;
1654         enum forcewake_domains fw_domains;
1655
1656         intel_engine_setup_common(engine);
1657
1658         /* Intentionally left blank. */
1659         engine->buffer = NULL;
1660
1661         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1662                                                     RING_ELSP(engine),
1663                                                     FW_REG_WRITE);
1664
1665         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1666                                                      RING_CONTEXT_STATUS_PTR(engine),
1667                                                      FW_REG_READ | FW_REG_WRITE);
1668
1669         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1670                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1671                                                      FW_REG_READ);
1672
1673         engine->fw_domains = fw_domains;
1674
1675         tasklet_init(&engine->irq_tasklet,
1676                      intel_lrc_irq_handler, (unsigned long)engine);
1677
1678         logical_ring_default_vfuncs(engine);
1679         logical_ring_default_irqs(engine);
1680 }
1681
1682 static int
1683 logical_ring_init(struct intel_engine_cs *engine)
1684 {
1685         struct i915_gem_context *dctx = engine->i915->kernel_context;
1686         int ret;
1687
1688         ret = intel_engine_init_common(engine);
1689         if (ret)
1690                 goto error;
1691
1692         /* And setup the hardware status page. */
1693         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1694         if (ret) {
1695                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1696                 goto error;
1697         }
1698
1699         return 0;
1700
1701 error:
1702         intel_logical_ring_cleanup(engine);
1703         return ret;
1704 }
1705
1706 int logical_render_ring_init(struct intel_engine_cs *engine)
1707 {
1708         struct drm_i915_private *dev_priv = engine->i915;
1709         int ret;
1710
1711         logical_ring_setup(engine);
1712
1713         if (HAS_L3_DPF(dev_priv))
1714                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1715
1716         /* Override some for render ring. */
1717         if (INTEL_GEN(dev_priv) >= 9)
1718                 engine->init_hw = gen9_init_render_ring;
1719         else
1720                 engine->init_hw = gen8_init_render_ring;
1721         engine->init_context = gen8_init_rcs_context;
1722         engine->emit_flush = gen8_emit_flush_render;
1723         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1724         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1725
1726         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1727         if (ret)
1728                 return ret;
1729
1730         ret = intel_init_workaround_bb(engine);
1731         if (ret) {
1732                 /*
1733                  * We continue even if we fail to initialize WA batch
1734                  * because we only expect rare glitches but nothing
1735                  * critical to prevent us from using GPU
1736                  */
1737                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1738                           ret);
1739         }
1740
1741         return logical_ring_init(engine);
1742 }
1743
1744 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1745 {
1746         logical_ring_setup(engine);
1747
1748         return logical_ring_init(engine);
1749 }
1750
1751 static u32
1752 make_rpcs(struct drm_i915_private *dev_priv)
1753 {
1754         u32 rpcs = 0;
1755
1756         /*
1757          * No explicit RPCS request is needed to ensure full
1758          * slice/subslice/EU enablement prior to Gen9.
1759         */
1760         if (INTEL_GEN(dev_priv) < 9)
1761                 return 0;
1762
1763         /*
1764          * Starting in Gen9, render power gating can leave
1765          * slice/subslice/EU in a partially enabled state. We
1766          * must make an explicit request through RPCS for full
1767          * enablement.
1768         */
1769         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1770                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1771                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1772                         GEN8_RPCS_S_CNT_SHIFT;
1773                 rpcs |= GEN8_RPCS_ENABLE;
1774         }
1775
1776         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1777                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1778                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1779                         GEN8_RPCS_SS_CNT_SHIFT;
1780                 rpcs |= GEN8_RPCS_ENABLE;
1781         }
1782
1783         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1784                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1785                         GEN8_RPCS_EU_MIN_SHIFT;
1786                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1787                         GEN8_RPCS_EU_MAX_SHIFT;
1788                 rpcs |= GEN8_RPCS_ENABLE;
1789         }
1790
1791         return rpcs;
1792 }
1793
1794 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1795 {
1796         u32 indirect_ctx_offset;
1797
1798         switch (INTEL_GEN(engine->i915)) {
1799         default:
1800                 MISSING_CASE(INTEL_GEN(engine->i915));
1801                 /* fall through */
1802         case 9:
1803                 indirect_ctx_offset =
1804                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1805                 break;
1806         case 8:
1807                 indirect_ctx_offset =
1808                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1809                 break;
1810         }
1811
1812         return indirect_ctx_offset;
1813 }
1814
1815 static void execlists_init_reg_state(u32 *reg_state,
1816                                      struct i915_gem_context *ctx,
1817                                      struct intel_engine_cs *engine,
1818                                      struct intel_ring *ring)
1819 {
1820         struct drm_i915_private *dev_priv = engine->i915;
1821         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1822
1823         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1824          * commands followed by (reg, value) pairs. The values we are setting here are
1825          * only for the first context restore: on a subsequent save, the GPU will
1826          * recreate this batchbuffer with new values (including all the missing
1827          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1828         reg_state[CTX_LRI_HEADER_0] =
1829                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1830         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1831                        RING_CONTEXT_CONTROL(engine),
1832                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1833                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1834                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
1835                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
1836         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1837                        0);
1838         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1839                        0);
1840         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1841                        RING_START(engine->mmio_base), 0);
1842         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1843                        RING_CTL(engine->mmio_base),
1844                        RING_CTL_SIZE(ring->size) | RING_VALID);
1845         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1846                        RING_BBADDR_UDW(engine->mmio_base), 0);
1847         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1848                        RING_BBADDR(engine->mmio_base), 0);
1849         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1850                        RING_BBSTATE(engine->mmio_base),
1851                        RING_BB_PPGTT);
1852         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1853                        RING_SBBADDR_UDW(engine->mmio_base), 0);
1854         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1855                        RING_SBBADDR(engine->mmio_base), 0);
1856         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1857                        RING_SBBSTATE(engine->mmio_base), 0);
1858         if (engine->id == RCS) {
1859                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1860                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1861                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1862                                RING_INDIRECT_CTX(engine->mmio_base), 0);
1863                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1864                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1865                 if (engine->wa_ctx.vma) {
1866                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1867                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1868
1869                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
1870                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1871                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1872
1873                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1874                                 intel_lr_indirect_ctx_offset(engine) << 6;
1875
1876                         reg_state[CTX_BB_PER_CTX_PTR+1] =
1877                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1878                 }
1879         }
1880         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1881         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1882                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1883         /* PDP values well be assigned later if needed */
1884         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1885                        0);
1886         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1887                        0);
1888         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1889                        0);
1890         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1891                        0);
1892         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1893                        0);
1894         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1895                        0);
1896         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1897                        0);
1898         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
1899                        0);
1900
1901         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1902                 /* 64b PPGTT (48bit canonical)
1903                  * PDP0_DESCRIPTOR contains the base address to PML4 and
1904                  * other PDP Descriptors are ignored.
1905                  */
1906                 ASSIGN_CTX_PML4(ppgtt, reg_state);
1907         }
1908
1909         if (engine->id == RCS) {
1910                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1911                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1912                                make_rpcs(dev_priv));
1913         }
1914 }
1915
1916 static int
1917 populate_lr_context(struct i915_gem_context *ctx,
1918                     struct drm_i915_gem_object *ctx_obj,
1919                     struct intel_engine_cs *engine,
1920                     struct intel_ring *ring)
1921 {
1922         void *vaddr;
1923         int ret;
1924
1925         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1926         if (ret) {
1927                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1928                 return ret;
1929         }
1930
1931         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1932         if (IS_ERR(vaddr)) {
1933                 ret = PTR_ERR(vaddr);
1934                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1935                 return ret;
1936         }
1937         ctx_obj->mm.dirty = true;
1938
1939         /* The second page of the context object contains some fields which must
1940          * be set up prior to the first execution. */
1941
1942         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1943                                  ctx, engine, ring);
1944
1945         i915_gem_object_unpin_map(ctx_obj);
1946
1947         return 0;
1948 }
1949
1950 /**
1951  * intel_lr_context_size() - return the size of the context for an engine
1952  * @engine: which engine to find the context size for
1953  *
1954  * Each engine may require a different amount of space for a context image,
1955  * so when allocating (or copying) an image, this function can be used to
1956  * find the right size for the specific engine.
1957  *
1958  * Return: size (in bytes) of an engine-specific context image
1959  *
1960  * Note: this size includes the HWSP, which is part of the context image
1961  * in LRC mode, but does not include the "shared data page" used with
1962  * GuC submission. The caller should account for this if using the GuC.
1963  */
1964 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1965 {
1966         int ret = 0;
1967
1968         WARN_ON(INTEL_GEN(engine->i915) < 8);
1969
1970         switch (engine->id) {
1971         case RCS:
1972                 if (INTEL_GEN(engine->i915) >= 9)
1973                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1974                 else
1975                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1976                 break;
1977         case VCS:
1978         case BCS:
1979         case VECS:
1980         case VCS2:
1981                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1982                 break;
1983         }
1984
1985         return ret;
1986 }
1987
1988 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1989                                             struct intel_engine_cs *engine)
1990 {
1991         struct drm_i915_gem_object *ctx_obj;
1992         struct intel_context *ce = &ctx->engine[engine->id];
1993         struct i915_vma *vma;
1994         uint32_t context_size;
1995         struct intel_ring *ring;
1996         int ret;
1997
1998         WARN_ON(ce->state);
1999
2000         context_size = round_up(intel_lr_context_size(engine),
2001                                 I915_GTT_PAGE_SIZE);
2002
2003         /* One extra page as the sharing data between driver and GuC */
2004         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2005
2006         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2007         if (IS_ERR(ctx_obj)) {
2008                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2009                 return PTR_ERR(ctx_obj);
2010         }
2011
2012         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2013         if (IS_ERR(vma)) {
2014                 ret = PTR_ERR(vma);
2015                 goto error_deref_obj;
2016         }
2017
2018         ring = intel_engine_create_ring(engine, ctx->ring_size);
2019         if (IS_ERR(ring)) {
2020                 ret = PTR_ERR(ring);
2021                 goto error_deref_obj;
2022         }
2023
2024         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2025         if (ret) {
2026                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2027                 goto error_ring_free;
2028         }
2029
2030         ce->ring = ring;
2031         ce->state = vma;
2032         ce->initialised = engine->init_context == NULL;
2033
2034         return 0;
2035
2036 error_ring_free:
2037         intel_ring_free(ring);
2038 error_deref_obj:
2039         i915_gem_object_put(ctx_obj);
2040         return ret;
2041 }
2042
2043 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2044 {
2045         struct intel_engine_cs *engine;
2046         struct i915_gem_context *ctx;
2047         enum intel_engine_id id;
2048
2049         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2050          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2051          * that stored in context. As we only write new commands from
2052          * ce->ring->tail onwards, everything before that is junk. If the GPU
2053          * starts reading from its RING_HEAD from the context, it may try to
2054          * execute that junk and die.
2055          *
2056          * So to avoid that we reset the context images upon resume. For
2057          * simplicity, we just zero everything out.
2058          */
2059         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2060                 for_each_engine(engine, dev_priv, id) {
2061                         struct intel_context *ce = &ctx->engine[engine->id];
2062                         u32 *reg;
2063
2064                         if (!ce->state)
2065                                 continue;
2066
2067                         reg = i915_gem_object_pin_map(ce->state->obj,
2068                                                       I915_MAP_WB);
2069                         if (WARN_ON(IS_ERR(reg)))
2070                                 continue;
2071
2072                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2073                         reg[CTX_RING_HEAD+1] = 0;
2074                         reg[CTX_RING_TAIL+1] = 0;
2075
2076                         ce->state->obj->mm.dirty = true;
2077                         i915_gem_object_unpin_map(ce->state->obj);
2078
2079                         ce->ring->head = ce->ring->tail = 0;
2080                         ce->ring->last_retired_head = -1;
2081                         intel_ring_update_space(ce->ring);
2082                 }
2083         }
2084 }