drm/i915: restore debug message lost in merge resolution
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         default:
79                 max_link_bw = DP_LINK_BW_1_62;
80                 break;
81         }
82         return max_link_bw;
83 }
84
85 /*
86  * The units on the numbers in the next two are... bizarre.  Examples will
87  * make it clearer; this one parallels an example in the eDP spec.
88  *
89  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
90  *
91  *     270000 * 1 * 8 / 10 == 216000
92  *
93  * The actual data capacity of that configuration is 2.16Gbit/s, so the
94  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
95  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
96  * 119000.  At 18bpp that's 2142000 kilobits per second.
97  *
98  * Thus the strange-looking division by 10 in intel_dp_link_required, to
99  * get the result in decakilobits instead of kilobits.
100  */
101
102 static int
103 intel_dp_link_required(int pixel_clock, int bpp)
104 {
105         return (pixel_clock * bpp + 9) / 10;
106 }
107
108 static int
109 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
110 {
111         return (max_link_clock * max_lanes * 8) / 10;
112 }
113
114 static int
115 intel_dp_mode_valid(struct drm_connector *connector,
116                     struct drm_display_mode *mode)
117 {
118         struct intel_dp *intel_dp = intel_attached_dp(connector);
119         struct intel_connector *intel_connector = to_intel_connector(connector);
120         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
121         int target_clock = mode->clock;
122         int max_rate, mode_rate, max_lanes, max_link_clock;
123
124         if (is_edp(intel_dp) && fixed_mode) {
125                 if (mode->hdisplay > fixed_mode->hdisplay)
126                         return MODE_PANEL;
127
128                 if (mode->vdisplay > fixed_mode->vdisplay)
129                         return MODE_PANEL;
130
131                 target_clock = fixed_mode->clock;
132         }
133
134         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
135         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
136
137         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
138         mode_rate = intel_dp_link_required(target_clock, 18);
139
140         if (mode_rate > max_rate)
141                 return MODE_CLOCK_HIGH;
142
143         if (mode->clock < 10000)
144                 return MODE_CLOCK_LOW;
145
146         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
147                 return MODE_H_ILLEGAL;
148
149         return MODE_OK;
150 }
151
152 static uint32_t
153 pack_aux(uint8_t *src, int src_bytes)
154 {
155         int     i;
156         uint32_t v = 0;
157
158         if (src_bytes > 4)
159                 src_bytes = 4;
160         for (i = 0; i < src_bytes; i++)
161                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
162         return v;
163 }
164
165 static void
166 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
167 {
168         int i;
169         if (dst_bytes > 4)
170                 dst_bytes = 4;
171         for (i = 0; i < dst_bytes; i++)
172                 dst[i] = src >> ((3-i) * 8);
173 }
174
175 /* hrawclock is 1/4 the FSB frequency */
176 static int
177 intel_hrawclk(struct drm_device *dev)
178 {
179         struct drm_i915_private *dev_priv = dev->dev_private;
180         uint32_t clkcfg;
181
182         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
183         if (IS_VALLEYVIEW(dev))
184                 return 200;
185
186         clkcfg = I915_READ(CLKCFG);
187         switch (clkcfg & CLKCFG_FSB_MASK) {
188         case CLKCFG_FSB_400:
189                 return 100;
190         case CLKCFG_FSB_533:
191                 return 133;
192         case CLKCFG_FSB_667:
193                 return 166;
194         case CLKCFG_FSB_800:
195                 return 200;
196         case CLKCFG_FSB_1067:
197                 return 266;
198         case CLKCFG_FSB_1333:
199                 return 333;
200         /* these two are just a guess; one of them might be right */
201         case CLKCFG_FSB_1600:
202         case CLKCFG_FSB_1600_ALT:
203                 return 400;
204         default:
205                 return 133;
206         }
207 }
208
209 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
210 {
211         struct drm_device *dev = intel_dp_to_dev(intel_dp);
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         u32 pp_stat_reg;
214
215         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
216         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
217 }
218
219 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
220 {
221         struct drm_device *dev = intel_dp_to_dev(intel_dp);
222         struct drm_i915_private *dev_priv = dev->dev_private;
223         u32 pp_ctrl_reg;
224
225         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
226         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
227 }
228
229 static void
230 intel_dp_check_edp(struct intel_dp *intel_dp)
231 {
232         struct drm_device *dev = intel_dp_to_dev(intel_dp);
233         struct drm_i915_private *dev_priv = dev->dev_private;
234         u32 pp_stat_reg, pp_ctrl_reg;
235
236         if (!is_edp(intel_dp))
237                 return;
238
239         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
240         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
241
242         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
243                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
244                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
245                                 I915_READ(pp_stat_reg),
246                                 I915_READ(pp_ctrl_reg));
247         }
248 }
249
250 static uint32_t
251 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
252 {
253         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
257         uint32_t status;
258         bool done;
259
260 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
261         if (has_aux_irq)
262                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
263                                           msecs_to_jiffies_timeout(10));
264         else
265                 done = wait_for_atomic(C, 10) == 0;
266         if (!done)
267                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
268                           has_aux_irq);
269 #undef C
270
271         return status;
272 }
273
274 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp)
275 {
276         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
277         struct drm_device *dev = intel_dig_port->base.base.dev;
278         struct drm_i915_private *dev_priv = dev->dev_private;
279
280         /* The clock divider is based off the hrawclk,
281          * and would like to run at 2MHz. So, take the
282          * hrawclk value and divide by 2 and use that
283          *
284          * Note that PCH attached eDP panels should use a 125MHz input
285          * clock divider.
286          */
287         if (IS_VALLEYVIEW(dev)) {
288                 return 100;
289         } else if (intel_dig_port->port == PORT_A) {
290                 if (HAS_DDI(dev))
291                         return DIV_ROUND_CLOSEST(
292                                 intel_ddi_get_cdclk_freq(dev_priv), 2000);
293                 else if (IS_GEN6(dev) || IS_GEN7(dev))
294                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
295                 else
296                         return 225; /* eDP input clock at 450Mhz */
297         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
298                 /* Workaround for non-ULT HSW */
299                 return 74;
300         } else if (HAS_PCH_SPLIT(dev)) {
301                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
302         } else {
303                 return intel_hrawclk(dev) / 2;
304         }
305 }
306
307 static int
308 intel_dp_aux_ch(struct intel_dp *intel_dp,
309                 uint8_t *send, int send_bytes,
310                 uint8_t *recv, int recv_size)
311 {
312         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
313         struct drm_device *dev = intel_dig_port->base.base.dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
316         uint32_t ch_data = ch_ctl + 4;
317         int i, ret, recv_bytes;
318         uint32_t status;
319         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp);
320         int try, precharge;
321         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
322
323         /* dp aux is extremely sensitive to irq latency, hence request the
324          * lowest possible wakeup latency and so prevent the cpu from going into
325          * deep sleep states.
326          */
327         pm_qos_update_request(&dev_priv->pm_qos, 0);
328
329         intel_dp_check_edp(intel_dp);
330
331         if (IS_GEN6(dev))
332                 precharge = 3;
333         else
334                 precharge = 5;
335
336         /* Try to wait for any previous AUX channel activity */
337         for (try = 0; try < 3; try++) {
338                 status = I915_READ_NOTRACE(ch_ctl);
339                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
340                         break;
341                 msleep(1);
342         }
343
344         if (try == 3) {
345                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
346                      I915_READ(ch_ctl));
347                 ret = -EBUSY;
348                 goto out;
349         }
350
351         /* Must try at least 3 times according to DP spec */
352         for (try = 0; try < 5; try++) {
353                 /* Load the send data into the aux channel data registers */
354                 for (i = 0; i < send_bytes; i += 4)
355                         I915_WRITE(ch_data + i,
356                                    pack_aux(send + i, send_bytes - i));
357
358                 /* Send the command and wait for it to complete */
359                 I915_WRITE(ch_ctl,
360                            DP_AUX_CH_CTL_SEND_BUSY |
361                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
362                            DP_AUX_CH_CTL_TIME_OUT_400us |
363                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
364                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
365                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
366                            DP_AUX_CH_CTL_DONE |
367                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
368                            DP_AUX_CH_CTL_RECEIVE_ERROR);
369
370                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
371
372                 /* Clear done status and any errors */
373                 I915_WRITE(ch_ctl,
374                            status |
375                            DP_AUX_CH_CTL_DONE |
376                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
377                            DP_AUX_CH_CTL_RECEIVE_ERROR);
378
379                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
380                               DP_AUX_CH_CTL_RECEIVE_ERROR))
381                         continue;
382                 if (status & DP_AUX_CH_CTL_DONE)
383                         break;
384         }
385
386         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
387                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
388                 ret = -EBUSY;
389                 goto out;
390         }
391
392         /* Check for timeout or receive error.
393          * Timeouts occur when the sink is not connected
394          */
395         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
396                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
397                 ret = -EIO;
398                 goto out;
399         }
400
401         /* Timeouts occur when the device isn't connected, so they're
402          * "normal" -- don't fill the kernel log with these */
403         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
404                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
405                 ret = -ETIMEDOUT;
406                 goto out;
407         }
408
409         /* Unload any bytes sent back from the other side */
410         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
411                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
412         if (recv_bytes > recv_size)
413                 recv_bytes = recv_size;
414
415         for (i = 0; i < recv_bytes; i += 4)
416                 unpack_aux(I915_READ(ch_data + i),
417                            recv + i, recv_bytes - i);
418
419         ret = recv_bytes;
420 out:
421         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
422
423         return ret;
424 }
425
426 /* Write data to the aux channel in native mode */
427 static int
428 intel_dp_aux_native_write(struct intel_dp *intel_dp,
429                           uint16_t address, uint8_t *send, int send_bytes)
430 {
431         int ret;
432         uint8_t msg[20];
433         int msg_bytes;
434         uint8_t ack;
435
436         intel_dp_check_edp(intel_dp);
437         if (send_bytes > 16)
438                 return -1;
439         msg[0] = AUX_NATIVE_WRITE << 4;
440         msg[1] = address >> 8;
441         msg[2] = address & 0xff;
442         msg[3] = send_bytes - 1;
443         memcpy(&msg[4], send, send_bytes);
444         msg_bytes = send_bytes + 4;
445         for (;;) {
446                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
447                 if (ret < 0)
448                         return ret;
449                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
450                         break;
451                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
452                         udelay(100);
453                 else
454                         return -EIO;
455         }
456         return send_bytes;
457 }
458
459 /* Write a single byte to the aux channel in native mode */
460 static int
461 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
462                             uint16_t address, uint8_t byte)
463 {
464         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
465 }
466
467 /* read bytes from a native aux channel */
468 static int
469 intel_dp_aux_native_read(struct intel_dp *intel_dp,
470                          uint16_t address, uint8_t *recv, int recv_bytes)
471 {
472         uint8_t msg[4];
473         int msg_bytes;
474         uint8_t reply[20];
475         int reply_bytes;
476         uint8_t ack;
477         int ret;
478
479         intel_dp_check_edp(intel_dp);
480         msg[0] = AUX_NATIVE_READ << 4;
481         msg[1] = address >> 8;
482         msg[2] = address & 0xff;
483         msg[3] = recv_bytes - 1;
484
485         msg_bytes = 4;
486         reply_bytes = recv_bytes + 1;
487
488         for (;;) {
489                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
490                                       reply, reply_bytes);
491                 if (ret == 0)
492                         return -EPROTO;
493                 if (ret < 0)
494                         return ret;
495                 ack = reply[0];
496                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
497                         memcpy(recv, reply + 1, ret - 1);
498                         return ret - 1;
499                 }
500                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
501                         udelay(100);
502                 else
503                         return -EIO;
504         }
505 }
506
507 static int
508 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
509                     uint8_t write_byte, uint8_t *read_byte)
510 {
511         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
512         struct intel_dp *intel_dp = container_of(adapter,
513                                                 struct intel_dp,
514                                                 adapter);
515         uint16_t address = algo_data->address;
516         uint8_t msg[5];
517         uint8_t reply[2];
518         unsigned retry;
519         int msg_bytes;
520         int reply_bytes;
521         int ret;
522
523         intel_dp_check_edp(intel_dp);
524         /* Set up the command byte */
525         if (mode & MODE_I2C_READ)
526                 msg[0] = AUX_I2C_READ << 4;
527         else
528                 msg[0] = AUX_I2C_WRITE << 4;
529
530         if (!(mode & MODE_I2C_STOP))
531                 msg[0] |= AUX_I2C_MOT << 4;
532
533         msg[1] = address >> 8;
534         msg[2] = address;
535
536         switch (mode) {
537         case MODE_I2C_WRITE:
538                 msg[3] = 0;
539                 msg[4] = write_byte;
540                 msg_bytes = 5;
541                 reply_bytes = 1;
542                 break;
543         case MODE_I2C_READ:
544                 msg[3] = 0;
545                 msg_bytes = 4;
546                 reply_bytes = 2;
547                 break;
548         default:
549                 msg_bytes = 3;
550                 reply_bytes = 1;
551                 break;
552         }
553
554         for (retry = 0; retry < 5; retry++) {
555                 ret = intel_dp_aux_ch(intel_dp,
556                                       msg, msg_bytes,
557                                       reply, reply_bytes);
558                 if (ret < 0) {
559                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
560                         return ret;
561                 }
562
563                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
564                 case AUX_NATIVE_REPLY_ACK:
565                         /* I2C-over-AUX Reply field is only valid
566                          * when paired with AUX ACK.
567                          */
568                         break;
569                 case AUX_NATIVE_REPLY_NACK:
570                         DRM_DEBUG_KMS("aux_ch native nack\n");
571                         return -EREMOTEIO;
572                 case AUX_NATIVE_REPLY_DEFER:
573                         udelay(100);
574                         continue;
575                 default:
576                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
577                                   reply[0]);
578                         return -EREMOTEIO;
579                 }
580
581                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
582                 case AUX_I2C_REPLY_ACK:
583                         if (mode == MODE_I2C_READ) {
584                                 *read_byte = reply[1];
585                         }
586                         return reply_bytes - 1;
587                 case AUX_I2C_REPLY_NACK:
588                         DRM_DEBUG_KMS("aux_i2c nack\n");
589                         return -EREMOTEIO;
590                 case AUX_I2C_REPLY_DEFER:
591                         DRM_DEBUG_KMS("aux_i2c defer\n");
592                         udelay(100);
593                         break;
594                 default:
595                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
596                         return -EREMOTEIO;
597                 }
598         }
599
600         DRM_ERROR("too many retries, giving up\n");
601         return -EREMOTEIO;
602 }
603
604 static int
605 intel_dp_i2c_init(struct intel_dp *intel_dp,
606                   struct intel_connector *intel_connector, const char *name)
607 {
608         int     ret;
609
610         DRM_DEBUG_KMS("i2c_init %s\n", name);
611         intel_dp->algo.running = false;
612         intel_dp->algo.address = 0;
613         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
614
615         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
616         intel_dp->adapter.owner = THIS_MODULE;
617         intel_dp->adapter.class = I2C_CLASS_DDC;
618         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
619         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
620         intel_dp->adapter.algo_data = &intel_dp->algo;
621         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
622
623         ironlake_edp_panel_vdd_on(intel_dp);
624         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
625         ironlake_edp_panel_vdd_off(intel_dp, false);
626         return ret;
627 }
628
629 static void
630 intel_dp_set_clock(struct intel_encoder *encoder,
631                    struct intel_crtc_config *pipe_config, int link_bw)
632 {
633         struct drm_device *dev = encoder->base.dev;
634
635         if (IS_G4X(dev)) {
636                 if (link_bw == DP_LINK_BW_1_62) {
637                         pipe_config->dpll.p1 = 2;
638                         pipe_config->dpll.p2 = 10;
639                         pipe_config->dpll.n = 2;
640                         pipe_config->dpll.m1 = 23;
641                         pipe_config->dpll.m2 = 8;
642                 } else {
643                         pipe_config->dpll.p1 = 1;
644                         pipe_config->dpll.p2 = 10;
645                         pipe_config->dpll.n = 1;
646                         pipe_config->dpll.m1 = 14;
647                         pipe_config->dpll.m2 = 2;
648                 }
649                 pipe_config->clock_set = true;
650         } else if (IS_HASWELL(dev)) {
651                 /* Haswell has special-purpose DP DDI clocks. */
652         } else if (HAS_PCH_SPLIT(dev)) {
653                 if (link_bw == DP_LINK_BW_1_62) {
654                         pipe_config->dpll.n = 1;
655                         pipe_config->dpll.p1 = 2;
656                         pipe_config->dpll.p2 = 10;
657                         pipe_config->dpll.m1 = 12;
658                         pipe_config->dpll.m2 = 9;
659                 } else {
660                         pipe_config->dpll.n = 2;
661                         pipe_config->dpll.p1 = 1;
662                         pipe_config->dpll.p2 = 10;
663                         pipe_config->dpll.m1 = 14;
664                         pipe_config->dpll.m2 = 8;
665                 }
666                 pipe_config->clock_set = true;
667         } else if (IS_VALLEYVIEW(dev)) {
668                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
669         }
670 }
671
672 bool
673 intel_dp_compute_config(struct intel_encoder *encoder,
674                         struct intel_crtc_config *pipe_config)
675 {
676         struct drm_device *dev = encoder->base.dev;
677         struct drm_i915_private *dev_priv = dev->dev_private;
678         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
679         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
680         enum port port = dp_to_dig_port(intel_dp)->port;
681         struct intel_crtc *intel_crtc = encoder->new_crtc;
682         struct intel_connector *intel_connector = intel_dp->attached_connector;
683         int lane_count, clock;
684         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
685         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
686         int bpp, mode_rate;
687         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
688         int link_avail, link_clock;
689
690         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
691                 pipe_config->has_pch_encoder = true;
692
693         pipe_config->has_dp_encoder = true;
694
695         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
696                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
697                                        adjusted_mode);
698                 if (!HAS_PCH_SPLIT(dev))
699                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
700                                                  intel_connector->panel.fitting_mode);
701                 else
702                         intel_pch_panel_fitting(intel_crtc, pipe_config,
703                                                 intel_connector->panel.fitting_mode);
704         }
705
706         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
707                 return false;
708
709         DRM_DEBUG_KMS("DP link computation with max lane count %i "
710                       "max bw %02x pixel clock %iKHz\n",
711                       max_lane_count, bws[max_clock], adjusted_mode->clock);
712
713         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
714          * bpc in between. */
715         bpp = pipe_config->pipe_bpp;
716         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
717                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
718                               dev_priv->vbt.edp_bpp);
719                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
720         }
721
722         for (; bpp >= 6*3; bpp -= 2*3) {
723                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
724
725                 for (clock = 0; clock <= max_clock; clock++) {
726                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
727                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
728                                 link_avail = intel_dp_max_data_rate(link_clock,
729                                                                     lane_count);
730
731                                 if (mode_rate <= link_avail) {
732                                         goto found;
733                                 }
734                         }
735                 }
736         }
737
738         return false;
739
740 found:
741         if (intel_dp->color_range_auto) {
742                 /*
743                  * See:
744                  * CEA-861-E - 5.1 Default Encoding Parameters
745                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
746                  */
747                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
748                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
749                 else
750                         intel_dp->color_range = 0;
751         }
752
753         if (intel_dp->color_range)
754                 pipe_config->limited_color_range = true;
755
756         intel_dp->link_bw = bws[clock];
757         intel_dp->lane_count = lane_count;
758         pipe_config->pipe_bpp = bpp;
759         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
760
761         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
762                       intel_dp->link_bw, intel_dp->lane_count,
763                       pipe_config->port_clock, bpp);
764         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
765                       mode_rate, link_avail);
766
767         intel_link_compute_m_n(bpp, lane_count,
768                                adjusted_mode->clock, pipe_config->port_clock,
769                                &pipe_config->dp_m_n);
770
771         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
772
773         return true;
774 }
775
776 void intel_dp_init_link_config(struct intel_dp *intel_dp)
777 {
778         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
779         intel_dp->link_configuration[0] = intel_dp->link_bw;
780         intel_dp->link_configuration[1] = intel_dp->lane_count;
781         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
782         /*
783          * Check for DPCD version > 1.1 and enhanced framing support
784          */
785         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
786             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
787                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
788         }
789 }
790
791 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
792 {
793         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
794         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
795         struct drm_device *dev = crtc->base.dev;
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         u32 dpa_ctl;
798
799         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
800         dpa_ctl = I915_READ(DP_A);
801         dpa_ctl &= ~DP_PLL_FREQ_MASK;
802
803         if (crtc->config.port_clock == 162000) {
804                 /* For a long time we've carried around a ILK-DevA w/a for the
805                  * 160MHz clock. If we're really unlucky, it's still required.
806                  */
807                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
808                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
809                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
810         } else {
811                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
812                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
813         }
814
815         I915_WRITE(DP_A, dpa_ctl);
816
817         POSTING_READ(DP_A);
818         udelay(500);
819 }
820
821 static void
822 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
823                   struct drm_display_mode *adjusted_mode)
824 {
825         struct drm_device *dev = encoder->dev;
826         struct drm_i915_private *dev_priv = dev->dev_private;
827         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
828         enum port port = dp_to_dig_port(intel_dp)->port;
829         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
830
831         /*
832          * There are four kinds of DP registers:
833          *
834          *      IBX PCH
835          *      SNB CPU
836          *      IVB CPU
837          *      CPT PCH
838          *
839          * IBX PCH and CPU are the same for almost everything,
840          * except that the CPU DP PLL is configured in this
841          * register
842          *
843          * CPT PCH is quite different, having many bits moved
844          * to the TRANS_DP_CTL register instead. That
845          * configuration happens (oddly) in ironlake_pch_enable
846          */
847
848         /* Preserve the BIOS-computed detected bit. This is
849          * supposed to be read-only.
850          */
851         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
852
853         /* Handle DP bits in common between all three register formats */
854         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
855         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
856
857         if (intel_dp->has_audio) {
858                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859                                  pipe_name(crtc->pipe));
860                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861                 intel_write_eld(encoder, adjusted_mode);
862         }
863
864         intel_dp_init_link_config(intel_dp);
865
866         /* Split out the IBX/CPU vs CPT settings */
867
868         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
869                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
870                         intel_dp->DP |= DP_SYNC_HS_HIGH;
871                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
872                         intel_dp->DP |= DP_SYNC_VS_HIGH;
873                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
874
875                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
876                         intel_dp->DP |= DP_ENHANCED_FRAMING;
877
878                 intel_dp->DP |= crtc->pipe << 29;
879         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
880                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
881                         intel_dp->DP |= intel_dp->color_range;
882
883                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884                         intel_dp->DP |= DP_SYNC_HS_HIGH;
885                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886                         intel_dp->DP |= DP_SYNC_VS_HIGH;
887                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890                         intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892                 if (crtc->pipe == 1)
893                         intel_dp->DP |= DP_PIPEB_SELECT;
894         } else {
895                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
896         }
897
898         if (port == PORT_A && !IS_VALLEYVIEW(dev))
899                 ironlake_set_pll_cpu_edp(intel_dp);
900 }
901
902 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
903 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
904
905 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
906 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
907
908 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
910
911 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
912                                        u32 mask,
913                                        u32 value)
914 {
915         struct drm_device *dev = intel_dp_to_dev(intel_dp);
916         struct drm_i915_private *dev_priv = dev->dev_private;
917         u32 pp_stat_reg, pp_ctrl_reg;
918
919         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
920         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
921
922         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
923                         mask, value,
924                         I915_READ(pp_stat_reg),
925                         I915_READ(pp_ctrl_reg));
926
927         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
928                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
929                                 I915_READ(pp_stat_reg),
930                                 I915_READ(pp_ctrl_reg));
931         }
932 }
933
934 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
935 {
936         DRM_DEBUG_KMS("Wait for panel power on\n");
937         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
938 }
939
940 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
941 {
942         DRM_DEBUG_KMS("Wait for panel power off time\n");
943         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
944 }
945
946 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
947 {
948         DRM_DEBUG_KMS("Wait for panel power cycle\n");
949         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
950 }
951
952
953 /* Read the current pp_control value, unlocking the register if it
954  * is locked
955  */
956
957 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
958 {
959         struct drm_device *dev = intel_dp_to_dev(intel_dp);
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 control;
962         u32 pp_ctrl_reg;
963
964         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
965         control = I915_READ(pp_ctrl_reg);
966
967         control &= ~PANEL_UNLOCK_MASK;
968         control |= PANEL_UNLOCK_REGS;
969         return control;
970 }
971
972 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
973 {
974         struct drm_device *dev = intel_dp_to_dev(intel_dp);
975         struct drm_i915_private *dev_priv = dev->dev_private;
976         u32 pp;
977         u32 pp_stat_reg, pp_ctrl_reg;
978
979         if (!is_edp(intel_dp))
980                 return;
981         DRM_DEBUG_KMS("Turn eDP VDD on\n");
982
983         WARN(intel_dp->want_panel_vdd,
984              "eDP VDD already requested on\n");
985
986         intel_dp->want_panel_vdd = true;
987
988         if (ironlake_edp_have_panel_vdd(intel_dp)) {
989                 DRM_DEBUG_KMS("eDP VDD already on\n");
990                 return;
991         }
992
993         if (!ironlake_edp_have_panel_power(intel_dp))
994                 ironlake_wait_panel_power_cycle(intel_dp);
995
996         pp = ironlake_get_pp_control(intel_dp);
997         pp |= EDP_FORCE_VDD;
998
999         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1000         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1001
1002         I915_WRITE(pp_ctrl_reg, pp);
1003         POSTING_READ(pp_ctrl_reg);
1004         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1005                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1006         /*
1007          * If the panel wasn't on, delay before accessing aux channel
1008          */
1009         if (!ironlake_edp_have_panel_power(intel_dp)) {
1010                 DRM_DEBUG_KMS("eDP was not running\n");
1011                 msleep(intel_dp->panel_power_up_delay);
1012         }
1013 }
1014
1015 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1016 {
1017         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         u32 pp;
1020         u32 pp_stat_reg, pp_ctrl_reg;
1021
1022         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1023
1024         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1025                 pp = ironlake_get_pp_control(intel_dp);
1026                 pp &= ~EDP_FORCE_VDD;
1027
1028                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1029                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1030
1031                 I915_WRITE(pp_ctrl_reg, pp);
1032                 POSTING_READ(pp_ctrl_reg);
1033
1034                 /* Make sure sequencer is idle before allowing subsequent activity */
1035                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1036                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1037                 msleep(intel_dp->panel_power_down_delay);
1038         }
1039 }
1040
1041 static void ironlake_panel_vdd_work(struct work_struct *__work)
1042 {
1043         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1044                                                  struct intel_dp, panel_vdd_work);
1045         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1046
1047         mutex_lock(&dev->mode_config.mutex);
1048         ironlake_panel_vdd_off_sync(intel_dp);
1049         mutex_unlock(&dev->mode_config.mutex);
1050 }
1051
1052 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1053 {
1054         if (!is_edp(intel_dp))
1055                 return;
1056
1057         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1058         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1059
1060         intel_dp->want_panel_vdd = false;
1061
1062         if (sync) {
1063                 ironlake_panel_vdd_off_sync(intel_dp);
1064         } else {
1065                 /*
1066                  * Queue the timer to fire a long
1067                  * time from now (relative to the power down delay)
1068                  * to keep the panel power up across a sequence of operations
1069                  */
1070                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1071                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1072         }
1073 }
1074
1075 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1076 {
1077         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         u32 pp;
1080         u32 pp_ctrl_reg;
1081
1082         if (!is_edp(intel_dp))
1083                 return;
1084
1085         DRM_DEBUG_KMS("Turn eDP power on\n");
1086
1087         if (ironlake_edp_have_panel_power(intel_dp)) {
1088                 DRM_DEBUG_KMS("eDP power already on\n");
1089                 return;
1090         }
1091
1092         ironlake_wait_panel_power_cycle(intel_dp);
1093
1094         pp = ironlake_get_pp_control(intel_dp);
1095         if (IS_GEN5(dev)) {
1096                 /* ILK workaround: disable reset around power sequence */
1097                 pp &= ~PANEL_POWER_RESET;
1098                 I915_WRITE(PCH_PP_CONTROL, pp);
1099                 POSTING_READ(PCH_PP_CONTROL);
1100         }
1101
1102         pp |= POWER_TARGET_ON;
1103         if (!IS_GEN5(dev))
1104                 pp |= PANEL_POWER_RESET;
1105
1106         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1107
1108         I915_WRITE(pp_ctrl_reg, pp);
1109         POSTING_READ(pp_ctrl_reg);
1110
1111         ironlake_wait_panel_on(intel_dp);
1112
1113         if (IS_GEN5(dev)) {
1114                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1115                 I915_WRITE(PCH_PP_CONTROL, pp);
1116                 POSTING_READ(PCH_PP_CONTROL);
1117         }
1118 }
1119
1120 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1121 {
1122         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         u32 pp;
1125         u32 pp_ctrl_reg;
1126
1127         if (!is_edp(intel_dp))
1128                 return;
1129
1130         DRM_DEBUG_KMS("Turn eDP power off\n");
1131
1132         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1133
1134         pp = ironlake_get_pp_control(intel_dp);
1135         /* We need to switch off panel power _and_ force vdd, for otherwise some
1136          * panels get very unhappy and cease to work. */
1137         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1138
1139         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1140
1141         I915_WRITE(pp_ctrl_reg, pp);
1142         POSTING_READ(pp_ctrl_reg);
1143
1144         intel_dp->want_panel_vdd = false;
1145
1146         ironlake_wait_panel_off(intel_dp);
1147 }
1148
1149 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1150 {
1151         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1152         struct drm_device *dev = intel_dig_port->base.base.dev;
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1155         u32 pp;
1156         u32 pp_ctrl_reg;
1157
1158         if (!is_edp(intel_dp))
1159                 return;
1160
1161         DRM_DEBUG_KMS("\n");
1162         /*
1163          * If we enable the backlight right away following a panel power
1164          * on, we may see slight flicker as the panel syncs with the eDP
1165          * link.  So delay a bit to make sure the image is solid before
1166          * allowing it to appear.
1167          */
1168         msleep(intel_dp->backlight_on_delay);
1169         pp = ironlake_get_pp_control(intel_dp);
1170         pp |= EDP_BLC_ENABLE;
1171
1172         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1173
1174         I915_WRITE(pp_ctrl_reg, pp);
1175         POSTING_READ(pp_ctrl_reg);
1176
1177         intel_panel_enable_backlight(dev, pipe);
1178 }
1179
1180 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1181 {
1182         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1183         struct drm_i915_private *dev_priv = dev->dev_private;
1184         u32 pp;
1185         u32 pp_ctrl_reg;
1186
1187         if (!is_edp(intel_dp))
1188                 return;
1189
1190         intel_panel_disable_backlight(dev);
1191
1192         DRM_DEBUG_KMS("\n");
1193         pp = ironlake_get_pp_control(intel_dp);
1194         pp &= ~EDP_BLC_ENABLE;
1195
1196         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1197
1198         I915_WRITE(pp_ctrl_reg, pp);
1199         POSTING_READ(pp_ctrl_reg);
1200         msleep(intel_dp->backlight_off_delay);
1201 }
1202
1203 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1204 {
1205         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1206         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1207         struct drm_device *dev = crtc->dev;
1208         struct drm_i915_private *dev_priv = dev->dev_private;
1209         u32 dpa_ctl;
1210
1211         assert_pipe_disabled(dev_priv,
1212                              to_intel_crtc(crtc)->pipe);
1213
1214         DRM_DEBUG_KMS("\n");
1215         dpa_ctl = I915_READ(DP_A);
1216         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1217         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1218
1219         /* We don't adjust intel_dp->DP while tearing down the link, to
1220          * facilitate link retraining (e.g. after hotplug). Hence clear all
1221          * enable bits here to ensure that we don't enable too much. */
1222         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1223         intel_dp->DP |= DP_PLL_ENABLE;
1224         I915_WRITE(DP_A, intel_dp->DP);
1225         POSTING_READ(DP_A);
1226         udelay(200);
1227 }
1228
1229 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1230 {
1231         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1232         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1233         struct drm_device *dev = crtc->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         u32 dpa_ctl;
1236
1237         assert_pipe_disabled(dev_priv,
1238                              to_intel_crtc(crtc)->pipe);
1239
1240         dpa_ctl = I915_READ(DP_A);
1241         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1242              "dp pll off, should be on\n");
1243         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1244
1245         /* We can't rely on the value tracked for the DP register in
1246          * intel_dp->DP because link_down must not change that (otherwise link
1247          * re-training will fail. */
1248         dpa_ctl &= ~DP_PLL_ENABLE;
1249         I915_WRITE(DP_A, dpa_ctl);
1250         POSTING_READ(DP_A);
1251         udelay(200);
1252 }
1253
1254 /* If the sink supports it, try to set the power state appropriately */
1255 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1256 {
1257         int ret, i;
1258
1259         /* Should have a valid DPCD by this point */
1260         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1261                 return;
1262
1263         if (mode != DRM_MODE_DPMS_ON) {
1264                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1265                                                   DP_SET_POWER_D3);
1266                 if (ret != 1)
1267                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1268         } else {
1269                 /*
1270                  * When turning on, we need to retry for 1ms to give the sink
1271                  * time to wake up.
1272                  */
1273                 for (i = 0; i < 3; i++) {
1274                         ret = intel_dp_aux_native_write_1(intel_dp,
1275                                                           DP_SET_POWER,
1276                                                           DP_SET_POWER_D0);
1277                         if (ret == 1)
1278                                 break;
1279                         msleep(1);
1280                 }
1281         }
1282 }
1283
1284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1285                                   enum pipe *pipe)
1286 {
1287         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1288         enum port port = dp_to_dig_port(intel_dp)->port;
1289         struct drm_device *dev = encoder->base.dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         u32 tmp = I915_READ(intel_dp->output_reg);
1292
1293         if (!(tmp & DP_PORT_EN))
1294                 return false;
1295
1296         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1297                 *pipe = PORT_TO_PIPE_CPT(tmp);
1298         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1299                 *pipe = PORT_TO_PIPE(tmp);
1300         } else {
1301                 u32 trans_sel;
1302                 u32 trans_dp;
1303                 int i;
1304
1305                 switch (intel_dp->output_reg) {
1306                 case PCH_DP_B:
1307                         trans_sel = TRANS_DP_PORT_SEL_B;
1308                         break;
1309                 case PCH_DP_C:
1310                         trans_sel = TRANS_DP_PORT_SEL_C;
1311                         break;
1312                 case PCH_DP_D:
1313                         trans_sel = TRANS_DP_PORT_SEL_D;
1314                         break;
1315                 default:
1316                         return true;
1317                 }
1318
1319                 for_each_pipe(i) {
1320                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1321                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1322                                 *pipe = i;
1323                                 return true;
1324                         }
1325                 }
1326
1327                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1328                               intel_dp->output_reg);
1329         }
1330
1331         return true;
1332 }
1333
1334 static void intel_dp_get_config(struct intel_encoder *encoder,
1335                                 struct intel_crtc_config *pipe_config)
1336 {
1337         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1338         u32 tmp, flags = 0;
1339         struct drm_device *dev = encoder->base.dev;
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         enum port port = dp_to_dig_port(intel_dp)->port;
1342         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1343
1344         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1345                 tmp = I915_READ(intel_dp->output_reg);
1346                 if (tmp & DP_SYNC_HS_HIGH)
1347                         flags |= DRM_MODE_FLAG_PHSYNC;
1348                 else
1349                         flags |= DRM_MODE_FLAG_NHSYNC;
1350
1351                 if (tmp & DP_SYNC_VS_HIGH)
1352                         flags |= DRM_MODE_FLAG_PVSYNC;
1353                 else
1354                         flags |= DRM_MODE_FLAG_NVSYNC;
1355         } else {
1356                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1357                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1358                         flags |= DRM_MODE_FLAG_PHSYNC;
1359                 else
1360                         flags |= DRM_MODE_FLAG_NHSYNC;
1361
1362                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1363                         flags |= DRM_MODE_FLAG_PVSYNC;
1364                 else
1365                         flags |= DRM_MODE_FLAG_NVSYNC;
1366         }
1367
1368         pipe_config->adjusted_mode.flags |= flags;
1369
1370         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1371                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1372                         pipe_config->port_clock = 162000;
1373                 else
1374                         pipe_config->port_clock = 270000;
1375         }
1376 }
1377
1378 static bool is_edp_psr(struct intel_dp *intel_dp)
1379 {
1380         return is_edp(intel_dp) &&
1381                 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1382 }
1383
1384 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1385 {
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387
1388         if (!IS_HASWELL(dev))
1389                 return false;
1390
1391         return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1392 }
1393
1394 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1395                                     struct edp_vsc_psr *vsc_psr)
1396 {
1397         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1398         struct drm_device *dev = dig_port->base.base.dev;
1399         struct drm_i915_private *dev_priv = dev->dev_private;
1400         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1401         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1402         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1403         uint32_t *data = (uint32_t *) vsc_psr;
1404         unsigned int i;
1405
1406         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1407            the video DIP being updated before program video DIP data buffer
1408            registers for DIP being updated. */
1409         I915_WRITE(ctl_reg, 0);
1410         POSTING_READ(ctl_reg);
1411
1412         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1413                 if (i < sizeof(struct edp_vsc_psr))
1414                         I915_WRITE(data_reg + i, *data++);
1415                 else
1416                         I915_WRITE(data_reg + i, 0);
1417         }
1418
1419         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1420         POSTING_READ(ctl_reg);
1421 }
1422
1423 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1424 {
1425         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         struct edp_vsc_psr psr_vsc;
1428
1429         if (intel_dp->psr_setup_done)
1430                 return;
1431
1432         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1433         memset(&psr_vsc, 0, sizeof(psr_vsc));
1434         psr_vsc.sdp_header.HB0 = 0;
1435         psr_vsc.sdp_header.HB1 = 0x7;
1436         psr_vsc.sdp_header.HB2 = 0x2;
1437         psr_vsc.sdp_header.HB3 = 0x8;
1438         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1439
1440         /* Avoid continuous PSR exit by masking memup and hpd */
1441         I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1442                    EDP_PSR_DEBUG_MASK_HPD);
1443
1444         intel_dp->psr_setup_done = true;
1445 }
1446
1447 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1448 {
1449         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp);
1452         int precharge = 0x3;
1453         int msg_size = 5;       /* Header(4) + Message(1) */
1454
1455         /* Enable PSR in sink */
1456         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1457                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1458                                             DP_PSR_ENABLE &
1459                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1460         else
1461                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1462                                             DP_PSR_ENABLE |
1463                                             DP_PSR_MAIN_LINK_ACTIVE);
1464
1465         /* Setup AUX registers */
1466         I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1467         I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1468         I915_WRITE(EDP_PSR_AUX_CTL,
1469                    DP_AUX_CH_CTL_TIME_OUT_400us |
1470                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1471                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1472                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1473 }
1474
1475 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1476 {
1477         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         uint32_t max_sleep_time = 0x1f;
1480         uint32_t idle_frames = 1;
1481         uint32_t val = 0x0;
1482
1483         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1484                 val |= EDP_PSR_LINK_STANDBY;
1485                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1486                 val |= EDP_PSR_TP1_TIME_0us;
1487                 val |= EDP_PSR_SKIP_AUX_EXIT;
1488         } else
1489                 val |= EDP_PSR_LINK_DISABLE;
1490
1491         I915_WRITE(EDP_PSR_CTL, val |
1492                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1493                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1494                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1495                    EDP_PSR_ENABLE);
1496 }
1497
1498 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1499 {
1500         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1501         struct drm_device *dev = dig_port->base.base.dev;
1502         struct drm_i915_private *dev_priv = dev->dev_private;
1503         struct drm_crtc *crtc = dig_port->base.base.crtc;
1504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1505         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1506         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1507
1508         if (!IS_HASWELL(dev)) {
1509                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1510                 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1511                 return false;
1512         }
1513
1514         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1515             (dig_port->port != PORT_A)) {
1516                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1517                 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1518                 return false;
1519         }
1520
1521         if (!is_edp_psr(intel_dp)) {
1522                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1523                 dev_priv->no_psr_reason = PSR_NO_SINK;
1524                 return false;
1525         }
1526
1527         if (!i915_enable_psr) {
1528                 DRM_DEBUG_KMS("PSR disable by flag\n");
1529                 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1530                 return false;
1531         }
1532
1533         if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1534                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1535                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1536                 return false;
1537         }
1538
1539         if (obj->tiling_mode != I915_TILING_X ||
1540             obj->fence_reg == I915_FENCE_REG_NONE) {
1541                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1542                 dev_priv->no_psr_reason = PSR_NOT_TILED;
1543                 return false;
1544         }
1545
1546         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1547                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1548                 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1549                 return false;
1550         }
1551
1552         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1553             S3D_ENABLE) {
1554                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1555                 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1556                 return false;
1557         }
1558
1559         if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1560                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1561                 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1562                 return false;
1563         }
1564
1565         return true;
1566 }
1567
1568 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1569 {
1570         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1571
1572         if (!intel_edp_psr_match_conditions(intel_dp) ||
1573             intel_edp_is_psr_enabled(dev))
1574                 return;
1575
1576         /* Setup PSR once */
1577         intel_edp_psr_setup(intel_dp);
1578
1579         /* Enable PSR on the panel */
1580         intel_edp_psr_enable_sink(intel_dp);
1581
1582         /* Enable PSR on the host */
1583         intel_edp_psr_enable_source(intel_dp);
1584 }
1585
1586 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1587 {
1588         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1589
1590         if (intel_edp_psr_match_conditions(intel_dp) &&
1591             !intel_edp_is_psr_enabled(dev))
1592                 intel_edp_psr_do_enable(intel_dp);
1593 }
1594
1595 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1596 {
1597         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599
1600         if (!intel_edp_is_psr_enabled(dev))
1601                 return;
1602
1603         I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1604
1605         /* Wait till PSR is idle */
1606         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1607                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1608                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1609 }
1610
1611 void intel_edp_psr_update(struct drm_device *dev)
1612 {
1613         struct intel_encoder *encoder;
1614         struct intel_dp *intel_dp = NULL;
1615
1616         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1617                 if (encoder->type == INTEL_OUTPUT_EDP) {
1618                         intel_dp = enc_to_intel_dp(&encoder->base);
1619
1620                         if (!is_edp_psr(intel_dp))
1621                                 return;
1622
1623                         if (!intel_edp_psr_match_conditions(intel_dp))
1624                                 intel_edp_psr_disable(intel_dp);
1625                         else
1626                                 if (!intel_edp_is_psr_enabled(dev))
1627                                         intel_edp_psr_do_enable(intel_dp);
1628                 }
1629 }
1630
1631 static void intel_disable_dp(struct intel_encoder *encoder)
1632 {
1633         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1634         enum port port = dp_to_dig_port(intel_dp)->port;
1635         struct drm_device *dev = encoder->base.dev;
1636
1637         /* Make sure the panel is off before trying to change the mode. But also
1638          * ensure that we have vdd while we switch off the panel. */
1639         ironlake_edp_panel_vdd_on(intel_dp);
1640         ironlake_edp_backlight_off(intel_dp);
1641         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1642         ironlake_edp_panel_off(intel_dp);
1643
1644         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1645         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1646                 intel_dp_link_down(intel_dp);
1647 }
1648
1649 static void intel_post_disable_dp(struct intel_encoder *encoder)
1650 {
1651         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1652         enum port port = dp_to_dig_port(intel_dp)->port;
1653         struct drm_device *dev = encoder->base.dev;
1654
1655         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1656                 intel_dp_link_down(intel_dp);
1657                 if (!IS_VALLEYVIEW(dev))
1658                         ironlake_edp_pll_off(intel_dp);
1659         }
1660 }
1661
1662 static void intel_enable_dp(struct intel_encoder *encoder)
1663 {
1664         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1665         struct drm_device *dev = encoder->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1668
1669         if (WARN_ON(dp_reg & DP_PORT_EN))
1670                 return;
1671
1672         ironlake_edp_panel_vdd_on(intel_dp);
1673         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1674         intel_dp_start_link_train(intel_dp);
1675         ironlake_edp_panel_on(intel_dp);
1676         ironlake_edp_panel_vdd_off(intel_dp, true);
1677         intel_dp_complete_link_train(intel_dp);
1678         intel_dp_stop_link_train(intel_dp);
1679         ironlake_edp_backlight_on(intel_dp);
1680
1681         if (IS_VALLEYVIEW(dev)) {
1682                 struct intel_digital_port *dport =
1683                         enc_to_dig_port(&encoder->base);
1684                 int channel = vlv_dport_to_channel(dport);
1685
1686                 vlv_wait_port_ready(dev_priv, channel);
1687         }
1688 }
1689
1690 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1691 {
1692         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1693         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1694         struct drm_device *dev = encoder->base.dev;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696
1697         if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
1698                 ironlake_edp_pll_on(intel_dp);
1699
1700         if (IS_VALLEYVIEW(dev)) {
1701                 struct intel_crtc *intel_crtc =
1702                         to_intel_crtc(encoder->base.crtc);
1703                 int port = vlv_dport_to_channel(dport);
1704                 int pipe = intel_crtc->pipe;
1705                 u32 val;
1706
1707                 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1708                 val = 0;
1709                 if (pipe)
1710                         val |= (1<<21);
1711                 else
1712                         val &= ~(1<<21);
1713                 val |= 0x001000c4;
1714                 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1715
1716                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
1717                                  0x00760018);
1718                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
1719                                  0x00400888);
1720         }
1721 }
1722
1723 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1724 {
1725         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1726         struct drm_device *dev = encoder->base.dev;
1727         struct drm_i915_private *dev_priv = dev->dev_private;
1728         int port = vlv_dport_to_channel(dport);
1729
1730         if (!IS_VALLEYVIEW(dev))
1731                 return;
1732
1733         /* Program Tx lane resets to default */
1734         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1735                          DPIO_PCS_TX_LANE2_RESET |
1736                          DPIO_PCS_TX_LANE1_RESET);
1737         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1738                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1739                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1740                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1741                                  DPIO_PCS_CLK_SOFT_RESET);
1742
1743         /* Fix up inter-pair skew failure */
1744         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1745         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1746         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1747 }
1748
1749 /*
1750  * Native read with retry for link status and receiver capability reads for
1751  * cases where the sink may still be asleep.
1752  */
1753 static bool
1754 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1755                                uint8_t *recv, int recv_bytes)
1756 {
1757         int ret, i;
1758
1759         /*
1760          * Sinks are *supposed* to come up within 1ms from an off state,
1761          * but we're also supposed to retry 3 times per the spec.
1762          */
1763         for (i = 0; i < 3; i++) {
1764                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1765                                                recv_bytes);
1766                 if (ret == recv_bytes)
1767                         return true;
1768                 msleep(1);
1769         }
1770
1771         return false;
1772 }
1773
1774 /*
1775  * Fetch AUX CH registers 0x202 - 0x207 which contain
1776  * link status information
1777  */
1778 static bool
1779 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1780 {
1781         return intel_dp_aux_native_read_retry(intel_dp,
1782                                               DP_LANE0_1_STATUS,
1783                                               link_status,
1784                                               DP_LINK_STATUS_SIZE);
1785 }
1786
1787 #if 0
1788 static char     *voltage_names[] = {
1789         "0.4V", "0.6V", "0.8V", "1.2V"
1790 };
1791 static char     *pre_emph_names[] = {
1792         "0dB", "3.5dB", "6dB", "9.5dB"
1793 };
1794 static char     *link_train_names[] = {
1795         "pattern 1", "pattern 2", "idle", "off"
1796 };
1797 #endif
1798
1799 /*
1800  * These are source-specific values; current Intel hardware supports
1801  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1802  */
1803
1804 static uint8_t
1805 intel_dp_voltage_max(struct intel_dp *intel_dp)
1806 {
1807         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1808         enum port port = dp_to_dig_port(intel_dp)->port;
1809
1810         if (IS_VALLEYVIEW(dev))
1811                 return DP_TRAIN_VOLTAGE_SWING_1200;
1812         else if (IS_GEN7(dev) && port == PORT_A)
1813                 return DP_TRAIN_VOLTAGE_SWING_800;
1814         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1815                 return DP_TRAIN_VOLTAGE_SWING_1200;
1816         else
1817                 return DP_TRAIN_VOLTAGE_SWING_800;
1818 }
1819
1820 static uint8_t
1821 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1822 {
1823         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1824         enum port port = dp_to_dig_port(intel_dp)->port;
1825
1826         if (HAS_DDI(dev)) {
1827                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1828                 case DP_TRAIN_VOLTAGE_SWING_400:
1829                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1830                 case DP_TRAIN_VOLTAGE_SWING_600:
1831                         return DP_TRAIN_PRE_EMPHASIS_6;
1832                 case DP_TRAIN_VOLTAGE_SWING_800:
1833                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1834                 case DP_TRAIN_VOLTAGE_SWING_1200:
1835                 default:
1836                         return DP_TRAIN_PRE_EMPHASIS_0;
1837                 }
1838         } else if (IS_VALLEYVIEW(dev)) {
1839                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1840                 case DP_TRAIN_VOLTAGE_SWING_400:
1841                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1842                 case DP_TRAIN_VOLTAGE_SWING_600:
1843                         return DP_TRAIN_PRE_EMPHASIS_6;
1844                 case DP_TRAIN_VOLTAGE_SWING_800:
1845                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1846                 case DP_TRAIN_VOLTAGE_SWING_1200:
1847                 default:
1848                         return DP_TRAIN_PRE_EMPHASIS_0;
1849                 }
1850         } else if (IS_GEN7(dev) && port == PORT_A) {
1851                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1852                 case DP_TRAIN_VOLTAGE_SWING_400:
1853                         return DP_TRAIN_PRE_EMPHASIS_6;
1854                 case DP_TRAIN_VOLTAGE_SWING_600:
1855                 case DP_TRAIN_VOLTAGE_SWING_800:
1856                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1857                 default:
1858                         return DP_TRAIN_PRE_EMPHASIS_0;
1859                 }
1860         } else {
1861                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1862                 case DP_TRAIN_VOLTAGE_SWING_400:
1863                         return DP_TRAIN_PRE_EMPHASIS_6;
1864                 case DP_TRAIN_VOLTAGE_SWING_600:
1865                         return DP_TRAIN_PRE_EMPHASIS_6;
1866                 case DP_TRAIN_VOLTAGE_SWING_800:
1867                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1868                 case DP_TRAIN_VOLTAGE_SWING_1200:
1869                 default:
1870                         return DP_TRAIN_PRE_EMPHASIS_0;
1871                 }
1872         }
1873 }
1874
1875 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1876 {
1877         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1880         unsigned long demph_reg_value, preemph_reg_value,
1881                 uniqtranscale_reg_value;
1882         uint8_t train_set = intel_dp->train_set[0];
1883         int port = vlv_dport_to_channel(dport);
1884
1885         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1886         case DP_TRAIN_PRE_EMPHASIS_0:
1887                 preemph_reg_value = 0x0004000;
1888                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1889                 case DP_TRAIN_VOLTAGE_SWING_400:
1890                         demph_reg_value = 0x2B405555;
1891                         uniqtranscale_reg_value = 0x552AB83A;
1892                         break;
1893                 case DP_TRAIN_VOLTAGE_SWING_600:
1894                         demph_reg_value = 0x2B404040;
1895                         uniqtranscale_reg_value = 0x5548B83A;
1896                         break;
1897                 case DP_TRAIN_VOLTAGE_SWING_800:
1898                         demph_reg_value = 0x2B245555;
1899                         uniqtranscale_reg_value = 0x5560B83A;
1900                         break;
1901                 case DP_TRAIN_VOLTAGE_SWING_1200:
1902                         demph_reg_value = 0x2B405555;
1903                         uniqtranscale_reg_value = 0x5598DA3A;
1904                         break;
1905                 default:
1906                         return 0;
1907                 }
1908                 break;
1909         case DP_TRAIN_PRE_EMPHASIS_3_5:
1910                 preemph_reg_value = 0x0002000;
1911                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1912                 case DP_TRAIN_VOLTAGE_SWING_400:
1913                         demph_reg_value = 0x2B404040;
1914                         uniqtranscale_reg_value = 0x5552B83A;
1915                         break;
1916                 case DP_TRAIN_VOLTAGE_SWING_600:
1917                         demph_reg_value = 0x2B404848;
1918                         uniqtranscale_reg_value = 0x5580B83A;
1919                         break;
1920                 case DP_TRAIN_VOLTAGE_SWING_800:
1921                         demph_reg_value = 0x2B404040;
1922                         uniqtranscale_reg_value = 0x55ADDA3A;
1923                         break;
1924                 default:
1925                         return 0;
1926                 }
1927                 break;
1928         case DP_TRAIN_PRE_EMPHASIS_6:
1929                 preemph_reg_value = 0x0000000;
1930                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1931                 case DP_TRAIN_VOLTAGE_SWING_400:
1932                         demph_reg_value = 0x2B305555;
1933                         uniqtranscale_reg_value = 0x5570B83A;
1934                         break;
1935                 case DP_TRAIN_VOLTAGE_SWING_600:
1936                         demph_reg_value = 0x2B2B4040;
1937                         uniqtranscale_reg_value = 0x55ADDA3A;
1938                         break;
1939                 default:
1940                         return 0;
1941                 }
1942                 break;
1943         case DP_TRAIN_PRE_EMPHASIS_9_5:
1944                 preemph_reg_value = 0x0006000;
1945                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1946                 case DP_TRAIN_VOLTAGE_SWING_400:
1947                         demph_reg_value = 0x1B405555;
1948                         uniqtranscale_reg_value = 0x55ADDA3A;
1949                         break;
1950                 default:
1951                         return 0;
1952                 }
1953                 break;
1954         default:
1955                 return 0;
1956         }
1957
1958         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1959         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1960         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1961                          uniqtranscale_reg_value);
1962         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1963         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1964         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1965         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1966
1967         return 0;
1968 }
1969
1970 static void
1971 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1972 {
1973         uint8_t v = 0;
1974         uint8_t p = 0;
1975         int lane;
1976         uint8_t voltage_max;
1977         uint8_t preemph_max;
1978
1979         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1980                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1981                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1982
1983                 if (this_v > v)
1984                         v = this_v;
1985                 if (this_p > p)
1986                         p = this_p;
1987         }
1988
1989         voltage_max = intel_dp_voltage_max(intel_dp);
1990         if (v >= voltage_max)
1991                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1992
1993         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1994         if (p >= preemph_max)
1995                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1996
1997         for (lane = 0; lane < 4; lane++)
1998                 intel_dp->train_set[lane] = v | p;
1999 }
2000
2001 static uint32_t
2002 intel_gen4_signal_levels(uint8_t train_set)
2003 {
2004         uint32_t        signal_levels = 0;
2005
2006         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2007         case DP_TRAIN_VOLTAGE_SWING_400:
2008         default:
2009                 signal_levels |= DP_VOLTAGE_0_4;
2010                 break;
2011         case DP_TRAIN_VOLTAGE_SWING_600:
2012                 signal_levels |= DP_VOLTAGE_0_6;
2013                 break;
2014         case DP_TRAIN_VOLTAGE_SWING_800:
2015                 signal_levels |= DP_VOLTAGE_0_8;
2016                 break;
2017         case DP_TRAIN_VOLTAGE_SWING_1200:
2018                 signal_levels |= DP_VOLTAGE_1_2;
2019                 break;
2020         }
2021         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2022         case DP_TRAIN_PRE_EMPHASIS_0:
2023         default:
2024                 signal_levels |= DP_PRE_EMPHASIS_0;
2025                 break;
2026         case DP_TRAIN_PRE_EMPHASIS_3_5:
2027                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2028                 break;
2029         case DP_TRAIN_PRE_EMPHASIS_6:
2030                 signal_levels |= DP_PRE_EMPHASIS_6;
2031                 break;
2032         case DP_TRAIN_PRE_EMPHASIS_9_5:
2033                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2034                 break;
2035         }
2036         return signal_levels;
2037 }
2038
2039 /* Gen6's DP voltage swing and pre-emphasis control */
2040 static uint32_t
2041 intel_gen6_edp_signal_levels(uint8_t train_set)
2042 {
2043         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2044                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2045         switch (signal_levels) {
2046         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2047         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2048                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2049         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2050                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2051         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2052         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2053                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2054         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2055         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2056                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2057         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2058         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2059                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2060         default:
2061                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2062                               "0x%x\n", signal_levels);
2063                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2064         }
2065 }
2066
2067 /* Gen7's DP voltage swing and pre-emphasis control */
2068 static uint32_t
2069 intel_gen7_edp_signal_levels(uint8_t train_set)
2070 {
2071         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2072                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2073         switch (signal_levels) {
2074         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2075                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2076         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2077                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2078         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2079                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2080
2081         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2082                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2083         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2084                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2085
2086         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2087                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2088         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2089                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2090
2091         default:
2092                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2093                               "0x%x\n", signal_levels);
2094                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2095         }
2096 }
2097
2098 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2099 static uint32_t
2100 intel_hsw_signal_levels(uint8_t train_set)
2101 {
2102         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2103                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2104         switch (signal_levels) {
2105         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2106                 return DDI_BUF_EMP_400MV_0DB_HSW;
2107         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2108                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2109         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2110                 return DDI_BUF_EMP_400MV_6DB_HSW;
2111         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2112                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2113
2114         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2115                 return DDI_BUF_EMP_600MV_0DB_HSW;
2116         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2117                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2118         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2119                 return DDI_BUF_EMP_600MV_6DB_HSW;
2120
2121         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2122                 return DDI_BUF_EMP_800MV_0DB_HSW;
2123         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2124                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2125         default:
2126                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2127                               "0x%x\n", signal_levels);
2128                 return DDI_BUF_EMP_400MV_0DB_HSW;
2129         }
2130 }
2131
2132 /* Properly updates "DP" with the correct signal levels. */
2133 static void
2134 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2135 {
2136         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2137         enum port port = intel_dig_port->port;
2138         struct drm_device *dev = intel_dig_port->base.base.dev;
2139         uint32_t signal_levels, mask;
2140         uint8_t train_set = intel_dp->train_set[0];
2141
2142         if (HAS_DDI(dev)) {
2143                 signal_levels = intel_hsw_signal_levels(train_set);
2144                 mask = DDI_BUF_EMP_MASK;
2145         } else if (IS_VALLEYVIEW(dev)) {
2146                 signal_levels = intel_vlv_signal_levels(intel_dp);
2147                 mask = 0;
2148         } else if (IS_GEN7(dev) && port == PORT_A) {
2149                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2150                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2151         } else if (IS_GEN6(dev) && port == PORT_A) {
2152                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2153                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2154         } else {
2155                 signal_levels = intel_gen4_signal_levels(train_set);
2156                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2157         }
2158
2159         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2160
2161         *DP = (*DP & ~mask) | signal_levels;
2162 }
2163
2164 static bool
2165 intel_dp_set_link_train(struct intel_dp *intel_dp,
2166                         uint32_t dp_reg_value,
2167                         uint8_t dp_train_pat)
2168 {
2169         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2170         struct drm_device *dev = intel_dig_port->base.base.dev;
2171         struct drm_i915_private *dev_priv = dev->dev_private;
2172         enum port port = intel_dig_port->port;
2173         int ret;
2174
2175         if (HAS_DDI(dev)) {
2176                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2177
2178                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2179                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2180                 else
2181                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2182
2183                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2184                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2185                 case DP_TRAINING_PATTERN_DISABLE:
2186                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2187
2188                         break;
2189                 case DP_TRAINING_PATTERN_1:
2190                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2191                         break;
2192                 case DP_TRAINING_PATTERN_2:
2193                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2194                         break;
2195                 case DP_TRAINING_PATTERN_3:
2196                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2197                         break;
2198                 }
2199                 I915_WRITE(DP_TP_CTL(port), temp);
2200
2201         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2202                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2203
2204                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2205                 case DP_TRAINING_PATTERN_DISABLE:
2206                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2207                         break;
2208                 case DP_TRAINING_PATTERN_1:
2209                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2210                         break;
2211                 case DP_TRAINING_PATTERN_2:
2212                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2213                         break;
2214                 case DP_TRAINING_PATTERN_3:
2215                         DRM_ERROR("DP training pattern 3 not supported\n");
2216                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2217                         break;
2218                 }
2219
2220         } else {
2221                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2222
2223                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2224                 case DP_TRAINING_PATTERN_DISABLE:
2225                         dp_reg_value |= DP_LINK_TRAIN_OFF;
2226                         break;
2227                 case DP_TRAINING_PATTERN_1:
2228                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2229                         break;
2230                 case DP_TRAINING_PATTERN_2:
2231                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2232                         break;
2233                 case DP_TRAINING_PATTERN_3:
2234                         DRM_ERROR("DP training pattern 3 not supported\n");
2235                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2236                         break;
2237                 }
2238         }
2239
2240         I915_WRITE(intel_dp->output_reg, dp_reg_value);
2241         POSTING_READ(intel_dp->output_reg);
2242
2243         intel_dp_aux_native_write_1(intel_dp,
2244                                     DP_TRAINING_PATTERN_SET,
2245                                     dp_train_pat);
2246
2247         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2248             DP_TRAINING_PATTERN_DISABLE) {
2249                 ret = intel_dp_aux_native_write(intel_dp,
2250                                                 DP_TRAINING_LANE0_SET,
2251                                                 intel_dp->train_set,
2252                                                 intel_dp->lane_count);
2253                 if (ret != intel_dp->lane_count)
2254                         return false;
2255         }
2256
2257         return true;
2258 }
2259
2260 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2261 {
2262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2263         struct drm_device *dev = intel_dig_port->base.base.dev;
2264         struct drm_i915_private *dev_priv = dev->dev_private;
2265         enum port port = intel_dig_port->port;
2266         uint32_t val;
2267
2268         if (!HAS_DDI(dev))
2269                 return;
2270
2271         val = I915_READ(DP_TP_CTL(port));
2272         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2273         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2274         I915_WRITE(DP_TP_CTL(port), val);
2275
2276         /*
2277          * On PORT_A we can have only eDP in SST mode. There the only reason
2278          * we need to set idle transmission mode is to work around a HW issue
2279          * where we enable the pipe while not in idle link-training mode.
2280          * In this case there is requirement to wait for a minimum number of
2281          * idle patterns to be sent.
2282          */
2283         if (port == PORT_A)
2284                 return;
2285
2286         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2287                      1))
2288                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2289 }
2290
2291 /* Enable corresponding port and start training pattern 1 */
2292 void
2293 intel_dp_start_link_train(struct intel_dp *intel_dp)
2294 {
2295         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2296         struct drm_device *dev = encoder->dev;
2297         int i;
2298         uint8_t voltage;
2299         bool clock_recovery = false;
2300         int voltage_tries, loop_tries;
2301         uint32_t DP = intel_dp->DP;
2302
2303         if (HAS_DDI(dev))
2304                 intel_ddi_prepare_link_retrain(encoder);
2305
2306         /* Write the link configuration data */
2307         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2308                                   intel_dp->link_configuration,
2309                                   DP_LINK_CONFIGURATION_SIZE);
2310
2311         DP |= DP_PORT_EN;
2312
2313         memset(intel_dp->train_set, 0, 4);
2314         voltage = 0xff;
2315         voltage_tries = 0;
2316         loop_tries = 0;
2317         clock_recovery = false;
2318         for (;;) {
2319                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2320                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2321
2322                 intel_dp_set_signal_levels(intel_dp, &DP);
2323
2324                 /* Set training pattern 1 */
2325                 if (!intel_dp_set_link_train(intel_dp, DP,
2326                                              DP_TRAINING_PATTERN_1 |
2327                                              DP_LINK_SCRAMBLING_DISABLE))
2328                         break;
2329
2330                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2331                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2332                         DRM_ERROR("failed to get link status\n");
2333                         break;
2334                 }
2335
2336                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2337                         DRM_DEBUG_KMS("clock recovery OK\n");
2338                         clock_recovery = true;
2339                         break;
2340                 }
2341
2342                 /* Check to see if we've tried the max voltage */
2343                 for (i = 0; i < intel_dp->lane_count; i++)
2344                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2345                                 break;
2346                 if (i == intel_dp->lane_count) {
2347                         ++loop_tries;
2348                         if (loop_tries == 5) {
2349                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2350                                 break;
2351                         }
2352                         memset(intel_dp->train_set, 0, 4);
2353                         voltage_tries = 0;
2354                         continue;
2355                 }
2356
2357                 /* Check to see if we've tried the same voltage 5 times */
2358                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2359                         ++voltage_tries;
2360                         if (voltage_tries == 5) {
2361                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2362                                 break;
2363                         }
2364                 } else
2365                         voltage_tries = 0;
2366                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2367
2368                 /* Compute new intel_dp->train_set as requested by target */
2369                 intel_get_adjust_train(intel_dp, link_status);
2370         }
2371
2372         intel_dp->DP = DP;
2373 }
2374
2375 void
2376 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2377 {
2378         bool channel_eq = false;
2379         int tries, cr_tries;
2380         uint32_t DP = intel_dp->DP;
2381
2382         /* channel equalization */
2383         tries = 0;
2384         cr_tries = 0;
2385         channel_eq = false;
2386         for (;;) {
2387                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2388
2389                 if (cr_tries > 5) {
2390                         DRM_ERROR("failed to train DP, aborting\n");
2391                         intel_dp_link_down(intel_dp);
2392                         break;
2393                 }
2394
2395                 intel_dp_set_signal_levels(intel_dp, &DP);
2396
2397                 /* channel eq pattern */
2398                 if (!intel_dp_set_link_train(intel_dp, DP,
2399                                              DP_TRAINING_PATTERN_2 |
2400                                              DP_LINK_SCRAMBLING_DISABLE))
2401                         break;
2402
2403                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2404                 if (!intel_dp_get_link_status(intel_dp, link_status))
2405                         break;
2406
2407                 /* Make sure clock is still ok */
2408                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2409                         intel_dp_start_link_train(intel_dp);
2410                         cr_tries++;
2411                         continue;
2412                 }
2413
2414                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2415                         channel_eq = true;
2416                         break;
2417                 }
2418
2419                 /* Try 5 times, then try clock recovery if that fails */
2420                 if (tries > 5) {
2421                         intel_dp_link_down(intel_dp);
2422                         intel_dp_start_link_train(intel_dp);
2423                         tries = 0;
2424                         cr_tries++;
2425                         continue;
2426                 }
2427
2428                 /* Compute new intel_dp->train_set as requested by target */
2429                 intel_get_adjust_train(intel_dp, link_status);
2430                 ++tries;
2431         }
2432
2433         intel_dp_set_idle_link_train(intel_dp);
2434
2435         intel_dp->DP = DP;
2436
2437         if (channel_eq)
2438                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2439
2440 }
2441
2442 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2443 {
2444         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2445                                 DP_TRAINING_PATTERN_DISABLE);
2446 }
2447
2448 static void
2449 intel_dp_link_down(struct intel_dp *intel_dp)
2450 {
2451         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2452         enum port port = intel_dig_port->port;
2453         struct drm_device *dev = intel_dig_port->base.base.dev;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         struct intel_crtc *intel_crtc =
2456                 to_intel_crtc(intel_dig_port->base.base.crtc);
2457         uint32_t DP = intel_dp->DP;
2458
2459         /*
2460          * DDI code has a strict mode set sequence and we should try to respect
2461          * it, otherwise we might hang the machine in many different ways. So we
2462          * really should be disabling the port only on a complete crtc_disable
2463          * sequence. This function is just called under two conditions on DDI
2464          * code:
2465          * - Link train failed while doing crtc_enable, and on this case we
2466          *   really should respect the mode set sequence and wait for a
2467          *   crtc_disable.
2468          * - Someone turned the monitor off and intel_dp_check_link_status
2469          *   called us. We don't need to disable the whole port on this case, so
2470          *   when someone turns the monitor on again,
2471          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2472          *   train.
2473          */
2474         if (HAS_DDI(dev))
2475                 return;
2476
2477         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2478                 return;
2479
2480         DRM_DEBUG_KMS("\n");
2481
2482         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2483                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2484                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2485         } else {
2486                 DP &= ~DP_LINK_TRAIN_MASK;
2487                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2488         }
2489         POSTING_READ(intel_dp->output_reg);
2490
2491         /* We don't really know why we're doing this */
2492         intel_wait_for_vblank(dev, intel_crtc->pipe);
2493
2494         if (HAS_PCH_IBX(dev) &&
2495             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2496                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2497
2498                 /* Hardware workaround: leaving our transcoder select
2499                  * set to transcoder B while it's off will prevent the
2500                  * corresponding HDMI output on transcoder A.
2501                  *
2502                  * Combine this with another hardware workaround:
2503                  * transcoder select bit can only be cleared while the
2504                  * port is enabled.
2505                  */
2506                 DP &= ~DP_PIPEB_SELECT;
2507                 I915_WRITE(intel_dp->output_reg, DP);
2508
2509                 /* Changes to enable or select take place the vblank
2510                  * after being written.
2511                  */
2512                 if (WARN_ON(crtc == NULL)) {
2513                         /* We should never try to disable a port without a crtc
2514                          * attached. For paranoia keep the code around for a
2515                          * bit. */
2516                         POSTING_READ(intel_dp->output_reg);
2517                         msleep(50);
2518                 } else
2519                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2520         }
2521
2522         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2523         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2524         POSTING_READ(intel_dp->output_reg);
2525         msleep(intel_dp->panel_power_down_delay);
2526 }
2527
2528 static bool
2529 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2530 {
2531         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2532
2533         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2534                                            sizeof(intel_dp->dpcd)) == 0)
2535                 return false; /* aux transfer failed */
2536
2537         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2538                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2539         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2540
2541         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2542                 return false; /* DPCD not present */
2543
2544         /* Check if the panel supports PSR */
2545         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2546         intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2547                                        intel_dp->psr_dpcd,
2548                                        sizeof(intel_dp->psr_dpcd));
2549         if (is_edp_psr(intel_dp))
2550                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2551         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2552               DP_DWN_STRM_PORT_PRESENT))
2553                 return true; /* native DP sink */
2554
2555         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2556                 return true; /* no per-port downstream info */
2557
2558         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2559                                            intel_dp->downstream_ports,
2560                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2561                 return false; /* downstream port status fetch failed */
2562
2563         return true;
2564 }
2565
2566 static void
2567 intel_dp_probe_oui(struct intel_dp *intel_dp)
2568 {
2569         u8 buf[3];
2570
2571         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2572                 return;
2573
2574         ironlake_edp_panel_vdd_on(intel_dp);
2575
2576         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2577                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2578                               buf[0], buf[1], buf[2]);
2579
2580         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2581                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2582                               buf[0], buf[1], buf[2]);
2583
2584         ironlake_edp_panel_vdd_off(intel_dp, false);
2585 }
2586
2587 static bool
2588 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2589 {
2590         int ret;
2591
2592         ret = intel_dp_aux_native_read_retry(intel_dp,
2593                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2594                                              sink_irq_vector, 1);
2595         if (!ret)
2596                 return false;
2597
2598         return true;
2599 }
2600
2601 static void
2602 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2603 {
2604         /* NAK by default */
2605         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2606 }
2607
2608 /*
2609  * According to DP spec
2610  * 5.1.2:
2611  *  1. Read DPCD
2612  *  2. Configure link according to Receiver Capabilities
2613  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2614  *  4. Check link status on receipt of hot-plug interrupt
2615  */
2616
2617 void
2618 intel_dp_check_link_status(struct intel_dp *intel_dp)
2619 {
2620         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2621         u8 sink_irq_vector;
2622         u8 link_status[DP_LINK_STATUS_SIZE];
2623
2624         if (!intel_encoder->connectors_active)
2625                 return;
2626
2627         if (WARN_ON(!intel_encoder->base.crtc))
2628                 return;
2629
2630         /* Try to read receiver status if the link appears to be up */
2631         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2632                 intel_dp_link_down(intel_dp);
2633                 return;
2634         }
2635
2636         /* Now read the DPCD to see if it's actually running */
2637         if (!intel_dp_get_dpcd(intel_dp)) {
2638                 intel_dp_link_down(intel_dp);
2639                 return;
2640         }
2641
2642         /* Try to read the source of the interrupt */
2643         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2644             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2645                 /* Clear interrupt source */
2646                 intel_dp_aux_native_write_1(intel_dp,
2647                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2648                                             sink_irq_vector);
2649
2650                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2651                         intel_dp_handle_test_request(intel_dp);
2652                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2653                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2654         }
2655
2656         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2657                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2658                               drm_get_encoder_name(&intel_encoder->base));
2659                 intel_dp_start_link_train(intel_dp);
2660                 intel_dp_complete_link_train(intel_dp);
2661                 intel_dp_stop_link_train(intel_dp);
2662         }
2663 }
2664
2665 /* XXX this is probably wrong for multiple downstream ports */
2666 static enum drm_connector_status
2667 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2668 {
2669         uint8_t *dpcd = intel_dp->dpcd;
2670         bool hpd;
2671         uint8_t type;
2672
2673         if (!intel_dp_get_dpcd(intel_dp))
2674                 return connector_status_disconnected;
2675
2676         /* if there's no downstream port, we're done */
2677         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2678                 return connector_status_connected;
2679
2680         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2681         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2682         if (hpd) {
2683                 uint8_t reg;
2684                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2685                                                     &reg, 1))
2686                         return connector_status_unknown;
2687                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2688                                               : connector_status_disconnected;
2689         }
2690
2691         /* If no HPD, poke DDC gently */
2692         if (drm_probe_ddc(&intel_dp->adapter))
2693                 return connector_status_connected;
2694
2695         /* Well we tried, say unknown for unreliable port types */
2696         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2697         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2698                 return connector_status_unknown;
2699
2700         /* Anything else is out of spec, warn and ignore */
2701         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2702         return connector_status_disconnected;
2703 }
2704
2705 static enum drm_connector_status
2706 ironlake_dp_detect(struct intel_dp *intel_dp)
2707 {
2708         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2709         struct drm_i915_private *dev_priv = dev->dev_private;
2710         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2711         enum drm_connector_status status;
2712
2713         /* Can't disconnect eDP, but you can close the lid... */
2714         if (is_edp(intel_dp)) {
2715                 status = intel_panel_detect(dev);
2716                 if (status == connector_status_unknown)
2717                         status = connector_status_connected;
2718                 return status;
2719         }
2720
2721         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2722                 return connector_status_disconnected;
2723
2724         return intel_dp_detect_dpcd(intel_dp);
2725 }
2726
2727 static enum drm_connector_status
2728 g4x_dp_detect(struct intel_dp *intel_dp)
2729 {
2730         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2733         uint32_t bit;
2734
2735         /* Can't disconnect eDP, but you can close the lid... */
2736         if (is_edp(intel_dp)) {
2737                 enum drm_connector_status status;
2738
2739                 status = intel_panel_detect(dev);
2740                 if (status == connector_status_unknown)
2741                         status = connector_status_connected;
2742                 return status;
2743         }
2744
2745         switch (intel_dig_port->port) {
2746         case PORT_B:
2747                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2748                 break;
2749         case PORT_C:
2750                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2751                 break;
2752         case PORT_D:
2753                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2754                 break;
2755         default:
2756                 return connector_status_unknown;
2757         }
2758
2759         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2760                 return connector_status_disconnected;
2761
2762         return intel_dp_detect_dpcd(intel_dp);
2763 }
2764
2765 static struct edid *
2766 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2767 {
2768         struct intel_connector *intel_connector = to_intel_connector(connector);
2769
2770         /* use cached edid if we have one */
2771         if (intel_connector->edid) {
2772                 struct edid *edid;
2773                 int size;
2774
2775                 /* invalid edid */
2776                 if (IS_ERR(intel_connector->edid))
2777                         return NULL;
2778
2779                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2780                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2781                 if (!edid)
2782                         return NULL;
2783
2784                 return edid;
2785         }
2786
2787         return drm_get_edid(connector, adapter);
2788 }
2789
2790 static int
2791 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2792 {
2793         struct intel_connector *intel_connector = to_intel_connector(connector);
2794
2795         /* use cached edid if we have one */
2796         if (intel_connector->edid) {
2797                 /* invalid edid */
2798                 if (IS_ERR(intel_connector->edid))
2799                         return 0;
2800
2801                 return intel_connector_update_modes(connector,
2802                                                     intel_connector->edid);
2803         }
2804
2805         return intel_ddc_get_modes(connector, adapter);
2806 }
2807
2808 static enum drm_connector_status
2809 intel_dp_detect(struct drm_connector *connector, bool force)
2810 {
2811         struct intel_dp *intel_dp = intel_attached_dp(connector);
2812         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2813         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2814         struct drm_device *dev = connector->dev;
2815         enum drm_connector_status status;
2816         struct edid *edid = NULL;
2817
2818         intel_dp->has_audio = false;
2819
2820         if (HAS_PCH_SPLIT(dev))
2821                 status = ironlake_dp_detect(intel_dp);
2822         else
2823                 status = g4x_dp_detect(intel_dp);
2824
2825         if (status != connector_status_connected)
2826                 return status;
2827
2828         intel_dp_probe_oui(intel_dp);
2829
2830         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2831                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2832         } else {
2833                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2834                 if (edid) {
2835                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2836                         kfree(edid);
2837                 }
2838         }
2839
2840         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2841                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2842         return connector_status_connected;
2843 }
2844
2845 static int intel_dp_get_modes(struct drm_connector *connector)
2846 {
2847         struct intel_dp *intel_dp = intel_attached_dp(connector);
2848         struct intel_connector *intel_connector = to_intel_connector(connector);
2849         struct drm_device *dev = connector->dev;
2850         int ret;
2851
2852         /* We should parse the EDID data and find out if it has an audio sink
2853          */
2854
2855         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2856         if (ret)
2857                 return ret;
2858
2859         /* if eDP has no EDID, fall back to fixed mode */
2860         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2861                 struct drm_display_mode *mode;
2862                 mode = drm_mode_duplicate(dev,
2863                                           intel_connector->panel.fixed_mode);
2864                 if (mode) {
2865                         drm_mode_probed_add(connector, mode);
2866                         return 1;
2867                 }
2868         }
2869         return 0;
2870 }
2871
2872 static bool
2873 intel_dp_detect_audio(struct drm_connector *connector)
2874 {
2875         struct intel_dp *intel_dp = intel_attached_dp(connector);
2876         struct edid *edid;
2877         bool has_audio = false;
2878
2879         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2880         if (edid) {
2881                 has_audio = drm_detect_monitor_audio(edid);
2882                 kfree(edid);
2883         }
2884
2885         return has_audio;
2886 }
2887
2888 static int
2889 intel_dp_set_property(struct drm_connector *connector,
2890                       struct drm_property *property,
2891                       uint64_t val)
2892 {
2893         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2894         struct intel_connector *intel_connector = to_intel_connector(connector);
2895         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2896         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2897         int ret;
2898
2899         ret = drm_object_property_set_value(&connector->base, property, val);
2900         if (ret)
2901                 return ret;
2902
2903         if (property == dev_priv->force_audio_property) {
2904                 int i = val;
2905                 bool has_audio;
2906
2907                 if (i == intel_dp->force_audio)
2908                         return 0;
2909
2910                 intel_dp->force_audio = i;
2911
2912                 if (i == HDMI_AUDIO_AUTO)
2913                         has_audio = intel_dp_detect_audio(connector);
2914                 else
2915                         has_audio = (i == HDMI_AUDIO_ON);
2916
2917                 if (has_audio == intel_dp->has_audio)
2918                         return 0;
2919
2920                 intel_dp->has_audio = has_audio;
2921                 goto done;
2922         }
2923
2924         if (property == dev_priv->broadcast_rgb_property) {
2925                 bool old_auto = intel_dp->color_range_auto;
2926                 uint32_t old_range = intel_dp->color_range;
2927
2928                 switch (val) {
2929                 case INTEL_BROADCAST_RGB_AUTO:
2930                         intel_dp->color_range_auto = true;
2931                         break;
2932                 case INTEL_BROADCAST_RGB_FULL:
2933                         intel_dp->color_range_auto = false;
2934                         intel_dp->color_range = 0;
2935                         break;
2936                 case INTEL_BROADCAST_RGB_LIMITED:
2937                         intel_dp->color_range_auto = false;
2938                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2939                         break;
2940                 default:
2941                         return -EINVAL;
2942                 }
2943
2944                 if (old_auto == intel_dp->color_range_auto &&
2945                     old_range == intel_dp->color_range)
2946                         return 0;
2947
2948                 goto done;
2949         }
2950
2951         if (is_edp(intel_dp) &&
2952             property == connector->dev->mode_config.scaling_mode_property) {
2953                 if (val == DRM_MODE_SCALE_NONE) {
2954                         DRM_DEBUG_KMS("no scaling not supported\n");
2955                         return -EINVAL;
2956                 }
2957
2958                 if (intel_connector->panel.fitting_mode == val) {
2959                         /* the eDP scaling property is not changed */
2960                         return 0;
2961                 }
2962                 intel_connector->panel.fitting_mode = val;
2963
2964                 goto done;
2965         }
2966
2967         return -EINVAL;
2968
2969 done:
2970         if (intel_encoder->base.crtc)
2971                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2972
2973         return 0;
2974 }
2975
2976 static void
2977 intel_dp_connector_destroy(struct drm_connector *connector)
2978 {
2979         struct intel_connector *intel_connector = to_intel_connector(connector);
2980
2981         if (!IS_ERR_OR_NULL(intel_connector->edid))
2982                 kfree(intel_connector->edid);
2983
2984         /* Can't call is_edp() since the encoder may have been destroyed
2985          * already. */
2986         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
2987                 intel_panel_fini(&intel_connector->panel);
2988
2989         drm_sysfs_connector_remove(connector);
2990         drm_connector_cleanup(connector);
2991         kfree(connector);
2992 }
2993
2994 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2995 {
2996         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2997         struct intel_dp *intel_dp = &intel_dig_port->dp;
2998         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2999
3000         i2c_del_adapter(&intel_dp->adapter);
3001         drm_encoder_cleanup(encoder);
3002         if (is_edp(intel_dp)) {
3003                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3004                 mutex_lock(&dev->mode_config.mutex);
3005                 ironlake_panel_vdd_off_sync(intel_dp);
3006                 mutex_unlock(&dev->mode_config.mutex);
3007         }
3008         kfree(intel_dig_port);
3009 }
3010
3011 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
3012         .mode_set = intel_dp_mode_set,
3013 };
3014
3015 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3016         .dpms = intel_connector_dpms,
3017         .detect = intel_dp_detect,
3018         .fill_modes = drm_helper_probe_single_connector_modes,
3019         .set_property = intel_dp_set_property,
3020         .destroy = intel_dp_connector_destroy,
3021 };
3022
3023 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3024         .get_modes = intel_dp_get_modes,
3025         .mode_valid = intel_dp_mode_valid,
3026         .best_encoder = intel_best_encoder,
3027 };
3028
3029 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3030         .destroy = intel_dp_encoder_destroy,
3031 };
3032
3033 static void
3034 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3035 {
3036         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3037
3038         intel_dp_check_link_status(intel_dp);
3039 }
3040
3041 /* Return which DP Port should be selected for Transcoder DP control */
3042 int
3043 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3044 {
3045         struct drm_device *dev = crtc->dev;
3046         struct intel_encoder *intel_encoder;
3047         struct intel_dp *intel_dp;
3048
3049         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3050                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3051
3052                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3053                     intel_encoder->type == INTEL_OUTPUT_EDP)
3054                         return intel_dp->output_reg;
3055         }
3056
3057         return -1;
3058 }
3059
3060 /* check the VBT to see whether the eDP is on DP-D port */
3061 bool intel_dpd_is_edp(struct drm_device *dev)
3062 {
3063         struct drm_i915_private *dev_priv = dev->dev_private;
3064         struct child_device_config *p_child;
3065         int i;
3066
3067         if (!dev_priv->vbt.child_dev_num)
3068                 return false;
3069
3070         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3071                 p_child = dev_priv->vbt.child_dev + i;
3072
3073                 if (p_child->dvo_port == PORT_IDPD &&
3074                     p_child->device_type == DEVICE_TYPE_eDP)
3075                         return true;
3076         }
3077         return false;
3078 }
3079
3080 static void
3081 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3082 {
3083         struct intel_connector *intel_connector = to_intel_connector(connector);
3084
3085         intel_attach_force_audio_property(connector);
3086         intel_attach_broadcast_rgb_property(connector);
3087         intel_dp->color_range_auto = true;
3088
3089         if (is_edp(intel_dp)) {
3090                 drm_mode_create_scaling_mode_property(connector->dev);
3091                 drm_object_attach_property(
3092                         &connector->base,
3093                         connector->dev->mode_config.scaling_mode_property,
3094                         DRM_MODE_SCALE_ASPECT);
3095                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3096         }
3097 }
3098
3099 static void
3100 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3101                                     struct intel_dp *intel_dp,
3102                                     struct edp_power_seq *out)
3103 {
3104         struct drm_i915_private *dev_priv = dev->dev_private;
3105         struct edp_power_seq cur, vbt, spec, final;
3106         u32 pp_on, pp_off, pp_div, pp;
3107         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3108
3109         if (HAS_PCH_SPLIT(dev)) {
3110                 pp_control_reg = PCH_PP_CONTROL;
3111                 pp_on_reg = PCH_PP_ON_DELAYS;
3112                 pp_off_reg = PCH_PP_OFF_DELAYS;
3113                 pp_div_reg = PCH_PP_DIVISOR;
3114         } else {
3115                 pp_control_reg = PIPEA_PP_CONTROL;
3116                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3117                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3118                 pp_div_reg = PIPEA_PP_DIVISOR;
3119         }
3120
3121         /* Workaround: Need to write PP_CONTROL with the unlock key as
3122          * the very first thing. */
3123         pp = ironlake_get_pp_control(intel_dp);
3124         I915_WRITE(pp_control_reg, pp);
3125
3126         pp_on = I915_READ(pp_on_reg);
3127         pp_off = I915_READ(pp_off_reg);
3128         pp_div = I915_READ(pp_div_reg);
3129
3130         /* Pull timing values out of registers */
3131         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3132                 PANEL_POWER_UP_DELAY_SHIFT;
3133
3134         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3135                 PANEL_LIGHT_ON_DELAY_SHIFT;
3136
3137         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3138                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3139
3140         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3141                 PANEL_POWER_DOWN_DELAY_SHIFT;
3142
3143         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3144                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3145
3146         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3147                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3148
3149         vbt = dev_priv->vbt.edp_pps;
3150
3151         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3152          * our hw here, which are all in 100usec. */
3153         spec.t1_t3 = 210 * 10;
3154         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3155         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3156         spec.t10 = 500 * 10;
3157         /* This one is special and actually in units of 100ms, but zero
3158          * based in the hw (so we need to add 100 ms). But the sw vbt
3159          * table multiplies it with 1000 to make it in units of 100usec,
3160          * too. */
3161         spec.t11_t12 = (510 + 100) * 10;
3162
3163         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3164                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3165
3166         /* Use the max of the register settings and vbt. If both are
3167          * unset, fall back to the spec limits. */
3168 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3169                                        spec.field : \
3170                                        max(cur.field, vbt.field))
3171         assign_final(t1_t3);
3172         assign_final(t8);
3173         assign_final(t9);
3174         assign_final(t10);
3175         assign_final(t11_t12);
3176 #undef assign_final
3177
3178 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3179         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3180         intel_dp->backlight_on_delay = get_delay(t8);
3181         intel_dp->backlight_off_delay = get_delay(t9);
3182         intel_dp->panel_power_down_delay = get_delay(t10);
3183         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3184 #undef get_delay
3185
3186         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3187                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3188                       intel_dp->panel_power_cycle_delay);
3189
3190         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3191                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3192
3193         if (out)
3194                 *out = final;
3195 }
3196
3197 static void
3198 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3199                                               struct intel_dp *intel_dp,
3200                                               struct edp_power_seq *seq)
3201 {
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         u32 pp_on, pp_off, pp_div, port_sel = 0;
3204         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3205         int pp_on_reg, pp_off_reg, pp_div_reg;
3206
3207         if (HAS_PCH_SPLIT(dev)) {
3208                 pp_on_reg = PCH_PP_ON_DELAYS;
3209                 pp_off_reg = PCH_PP_OFF_DELAYS;
3210                 pp_div_reg = PCH_PP_DIVISOR;
3211         } else {
3212                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3213                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3214                 pp_div_reg = PIPEA_PP_DIVISOR;
3215         }
3216
3217         /* And finally store the new values in the power sequencer. */
3218         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3219                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3220         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3221                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3222         /* Compute the divisor for the pp clock, simply match the Bspec
3223          * formula. */
3224         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3225         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3226                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3227
3228         /* Haswell doesn't have any port selection bits for the panel
3229          * power sequencer any more. */
3230         if (IS_VALLEYVIEW(dev)) {
3231                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3232         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3233                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3234                         port_sel = PANEL_POWER_PORT_DP_A;
3235                 else
3236                         port_sel = PANEL_POWER_PORT_DP_D;
3237         }
3238
3239         pp_on |= port_sel;
3240
3241         I915_WRITE(pp_on_reg, pp_on);
3242         I915_WRITE(pp_off_reg, pp_off);
3243         I915_WRITE(pp_div_reg, pp_div);
3244
3245         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3246                       I915_READ(pp_on_reg),
3247                       I915_READ(pp_off_reg),
3248                       I915_READ(pp_div_reg));
3249 }
3250
3251 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3252                                      struct intel_connector *intel_connector)
3253 {
3254         struct drm_connector *connector = &intel_connector->base;
3255         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3256         struct drm_device *dev = intel_dig_port->base.base.dev;
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258         struct drm_display_mode *fixed_mode = NULL;
3259         struct edp_power_seq power_seq = { 0 };
3260         bool has_dpcd;
3261         struct drm_display_mode *scan;
3262         struct edid *edid;
3263
3264         if (!is_edp(intel_dp))
3265                 return true;
3266
3267         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3268
3269         /* Cache DPCD and EDID for edp. */
3270         ironlake_edp_panel_vdd_on(intel_dp);
3271         has_dpcd = intel_dp_get_dpcd(intel_dp);
3272         ironlake_edp_panel_vdd_off(intel_dp, false);
3273
3274         if (has_dpcd) {
3275                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3276                         dev_priv->no_aux_handshake =
3277                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3278                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3279         } else {
3280                 /* if this fails, presume the device is a ghost */
3281                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3282                 return false;
3283         }
3284
3285         /* We now know it's not a ghost, init power sequence regs. */
3286         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3287                                                       &power_seq);
3288
3289         ironlake_edp_panel_vdd_on(intel_dp);
3290         edid = drm_get_edid(connector, &intel_dp->adapter);
3291         if (edid) {
3292                 if (drm_add_edid_modes(connector, edid)) {
3293                         drm_mode_connector_update_edid_property(connector,
3294                                                                 edid);
3295                         drm_edid_to_eld(connector, edid);
3296                 } else {
3297                         kfree(edid);
3298                         edid = ERR_PTR(-EINVAL);
3299                 }
3300         } else {
3301                 edid = ERR_PTR(-ENOENT);
3302         }
3303         intel_connector->edid = edid;
3304
3305         /* prefer fixed mode from EDID if available */
3306         list_for_each_entry(scan, &connector->probed_modes, head) {
3307                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3308                         fixed_mode = drm_mode_duplicate(dev, scan);
3309                         break;
3310                 }
3311         }
3312
3313         /* fallback to VBT if available for eDP */
3314         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3315                 fixed_mode = drm_mode_duplicate(dev,
3316                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3317                 if (fixed_mode)
3318                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3319         }
3320
3321         ironlake_edp_panel_vdd_off(intel_dp, false);
3322
3323         intel_panel_init(&intel_connector->panel, fixed_mode);
3324         intel_panel_setup_backlight(connector);
3325
3326         return true;
3327 }
3328
3329 bool
3330 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3331                         struct intel_connector *intel_connector)
3332 {
3333         struct drm_connector *connector = &intel_connector->base;
3334         struct intel_dp *intel_dp = &intel_dig_port->dp;
3335         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3336         struct drm_device *dev = intel_encoder->base.dev;
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         enum port port = intel_dig_port->port;
3339         const char *name = NULL;
3340         int type, error;
3341
3342         /* Preserve the current hw state. */
3343         intel_dp->DP = I915_READ(intel_dp->output_reg);
3344         intel_dp->attached_connector = intel_connector;
3345
3346         type = DRM_MODE_CONNECTOR_DisplayPort;
3347         /*
3348          * FIXME : We need to initialize built-in panels before external panels.
3349          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3350          */
3351         switch (port) {
3352         case PORT_A:
3353                 type = DRM_MODE_CONNECTOR_eDP;
3354                 break;
3355         case PORT_C:
3356                 if (IS_VALLEYVIEW(dev))
3357                         type = DRM_MODE_CONNECTOR_eDP;
3358                 break;
3359         case PORT_D:
3360                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3361                         type = DRM_MODE_CONNECTOR_eDP;
3362                 break;
3363         default:        /* silence GCC warning */
3364                 break;
3365         }
3366
3367         /*
3368          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3369          * for DP the encoder type can be set by the caller to
3370          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3371          */
3372         if (type == DRM_MODE_CONNECTOR_eDP)
3373                 intel_encoder->type = INTEL_OUTPUT_EDP;
3374
3375         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3376                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3377                         port_name(port));
3378
3379         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3380         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3381
3382         connector->interlace_allowed = true;
3383         connector->doublescan_allowed = 0;
3384
3385         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3386                           ironlake_panel_vdd_work);
3387
3388         intel_connector_attach_encoder(intel_connector, intel_encoder);
3389         drm_sysfs_connector_add(connector);
3390
3391         if (HAS_DDI(dev))
3392                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3393         else
3394                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3395
3396         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3397         if (HAS_DDI(dev)) {
3398                 switch (intel_dig_port->port) {
3399                 case PORT_A:
3400                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3401                         break;
3402                 case PORT_B:
3403                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3404                         break;
3405                 case PORT_C:
3406                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3407                         break;
3408                 case PORT_D:
3409                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3410                         break;
3411                 default:
3412                         BUG();
3413                 }
3414         }
3415
3416         /* Set up the DDC bus. */
3417         switch (port) {
3418         case PORT_A:
3419                 intel_encoder->hpd_pin = HPD_PORT_A;
3420                 name = "DPDDC-A";
3421                 break;
3422         case PORT_B:
3423                 intel_encoder->hpd_pin = HPD_PORT_B;
3424                 name = "DPDDC-B";
3425                 break;
3426         case PORT_C:
3427                 intel_encoder->hpd_pin = HPD_PORT_C;
3428                 name = "DPDDC-C";
3429                 break;
3430         case PORT_D:
3431                 intel_encoder->hpd_pin = HPD_PORT_D;
3432                 name = "DPDDC-D";
3433                 break;
3434         default:
3435                 BUG();
3436         }
3437
3438         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3439         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3440              error, port_name(port));
3441
3442         intel_dp->psr_setup_done = false;
3443
3444         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3445                 i2c_del_adapter(&intel_dp->adapter);
3446                 if (is_edp(intel_dp)) {
3447                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3448                         mutex_lock(&dev->mode_config.mutex);
3449                         ironlake_panel_vdd_off_sync(intel_dp);
3450                         mutex_unlock(&dev->mode_config.mutex);
3451                 }
3452                 drm_sysfs_connector_remove(connector);
3453                 drm_connector_cleanup(connector);
3454                 return false;
3455         }
3456
3457         intel_dp_add_properties(intel_dp, connector);
3458
3459         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3460          * 0xd.  Failure to do so will result in spurious interrupts being
3461          * generated on the port when a cable is not attached.
3462          */
3463         if (IS_G4X(dev) && !IS_GM45(dev)) {
3464                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3465                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3466         }
3467
3468         return true;
3469 }
3470
3471 void
3472 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3473 {
3474         struct intel_digital_port *intel_dig_port;
3475         struct intel_encoder *intel_encoder;
3476         struct drm_encoder *encoder;
3477         struct intel_connector *intel_connector;
3478
3479         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3480         if (!intel_dig_port)
3481                 return;
3482
3483         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3484         if (!intel_connector) {
3485                 kfree(intel_dig_port);
3486                 return;
3487         }
3488
3489         intel_encoder = &intel_dig_port->base;
3490         encoder = &intel_encoder->base;
3491
3492         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3493                          DRM_MODE_ENCODER_TMDS);
3494         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
3495
3496         intel_encoder->compute_config = intel_dp_compute_config;
3497         intel_encoder->enable = intel_enable_dp;
3498         intel_encoder->pre_enable = intel_pre_enable_dp;
3499         intel_encoder->disable = intel_disable_dp;
3500         intel_encoder->post_disable = intel_post_disable_dp;
3501         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3502         intel_encoder->get_config = intel_dp_get_config;
3503         if (IS_VALLEYVIEW(dev))
3504                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3505
3506         intel_dig_port->port = port;
3507         intel_dig_port->dp.output_reg = output_reg;
3508
3509         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3510         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3511         intel_encoder->cloneable = false;
3512         intel_encoder->hot_plug = intel_dp_hot_plug;
3513
3514         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3515                 drm_encoder_cleanup(encoder);
3516                 kfree(intel_dig_port);
3517                 kfree(intel_connector);
3518         }
3519 }