b6b00cfaa04cff44638eac07e8a2743560f1ff2f
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204         if (is_edp(intel_dp) && fixed_mode) {
205                 if (mode->hdisplay > fixed_mode->hdisplay)
206                         return MODE_PANEL;
207
208                 if (mode->vdisplay > fixed_mode->vdisplay)
209                         return MODE_PANEL;
210
211                 target_clock = fixed_mode->clock;
212         }
213
214         max_link_clock = intel_dp_max_link_rate(intel_dp);
215         max_lanes = intel_dp_max_lane_count(intel_dp);
216
217         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218         mode_rate = intel_dp_link_required(target_clock, 18);
219
220         if (mode_rate > max_rate || target_clock > max_dotclk)
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227                 return MODE_H_ILLEGAL;
228
229         return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234         int     i;
235         uint32_t v = 0;
236
237         if (src_bytes > 4)
238                 src_bytes = 4;
239         for (i = 0; i < src_bytes; i++)
240                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241         return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255                                     struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258                                               struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263         struct intel_encoder *encoder = &intel_dig_port->base;
264         struct drm_device *dev = encoder->base.dev;
265         struct drm_i915_private *dev_priv = dev->dev_private;
266         enum intel_display_power_domain power_domain;
267
268         /*
269          * See vlv_power_sequencer_reset() why we need
270          * a power domain reference here.
271          */
272         power_domain = intel_display_port_aux_power_domain(encoder);
273         intel_display_power_get(dev_priv, power_domain);
274
275         mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281         struct intel_encoder *encoder = &intel_dig_port->base;
282         struct drm_device *dev = encoder->base.dev;
283         struct drm_i915_private *dev_priv = dev->dev_private;
284         enum intel_display_power_domain power_domain;
285
286         mutex_unlock(&dev_priv->pps_mutex);
287
288         power_domain = intel_display_port_aux_power_domain(encoder);
289         intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296         struct drm_device *dev = intel_dig_port->base.base.dev;
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         enum pipe pipe = intel_dp->pps_pipe;
299         bool pll_enabled, release_cl_override = false;
300         enum dpio_phy phy = DPIO_PHY(pipe);
301         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302         uint32_t DP;
303
304         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306                  pipe_name(pipe), port_name(intel_dig_port->port)))
307                 return;
308
309         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310                       pipe_name(pipe), port_name(intel_dig_port->port));
311
312         /* Preserve the BIOS-computed detected bit. This is
313          * supposed to be read-only.
314          */
315         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317         DP |= DP_PORT_WIDTH(1);
318         DP |= DP_LINK_TRAIN_PAT_1;
319
320         if (IS_CHERRYVIEW(dev))
321                 DP |= DP_PIPE_SELECT_CHV(pipe);
322         else if (pipe == PIPE_B)
323                 DP |= DP_PIPEB_SELECT;
324
325         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327         /*
328          * The DPLL for the pipe must be enabled for this to work.
329          * So enable temporarily it if it's not already enabled.
330          */
331         if (!pll_enabled) {
332                 release_cl_override = IS_CHERRYVIEW(dev) &&
333                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
338                                   pipe_name(pipe));
339                         return;
340                 }
341         }
342
343         /*
344          * Similar magic as in intel_dp_enable_port().
345          * We _must_ do this port enable + disable trick
346          * to make this power seqeuencer lock onto the port.
347          * Otherwise even VDD force bit won't work.
348          */
349         I915_WRITE(intel_dp->output_reg, DP);
350         POSTING_READ(intel_dp->output_reg);
351
352         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353         POSTING_READ(intel_dp->output_reg);
354
355         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356         POSTING_READ(intel_dp->output_reg);
357
358         if (!pll_enabled) {
359                 vlv_force_pll_off(dev, pipe);
360
361                 if (release_cl_override)
362                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
363         }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370         struct drm_device *dev = intel_dig_port->base.base.dev;
371         struct drm_i915_private *dev_priv = dev->dev_private;
372         struct intel_encoder *encoder;
373         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374         enum pipe pipe;
375
376         lockdep_assert_held(&dev_priv->pps_mutex);
377
378         /* We should never land here with regular DP ports */
379         WARN_ON(!is_edp(intel_dp));
380
381         if (intel_dp->pps_pipe != INVALID_PIPE)
382                 return intel_dp->pps_pipe;
383
384         /*
385          * We don't have power sequencer currently.
386          * Pick one that's not used by other ports.
387          */
388         for_each_intel_encoder(dev, encoder) {
389                 struct intel_dp *tmp;
390
391                 if (encoder->type != INTEL_OUTPUT_EDP)
392                         continue;
393
394                 tmp = enc_to_intel_dp(&encoder->base);
395
396                 if (tmp->pps_pipe != INVALID_PIPE)
397                         pipes &= ~(1 << tmp->pps_pipe);
398         }
399
400         /*
401          * Didn't find one. This should not happen since there
402          * are two power sequencers and up to two eDP ports.
403          */
404         if (WARN_ON(pipes == 0))
405                 pipe = PIPE_A;
406         else
407                 pipe = ffs(pipes) - 1;
408
409         vlv_steal_power_sequencer(dev, pipe);
410         intel_dp->pps_pipe = pipe;
411
412         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413                       pipe_name(intel_dp->pps_pipe),
414                       port_name(intel_dig_port->port));
415
416         /* init power sequencer on this pipe and port */
417         intel_dp_init_panel_power_sequencer(dev, intel_dp);
418         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420         /*
421          * Even vdd force doesn't work until we've made
422          * the power sequencer lock in on the port.
423          */
424         vlv_power_sequencer_kick(intel_dp);
425
426         return intel_dp->pps_pipe;
427 }
428
429 static int
430 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
431 {
432         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
433         struct drm_device *dev = intel_dig_port->base.base.dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435
436         lockdep_assert_held(&dev_priv->pps_mutex);
437
438         /* We should never land here with regular DP ports */
439         WARN_ON(!is_edp(intel_dp));
440
441         /*
442          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
443          * mapping needs to be retrieved from VBT, for now just hard-code to
444          * use instance #0 always.
445          */
446         if (!intel_dp->pps_reset)
447                 return 0;
448
449         intel_dp->pps_reset = false;
450
451         /*
452          * Only the HW needs to be reprogrammed, the SW state is fixed and
453          * has been setup during connector init.
454          */
455         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
456
457         return 0;
458 }
459
460 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
461                                enum pipe pipe);
462
463 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
464                                enum pipe pipe)
465 {
466         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
467 }
468
469 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
470                                 enum pipe pipe)
471 {
472         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
473 }
474
475 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
476                          enum pipe pipe)
477 {
478         return true;
479 }
480
481 static enum pipe
482 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
483                      enum port port,
484                      vlv_pipe_check pipe_check)
485 {
486         enum pipe pipe;
487
488         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
489                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
490                         PANEL_PORT_SELECT_MASK;
491
492                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
493                         continue;
494
495                 if (!pipe_check(dev_priv, pipe))
496                         continue;
497
498                 return pipe;
499         }
500
501         return INVALID_PIPE;
502 }
503
504 static void
505 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
506 {
507         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
508         struct drm_device *dev = intel_dig_port->base.base.dev;
509         struct drm_i915_private *dev_priv = dev->dev_private;
510         enum port port = intel_dig_port->port;
511
512         lockdep_assert_held(&dev_priv->pps_mutex);
513
514         /* try to find a pipe with this port selected */
515         /* first pick one where the panel is on */
516         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517                                                   vlv_pipe_has_pp_on);
518         /* didn't find one? pick one where vdd is on */
519         if (intel_dp->pps_pipe == INVALID_PIPE)
520                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521                                                           vlv_pipe_has_vdd_on);
522         /* didn't find one? pick one with just the correct port */
523         if (intel_dp->pps_pipe == INVALID_PIPE)
524                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
525                                                           vlv_pipe_any);
526
527         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
528         if (intel_dp->pps_pipe == INVALID_PIPE) {
529                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
530                               port_name(port));
531                 return;
532         }
533
534         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
535                       port_name(port), pipe_name(intel_dp->pps_pipe));
536
537         intel_dp_init_panel_power_sequencer(dev, intel_dp);
538         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
539 }
540
541 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
542 {
543         struct drm_device *dev = dev_priv->dev;
544         struct intel_encoder *encoder;
545
546         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
547                     !IS_BROXTON(dev)))
548                 return;
549
550         /*
551          * We can't grab pps_mutex here due to deadlock with power_domain
552          * mutex when power_domain functions are called while holding pps_mutex.
553          * That also means that in order to use pps_pipe the code needs to
554          * hold both a power domain reference and pps_mutex, and the power domain
555          * reference get/put must be done while _not_ holding pps_mutex.
556          * pps_{lock,unlock}() do these steps in the correct order, so one
557          * should use them always.
558          */
559
560         for_each_intel_encoder(dev, encoder) {
561                 struct intel_dp *intel_dp;
562
563                 if (encoder->type != INTEL_OUTPUT_EDP)
564                         continue;
565
566                 intel_dp = enc_to_intel_dp(&encoder->base);
567                 if (IS_BROXTON(dev))
568                         intel_dp->pps_reset = true;
569                 else
570                         intel_dp->pps_pipe = INVALID_PIPE;
571         }
572 }
573
574 struct pps_registers {
575         i915_reg_t pp_ctrl;
576         i915_reg_t pp_stat;
577         i915_reg_t pp_on;
578         i915_reg_t pp_off;
579         i915_reg_t pp_div;
580 };
581
582 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
583                                     struct intel_dp *intel_dp,
584                                     struct pps_registers *regs)
585 {
586         memset(regs, 0, sizeof(*regs));
587
588         if (IS_BROXTON(dev_priv)) {
589                 int idx = bxt_power_sequencer_idx(intel_dp);
590
591                 regs->pp_ctrl = BXT_PP_CONTROL(idx);
592                 regs->pp_stat = BXT_PP_STATUS(idx);
593                 regs->pp_on = BXT_PP_ON_DELAYS(idx);
594                 regs->pp_off = BXT_PP_OFF_DELAYS(idx);
595         } else if (HAS_PCH_SPLIT(dev_priv)) {
596                 regs->pp_ctrl = PCH_PP_CONTROL;
597                 regs->pp_stat = PCH_PP_STATUS;
598                 regs->pp_on = PCH_PP_ON_DELAYS;
599                 regs->pp_off = PCH_PP_OFF_DELAYS;
600                 regs->pp_div = PCH_PP_DIVISOR;
601         } else {
602                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604                 regs->pp_ctrl = VLV_PIPE_PP_CONTROL(pipe);
605                 regs->pp_stat = VLV_PIPE_PP_STATUS(pipe);
606                 regs->pp_on = VLV_PIPE_PP_ON_DELAYS(pipe);
607                 regs->pp_off = VLV_PIPE_PP_OFF_DELAYS(pipe);
608                 regs->pp_div = VLV_PIPE_PP_DIVISOR(pipe);
609         }
610 }
611
612 static i915_reg_t
613 _pp_ctrl_reg(struct intel_dp *intel_dp)
614 {
615         struct pps_registers regs;
616
617         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
618                                 &regs);
619
620         return regs.pp_ctrl;
621 }
622
623 static i915_reg_t
624 _pp_stat_reg(struct intel_dp *intel_dp)
625 {
626         struct pps_registers regs;
627
628         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
629                                 &regs);
630
631         return regs.pp_stat;
632 }
633
634 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
635    This function only applicable when panel PM state is not to be tracked */
636 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
637                               void *unused)
638 {
639         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
640                                                  edp_notifier);
641         struct drm_device *dev = intel_dp_to_dev(intel_dp);
642         struct drm_i915_private *dev_priv = dev->dev_private;
643
644         if (!is_edp(intel_dp) || code != SYS_RESTART)
645                 return 0;
646
647         pps_lock(intel_dp);
648
649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
650                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
651                 i915_reg_t pp_ctrl_reg, pp_div_reg;
652                 u32 pp_div;
653
654                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
655                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
656                 pp_div = I915_READ(pp_div_reg);
657                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
658
659                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
660                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
661                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
662                 msleep(intel_dp->panel_power_cycle_delay);
663         }
664
665         pps_unlock(intel_dp);
666
667         return 0;
668 }
669
670 static bool edp_have_panel_power(struct intel_dp *intel_dp)
671 {
672         struct drm_device *dev = intel_dp_to_dev(intel_dp);
673         struct drm_i915_private *dev_priv = dev->dev_private;
674
675         lockdep_assert_held(&dev_priv->pps_mutex);
676
677         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
678             intel_dp->pps_pipe == INVALID_PIPE)
679                 return false;
680
681         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
682 }
683
684 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
685 {
686         struct drm_device *dev = intel_dp_to_dev(intel_dp);
687         struct drm_i915_private *dev_priv = dev->dev_private;
688
689         lockdep_assert_held(&dev_priv->pps_mutex);
690
691         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
692             intel_dp->pps_pipe == INVALID_PIPE)
693                 return false;
694
695         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
696 }
697
698 static void
699 intel_dp_check_edp(struct intel_dp *intel_dp)
700 {
701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
702         struct drm_i915_private *dev_priv = dev->dev_private;
703
704         if (!is_edp(intel_dp))
705                 return;
706
707         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
708                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
709                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
710                               I915_READ(_pp_stat_reg(intel_dp)),
711                               I915_READ(_pp_ctrl_reg(intel_dp)));
712         }
713 }
714
715 static uint32_t
716 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
717 {
718         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719         struct drm_device *dev = intel_dig_port->base.base.dev;
720         struct drm_i915_private *dev_priv = dev->dev_private;
721         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
722         uint32_t status;
723         bool done;
724
725 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
726         if (has_aux_irq)
727                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
728                                           msecs_to_jiffies_timeout(10));
729         else
730                 done = wait_for_atomic(C, 10) == 0;
731         if (!done)
732                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
733                           has_aux_irq);
734 #undef C
735
736         return status;
737 }
738
739 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
743
744         if (index)
745                 return 0;
746
747         /*
748          * The clock divider is based off the hrawclk, and would like to run at
749          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
750          */
751         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
752 }
753
754 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
755 {
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
758
759         if (index)
760                 return 0;
761
762         /*
763          * The clock divider is based off the cdclk or PCH rawclk, and would
764          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
765          * divide by 2000 and use that
766          */
767         if (intel_dig_port->port == PORT_A)
768                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
769         else
770                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
779                 /* Workaround for non-ULT HSW */
780                 switch (index) {
781                 case 0: return 63;
782                 case 1: return 72;
783                 default: return 0;
784                 }
785         }
786
787         return ilk_get_aux_clock_divider(intel_dp, index);
788 }
789
790 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
791 {
792         /*
793          * SKL doesn't need us to program the AUX clock divider (Hardware will
794          * derive the clock from CDCLK automatically). We still implement the
795          * get_aux_clock_divider vfunc to plug-in into the existing code.
796          */
797         return index ? 0 : 1;
798 }
799
800 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
801                                      bool has_aux_irq,
802                                      int send_bytes,
803                                      uint32_t aux_clock_divider)
804 {
805         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
806         struct drm_device *dev = intel_dig_port->base.base.dev;
807         uint32_t precharge, timeout;
808
809         if (IS_GEN6(dev))
810                 precharge = 3;
811         else
812                 precharge = 5;
813
814         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
815                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
816         else
817                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
818
819         return DP_AUX_CH_CTL_SEND_BUSY |
820                DP_AUX_CH_CTL_DONE |
821                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
822                DP_AUX_CH_CTL_TIME_OUT_ERROR |
823                timeout |
824                DP_AUX_CH_CTL_RECEIVE_ERROR |
825                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
826                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
827                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
828 }
829
830 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
831                                       bool has_aux_irq,
832                                       int send_bytes,
833                                       uint32_t unused)
834 {
835         return DP_AUX_CH_CTL_SEND_BUSY |
836                DP_AUX_CH_CTL_DONE |
837                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
838                DP_AUX_CH_CTL_TIME_OUT_ERROR |
839                DP_AUX_CH_CTL_TIME_OUT_1600us |
840                DP_AUX_CH_CTL_RECEIVE_ERROR |
841                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
842                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
843                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
844 }
845
846 static int
847 intel_dp_aux_ch(struct intel_dp *intel_dp,
848                 const uint8_t *send, int send_bytes,
849                 uint8_t *recv, int recv_size)
850 {
851         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
852         struct drm_device *dev = intel_dig_port->base.base.dev;
853         struct drm_i915_private *dev_priv = dev->dev_private;
854         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
855         uint32_t aux_clock_divider;
856         int i, ret, recv_bytes;
857         uint32_t status;
858         int try, clock = 0;
859         bool has_aux_irq = HAS_AUX_IRQ(dev);
860         bool vdd;
861
862         pps_lock(intel_dp);
863
864         /*
865          * We will be called with VDD already enabled for dpcd/edid/oui reads.
866          * In such cases we want to leave VDD enabled and it's up to upper layers
867          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
868          * ourselves.
869          */
870         vdd = edp_panel_vdd_on(intel_dp);
871
872         /* dp aux is extremely sensitive to irq latency, hence request the
873          * lowest possible wakeup latency and so prevent the cpu from going into
874          * deep sleep states.
875          */
876         pm_qos_update_request(&dev_priv->pm_qos, 0);
877
878         intel_dp_check_edp(intel_dp);
879
880         /* Try to wait for any previous AUX channel activity */
881         for (try = 0; try < 3; try++) {
882                 status = I915_READ_NOTRACE(ch_ctl);
883                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
884                         break;
885                 msleep(1);
886         }
887
888         if (try == 3) {
889                 static u32 last_status = -1;
890                 const u32 status = I915_READ(ch_ctl);
891
892                 if (status != last_status) {
893                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
894                              status);
895                         last_status = status;
896                 }
897
898                 ret = -EBUSY;
899                 goto out;
900         }
901
902         /* Only 5 data registers! */
903         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
904                 ret = -E2BIG;
905                 goto out;
906         }
907
908         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
909                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
910                                                           has_aux_irq,
911                                                           send_bytes,
912                                                           aux_clock_divider);
913
914                 /* Must try at least 3 times according to DP spec */
915                 for (try = 0; try < 5; try++) {
916                         /* Load the send data into the aux channel data registers */
917                         for (i = 0; i < send_bytes; i += 4)
918                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
919                                            intel_dp_pack_aux(send + i,
920                                                              send_bytes - i));
921
922                         /* Send the command and wait for it to complete */
923                         I915_WRITE(ch_ctl, send_ctl);
924
925                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
926
927                         /* Clear done status and any errors */
928                         I915_WRITE(ch_ctl,
929                                    status |
930                                    DP_AUX_CH_CTL_DONE |
931                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
932                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
933
934                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
935                                 continue;
936
937                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
938                          *   400us delay required for errors and timeouts
939                          *   Timeout errors from the HW already meet this
940                          *   requirement so skip to next iteration
941                          */
942                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
943                                 usleep_range(400, 500);
944                                 continue;
945                         }
946                         if (status & DP_AUX_CH_CTL_DONE)
947                                 goto done;
948                 }
949         }
950
951         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
952                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
953                 ret = -EBUSY;
954                 goto out;
955         }
956
957 done:
958         /* Check for timeout or receive error.
959          * Timeouts occur when the sink is not connected
960          */
961         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
963                 ret = -EIO;
964                 goto out;
965         }
966
967         /* Timeouts occur when the device isn't connected, so they're
968          * "normal" -- don't fill the kernel log with these */
969         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
970                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
971                 ret = -ETIMEDOUT;
972                 goto out;
973         }
974
975         /* Unload any bytes sent back from the other side */
976         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
977                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
978
979         /*
980          * By BSpec: "Message sizes of 0 or >20 are not allowed."
981          * We have no idea of what happened so we return -EBUSY so
982          * drm layer takes care for the necessary retries.
983          */
984         if (recv_bytes == 0 || recv_bytes > 20) {
985                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
986                               recv_bytes);
987                 /*
988                  * FIXME: This patch was created on top of a series that
989                  * organize the retries at drm level. There EBUSY should
990                  * also take care for 1ms wait before retrying.
991                  * That aux retries re-org is still needed and after that is
992                  * merged we remove this sleep from here.
993                  */
994                 usleep_range(1000, 1500);
995                 ret = -EBUSY;
996                 goto out;
997         }
998
999         if (recv_bytes > recv_size)
1000                 recv_bytes = recv_size;
1001
1002         for (i = 0; i < recv_bytes; i += 4)
1003                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1004                                     recv + i, recv_bytes - i);
1005
1006         ret = recv_bytes;
1007 out:
1008         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1009
1010         if (vdd)
1011                 edp_panel_vdd_off(intel_dp, false);
1012
1013         pps_unlock(intel_dp);
1014
1015         return ret;
1016 }
1017
1018 #define BARE_ADDRESS_SIZE       3
1019 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1020 static ssize_t
1021 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1022 {
1023         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1024         uint8_t txbuf[20], rxbuf[20];
1025         size_t txsize, rxsize;
1026         int ret;
1027
1028         txbuf[0] = (msg->request << 4) |
1029                 ((msg->address >> 16) & 0xf);
1030         txbuf[1] = (msg->address >> 8) & 0xff;
1031         txbuf[2] = msg->address & 0xff;
1032         txbuf[3] = msg->size - 1;
1033
1034         switch (msg->request & ~DP_AUX_I2C_MOT) {
1035         case DP_AUX_NATIVE_WRITE:
1036         case DP_AUX_I2C_WRITE:
1037         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1038                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1039                 rxsize = 2; /* 0 or 1 data bytes */
1040
1041                 if (WARN_ON(txsize > 20))
1042                         return -E2BIG;
1043
1044                 if (msg->buffer)
1045                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1046                 else
1047                         WARN_ON(msg->size);
1048
1049                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1050                 if (ret > 0) {
1051                         msg->reply = rxbuf[0] >> 4;
1052
1053                         if (ret > 1) {
1054                                 /* Number of bytes written in a short write. */
1055                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1056                         } else {
1057                                 /* Return payload size. */
1058                                 ret = msg->size;
1059                         }
1060                 }
1061                 break;
1062
1063         case DP_AUX_NATIVE_READ:
1064         case DP_AUX_I2C_READ:
1065                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1066                 rxsize = msg->size + 1;
1067
1068                 if (WARN_ON(rxsize > 20))
1069                         return -E2BIG;
1070
1071                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1072                 if (ret > 0) {
1073                         msg->reply = rxbuf[0] >> 4;
1074                         /*
1075                          * Assume happy day, and copy the data. The caller is
1076                          * expected to check msg->reply before touching it.
1077                          *
1078                          * Return payload size.
1079                          */
1080                         ret--;
1081                         memcpy(msg->buffer, rxbuf + 1, ret);
1082                 }
1083                 break;
1084
1085         default:
1086                 ret = -EINVAL;
1087                 break;
1088         }
1089
1090         return ret;
1091 }
1092
1093 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1094                                        enum port port)
1095 {
1096         switch (port) {
1097         case PORT_B:
1098         case PORT_C:
1099         case PORT_D:
1100                 return DP_AUX_CH_CTL(port);
1101         default:
1102                 MISSING_CASE(port);
1103                 return DP_AUX_CH_CTL(PORT_B);
1104         }
1105 }
1106
1107 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1108                                         enum port port, int index)
1109 {
1110         switch (port) {
1111         case PORT_B:
1112         case PORT_C:
1113         case PORT_D:
1114                 return DP_AUX_CH_DATA(port, index);
1115         default:
1116                 MISSING_CASE(port);
1117                 return DP_AUX_CH_DATA(PORT_B, index);
1118         }
1119 }
1120
1121 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1122                                        enum port port)
1123 {
1124         switch (port) {
1125         case PORT_A:
1126                 return DP_AUX_CH_CTL(port);
1127         case PORT_B:
1128         case PORT_C:
1129         case PORT_D:
1130                 return PCH_DP_AUX_CH_CTL(port);
1131         default:
1132                 MISSING_CASE(port);
1133                 return DP_AUX_CH_CTL(PORT_A);
1134         }
1135 }
1136
1137 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1138                                         enum port port, int index)
1139 {
1140         switch (port) {
1141         case PORT_A:
1142                 return DP_AUX_CH_DATA(port, index);
1143         case PORT_B:
1144         case PORT_C:
1145         case PORT_D:
1146                 return PCH_DP_AUX_CH_DATA(port, index);
1147         default:
1148                 MISSING_CASE(port);
1149                 return DP_AUX_CH_DATA(PORT_A, index);
1150         }
1151 }
1152
1153 /*
1154  * On SKL we don't have Aux for port E so we rely
1155  * on VBT to set a proper alternate aux channel.
1156  */
1157 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1158 {
1159         const struct ddi_vbt_port_info *info =
1160                 &dev_priv->vbt.ddi_port_info[PORT_E];
1161
1162         switch (info->alternate_aux_channel) {
1163         case DP_AUX_A:
1164                 return PORT_A;
1165         case DP_AUX_B:
1166                 return PORT_B;
1167         case DP_AUX_C:
1168                 return PORT_C;
1169         case DP_AUX_D:
1170                 return PORT_D;
1171         default:
1172                 MISSING_CASE(info->alternate_aux_channel);
1173                 return PORT_A;
1174         }
1175 }
1176
1177 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178                                        enum port port)
1179 {
1180         if (port == PORT_E)
1181                 port = skl_porte_aux_port(dev_priv);
1182
1183         switch (port) {
1184         case PORT_A:
1185         case PORT_B:
1186         case PORT_C:
1187         case PORT_D:
1188                 return DP_AUX_CH_CTL(port);
1189         default:
1190                 MISSING_CASE(port);
1191                 return DP_AUX_CH_CTL(PORT_A);
1192         }
1193 }
1194
1195 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1196                                         enum port port, int index)
1197 {
1198         if (port == PORT_E)
1199                 port = skl_porte_aux_port(dev_priv);
1200
1201         switch (port) {
1202         case PORT_A:
1203         case PORT_B:
1204         case PORT_C:
1205         case PORT_D:
1206                 return DP_AUX_CH_DATA(port, index);
1207         default:
1208                 MISSING_CASE(port);
1209                 return DP_AUX_CH_DATA(PORT_A, index);
1210         }
1211 }
1212
1213 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1214                                          enum port port)
1215 {
1216         if (INTEL_INFO(dev_priv)->gen >= 9)
1217                 return skl_aux_ctl_reg(dev_priv, port);
1218         else if (HAS_PCH_SPLIT(dev_priv))
1219                 return ilk_aux_ctl_reg(dev_priv, port);
1220         else
1221                 return g4x_aux_ctl_reg(dev_priv, port);
1222 }
1223
1224 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1225                                           enum port port, int index)
1226 {
1227         if (INTEL_INFO(dev_priv)->gen >= 9)
1228                 return skl_aux_data_reg(dev_priv, port, index);
1229         else if (HAS_PCH_SPLIT(dev_priv))
1230                 return ilk_aux_data_reg(dev_priv, port, index);
1231         else
1232                 return g4x_aux_data_reg(dev_priv, port, index);
1233 }
1234
1235 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1236 {
1237         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1238         enum port port = dp_to_dig_port(intel_dp)->port;
1239         int i;
1240
1241         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1242         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1243                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1244 }
1245
1246 static void
1247 intel_dp_aux_fini(struct intel_dp *intel_dp)
1248 {
1249         drm_dp_aux_unregister(&intel_dp->aux);
1250         kfree(intel_dp->aux.name);
1251 }
1252
1253 static int
1254 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1255 {
1256         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1257         enum port port = intel_dig_port->port;
1258         int ret;
1259
1260         intel_aux_reg_init(intel_dp);
1261
1262         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1263         if (!intel_dp->aux.name)
1264                 return -ENOMEM;
1265
1266         intel_dp->aux.dev = connector->base.kdev;
1267         intel_dp->aux.transfer = intel_dp_aux_transfer;
1268
1269         DRM_DEBUG_KMS("registering %s bus for %s\n",
1270                       intel_dp->aux.name,
1271                       connector->base.kdev->kobj.name);
1272
1273         ret = drm_dp_aux_register(&intel_dp->aux);
1274         if (ret < 0) {
1275                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1276                           intel_dp->aux.name, ret);
1277                 kfree(intel_dp->aux.name);
1278                 return ret;
1279         }
1280
1281         return 0;
1282 }
1283
1284 static void
1285 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1286 {
1287         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1288
1289         intel_dp_aux_fini(intel_dp);
1290         intel_connector_unregister(intel_connector);
1291 }
1292
1293 static int
1294 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1295 {
1296         if (intel_dp->num_sink_rates) {
1297                 *sink_rates = intel_dp->sink_rates;
1298                 return intel_dp->num_sink_rates;
1299         }
1300
1301         *sink_rates = default_rates;
1302
1303         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1304 }
1305
1306 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1307 {
1308         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1309         struct drm_device *dev = dig_port->base.base.dev;
1310
1311         /* WaDisableHBR2:skl */
1312         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1313                 return false;
1314
1315         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1316             (INTEL_INFO(dev)->gen >= 9))
1317                 return true;
1318         else
1319                 return false;
1320 }
1321
1322 static int
1323 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1324 {
1325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_device *dev = dig_port->base.base.dev;
1327         int size;
1328
1329         if (IS_BROXTON(dev)) {
1330                 *source_rates = bxt_rates;
1331                 size = ARRAY_SIZE(bxt_rates);
1332         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1333                 *source_rates = skl_rates;
1334                 size = ARRAY_SIZE(skl_rates);
1335         } else {
1336                 *source_rates = default_rates;
1337                 size = ARRAY_SIZE(default_rates);
1338         }
1339
1340         /* This depends on the fact that 5.4 is last value in the array */
1341         if (!intel_dp_source_supports_hbr2(intel_dp))
1342                 size--;
1343
1344         return size;
1345 }
1346
1347 static void
1348 intel_dp_set_clock(struct intel_encoder *encoder,
1349                    struct intel_crtc_state *pipe_config)
1350 {
1351         struct drm_device *dev = encoder->base.dev;
1352         const struct dp_link_dpll *divisor = NULL;
1353         int i, count = 0;
1354
1355         if (IS_G4X(dev)) {
1356                 divisor = gen4_dpll;
1357                 count = ARRAY_SIZE(gen4_dpll);
1358         } else if (HAS_PCH_SPLIT(dev)) {
1359                 divisor = pch_dpll;
1360                 count = ARRAY_SIZE(pch_dpll);
1361         } else if (IS_CHERRYVIEW(dev)) {
1362                 divisor = chv_dpll;
1363                 count = ARRAY_SIZE(chv_dpll);
1364         } else if (IS_VALLEYVIEW(dev)) {
1365                 divisor = vlv_dpll;
1366                 count = ARRAY_SIZE(vlv_dpll);
1367         }
1368
1369         if (divisor && count) {
1370                 for (i = 0; i < count; i++) {
1371                         if (pipe_config->port_clock == divisor[i].clock) {
1372                                 pipe_config->dpll = divisor[i].dpll;
1373                                 pipe_config->clock_set = true;
1374                                 break;
1375                         }
1376                 }
1377         }
1378 }
1379
1380 static int intersect_rates(const int *source_rates, int source_len,
1381                            const int *sink_rates, int sink_len,
1382                            int *common_rates)
1383 {
1384         int i = 0, j = 0, k = 0;
1385
1386         while (i < source_len && j < sink_len) {
1387                 if (source_rates[i] == sink_rates[j]) {
1388                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1389                                 return k;
1390                         common_rates[k] = source_rates[i];
1391                         ++k;
1392                         ++i;
1393                         ++j;
1394                 } else if (source_rates[i] < sink_rates[j]) {
1395                         ++i;
1396                 } else {
1397                         ++j;
1398                 }
1399         }
1400         return k;
1401 }
1402
1403 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1404                                  int *common_rates)
1405 {
1406         const int *source_rates, *sink_rates;
1407         int source_len, sink_len;
1408
1409         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1410         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1411
1412         return intersect_rates(source_rates, source_len,
1413                                sink_rates, sink_len,
1414                                common_rates);
1415 }
1416
1417 static void snprintf_int_array(char *str, size_t len,
1418                                const int *array, int nelem)
1419 {
1420         int i;
1421
1422         str[0] = '\0';
1423
1424         for (i = 0; i < nelem; i++) {
1425                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1426                 if (r >= len)
1427                         return;
1428                 str += r;
1429                 len -= r;
1430         }
1431 }
1432
1433 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1434 {
1435         const int *source_rates, *sink_rates;
1436         int source_len, sink_len, common_len;
1437         int common_rates[DP_MAX_SUPPORTED_RATES];
1438         char str[128]; /* FIXME: too big for stack? */
1439
1440         if ((drm_debug & DRM_UT_KMS) == 0)
1441                 return;
1442
1443         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1444         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1445         DRM_DEBUG_KMS("source rates: %s\n", str);
1446
1447         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1448         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1449         DRM_DEBUG_KMS("sink rates: %s\n", str);
1450
1451         common_len = intel_dp_common_rates(intel_dp, common_rates);
1452         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1453         DRM_DEBUG_KMS("common rates: %s\n", str);
1454 }
1455
1456 static int rate_to_index(int find, const int *rates)
1457 {
1458         int i = 0;
1459
1460         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1461                 if (find == rates[i])
1462                         break;
1463
1464         return i;
1465 }
1466
1467 int
1468 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1469 {
1470         int rates[DP_MAX_SUPPORTED_RATES] = {};
1471         int len;
1472
1473         len = intel_dp_common_rates(intel_dp, rates);
1474         if (WARN_ON(len <= 0))
1475                 return 162000;
1476
1477         return rates[rate_to_index(0, rates) - 1];
1478 }
1479
1480 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1481 {
1482         return rate_to_index(rate, intel_dp->sink_rates);
1483 }
1484
1485 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1486                            uint8_t *link_bw, uint8_t *rate_select)
1487 {
1488         if (intel_dp->num_sink_rates) {
1489                 *link_bw = 0;
1490                 *rate_select =
1491                         intel_dp_rate_select(intel_dp, port_clock);
1492         } else {
1493                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1494                 *rate_select = 0;
1495         }
1496 }
1497
1498 bool
1499 intel_dp_compute_config(struct intel_encoder *encoder,
1500                         struct intel_crtc_state *pipe_config)
1501 {
1502         struct drm_device *dev = encoder->base.dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1505         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1506         enum port port = dp_to_dig_port(intel_dp)->port;
1507         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1508         struct intel_connector *intel_connector = intel_dp->attached_connector;
1509         int lane_count, clock;
1510         int min_lane_count = 1;
1511         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1512         /* Conveniently, the link BW constants become indices with a shift...*/
1513         int min_clock = 0;
1514         int max_clock;
1515         int bpp, mode_rate;
1516         int link_avail, link_clock;
1517         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1518         int common_len;
1519         uint8_t link_bw, rate_select;
1520
1521         common_len = intel_dp_common_rates(intel_dp, common_rates);
1522
1523         /* No common link rates between source and sink */
1524         WARN_ON(common_len <= 0);
1525
1526         max_clock = common_len - 1;
1527
1528         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1529                 pipe_config->has_pch_encoder = true;
1530
1531         pipe_config->has_dp_encoder = true;
1532         pipe_config->has_drrs = false;
1533         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1534
1535         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1536                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1537                                        adjusted_mode);
1538
1539                 if (INTEL_INFO(dev)->gen >= 9) {
1540                         int ret;
1541                         ret = skl_update_scaler_crtc(pipe_config);
1542                         if (ret)
1543                                 return ret;
1544                 }
1545
1546                 if (HAS_GMCH_DISPLAY(dev))
1547                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1548                                                  intel_connector->panel.fitting_mode);
1549                 else
1550                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1551                                                 intel_connector->panel.fitting_mode);
1552         }
1553
1554         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1555                 return false;
1556
1557         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1558                       "max bw %d pixel clock %iKHz\n",
1559                       max_lane_count, common_rates[max_clock],
1560                       adjusted_mode->crtc_clock);
1561
1562         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1563          * bpc in between. */
1564         bpp = pipe_config->pipe_bpp;
1565         if (is_edp(intel_dp)) {
1566
1567                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1568                 if (intel_connector->base.display_info.bpc == 0 &&
1569                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1570                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1571                                       dev_priv->vbt.edp.bpp);
1572                         bpp = dev_priv->vbt.edp.bpp;
1573                 }
1574
1575                 /*
1576                  * Use the maximum clock and number of lanes the eDP panel
1577                  * advertizes being capable of. The panels are generally
1578                  * designed to support only a single clock and lane
1579                  * configuration, and typically these values correspond to the
1580                  * native resolution of the panel.
1581                  */
1582                 min_lane_count = max_lane_count;
1583                 min_clock = max_clock;
1584         }
1585
1586         for (; bpp >= 6*3; bpp -= 2*3) {
1587                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1588                                                    bpp);
1589
1590                 for (clock = min_clock; clock <= max_clock; clock++) {
1591                         for (lane_count = min_lane_count;
1592                                 lane_count <= max_lane_count;
1593                                 lane_count <<= 1) {
1594
1595                                 link_clock = common_rates[clock];
1596                                 link_avail = intel_dp_max_data_rate(link_clock,
1597                                                                     lane_count);
1598
1599                                 if (mode_rate <= link_avail) {
1600                                         goto found;
1601                                 }
1602                         }
1603                 }
1604         }
1605
1606         return false;
1607
1608 found:
1609         if (intel_dp->color_range_auto) {
1610                 /*
1611                  * See:
1612                  * CEA-861-E - 5.1 Default Encoding Parameters
1613                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1614                  */
1615                 pipe_config->limited_color_range =
1616                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1617         } else {
1618                 pipe_config->limited_color_range =
1619                         intel_dp->limited_color_range;
1620         }
1621
1622         pipe_config->lane_count = lane_count;
1623
1624         pipe_config->pipe_bpp = bpp;
1625         pipe_config->port_clock = common_rates[clock];
1626
1627         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1628                               &link_bw, &rate_select);
1629
1630         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1631                       link_bw, rate_select, pipe_config->lane_count,
1632                       pipe_config->port_clock, bpp);
1633         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1634                       mode_rate, link_avail);
1635
1636         intel_link_compute_m_n(bpp, lane_count,
1637                                adjusted_mode->crtc_clock,
1638                                pipe_config->port_clock,
1639                                &pipe_config->dp_m_n);
1640
1641         if (intel_connector->panel.downclock_mode != NULL &&
1642                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1643                         pipe_config->has_drrs = true;
1644                         intel_link_compute_m_n(bpp, lane_count,
1645                                 intel_connector->panel.downclock_mode->clock,
1646                                 pipe_config->port_clock,
1647                                 &pipe_config->dp_m2_n2);
1648         }
1649
1650         /*
1651          * DPLL0 VCO may need to be adjusted to get the correct
1652          * clock for eDP. This will affect cdclk as well.
1653          */
1654         if (is_edp(intel_dp) &&
1655             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1656                 int vco;
1657
1658                 switch (pipe_config->port_clock / 2) {
1659                 case 108000:
1660                 case 216000:
1661                         vco = 8640000;
1662                         break;
1663                 default:
1664                         vco = 8100000;
1665                         break;
1666                 }
1667
1668                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1669         }
1670
1671         if (!HAS_DDI(dev))
1672                 intel_dp_set_clock(encoder, pipe_config);
1673
1674         return true;
1675 }
1676
1677 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1678                               const struct intel_crtc_state *pipe_config)
1679 {
1680         intel_dp->link_rate = pipe_config->port_clock;
1681         intel_dp->lane_count = pipe_config->lane_count;
1682 }
1683
1684 static void intel_dp_prepare(struct intel_encoder *encoder)
1685 {
1686         struct drm_device *dev = encoder->base.dev;
1687         struct drm_i915_private *dev_priv = dev->dev_private;
1688         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1689         enum port port = dp_to_dig_port(intel_dp)->port;
1690         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1691         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1692
1693         intel_dp_set_link_params(intel_dp, crtc->config);
1694
1695         /*
1696          * There are four kinds of DP registers:
1697          *
1698          *      IBX PCH
1699          *      SNB CPU
1700          *      IVB CPU
1701          *      CPT PCH
1702          *
1703          * IBX PCH and CPU are the same for almost everything,
1704          * except that the CPU DP PLL is configured in this
1705          * register
1706          *
1707          * CPT PCH is quite different, having many bits moved
1708          * to the TRANS_DP_CTL register instead. That
1709          * configuration happens (oddly) in ironlake_pch_enable
1710          */
1711
1712         /* Preserve the BIOS-computed detected bit. This is
1713          * supposed to be read-only.
1714          */
1715         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1716
1717         /* Handle DP bits in common between all three register formats */
1718         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1719         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1720
1721         /* Split out the IBX/CPU vs CPT settings */
1722
1723         if (IS_GEN7(dev) && port == PORT_A) {
1724                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1725                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1726                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1727                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1728                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1729
1730                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1731                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1732
1733                 intel_dp->DP |= crtc->pipe << 29;
1734         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1735                 u32 trans_dp;
1736
1737                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1738
1739                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1740                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1741                         trans_dp |= TRANS_DP_ENH_FRAMING;
1742                 else
1743                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1744                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1745         } else {
1746                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1747                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1748                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1749
1750                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1751                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1752                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1753                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1754                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1755
1756                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1757                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1758
1759                 if (IS_CHERRYVIEW(dev))
1760                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1761                 else if (crtc->pipe == PIPE_B)
1762                         intel_dp->DP |= DP_PIPEB_SELECT;
1763         }
1764 }
1765
1766 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1767 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1768
1769 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1770 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1771
1772 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1773 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1774
1775 static void wait_panel_status(struct intel_dp *intel_dp,
1776                                        u32 mask,
1777                                        u32 value)
1778 {
1779         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1782
1783         lockdep_assert_held(&dev_priv->pps_mutex);
1784
1785         pp_stat_reg = _pp_stat_reg(intel_dp);
1786         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1787
1788         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1789                         mask, value,
1790                         I915_READ(pp_stat_reg),
1791                         I915_READ(pp_ctrl_reg));
1792
1793         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1794                       5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1795                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1796                                 I915_READ(pp_stat_reg),
1797                                 I915_READ(pp_ctrl_reg));
1798
1799         DRM_DEBUG_KMS("Wait complete\n");
1800 }
1801
1802 static void wait_panel_on(struct intel_dp *intel_dp)
1803 {
1804         DRM_DEBUG_KMS("Wait for panel power on\n");
1805         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1806 }
1807
1808 static void wait_panel_off(struct intel_dp *intel_dp)
1809 {
1810         DRM_DEBUG_KMS("Wait for panel power off time\n");
1811         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1812 }
1813
1814 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1815 {
1816         ktime_t panel_power_on_time;
1817         s64 panel_power_off_duration;
1818
1819         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1820
1821         /* take the difference of currrent time and panel power off time
1822          * and then make panel wait for t11_t12 if needed. */
1823         panel_power_on_time = ktime_get_boottime();
1824         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1825
1826         /* When we disable the VDD override bit last we have to do the manual
1827          * wait. */
1828         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1829                 wait_remaining_ms_from_jiffies(jiffies,
1830                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1831
1832         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1833 }
1834
1835 static void wait_backlight_on(struct intel_dp *intel_dp)
1836 {
1837         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1838                                        intel_dp->backlight_on_delay);
1839 }
1840
1841 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1842 {
1843         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1844                                        intel_dp->backlight_off_delay);
1845 }
1846
1847 /* Read the current pp_control value, unlocking the register if it
1848  * is locked
1849  */
1850
1851 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1852 {
1853         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855         u32 control;
1856
1857         lockdep_assert_held(&dev_priv->pps_mutex);
1858
1859         control = I915_READ(_pp_ctrl_reg(intel_dp));
1860         if (!IS_BROXTON(dev)) {
1861                 control &= ~PANEL_UNLOCK_MASK;
1862                 control |= PANEL_UNLOCK_REGS;
1863         }
1864         return control;
1865 }
1866
1867 /*
1868  * Must be paired with edp_panel_vdd_off().
1869  * Must hold pps_mutex around the whole on/off sequence.
1870  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1871  */
1872 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1873 {
1874         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1875         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1876         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1877         struct drm_i915_private *dev_priv = dev->dev_private;
1878         enum intel_display_power_domain power_domain;
1879         u32 pp;
1880         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1881         bool need_to_disable = !intel_dp->want_panel_vdd;
1882
1883         lockdep_assert_held(&dev_priv->pps_mutex);
1884
1885         if (!is_edp(intel_dp))
1886                 return false;
1887
1888         cancel_delayed_work(&intel_dp->panel_vdd_work);
1889         intel_dp->want_panel_vdd = true;
1890
1891         if (edp_have_panel_vdd(intel_dp))
1892                 return need_to_disable;
1893
1894         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1895         intel_display_power_get(dev_priv, power_domain);
1896
1897         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1898                       port_name(intel_dig_port->port));
1899
1900         if (!edp_have_panel_power(intel_dp))
1901                 wait_panel_power_cycle(intel_dp);
1902
1903         pp = ironlake_get_pp_control(intel_dp);
1904         pp |= EDP_FORCE_VDD;
1905
1906         pp_stat_reg = _pp_stat_reg(intel_dp);
1907         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1908
1909         I915_WRITE(pp_ctrl_reg, pp);
1910         POSTING_READ(pp_ctrl_reg);
1911         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1912                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1913         /*
1914          * If the panel wasn't on, delay before accessing aux channel
1915          */
1916         if (!edp_have_panel_power(intel_dp)) {
1917                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1918                               port_name(intel_dig_port->port));
1919                 msleep(intel_dp->panel_power_up_delay);
1920         }
1921
1922         return need_to_disable;
1923 }
1924
1925 /*
1926  * Must be paired with intel_edp_panel_vdd_off() or
1927  * intel_edp_panel_off().
1928  * Nested calls to these functions are not allowed since
1929  * we drop the lock. Caller must use some higher level
1930  * locking to prevent nested calls from other threads.
1931  */
1932 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1933 {
1934         bool vdd;
1935
1936         if (!is_edp(intel_dp))
1937                 return;
1938
1939         pps_lock(intel_dp);
1940         vdd = edp_panel_vdd_on(intel_dp);
1941         pps_unlock(intel_dp);
1942
1943         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1944              port_name(dp_to_dig_port(intel_dp)->port));
1945 }
1946
1947 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1948 {
1949         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951         struct intel_digital_port *intel_dig_port =
1952                 dp_to_dig_port(intel_dp);
1953         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1954         enum intel_display_power_domain power_domain;
1955         u32 pp;
1956         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1957
1958         lockdep_assert_held(&dev_priv->pps_mutex);
1959
1960         WARN_ON(intel_dp->want_panel_vdd);
1961
1962         if (!edp_have_panel_vdd(intel_dp))
1963                 return;
1964
1965         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1966                       port_name(intel_dig_port->port));
1967
1968         pp = ironlake_get_pp_control(intel_dp);
1969         pp &= ~EDP_FORCE_VDD;
1970
1971         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1972         pp_stat_reg = _pp_stat_reg(intel_dp);
1973
1974         I915_WRITE(pp_ctrl_reg, pp);
1975         POSTING_READ(pp_ctrl_reg);
1976
1977         /* Make sure sequencer is idle before allowing subsequent activity */
1978         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1979         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1980
1981         if ((pp & POWER_TARGET_ON) == 0)
1982                 intel_dp->panel_power_off_time = ktime_get_boottime();
1983
1984         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1985         intel_display_power_put(dev_priv, power_domain);
1986 }
1987
1988 static void edp_panel_vdd_work(struct work_struct *__work)
1989 {
1990         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1991                                                  struct intel_dp, panel_vdd_work);
1992
1993         pps_lock(intel_dp);
1994         if (!intel_dp->want_panel_vdd)
1995                 edp_panel_vdd_off_sync(intel_dp);
1996         pps_unlock(intel_dp);
1997 }
1998
1999 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2000 {
2001         unsigned long delay;
2002
2003         /*
2004          * Queue the timer to fire a long time from now (relative to the power
2005          * down delay) to keep the panel power up across a sequence of
2006          * operations.
2007          */
2008         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2009         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2010 }
2011
2012 /*
2013  * Must be paired with edp_panel_vdd_on().
2014  * Must hold pps_mutex around the whole on/off sequence.
2015  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2016  */
2017 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2018 {
2019         struct drm_i915_private *dev_priv =
2020                 intel_dp_to_dev(intel_dp)->dev_private;
2021
2022         lockdep_assert_held(&dev_priv->pps_mutex);
2023
2024         if (!is_edp(intel_dp))
2025                 return;
2026
2027         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2028              port_name(dp_to_dig_port(intel_dp)->port));
2029
2030         intel_dp->want_panel_vdd = false;
2031
2032         if (sync)
2033                 edp_panel_vdd_off_sync(intel_dp);
2034         else
2035                 edp_panel_vdd_schedule_off(intel_dp);
2036 }
2037
2038 static void edp_panel_on(struct intel_dp *intel_dp)
2039 {
2040         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2041         struct drm_i915_private *dev_priv = dev->dev_private;
2042         u32 pp;
2043         i915_reg_t pp_ctrl_reg;
2044
2045         lockdep_assert_held(&dev_priv->pps_mutex);
2046
2047         if (!is_edp(intel_dp))
2048                 return;
2049
2050         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2051                       port_name(dp_to_dig_port(intel_dp)->port));
2052
2053         if (WARN(edp_have_panel_power(intel_dp),
2054                  "eDP port %c panel power already on\n",
2055                  port_name(dp_to_dig_port(intel_dp)->port)))
2056                 return;
2057
2058         wait_panel_power_cycle(intel_dp);
2059
2060         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2061         pp = ironlake_get_pp_control(intel_dp);
2062         if (IS_GEN5(dev)) {
2063                 /* ILK workaround: disable reset around power sequence */
2064                 pp &= ~PANEL_POWER_RESET;
2065                 I915_WRITE(pp_ctrl_reg, pp);
2066                 POSTING_READ(pp_ctrl_reg);
2067         }
2068
2069         pp |= POWER_TARGET_ON;
2070         if (!IS_GEN5(dev))
2071                 pp |= PANEL_POWER_RESET;
2072
2073         I915_WRITE(pp_ctrl_reg, pp);
2074         POSTING_READ(pp_ctrl_reg);
2075
2076         wait_panel_on(intel_dp);
2077         intel_dp->last_power_on = jiffies;
2078
2079         if (IS_GEN5(dev)) {
2080                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2081                 I915_WRITE(pp_ctrl_reg, pp);
2082                 POSTING_READ(pp_ctrl_reg);
2083         }
2084 }
2085
2086 void intel_edp_panel_on(struct intel_dp *intel_dp)
2087 {
2088         if (!is_edp(intel_dp))
2089                 return;
2090
2091         pps_lock(intel_dp);
2092         edp_panel_on(intel_dp);
2093         pps_unlock(intel_dp);
2094 }
2095
2096
2097 static void edp_panel_off(struct intel_dp *intel_dp)
2098 {
2099         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2100         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2101         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         enum intel_display_power_domain power_domain;
2104         u32 pp;
2105         i915_reg_t pp_ctrl_reg;
2106
2107         lockdep_assert_held(&dev_priv->pps_mutex);
2108
2109         if (!is_edp(intel_dp))
2110                 return;
2111
2112         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2113                       port_name(dp_to_dig_port(intel_dp)->port));
2114
2115         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2116              port_name(dp_to_dig_port(intel_dp)->port));
2117
2118         pp = ironlake_get_pp_control(intel_dp);
2119         /* We need to switch off panel power _and_ force vdd, for otherwise some
2120          * panels get very unhappy and cease to work. */
2121         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2122                 EDP_BLC_ENABLE);
2123
2124         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2125
2126         intel_dp->want_panel_vdd = false;
2127
2128         I915_WRITE(pp_ctrl_reg, pp);
2129         POSTING_READ(pp_ctrl_reg);
2130
2131         intel_dp->panel_power_off_time = ktime_get_boottime();
2132         wait_panel_off(intel_dp);
2133
2134         /* We got a reference when we enabled the VDD. */
2135         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2136         intel_display_power_put(dev_priv, power_domain);
2137 }
2138
2139 void intel_edp_panel_off(struct intel_dp *intel_dp)
2140 {
2141         if (!is_edp(intel_dp))
2142                 return;
2143
2144         pps_lock(intel_dp);
2145         edp_panel_off(intel_dp);
2146         pps_unlock(intel_dp);
2147 }
2148
2149 /* Enable backlight in the panel power control. */
2150 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2151 {
2152         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2153         struct drm_device *dev = intel_dig_port->base.base.dev;
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         u32 pp;
2156         i915_reg_t pp_ctrl_reg;
2157
2158         /*
2159          * If we enable the backlight right away following a panel power
2160          * on, we may see slight flicker as the panel syncs with the eDP
2161          * link.  So delay a bit to make sure the image is solid before
2162          * allowing it to appear.
2163          */
2164         wait_backlight_on(intel_dp);
2165
2166         pps_lock(intel_dp);
2167
2168         pp = ironlake_get_pp_control(intel_dp);
2169         pp |= EDP_BLC_ENABLE;
2170
2171         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2172
2173         I915_WRITE(pp_ctrl_reg, pp);
2174         POSTING_READ(pp_ctrl_reg);
2175
2176         pps_unlock(intel_dp);
2177 }
2178
2179 /* Enable backlight PWM and backlight PP control. */
2180 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2181 {
2182         if (!is_edp(intel_dp))
2183                 return;
2184
2185         DRM_DEBUG_KMS("\n");
2186
2187         intel_panel_enable_backlight(intel_dp->attached_connector);
2188         _intel_edp_backlight_on(intel_dp);
2189 }
2190
2191 /* Disable backlight in the panel power control. */
2192 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2193 {
2194         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         u32 pp;
2197         i915_reg_t pp_ctrl_reg;
2198
2199         if (!is_edp(intel_dp))
2200                 return;
2201
2202         pps_lock(intel_dp);
2203
2204         pp = ironlake_get_pp_control(intel_dp);
2205         pp &= ~EDP_BLC_ENABLE;
2206
2207         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2208
2209         I915_WRITE(pp_ctrl_reg, pp);
2210         POSTING_READ(pp_ctrl_reg);
2211
2212         pps_unlock(intel_dp);
2213
2214         intel_dp->last_backlight_off = jiffies;
2215         edp_wait_backlight_off(intel_dp);
2216 }
2217
2218 /* Disable backlight PP control and backlight PWM. */
2219 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2220 {
2221         if (!is_edp(intel_dp))
2222                 return;
2223
2224         DRM_DEBUG_KMS("\n");
2225
2226         _intel_edp_backlight_off(intel_dp);
2227         intel_panel_disable_backlight(intel_dp->attached_connector);
2228 }
2229
2230 /*
2231  * Hook for controlling the panel power control backlight through the bl_power
2232  * sysfs attribute. Take care to handle multiple calls.
2233  */
2234 static void intel_edp_backlight_power(struct intel_connector *connector,
2235                                       bool enable)
2236 {
2237         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2238         bool is_enabled;
2239
2240         pps_lock(intel_dp);
2241         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2242         pps_unlock(intel_dp);
2243
2244         if (is_enabled == enable)
2245                 return;
2246
2247         DRM_DEBUG_KMS("panel power control backlight %s\n",
2248                       enable ? "enable" : "disable");
2249
2250         if (enable)
2251                 _intel_edp_backlight_on(intel_dp);
2252         else
2253                 _intel_edp_backlight_off(intel_dp);
2254 }
2255
2256 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2257 {
2258         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2259         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2260         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2261
2262         I915_STATE_WARN(cur_state != state,
2263                         "DP port %c state assertion failure (expected %s, current %s)\n",
2264                         port_name(dig_port->port),
2265                         onoff(state), onoff(cur_state));
2266 }
2267 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2268
2269 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2270 {
2271         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2272
2273         I915_STATE_WARN(cur_state != state,
2274                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2275                         onoff(state), onoff(cur_state));
2276 }
2277 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2278 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2279
2280 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2281 {
2282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2283         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2284         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2285
2286         assert_pipe_disabled(dev_priv, crtc->pipe);
2287         assert_dp_port_disabled(intel_dp);
2288         assert_edp_pll_disabled(dev_priv);
2289
2290         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2291                       crtc->config->port_clock);
2292
2293         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2294
2295         if (crtc->config->port_clock == 162000)
2296                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2297         else
2298                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2299
2300         I915_WRITE(DP_A, intel_dp->DP);
2301         POSTING_READ(DP_A);
2302         udelay(500);
2303
2304         /*
2305          * [DevILK] Work around required when enabling DP PLL
2306          * while a pipe is enabled going to FDI:
2307          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2308          * 2. Program DP PLL enable
2309          */
2310         if (IS_GEN5(dev_priv))
2311                 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2312
2313         intel_dp->DP |= DP_PLL_ENABLE;
2314
2315         I915_WRITE(DP_A, intel_dp->DP);
2316         POSTING_READ(DP_A);
2317         udelay(200);
2318 }
2319
2320 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2321 {
2322         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2323         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2324         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2325
2326         assert_pipe_disabled(dev_priv, crtc->pipe);
2327         assert_dp_port_disabled(intel_dp);
2328         assert_edp_pll_enabled(dev_priv);
2329
2330         DRM_DEBUG_KMS("disabling eDP PLL\n");
2331
2332         intel_dp->DP &= ~DP_PLL_ENABLE;
2333
2334         I915_WRITE(DP_A, intel_dp->DP);
2335         POSTING_READ(DP_A);
2336         udelay(200);
2337 }
2338
2339 /* If the sink supports it, try to set the power state appropriately */
2340 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2341 {
2342         int ret, i;
2343
2344         /* Should have a valid DPCD by this point */
2345         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2346                 return;
2347
2348         if (mode != DRM_MODE_DPMS_ON) {
2349                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2350                                          DP_SET_POWER_D3);
2351         } else {
2352                 /*
2353                  * When turning on, we need to retry for 1ms to give the sink
2354                  * time to wake up.
2355                  */
2356                 for (i = 0; i < 3; i++) {
2357                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2358                                                  DP_SET_POWER_D0);
2359                         if (ret == 1)
2360                                 break;
2361                         msleep(1);
2362                 }
2363         }
2364
2365         if (ret != 1)
2366                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2367                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2368 }
2369
2370 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2371                                   enum pipe *pipe)
2372 {
2373         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2374         enum port port = dp_to_dig_port(intel_dp)->port;
2375         struct drm_device *dev = encoder->base.dev;
2376         struct drm_i915_private *dev_priv = dev->dev_private;
2377         enum intel_display_power_domain power_domain;
2378         u32 tmp;
2379         bool ret;
2380
2381         power_domain = intel_display_port_power_domain(encoder);
2382         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2383                 return false;
2384
2385         ret = false;
2386
2387         tmp = I915_READ(intel_dp->output_reg);
2388
2389         if (!(tmp & DP_PORT_EN))
2390                 goto out;
2391
2392         if (IS_GEN7(dev) && port == PORT_A) {
2393                 *pipe = PORT_TO_PIPE_CPT(tmp);
2394         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2395                 enum pipe p;
2396
2397                 for_each_pipe(dev_priv, p) {
2398                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2399                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2400                                 *pipe = p;
2401                                 ret = true;
2402
2403                                 goto out;
2404                         }
2405                 }
2406
2407                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2408                               i915_mmio_reg_offset(intel_dp->output_reg));
2409         } else if (IS_CHERRYVIEW(dev)) {
2410                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2411         } else {
2412                 *pipe = PORT_TO_PIPE(tmp);
2413         }
2414
2415         ret = true;
2416
2417 out:
2418         intel_display_power_put(dev_priv, power_domain);
2419
2420         return ret;
2421 }
2422
2423 static void intel_dp_get_config(struct intel_encoder *encoder,
2424                                 struct intel_crtc_state *pipe_config)
2425 {
2426         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2427         u32 tmp, flags = 0;
2428         struct drm_device *dev = encoder->base.dev;
2429         struct drm_i915_private *dev_priv = dev->dev_private;
2430         enum port port = dp_to_dig_port(intel_dp)->port;
2431         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2432
2433         tmp = I915_READ(intel_dp->output_reg);
2434
2435         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2436
2437         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2438                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2439
2440                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2441                         flags |= DRM_MODE_FLAG_PHSYNC;
2442                 else
2443                         flags |= DRM_MODE_FLAG_NHSYNC;
2444
2445                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2446                         flags |= DRM_MODE_FLAG_PVSYNC;
2447                 else
2448                         flags |= DRM_MODE_FLAG_NVSYNC;
2449         } else {
2450                 if (tmp & DP_SYNC_HS_HIGH)
2451                         flags |= DRM_MODE_FLAG_PHSYNC;
2452                 else
2453                         flags |= DRM_MODE_FLAG_NHSYNC;
2454
2455                 if (tmp & DP_SYNC_VS_HIGH)
2456                         flags |= DRM_MODE_FLAG_PVSYNC;
2457                 else
2458                         flags |= DRM_MODE_FLAG_NVSYNC;
2459         }
2460
2461         pipe_config->base.adjusted_mode.flags |= flags;
2462
2463         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2464             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2465                 pipe_config->limited_color_range = true;
2466
2467         pipe_config->has_dp_encoder = true;
2468
2469         pipe_config->lane_count =
2470                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2471
2472         intel_dp_get_m_n(crtc, pipe_config);
2473
2474         if (port == PORT_A) {
2475                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2476                         pipe_config->port_clock = 162000;
2477                 else
2478                         pipe_config->port_clock = 270000;
2479         }
2480
2481         pipe_config->base.adjusted_mode.crtc_clock =
2482                 intel_dotclock_calculate(pipe_config->port_clock,
2483                                          &pipe_config->dp_m_n);
2484
2485         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2486             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2487                 /*
2488                  * This is a big fat ugly hack.
2489                  *
2490                  * Some machines in UEFI boot mode provide us a VBT that has 18
2491                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2492                  * unknown we fail to light up. Yet the same BIOS boots up with
2493                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2494                  * max, not what it tells us to use.
2495                  *
2496                  * Note: This will still be broken if the eDP panel is not lit
2497                  * up by the BIOS, and thus we can't get the mode at module
2498                  * load.
2499                  */
2500                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2501                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2502                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2503         }
2504 }
2505
2506 static void intel_disable_dp(struct intel_encoder *encoder)
2507 {
2508         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2509         struct drm_device *dev = encoder->base.dev;
2510         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2511
2512         if (crtc->config->has_audio)
2513                 intel_audio_codec_disable(encoder);
2514
2515         if (HAS_PSR(dev) && !HAS_DDI(dev))
2516                 intel_psr_disable(intel_dp);
2517
2518         /* Make sure the panel is off before trying to change the mode. But also
2519          * ensure that we have vdd while we switch off the panel. */
2520         intel_edp_panel_vdd_on(intel_dp);
2521         intel_edp_backlight_off(intel_dp);
2522         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2523         intel_edp_panel_off(intel_dp);
2524
2525         /* disable the port before the pipe on g4x */
2526         if (INTEL_INFO(dev)->gen < 5)
2527                 intel_dp_link_down(intel_dp);
2528 }
2529
2530 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2531 {
2532         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2533         enum port port = dp_to_dig_port(intel_dp)->port;
2534
2535         intel_dp_link_down(intel_dp);
2536
2537         /* Only ilk+ has port A */
2538         if (port == PORT_A)
2539                 ironlake_edp_pll_off(intel_dp);
2540 }
2541
2542 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2543 {
2544         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2545
2546         intel_dp_link_down(intel_dp);
2547 }
2548
2549 static void chv_post_disable_dp(struct intel_encoder *encoder)
2550 {
2551         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2552         struct drm_device *dev = encoder->base.dev;
2553         struct drm_i915_private *dev_priv = dev->dev_private;
2554
2555         intel_dp_link_down(intel_dp);
2556
2557         mutex_lock(&dev_priv->sb_lock);
2558
2559         /* Assert data lane reset */
2560         chv_data_lane_soft_reset(encoder, true);
2561
2562         mutex_unlock(&dev_priv->sb_lock);
2563 }
2564
2565 static void
2566 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2567                          uint32_t *DP,
2568                          uint8_t dp_train_pat)
2569 {
2570         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2571         struct drm_device *dev = intel_dig_port->base.base.dev;
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573         enum port port = intel_dig_port->port;
2574
2575         if (HAS_DDI(dev)) {
2576                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2577
2578                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2579                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2580                 else
2581                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2582
2583                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2584                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2585                 case DP_TRAINING_PATTERN_DISABLE:
2586                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2587
2588                         break;
2589                 case DP_TRAINING_PATTERN_1:
2590                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2591                         break;
2592                 case DP_TRAINING_PATTERN_2:
2593                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2594                         break;
2595                 case DP_TRAINING_PATTERN_3:
2596                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2597                         break;
2598                 }
2599                 I915_WRITE(DP_TP_CTL(port), temp);
2600
2601         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2602                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2603                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2604
2605                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2606                 case DP_TRAINING_PATTERN_DISABLE:
2607                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2608                         break;
2609                 case DP_TRAINING_PATTERN_1:
2610                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2611                         break;
2612                 case DP_TRAINING_PATTERN_2:
2613                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2614                         break;
2615                 case DP_TRAINING_PATTERN_3:
2616                         DRM_ERROR("DP training pattern 3 not supported\n");
2617                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2618                         break;
2619                 }
2620
2621         } else {
2622                 if (IS_CHERRYVIEW(dev))
2623                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2624                 else
2625                         *DP &= ~DP_LINK_TRAIN_MASK;
2626
2627                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2628                 case DP_TRAINING_PATTERN_DISABLE:
2629                         *DP |= DP_LINK_TRAIN_OFF;
2630                         break;
2631                 case DP_TRAINING_PATTERN_1:
2632                         *DP |= DP_LINK_TRAIN_PAT_1;
2633                         break;
2634                 case DP_TRAINING_PATTERN_2:
2635                         *DP |= DP_LINK_TRAIN_PAT_2;
2636                         break;
2637                 case DP_TRAINING_PATTERN_3:
2638                         if (IS_CHERRYVIEW(dev)) {
2639                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2640                         } else {
2641                                 DRM_ERROR("DP training pattern 3 not supported\n");
2642                                 *DP |= DP_LINK_TRAIN_PAT_2;
2643                         }
2644                         break;
2645                 }
2646         }
2647 }
2648
2649 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2650 {
2651         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct intel_crtc *crtc =
2654                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2655
2656         /* enable with pattern 1 (as per spec) */
2657         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2658                                  DP_TRAINING_PATTERN_1);
2659
2660         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2661         POSTING_READ(intel_dp->output_reg);
2662
2663         /*
2664          * Magic for VLV/CHV. We _must_ first set up the register
2665          * without actually enabling the port, and then do another
2666          * write to enable the port. Otherwise link training will
2667          * fail when the power sequencer is freshly used for this port.
2668          */
2669         intel_dp->DP |= DP_PORT_EN;
2670         if (crtc->config->has_audio)
2671                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2672
2673         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2674         POSTING_READ(intel_dp->output_reg);
2675 }
2676
2677 static void intel_enable_dp(struct intel_encoder *encoder)
2678 {
2679         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2680         struct drm_device *dev = encoder->base.dev;
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2683         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2684         enum pipe pipe = crtc->pipe;
2685
2686         if (WARN_ON(dp_reg & DP_PORT_EN))
2687                 return;
2688
2689         pps_lock(intel_dp);
2690
2691         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2692                 vlv_init_panel_power_sequencer(intel_dp);
2693
2694         intel_dp_enable_port(intel_dp);
2695
2696         edp_panel_vdd_on(intel_dp);
2697         edp_panel_on(intel_dp);
2698         edp_panel_vdd_off(intel_dp, true);
2699
2700         pps_unlock(intel_dp);
2701
2702         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2703                 unsigned int lane_mask = 0x0;
2704
2705                 if (IS_CHERRYVIEW(dev))
2706                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2707
2708                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2709                                     lane_mask);
2710         }
2711
2712         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2713         intel_dp_start_link_train(intel_dp);
2714         intel_dp_stop_link_train(intel_dp);
2715
2716         if (crtc->config->has_audio) {
2717                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2718                                  pipe_name(pipe));
2719                 intel_audio_codec_enable(encoder);
2720         }
2721 }
2722
2723 static void g4x_enable_dp(struct intel_encoder *encoder)
2724 {
2725         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2726
2727         intel_enable_dp(encoder);
2728         intel_edp_backlight_on(intel_dp);
2729 }
2730
2731 static void vlv_enable_dp(struct intel_encoder *encoder)
2732 {
2733         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2734
2735         intel_edp_backlight_on(intel_dp);
2736         intel_psr_enable(intel_dp);
2737 }
2738
2739 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2740 {
2741         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2742         enum port port = dp_to_dig_port(intel_dp)->port;
2743
2744         intel_dp_prepare(encoder);
2745
2746         /* Only ilk+ has port A */
2747         if (port == PORT_A)
2748                 ironlake_edp_pll_on(intel_dp);
2749 }
2750
2751 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2752 {
2753         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2754         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2755         enum pipe pipe = intel_dp->pps_pipe;
2756         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2757
2758         edp_panel_vdd_off_sync(intel_dp);
2759
2760         /*
2761          * VLV seems to get confused when multiple power seqeuencers
2762          * have the same port selected (even if only one has power/vdd
2763          * enabled). The failure manifests as vlv_wait_port_ready() failing
2764          * CHV on the other hand doesn't seem to mind having the same port
2765          * selected in multiple power seqeuencers, but let's clear the
2766          * port select always when logically disconnecting a power sequencer
2767          * from a port.
2768          */
2769         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2770                       pipe_name(pipe), port_name(intel_dig_port->port));
2771         I915_WRITE(pp_on_reg, 0);
2772         POSTING_READ(pp_on_reg);
2773
2774         intel_dp->pps_pipe = INVALID_PIPE;
2775 }
2776
2777 static void vlv_steal_power_sequencer(struct drm_device *dev,
2778                                       enum pipe pipe)
2779 {
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_encoder *encoder;
2782
2783         lockdep_assert_held(&dev_priv->pps_mutex);
2784
2785         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2786                 return;
2787
2788         for_each_intel_encoder(dev, encoder) {
2789                 struct intel_dp *intel_dp;
2790                 enum port port;
2791
2792                 if (encoder->type != INTEL_OUTPUT_EDP)
2793                         continue;
2794
2795                 intel_dp = enc_to_intel_dp(&encoder->base);
2796                 port = dp_to_dig_port(intel_dp)->port;
2797
2798                 if (intel_dp->pps_pipe != pipe)
2799                         continue;
2800
2801                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2802                               pipe_name(pipe), port_name(port));
2803
2804                 WARN(encoder->base.crtc,
2805                      "stealing pipe %c power sequencer from active eDP port %c\n",
2806                      pipe_name(pipe), port_name(port));
2807
2808                 /* make sure vdd is off before we steal it */
2809                 vlv_detach_power_sequencer(intel_dp);
2810         }
2811 }
2812
2813 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2814 {
2815         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2816         struct intel_encoder *encoder = &intel_dig_port->base;
2817         struct drm_device *dev = encoder->base.dev;
2818         struct drm_i915_private *dev_priv = dev->dev_private;
2819         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2820
2821         lockdep_assert_held(&dev_priv->pps_mutex);
2822
2823         if (!is_edp(intel_dp))
2824                 return;
2825
2826         if (intel_dp->pps_pipe == crtc->pipe)
2827                 return;
2828
2829         /*
2830          * If another power sequencer was being used on this
2831          * port previously make sure to turn off vdd there while
2832          * we still have control of it.
2833          */
2834         if (intel_dp->pps_pipe != INVALID_PIPE)
2835                 vlv_detach_power_sequencer(intel_dp);
2836
2837         /*
2838          * We may be stealing the power
2839          * sequencer from another port.
2840          */
2841         vlv_steal_power_sequencer(dev, crtc->pipe);
2842
2843         /* now it's all ours */
2844         intel_dp->pps_pipe = crtc->pipe;
2845
2846         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2847                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2848
2849         /* init power sequencer on this pipe and port */
2850         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2851         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2852 }
2853
2854 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2855 {
2856         vlv_phy_pre_encoder_enable(encoder);
2857
2858         intel_enable_dp(encoder);
2859 }
2860
2861 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2862 {
2863         intel_dp_prepare(encoder);
2864
2865         vlv_phy_pre_pll_enable(encoder);
2866 }
2867
2868 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2869 {
2870         chv_phy_pre_encoder_enable(encoder);
2871
2872         intel_enable_dp(encoder);
2873
2874         /* Second common lane will stay alive on its own now */
2875         chv_phy_release_cl2_override(encoder);
2876 }
2877
2878 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2879 {
2880         intel_dp_prepare(encoder);
2881
2882         chv_phy_pre_pll_enable(encoder);
2883 }
2884
2885 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2886 {
2887         chv_phy_post_pll_disable(encoder);
2888 }
2889
2890 /*
2891  * Fetch AUX CH registers 0x202 - 0x207 which contain
2892  * link status information
2893  */
2894 bool
2895 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2896 {
2897         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2898                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2899 }
2900
2901 /* These are source-specific values. */
2902 uint8_t
2903 intel_dp_voltage_max(struct intel_dp *intel_dp)
2904 {
2905         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         enum port port = dp_to_dig_port(intel_dp)->port;
2908
2909         if (IS_BROXTON(dev))
2910                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2911         else if (INTEL_INFO(dev)->gen >= 9) {
2912                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2913                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2914                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2915         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2916                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2917         else if (IS_GEN7(dev) && port == PORT_A)
2918                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2919         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2920                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2921         else
2922                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2923 }
2924
2925 uint8_t
2926 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2927 {
2928         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2929         enum port port = dp_to_dig_port(intel_dp)->port;
2930
2931         if (INTEL_INFO(dev)->gen >= 9) {
2932                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2941                 default:
2942                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2943                 }
2944         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2945                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2946                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2947                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2948                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2949                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2950                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2951                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2952                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2953                 default:
2954                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2955                 }
2956         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2957                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2958                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2959                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2960                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2962                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2963                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2964                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2965                 default:
2966                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2967                 }
2968         } else if (IS_GEN7(dev) && port == PORT_A) {
2969                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2970                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2971                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2972                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2973                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2974                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2975                 default:
2976                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2977                 }
2978         } else {
2979                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2980                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2981                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2982                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2983                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2984                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2985                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2986                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2987                 default:
2988                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2989                 }
2990         }
2991 }
2992
2993 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2994 {
2995         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2996         unsigned long demph_reg_value, preemph_reg_value,
2997                 uniqtranscale_reg_value;
2998         uint8_t train_set = intel_dp->train_set[0];
2999
3000         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3001         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3002                 preemph_reg_value = 0x0004000;
3003                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3004                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3005                         demph_reg_value = 0x2B405555;
3006                         uniqtranscale_reg_value = 0x552AB83A;
3007                         break;
3008                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3009                         demph_reg_value = 0x2B404040;
3010                         uniqtranscale_reg_value = 0x5548B83A;
3011                         break;
3012                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3013                         demph_reg_value = 0x2B245555;
3014                         uniqtranscale_reg_value = 0x5560B83A;
3015                         break;
3016                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3017                         demph_reg_value = 0x2B405555;
3018                         uniqtranscale_reg_value = 0x5598DA3A;
3019                         break;
3020                 default:
3021                         return 0;
3022                 }
3023                 break;
3024         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3025                 preemph_reg_value = 0x0002000;
3026                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3027                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3028                         demph_reg_value = 0x2B404040;
3029                         uniqtranscale_reg_value = 0x5552B83A;
3030                         break;
3031                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3032                         demph_reg_value = 0x2B404848;
3033                         uniqtranscale_reg_value = 0x5580B83A;
3034                         break;
3035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3036                         demph_reg_value = 0x2B404040;
3037                         uniqtranscale_reg_value = 0x55ADDA3A;
3038                         break;
3039                 default:
3040                         return 0;
3041                 }
3042                 break;
3043         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3044                 preemph_reg_value = 0x0000000;
3045                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3047                         demph_reg_value = 0x2B305555;
3048                         uniqtranscale_reg_value = 0x5570B83A;
3049                         break;
3050                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3051                         demph_reg_value = 0x2B2B4040;
3052                         uniqtranscale_reg_value = 0x55ADDA3A;
3053                         break;
3054                 default:
3055                         return 0;
3056                 }
3057                 break;
3058         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3059                 preemph_reg_value = 0x0006000;
3060                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3061                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3062                         demph_reg_value = 0x1B405555;
3063                         uniqtranscale_reg_value = 0x55ADDA3A;
3064                         break;
3065                 default:
3066                         return 0;
3067                 }
3068                 break;
3069         default:
3070                 return 0;
3071         }
3072
3073         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3074                                  uniqtranscale_reg_value, 0);
3075
3076         return 0;
3077 }
3078
3079 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3080 {
3081         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3082         u32 deemph_reg_value, margin_reg_value;
3083         bool uniq_trans_scale = false;
3084         uint8_t train_set = intel_dp->train_set[0];
3085
3086         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3087         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3088                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3089                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3090                         deemph_reg_value = 128;
3091                         margin_reg_value = 52;
3092                         break;
3093                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3094                         deemph_reg_value = 128;
3095                         margin_reg_value = 77;
3096                         break;
3097                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3098                         deemph_reg_value = 128;
3099                         margin_reg_value = 102;
3100                         break;
3101                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3102                         deemph_reg_value = 128;
3103                         margin_reg_value = 154;
3104                         uniq_trans_scale = true;
3105                         break;
3106                 default:
3107                         return 0;
3108                 }
3109                 break;
3110         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3111                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3112                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3113                         deemph_reg_value = 85;
3114                         margin_reg_value = 78;
3115                         break;
3116                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3117                         deemph_reg_value = 85;
3118                         margin_reg_value = 116;
3119                         break;
3120                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3121                         deemph_reg_value = 85;
3122                         margin_reg_value = 154;
3123                         break;
3124                 default:
3125                         return 0;
3126                 }
3127                 break;
3128         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3129                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3131                         deemph_reg_value = 64;
3132                         margin_reg_value = 104;
3133                         break;
3134                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3135                         deemph_reg_value = 64;
3136                         margin_reg_value = 154;
3137                         break;
3138                 default:
3139                         return 0;
3140                 }
3141                 break;
3142         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3143                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145                         deemph_reg_value = 43;
3146                         margin_reg_value = 154;
3147                         break;
3148                 default:
3149                         return 0;
3150                 }
3151                 break;
3152         default:
3153                 return 0;
3154         }
3155
3156         chv_set_phy_signal_level(encoder, deemph_reg_value,
3157                                  margin_reg_value, uniq_trans_scale);
3158
3159         return 0;
3160 }
3161
3162 static uint32_t
3163 gen4_signal_levels(uint8_t train_set)
3164 {
3165         uint32_t        signal_levels = 0;
3166
3167         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3168         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3169         default:
3170                 signal_levels |= DP_VOLTAGE_0_4;
3171                 break;
3172         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3173                 signal_levels |= DP_VOLTAGE_0_6;
3174                 break;
3175         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3176                 signal_levels |= DP_VOLTAGE_0_8;
3177                 break;
3178         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3179                 signal_levels |= DP_VOLTAGE_1_2;
3180                 break;
3181         }
3182         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3183         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3184         default:
3185                 signal_levels |= DP_PRE_EMPHASIS_0;
3186                 break;
3187         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3188                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3189                 break;
3190         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3191                 signal_levels |= DP_PRE_EMPHASIS_6;
3192                 break;
3193         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3194                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3195                 break;
3196         }
3197         return signal_levels;
3198 }
3199
3200 /* Gen6's DP voltage swing and pre-emphasis control */
3201 static uint32_t
3202 gen6_edp_signal_levels(uint8_t train_set)
3203 {
3204         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3205                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3206         switch (signal_levels) {
3207         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3208         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3209                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3210         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3211                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3212         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3213         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3214                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3215         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3216         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3217                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3218         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3219         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3220                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3221         default:
3222                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3223                               "0x%x\n", signal_levels);
3224                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3225         }
3226 }
3227
3228 /* Gen7's DP voltage swing and pre-emphasis control */
3229 static uint32_t
3230 gen7_edp_signal_levels(uint8_t train_set)
3231 {
3232         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3233                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3234         switch (signal_levels) {
3235         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3236                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3237         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3238                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3239         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3240                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3241
3242         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3243                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3244         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3245                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3246
3247         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3248                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3249         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3250                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3251
3252         default:
3253                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3254                               "0x%x\n", signal_levels);
3255                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3256         }
3257 }
3258
3259 void
3260 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3261 {
3262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3263         enum port port = intel_dig_port->port;
3264         struct drm_device *dev = intel_dig_port->base.base.dev;
3265         struct drm_i915_private *dev_priv = to_i915(dev);
3266         uint32_t signal_levels, mask = 0;
3267         uint8_t train_set = intel_dp->train_set[0];
3268
3269         if (HAS_DDI(dev)) {
3270                 signal_levels = ddi_signal_levels(intel_dp);
3271
3272                 if (IS_BROXTON(dev))
3273                         signal_levels = 0;
3274                 else
3275                         mask = DDI_BUF_EMP_MASK;
3276         } else if (IS_CHERRYVIEW(dev)) {
3277                 signal_levels = chv_signal_levels(intel_dp);
3278         } else if (IS_VALLEYVIEW(dev)) {
3279                 signal_levels = vlv_signal_levels(intel_dp);
3280         } else if (IS_GEN7(dev) && port == PORT_A) {
3281                 signal_levels = gen7_edp_signal_levels(train_set);
3282                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3283         } else if (IS_GEN6(dev) && port == PORT_A) {
3284                 signal_levels = gen6_edp_signal_levels(train_set);
3285                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3286         } else {
3287                 signal_levels = gen4_signal_levels(train_set);
3288                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3289         }
3290
3291         if (mask)
3292                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3293
3294         DRM_DEBUG_KMS("Using vswing level %d\n",
3295                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3296         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3297                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3298                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3299
3300         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3301
3302         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3303         POSTING_READ(intel_dp->output_reg);
3304 }
3305
3306 void
3307 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3308                                        uint8_t dp_train_pat)
3309 {
3310         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3311         struct drm_i915_private *dev_priv =
3312                 to_i915(intel_dig_port->base.base.dev);
3313
3314         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3315
3316         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3317         POSTING_READ(intel_dp->output_reg);
3318 }
3319
3320 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3321 {
3322         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3323         struct drm_device *dev = intel_dig_port->base.base.dev;
3324         struct drm_i915_private *dev_priv = dev->dev_private;
3325         enum port port = intel_dig_port->port;
3326         uint32_t val;
3327
3328         if (!HAS_DDI(dev))
3329                 return;
3330
3331         val = I915_READ(DP_TP_CTL(port));
3332         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3333         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3334         I915_WRITE(DP_TP_CTL(port), val);
3335
3336         /*
3337          * On PORT_A we can have only eDP in SST mode. There the only reason
3338          * we need to set idle transmission mode is to work around a HW issue
3339          * where we enable the pipe while not in idle link-training mode.
3340          * In this case there is requirement to wait for a minimum number of
3341          * idle patterns to be sent.
3342          */
3343         if (port == PORT_A)
3344                 return;
3345
3346         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3347                      1))
3348                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3349 }
3350
3351 static void
3352 intel_dp_link_down(struct intel_dp *intel_dp)
3353 {
3354         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3355         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3356         enum port port = intel_dig_port->port;
3357         struct drm_device *dev = intel_dig_port->base.base.dev;
3358         struct drm_i915_private *dev_priv = dev->dev_private;
3359         uint32_t DP = intel_dp->DP;
3360
3361         if (WARN_ON(HAS_DDI(dev)))
3362                 return;
3363
3364         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3365                 return;
3366
3367         DRM_DEBUG_KMS("\n");
3368
3369         if ((IS_GEN7(dev) && port == PORT_A) ||
3370             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3371                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3372                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3373         } else {
3374                 if (IS_CHERRYVIEW(dev))
3375                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3376                 else
3377                         DP &= ~DP_LINK_TRAIN_MASK;
3378                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3379         }
3380         I915_WRITE(intel_dp->output_reg, DP);
3381         POSTING_READ(intel_dp->output_reg);
3382
3383         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3384         I915_WRITE(intel_dp->output_reg, DP);
3385         POSTING_READ(intel_dp->output_reg);
3386
3387         /*
3388          * HW workaround for IBX, we need to move the port
3389          * to transcoder A after disabling it to allow the
3390          * matching HDMI port to be enabled on transcoder A.
3391          */
3392         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3393                 /*
3394                  * We get CPU/PCH FIFO underruns on the other pipe when
3395                  * doing the workaround. Sweep them under the rug.
3396                  */
3397                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3398                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3399
3400                 /* always enable with pattern 1 (as per spec) */
3401                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3402                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3403                 I915_WRITE(intel_dp->output_reg, DP);
3404                 POSTING_READ(intel_dp->output_reg);
3405
3406                 DP &= ~DP_PORT_EN;
3407                 I915_WRITE(intel_dp->output_reg, DP);
3408                 POSTING_READ(intel_dp->output_reg);
3409
3410                 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3411                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3412                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3413         }
3414
3415         msleep(intel_dp->panel_power_down_delay);
3416
3417         intel_dp->DP = DP;
3418 }
3419
3420 static bool
3421 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3422 {
3423         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3424         struct drm_device *dev = dig_port->base.base.dev;
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426
3427         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3428                              sizeof(intel_dp->dpcd)) < 0)
3429                 return false; /* aux transfer failed */
3430
3431         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3432
3433         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3434                 return false; /* DPCD not present */
3435
3436         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3437                              &intel_dp->sink_count, 1) < 0)
3438                 return false;
3439
3440         /*
3441          * Sink count can change between short pulse hpd hence
3442          * a member variable in intel_dp will track any changes
3443          * between short pulse interrupts.
3444          */
3445         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3446
3447         /*
3448          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3449          * a dongle is present but no display. Unless we require to know
3450          * if a dongle is present or not, we don't need to update
3451          * downstream port information. So, an early return here saves
3452          * time from performing other operations which are not required.
3453          */
3454         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3455                 return false;
3456
3457         /* Check if the panel supports PSR */
3458         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3459         if (is_edp(intel_dp)) {
3460                 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3461                                  intel_dp->psr_dpcd,
3462                                  sizeof(intel_dp->psr_dpcd));
3463                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3464                         dev_priv->psr.sink_support = true;
3465                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3466                 }
3467
3468                 if (INTEL_INFO(dev)->gen >= 9 &&
3469                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3470                         uint8_t frame_sync_cap;
3471
3472                         dev_priv->psr.sink_support = true;
3473                         drm_dp_dpcd_read(&intel_dp->aux,
3474                                          DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3475                                          &frame_sync_cap, 1);
3476                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3477                         /* PSR2 needs frame sync as well */
3478                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3479                         DRM_DEBUG_KMS("PSR2 %s on sink",
3480                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3481                 }
3482
3483                 /* Read the eDP Display control capabilities registers */
3484                 memset(intel_dp->edp_dpcd, 0, sizeof(intel_dp->edp_dpcd));
3485                 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3486                                 (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3487                                                 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3488                                                                 sizeof(intel_dp->edp_dpcd)))
3489                         DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3490                                         intel_dp->edp_dpcd);
3491         }
3492
3493         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3494                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
3495                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3496
3497         /* Intermediate frequency support */
3498         if (is_edp(intel_dp) && (intel_dp->edp_dpcd[0] >= 0x03)) { /* eDp v1.4 or higher */
3499                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3500                 int i;
3501
3502                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3503                                 sink_rates, sizeof(sink_rates));
3504
3505                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3506                         int val = le16_to_cpu(sink_rates[i]);
3507
3508                         if (val == 0)
3509                                 break;
3510
3511                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3512                         intel_dp->sink_rates[i] = (val * 200) / 10;
3513                 }
3514                 intel_dp->num_sink_rates = i;
3515         }
3516
3517         intel_dp_print_rates(intel_dp);
3518
3519         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3520               DP_DWN_STRM_PORT_PRESENT))
3521                 return true; /* native DP sink */
3522
3523         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3524                 return true; /* no per-port downstream info */
3525
3526         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3527                              intel_dp->downstream_ports,
3528                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3529                 return false; /* downstream port status fetch failed */
3530
3531         return true;
3532 }
3533
3534 static void
3535 intel_dp_probe_oui(struct intel_dp *intel_dp)
3536 {
3537         u8 buf[3];
3538
3539         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3540                 return;
3541
3542         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3543                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3544                               buf[0], buf[1], buf[2]);
3545
3546         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3547                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3548                               buf[0], buf[1], buf[2]);
3549 }
3550
3551 static bool
3552 intel_dp_probe_mst(struct intel_dp *intel_dp)
3553 {
3554         u8 buf[1];
3555
3556         if (!i915.enable_dp_mst)
3557                 return false;
3558
3559         if (!intel_dp->can_mst)
3560                 return false;
3561
3562         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3563                 return false;
3564
3565         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3566                 if (buf[0] & DP_MST_CAP) {
3567                         DRM_DEBUG_KMS("Sink is MST capable\n");
3568                         intel_dp->is_mst = true;
3569                 } else {
3570                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3571                         intel_dp->is_mst = false;
3572                 }
3573         }
3574
3575         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3576         return intel_dp->is_mst;
3577 }
3578
3579 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3580 {
3581         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3582         struct drm_device *dev = dig_port->base.base.dev;
3583         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3584         u8 buf;
3585         int ret = 0;
3586         int count = 0;
3587         int attempts = 10;
3588
3589         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3590                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3591                 ret = -EIO;
3592                 goto out;
3593         }
3594
3595         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3596                                buf & ~DP_TEST_SINK_START) < 0) {
3597                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3598                 ret = -EIO;
3599                 goto out;
3600         }
3601
3602         do {
3603                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3604
3605                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3606                                       DP_TEST_SINK_MISC, &buf) < 0) {
3607                         ret = -EIO;
3608                         goto out;
3609                 }
3610                 count = buf & DP_TEST_COUNT_MASK;
3611         } while (--attempts && count);
3612
3613         if (attempts == 0) {
3614                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3615                 ret = -ETIMEDOUT;
3616         }
3617
3618  out:
3619         hsw_enable_ips(intel_crtc);
3620         return ret;
3621 }
3622
3623 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3624 {
3625         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3626         struct drm_device *dev = dig_port->base.base.dev;
3627         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3628         u8 buf;
3629         int ret;
3630
3631         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3632                 return -EIO;
3633
3634         if (!(buf & DP_TEST_CRC_SUPPORTED))
3635                 return -ENOTTY;
3636
3637         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3638                 return -EIO;
3639
3640         if (buf & DP_TEST_SINK_START) {
3641                 ret = intel_dp_sink_crc_stop(intel_dp);
3642                 if (ret)
3643                         return ret;
3644         }
3645
3646         hsw_disable_ips(intel_crtc);
3647
3648         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3649                                buf | DP_TEST_SINK_START) < 0) {
3650                 hsw_enable_ips(intel_crtc);
3651                 return -EIO;
3652         }
3653
3654         intel_wait_for_vblank(dev, intel_crtc->pipe);
3655         return 0;
3656 }
3657
3658 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3659 {
3660         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3661         struct drm_device *dev = dig_port->base.base.dev;
3662         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3663         u8 buf;
3664         int count, ret;
3665         int attempts = 6;
3666
3667         ret = intel_dp_sink_crc_start(intel_dp);
3668         if (ret)
3669                 return ret;
3670
3671         do {
3672                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3673
3674                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3675                                       DP_TEST_SINK_MISC, &buf) < 0) {
3676                         ret = -EIO;
3677                         goto stop;
3678                 }
3679                 count = buf & DP_TEST_COUNT_MASK;
3680
3681         } while (--attempts && count == 0);
3682
3683         if (attempts == 0) {
3684                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3685                 ret = -ETIMEDOUT;
3686                 goto stop;
3687         }
3688
3689         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3690                 ret = -EIO;
3691                 goto stop;
3692         }
3693
3694 stop:
3695         intel_dp_sink_crc_stop(intel_dp);
3696         return ret;
3697 }
3698
3699 static bool
3700 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3701 {
3702         return drm_dp_dpcd_read(&intel_dp->aux,
3703                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3704                                        sink_irq_vector, 1) == 1;
3705 }
3706
3707 static bool
3708 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3709 {
3710         int ret;
3711
3712         ret = drm_dp_dpcd_read(&intel_dp->aux,
3713                                              DP_SINK_COUNT_ESI,
3714                                              sink_irq_vector, 14);
3715         if (ret != 14)
3716                 return false;
3717
3718         return true;
3719 }
3720
3721 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3722 {
3723         uint8_t test_result = DP_TEST_ACK;
3724         return test_result;
3725 }
3726
3727 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3728 {
3729         uint8_t test_result = DP_TEST_NAK;
3730         return test_result;
3731 }
3732
3733 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3734 {
3735         uint8_t test_result = DP_TEST_NAK;
3736         struct intel_connector *intel_connector = intel_dp->attached_connector;
3737         struct drm_connector *connector = &intel_connector->base;
3738
3739         if (intel_connector->detect_edid == NULL ||
3740             connector->edid_corrupt ||
3741             intel_dp->aux.i2c_defer_count > 6) {
3742                 /* Check EDID read for NACKs, DEFERs and corruption
3743                  * (DP CTS 1.2 Core r1.1)
3744                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3745                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3746                  *    4.2.2.6 : EDID corruption detected
3747                  * Use failsafe mode for all cases
3748                  */
3749                 if (intel_dp->aux.i2c_nack_count > 0 ||
3750                         intel_dp->aux.i2c_defer_count > 0)
3751                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3752                                       intel_dp->aux.i2c_nack_count,
3753                                       intel_dp->aux.i2c_defer_count);
3754                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3755         } else {
3756                 struct edid *block = intel_connector->detect_edid;
3757
3758                 /* We have to write the checksum
3759                  * of the last block read
3760                  */
3761                 block += intel_connector->detect_edid->extensions;
3762
3763                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3764                                         DP_TEST_EDID_CHECKSUM,
3765                                         &block->checksum,
3766                                         1))
3767                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3768
3769                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3770                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3771         }
3772
3773         /* Set test active flag here so userspace doesn't interrupt things */
3774         intel_dp->compliance_test_active = 1;
3775
3776         return test_result;
3777 }
3778
3779 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3780 {
3781         uint8_t test_result = DP_TEST_NAK;
3782         return test_result;
3783 }
3784
3785 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3786 {
3787         uint8_t response = DP_TEST_NAK;
3788         uint8_t rxdata = 0;
3789         int status = 0;
3790
3791         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3792         if (status <= 0) {
3793                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3794                 goto update_status;
3795         }
3796
3797         switch (rxdata) {
3798         case DP_TEST_LINK_TRAINING:
3799                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3800                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3801                 response = intel_dp_autotest_link_training(intel_dp);
3802                 break;
3803         case DP_TEST_LINK_VIDEO_PATTERN:
3804                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3805                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3806                 response = intel_dp_autotest_video_pattern(intel_dp);
3807                 break;
3808         case DP_TEST_LINK_EDID_READ:
3809                 DRM_DEBUG_KMS("EDID test requested\n");
3810                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3811                 response = intel_dp_autotest_edid(intel_dp);
3812                 break;
3813         case DP_TEST_LINK_PHY_TEST_PATTERN:
3814                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3815                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3816                 response = intel_dp_autotest_phy_pattern(intel_dp);
3817                 break;
3818         default:
3819                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3820                 break;
3821         }
3822
3823 update_status:
3824         status = drm_dp_dpcd_write(&intel_dp->aux,
3825                                    DP_TEST_RESPONSE,
3826                                    &response, 1);
3827         if (status <= 0)
3828                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3829 }
3830
3831 static int
3832 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3833 {
3834         bool bret;
3835
3836         if (intel_dp->is_mst) {
3837                 u8 esi[16] = { 0 };
3838                 int ret = 0;
3839                 int retry;
3840                 bool handled;
3841                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3842 go_again:
3843                 if (bret == true) {
3844
3845                         /* check link status - esi[10] = 0x200c */
3846                         if (intel_dp->active_mst_links &&
3847                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3848                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3849                                 intel_dp_start_link_train(intel_dp);
3850                                 intel_dp_stop_link_train(intel_dp);
3851                         }
3852
3853                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3854                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3855
3856                         if (handled) {
3857                                 for (retry = 0; retry < 3; retry++) {
3858                                         int wret;
3859                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3860                                                                  DP_SINK_COUNT_ESI+1,
3861                                                                  &esi[1], 3);
3862                                         if (wret == 3) {
3863                                                 break;
3864                                         }
3865                                 }
3866
3867                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3868                                 if (bret == true) {
3869                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3870                                         goto go_again;
3871                                 }
3872                         } else
3873                                 ret = 0;
3874
3875                         return ret;
3876                 } else {
3877                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3878                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3879                         intel_dp->is_mst = false;
3880                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3881                         /* send a hotplug event */
3882                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3883                 }
3884         }
3885         return -EINVAL;
3886 }
3887
3888 static void
3889 intel_dp_check_link_status(struct intel_dp *intel_dp)
3890 {
3891         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3892         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3893         u8 link_status[DP_LINK_STATUS_SIZE];
3894
3895         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3896
3897         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3898                 DRM_ERROR("Failed to get link status\n");
3899                 return;
3900         }
3901
3902         if (!intel_encoder->base.crtc)
3903                 return;
3904
3905         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3906                 return;
3907
3908         /* if link training is requested we should perform it always */
3909         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3910             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3911                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3912                               intel_encoder->base.name);
3913                 intel_dp_start_link_train(intel_dp);
3914                 intel_dp_stop_link_train(intel_dp);
3915         }
3916 }
3917
3918 /*
3919  * According to DP spec
3920  * 5.1.2:
3921  *  1. Read DPCD
3922  *  2. Configure link according to Receiver Capabilities
3923  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3924  *  4. Check link status on receipt of hot-plug interrupt
3925  *
3926  * intel_dp_short_pulse -  handles short pulse interrupts
3927  * when full detection is not required.
3928  * Returns %true if short pulse is handled and full detection
3929  * is NOT required and %false otherwise.
3930  */
3931 static bool
3932 intel_dp_short_pulse(struct intel_dp *intel_dp)
3933 {
3934         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3935         u8 sink_irq_vector;
3936         u8 old_sink_count = intel_dp->sink_count;
3937         bool ret;
3938
3939         /*
3940          * Clearing compliance test variables to allow capturing
3941          * of values for next automated test request.
3942          */
3943         intel_dp->compliance_test_active = 0;
3944         intel_dp->compliance_test_type = 0;
3945         intel_dp->compliance_test_data = 0;
3946
3947         /*
3948          * Now read the DPCD to see if it's actually running
3949          * If the current value of sink count doesn't match with
3950          * the value that was stored earlier or dpcd read failed
3951          * we need to do full detection
3952          */
3953         ret = intel_dp_get_dpcd(intel_dp);
3954
3955         if ((old_sink_count != intel_dp->sink_count) || !ret) {
3956                 /* No need to proceed if we are going to do full detect */
3957                 return false;
3958         }
3959
3960         /* Try to read the source of the interrupt */
3961         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3962             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3963                 /* Clear interrupt source */
3964                 drm_dp_dpcd_writeb(&intel_dp->aux,
3965                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3966                                    sink_irq_vector);
3967
3968                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3969                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3970                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3971                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3972         }
3973
3974         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3975         intel_dp_check_link_status(intel_dp);
3976         drm_modeset_unlock(&dev->mode_config.connection_mutex);
3977
3978         return true;
3979 }
3980
3981 /* XXX this is probably wrong for multiple downstream ports */
3982 static enum drm_connector_status
3983 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3984 {
3985         uint8_t *dpcd = intel_dp->dpcd;
3986         uint8_t type;
3987
3988         if (!intel_dp_get_dpcd(intel_dp))
3989                 return connector_status_disconnected;
3990
3991         if (is_edp(intel_dp))
3992                 return connector_status_connected;
3993
3994         /* if there's no downstream port, we're done */
3995         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3996                 return connector_status_connected;
3997
3998         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3999         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4000             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4001
4002                 return intel_dp->sink_count ?
4003                 connector_status_connected : connector_status_disconnected;
4004         }
4005
4006         /* If no HPD, poke DDC gently */
4007         if (drm_probe_ddc(&intel_dp->aux.ddc))
4008                 return connector_status_connected;
4009
4010         /* Well we tried, say unknown for unreliable port types */
4011         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4012                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4013                 if (type == DP_DS_PORT_TYPE_VGA ||
4014                     type == DP_DS_PORT_TYPE_NON_EDID)
4015                         return connector_status_unknown;
4016         } else {
4017                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4018                         DP_DWN_STRM_PORT_TYPE_MASK;
4019                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4020                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4021                         return connector_status_unknown;
4022         }
4023
4024         /* Anything else is out of spec, warn and ignore */
4025         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4026         return connector_status_disconnected;
4027 }
4028
4029 static enum drm_connector_status
4030 edp_detect(struct intel_dp *intel_dp)
4031 {
4032         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4033         enum drm_connector_status status;
4034
4035         status = intel_panel_detect(dev);
4036         if (status == connector_status_unknown)
4037                 status = connector_status_connected;
4038
4039         return status;
4040 }
4041
4042 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4043                                        struct intel_digital_port *port)
4044 {
4045         u32 bit;
4046
4047         switch (port->port) {
4048         case PORT_A:
4049                 return true;
4050         case PORT_B:
4051                 bit = SDE_PORTB_HOTPLUG;
4052                 break;
4053         case PORT_C:
4054                 bit = SDE_PORTC_HOTPLUG;
4055                 break;
4056         case PORT_D:
4057                 bit = SDE_PORTD_HOTPLUG;
4058                 break;
4059         default:
4060                 MISSING_CASE(port->port);
4061                 return false;
4062         }
4063
4064         return I915_READ(SDEISR) & bit;
4065 }
4066
4067 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4068                                        struct intel_digital_port *port)
4069 {
4070         u32 bit;
4071
4072         switch (port->port) {
4073         case PORT_A:
4074                 return true;
4075         case PORT_B:
4076                 bit = SDE_PORTB_HOTPLUG_CPT;
4077                 break;
4078         case PORT_C:
4079                 bit = SDE_PORTC_HOTPLUG_CPT;
4080                 break;
4081         case PORT_D:
4082                 bit = SDE_PORTD_HOTPLUG_CPT;
4083                 break;
4084         case PORT_E:
4085                 bit = SDE_PORTE_HOTPLUG_SPT;
4086                 break;
4087         default:
4088                 MISSING_CASE(port->port);
4089                 return false;
4090         }
4091
4092         return I915_READ(SDEISR) & bit;
4093 }
4094
4095 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4096                                        struct intel_digital_port *port)
4097 {
4098         u32 bit;
4099
4100         switch (port->port) {
4101         case PORT_B:
4102                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4103                 break;
4104         case PORT_C:
4105                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4106                 break;
4107         case PORT_D:
4108                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4109                 break;
4110         default:
4111                 MISSING_CASE(port->port);
4112                 return false;
4113         }
4114
4115         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4116 }
4117
4118 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4119                                         struct intel_digital_port *port)
4120 {
4121         u32 bit;
4122
4123         switch (port->port) {
4124         case PORT_B:
4125                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4126                 break;
4127         case PORT_C:
4128                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4129                 break;
4130         case PORT_D:
4131                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4132                 break;
4133         default:
4134                 MISSING_CASE(port->port);
4135                 return false;
4136         }
4137
4138         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4139 }
4140
4141 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4142                                        struct intel_digital_port *intel_dig_port)
4143 {
4144         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4145         enum port port;
4146         u32 bit;
4147
4148         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4149         switch (port) {
4150         case PORT_A:
4151                 bit = BXT_DE_PORT_HP_DDIA;
4152                 break;
4153         case PORT_B:
4154                 bit = BXT_DE_PORT_HP_DDIB;
4155                 break;
4156         case PORT_C:
4157                 bit = BXT_DE_PORT_HP_DDIC;
4158                 break;
4159         default:
4160                 MISSING_CASE(port);
4161                 return false;
4162         }
4163
4164         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4165 }
4166
4167 /*
4168  * intel_digital_port_connected - is the specified port connected?
4169  * @dev_priv: i915 private structure
4170  * @port: the port to test
4171  *
4172  * Return %true if @port is connected, %false otherwise.
4173  */
4174 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4175                                          struct intel_digital_port *port)
4176 {
4177         if (HAS_PCH_IBX(dev_priv))
4178                 return ibx_digital_port_connected(dev_priv, port);
4179         else if (HAS_PCH_SPLIT(dev_priv))
4180                 return cpt_digital_port_connected(dev_priv, port);
4181         else if (IS_BROXTON(dev_priv))
4182                 return bxt_digital_port_connected(dev_priv, port);
4183         else if (IS_GM45(dev_priv))
4184                 return gm45_digital_port_connected(dev_priv, port);
4185         else
4186                 return g4x_digital_port_connected(dev_priv, port);
4187 }
4188
4189 static struct edid *
4190 intel_dp_get_edid(struct intel_dp *intel_dp)
4191 {
4192         struct intel_connector *intel_connector = intel_dp->attached_connector;
4193
4194         /* use cached edid if we have one */
4195         if (intel_connector->edid) {
4196                 /* invalid edid */
4197                 if (IS_ERR(intel_connector->edid))
4198                         return NULL;
4199
4200                 return drm_edid_duplicate(intel_connector->edid);
4201         } else
4202                 return drm_get_edid(&intel_connector->base,
4203                                     &intel_dp->aux.ddc);
4204 }
4205
4206 static void
4207 intel_dp_set_edid(struct intel_dp *intel_dp)
4208 {
4209         struct intel_connector *intel_connector = intel_dp->attached_connector;
4210         struct edid *edid;
4211
4212         intel_dp_unset_edid(intel_dp);
4213         edid = intel_dp_get_edid(intel_dp);
4214         intel_connector->detect_edid = edid;
4215
4216         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4217                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4218         else
4219                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4220 }
4221
4222 static void
4223 intel_dp_unset_edid(struct intel_dp *intel_dp)
4224 {
4225         struct intel_connector *intel_connector = intel_dp->attached_connector;
4226
4227         kfree(intel_connector->detect_edid);
4228         intel_connector->detect_edid = NULL;
4229
4230         intel_dp->has_audio = false;
4231 }
4232
4233 static void
4234 intel_dp_long_pulse(struct intel_connector *intel_connector)
4235 {
4236         struct drm_connector *connector = &intel_connector->base;
4237         struct intel_dp *intel_dp = intel_attached_dp(connector);
4238         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4239         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4240         struct drm_device *dev = connector->dev;
4241         enum drm_connector_status status;
4242         enum intel_display_power_domain power_domain;
4243         bool ret;
4244         u8 sink_irq_vector;
4245
4246         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4247         intel_display_power_get(to_i915(dev), power_domain);
4248
4249         /* Can't disconnect eDP, but you can close the lid... */
4250         if (is_edp(intel_dp))
4251                 status = edp_detect(intel_dp);
4252         else if (intel_digital_port_connected(to_i915(dev),
4253                                               dp_to_dig_port(intel_dp)))
4254                 status = intel_dp_detect_dpcd(intel_dp);
4255         else
4256                 status = connector_status_disconnected;
4257
4258         if (status != connector_status_connected) {
4259                 intel_dp->compliance_test_active = 0;
4260                 intel_dp->compliance_test_type = 0;
4261                 intel_dp->compliance_test_data = 0;
4262
4263                 if (intel_dp->is_mst) {
4264                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4265                                       intel_dp->is_mst,
4266                                       intel_dp->mst_mgr.mst_state);
4267                         intel_dp->is_mst = false;
4268                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4269                                                         intel_dp->is_mst);
4270                 }
4271
4272                 goto out;
4273         }
4274
4275         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4276                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4277
4278         intel_dp_probe_oui(intel_dp);
4279
4280         ret = intel_dp_probe_mst(intel_dp);
4281         if (ret) {
4282                 /*
4283                  * If we are in MST mode then this connector
4284                  * won't appear connected or have anything
4285                  * with EDID on it
4286                  */
4287                 status = connector_status_disconnected;
4288                 goto out;
4289         } else if (connector->status == connector_status_connected) {
4290                 /*
4291                  * If display was connected already and is still connected
4292                  * check links status, there has been known issues of
4293                  * link loss triggerring long pulse!!!!
4294                  */
4295                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4296                 intel_dp_check_link_status(intel_dp);
4297                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4298                 goto out;
4299         }
4300
4301         /*
4302          * Clearing NACK and defer counts to get their exact values
4303          * while reading EDID which are required by Compliance tests
4304          * 4.2.2.4 and 4.2.2.5
4305          */
4306         intel_dp->aux.i2c_nack_count = 0;
4307         intel_dp->aux.i2c_defer_count = 0;
4308
4309         intel_dp_set_edid(intel_dp);
4310
4311         status = connector_status_connected;
4312         intel_dp->detect_done = true;
4313
4314         /* Try to read the source of the interrupt */
4315         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4316             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4317                 /* Clear interrupt source */
4318                 drm_dp_dpcd_writeb(&intel_dp->aux,
4319                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4320                                    sink_irq_vector);
4321
4322                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4323                         intel_dp_handle_test_request(intel_dp);
4324                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4325                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4326         }
4327
4328 out:
4329         if ((status != connector_status_connected) &&
4330             (intel_dp->is_mst == false))
4331                 intel_dp_unset_edid(intel_dp);
4332
4333         intel_display_power_put(to_i915(dev), power_domain);
4334         return;
4335 }
4336
4337 static enum drm_connector_status
4338 intel_dp_detect(struct drm_connector *connector, bool force)
4339 {
4340         struct intel_dp *intel_dp = intel_attached_dp(connector);
4341         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4342         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4343         struct intel_connector *intel_connector = to_intel_connector(connector);
4344
4345         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4346                       connector->base.id, connector->name);
4347
4348         if (intel_dp->is_mst) {
4349                 /* MST devices are disconnected from a monitor POV */
4350                 intel_dp_unset_edid(intel_dp);
4351                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4352                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4353                 return connector_status_disconnected;
4354         }
4355
4356         /* If full detect is not performed yet, do a full detect */
4357         if (!intel_dp->detect_done)
4358                 intel_dp_long_pulse(intel_dp->attached_connector);
4359
4360         intel_dp->detect_done = false;
4361
4362         if (intel_connector->detect_edid)
4363                 return connector_status_connected;
4364         else
4365                 return connector_status_disconnected;
4366 }
4367
4368 static void
4369 intel_dp_force(struct drm_connector *connector)
4370 {
4371         struct intel_dp *intel_dp = intel_attached_dp(connector);
4372         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4373         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4374         enum intel_display_power_domain power_domain;
4375
4376         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4377                       connector->base.id, connector->name);
4378         intel_dp_unset_edid(intel_dp);
4379
4380         if (connector->status != connector_status_connected)
4381                 return;
4382
4383         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4384         intel_display_power_get(dev_priv, power_domain);
4385
4386         intel_dp_set_edid(intel_dp);
4387
4388         intel_display_power_put(dev_priv, power_domain);
4389
4390         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4391                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4392 }
4393
4394 static int intel_dp_get_modes(struct drm_connector *connector)
4395 {
4396         struct intel_connector *intel_connector = to_intel_connector(connector);
4397         struct edid *edid;
4398
4399         edid = intel_connector->detect_edid;
4400         if (edid) {
4401                 int ret = intel_connector_update_modes(connector, edid);
4402                 if (ret)
4403                         return ret;
4404         }
4405
4406         /* if eDP has no EDID, fall back to fixed mode */
4407         if (is_edp(intel_attached_dp(connector)) &&
4408             intel_connector->panel.fixed_mode) {
4409                 struct drm_display_mode *mode;
4410
4411                 mode = drm_mode_duplicate(connector->dev,
4412                                           intel_connector->panel.fixed_mode);
4413                 if (mode) {
4414                         drm_mode_probed_add(connector, mode);
4415                         return 1;
4416                 }
4417         }
4418
4419         return 0;
4420 }
4421
4422 static bool
4423 intel_dp_detect_audio(struct drm_connector *connector)
4424 {
4425         bool has_audio = false;
4426         struct edid *edid;
4427
4428         edid = to_intel_connector(connector)->detect_edid;
4429         if (edid)
4430                 has_audio = drm_detect_monitor_audio(edid);
4431
4432         return has_audio;
4433 }
4434
4435 static int
4436 intel_dp_set_property(struct drm_connector *connector,
4437                       struct drm_property *property,
4438                       uint64_t val)
4439 {
4440         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4441         struct intel_connector *intel_connector = to_intel_connector(connector);
4442         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4443         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4444         int ret;
4445
4446         ret = drm_object_property_set_value(&connector->base, property, val);
4447         if (ret)
4448                 return ret;
4449
4450         if (property == dev_priv->force_audio_property) {
4451                 int i = val;
4452                 bool has_audio;
4453
4454                 if (i == intel_dp->force_audio)
4455                         return 0;
4456
4457                 intel_dp->force_audio = i;
4458
4459                 if (i == HDMI_AUDIO_AUTO)
4460                         has_audio = intel_dp_detect_audio(connector);
4461                 else
4462                         has_audio = (i == HDMI_AUDIO_ON);
4463
4464                 if (has_audio == intel_dp->has_audio)
4465                         return 0;
4466
4467                 intel_dp->has_audio = has_audio;
4468                 goto done;
4469         }
4470
4471         if (property == dev_priv->broadcast_rgb_property) {
4472                 bool old_auto = intel_dp->color_range_auto;
4473                 bool old_range = intel_dp->limited_color_range;
4474
4475                 switch (val) {
4476                 case INTEL_BROADCAST_RGB_AUTO:
4477                         intel_dp->color_range_auto = true;
4478                         break;
4479                 case INTEL_BROADCAST_RGB_FULL:
4480                         intel_dp->color_range_auto = false;
4481                         intel_dp->limited_color_range = false;
4482                         break;
4483                 case INTEL_BROADCAST_RGB_LIMITED:
4484                         intel_dp->color_range_auto = false;
4485                         intel_dp->limited_color_range = true;
4486                         break;
4487                 default:
4488                         return -EINVAL;
4489                 }
4490
4491                 if (old_auto == intel_dp->color_range_auto &&
4492                     old_range == intel_dp->limited_color_range)
4493                         return 0;
4494
4495                 goto done;
4496         }
4497
4498         if (is_edp(intel_dp) &&
4499             property == connector->dev->mode_config.scaling_mode_property) {
4500                 if (val == DRM_MODE_SCALE_NONE) {
4501                         DRM_DEBUG_KMS("no scaling not supported\n");
4502                         return -EINVAL;
4503                 }
4504                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4505                     val == DRM_MODE_SCALE_CENTER) {
4506                         DRM_DEBUG_KMS("centering not supported\n");
4507                         return -EINVAL;
4508                 }
4509
4510                 if (intel_connector->panel.fitting_mode == val) {
4511                         /* the eDP scaling property is not changed */
4512                         return 0;
4513                 }
4514                 intel_connector->panel.fitting_mode = val;
4515
4516                 goto done;
4517         }
4518
4519         return -EINVAL;
4520
4521 done:
4522         if (intel_encoder->base.crtc)
4523                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4524
4525         return 0;
4526 }
4527
4528 static void
4529 intel_dp_connector_destroy(struct drm_connector *connector)
4530 {
4531         struct intel_connector *intel_connector = to_intel_connector(connector);
4532
4533         kfree(intel_connector->detect_edid);
4534
4535         if (!IS_ERR_OR_NULL(intel_connector->edid))
4536                 kfree(intel_connector->edid);
4537
4538         /* Can't call is_edp() since the encoder may have been destroyed
4539          * already. */
4540         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4541                 intel_panel_fini(&intel_connector->panel);
4542
4543         drm_connector_cleanup(connector);
4544         kfree(connector);
4545 }
4546
4547 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4548 {
4549         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4550         struct intel_dp *intel_dp = &intel_dig_port->dp;
4551
4552         intel_dp_mst_encoder_cleanup(intel_dig_port);
4553         if (is_edp(intel_dp)) {
4554                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4555                 /*
4556                  * vdd might still be enabled do to the delayed vdd off.
4557                  * Make sure vdd is actually turned off here.
4558                  */
4559                 pps_lock(intel_dp);
4560                 edp_panel_vdd_off_sync(intel_dp);
4561                 pps_unlock(intel_dp);
4562
4563                 if (intel_dp->edp_notifier.notifier_call) {
4564                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4565                         intel_dp->edp_notifier.notifier_call = NULL;
4566                 }
4567         }
4568         drm_encoder_cleanup(encoder);
4569         kfree(intel_dig_port);
4570 }
4571
4572 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4573 {
4574         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4575
4576         if (!is_edp(intel_dp))
4577                 return;
4578
4579         /*
4580          * vdd might still be enabled do to the delayed vdd off.
4581          * Make sure vdd is actually turned off here.
4582          */
4583         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4584         pps_lock(intel_dp);
4585         edp_panel_vdd_off_sync(intel_dp);
4586         pps_unlock(intel_dp);
4587 }
4588
4589 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4590 {
4591         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4592         struct drm_device *dev = intel_dig_port->base.base.dev;
4593         struct drm_i915_private *dev_priv = dev->dev_private;
4594         enum intel_display_power_domain power_domain;
4595
4596         lockdep_assert_held(&dev_priv->pps_mutex);
4597
4598         if (!edp_have_panel_vdd(intel_dp))
4599                 return;
4600
4601         /*
4602          * The VDD bit needs a power domain reference, so if the bit is
4603          * already enabled when we boot or resume, grab this reference and
4604          * schedule a vdd off, so we don't hold on to the reference
4605          * indefinitely.
4606          */
4607         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4608         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4609         intel_display_power_get(dev_priv, power_domain);
4610
4611         edp_panel_vdd_schedule_off(intel_dp);
4612 }
4613
4614 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4615 {
4616         struct intel_dp *intel_dp;
4617
4618         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4619                 return;
4620
4621         intel_dp = enc_to_intel_dp(encoder);
4622
4623         pps_lock(intel_dp);
4624
4625         /*
4626          * Read out the current power sequencer assignment,
4627          * in case the BIOS did something with it.
4628          */
4629         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4630                 vlv_initial_power_sequencer_setup(intel_dp);
4631
4632         intel_edp_panel_vdd_sanitize(intel_dp);
4633
4634         pps_unlock(intel_dp);
4635 }
4636
4637 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4638         .dpms = drm_atomic_helper_connector_dpms,
4639         .detect = intel_dp_detect,
4640         .force = intel_dp_force,
4641         .fill_modes = drm_helper_probe_single_connector_modes,
4642         .set_property = intel_dp_set_property,
4643         .atomic_get_property = intel_connector_atomic_get_property,
4644         .destroy = intel_dp_connector_destroy,
4645         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4646         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4647 };
4648
4649 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4650         .get_modes = intel_dp_get_modes,
4651         .mode_valid = intel_dp_mode_valid,
4652 };
4653
4654 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4655         .reset = intel_dp_encoder_reset,
4656         .destroy = intel_dp_encoder_destroy,
4657 };
4658
4659 enum irqreturn
4660 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4661 {
4662         struct intel_dp *intel_dp = &intel_dig_port->dp;
4663         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4664         struct drm_device *dev = intel_dig_port->base.base.dev;
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         enum intel_display_power_domain power_domain;
4667         enum irqreturn ret = IRQ_NONE;
4668
4669         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4670             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4671                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4672
4673         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4674                 /*
4675                  * vdd off can generate a long pulse on eDP which
4676                  * would require vdd on to handle it, and thus we
4677                  * would end up in an endless cycle of
4678                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4679                  */
4680                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4681                               port_name(intel_dig_port->port));
4682                 return IRQ_HANDLED;
4683         }
4684
4685         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4686                       port_name(intel_dig_port->port),
4687                       long_hpd ? "long" : "short");
4688
4689         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4690         intel_display_power_get(dev_priv, power_domain);
4691
4692         if (long_hpd) {
4693                 intel_dp_long_pulse(intel_dp->attached_connector);
4694                 if (intel_dp->is_mst)
4695                         ret = IRQ_HANDLED;
4696                 goto put_power;
4697
4698         } else {
4699                 if (intel_dp->is_mst) {
4700                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4701                                 /*
4702                                  * If we were in MST mode, and device is not
4703                                  * there, get out of MST mode
4704                                  */
4705                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4706                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4707                                 intel_dp->is_mst = false;
4708                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4709                                                                 intel_dp->is_mst);
4710                                 goto put_power;
4711                         }
4712                 }
4713
4714                 if (!intel_dp->is_mst) {
4715                         if (!intel_dp_short_pulse(intel_dp)) {
4716                                 intel_dp_long_pulse(intel_dp->attached_connector);
4717                                 goto put_power;
4718                         }
4719                 }
4720         }
4721
4722         ret = IRQ_HANDLED;
4723
4724 put_power:
4725         intel_display_power_put(dev_priv, power_domain);
4726
4727         return ret;
4728 }
4729
4730 /* check the VBT to see whether the eDP is on another port */
4731 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4732 {
4733         struct drm_i915_private *dev_priv = dev->dev_private;
4734
4735         /*
4736          * eDP not supported on g4x. so bail out early just
4737          * for a bit extra safety in case the VBT is bonkers.
4738          */
4739         if (INTEL_INFO(dev)->gen < 5)
4740                 return false;
4741
4742         if (port == PORT_A)
4743                 return true;
4744
4745         return intel_bios_is_port_edp(dev_priv, port);
4746 }
4747
4748 void
4749 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4750 {
4751         struct intel_connector *intel_connector = to_intel_connector(connector);
4752
4753         intel_attach_force_audio_property(connector);
4754         intel_attach_broadcast_rgb_property(connector);
4755         intel_dp->color_range_auto = true;
4756
4757         if (is_edp(intel_dp)) {
4758                 drm_mode_create_scaling_mode_property(connector->dev);
4759                 drm_object_attach_property(
4760                         &connector->base,
4761                         connector->dev->mode_config.scaling_mode_property,
4762                         DRM_MODE_SCALE_ASPECT);
4763                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4764         }
4765 }
4766
4767 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4768 {
4769         intel_dp->panel_power_off_time = ktime_get_boottime();
4770         intel_dp->last_power_on = jiffies;
4771         intel_dp->last_backlight_off = jiffies;
4772 }
4773
4774 static void
4775 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4776                                     struct intel_dp *intel_dp)
4777 {
4778         struct drm_i915_private *dev_priv = dev->dev_private;
4779         struct edp_power_seq cur, vbt, spec,
4780                 *final = &intel_dp->pps_delays;
4781         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4782         struct pps_registers regs;
4783
4784         lockdep_assert_held(&dev_priv->pps_mutex);
4785
4786         /* already initialized? */
4787         if (final->t11_t12 != 0)
4788                 return;
4789
4790         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4791
4792         /* Workaround: Need to write PP_CONTROL with the unlock key as
4793          * the very first thing. */
4794         pp_ctl = ironlake_get_pp_control(intel_dp);
4795
4796         pp_on = I915_READ(regs.pp_on);
4797         pp_off = I915_READ(regs.pp_off);
4798         if (!IS_BROXTON(dev)) {
4799                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4800                 pp_div = I915_READ(regs.pp_div);
4801         }
4802
4803         /* Pull timing values out of registers */
4804         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4805                 PANEL_POWER_UP_DELAY_SHIFT;
4806
4807         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4808                 PANEL_LIGHT_ON_DELAY_SHIFT;
4809
4810         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4811                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4812
4813         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4814                 PANEL_POWER_DOWN_DELAY_SHIFT;
4815
4816         if (IS_BROXTON(dev)) {
4817                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4818                         BXT_POWER_CYCLE_DELAY_SHIFT;
4819                 if (tmp > 0)
4820                         cur.t11_t12 = (tmp - 1) * 1000;
4821                 else
4822                         cur.t11_t12 = 0;
4823         } else {
4824                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4825                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4826         }
4827
4828         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4829                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4830
4831         vbt = dev_priv->vbt.edp.pps;
4832
4833         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4834          * our hw here, which are all in 100usec. */
4835         spec.t1_t3 = 210 * 10;
4836         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4837         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4838         spec.t10 = 500 * 10;
4839         /* This one is special and actually in units of 100ms, but zero
4840          * based in the hw (so we need to add 100 ms). But the sw vbt
4841          * table multiplies it with 1000 to make it in units of 100usec,
4842          * too. */
4843         spec.t11_t12 = (510 + 100) * 10;
4844
4845         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4846                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4847
4848         /* Use the max of the register settings and vbt. If both are
4849          * unset, fall back to the spec limits. */
4850 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4851                                        spec.field : \
4852                                        max(cur.field, vbt.field))
4853         assign_final(t1_t3);
4854         assign_final(t8);
4855         assign_final(t9);
4856         assign_final(t10);
4857         assign_final(t11_t12);
4858 #undef assign_final
4859
4860 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4861         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4862         intel_dp->backlight_on_delay = get_delay(t8);
4863         intel_dp->backlight_off_delay = get_delay(t9);
4864         intel_dp->panel_power_down_delay = get_delay(t10);
4865         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4866 #undef get_delay
4867
4868         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4869                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4870                       intel_dp->panel_power_cycle_delay);
4871
4872         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4873                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4874 }
4875
4876 static void
4877 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4878                                               struct intel_dp *intel_dp)
4879 {
4880         struct drm_i915_private *dev_priv = dev->dev_private;
4881         u32 pp_on, pp_off, pp_div, port_sel = 0;
4882         int div = dev_priv->rawclk_freq / 1000;
4883         struct pps_registers regs;
4884         enum port port = dp_to_dig_port(intel_dp)->port;
4885         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4886
4887         lockdep_assert_held(&dev_priv->pps_mutex);
4888
4889         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4890
4891         /*
4892          * And finally store the new values in the power sequencer. The
4893          * backlight delays are set to 1 because we do manual waits on them. For
4894          * T8, even BSpec recommends doing it. For T9, if we don't do this,
4895          * we'll end up waiting for the backlight off delay twice: once when we
4896          * do the manual sleep, and once when we disable the panel and wait for
4897          * the PP_STATUS bit to become zero.
4898          */
4899         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4900                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4901         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4902                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4903         /* Compute the divisor for the pp clock, simply match the Bspec
4904          * formula. */
4905         if (IS_BROXTON(dev)) {
4906                 pp_div = I915_READ(regs.pp_ctrl);
4907                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4908                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4909                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
4910         } else {
4911                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4912                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4913                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4914         }
4915
4916         /* Haswell doesn't have any port selection bits for the panel
4917          * power sequencer any more. */
4918         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4919                 port_sel = PANEL_PORT_SELECT_VLV(port);
4920         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4921                 if (port == PORT_A)
4922                         port_sel = PANEL_PORT_SELECT_DPA;
4923                 else
4924                         port_sel = PANEL_PORT_SELECT_DPD;
4925         }
4926
4927         pp_on |= port_sel;
4928
4929         I915_WRITE(regs.pp_on, pp_on);
4930         I915_WRITE(regs.pp_off, pp_off);
4931         if (IS_BROXTON(dev))
4932                 I915_WRITE(regs.pp_ctrl, pp_div);
4933         else
4934                 I915_WRITE(regs.pp_div, pp_div);
4935
4936         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4937                       I915_READ(regs.pp_on),
4938                       I915_READ(regs.pp_off),
4939                       IS_BROXTON(dev) ?
4940                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
4941                       I915_READ(regs.pp_div));
4942 }
4943
4944 /**
4945  * intel_dp_set_drrs_state - program registers for RR switch to take effect
4946  * @dev: DRM device
4947  * @refresh_rate: RR to be programmed
4948  *
4949  * This function gets called when refresh rate (RR) has to be changed from
4950  * one frequency to another. Switches can be between high and low RR
4951  * supported by the panel or to any other RR based on media playback (in
4952  * this case, RR value needs to be passed from user space).
4953  *
4954  * The caller of this function needs to take a lock on dev_priv->drrs.
4955  */
4956 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4957 {
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         struct intel_encoder *encoder;
4960         struct intel_digital_port *dig_port = NULL;
4961         struct intel_dp *intel_dp = dev_priv->drrs.dp;
4962         struct intel_crtc_state *config = NULL;
4963         struct intel_crtc *intel_crtc = NULL;
4964         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4965
4966         if (refresh_rate <= 0) {
4967                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4968                 return;
4969         }
4970
4971         if (intel_dp == NULL) {
4972                 DRM_DEBUG_KMS("DRRS not supported.\n");
4973                 return;
4974         }
4975
4976         /*
4977          * FIXME: This needs proper synchronization with psr state for some
4978          * platforms that cannot have PSR and DRRS enabled at the same time.
4979          */
4980
4981         dig_port = dp_to_dig_port(intel_dp);
4982         encoder = &dig_port->base;
4983         intel_crtc = to_intel_crtc(encoder->base.crtc);
4984
4985         if (!intel_crtc) {
4986                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4987                 return;
4988         }
4989
4990         config = intel_crtc->config;
4991
4992         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
4993                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4994                 return;
4995         }
4996
4997         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
4998                         refresh_rate)
4999                 index = DRRS_LOW_RR;
5000
5001         if (index == dev_priv->drrs.refresh_rate_type) {
5002                 DRM_DEBUG_KMS(
5003                         "DRRS requested for previously set RR...ignoring\n");
5004                 return;
5005         }
5006
5007         if (!intel_crtc->active) {
5008                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5009                 return;
5010         }
5011
5012         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5013                 switch (index) {
5014                 case DRRS_HIGH_RR:
5015                         intel_dp_set_m_n(intel_crtc, M1_N1);
5016                         break;
5017                 case DRRS_LOW_RR:
5018                         intel_dp_set_m_n(intel_crtc, M2_N2);
5019                         break;
5020                 case DRRS_MAX_RR:
5021                 default:
5022                         DRM_ERROR("Unsupported refreshrate type\n");
5023                 }
5024         } else if (INTEL_INFO(dev)->gen > 6) {
5025                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5026                 u32 val;
5027
5028                 val = I915_READ(reg);
5029                 if (index > DRRS_HIGH_RR) {
5030                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5031                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5032                         else
5033                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5034                 } else {
5035                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5036                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5037                         else
5038                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5039                 }
5040                 I915_WRITE(reg, val);
5041         }
5042
5043         dev_priv->drrs.refresh_rate_type = index;
5044
5045         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5046 }
5047
5048 /**
5049  * intel_edp_drrs_enable - init drrs struct if supported
5050  * @intel_dp: DP struct
5051  *
5052  * Initializes frontbuffer_bits and drrs.dp
5053  */
5054 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5055 {
5056         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5059         struct drm_crtc *crtc = dig_port->base.base.crtc;
5060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5061
5062         if (!intel_crtc->config->has_drrs) {
5063                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5064                 return;
5065         }
5066
5067         mutex_lock(&dev_priv->drrs.mutex);
5068         if (WARN_ON(dev_priv->drrs.dp)) {
5069                 DRM_ERROR("DRRS already enabled\n");
5070                 goto unlock;
5071         }
5072
5073         dev_priv->drrs.busy_frontbuffer_bits = 0;
5074
5075         dev_priv->drrs.dp = intel_dp;
5076
5077 unlock:
5078         mutex_unlock(&dev_priv->drrs.mutex);
5079 }
5080
5081 /**
5082  * intel_edp_drrs_disable - Disable DRRS
5083  * @intel_dp: DP struct
5084  *
5085  */
5086 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5087 {
5088         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5091         struct drm_crtc *crtc = dig_port->base.base.crtc;
5092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5093
5094         if (!intel_crtc->config->has_drrs)
5095                 return;
5096
5097         mutex_lock(&dev_priv->drrs.mutex);
5098         if (!dev_priv->drrs.dp) {
5099                 mutex_unlock(&dev_priv->drrs.mutex);
5100                 return;
5101         }
5102
5103         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5104                 intel_dp_set_drrs_state(dev_priv->dev,
5105                         intel_dp->attached_connector->panel.
5106                         fixed_mode->vrefresh);
5107
5108         dev_priv->drrs.dp = NULL;
5109         mutex_unlock(&dev_priv->drrs.mutex);
5110
5111         cancel_delayed_work_sync(&dev_priv->drrs.work);
5112 }
5113
5114 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5115 {
5116         struct drm_i915_private *dev_priv =
5117                 container_of(work, typeof(*dev_priv), drrs.work.work);
5118         struct intel_dp *intel_dp;
5119
5120         mutex_lock(&dev_priv->drrs.mutex);
5121
5122         intel_dp = dev_priv->drrs.dp;
5123
5124         if (!intel_dp)
5125                 goto unlock;
5126
5127         /*
5128          * The delayed work can race with an invalidate hence we need to
5129          * recheck.
5130          */
5131
5132         if (dev_priv->drrs.busy_frontbuffer_bits)
5133                 goto unlock;
5134
5135         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5136                 intel_dp_set_drrs_state(dev_priv->dev,
5137                         intel_dp->attached_connector->panel.
5138                         downclock_mode->vrefresh);
5139
5140 unlock:
5141         mutex_unlock(&dev_priv->drrs.mutex);
5142 }
5143
5144 /**
5145  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5146  * @dev: DRM device
5147  * @frontbuffer_bits: frontbuffer plane tracking bits
5148  *
5149  * This function gets called everytime rendering on the given planes start.
5150  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5151  *
5152  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5153  */
5154 void intel_edp_drrs_invalidate(struct drm_device *dev,
5155                 unsigned frontbuffer_bits)
5156 {
5157         struct drm_i915_private *dev_priv = dev->dev_private;
5158         struct drm_crtc *crtc;
5159         enum pipe pipe;
5160
5161         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5162                 return;
5163
5164         cancel_delayed_work(&dev_priv->drrs.work);
5165
5166         mutex_lock(&dev_priv->drrs.mutex);
5167         if (!dev_priv->drrs.dp) {
5168                 mutex_unlock(&dev_priv->drrs.mutex);
5169                 return;
5170         }
5171
5172         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5173         pipe = to_intel_crtc(crtc)->pipe;
5174
5175         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5176         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5177
5178         /* invalidate means busy screen hence upclock */
5179         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5180                 intel_dp_set_drrs_state(dev_priv->dev,
5181                                 dev_priv->drrs.dp->attached_connector->panel.
5182                                 fixed_mode->vrefresh);
5183
5184         mutex_unlock(&dev_priv->drrs.mutex);
5185 }
5186
5187 /**
5188  * intel_edp_drrs_flush - Restart Idleness DRRS
5189  * @dev: DRM device
5190  * @frontbuffer_bits: frontbuffer plane tracking bits
5191  *
5192  * This function gets called every time rendering on the given planes has
5193  * completed or flip on a crtc is completed. So DRRS should be upclocked
5194  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5195  * if no other planes are dirty.
5196  *
5197  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5198  */
5199 void intel_edp_drrs_flush(struct drm_device *dev,
5200                 unsigned frontbuffer_bits)
5201 {
5202         struct drm_i915_private *dev_priv = dev->dev_private;
5203         struct drm_crtc *crtc;
5204         enum pipe pipe;
5205
5206         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5207                 return;
5208
5209         cancel_delayed_work(&dev_priv->drrs.work);
5210
5211         mutex_lock(&dev_priv->drrs.mutex);
5212         if (!dev_priv->drrs.dp) {
5213                 mutex_unlock(&dev_priv->drrs.mutex);
5214                 return;
5215         }
5216
5217         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5218         pipe = to_intel_crtc(crtc)->pipe;
5219
5220         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5221         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5222
5223         /* flush means busy screen hence upclock */
5224         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5225                 intel_dp_set_drrs_state(dev_priv->dev,
5226                                 dev_priv->drrs.dp->attached_connector->panel.
5227                                 fixed_mode->vrefresh);
5228
5229         /*
5230          * flush also means no more activity hence schedule downclock, if all
5231          * other fbs are quiescent too
5232          */
5233         if (!dev_priv->drrs.busy_frontbuffer_bits)
5234                 schedule_delayed_work(&dev_priv->drrs.work,
5235                                 msecs_to_jiffies(1000));
5236         mutex_unlock(&dev_priv->drrs.mutex);
5237 }
5238
5239 /**
5240  * DOC: Display Refresh Rate Switching (DRRS)
5241  *
5242  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5243  * which enables swtching between low and high refresh rates,
5244  * dynamically, based on the usage scenario. This feature is applicable
5245  * for internal panels.
5246  *
5247  * Indication that the panel supports DRRS is given by the panel EDID, which
5248  * would list multiple refresh rates for one resolution.
5249  *
5250  * DRRS is of 2 types - static and seamless.
5251  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5252  * (may appear as a blink on screen) and is used in dock-undock scenario.
5253  * Seamless DRRS involves changing RR without any visual effect to the user
5254  * and can be used during normal system usage. This is done by programming
5255  * certain registers.
5256  *
5257  * Support for static/seamless DRRS may be indicated in the VBT based on
5258  * inputs from the panel spec.
5259  *
5260  * DRRS saves power by switching to low RR based on usage scenarios.
5261  *
5262  * The implementation is based on frontbuffer tracking implementation.  When
5263  * there is a disturbance on the screen triggered by user activity or a periodic
5264  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5265  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5266  * made.
5267  *
5268  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5269  * and intel_edp_drrs_flush() are called.
5270  *
5271  * DRRS can be further extended to support other internal panels and also
5272  * the scenario of video playback wherein RR is set based on the rate
5273  * requested by userspace.
5274  */
5275
5276 /**
5277  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5278  * @intel_connector: eDP connector
5279  * @fixed_mode: preferred mode of panel
5280  *
5281  * This function is  called only once at driver load to initialize basic
5282  * DRRS stuff.
5283  *
5284  * Returns:
5285  * Downclock mode if panel supports it, else return NULL.
5286  * DRRS support is determined by the presence of downclock mode (apart
5287  * from VBT setting).
5288  */
5289 static struct drm_display_mode *
5290 intel_dp_drrs_init(struct intel_connector *intel_connector,
5291                 struct drm_display_mode *fixed_mode)
5292 {
5293         struct drm_connector *connector = &intel_connector->base;
5294         struct drm_device *dev = connector->dev;
5295         struct drm_i915_private *dev_priv = dev->dev_private;
5296         struct drm_display_mode *downclock_mode = NULL;
5297
5298         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5299         mutex_init(&dev_priv->drrs.mutex);
5300
5301         if (INTEL_INFO(dev)->gen <= 6) {
5302                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5303                 return NULL;
5304         }
5305
5306         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5307                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5308                 return NULL;
5309         }
5310
5311         downclock_mode = intel_find_panel_downclock
5312                                         (dev, fixed_mode, connector);
5313
5314         if (!downclock_mode) {
5315                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5316                 return NULL;
5317         }
5318
5319         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5320
5321         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5322         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5323         return downclock_mode;
5324 }
5325
5326 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5327                                      struct intel_connector *intel_connector)
5328 {
5329         struct drm_connector *connector = &intel_connector->base;
5330         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5331         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5332         struct drm_device *dev = intel_encoder->base.dev;
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334         struct drm_display_mode *fixed_mode = NULL;
5335         struct drm_display_mode *downclock_mode = NULL;
5336         bool has_dpcd;
5337         struct drm_display_mode *scan;
5338         struct edid *edid;
5339         enum pipe pipe = INVALID_PIPE;
5340
5341         if (!is_edp(intel_dp))
5342                 return true;
5343
5344         /*
5345          * On IBX/CPT we may get here with LVDS already registered. Since the
5346          * driver uses the only internal power sequencer available for both
5347          * eDP and LVDS bail out early in this case to prevent interfering
5348          * with an already powered-on LVDS power sequencer.
5349          */
5350         if (intel_get_lvds_encoder(dev)) {
5351                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5352                 DRM_INFO("LVDS was detected, not registering eDP\n");
5353
5354                 return false;
5355         }
5356
5357         pps_lock(intel_dp);
5358
5359         intel_dp_init_panel_power_timestamps(intel_dp);
5360
5361         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5362                 vlv_initial_power_sequencer_setup(intel_dp);
5363         } else {
5364                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5365                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5366         }
5367
5368         intel_edp_panel_vdd_sanitize(intel_dp);
5369
5370         pps_unlock(intel_dp);
5371
5372         /* Cache DPCD and EDID for edp. */
5373         has_dpcd = intel_dp_get_dpcd(intel_dp);
5374
5375         if (has_dpcd) {
5376                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5377                         dev_priv->no_aux_handshake =
5378                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5379                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5380         } else {
5381                 /* if this fails, presume the device is a ghost */
5382                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5383                 goto out_vdd_off;
5384         }
5385
5386         mutex_lock(&dev->mode_config.mutex);
5387         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5388         if (edid) {
5389                 if (drm_add_edid_modes(connector, edid)) {
5390                         drm_mode_connector_update_edid_property(connector,
5391                                                                 edid);
5392                         drm_edid_to_eld(connector, edid);
5393                 } else {
5394                         kfree(edid);
5395                         edid = ERR_PTR(-EINVAL);
5396                 }
5397         } else {
5398                 edid = ERR_PTR(-ENOENT);
5399         }
5400         intel_connector->edid = edid;
5401
5402         /* prefer fixed mode from EDID if available */
5403         list_for_each_entry(scan, &connector->probed_modes, head) {
5404                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5405                         fixed_mode = drm_mode_duplicate(dev, scan);
5406                         downclock_mode = intel_dp_drrs_init(
5407                                                 intel_connector, fixed_mode);
5408                         break;
5409                 }
5410         }
5411
5412         /* fallback to VBT if available for eDP */
5413         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5414                 fixed_mode = drm_mode_duplicate(dev,
5415                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5416                 if (fixed_mode) {
5417                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5418                         connector->display_info.width_mm = fixed_mode->width_mm;
5419                         connector->display_info.height_mm = fixed_mode->height_mm;
5420                 }
5421         }
5422         mutex_unlock(&dev->mode_config.mutex);
5423
5424         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5425                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5426                 register_reboot_notifier(&intel_dp->edp_notifier);
5427
5428                 /*
5429                  * Figure out the current pipe for the initial backlight setup.
5430                  * If the current pipe isn't valid, try the PPS pipe, and if that
5431                  * fails just assume pipe A.
5432                  */
5433                 if (IS_CHERRYVIEW(dev))
5434                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5435                 else
5436                         pipe = PORT_TO_PIPE(intel_dp->DP);
5437
5438                 if (pipe != PIPE_A && pipe != PIPE_B)
5439                         pipe = intel_dp->pps_pipe;
5440
5441                 if (pipe != PIPE_A && pipe != PIPE_B)
5442                         pipe = PIPE_A;
5443
5444                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5445                               pipe_name(pipe));
5446         }
5447
5448         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5449         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5450         intel_panel_setup_backlight(connector, pipe);
5451
5452         return true;
5453
5454 out_vdd_off:
5455         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5456         /*
5457          * vdd might still be enabled do to the delayed vdd off.
5458          * Make sure vdd is actually turned off here.
5459          */
5460         pps_lock(intel_dp);
5461         edp_panel_vdd_off_sync(intel_dp);
5462         pps_unlock(intel_dp);
5463
5464         return false;
5465 }
5466
5467 bool
5468 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5469                         struct intel_connector *intel_connector)
5470 {
5471         struct drm_connector *connector = &intel_connector->base;
5472         struct intel_dp *intel_dp = &intel_dig_port->dp;
5473         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5474         struct drm_device *dev = intel_encoder->base.dev;
5475         struct drm_i915_private *dev_priv = dev->dev_private;
5476         enum port port = intel_dig_port->port;
5477         int type, ret;
5478
5479         if (WARN(intel_dig_port->max_lanes < 1,
5480                  "Not enough lanes (%d) for DP on port %c\n",
5481                  intel_dig_port->max_lanes, port_name(port)))
5482                 return false;
5483
5484         intel_dp->pps_pipe = INVALID_PIPE;
5485
5486         /* intel_dp vfuncs */
5487         if (INTEL_INFO(dev)->gen >= 9)
5488                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5489         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5490                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5491         else if (HAS_PCH_SPLIT(dev))
5492                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5493         else
5494                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5495
5496         if (INTEL_INFO(dev)->gen >= 9)
5497                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5498         else
5499                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5500
5501         if (HAS_DDI(dev))
5502                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5503
5504         /* Preserve the current hw state. */
5505         intel_dp->DP = I915_READ(intel_dp->output_reg);
5506         intel_dp->attached_connector = intel_connector;
5507
5508         if (intel_dp_is_edp(dev, port))
5509                 type = DRM_MODE_CONNECTOR_eDP;
5510         else
5511                 type = DRM_MODE_CONNECTOR_DisplayPort;
5512
5513         /*
5514          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5515          * for DP the encoder type can be set by the caller to
5516          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5517          */
5518         if (type == DRM_MODE_CONNECTOR_eDP)
5519                 intel_encoder->type = INTEL_OUTPUT_EDP;
5520
5521         /* eDP only on port B and/or C on vlv/chv */
5522         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5523                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5524                 return false;
5525
5526         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5527                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5528                         port_name(port));
5529
5530         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5531         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5532
5533         connector->interlace_allowed = true;
5534         connector->doublescan_allowed = 0;
5535
5536         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5537                           edp_panel_vdd_work);
5538
5539         intel_connector_attach_encoder(intel_connector, intel_encoder);
5540         drm_connector_register(connector);
5541
5542         if (HAS_DDI(dev))
5543                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5544         else
5545                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5546         intel_connector->unregister = intel_dp_connector_unregister;
5547
5548         /* Set up the hotplug pin. */
5549         switch (port) {
5550         case PORT_A:
5551                 intel_encoder->hpd_pin = HPD_PORT_A;
5552                 break;
5553         case PORT_B:
5554                 intel_encoder->hpd_pin = HPD_PORT_B;
5555                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5556                         intel_encoder->hpd_pin = HPD_PORT_A;
5557                 break;
5558         case PORT_C:
5559                 intel_encoder->hpd_pin = HPD_PORT_C;
5560                 break;
5561         case PORT_D:
5562                 intel_encoder->hpd_pin = HPD_PORT_D;
5563                 break;
5564         case PORT_E:
5565                 intel_encoder->hpd_pin = HPD_PORT_E;
5566                 break;
5567         default:
5568                 BUG();
5569         }
5570
5571         ret = intel_dp_aux_init(intel_dp, intel_connector);
5572         if (ret)
5573                 goto fail;
5574
5575         /* init MST on ports that can support it */
5576         if (HAS_DP_MST(dev) &&
5577             (port == PORT_B || port == PORT_C || port == PORT_D))
5578                 intel_dp_mst_encoder_init(intel_dig_port,
5579                                           intel_connector->base.base.id);
5580
5581         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5582                 intel_dp_aux_fini(intel_dp);
5583                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5584                 goto fail;
5585         }
5586
5587         intel_dp_add_properties(intel_dp, connector);
5588
5589         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5590          * 0xd.  Failure to do so will result in spurious interrupts being
5591          * generated on the port when a cable is not attached.
5592          */
5593         if (IS_G4X(dev) && !IS_GM45(dev)) {
5594                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5595                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5596         }
5597
5598         i915_debugfs_connector_add(connector);
5599
5600         return true;
5601
5602 fail:
5603         drm_connector_unregister(connector);
5604         drm_connector_cleanup(connector);
5605
5606         return false;
5607 }
5608
5609 bool intel_dp_init(struct drm_device *dev,
5610                    i915_reg_t output_reg,
5611                    enum port port)
5612 {
5613         struct drm_i915_private *dev_priv = dev->dev_private;
5614         struct intel_digital_port *intel_dig_port;
5615         struct intel_encoder *intel_encoder;
5616         struct drm_encoder *encoder;
5617         struct intel_connector *intel_connector;
5618
5619         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5620         if (!intel_dig_port)
5621                 return false;
5622
5623         intel_connector = intel_connector_alloc();
5624         if (!intel_connector)
5625                 goto err_connector_alloc;
5626
5627         intel_encoder = &intel_dig_port->base;
5628         encoder = &intel_encoder->base;
5629
5630         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5631                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5632                 goto err_encoder_init;
5633
5634         intel_encoder->compute_config = intel_dp_compute_config;
5635         intel_encoder->disable = intel_disable_dp;
5636         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5637         intel_encoder->get_config = intel_dp_get_config;
5638         intel_encoder->suspend = intel_dp_encoder_suspend;
5639         if (IS_CHERRYVIEW(dev)) {
5640                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5641                 intel_encoder->pre_enable = chv_pre_enable_dp;
5642                 intel_encoder->enable = vlv_enable_dp;
5643                 intel_encoder->post_disable = chv_post_disable_dp;
5644                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5645         } else if (IS_VALLEYVIEW(dev)) {
5646                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5647                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5648                 intel_encoder->enable = vlv_enable_dp;
5649                 intel_encoder->post_disable = vlv_post_disable_dp;
5650         } else {
5651                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5652                 intel_encoder->enable = g4x_enable_dp;
5653                 if (INTEL_INFO(dev)->gen >= 5)
5654                         intel_encoder->post_disable = ilk_post_disable_dp;
5655         }
5656
5657         intel_dig_port->port = port;
5658         intel_dig_port->dp.output_reg = output_reg;
5659         intel_dig_port->max_lanes = 4;
5660
5661         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5662         if (IS_CHERRYVIEW(dev)) {
5663                 if (port == PORT_D)
5664                         intel_encoder->crtc_mask = 1 << 2;
5665                 else
5666                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5667         } else {
5668                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5669         }
5670         intel_encoder->cloneable = 0;
5671
5672         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5673         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5674
5675         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5676                 goto err_init_connector;
5677
5678         return true;
5679
5680 err_init_connector:
5681         drm_encoder_cleanup(encoder);
5682 err_encoder_init:
5683         kfree(intel_connector);
5684 err_connector_alloc:
5685         kfree(intel_dig_port);
5686         return false;
5687 }
5688
5689 void intel_dp_mst_suspend(struct drm_device *dev)
5690 {
5691         struct drm_i915_private *dev_priv = dev->dev_private;
5692         int i;
5693
5694         /* disable MST */
5695         for (i = 0; i < I915_MAX_PORTS; i++) {
5696                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5697                 if (!intel_dig_port)
5698                         continue;
5699
5700                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5701                         if (!intel_dig_port->dp.can_mst)
5702                                 continue;
5703                         if (intel_dig_port->dp.is_mst)
5704                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5705                 }
5706         }
5707 }
5708
5709 void intel_dp_mst_resume(struct drm_device *dev)
5710 {
5711         struct drm_i915_private *dev_priv = dev->dev_private;
5712         int i;
5713
5714         for (i = 0; i < I915_MAX_PORTS; i++) {
5715                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5716                 if (!intel_dig_port)
5717                         continue;
5718                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5719                         int ret;
5720
5721                         if (!intel_dig_port->dp.can_mst)
5722                                 continue;
5723
5724                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5725                         if (ret != 0) {
5726                                 intel_dp_check_mst_status(&intel_dig_port->dp);
5727                         }
5728                 }
5729         }
5730 }