Merge tag 'exynos-drm-fixes-for-v4.17-rc2' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / intel_guc_submission.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/circ_buf.h>
26 #include <trace/events/dma_fence.h>
27
28 #include "intel_guc_submission.h"
29 #include "intel_lrc_reg.h"
30 #include "i915_drv.h"
31
32 #define GUC_PREEMPT_FINISHED            0x1
33 #define GUC_PREEMPT_BREADCRUMB_DWORDS   0x8
34 #define GUC_PREEMPT_BREADCRUMB_BYTES    \
35         (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
36
37 /**
38  * DOC: GuC-based command submission
39  *
40  * GuC client:
41  * A intel_guc_client refers to a submission path through GuC. Currently, there
42  * are two clients. One of them (the execbuf_client) is charged with all
43  * submissions to the GuC, the other one (preempt_client) is responsible for
44  * preempting the execbuf_client. This struct is the owner of a doorbell, a
45  * process descriptor and a workqueue (all of them inside a single gem object
46  * that contains all required pages for these elements).
47  *
48  * GuC stage descriptor:
49  * During initialization, the driver allocates a static pool of 1024 such
50  * descriptors, and shares them with the GuC.
51  * Currently, there exists a 1:1 mapping between a intel_guc_client and a
52  * guc_stage_desc (via the client's stage_id), so effectively only one
53  * gets used. This stage descriptor lets the GuC know about the doorbell,
54  * workqueue and process descriptor. Theoretically, it also lets the GuC
55  * know about our HW contexts (context ID, etc...), but we actually
56  * employ a kind of submission where the GuC uses the LRCA sent via the work
57  * item instead (the single guc_stage_desc associated to execbuf client
58  * contains information about the default kernel context only, but this is
59  * essentially unused). This is called a "proxy" submission.
60  *
61  * The Scratch registers:
62  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
63  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
64  * triggers an interrupt on the GuC via another register write (0xC4C8).
65  * Firmware writes a success/fail code back to the action register after
66  * processes the request. The kernel driver polls waiting for this update and
67  * then proceeds.
68  * See intel_guc_send()
69  *
70  * Doorbells:
71  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
72  * mapped into process space.
73  *
74  * Work Items:
75  * There are several types of work items that the host may place into a
76  * workqueue, each with its own requirements and limitations. Currently only
77  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
78  * represents in-order queue. The kernel driver packs ring tail pointer and an
79  * ELSP context descriptor dword into Work Item.
80  * See guc_add_request()
81  *
82  */
83
84 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
85 {
86         return rb_entry(rb, struct i915_priolist, node);
87 }
88
89 static inline bool is_high_priority(struct intel_guc_client *client)
90 {
91         return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
92                 client->priority == GUC_CLIENT_PRIORITY_HIGH);
93 }
94
95 static int reserve_doorbell(struct intel_guc_client *client)
96 {
97         unsigned long offset;
98         unsigned long end;
99         u16 id;
100
101         GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
102
103         /*
104          * The bitmap tracks which doorbell registers are currently in use.
105          * It is split into two halves; the first half is used for normal
106          * priority contexts, the second half for high-priority ones.
107          */
108         offset = 0;
109         end = GUC_NUM_DOORBELLS / 2;
110         if (is_high_priority(client)) {
111                 offset = end;
112                 end += offset;
113         }
114
115         id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
116         if (id == end)
117                 return -ENOSPC;
118
119         __set_bit(id, client->guc->doorbell_bitmap);
120         client->doorbell_id = id;
121         DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
122                          client->stage_id, yesno(is_high_priority(client)),
123                          id);
124         return 0;
125 }
126
127 static void unreserve_doorbell(struct intel_guc_client *client)
128 {
129         GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
130
131         __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
132         client->doorbell_id = GUC_DOORBELL_INVALID;
133 }
134
135 /*
136  * Tell the GuC to allocate or deallocate a specific doorbell
137  */
138
139 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
140 {
141         u32 action[] = {
142                 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
143                 stage_id
144         };
145
146         return intel_guc_send(guc, action, ARRAY_SIZE(action));
147 }
148
149 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
150 {
151         u32 action[] = {
152                 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
153                 stage_id
154         };
155
156         return intel_guc_send(guc, action, ARRAY_SIZE(action));
157 }
158
159 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
160 {
161         struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
162
163         return &base[client->stage_id];
164 }
165
166 /*
167  * Initialise, update, or clear doorbell data shared with the GuC
168  *
169  * These functions modify shared data and so need access to the mapped
170  * client object which contains the page being used for the doorbell
171  */
172
173 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
174 {
175         struct guc_stage_desc *desc;
176
177         /* Update the GuC's idea of the doorbell ID */
178         desc = __get_stage_desc(client);
179         desc->db_id = new_id;
180 }
181
182 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
183 {
184         return client->vaddr + client->doorbell_offset;
185 }
186
187 static bool has_doorbell(struct intel_guc_client *client)
188 {
189         if (client->doorbell_id == GUC_DOORBELL_INVALID)
190                 return false;
191
192         return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
193 }
194
195 static void __create_doorbell(struct intel_guc_client *client)
196 {
197         struct guc_doorbell_info *doorbell;
198
199         doorbell = __get_doorbell(client);
200         doorbell->db_status = GUC_DOORBELL_ENABLED;
201         doorbell->cookie = 0;
202 }
203
204 static void __destroy_doorbell(struct intel_guc_client *client)
205 {
206         struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
207         struct guc_doorbell_info *doorbell;
208         u16 db_id = client->doorbell_id;
209
210
211         doorbell = __get_doorbell(client);
212         doorbell->db_status = GUC_DOORBELL_DISABLED;
213         doorbell->cookie = 0;
214
215         /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
216          * to go to zero after updating db_status before we call the GuC to
217          * release the doorbell
218          */
219         if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
220                 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
221 }
222
223 static int create_doorbell(struct intel_guc_client *client)
224 {
225         int ret;
226
227         __update_doorbell_desc(client, client->doorbell_id);
228         __create_doorbell(client);
229
230         ret = __guc_allocate_doorbell(client->guc, client->stage_id);
231         if (ret) {
232                 __destroy_doorbell(client);
233                 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
234                 DRM_ERROR("Couldn't create client %u doorbell: %d\n",
235                           client->stage_id, ret);
236                 return ret;
237         }
238
239         return 0;
240 }
241
242 static int destroy_doorbell(struct intel_guc_client *client)
243 {
244         int ret;
245
246         GEM_BUG_ON(!has_doorbell(client));
247
248         __destroy_doorbell(client);
249         ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
250         if (ret)
251                 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
252                           client->stage_id, ret);
253
254         __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
255
256         return ret;
257 }
258
259 static unsigned long __select_cacheline(struct intel_guc *guc)
260 {
261         unsigned long offset;
262
263         /* Doorbell uses a single cache line within a page */
264         offset = offset_in_page(guc->db_cacheline);
265
266         /* Moving to next cache line to reduce contention */
267         guc->db_cacheline += cache_line_size();
268
269         DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
270                          offset, guc->db_cacheline, cache_line_size());
271         return offset;
272 }
273
274 static inline struct guc_process_desc *
275 __get_process_desc(struct intel_guc_client *client)
276 {
277         return client->vaddr + client->proc_desc_offset;
278 }
279
280 /*
281  * Initialise the process descriptor shared with the GuC firmware.
282  */
283 static void guc_proc_desc_init(struct intel_guc *guc,
284                                struct intel_guc_client *client)
285 {
286         struct guc_process_desc *desc;
287
288         desc = memset(__get_process_desc(client), 0, sizeof(*desc));
289
290         /*
291          * XXX: pDoorbell and WQVBaseAddress are pointers in process address
292          * space for ring3 clients (set them as in mmap_ioctl) or kernel
293          * space for kernel clients (map on demand instead? May make debug
294          * easier to have it mapped).
295          */
296         desc->wq_base_addr = 0;
297         desc->db_base_addr = 0;
298
299         desc->stage_id = client->stage_id;
300         desc->wq_size_bytes = GUC_WQ_SIZE;
301         desc->wq_status = WQ_STATUS_ACTIVE;
302         desc->priority = client->priority;
303 }
304
305 static int guc_stage_desc_pool_create(struct intel_guc *guc)
306 {
307         struct i915_vma *vma;
308         void *vaddr;
309
310         vma = intel_guc_allocate_vma(guc,
311                                      PAGE_ALIGN(sizeof(struct guc_stage_desc) *
312                                      GUC_MAX_STAGE_DESCRIPTORS));
313         if (IS_ERR(vma))
314                 return PTR_ERR(vma);
315
316         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
317         if (IS_ERR(vaddr)) {
318                 i915_vma_unpin_and_release(&vma);
319                 return PTR_ERR(vaddr);
320         }
321
322         guc->stage_desc_pool = vma;
323         guc->stage_desc_pool_vaddr = vaddr;
324         ida_init(&guc->stage_ids);
325
326         return 0;
327 }
328
329 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
330 {
331         ida_destroy(&guc->stage_ids);
332         i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
333         i915_vma_unpin_and_release(&guc->stage_desc_pool);
334 }
335
336 /*
337  * Initialise/clear the stage descriptor shared with the GuC firmware.
338  *
339  * This descriptor tells the GuC where (in GGTT space) to find the important
340  * data structures relating to this client (doorbell, process descriptor,
341  * write queue, etc).
342  */
343 static void guc_stage_desc_init(struct intel_guc *guc,
344                                 struct intel_guc_client *client)
345 {
346         struct drm_i915_private *dev_priv = guc_to_i915(guc);
347         struct intel_engine_cs *engine;
348         struct i915_gem_context *ctx = client->owner;
349         struct guc_stage_desc *desc;
350         unsigned int tmp;
351         u32 gfx_addr;
352
353         desc = __get_stage_desc(client);
354         memset(desc, 0, sizeof(*desc));
355
356         desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
357                           GUC_STAGE_DESC_ATTR_KERNEL;
358         if (is_high_priority(client))
359                 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
360         desc->stage_id = client->stage_id;
361         desc->priority = client->priority;
362         desc->db_id = client->doorbell_id;
363
364         for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
365                 struct intel_context *ce = &ctx->engine[engine->id];
366                 u32 guc_engine_id = engine->guc_id;
367                 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
368
369                 /* TODO: We have a design issue to be solved here. Only when we
370                  * receive the first batch, we know which engine is used by the
371                  * user. But here GuC expects the lrc and ring to be pinned. It
372                  * is not an issue for default context, which is the only one
373                  * for now who owns a GuC client. But for future owner of GuC
374                  * client, need to make sure lrc is pinned prior to enter here.
375                  */
376                 if (!ce->state)
377                         break;  /* XXX: continue? */
378
379                 /*
380                  * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
381                  * submission or, in other words, not using a direct submission
382                  * model) the KMD's LRCA is not used for any work submission.
383                  * Instead, the GuC uses the LRCA of the user mode context (see
384                  * guc_add_request below).
385                  */
386                 lrc->context_desc = lower_32_bits(ce->lrc_desc);
387
388                 /* The state page is after PPHWSP */
389                 lrc->ring_lrca =
390                         guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
391
392                 /* XXX: In direct submission, the GuC wants the HW context id
393                  * here. In proxy submission, it wants the stage id
394                  */
395                 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
396                                 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
397
398                 lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
399                 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
400                 lrc->ring_next_free_location = lrc->ring_begin;
401                 lrc->ring_current_tail_pointer_value = 0;
402
403                 desc->engines_used |= (1 << guc_engine_id);
404         }
405
406         DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
407                          client->engines, desc->engines_used);
408         WARN_ON(desc->engines_used == 0);
409
410         /*
411          * The doorbell, process descriptor, and workqueue are all parts
412          * of the client object, which the GuC will reference via the GGTT
413          */
414         gfx_addr = guc_ggtt_offset(client->vma);
415         desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
416                                 client->doorbell_offset;
417         desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
418         desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
419         desc->process_desc = gfx_addr + client->proc_desc_offset;
420         desc->wq_addr = gfx_addr + GUC_DB_SIZE;
421         desc->wq_size = GUC_WQ_SIZE;
422
423         desc->desc_private = ptr_to_u64(client);
424 }
425
426 static void guc_stage_desc_fini(struct intel_guc *guc,
427                                 struct intel_guc_client *client)
428 {
429         struct guc_stage_desc *desc;
430
431         desc = __get_stage_desc(client);
432         memset(desc, 0, sizeof(*desc));
433 }
434
435 /* Construct a Work Item and append it to the GuC's Work Queue */
436 static void guc_wq_item_append(struct intel_guc_client *client,
437                                u32 target_engine, u32 context_desc,
438                                u32 ring_tail, u32 fence_id)
439 {
440         /* wqi_len is in DWords, and does not include the one-word header */
441         const size_t wqi_size = sizeof(struct guc_wq_item);
442         const u32 wqi_len = wqi_size / sizeof(u32) - 1;
443         struct guc_process_desc *desc = __get_process_desc(client);
444         struct guc_wq_item *wqi;
445         u32 wq_off;
446
447         lockdep_assert_held(&client->wq_lock);
448
449         /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
450          * should not have the case where structure wqi is across page, neither
451          * wrapped to the beginning. This simplifies the implementation below.
452          *
453          * XXX: if not the case, we need save data to a temp wqi and copy it to
454          * workqueue buffer dw by dw.
455          */
456         BUILD_BUG_ON(wqi_size != 16);
457
458         /* Free space is guaranteed. */
459         wq_off = READ_ONCE(desc->tail);
460         GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
461                               GUC_WQ_SIZE) < wqi_size);
462         GEM_BUG_ON(wq_off & (wqi_size - 1));
463
464         /* WQ starts from the page after doorbell / process_desc */
465         wqi = client->vaddr + wq_off + GUC_DB_SIZE;
466
467         /* Now fill in the 4-word work queue item */
468         wqi->header = WQ_TYPE_INORDER |
469                       (wqi_len << WQ_LEN_SHIFT) |
470                       (target_engine << WQ_TARGET_SHIFT) |
471                       WQ_NO_WCFLUSH_WAIT;
472         wqi->context_desc = context_desc;
473         wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
474         GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
475         wqi->fence_id = fence_id;
476
477         /* Make the update visible to GuC */
478         WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
479 }
480
481 static void guc_reset_wq(struct intel_guc_client *client)
482 {
483         struct guc_process_desc *desc = __get_process_desc(client);
484
485         desc->head = 0;
486         desc->tail = 0;
487 }
488
489 static void guc_ring_doorbell(struct intel_guc_client *client)
490 {
491         struct guc_doorbell_info *db;
492         u32 cookie;
493
494         lockdep_assert_held(&client->wq_lock);
495
496         /* pointer of current doorbell cacheline */
497         db = __get_doorbell(client);
498
499         /*
500          * We're not expecting the doorbell cookie to change behind our back,
501          * we also need to treat 0 as a reserved value.
502          */
503         cookie = READ_ONCE(db->cookie);
504         WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
505
506         /* XXX: doorbell was lost and need to acquire it again */
507         GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
508 }
509
510 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
511 {
512         struct intel_guc_client *client = guc->execbuf_client;
513         struct intel_engine_cs *engine = rq->engine;
514         u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(rq->ctx,
515                                                                  engine));
516         u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
517
518         spin_lock(&client->wq_lock);
519
520         guc_wq_item_append(client, engine->guc_id, ctx_desc,
521                            ring_tail, rq->global_seqno);
522         guc_ring_doorbell(client);
523
524         client->submissions[engine->id] += 1;
525
526         spin_unlock(&client->wq_lock);
527 }
528
529 /*
530  * When we're doing submissions using regular execlists backend, writing to
531  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
532  * pinned in mappable aperture portion of GGTT are visible to command streamer.
533  * Writes done by GuC on our behalf are not guaranteeing such ordering,
534  * therefore, to ensure the flush, we're issuing a POSTING READ.
535  */
536 static void flush_ggtt_writes(struct i915_vma *vma)
537 {
538         struct drm_i915_private *dev_priv = to_i915(vma->obj->base.dev);
539
540         if (i915_vma_is_map_and_fenceable(vma))
541                 POSTING_READ_FW(GUC_STATUS);
542 }
543
544 static void inject_preempt_context(struct work_struct *work)
545 {
546         struct guc_preempt_work *preempt_work =
547                 container_of(work, typeof(*preempt_work), work);
548         struct intel_engine_cs *engine = preempt_work->engine;
549         struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
550                                              preempt_work[engine->id]);
551         struct intel_guc_client *client = guc->preempt_client;
552         struct guc_stage_desc *stage_desc = __get_stage_desc(client);
553         u32 ctx_desc = lower_32_bits(intel_lr_context_descriptor(client->owner,
554                                                                  engine));
555         u32 data[7];
556
557         /*
558          * The ring contains commands to write GUC_PREEMPT_FINISHED into HWSP.
559          * See guc_fill_preempt_context().
560          */
561         spin_lock_irq(&client->wq_lock);
562         guc_wq_item_append(client, engine->guc_id, ctx_desc,
563                            GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
564         spin_unlock_irq(&client->wq_lock);
565
566         /*
567          * If GuC firmware performs an engine reset while that engine had
568          * a preemption pending, it will set the terminated attribute bit
569          * on our preemption stage descriptor. GuC firmware retains all
570          * pending work items for a high-priority GuC client, unlike the
571          * normal-priority GuC client where work items are dropped. It
572          * wants to make sure the preempt-to-idle work doesn't run when
573          * scheduling resumes, and uses this bit to inform its scheduler
574          * and presumably us as well. Our job is to clear it for the next
575          * preemption after reset, otherwise that and future preemptions
576          * will never complete. We'll just clear it every time.
577          */
578         stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
579
580         data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
581         data[1] = client->stage_id;
582         data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
583                   INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
584         data[3] = engine->guc_id;
585         data[4] = guc->execbuf_client->priority;
586         data[5] = guc->execbuf_client->stage_id;
587         data[6] = guc_ggtt_offset(guc->shared_data);
588
589         if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
590                 execlists_clear_active(&engine->execlists,
591                                        EXECLISTS_ACTIVE_PREEMPT);
592                 tasklet_schedule(&engine->execlists.tasklet);
593         }
594 }
595
596 /*
597  * We're using user interrupt and HWSP value to mark that preemption has
598  * finished and GPU is idle. Normally, we could unwind and continue similar to
599  * execlists submission path. Unfortunately, with GuC we also need to wait for
600  * it to finish its own postprocessing, before attempting to submit. Otherwise
601  * GuC may silently ignore our submissions, and thus we risk losing request at
602  * best, executing out-of-order and causing kernel panic at worst.
603  */
604 #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
605 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
606 {
607         struct intel_guc *guc = &engine->i915->guc;
608         struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
609         struct guc_ctx_report *report =
610                 &data->preempt_ctx_report[engine->guc_id];
611
612         WARN_ON(wait_for_atomic(report->report_return_status ==
613                                 INTEL_GUC_REPORT_STATUS_COMPLETE,
614                                 GUC_PREEMPT_POSTPROCESS_DELAY_MS));
615         /*
616          * GuC is expecting that we're also going to clear the affected context
617          * counter, let's also reset the return status to not depend on GuC
618          * resetting it after recieving another preempt action
619          */
620         report->affected_count = 0;
621         report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
622 }
623
624 /**
625  * guc_submit() - Submit commands through GuC
626  * @engine: engine associated with the commands
627  *
628  * The only error here arises if the doorbell hardware isn't functioning
629  * as expected, which really shouln't happen.
630  */
631 static void guc_submit(struct intel_engine_cs *engine)
632 {
633         struct intel_guc *guc = &engine->i915->guc;
634         struct intel_engine_execlists * const execlists = &engine->execlists;
635         struct execlist_port *port = execlists->port;
636         unsigned int n;
637
638         for (n = 0; n < execlists_num_ports(execlists); n++) {
639                 struct i915_request *rq;
640                 unsigned int count;
641
642                 rq = port_unpack(&port[n], &count);
643                 if (rq && count == 0) {
644                         port_set(&port[n], port_pack(rq, ++count));
645
646                         flush_ggtt_writes(rq->ring->vma);
647
648                         guc_add_request(guc, rq);
649                 }
650         }
651 }
652
653 static void port_assign(struct execlist_port *port, struct i915_request *rq)
654 {
655         GEM_BUG_ON(port_isset(port));
656
657         port_set(port, i915_request_get(rq));
658 }
659
660 static void guc_dequeue(struct intel_engine_cs *engine)
661 {
662         struct intel_engine_execlists * const execlists = &engine->execlists;
663         struct execlist_port *port = execlists->port;
664         struct i915_request *last = NULL;
665         const struct execlist_port * const last_port =
666                 &execlists->port[execlists->port_mask];
667         bool submit = false;
668         struct rb_node *rb;
669
670         spin_lock_irq(&engine->timeline->lock);
671         rb = execlists->first;
672         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
673
674         if (port_isset(port)) {
675                 if (engine->i915->preempt_context) {
676                         struct guc_preempt_work *preempt_work =
677                                 &engine->i915->guc.preempt_work[engine->id];
678
679                         if (execlists->queue_priority >
680                             max(port_request(port)->priotree.priority, 0)) {
681                                 execlists_set_active(execlists,
682                                                      EXECLISTS_ACTIVE_PREEMPT);
683                                 queue_work(engine->i915->guc.preempt_wq,
684                                            &preempt_work->work);
685                                 goto unlock;
686                         }
687                 }
688
689                 port++;
690                 if (port_isset(port))
691                         goto unlock;
692         }
693         GEM_BUG_ON(port_isset(port));
694
695         while (rb) {
696                 struct i915_priolist *p = to_priolist(rb);
697                 struct i915_request *rq, *rn;
698
699                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
700                         if (last && rq->ctx != last->ctx) {
701                                 if (port == last_port) {
702                                         __list_del_many(&p->requests,
703                                                         &rq->priotree.link);
704                                         goto done;
705                                 }
706
707                                 if (submit)
708                                         port_assign(port, last);
709                                 port++;
710                         }
711
712                         INIT_LIST_HEAD(&rq->priotree.link);
713
714                         __i915_request_submit(rq);
715                         trace_i915_request_in(rq, port_index(port, execlists));
716                         last = rq;
717                         submit = true;
718                 }
719
720                 rb = rb_next(rb);
721                 rb_erase(&p->node, &execlists->queue);
722                 INIT_LIST_HEAD(&p->requests);
723                 if (p->priority != I915_PRIORITY_NORMAL)
724                         kmem_cache_free(engine->i915->priorities, p);
725         }
726 done:
727         execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
728         execlists->first = rb;
729         if (submit) {
730                 port_assign(port, last);
731                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
732                 guc_submit(engine);
733         }
734
735         /* We must always keep the beast fed if we have work piled up */
736         GEM_BUG_ON(port_isset(execlists->port) &&
737                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
738         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
739
740 unlock:
741         spin_unlock_irq(&engine->timeline->lock);
742 }
743
744 static void guc_submission_tasklet(unsigned long data)
745 {
746         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
747         struct intel_engine_execlists * const execlists = &engine->execlists;
748         struct execlist_port *port = execlists->port;
749         struct i915_request *rq;
750
751         rq = port_request(&port[0]);
752         while (rq && i915_request_completed(rq)) {
753                 trace_i915_request_out(rq);
754                 i915_request_put(rq);
755
756                 execlists_port_complete(execlists, port);
757
758                 rq = port_request(&port[0]);
759         }
760         if (!rq)
761                 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
762
763         if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
764             intel_read_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX) ==
765             GUC_PREEMPT_FINISHED) {
766                 execlists_cancel_port_requests(&engine->execlists);
767                 execlists_unwind_incomplete_requests(execlists);
768
769                 wait_for_guc_preempt_report(engine);
770
771                 execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
772                 intel_write_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX, 0);
773         }
774
775         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
776                 guc_dequeue(engine);
777 }
778
779 /*
780  * Everything below here is concerned with setup & teardown, and is
781  * therefore not part of the somewhat time-critical batch-submission
782  * path of guc_submit() above.
783  */
784
785 /* Check that a doorbell register is in the expected state */
786 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
787 {
788         struct drm_i915_private *dev_priv = guc_to_i915(guc);
789         u32 drbregl;
790         bool valid;
791
792         GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
793
794         drbregl = I915_READ(GEN8_DRBREGL(db_id));
795         valid = drbregl & GEN8_DRB_VALID;
796
797         if (test_bit(db_id, guc->doorbell_bitmap) == valid)
798                 return true;
799
800         DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
801                          db_id, drbregl, yesno(valid));
802
803         return false;
804 }
805
806 static bool guc_verify_doorbells(struct intel_guc *guc)
807 {
808         u16 db_id;
809
810         for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
811                 if (!doorbell_ok(guc, db_id))
812                         return false;
813
814         return true;
815 }
816
817 static int guc_clients_doorbell_init(struct intel_guc *guc)
818 {
819         int ret;
820
821         ret = create_doorbell(guc->execbuf_client);
822         if (ret)
823                 return ret;
824
825         if (guc->preempt_client) {
826                 ret = create_doorbell(guc->preempt_client);
827                 if (ret) {
828                         destroy_doorbell(guc->execbuf_client);
829                         return ret;
830                 }
831         }
832
833         return 0;
834 }
835
836 static void guc_clients_doorbell_fini(struct intel_guc *guc)
837 {
838         /*
839          * By the time we're here, GuC has already been reset.
840          * Instead of trying (in vain) to communicate with it, let's just
841          * cleanup the doorbell HW and our internal state.
842          */
843         if (guc->preempt_client) {
844                 __destroy_doorbell(guc->preempt_client);
845                 __update_doorbell_desc(guc->preempt_client,
846                                        GUC_DOORBELL_INVALID);
847         }
848         __destroy_doorbell(guc->execbuf_client);
849         __update_doorbell_desc(guc->execbuf_client, GUC_DOORBELL_INVALID);
850 }
851
852 /**
853  * guc_client_alloc() - Allocate an intel_guc_client
854  * @dev_priv:   driver private data structure
855  * @engines:    The set of engines to enable for this client
856  * @priority:   four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
857  *              The kernel client to replace ExecList submission is created with
858  *              NORMAL priority. Priority of a client for scheduler can be HIGH,
859  *              while a preemption context can use CRITICAL.
860  * @ctx:        the context that owns the client (we use the default render
861  *              context)
862  *
863  * Return:      An intel_guc_client object if success, else NULL.
864  */
865 static struct intel_guc_client *
866 guc_client_alloc(struct drm_i915_private *dev_priv,
867                  u32 engines,
868                  u32 priority,
869                  struct i915_gem_context *ctx)
870 {
871         struct intel_guc_client *client;
872         struct intel_guc *guc = &dev_priv->guc;
873         struct i915_vma *vma;
874         void *vaddr;
875         int ret;
876
877         client = kzalloc(sizeof(*client), GFP_KERNEL);
878         if (!client)
879                 return ERR_PTR(-ENOMEM);
880
881         client->guc = guc;
882         client->owner = ctx;
883         client->engines = engines;
884         client->priority = priority;
885         client->doorbell_id = GUC_DOORBELL_INVALID;
886         spin_lock_init(&client->wq_lock);
887
888         ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
889                              GFP_KERNEL);
890         if (ret < 0)
891                 goto err_client;
892
893         client->stage_id = ret;
894
895         /* The first page is doorbell/proc_desc. Two followed pages are wq. */
896         vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
897         if (IS_ERR(vma)) {
898                 ret = PTR_ERR(vma);
899                 goto err_id;
900         }
901
902         /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
903         client->vma = vma;
904
905         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
906         if (IS_ERR(vaddr)) {
907                 ret = PTR_ERR(vaddr);
908                 goto err_vma;
909         }
910         client->vaddr = vaddr;
911
912         client->doorbell_offset = __select_cacheline(guc);
913
914         /*
915          * Since the doorbell only requires a single cacheline, we can save
916          * space by putting the application process descriptor in the same
917          * page. Use the half of the page that doesn't include the doorbell.
918          */
919         if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
920                 client->proc_desc_offset = 0;
921         else
922                 client->proc_desc_offset = (GUC_DB_SIZE / 2);
923
924         guc_proc_desc_init(guc, client);
925         guc_stage_desc_init(guc, client);
926
927         ret = reserve_doorbell(client);
928         if (ret)
929                 goto err_vaddr;
930
931         DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
932                          priority, client, client->engines, client->stage_id);
933         DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
934                          client->doorbell_id, client->doorbell_offset);
935
936         return client;
937
938 err_vaddr:
939         i915_gem_object_unpin_map(client->vma->obj);
940 err_vma:
941         i915_vma_unpin_and_release(&client->vma);
942 err_id:
943         ida_simple_remove(&guc->stage_ids, client->stage_id);
944 err_client:
945         kfree(client);
946         return ERR_PTR(ret);
947 }
948
949 static void guc_client_free(struct intel_guc_client *client)
950 {
951         unreserve_doorbell(client);
952         guc_stage_desc_fini(client->guc, client);
953         i915_gem_object_unpin_map(client->vma->obj);
954         i915_vma_unpin_and_release(&client->vma);
955         ida_simple_remove(&client->guc->stage_ids, client->stage_id);
956         kfree(client);
957 }
958
959 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
960 {
961         u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
962
963 #define SR_DISABLED \
964         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
965                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
966
967         return (sr & SR_DISABLED) == SR_DISABLED;
968
969 #undef SR_DISABLED
970 }
971
972 static void guc_fill_preempt_context(struct intel_guc *guc)
973 {
974         struct drm_i915_private *dev_priv = guc_to_i915(guc);
975         struct intel_guc_client *client = guc->preempt_client;
976         struct intel_engine_cs *engine;
977         enum intel_engine_id id;
978
979         for_each_engine(engine, dev_priv, id) {
980                 struct intel_context *ce = &client->owner->engine[id];
981                 u32 addr = intel_hws_preempt_done_address(engine);
982                 u32 *cs;
983
984                 GEM_BUG_ON(!ce->pin_count);
985
986                 /*
987                  * We rely on this context image *not* being saved after
988                  * preemption. This ensures that the RING_HEAD / RING_TAIL
989                  * remain pointing at initial values forever.
990                  */
991                 GEM_BUG_ON(!ctx_save_restore_disabled(ce));
992
993                 cs = ce->ring->vaddr;
994                 if (id == RCS) {
995                         cs = gen8_emit_ggtt_write_rcs(cs,
996                                                       GUC_PREEMPT_FINISHED,
997                                                       addr);
998                 } else {
999                         cs = gen8_emit_ggtt_write(cs,
1000                                                   GUC_PREEMPT_FINISHED,
1001                                                   addr);
1002                         *cs++ = MI_NOOP;
1003                         *cs++ = MI_NOOP;
1004                 }
1005                 *cs++ = MI_USER_INTERRUPT;
1006                 *cs++ = MI_NOOP;
1007
1008                 GEM_BUG_ON((void *)cs - ce->ring->vaddr !=
1009                            GUC_PREEMPT_BREADCRUMB_BYTES);
1010
1011                 flush_ggtt_writes(ce->ring->vma);
1012         }
1013 }
1014
1015 static int guc_clients_create(struct intel_guc *guc)
1016 {
1017         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1018         struct intel_guc_client *client;
1019
1020         GEM_BUG_ON(guc->execbuf_client);
1021         GEM_BUG_ON(guc->preempt_client);
1022
1023         client = guc_client_alloc(dev_priv,
1024                                   INTEL_INFO(dev_priv)->ring_mask,
1025                                   GUC_CLIENT_PRIORITY_KMD_NORMAL,
1026                                   dev_priv->kernel_context);
1027         if (IS_ERR(client)) {
1028                 DRM_ERROR("Failed to create GuC client for submission!\n");
1029                 return PTR_ERR(client);
1030         }
1031         guc->execbuf_client = client;
1032
1033         if (dev_priv->preempt_context) {
1034                 client = guc_client_alloc(dev_priv,
1035                                           INTEL_INFO(dev_priv)->ring_mask,
1036                                           GUC_CLIENT_PRIORITY_KMD_HIGH,
1037                                           dev_priv->preempt_context);
1038                 if (IS_ERR(client)) {
1039                         DRM_ERROR("Failed to create GuC client for preemption!\n");
1040                         guc_client_free(guc->execbuf_client);
1041                         guc->execbuf_client = NULL;
1042                         return PTR_ERR(client);
1043                 }
1044                 guc->preempt_client = client;
1045
1046                 guc_fill_preempt_context(guc);
1047         }
1048
1049         return 0;
1050 }
1051
1052 static void guc_clients_destroy(struct intel_guc *guc)
1053 {
1054         struct intel_guc_client *client;
1055
1056         client = fetch_and_zero(&guc->preempt_client);
1057         if (client)
1058                 guc_client_free(client);
1059
1060         client = fetch_and_zero(&guc->execbuf_client);
1061         guc_client_free(client);
1062 }
1063
1064 /*
1065  * Set up the memory resources to be shared with the GuC (via the GGTT)
1066  * at firmware loading time.
1067  */
1068 int intel_guc_submission_init(struct intel_guc *guc)
1069 {
1070         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1071         struct intel_engine_cs *engine;
1072         enum intel_engine_id id;
1073         int ret;
1074
1075         if (guc->stage_desc_pool)
1076                 return 0;
1077
1078         ret = guc_stage_desc_pool_create(guc);
1079         if (ret)
1080                 return ret;
1081         /*
1082          * Keep static analysers happy, let them know that we allocated the
1083          * vma after testing that it didn't exist earlier.
1084          */
1085         GEM_BUG_ON(!guc->stage_desc_pool);
1086
1087         WARN_ON(!guc_verify_doorbells(guc));
1088         ret = guc_clients_create(guc);
1089         if (ret)
1090                 return ret;
1091
1092         for_each_engine(engine, dev_priv, id) {
1093                 guc->preempt_work[id].engine = engine;
1094                 INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1095         }
1096
1097         return 0;
1098
1099 }
1100
1101 void intel_guc_submission_fini(struct intel_guc *guc)
1102 {
1103         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1104         struct intel_engine_cs *engine;
1105         enum intel_engine_id id;
1106
1107         for_each_engine(engine, dev_priv, id)
1108                 cancel_work_sync(&guc->preempt_work[id].work);
1109
1110         guc_clients_destroy(guc);
1111         WARN_ON(!guc_verify_doorbells(guc));
1112
1113         guc_stage_desc_pool_destroy(guc);
1114 }
1115
1116 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1117 {
1118         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1119         struct intel_engine_cs *engine;
1120         enum intel_engine_id id;
1121         int irqs;
1122
1123         /* tell all command streamers to forward interrupts (but not vblank)
1124          * to GuC
1125          */
1126         irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1127         for_each_engine(engine, dev_priv, id)
1128                 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1129
1130         /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1131         irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1132                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1133         /* These three registers have the same bit definitions */
1134         I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1135         I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1136         I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1137
1138         /*
1139          * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1140          * (unmasked) PM interrupts to the GuC. All other bits of this
1141          * register *disable* generation of a specific interrupt.
1142          *
1143          * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1144          * writing to the PM interrupt mask register, i.e. interrupts
1145          * that must not be disabled.
1146          *
1147          * If the GuC is handling these interrupts, then we must not let
1148          * the PM code disable ANY interrupt that the GuC is expecting.
1149          * So for each ENABLED (0) bit in this register, we must SET the
1150          * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1151          * GuC needs ARAT expired interrupt unmasked hence it is set in
1152          * pm_intrmsk_mbz.
1153          *
1154          * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1155          * result in the register bit being left SET!
1156          */
1157         rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1158         rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1159 }
1160
1161 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1162 {
1163         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1164         struct intel_engine_cs *engine;
1165         enum intel_engine_id id;
1166         int irqs;
1167
1168         /*
1169          * tell all command streamers NOT to forward interrupts or vblank
1170          * to GuC.
1171          */
1172         irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1173         irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1174         for_each_engine(engine, dev_priv, id)
1175                 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1176
1177         /* route all GT interrupts to the host */
1178         I915_WRITE(GUC_BCS_RCS_IER, 0);
1179         I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1180         I915_WRITE(GUC_WD_VECS_IER, 0);
1181
1182         rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1183         rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1184 }
1185
1186 static void guc_submission_park(struct intel_engine_cs *engine)
1187 {
1188         intel_engine_unpin_breadcrumbs_irq(engine);
1189 }
1190
1191 static void guc_submission_unpark(struct intel_engine_cs *engine)
1192 {
1193         intel_engine_pin_breadcrumbs_irq(engine);
1194 }
1195
1196 int intel_guc_submission_enable(struct intel_guc *guc)
1197 {
1198         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1199         struct intel_engine_cs *engine;
1200         enum intel_engine_id id;
1201         int err;
1202
1203         /*
1204          * We're using GuC work items for submitting work through GuC. Since
1205          * we're coalescing multiple requests from a single context into a
1206          * single work item prior to assigning it to execlist_port, we can
1207          * never have more work items than the total number of ports (for all
1208          * engines). The GuC firmware is controlling the HEAD of work queue,
1209          * and it is guaranteed that it will remove the work item from the
1210          * queue before our request is completed.
1211          */
1212         BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1213                      sizeof(struct guc_wq_item) *
1214                      I915_NUM_ENGINES > GUC_WQ_SIZE);
1215
1216         GEM_BUG_ON(!guc->execbuf_client);
1217
1218         guc_reset_wq(guc->execbuf_client);
1219         if (guc->preempt_client)
1220                 guc_reset_wq(guc->preempt_client);
1221
1222         err = intel_guc_sample_forcewake(guc);
1223         if (err)
1224                 return err;
1225
1226         err = guc_clients_doorbell_init(guc);
1227         if (err)
1228                 return err;
1229
1230         /* Take over from manual control of ELSP (execlists) */
1231         guc_interrupts_capture(dev_priv);
1232
1233         for_each_engine(engine, dev_priv, id) {
1234                 struct intel_engine_execlists * const execlists =
1235                         &engine->execlists;
1236
1237                 execlists->tasklet.func = guc_submission_tasklet;
1238                 engine->park = guc_submission_park;
1239                 engine->unpark = guc_submission_unpark;
1240
1241                 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1242         }
1243
1244         return 0;
1245 }
1246
1247 void intel_guc_submission_disable(struct intel_guc *guc)
1248 {
1249         struct drm_i915_private *dev_priv = guc_to_i915(guc);
1250
1251         GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1252
1253         guc_interrupts_release(dev_priv);
1254         guc_clients_doorbell_fini(guc);
1255
1256         /* Revert back to manual ELSP submission */
1257         intel_engines_reset_default_submission(dev_priv);
1258 }
1259
1260 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1261 #include "selftests/intel_guc.c"
1262 #endif