drm/i915: fix Haswell DP M/N registers
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /**
45  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
46  * @intel_dp: DP struct
47  *
48  * If a CPU or PCH DP output is attached to an eDP panel, this function
49  * will return true, and false otherwise.
50  */
51 static bool is_edp(struct intel_dp *intel_dp)
52 {
53         return intel_dp->base.type == INTEL_OUTPUT_EDP;
54 }
55
56 /**
57  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
58  * @intel_dp: DP struct
59  *
60  * Returns true if the given DP struct corresponds to a PCH DP port attached
61  * to an eDP panel, false otherwise.  Helpful for determining whether we
62  * may need FDI resources for a given DP output or not.
63  */
64 static bool is_pch_edp(struct intel_dp *intel_dp)
65 {
66         return intel_dp->is_pch_edp;
67 }
68
69 /**
70  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
71  * @intel_dp: DP struct
72  *
73  * Returns true if the given DP struct corresponds to a CPU eDP port.
74  */
75 static bool is_cpu_edp(struct intel_dp *intel_dp)
76 {
77         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
78 }
79
80 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
81 {
82         return container_of(intel_attached_encoder(connector),
83                             struct intel_dp, base);
84 }
85
86 /**
87  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
88  * @encoder: DRM encoder
89  *
90  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
91  * by intel_display.c.
92  */
93 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
94 {
95         struct intel_dp *intel_dp;
96
97         if (!encoder)
98                 return false;
99
100         intel_dp = enc_to_intel_dp(encoder);
101
102         return is_pch_edp(intel_dp);
103 }
104
105 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
106 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
107 static void intel_dp_link_down(struct intel_dp *intel_dp);
108
109 void
110 intel_edp_link_config(struct intel_encoder *intel_encoder,
111                        int *lane_num, int *link_bw)
112 {
113         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
114
115         *lane_num = intel_dp->lane_count;
116         if (intel_dp->link_bw == DP_LINK_BW_1_62)
117                 *link_bw = 162000;
118         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
119                 *link_bw = 270000;
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124                        struct drm_display_mode *mode)
125 {
126         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
127
128         if (intel_dp->panel_fixed_mode)
129                 return intel_dp->panel_fixed_mode->clock;
130         else
131                 return mode->clock;
132 }
133
134 static int
135 intel_dp_max_lane_count(struct intel_dp *intel_dp)
136 {
137         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
138         switch (max_lane_count) {
139         case 1: case 2: case 4:
140                 break;
141         default:
142                 max_lane_count = 4;
143         }
144         return max_lane_count;
145 }
146
147 static int
148 intel_dp_max_link_bw(struct intel_dp *intel_dp)
149 {
150         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
151
152         switch (max_link_bw) {
153         case DP_LINK_BW_1_62:
154         case DP_LINK_BW_2_7:
155                 break;
156         default:
157                 max_link_bw = DP_LINK_BW_1_62;
158                 break;
159         }
160         return max_link_bw;
161 }
162
163 static int
164 intel_dp_link_clock(uint8_t link_bw)
165 {
166         if (link_bw == DP_LINK_BW_2_7)
167                 return 270000;
168         else
169                 return 162000;
170 }
171
172 /*
173  * The units on the numbers in the next two are... bizarre.  Examples will
174  * make it clearer; this one parallels an example in the eDP spec.
175  *
176  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
177  *
178  *     270000 * 1 * 8 / 10 == 216000
179  *
180  * The actual data capacity of that configuration is 2.16Gbit/s, so the
181  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
182  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
183  * 119000.  At 18bpp that's 2142000 kilobits per second.
184  *
185  * Thus the strange-looking division by 10 in intel_dp_link_required, to
186  * get the result in decakilobits instead of kilobits.
187  */
188
189 static int
190 intel_dp_link_required(int pixel_clock, int bpp)
191 {
192         return (pixel_clock * bpp + 9) / 10;
193 }
194
195 static int
196 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
197 {
198         return (max_link_clock * max_lanes * 8) / 10;
199 }
200
201 static bool
202 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
203                           struct drm_display_mode *mode,
204                           bool adjust_mode)
205 {
206         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
207         int max_lanes = intel_dp_max_lane_count(intel_dp);
208         int max_rate, mode_rate;
209
210         mode_rate = intel_dp_link_required(mode->clock, 24);
211         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
212
213         if (mode_rate > max_rate) {
214                 mode_rate = intel_dp_link_required(mode->clock, 18);
215                 if (mode_rate > max_rate)
216                         return false;
217
218                 if (adjust_mode)
219                         mode->private_flags
220                                 |= INTEL_MODE_DP_FORCE_6BPC;
221
222                 return true;
223         }
224
225         return true;
226 }
227
228 static int
229 intel_dp_mode_valid(struct drm_connector *connector,
230                     struct drm_display_mode *mode)
231 {
232         struct intel_dp *intel_dp = intel_attached_dp(connector);
233
234         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
235                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
236                         return MODE_PANEL;
237
238                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
239                         return MODE_PANEL;
240         }
241
242         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
243                 return MODE_CLOCK_HIGH;
244
245         if (mode->clock < 10000)
246                 return MODE_CLOCK_LOW;
247
248         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
249                 return MODE_H_ILLEGAL;
250
251         return MODE_OK;
252 }
253
254 static uint32_t
255 pack_aux(uint8_t *src, int src_bytes)
256 {
257         int     i;
258         uint32_t v = 0;
259
260         if (src_bytes > 4)
261                 src_bytes = 4;
262         for (i = 0; i < src_bytes; i++)
263                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
264         return v;
265 }
266
267 static void
268 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
269 {
270         int i;
271         if (dst_bytes > 4)
272                 dst_bytes = 4;
273         for (i = 0; i < dst_bytes; i++)
274                 dst[i] = src >> ((3-i) * 8);
275 }
276
277 /* hrawclock is 1/4 the FSB frequency */
278 static int
279 intel_hrawclk(struct drm_device *dev)
280 {
281         struct drm_i915_private *dev_priv = dev->dev_private;
282         uint32_t clkcfg;
283
284         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
285         if (IS_VALLEYVIEW(dev))
286                 return 200;
287
288         clkcfg = I915_READ(CLKCFG);
289         switch (clkcfg & CLKCFG_FSB_MASK) {
290         case CLKCFG_FSB_400:
291                 return 100;
292         case CLKCFG_FSB_533:
293                 return 133;
294         case CLKCFG_FSB_667:
295                 return 166;
296         case CLKCFG_FSB_800:
297                 return 200;
298         case CLKCFG_FSB_1067:
299                 return 266;
300         case CLKCFG_FSB_1333:
301                 return 333;
302         /* these two are just a guess; one of them might be right */
303         case CLKCFG_FSB_1600:
304         case CLKCFG_FSB_1600_ALT:
305                 return 400;
306         default:
307                 return 133;
308         }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313         struct drm_device *dev = intel_dp->base.base.dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp->base.base.dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         if (!is_edp(intel_dp))
334                 return;
335         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338                               I915_READ(PCH_PP_STATUS),
339                               I915_READ(PCH_PP_CONTROL));
340         }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345                 uint8_t *send, int send_bytes,
346                 uint8_t *recv, int recv_size)
347 {
348         uint32_t output_reg = intel_dp->output_reg;
349         struct drm_device *dev = intel_dp->base.base.dev;
350         struct drm_i915_private *dev_priv = dev->dev_private;
351         uint32_t ch_ctl = output_reg + 0x10;
352         uint32_t ch_data = ch_ctl + 4;
353         int i;
354         int recv_bytes;
355         uint32_t status;
356         uint32_t aux_clock_divider;
357         int try, precharge;
358
359         if (IS_HASWELL(dev)) {
360                 switch (intel_dp->port) {
361                 case PORT_A:
362                         ch_ctl = DPA_AUX_CH_CTL;
363                         ch_data = DPA_AUX_CH_DATA1;
364                         break;
365                 case PORT_B:
366                         ch_ctl = PCH_DPB_AUX_CH_CTL;
367                         ch_data = PCH_DPB_AUX_CH_DATA1;
368                         break;
369                 case PORT_C:
370                         ch_ctl = PCH_DPC_AUX_CH_CTL;
371                         ch_data = PCH_DPC_AUX_CH_DATA1;
372                         break;
373                 case PORT_D:
374                         ch_ctl = PCH_DPD_AUX_CH_CTL;
375                         ch_data = PCH_DPD_AUX_CH_DATA1;
376                         break;
377                 default:
378                         BUG();
379                 }
380         }
381
382         intel_dp_check_edp(intel_dp);
383         /* The clock divider is based off the hrawclk,
384          * and would like to run at 2MHz. So, take the
385          * hrawclk value and divide by 2 and use that
386          *
387          * Note that PCH attached eDP panels should use a 125MHz input
388          * clock divider.
389          */
390         if (is_cpu_edp(intel_dp)) {
391                 if (IS_VALLEYVIEW(dev))
392                         aux_clock_divider = 100;
393                 else if (IS_GEN6(dev) || IS_GEN7(dev))
394                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
395                 else
396                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
397         } else if (HAS_PCH_SPLIT(dev))
398                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
399         else
400                 aux_clock_divider = intel_hrawclk(dev) / 2;
401
402         if (IS_GEN6(dev))
403                 precharge = 3;
404         else
405                 precharge = 5;
406
407         /* Try to wait for any previous AUX channel activity */
408         for (try = 0; try < 3; try++) {
409                 status = I915_READ(ch_ctl);
410                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
411                         break;
412                 msleep(1);
413         }
414
415         if (try == 3) {
416                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
417                      I915_READ(ch_ctl));
418                 return -EBUSY;
419         }
420
421         /* Must try at least 3 times according to DP spec */
422         for (try = 0; try < 5; try++) {
423                 /* Load the send data into the aux channel data registers */
424                 for (i = 0; i < send_bytes; i += 4)
425                         I915_WRITE(ch_data + i,
426                                    pack_aux(send + i, send_bytes - i));
427
428                 /* Send the command and wait for it to complete */
429                 I915_WRITE(ch_ctl,
430                            DP_AUX_CH_CTL_SEND_BUSY |
431                            DP_AUX_CH_CTL_TIME_OUT_400us |
432                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
433                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
434                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
435                            DP_AUX_CH_CTL_DONE |
436                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                            DP_AUX_CH_CTL_RECEIVE_ERROR);
438                 for (;;) {
439                         status = I915_READ(ch_ctl);
440                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
441                                 break;
442                         udelay(100);
443                 }
444
445                 /* Clear done status and any errors */
446                 I915_WRITE(ch_ctl,
447                            status |
448                            DP_AUX_CH_CTL_DONE |
449                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
450                            DP_AUX_CH_CTL_RECEIVE_ERROR);
451
452                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
453                               DP_AUX_CH_CTL_RECEIVE_ERROR))
454                         continue;
455                 if (status & DP_AUX_CH_CTL_DONE)
456                         break;
457         }
458
459         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
460                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
461                 return -EBUSY;
462         }
463
464         /* Check for timeout or receive error.
465          * Timeouts occur when the sink is not connected
466          */
467         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
468                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
469                 return -EIO;
470         }
471
472         /* Timeouts occur when the device isn't connected, so they're
473          * "normal" -- don't fill the kernel log with these */
474         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
475                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
476                 return -ETIMEDOUT;
477         }
478
479         /* Unload any bytes sent back from the other side */
480         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
481                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
482         if (recv_bytes > recv_size)
483                 recv_bytes = recv_size;
484
485         for (i = 0; i < recv_bytes; i += 4)
486                 unpack_aux(I915_READ(ch_data + i),
487                            recv + i, recv_bytes - i);
488
489         return recv_bytes;
490 }
491
492 /* Write data to the aux channel in native mode */
493 static int
494 intel_dp_aux_native_write(struct intel_dp *intel_dp,
495                           uint16_t address, uint8_t *send, int send_bytes)
496 {
497         int ret;
498         uint8_t msg[20];
499         int msg_bytes;
500         uint8_t ack;
501
502         intel_dp_check_edp(intel_dp);
503         if (send_bytes > 16)
504                 return -1;
505         msg[0] = AUX_NATIVE_WRITE << 4;
506         msg[1] = address >> 8;
507         msg[2] = address & 0xff;
508         msg[3] = send_bytes - 1;
509         memcpy(&msg[4], send, send_bytes);
510         msg_bytes = send_bytes + 4;
511         for (;;) {
512                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
513                 if (ret < 0)
514                         return ret;
515                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
516                         break;
517                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
518                         udelay(100);
519                 else
520                         return -EIO;
521         }
522         return send_bytes;
523 }
524
525 /* Write a single byte to the aux channel in native mode */
526 static int
527 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
528                             uint16_t address, uint8_t byte)
529 {
530         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
531 }
532
533 /* read bytes from a native aux channel */
534 static int
535 intel_dp_aux_native_read(struct intel_dp *intel_dp,
536                          uint16_t address, uint8_t *recv, int recv_bytes)
537 {
538         uint8_t msg[4];
539         int msg_bytes;
540         uint8_t reply[20];
541         int reply_bytes;
542         uint8_t ack;
543         int ret;
544
545         intel_dp_check_edp(intel_dp);
546         msg[0] = AUX_NATIVE_READ << 4;
547         msg[1] = address >> 8;
548         msg[2] = address & 0xff;
549         msg[3] = recv_bytes - 1;
550
551         msg_bytes = 4;
552         reply_bytes = recv_bytes + 1;
553
554         for (;;) {
555                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
556                                       reply, reply_bytes);
557                 if (ret == 0)
558                         return -EPROTO;
559                 if (ret < 0)
560                         return ret;
561                 ack = reply[0];
562                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
563                         memcpy(recv, reply + 1, ret - 1);
564                         return ret - 1;
565                 }
566                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
567                         udelay(100);
568                 else
569                         return -EIO;
570         }
571 }
572
573 static int
574 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
575                     uint8_t write_byte, uint8_t *read_byte)
576 {
577         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
578         struct intel_dp *intel_dp = container_of(adapter,
579                                                 struct intel_dp,
580                                                 adapter);
581         uint16_t address = algo_data->address;
582         uint8_t msg[5];
583         uint8_t reply[2];
584         unsigned retry;
585         int msg_bytes;
586         int reply_bytes;
587         int ret;
588
589         intel_dp_check_edp(intel_dp);
590         /* Set up the command byte */
591         if (mode & MODE_I2C_READ)
592                 msg[0] = AUX_I2C_READ << 4;
593         else
594                 msg[0] = AUX_I2C_WRITE << 4;
595
596         if (!(mode & MODE_I2C_STOP))
597                 msg[0] |= AUX_I2C_MOT << 4;
598
599         msg[1] = address >> 8;
600         msg[2] = address;
601
602         switch (mode) {
603         case MODE_I2C_WRITE:
604                 msg[3] = 0;
605                 msg[4] = write_byte;
606                 msg_bytes = 5;
607                 reply_bytes = 1;
608                 break;
609         case MODE_I2C_READ:
610                 msg[3] = 0;
611                 msg_bytes = 4;
612                 reply_bytes = 2;
613                 break;
614         default:
615                 msg_bytes = 3;
616                 reply_bytes = 1;
617                 break;
618         }
619
620         for (retry = 0; retry < 5; retry++) {
621                 ret = intel_dp_aux_ch(intel_dp,
622                                       msg, msg_bytes,
623                                       reply, reply_bytes);
624                 if (ret < 0) {
625                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
626                         return ret;
627                 }
628
629                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
630                 case AUX_NATIVE_REPLY_ACK:
631                         /* I2C-over-AUX Reply field is only valid
632                          * when paired with AUX ACK.
633                          */
634                         break;
635                 case AUX_NATIVE_REPLY_NACK:
636                         DRM_DEBUG_KMS("aux_ch native nack\n");
637                         return -EREMOTEIO;
638                 case AUX_NATIVE_REPLY_DEFER:
639                         udelay(100);
640                         continue;
641                 default:
642                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
643                                   reply[0]);
644                         return -EREMOTEIO;
645                 }
646
647                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
648                 case AUX_I2C_REPLY_ACK:
649                         if (mode == MODE_I2C_READ) {
650                                 *read_byte = reply[1];
651                         }
652                         return reply_bytes - 1;
653                 case AUX_I2C_REPLY_NACK:
654                         DRM_DEBUG_KMS("aux_i2c nack\n");
655                         return -EREMOTEIO;
656                 case AUX_I2C_REPLY_DEFER:
657                         DRM_DEBUG_KMS("aux_i2c defer\n");
658                         udelay(100);
659                         break;
660                 default:
661                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
662                         return -EREMOTEIO;
663                 }
664         }
665
666         DRM_ERROR("too many retries, giving up\n");
667         return -EREMOTEIO;
668 }
669
670 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
671 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
672
673 static int
674 intel_dp_i2c_init(struct intel_dp *intel_dp,
675                   struct intel_connector *intel_connector, const char *name)
676 {
677         int     ret;
678
679         DRM_DEBUG_KMS("i2c_init %s\n", name);
680         intel_dp->algo.running = false;
681         intel_dp->algo.address = 0;
682         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
683
684         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
685         intel_dp->adapter.owner = THIS_MODULE;
686         intel_dp->adapter.class = I2C_CLASS_DDC;
687         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
688         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
689         intel_dp->adapter.algo_data = &intel_dp->algo;
690         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
691
692         ironlake_edp_panel_vdd_on(intel_dp);
693         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
694         ironlake_edp_panel_vdd_off(intel_dp, false);
695         return ret;
696 }
697
698 static bool
699 intel_dp_mode_fixup(struct drm_encoder *encoder,
700                     const struct drm_display_mode *mode,
701                     struct drm_display_mode *adjusted_mode)
702 {
703         struct drm_device *dev = encoder->dev;
704         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
705         int lane_count, clock;
706         int max_lane_count = intel_dp_max_lane_count(intel_dp);
707         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
708         int bpp, mode_rate;
709         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
710
711         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
712                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
713                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
714                                         mode, adjusted_mode);
715         }
716
717         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
718                 return false;
719
720         DRM_DEBUG_KMS("DP link computation with max lane count %i "
721                       "max bw %02x pixel clock %iKHz\n",
722                       max_lane_count, bws[max_clock], adjusted_mode->clock);
723
724         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
725                 return false;
726
727         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
728         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
729
730         for (clock = 0; clock <= max_clock; clock++) {
731                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
732                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
733
734                         if (mode_rate <= link_avail) {
735                                 intel_dp->link_bw = bws[clock];
736                                 intel_dp->lane_count = lane_count;
737                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
738                                 DRM_DEBUG_KMS("DP link bw %02x lane "
739                                                 "count %d clock %d bpp %d\n",
740                                        intel_dp->link_bw, intel_dp->lane_count,
741                                        adjusted_mode->clock, bpp);
742                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
743                                               mode_rate, link_avail);
744                                 return true;
745                         }
746                 }
747         }
748
749         return false;
750 }
751
752 struct intel_dp_m_n {
753         uint32_t        tu;
754         uint32_t        gmch_m;
755         uint32_t        gmch_n;
756         uint32_t        link_m;
757         uint32_t        link_n;
758 };
759
760 static void
761 intel_reduce_ratio(uint32_t *num, uint32_t *den)
762 {
763         while (*num > 0xffffff || *den > 0xffffff) {
764                 *num >>= 1;
765                 *den >>= 1;
766         }
767 }
768
769 static void
770 intel_dp_compute_m_n(int bpp,
771                      int nlanes,
772                      int pixel_clock,
773                      int link_clock,
774                      struct intel_dp_m_n *m_n)
775 {
776         m_n->tu = 64;
777         m_n->gmch_m = (pixel_clock * bpp) >> 3;
778         m_n->gmch_n = link_clock * nlanes;
779         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
780         m_n->link_m = pixel_clock;
781         m_n->link_n = link_clock;
782         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
783 }
784
785 void
786 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
787                  struct drm_display_mode *adjusted_mode)
788 {
789         struct drm_device *dev = crtc->dev;
790         struct intel_encoder *encoder;
791         struct drm_i915_private *dev_priv = dev->dev_private;
792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793         int lane_count = 4;
794         struct intel_dp_m_n m_n;
795         int pipe = intel_crtc->pipe;
796
797         /*
798          * Find the lane count in the intel_encoder private
799          */
800         for_each_encoder_on_crtc(dev, crtc, encoder) {
801                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
802
803                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
804                     intel_dp->base.type == INTEL_OUTPUT_EDP)
805                 {
806                         lane_count = intel_dp->lane_count;
807                         break;
808                 }
809         }
810
811         /*
812          * Compute the GMCH and Link ratios. The '3' here is
813          * the number of bytes_per_pixel post-LUT, which we always
814          * set up for 8-bits of R/G/B, or 3 bytes total.
815          */
816         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
817                              mode->clock, adjusted_mode->clock, &m_n);
818
819         if (IS_HASWELL(dev)) {
820                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
821                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
822                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
823                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
824         } else if (HAS_PCH_SPLIT(dev)) {
825                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
826                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
827                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
828                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
829         } else if (IS_VALLEYVIEW(dev)) {
830                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
831                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
832                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
833                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
834         } else {
835                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
836                            TU_SIZE(m_n.tu) | m_n.gmch_m);
837                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
838                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
839                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
840         }
841 }
842
843 void intel_dp_init_link_config(struct intel_dp *intel_dp)
844 {
845         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
846         intel_dp->link_configuration[0] = intel_dp->link_bw;
847         intel_dp->link_configuration[1] = intel_dp->lane_count;
848         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
849         /*
850          * Check for DPCD version > 1.1 and enhanced framing support
851          */
852         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
853             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
854                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
855         }
856 }
857
858 static void
859 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
860                   struct drm_display_mode *adjusted_mode)
861 {
862         struct drm_device *dev = encoder->dev;
863         struct drm_i915_private *dev_priv = dev->dev_private;
864         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
865         struct drm_crtc *crtc = intel_dp->base.base.crtc;
866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
867
868         /*
869          * There are four kinds of DP registers:
870          *
871          *      IBX PCH
872          *      SNB CPU
873          *      IVB CPU
874          *      CPT PCH
875          *
876          * IBX PCH and CPU are the same for almost everything,
877          * except that the CPU DP PLL is configured in this
878          * register
879          *
880          * CPT PCH is quite different, having many bits moved
881          * to the TRANS_DP_CTL register instead. That
882          * configuration happens (oddly) in ironlake_pch_enable
883          */
884
885         /* Preserve the BIOS-computed detected bit. This is
886          * supposed to be read-only.
887          */
888         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
889
890         /* Handle DP bits in common between all three register formats */
891         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
892
893         switch (intel_dp->lane_count) {
894         case 1:
895                 intel_dp->DP |= DP_PORT_WIDTH_1;
896                 break;
897         case 2:
898                 intel_dp->DP |= DP_PORT_WIDTH_2;
899                 break;
900         case 4:
901                 intel_dp->DP |= DP_PORT_WIDTH_4;
902                 break;
903         }
904         if (intel_dp->has_audio) {
905                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
906                                  pipe_name(intel_crtc->pipe));
907                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
908                 intel_write_eld(encoder, adjusted_mode);
909         }
910
911         intel_dp_init_link_config(intel_dp);
912
913         /* Split out the IBX/CPU vs CPT settings */
914
915         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
916                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
917                         intel_dp->DP |= DP_SYNC_HS_HIGH;
918                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
919                         intel_dp->DP |= DP_SYNC_VS_HIGH;
920                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
921
922                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
923                         intel_dp->DP |= DP_ENHANCED_FRAMING;
924
925                 intel_dp->DP |= intel_crtc->pipe << 29;
926
927                 /* don't miss out required setting for eDP */
928                 if (adjusted_mode->clock < 200000)
929                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
930                 else
931                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
932         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
933                 intel_dp->DP |= intel_dp->color_range;
934
935                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
936                         intel_dp->DP |= DP_SYNC_HS_HIGH;
937                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
938                         intel_dp->DP |= DP_SYNC_VS_HIGH;
939                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
940
941                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
942                         intel_dp->DP |= DP_ENHANCED_FRAMING;
943
944                 if (intel_crtc->pipe == 1)
945                         intel_dp->DP |= DP_PIPEB_SELECT;
946
947                 if (is_cpu_edp(intel_dp)) {
948                         /* don't miss out required setting for eDP */
949                         if (adjusted_mode->clock < 200000)
950                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
951                         else
952                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
953                 }
954         } else {
955                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
956         }
957 }
958
959 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
960 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
961
962 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
963 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
964
965 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
966 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
967
968 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
969                                        u32 mask,
970                                        u32 value)
971 {
972         struct drm_device *dev = intel_dp->base.base.dev;
973         struct drm_i915_private *dev_priv = dev->dev_private;
974
975         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
976                       mask, value,
977                       I915_READ(PCH_PP_STATUS),
978                       I915_READ(PCH_PP_CONTROL));
979
980         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
981                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
982                           I915_READ(PCH_PP_STATUS),
983                           I915_READ(PCH_PP_CONTROL));
984         }
985 }
986
987 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
988 {
989         DRM_DEBUG_KMS("Wait for panel power on\n");
990         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
991 }
992
993 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
994 {
995         DRM_DEBUG_KMS("Wait for panel power off time\n");
996         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
997 }
998
999 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1000 {
1001         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1002         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1003 }
1004
1005
1006 /* Read the current pp_control value, unlocking the register if it
1007  * is locked
1008  */
1009
1010 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1011 {
1012         u32     control = I915_READ(PCH_PP_CONTROL);
1013
1014         control &= ~PANEL_UNLOCK_MASK;
1015         control |= PANEL_UNLOCK_REGS;
1016         return control;
1017 }
1018
1019 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1020 {
1021         struct drm_device *dev = intel_dp->base.base.dev;
1022         struct drm_i915_private *dev_priv = dev->dev_private;
1023         u32 pp;
1024
1025         if (!is_edp(intel_dp))
1026                 return;
1027         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1028
1029         WARN(intel_dp->want_panel_vdd,
1030              "eDP VDD already requested on\n");
1031
1032         intel_dp->want_panel_vdd = true;
1033
1034         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1035                 DRM_DEBUG_KMS("eDP VDD already on\n");
1036                 return;
1037         }
1038
1039         if (!ironlake_edp_have_panel_power(intel_dp))
1040                 ironlake_wait_panel_power_cycle(intel_dp);
1041
1042         pp = ironlake_get_pp_control(dev_priv);
1043         pp |= EDP_FORCE_VDD;
1044         I915_WRITE(PCH_PP_CONTROL, pp);
1045         POSTING_READ(PCH_PP_CONTROL);
1046         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1047                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1048
1049         /*
1050          * If the panel wasn't on, delay before accessing aux channel
1051          */
1052         if (!ironlake_edp_have_panel_power(intel_dp)) {
1053                 DRM_DEBUG_KMS("eDP was not running\n");
1054                 msleep(intel_dp->panel_power_up_delay);
1055         }
1056 }
1057
1058 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1059 {
1060         struct drm_device *dev = intel_dp->base.base.dev;
1061         struct drm_i915_private *dev_priv = dev->dev_private;
1062         u32 pp;
1063
1064         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1065                 pp = ironlake_get_pp_control(dev_priv);
1066                 pp &= ~EDP_FORCE_VDD;
1067                 I915_WRITE(PCH_PP_CONTROL, pp);
1068                 POSTING_READ(PCH_PP_CONTROL);
1069
1070                 /* Make sure sequencer is idle before allowing subsequent activity */
1071                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1072                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1073
1074                 msleep(intel_dp->panel_power_down_delay);
1075         }
1076 }
1077
1078 static void ironlake_panel_vdd_work(struct work_struct *__work)
1079 {
1080         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1081                                                  struct intel_dp, panel_vdd_work);
1082         struct drm_device *dev = intel_dp->base.base.dev;
1083
1084         mutex_lock(&dev->mode_config.mutex);
1085         ironlake_panel_vdd_off_sync(intel_dp);
1086         mutex_unlock(&dev->mode_config.mutex);
1087 }
1088
1089 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1090 {
1091         if (!is_edp(intel_dp))
1092                 return;
1093
1094         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1095         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1096
1097         intel_dp->want_panel_vdd = false;
1098
1099         if (sync) {
1100                 ironlake_panel_vdd_off_sync(intel_dp);
1101         } else {
1102                 /*
1103                  * Queue the timer to fire a long
1104                  * time from now (relative to the power down delay)
1105                  * to keep the panel power up across a sequence of operations
1106                  */
1107                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1108                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1109         }
1110 }
1111
1112 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1113 {
1114         struct drm_device *dev = intel_dp->base.base.dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         u32 pp;
1117
1118         if (!is_edp(intel_dp))
1119                 return;
1120
1121         DRM_DEBUG_KMS("Turn eDP power on\n");
1122
1123         if (ironlake_edp_have_panel_power(intel_dp)) {
1124                 DRM_DEBUG_KMS("eDP power already on\n");
1125                 return;
1126         }
1127
1128         ironlake_wait_panel_power_cycle(intel_dp);
1129
1130         pp = ironlake_get_pp_control(dev_priv);
1131         if (IS_GEN5(dev)) {
1132                 /* ILK workaround: disable reset around power sequence */
1133                 pp &= ~PANEL_POWER_RESET;
1134                 I915_WRITE(PCH_PP_CONTROL, pp);
1135                 POSTING_READ(PCH_PP_CONTROL);
1136         }
1137
1138         pp |= POWER_TARGET_ON;
1139         if (!IS_GEN5(dev))
1140                 pp |= PANEL_POWER_RESET;
1141
1142         I915_WRITE(PCH_PP_CONTROL, pp);
1143         POSTING_READ(PCH_PP_CONTROL);
1144
1145         ironlake_wait_panel_on(intel_dp);
1146
1147         if (IS_GEN5(dev)) {
1148                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1149                 I915_WRITE(PCH_PP_CONTROL, pp);
1150                 POSTING_READ(PCH_PP_CONTROL);
1151         }
1152 }
1153
1154 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1155 {
1156         struct drm_device *dev = intel_dp->base.base.dev;
1157         struct drm_i915_private *dev_priv = dev->dev_private;
1158         u32 pp;
1159
1160         if (!is_edp(intel_dp))
1161                 return;
1162
1163         DRM_DEBUG_KMS("Turn eDP power off\n");
1164
1165         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1166
1167         pp = ironlake_get_pp_control(dev_priv);
1168         /* We need to switch off panel power _and_ force vdd, for otherwise some
1169          * panels get very unhappy and cease to work. */
1170         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1171         I915_WRITE(PCH_PP_CONTROL, pp);
1172         POSTING_READ(PCH_PP_CONTROL);
1173
1174         intel_dp->want_panel_vdd = false;
1175
1176         ironlake_wait_panel_off(intel_dp);
1177 }
1178
1179 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1180 {
1181         struct drm_device *dev = intel_dp->base.base.dev;
1182         struct drm_i915_private *dev_priv = dev->dev_private;
1183         u32 pp;
1184
1185         if (!is_edp(intel_dp))
1186                 return;
1187
1188         DRM_DEBUG_KMS("\n");
1189         /*
1190          * If we enable the backlight right away following a panel power
1191          * on, we may see slight flicker as the panel syncs with the eDP
1192          * link.  So delay a bit to make sure the image is solid before
1193          * allowing it to appear.
1194          */
1195         msleep(intel_dp->backlight_on_delay);
1196         pp = ironlake_get_pp_control(dev_priv);
1197         pp |= EDP_BLC_ENABLE;
1198         I915_WRITE(PCH_PP_CONTROL, pp);
1199         POSTING_READ(PCH_PP_CONTROL);
1200 }
1201
1202 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1203 {
1204         struct drm_device *dev = intel_dp->base.base.dev;
1205         struct drm_i915_private *dev_priv = dev->dev_private;
1206         u32 pp;
1207
1208         if (!is_edp(intel_dp))
1209                 return;
1210
1211         DRM_DEBUG_KMS("\n");
1212         pp = ironlake_get_pp_control(dev_priv);
1213         pp &= ~EDP_BLC_ENABLE;
1214         I915_WRITE(PCH_PP_CONTROL, pp);
1215         POSTING_READ(PCH_PP_CONTROL);
1216         msleep(intel_dp->backlight_off_delay);
1217 }
1218
1219 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1220 {
1221         struct drm_device *dev = intel_dp->base.base.dev;
1222         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         u32 dpa_ctl;
1225
1226         assert_pipe_disabled(dev_priv,
1227                              to_intel_crtc(crtc)->pipe);
1228
1229         DRM_DEBUG_KMS("\n");
1230         dpa_ctl = I915_READ(DP_A);
1231         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1232         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1233
1234         /* We don't adjust intel_dp->DP while tearing down the link, to
1235          * facilitate link retraining (e.g. after hotplug). Hence clear all
1236          * enable bits here to ensure that we don't enable too much. */
1237         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1238         intel_dp->DP |= DP_PLL_ENABLE;
1239         I915_WRITE(DP_A, intel_dp->DP);
1240         POSTING_READ(DP_A);
1241         udelay(200);
1242 }
1243
1244 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1245 {
1246         struct drm_device *dev = intel_dp->base.base.dev;
1247         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         u32 dpa_ctl;
1250
1251         assert_pipe_disabled(dev_priv,
1252                              to_intel_crtc(crtc)->pipe);
1253
1254         dpa_ctl = I915_READ(DP_A);
1255         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1256              "dp pll off, should be on\n");
1257         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1258
1259         /* We can't rely on the value tracked for the DP register in
1260          * intel_dp->DP because link_down must not change that (otherwise link
1261          * re-training will fail. */
1262         dpa_ctl &= ~DP_PLL_ENABLE;
1263         I915_WRITE(DP_A, dpa_ctl);
1264         POSTING_READ(DP_A);
1265         udelay(200);
1266 }
1267
1268 /* If the sink supports it, try to set the power state appropriately */
1269 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1270 {
1271         int ret, i;
1272
1273         /* Should have a valid DPCD by this point */
1274         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1275                 return;
1276
1277         if (mode != DRM_MODE_DPMS_ON) {
1278                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1279                                                   DP_SET_POWER_D3);
1280                 if (ret != 1)
1281                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1282         } else {
1283                 /*
1284                  * When turning on, we need to retry for 1ms to give the sink
1285                  * time to wake up.
1286                  */
1287                 for (i = 0; i < 3; i++) {
1288                         ret = intel_dp_aux_native_write_1(intel_dp,
1289                                                           DP_SET_POWER,
1290                                                           DP_SET_POWER_D0);
1291                         if (ret == 1)
1292                                 break;
1293                         msleep(1);
1294                 }
1295         }
1296 }
1297
1298 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1299                                   enum pipe *pipe)
1300 {
1301         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1302         struct drm_device *dev = encoder->base.dev;
1303         struct drm_i915_private *dev_priv = dev->dev_private;
1304         u32 tmp = I915_READ(intel_dp->output_reg);
1305
1306         if (!(tmp & DP_PORT_EN))
1307                 return false;
1308
1309         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1310                 *pipe = PORT_TO_PIPE_CPT(tmp);
1311         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1312                 *pipe = PORT_TO_PIPE(tmp);
1313         } else {
1314                 u32 trans_sel;
1315                 u32 trans_dp;
1316                 int i;
1317
1318                 switch (intel_dp->output_reg) {
1319                 case PCH_DP_B:
1320                         trans_sel = TRANS_DP_PORT_SEL_B;
1321                         break;
1322                 case PCH_DP_C:
1323                         trans_sel = TRANS_DP_PORT_SEL_C;
1324                         break;
1325                 case PCH_DP_D:
1326                         trans_sel = TRANS_DP_PORT_SEL_D;
1327                         break;
1328                 default:
1329                         return true;
1330                 }
1331
1332                 for_each_pipe(i) {
1333                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1334                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1335                                 *pipe = i;
1336                                 return true;
1337                         }
1338                 }
1339         }
1340
1341         DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1342
1343         return true;
1344 }
1345
1346 static void intel_disable_dp(struct intel_encoder *encoder)
1347 {
1348         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1349
1350         /* Make sure the panel is off before trying to change the mode. But also
1351          * ensure that we have vdd while we switch off the panel. */
1352         ironlake_edp_panel_vdd_on(intel_dp);
1353         ironlake_edp_backlight_off(intel_dp);
1354         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1355         ironlake_edp_panel_off(intel_dp);
1356
1357         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1358         if (!is_cpu_edp(intel_dp))
1359                 intel_dp_link_down(intel_dp);
1360 }
1361
1362 static void intel_post_disable_dp(struct intel_encoder *encoder)
1363 {
1364         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1365
1366         if (is_cpu_edp(intel_dp)) {
1367                 intel_dp_link_down(intel_dp);
1368                 ironlake_edp_pll_off(intel_dp);
1369         }
1370 }
1371
1372 static void intel_enable_dp(struct intel_encoder *encoder)
1373 {
1374         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1375         struct drm_device *dev = encoder->base.dev;
1376         struct drm_i915_private *dev_priv = dev->dev_private;
1377         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1378
1379         if (WARN_ON(dp_reg & DP_PORT_EN))
1380                 return;
1381
1382         ironlake_edp_panel_vdd_on(intel_dp);
1383         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1384         intel_dp_start_link_train(intel_dp);
1385         ironlake_edp_panel_on(intel_dp);
1386         ironlake_edp_panel_vdd_off(intel_dp, true);
1387         intel_dp_complete_link_train(intel_dp);
1388         ironlake_edp_backlight_on(intel_dp);
1389 }
1390
1391 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1392 {
1393         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1394
1395         if (is_cpu_edp(intel_dp))
1396                 ironlake_edp_pll_on(intel_dp);
1397 }
1398
1399 /*
1400  * Native read with retry for link status and receiver capability reads for
1401  * cases where the sink may still be asleep.
1402  */
1403 static bool
1404 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1405                                uint8_t *recv, int recv_bytes)
1406 {
1407         int ret, i;
1408
1409         /*
1410          * Sinks are *supposed* to come up within 1ms from an off state,
1411          * but we're also supposed to retry 3 times per the spec.
1412          */
1413         for (i = 0; i < 3; i++) {
1414                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1415                                                recv_bytes);
1416                 if (ret == recv_bytes)
1417                         return true;
1418                 msleep(1);
1419         }
1420
1421         return false;
1422 }
1423
1424 /*
1425  * Fetch AUX CH registers 0x202 - 0x207 which contain
1426  * link status information
1427  */
1428 static bool
1429 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1430 {
1431         return intel_dp_aux_native_read_retry(intel_dp,
1432                                               DP_LANE0_1_STATUS,
1433                                               link_status,
1434                                               DP_LINK_STATUS_SIZE);
1435 }
1436
1437 static uint8_t
1438 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1439                      int r)
1440 {
1441         return link_status[r - DP_LANE0_1_STATUS];
1442 }
1443
1444 static uint8_t
1445 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1446                                  int lane)
1447 {
1448         int         s = ((lane & 1) ?
1449                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1450                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1451         uint8_t l = adjust_request[lane>>1];
1452
1453         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1454 }
1455
1456 static uint8_t
1457 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1458                                       int lane)
1459 {
1460         int         s = ((lane & 1) ?
1461                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1462                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1463         uint8_t l = adjust_request[lane>>1];
1464
1465         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1466 }
1467
1468
1469 #if 0
1470 static char     *voltage_names[] = {
1471         "0.4V", "0.6V", "0.8V", "1.2V"
1472 };
1473 static char     *pre_emph_names[] = {
1474         "0dB", "3.5dB", "6dB", "9.5dB"
1475 };
1476 static char     *link_train_names[] = {
1477         "pattern 1", "pattern 2", "idle", "off"
1478 };
1479 #endif
1480
1481 /*
1482  * These are source-specific values; current Intel hardware supports
1483  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1484  */
1485
1486 static uint8_t
1487 intel_dp_voltage_max(struct intel_dp *intel_dp)
1488 {
1489         struct drm_device *dev = intel_dp->base.base.dev;
1490
1491         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1492                 return DP_TRAIN_VOLTAGE_SWING_800;
1493         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1494                 return DP_TRAIN_VOLTAGE_SWING_1200;
1495         else
1496                 return DP_TRAIN_VOLTAGE_SWING_800;
1497 }
1498
1499 static uint8_t
1500 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1501 {
1502         struct drm_device *dev = intel_dp->base.base.dev;
1503
1504         if (IS_HASWELL(dev)) {
1505                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1506                 case DP_TRAIN_VOLTAGE_SWING_400:
1507                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1508                 case DP_TRAIN_VOLTAGE_SWING_600:
1509                         return DP_TRAIN_PRE_EMPHASIS_6;
1510                 case DP_TRAIN_VOLTAGE_SWING_800:
1511                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1512                 case DP_TRAIN_VOLTAGE_SWING_1200:
1513                 default:
1514                         return DP_TRAIN_PRE_EMPHASIS_0;
1515                 }
1516         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1517                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1518                 case DP_TRAIN_VOLTAGE_SWING_400:
1519                         return DP_TRAIN_PRE_EMPHASIS_6;
1520                 case DP_TRAIN_VOLTAGE_SWING_600:
1521                 case DP_TRAIN_VOLTAGE_SWING_800:
1522                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1523                 default:
1524                         return DP_TRAIN_PRE_EMPHASIS_0;
1525                 }
1526         } else {
1527                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1528                 case DP_TRAIN_VOLTAGE_SWING_400:
1529                         return DP_TRAIN_PRE_EMPHASIS_6;
1530                 case DP_TRAIN_VOLTAGE_SWING_600:
1531                         return DP_TRAIN_PRE_EMPHASIS_6;
1532                 case DP_TRAIN_VOLTAGE_SWING_800:
1533                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1534                 case DP_TRAIN_VOLTAGE_SWING_1200:
1535                 default:
1536                         return DP_TRAIN_PRE_EMPHASIS_0;
1537                 }
1538         }
1539 }
1540
1541 static void
1542 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1543 {
1544         uint8_t v = 0;
1545         uint8_t p = 0;
1546         int lane;
1547         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1548         uint8_t voltage_max;
1549         uint8_t preemph_max;
1550
1551         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1552                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1553                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1554
1555                 if (this_v > v)
1556                         v = this_v;
1557                 if (this_p > p)
1558                         p = this_p;
1559         }
1560
1561         voltage_max = intel_dp_voltage_max(intel_dp);
1562         if (v >= voltage_max)
1563                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1564
1565         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1566         if (p >= preemph_max)
1567                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1568
1569         for (lane = 0; lane < 4; lane++)
1570                 intel_dp->train_set[lane] = v | p;
1571 }
1572
1573 static uint32_t
1574 intel_dp_signal_levels(uint8_t train_set)
1575 {
1576         uint32_t        signal_levels = 0;
1577
1578         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1579         case DP_TRAIN_VOLTAGE_SWING_400:
1580         default:
1581                 signal_levels |= DP_VOLTAGE_0_4;
1582                 break;
1583         case DP_TRAIN_VOLTAGE_SWING_600:
1584                 signal_levels |= DP_VOLTAGE_0_6;
1585                 break;
1586         case DP_TRAIN_VOLTAGE_SWING_800:
1587                 signal_levels |= DP_VOLTAGE_0_8;
1588                 break;
1589         case DP_TRAIN_VOLTAGE_SWING_1200:
1590                 signal_levels |= DP_VOLTAGE_1_2;
1591                 break;
1592         }
1593         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1594         case DP_TRAIN_PRE_EMPHASIS_0:
1595         default:
1596                 signal_levels |= DP_PRE_EMPHASIS_0;
1597                 break;
1598         case DP_TRAIN_PRE_EMPHASIS_3_5:
1599                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1600                 break;
1601         case DP_TRAIN_PRE_EMPHASIS_6:
1602                 signal_levels |= DP_PRE_EMPHASIS_6;
1603                 break;
1604         case DP_TRAIN_PRE_EMPHASIS_9_5:
1605                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1606                 break;
1607         }
1608         return signal_levels;
1609 }
1610
1611 /* Gen6's DP voltage swing and pre-emphasis control */
1612 static uint32_t
1613 intel_gen6_edp_signal_levels(uint8_t train_set)
1614 {
1615         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1616                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1617         switch (signal_levels) {
1618         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1619         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1620                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1621         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1622                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1623         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1624         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1625                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1626         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1627         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1628                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1629         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1630         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1631                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1632         default:
1633                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1634                               "0x%x\n", signal_levels);
1635                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1636         }
1637 }
1638
1639 /* Gen7's DP voltage swing and pre-emphasis control */
1640 static uint32_t
1641 intel_gen7_edp_signal_levels(uint8_t train_set)
1642 {
1643         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1644                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1645         switch (signal_levels) {
1646         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1647                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1648         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1649                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1650         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1651                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1652
1653         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1654                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1655         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1656                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1657
1658         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1659                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1660         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1662
1663         default:
1664                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1665                               "0x%x\n", signal_levels);
1666                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1667         }
1668 }
1669
1670 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1671 static uint32_t
1672 intel_dp_signal_levels_hsw(uint8_t train_set)
1673 {
1674         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1675                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1676         switch (signal_levels) {
1677         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1678                 return DDI_BUF_EMP_400MV_0DB_HSW;
1679         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1680                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1681         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1682                 return DDI_BUF_EMP_400MV_6DB_HSW;
1683         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1684                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1685
1686         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1687                 return DDI_BUF_EMP_600MV_0DB_HSW;
1688         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1689                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1690         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1691                 return DDI_BUF_EMP_600MV_6DB_HSW;
1692
1693         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1694                 return DDI_BUF_EMP_800MV_0DB_HSW;
1695         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1696                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1697         default:
1698                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1699                               "0x%x\n", signal_levels);
1700                 return DDI_BUF_EMP_400MV_0DB_HSW;
1701         }
1702 }
1703
1704 static uint8_t
1705 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1706                       int lane)
1707 {
1708         int s = (lane & 1) * 4;
1709         uint8_t l = link_status[lane>>1];
1710
1711         return (l >> s) & 0xf;
1712 }
1713
1714 /* Check for clock recovery is done on all channels */
1715 static bool
1716 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1717 {
1718         int lane;
1719         uint8_t lane_status;
1720
1721         for (lane = 0; lane < lane_count; lane++) {
1722                 lane_status = intel_get_lane_status(link_status, lane);
1723                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1724                         return false;
1725         }
1726         return true;
1727 }
1728
1729 /* Check to see if channel eq is done on all channels */
1730 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1731                          DP_LANE_CHANNEL_EQ_DONE|\
1732                          DP_LANE_SYMBOL_LOCKED)
1733 static bool
1734 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1735 {
1736         uint8_t lane_align;
1737         uint8_t lane_status;
1738         int lane;
1739
1740         lane_align = intel_dp_link_status(link_status,
1741                                           DP_LANE_ALIGN_STATUS_UPDATED);
1742         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1743                 return false;
1744         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1745                 lane_status = intel_get_lane_status(link_status, lane);
1746                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1747                         return false;
1748         }
1749         return true;
1750 }
1751
1752 static bool
1753 intel_dp_set_link_train(struct intel_dp *intel_dp,
1754                         uint32_t dp_reg_value,
1755                         uint8_t dp_train_pat)
1756 {
1757         struct drm_device *dev = intel_dp->base.base.dev;
1758         struct drm_i915_private *dev_priv = dev->dev_private;
1759         int ret;
1760         uint32_t temp;
1761
1762         if (IS_HASWELL(dev)) {
1763                 temp = I915_READ(DP_TP_CTL(intel_dp->port));
1764
1765                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1766                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1767                 else
1768                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1769
1770                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1771                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1772                 case DP_TRAINING_PATTERN_DISABLE:
1773                         temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1774                         I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1775
1776                         if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1777                                       DP_TP_STATUS_IDLE_DONE), 1))
1778                                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1779
1780                         temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1781                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1782
1783                         break;
1784                 case DP_TRAINING_PATTERN_1:
1785                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1786                         break;
1787                 case DP_TRAINING_PATTERN_2:
1788                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1789                         break;
1790                 case DP_TRAINING_PATTERN_3:
1791                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1792                         break;
1793                 }
1794                 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1795
1796         } else if (HAS_PCH_CPT(dev) &&
1797                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1798                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1799
1800                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1801                 case DP_TRAINING_PATTERN_DISABLE:
1802                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1803                         break;
1804                 case DP_TRAINING_PATTERN_1:
1805                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1806                         break;
1807                 case DP_TRAINING_PATTERN_2:
1808                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1809                         break;
1810                 case DP_TRAINING_PATTERN_3:
1811                         DRM_ERROR("DP training pattern 3 not supported\n");
1812                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1813                         break;
1814                 }
1815
1816         } else {
1817                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1818
1819                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1820                 case DP_TRAINING_PATTERN_DISABLE:
1821                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1822                         break;
1823                 case DP_TRAINING_PATTERN_1:
1824                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1825                         break;
1826                 case DP_TRAINING_PATTERN_2:
1827                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1828                         break;
1829                 case DP_TRAINING_PATTERN_3:
1830                         DRM_ERROR("DP training pattern 3 not supported\n");
1831                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1832                         break;
1833                 }
1834         }
1835
1836         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1837         POSTING_READ(intel_dp->output_reg);
1838
1839         intel_dp_aux_native_write_1(intel_dp,
1840                                     DP_TRAINING_PATTERN_SET,
1841                                     dp_train_pat);
1842
1843         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1844             DP_TRAINING_PATTERN_DISABLE) {
1845                 ret = intel_dp_aux_native_write(intel_dp,
1846                                                 DP_TRAINING_LANE0_SET,
1847                                                 intel_dp->train_set,
1848                                                 intel_dp->lane_count);
1849                 if (ret != intel_dp->lane_count)
1850                         return false;
1851         }
1852
1853         return true;
1854 }
1855
1856 /* Enable corresponding port and start training pattern 1 */
1857 static void
1858 intel_dp_start_link_train(struct intel_dp *intel_dp)
1859 {
1860         struct drm_device *dev = intel_dp->base.base.dev;
1861         int i;
1862         uint8_t voltage;
1863         bool clock_recovery = false;
1864         int voltage_tries, loop_tries;
1865         uint32_t DP = intel_dp->DP;
1866
1867         /* Write the link configuration data */
1868         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1869                                   intel_dp->link_configuration,
1870                                   DP_LINK_CONFIGURATION_SIZE);
1871
1872         DP |= DP_PORT_EN;
1873
1874         memset(intel_dp->train_set, 0, 4);
1875         voltage = 0xff;
1876         voltage_tries = 0;
1877         loop_tries = 0;
1878         clock_recovery = false;
1879         for (;;) {
1880                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1881                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1882                 uint32_t    signal_levels;
1883
1884                 if (IS_HASWELL(dev)) {
1885                         signal_levels = intel_dp_signal_levels_hsw(
1886                                                         intel_dp->train_set[0]);
1887                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1888                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1889                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1890                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1891                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1892                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1893                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1894                 } else {
1895                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1896                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1897                 }
1898                 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1899                               signal_levels);
1900
1901                 if (!intel_dp_set_link_train(intel_dp, DP,
1902                                              DP_TRAINING_PATTERN_1 |
1903                                              DP_LINK_SCRAMBLING_DISABLE))
1904                         break;
1905                 /* Set training pattern 1 */
1906
1907                 udelay(100);
1908                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1909                         DRM_ERROR("failed to get link status\n");
1910                         break;
1911                 }
1912
1913                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1914                         DRM_DEBUG_KMS("clock recovery OK\n");
1915                         clock_recovery = true;
1916                         break;
1917                 }
1918
1919                 /* Check to see if we've tried the max voltage */
1920                 for (i = 0; i < intel_dp->lane_count; i++)
1921                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1922                                 break;
1923                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1924                         ++loop_tries;
1925                         if (loop_tries == 5) {
1926                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1927                                 break;
1928                         }
1929                         memset(intel_dp->train_set, 0, 4);
1930                         voltage_tries = 0;
1931                         continue;
1932                 }
1933
1934                 /* Check to see if we've tried the same voltage 5 times */
1935                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1936                         ++voltage_tries;
1937                         if (voltage_tries == 5) {
1938                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1939                                 break;
1940                         }
1941                 } else
1942                         voltage_tries = 0;
1943                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1944
1945                 /* Compute new intel_dp->train_set as requested by target */
1946                 intel_get_adjust_train(intel_dp, link_status);
1947         }
1948
1949         intel_dp->DP = DP;
1950 }
1951
1952 static void
1953 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1954 {
1955         struct drm_device *dev = intel_dp->base.base.dev;
1956         bool channel_eq = false;
1957         int tries, cr_tries;
1958         uint32_t DP = intel_dp->DP;
1959
1960         /* channel equalization */
1961         tries = 0;
1962         cr_tries = 0;
1963         channel_eq = false;
1964         for (;;) {
1965                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1966                 uint32_t    signal_levels;
1967                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1968
1969                 if (cr_tries > 5) {
1970                         DRM_ERROR("failed to train DP, aborting\n");
1971                         intel_dp_link_down(intel_dp);
1972                         break;
1973                 }
1974
1975                 if (IS_HASWELL(dev)) {
1976                         signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1977                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1978                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1979                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1980                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1981                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1982                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1983                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1984                 } else {
1985                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1986                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1987                 }
1988
1989                 /* channel eq pattern */
1990                 if (!intel_dp_set_link_train(intel_dp, DP,
1991                                              DP_TRAINING_PATTERN_2 |
1992                                              DP_LINK_SCRAMBLING_DISABLE))
1993                         break;
1994
1995                 udelay(400);
1996                 if (!intel_dp_get_link_status(intel_dp, link_status))
1997                         break;
1998
1999                 /* Make sure clock is still ok */
2000                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2001                         intel_dp_start_link_train(intel_dp);
2002                         cr_tries++;
2003                         continue;
2004                 }
2005
2006                 if (intel_channel_eq_ok(intel_dp, link_status)) {
2007                         channel_eq = true;
2008                         break;
2009                 }
2010
2011                 /* Try 5 times, then try clock recovery if that fails */
2012                 if (tries > 5) {
2013                         intel_dp_link_down(intel_dp);
2014                         intel_dp_start_link_train(intel_dp);
2015                         tries = 0;
2016                         cr_tries++;
2017                         continue;
2018                 }
2019
2020                 /* Compute new intel_dp->train_set as requested by target */
2021                 intel_get_adjust_train(intel_dp, link_status);
2022                 ++tries;
2023         }
2024
2025         if (channel_eq)
2026                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2027
2028         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2029 }
2030
2031 static void
2032 intel_dp_link_down(struct intel_dp *intel_dp)
2033 {
2034         struct drm_device *dev = intel_dp->base.base.dev;
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         uint32_t DP = intel_dp->DP;
2037
2038         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2039                 return;
2040
2041         DRM_DEBUG_KMS("\n");
2042
2043         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2044                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2045                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2046         } else {
2047                 DP &= ~DP_LINK_TRAIN_MASK;
2048                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2049         }
2050         POSTING_READ(intel_dp->output_reg);
2051
2052         msleep(17);
2053
2054         if (HAS_PCH_IBX(dev) &&
2055             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2056                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2057
2058                 /* Hardware workaround: leaving our transcoder select
2059                  * set to transcoder B while it's off will prevent the
2060                  * corresponding HDMI output on transcoder A.
2061                  *
2062                  * Combine this with another hardware workaround:
2063                  * transcoder select bit can only be cleared while the
2064                  * port is enabled.
2065                  */
2066                 DP &= ~DP_PIPEB_SELECT;
2067                 I915_WRITE(intel_dp->output_reg, DP);
2068
2069                 /* Changes to enable or select take place the vblank
2070                  * after being written.
2071                  */
2072                 if (crtc == NULL) {
2073                         /* We can arrive here never having been attached
2074                          * to a CRTC, for instance, due to inheriting
2075                          * random state from the BIOS.
2076                          *
2077                          * If the pipe is not running, play safe and
2078                          * wait for the clocks to stabilise before
2079                          * continuing.
2080                          */
2081                         POSTING_READ(intel_dp->output_reg);
2082                         msleep(50);
2083                 } else
2084                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2085         }
2086
2087         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2088         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2089         POSTING_READ(intel_dp->output_reg);
2090         msleep(intel_dp->panel_power_down_delay);
2091 }
2092
2093 static bool
2094 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2095 {
2096         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2097                                            sizeof(intel_dp->dpcd)) == 0)
2098                 return false; /* aux transfer failed */
2099
2100         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2101                 return false; /* DPCD not present */
2102
2103         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2104               DP_DWN_STRM_PORT_PRESENT))
2105                 return true; /* native DP sink */
2106
2107         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2108                 return true; /* no per-port downstream info */
2109
2110         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2111                                            intel_dp->downstream_ports,
2112                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2113                 return false; /* downstream port status fetch failed */
2114
2115         return true;
2116 }
2117
2118 static void
2119 intel_dp_probe_oui(struct intel_dp *intel_dp)
2120 {
2121         u8 buf[3];
2122
2123         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2124                 return;
2125
2126         ironlake_edp_panel_vdd_on(intel_dp);
2127
2128         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2129                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2130                               buf[0], buf[1], buf[2]);
2131
2132         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2133                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2134                               buf[0], buf[1], buf[2]);
2135
2136         ironlake_edp_panel_vdd_off(intel_dp, false);
2137 }
2138
2139 static bool
2140 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2141 {
2142         int ret;
2143
2144         ret = intel_dp_aux_native_read_retry(intel_dp,
2145                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2146                                              sink_irq_vector, 1);
2147         if (!ret)
2148                 return false;
2149
2150         return true;
2151 }
2152
2153 static void
2154 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2155 {
2156         /* NAK by default */
2157         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2158 }
2159
2160 /*
2161  * According to DP spec
2162  * 5.1.2:
2163  *  1. Read DPCD
2164  *  2. Configure link according to Receiver Capabilities
2165  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2166  *  4. Check link status on receipt of hot-plug interrupt
2167  */
2168
2169 static void
2170 intel_dp_check_link_status(struct intel_dp *intel_dp)
2171 {
2172         u8 sink_irq_vector;
2173         u8 link_status[DP_LINK_STATUS_SIZE];
2174
2175         if (!intel_dp->base.connectors_active)
2176                 return;
2177
2178         if (WARN_ON(!intel_dp->base.base.crtc))
2179                 return;
2180
2181         /* Try to read receiver status if the link appears to be up */
2182         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2183                 intel_dp_link_down(intel_dp);
2184                 return;
2185         }
2186
2187         /* Now read the DPCD to see if it's actually running */
2188         if (!intel_dp_get_dpcd(intel_dp)) {
2189                 intel_dp_link_down(intel_dp);
2190                 return;
2191         }
2192
2193         /* Try to read the source of the interrupt */
2194         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2195             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2196                 /* Clear interrupt source */
2197                 intel_dp_aux_native_write_1(intel_dp,
2198                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2199                                             sink_irq_vector);
2200
2201                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2202                         intel_dp_handle_test_request(intel_dp);
2203                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2204                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2205         }
2206
2207         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2208                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2209                               drm_get_encoder_name(&intel_dp->base.base));
2210                 intel_dp_start_link_train(intel_dp);
2211                 intel_dp_complete_link_train(intel_dp);
2212         }
2213 }
2214
2215 /* XXX this is probably wrong for multiple downstream ports */
2216 static enum drm_connector_status
2217 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2218 {
2219         uint8_t *dpcd = intel_dp->dpcd;
2220         bool hpd;
2221         uint8_t type;
2222
2223         if (!intel_dp_get_dpcd(intel_dp))
2224                 return connector_status_disconnected;
2225
2226         /* if there's no downstream port, we're done */
2227         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2228                 return connector_status_connected;
2229
2230         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2231         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2232         if (hpd) {
2233                 uint8_t reg;
2234                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2235                                                     &reg, 1))
2236                         return connector_status_unknown;
2237                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2238                                               : connector_status_disconnected;
2239         }
2240
2241         /* If no HPD, poke DDC gently */
2242         if (drm_probe_ddc(&intel_dp->adapter))
2243                 return connector_status_connected;
2244
2245         /* Well we tried, say unknown for unreliable port types */
2246         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2247         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2248                 return connector_status_unknown;
2249
2250         /* Anything else is out of spec, warn and ignore */
2251         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2252         return connector_status_disconnected;
2253 }
2254
2255 static enum drm_connector_status
2256 ironlake_dp_detect(struct intel_dp *intel_dp)
2257 {
2258         enum drm_connector_status status;
2259
2260         /* Can't disconnect eDP, but you can close the lid... */
2261         if (is_edp(intel_dp)) {
2262                 status = intel_panel_detect(intel_dp->base.base.dev);
2263                 if (status == connector_status_unknown)
2264                         status = connector_status_connected;
2265                 return status;
2266         }
2267
2268         return intel_dp_detect_dpcd(intel_dp);
2269 }
2270
2271 static enum drm_connector_status
2272 g4x_dp_detect(struct intel_dp *intel_dp)
2273 {
2274         struct drm_device *dev = intel_dp->base.base.dev;
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276         uint32_t bit;
2277
2278         switch (intel_dp->output_reg) {
2279         case DP_B:
2280                 bit = DPB_HOTPLUG_LIVE_STATUS;
2281                 break;
2282         case DP_C:
2283                 bit = DPC_HOTPLUG_LIVE_STATUS;
2284                 break;
2285         case DP_D:
2286                 bit = DPD_HOTPLUG_LIVE_STATUS;
2287                 break;
2288         default:
2289                 return connector_status_unknown;
2290         }
2291
2292         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2293                 return connector_status_disconnected;
2294
2295         return intel_dp_detect_dpcd(intel_dp);
2296 }
2297
2298 static struct edid *
2299 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2300 {
2301         struct intel_dp *intel_dp = intel_attached_dp(connector);
2302         struct edid     *edid;
2303         int size;
2304
2305         if (is_edp(intel_dp)) {
2306                 if (!intel_dp->edid)
2307                         return NULL;
2308
2309                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2310                 edid = kmalloc(size, GFP_KERNEL);
2311                 if (!edid)
2312                         return NULL;
2313
2314                 memcpy(edid, intel_dp->edid, size);
2315                 return edid;
2316         }
2317
2318         edid = drm_get_edid(connector, adapter);
2319         return edid;
2320 }
2321
2322 static int
2323 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2324 {
2325         struct intel_dp *intel_dp = intel_attached_dp(connector);
2326         int     ret;
2327
2328         if (is_edp(intel_dp)) {
2329                 drm_mode_connector_update_edid_property(connector,
2330                                                         intel_dp->edid);
2331                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2332                 drm_edid_to_eld(connector,
2333                                 intel_dp->edid);
2334                 return intel_dp->edid_mode_count;
2335         }
2336
2337         ret = intel_ddc_get_modes(connector, adapter);
2338         return ret;
2339 }
2340
2341
2342 /**
2343  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2344  *
2345  * \return true if DP port is connected.
2346  * \return false if DP port is disconnected.
2347  */
2348 static enum drm_connector_status
2349 intel_dp_detect(struct drm_connector *connector, bool force)
2350 {
2351         struct intel_dp *intel_dp = intel_attached_dp(connector);
2352         struct drm_device *dev = intel_dp->base.base.dev;
2353         enum drm_connector_status status;
2354         struct edid *edid = NULL;
2355
2356         intel_dp->has_audio = false;
2357
2358         if (HAS_PCH_SPLIT(dev))
2359                 status = ironlake_dp_detect(intel_dp);
2360         else
2361                 status = g4x_dp_detect(intel_dp);
2362
2363         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2364                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2365                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2366                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2367
2368         if (status != connector_status_connected)
2369                 return status;
2370
2371         intel_dp_probe_oui(intel_dp);
2372
2373         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2374                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2375         } else {
2376                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2377                 if (edid) {
2378                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2379                         kfree(edid);
2380                 }
2381         }
2382
2383         return connector_status_connected;
2384 }
2385
2386 static int intel_dp_get_modes(struct drm_connector *connector)
2387 {
2388         struct intel_dp *intel_dp = intel_attached_dp(connector);
2389         struct drm_device *dev = intel_dp->base.base.dev;
2390         struct drm_i915_private *dev_priv = dev->dev_private;
2391         int ret;
2392
2393         /* We should parse the EDID data and find out if it has an audio sink
2394          */
2395
2396         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2397         if (ret) {
2398                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2399                         struct drm_display_mode *newmode;
2400                         list_for_each_entry(newmode, &connector->probed_modes,
2401                                             head) {
2402                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2403                                         intel_dp->panel_fixed_mode =
2404                                                 drm_mode_duplicate(dev, newmode);
2405                                         break;
2406                                 }
2407                         }
2408                 }
2409                 return ret;
2410         }
2411
2412         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2413         if (is_edp(intel_dp)) {
2414                 /* initialize panel mode from VBT if available for eDP */
2415                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2416                         intel_dp->panel_fixed_mode =
2417                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2418                         if (intel_dp->panel_fixed_mode) {
2419                                 intel_dp->panel_fixed_mode->type |=
2420                                         DRM_MODE_TYPE_PREFERRED;
2421                         }
2422                 }
2423                 if (intel_dp->panel_fixed_mode) {
2424                         struct drm_display_mode *mode;
2425                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2426                         drm_mode_probed_add(connector, mode);
2427                         return 1;
2428                 }
2429         }
2430         return 0;
2431 }
2432
2433 static bool
2434 intel_dp_detect_audio(struct drm_connector *connector)
2435 {
2436         struct intel_dp *intel_dp = intel_attached_dp(connector);
2437         struct edid *edid;
2438         bool has_audio = false;
2439
2440         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2441         if (edid) {
2442                 has_audio = drm_detect_monitor_audio(edid);
2443                 kfree(edid);
2444         }
2445
2446         return has_audio;
2447 }
2448
2449 static int
2450 intel_dp_set_property(struct drm_connector *connector,
2451                       struct drm_property *property,
2452                       uint64_t val)
2453 {
2454         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2455         struct intel_dp *intel_dp = intel_attached_dp(connector);
2456         int ret;
2457
2458         ret = drm_connector_property_set_value(connector, property, val);
2459         if (ret)
2460                 return ret;
2461
2462         if (property == dev_priv->force_audio_property) {
2463                 int i = val;
2464                 bool has_audio;
2465
2466                 if (i == intel_dp->force_audio)
2467                         return 0;
2468
2469                 intel_dp->force_audio = i;
2470
2471                 if (i == HDMI_AUDIO_AUTO)
2472                         has_audio = intel_dp_detect_audio(connector);
2473                 else
2474                         has_audio = (i == HDMI_AUDIO_ON);
2475
2476                 if (has_audio == intel_dp->has_audio)
2477                         return 0;
2478
2479                 intel_dp->has_audio = has_audio;
2480                 goto done;
2481         }
2482
2483         if (property == dev_priv->broadcast_rgb_property) {
2484                 if (val == !!intel_dp->color_range)
2485                         return 0;
2486
2487                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2488                 goto done;
2489         }
2490
2491         return -EINVAL;
2492
2493 done:
2494         if (intel_dp->base.base.crtc) {
2495                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2496                 intel_set_mode(crtc, &crtc->mode,
2497                                crtc->x, crtc->y, crtc->fb);
2498         }
2499
2500         return 0;
2501 }
2502
2503 static void
2504 intel_dp_destroy(struct drm_connector *connector)
2505 {
2506         struct drm_device *dev = connector->dev;
2507
2508         if (intel_dpd_is_edp(dev))
2509                 intel_panel_destroy_backlight(dev);
2510
2511         drm_sysfs_connector_remove(connector);
2512         drm_connector_cleanup(connector);
2513         kfree(connector);
2514 }
2515
2516 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2517 {
2518         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2519
2520         i2c_del_adapter(&intel_dp->adapter);
2521         drm_encoder_cleanup(encoder);
2522         if (is_edp(intel_dp)) {
2523                 kfree(intel_dp->edid);
2524                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2525                 ironlake_panel_vdd_off_sync(intel_dp);
2526         }
2527         kfree(intel_dp);
2528 }
2529
2530 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2531         .mode_fixup = intel_dp_mode_fixup,
2532         .mode_set = intel_dp_mode_set,
2533         .disable = intel_encoder_noop,
2534 };
2535
2536 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2537         .dpms = intel_connector_dpms,
2538         .detect = intel_dp_detect,
2539         .fill_modes = drm_helper_probe_single_connector_modes,
2540         .set_property = intel_dp_set_property,
2541         .destroy = intel_dp_destroy,
2542 };
2543
2544 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2545         .get_modes = intel_dp_get_modes,
2546         .mode_valid = intel_dp_mode_valid,
2547         .best_encoder = intel_best_encoder,
2548 };
2549
2550 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2551         .destroy = intel_dp_encoder_destroy,
2552 };
2553
2554 static void
2555 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2556 {
2557         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2558
2559         intel_dp_check_link_status(intel_dp);
2560 }
2561
2562 /* Return which DP Port should be selected for Transcoder DP control */
2563 int
2564 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2565 {
2566         struct drm_device *dev = crtc->dev;
2567         struct intel_encoder *encoder;
2568
2569         for_each_encoder_on_crtc(dev, crtc, encoder) {
2570                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2571
2572                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2573                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2574                         return intel_dp->output_reg;
2575         }
2576
2577         return -1;
2578 }
2579
2580 /* check the VBT to see whether the eDP is on DP-D port */
2581 bool intel_dpd_is_edp(struct drm_device *dev)
2582 {
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         struct child_device_config *p_child;
2585         int i;
2586
2587         if (!dev_priv->child_dev_num)
2588                 return false;
2589
2590         for (i = 0; i < dev_priv->child_dev_num; i++) {
2591                 p_child = dev_priv->child_dev + i;
2592
2593                 if (p_child->dvo_port == PORT_IDPD &&
2594                     p_child->device_type == DEVICE_TYPE_eDP)
2595                         return true;
2596         }
2597         return false;
2598 }
2599
2600 static void
2601 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2602 {
2603         intel_attach_force_audio_property(connector);
2604         intel_attach_broadcast_rgb_property(connector);
2605 }
2606
2607 void
2608 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2609 {
2610         struct drm_i915_private *dev_priv = dev->dev_private;
2611         struct drm_connector *connector;
2612         struct intel_dp *intel_dp;
2613         struct intel_encoder *intel_encoder;
2614         struct intel_connector *intel_connector;
2615         const char *name = NULL;
2616         int type;
2617
2618         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2619         if (!intel_dp)
2620                 return;
2621
2622         intel_dp->output_reg = output_reg;
2623         intel_dp->port = port;
2624         /* Preserve the current hw state. */
2625         intel_dp->DP = I915_READ(intel_dp->output_reg);
2626
2627         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2628         if (!intel_connector) {
2629                 kfree(intel_dp);
2630                 return;
2631         }
2632         intel_encoder = &intel_dp->base;
2633
2634         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2635                 if (intel_dpd_is_edp(dev))
2636                         intel_dp->is_pch_edp = true;
2637
2638         /*
2639          * FIXME : We need to initialize built-in panels before external panels.
2640          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2641          */
2642         if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2643                 type = DRM_MODE_CONNECTOR_eDP;
2644                 intel_encoder->type = INTEL_OUTPUT_EDP;
2645         } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2646                 type = DRM_MODE_CONNECTOR_eDP;
2647                 intel_encoder->type = INTEL_OUTPUT_EDP;
2648         } else {
2649                 type = DRM_MODE_CONNECTOR_DisplayPort;
2650                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2651         }
2652
2653         connector = &intel_connector->base;
2654         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2655         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2656
2657         connector->polled = DRM_CONNECTOR_POLL_HPD;
2658
2659         intel_encoder->cloneable = false;
2660
2661         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2662                           ironlake_panel_vdd_work);
2663
2664         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2665
2666         connector->interlace_allowed = true;
2667         connector->doublescan_allowed = 0;
2668
2669         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2670                          DRM_MODE_ENCODER_TMDS);
2671         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2672
2673         intel_connector_attach_encoder(intel_connector, intel_encoder);
2674         drm_sysfs_connector_add(connector);
2675
2676         intel_encoder->enable = intel_enable_dp;
2677         intel_encoder->pre_enable = intel_pre_enable_dp;
2678         intel_encoder->disable = intel_disable_dp;
2679         intel_encoder->post_disable = intel_post_disable_dp;
2680         intel_encoder->get_hw_state = intel_dp_get_hw_state;
2681         intel_connector->get_hw_state = intel_connector_get_hw_state;
2682
2683         /* Set up the DDC bus. */
2684         switch (port) {
2685         case PORT_A:
2686                 name = "DPDDC-A";
2687                 break;
2688         case PORT_B:
2689                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2690                 name = "DPDDC-B";
2691                 break;
2692         case PORT_C:
2693                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2694                 name = "DPDDC-C";
2695                 break;
2696         case PORT_D:
2697                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2698                 name = "DPDDC-D";
2699                 break;
2700         default:
2701                 WARN(1, "Invalid port %c\n", port_name(port));
2702                 break;
2703         }
2704
2705         /* Cache some DPCD data in the eDP case */
2706         if (is_edp(intel_dp)) {
2707                 struct edp_power_seq    cur, vbt;
2708                 u32 pp_on, pp_off, pp_div;
2709
2710                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2711                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2712                 pp_div = I915_READ(PCH_PP_DIVISOR);
2713
2714                 if (!pp_on || !pp_off || !pp_div) {
2715                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2716                         intel_dp_encoder_destroy(&intel_dp->base.base);
2717                         intel_dp_destroy(&intel_connector->base);
2718                         return;
2719                 }
2720
2721                 /* Pull timing values out of registers */
2722                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2723                         PANEL_POWER_UP_DELAY_SHIFT;
2724
2725                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2726                         PANEL_LIGHT_ON_DELAY_SHIFT;
2727
2728                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2729                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2730
2731                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2732                         PANEL_POWER_DOWN_DELAY_SHIFT;
2733
2734                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2735                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2736
2737                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2738                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2739
2740                 vbt = dev_priv->edp.pps;
2741
2742                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2743                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2744
2745 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2746
2747                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2748                 intel_dp->backlight_on_delay = get_delay(t8);
2749                 intel_dp->backlight_off_delay = get_delay(t9);
2750                 intel_dp->panel_power_down_delay = get_delay(t10);
2751                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2752
2753                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2754                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2755                               intel_dp->panel_power_cycle_delay);
2756
2757                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2758                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2759         }
2760
2761         intel_dp_i2c_init(intel_dp, intel_connector, name);
2762
2763         if (is_edp(intel_dp)) {
2764                 bool ret;
2765                 struct edid *edid;
2766
2767                 ironlake_edp_panel_vdd_on(intel_dp);
2768                 ret = intel_dp_get_dpcd(intel_dp);
2769                 ironlake_edp_panel_vdd_off(intel_dp, false);
2770
2771                 if (ret) {
2772                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2773                                 dev_priv->no_aux_handshake =
2774                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2775                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2776                 } else {
2777                         /* if this fails, presume the device is a ghost */
2778                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2779                         intel_dp_encoder_destroy(&intel_dp->base.base);
2780                         intel_dp_destroy(&intel_connector->base);
2781                         return;
2782                 }
2783
2784                 ironlake_edp_panel_vdd_on(intel_dp);
2785                 edid = drm_get_edid(connector, &intel_dp->adapter);
2786                 if (edid) {
2787                         drm_mode_connector_update_edid_property(connector,
2788                                                                 edid);
2789                         intel_dp->edid_mode_count =
2790                                 drm_add_edid_modes(connector, edid);
2791                         drm_edid_to_eld(connector, edid);
2792                         intel_dp->edid = edid;
2793                 }
2794                 ironlake_edp_panel_vdd_off(intel_dp, false);
2795         }
2796
2797         intel_encoder->hot_plug = intel_dp_hot_plug;
2798
2799         if (is_edp(intel_dp)) {
2800                 dev_priv->int_edp_connector = connector;
2801                 intel_panel_setup_backlight(dev);
2802         }
2803
2804         intel_dp_add_properties(intel_dp, connector);
2805
2806         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2807          * 0xd.  Failure to do so will result in spurious interrupts being
2808          * generated on the port when a cable is not attached.
2809          */
2810         if (IS_G4X(dev) && !IS_GM45(dev)) {
2811                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2812                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2813         }
2814 }