Merge commit 'Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux'
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54         int     min, max;
55 } intel_range_t;
56
57 typedef struct {
58         int     dot_limit;
59         int     p2_slow, p2_fast;
60 } intel_p2_t;
61
62 #define INTEL_P2_NUM                  2
63 typedef struct intel_limit intel_limit_t;
64 struct intel_limit {
65         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
66         intel_p2_t          p2;
67 };
68
69 /* FDI */
70 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75         struct drm_i915_private *dev_priv = dev->dev_private;
76
77         WARN_ON(!HAS_PCH_SPLIT(dev));
78
79         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85         if (IS_GEN5(dev)) {
86                 struct drm_i915_private *dev_priv = dev->dev_private;
87                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88         } else
89                 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93         .dot = { .min = 25000, .max = 350000 },
94         .vco = { .min = 930000, .max = 1400000 },
95         .n = { .min = 3, .max = 16 },
96         .m = { .min = 96, .max = 140 },
97         .m1 = { .min = 18, .max = 26 },
98         .m2 = { .min = 6, .max = 16 },
99         .p = { .min = 4, .max = 128 },
100         .p1 = { .min = 2, .max = 33 },
101         .p2 = { .dot_limit = 165000,
102                 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106         .dot = { .min = 25000, .max = 350000 },
107         .vco = { .min = 930000, .max = 1400000 },
108         .n = { .min = 3, .max = 16 },
109         .m = { .min = 96, .max = 140 },
110         .m1 = { .min = 18, .max = 26 },
111         .m2 = { .min = 6, .max = 16 },
112         .p = { .min = 4, .max = 128 },
113         .p1 = { .min = 2, .max = 33 },
114         .p2 = { .dot_limit = 165000,
115                 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 1, .max = 6 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132         .dot = { .min = 20000, .max = 400000 },
133         .vco = { .min = 1400000, .max = 2800000 },
134         .n = { .min = 1, .max = 6 },
135         .m = { .min = 70, .max = 120 },
136         .m1 = { .min = 8, .max = 18 },
137         .m2 = { .min = 3, .max = 7 },
138         .p = { .min = 5, .max = 80 },
139         .p1 = { .min = 1, .max = 8 },
140         .p2 = { .dot_limit = 200000,
141                 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 8, .max = 18 },
150         .m2 = { .min = 3, .max = 7 },
151         .p = { .min = 7, .max = 98 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 112000,
154                 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159         .dot = { .min = 25000, .max = 270000 },
160         .vco = { .min = 1750000, .max = 3500000},
161         .n = { .min = 1, .max = 4 },
162         .m = { .min = 104, .max = 138 },
163         .m1 = { .min = 17, .max = 23 },
164         .m2 = { .min = 5, .max = 11 },
165         .p = { .min = 10, .max = 30 },
166         .p1 = { .min = 1, .max = 3},
167         .p2 = { .dot_limit = 270000,
168                 .p2_slow = 10,
169                 .p2_fast = 10
170         },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174         .dot = { .min = 22000, .max = 400000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 16, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 5, .max = 80 },
181         .p1 = { .min = 1, .max = 8},
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187         .dot = { .min = 20000, .max = 115000 },
188         .vco = { .min = 1750000, .max = 3500000 },
189         .n = { .min = 1, .max = 3 },
190         .m = { .min = 104, .max = 138 },
191         .m1 = { .min = 17, .max = 23 },
192         .m2 = { .min = 5, .max = 11 },
193         .p = { .min = 28, .max = 112 },
194         .p1 = { .min = 2, .max = 8 },
195         .p2 = { .dot_limit = 0,
196                 .p2_slow = 14, .p2_fast = 14
197         },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201         .dot = { .min = 80000, .max = 224000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 14, .max = 42 },
208         .p1 = { .min = 2, .max = 6 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 7, .p2_fast = 7
211         },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215         .dot = { .min = 20000, .max = 400000},
216         .vco = { .min = 1700000, .max = 3500000 },
217         /* Pineview's Ncounter is a ring counter */
218         .n = { .min = 3, .max = 6 },
219         .m = { .min = 2, .max = 256 },
220         /* Pineview only has one combined m divider, which we treat as m2. */
221         .m1 = { .min = 0, .max = 0 },
222         .m2 = { .min = 0, .max = 254 },
223         .p = { .min = 5, .max = 80 },
224         .p1 = { .min = 1, .max = 8 },
225         .p2 = { .dot_limit = 200000,
226                 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230         .dot = { .min = 20000, .max = 400000 },
231         .vco = { .min = 1700000, .max = 3500000 },
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         .m1 = { .min = 0, .max = 0 },
235         .m2 = { .min = 0, .max = 254 },
236         .p = { .min = 7, .max = 112 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 112000,
239                 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243  *
244  * We calculate clock using (register_value + 2) for N/M1/M2, so here
245  * the range value for them is (actual_value - 2).
246  */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248         .dot = { .min = 25000, .max = 350000 },
249         .vco = { .min = 1760000, .max = 3510000 },
250         .n = { .min = 1, .max = 5 },
251         .m = { .min = 79, .max = 127 },
252         .m1 = { .min = 12, .max = 22 },
253         .m2 = { .min = 5, .max = 9 },
254         .p = { .min = 5, .max = 80 },
255         .p1 = { .min = 1, .max = 8 },
256         .p2 = { .dot_limit = 225000,
257                 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261         .dot = { .min = 25000, .max = 350000 },
262         .vco = { .min = 1760000, .max = 3510000 },
263         .n = { .min = 1, .max = 3 },
264         .m = { .min = 79, .max = 118 },
265         .m1 = { .min = 12, .max = 22 },
266         .m2 = { .min = 5, .max = 9 },
267         .p = { .min = 28, .max = 112 },
268         .p1 = { .min = 2, .max = 8 },
269         .p2 = { .dot_limit = 225000,
270                 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 3 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 14, .max = 56 },
281         .p1 = { .min = 2, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 2 },
291         .m = { .min = 79, .max = 126 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 126 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 42 },
308         .p1 = { .min = 2, .max = 6 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314         .dot = { .min = 25000, .max = 270000 },
315         .vco = { .min = 4000000, .max = 6000000 },
316         .n = { .min = 1, .max = 7 },
317         .m = { .min = 22, .max = 450 }, /* guess */
318         .m1 = { .min = 2, .max = 3 },
319         .m2 = { .min = 11, .max = 156 },
320         .p = { .min = 10, .max = 30 },
321         .p1 = { .min = 1, .max = 3 },
322         .p2 = { .dot_limit = 270000,
323                 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327         .dot = { .min = 25000, .max = 270000 },
328         .vco = { .min = 4000000, .max = 6000000 },
329         .n = { .min = 1, .max = 7 },
330         .m = { .min = 60, .max = 300 }, /* guess */
331         .m1 = { .min = 2, .max = 3 },
332         .m2 = { .min = 11, .max = 156 },
333         .p = { .min = 10, .max = 30 },
334         .p1 = { .min = 2, .max = 3 },
335         .p2 = { .dot_limit = 270000,
336                 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t intel_limits_vlv_dp = {
340         .dot = { .min = 25000, .max = 270000 },
341         .vco = { .min = 4000000, .max = 6000000 },
342         .n = { .min = 1, .max = 7 },
343         .m = { .min = 22, .max = 450 },
344         .m1 = { .min = 2, .max = 3 },
345         .m2 = { .min = 11, .max = 156 },
346         .p = { .min = 10, .max = 30 },
347         .p1 = { .min = 1, .max = 3 },
348         .p2 = { .dot_limit = 270000,
349                 .p2_slow = 2, .p2_fast = 20 },
350 };
351
352 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
353                                                 int refclk)
354 {
355         struct drm_device *dev = crtc->dev;
356         const intel_limit_t *limit;
357
358         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
359                 if (intel_is_dual_link_lvds(dev)) {
360                         if (refclk == 100000)
361                                 limit = &intel_limits_ironlake_dual_lvds_100m;
362                         else
363                                 limit = &intel_limits_ironlake_dual_lvds;
364                 } else {
365                         if (refclk == 100000)
366                                 limit = &intel_limits_ironlake_single_lvds_100m;
367                         else
368                                 limit = &intel_limits_ironlake_single_lvds;
369                 }
370         } else
371                 limit = &intel_limits_ironlake_dac;
372
373         return limit;
374 }
375
376 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev))
383                         limit = &intel_limits_g4x_dual_channel_lvds;
384                 else
385                         limit = &intel_limits_g4x_single_channel_lvds;
386         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
387                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
388                 limit = &intel_limits_g4x_hdmi;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
390                 limit = &intel_limits_g4x_sdvo;
391         } else /* The option is for other outputs */
392                 limit = &intel_limits_i9xx_sdvo;
393
394         return limit;
395 }
396
397 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
398 {
399         struct drm_device *dev = crtc->dev;
400         const intel_limit_t *limit;
401
402         if (HAS_PCH_SPLIT(dev))
403                 limit = intel_ironlake_limit(crtc, refclk);
404         else if (IS_G4X(dev)) {
405                 limit = intel_g4x_limit(crtc);
406         } else if (IS_PINEVIEW(dev)) {
407                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
408                         limit = &intel_limits_pineview_lvds;
409                 else
410                         limit = &intel_limits_pineview_sdvo;
411         } else if (IS_VALLEYVIEW(dev)) {
412                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
413                         limit = &intel_limits_vlv_dac;
414                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
415                         limit = &intel_limits_vlv_hdmi;
416                 else
417                         limit = &intel_limits_vlv_dp;
418         } else if (!IS_GEN2(dev)) {
419                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
420                         limit = &intel_limits_i9xx_lvds;
421                 else
422                         limit = &intel_limits_i9xx_sdvo;
423         } else {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_i8xx_lvds;
426                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
427                         limit = &intel_limits_i8xx_dvo;
428                 else
429                         limit = &intel_limits_i8xx_dac;
430         }
431         return limit;
432 }
433
434 /* m1 is reserved as 0 in Pineview, n is a ring counter */
435 static void pineview_clock(int refclk, intel_clock_t *clock)
436 {
437         clock->m = clock->m2 + 2;
438         clock->p = clock->p1 * clock->p2;
439         clock->vco = refclk * clock->m / clock->n;
440         clock->dot = clock->vco / clock->p;
441 }
442
443 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
444 {
445         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
446 }
447
448 static void i9xx_clock(int refclk, intel_clock_t *clock)
449 {
450         clock->m = i9xx_dpll_compute_m(clock);
451         clock->p = clock->p1 * clock->p2;
452         clock->vco = refclk * clock->m / (clock->n + 2);
453         clock->dot = clock->vco / clock->p;
454 }
455
456 /**
457  * Returns whether any output on the specified pipe is of the specified type
458  */
459 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
460 {
461         struct drm_device *dev = crtc->dev;
462         struct intel_encoder *encoder;
463
464         for_each_encoder_on_crtc(dev, crtc, encoder)
465                 if (encoder->type == type)
466                         return true;
467
468         return false;
469 }
470
471 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
472 /**
473  * Returns whether the given set of divisors are valid for a given refclk with
474  * the given connectors.
475  */
476
477 static bool intel_PLL_is_valid(struct drm_device *dev,
478                                const intel_limit_t *limit,
479                                const intel_clock_t *clock)
480 {
481         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
482                 INTELPllInvalid("p1 out of range\n");
483         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
484                 INTELPllInvalid("p out of range\n");
485         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
486                 INTELPllInvalid("m2 out of range\n");
487         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
488                 INTELPllInvalid("m1 out of range\n");
489         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
490                 INTELPllInvalid("m1 <= m2\n");
491         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
492                 INTELPllInvalid("m out of range\n");
493         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
494                 INTELPllInvalid("n out of range\n");
495         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
496                 INTELPllInvalid("vco out of range\n");
497         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
498          * connector, etc., rather than just a single range.
499          */
500         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
501                 INTELPllInvalid("dot out of range\n");
502
503         return true;
504 }
505
506 static bool
507 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
508                     int target, int refclk, intel_clock_t *match_clock,
509                     intel_clock_t *best_clock)
510 {
511         struct drm_device *dev = crtc->dev;
512         intel_clock_t clock;
513         int err = target;
514
515         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
516                 /*
517                  * For LVDS just rely on its current settings for dual-channel.
518                  * We haven't figured out how to reliably set up different
519                  * single/dual channel state, if we even can.
520                  */
521                 if (intel_is_dual_link_lvds(dev))
522                         clock.p2 = limit->p2.p2_fast;
523                 else
524                         clock.p2 = limit->p2.p2_slow;
525         } else {
526                 if (target < limit->p2.dot_limit)
527                         clock.p2 = limit->p2.p2_slow;
528                 else
529                         clock.p2 = limit->p2.p2_fast;
530         }
531
532         memset(best_clock, 0, sizeof(*best_clock));
533
534         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
535              clock.m1++) {
536                 for (clock.m2 = limit->m2.min;
537                      clock.m2 <= limit->m2.max; clock.m2++) {
538                         if (clock.m2 >= clock.m1)
539                                 break;
540                         for (clock.n = limit->n.min;
541                              clock.n <= limit->n.max; clock.n++) {
542                                 for (clock.p1 = limit->p1.min;
543                                         clock.p1 <= limit->p1.max; clock.p1++) {
544                                         int this_err;
545
546                                         i9xx_clock(refclk, &clock);
547                                         if (!intel_PLL_is_valid(dev, limit,
548                                                                 &clock))
549                                                 continue;
550                                         if (match_clock &&
551                                             clock.p != match_clock->p)
552                                                 continue;
553
554                                         this_err = abs(clock.dot - target);
555                                         if (this_err < err) {
556                                                 *best_clock = clock;
557                                                 err = this_err;
558                                         }
559                                 }
560                         }
561                 }
562         }
563
564         return (err != target);
565 }
566
567 static bool
568 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
569                    int target, int refclk, intel_clock_t *match_clock,
570                    intel_clock_t *best_clock)
571 {
572         struct drm_device *dev = crtc->dev;
573         intel_clock_t clock;
574         int err = target;
575
576         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
577                 /*
578                  * For LVDS just rely on its current settings for dual-channel.
579                  * We haven't figured out how to reliably set up different
580                  * single/dual channel state, if we even can.
581                  */
582                 if (intel_is_dual_link_lvds(dev))
583                         clock.p2 = limit->p2.p2_fast;
584                 else
585                         clock.p2 = limit->p2.p2_slow;
586         } else {
587                 if (target < limit->p2.dot_limit)
588                         clock.p2 = limit->p2.p2_slow;
589                 else
590                         clock.p2 = limit->p2.p2_fast;
591         }
592
593         memset(best_clock, 0, sizeof(*best_clock));
594
595         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
596              clock.m1++) {
597                 for (clock.m2 = limit->m2.min;
598                      clock.m2 <= limit->m2.max; clock.m2++) {
599                         for (clock.n = limit->n.min;
600                              clock.n <= limit->n.max; clock.n++) {
601                                 for (clock.p1 = limit->p1.min;
602                                         clock.p1 <= limit->p1.max; clock.p1++) {
603                                         int this_err;
604
605                                         pineview_clock(refclk, &clock);
606                                         if (!intel_PLL_is_valid(dev, limit,
607                                                                 &clock))
608                                                 continue;
609                                         if (match_clock &&
610                                             clock.p != match_clock->p)
611                                                 continue;
612
613                                         this_err = abs(clock.dot - target);
614                                         if (this_err < err) {
615                                                 *best_clock = clock;
616                                                 err = this_err;
617                                         }
618                                 }
619                         }
620                 }
621         }
622
623         return (err != target);
624 }
625
626 static bool
627 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
628                    int target, int refclk, intel_clock_t *match_clock,
629                    intel_clock_t *best_clock)
630 {
631         struct drm_device *dev = crtc->dev;
632         intel_clock_t clock;
633         int max_n;
634         bool found;
635         /* approximately equals target * 0.00585 */
636         int err_most = (target >> 8) + (target >> 9);
637         found = false;
638
639         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
640                 if (intel_is_dual_link_lvds(dev))
641                         clock.p2 = limit->p2.p2_fast;
642                 else
643                         clock.p2 = limit->p2.p2_slow;
644         } else {
645                 if (target < limit->p2.dot_limit)
646                         clock.p2 = limit->p2.p2_slow;
647                 else
648                         clock.p2 = limit->p2.p2_fast;
649         }
650
651         memset(best_clock, 0, sizeof(*best_clock));
652         max_n = limit->n.max;
653         /* based on hardware requirement, prefer smaller n to precision */
654         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
655                 /* based on hardware requirement, prefere larger m1,m2 */
656                 for (clock.m1 = limit->m1.max;
657                      clock.m1 >= limit->m1.min; clock.m1--) {
658                         for (clock.m2 = limit->m2.max;
659                              clock.m2 >= limit->m2.min; clock.m2--) {
660                                 for (clock.p1 = limit->p1.max;
661                                      clock.p1 >= limit->p1.min; clock.p1--) {
662                                         int this_err;
663
664                                         i9xx_clock(refclk, &clock);
665                                         if (!intel_PLL_is_valid(dev, limit,
666                                                                 &clock))
667                                                 continue;
668
669                                         this_err = abs(clock.dot - target);
670                                         if (this_err < err_most) {
671                                                 *best_clock = clock;
672                                                 err_most = this_err;
673                                                 max_n = clock.n;
674                                                 found = true;
675                                         }
676                                 }
677                         }
678                 }
679         }
680         return found;
681 }
682
683 static bool
684 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
685                    int target, int refclk, intel_clock_t *match_clock,
686                    intel_clock_t *best_clock)
687 {
688         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
689         u32 m, n, fastclk;
690         u32 updrate, minupdate, fracbits, p;
691         unsigned long bestppm, ppm, absppm;
692         int dotclk, flag;
693
694         flag = 0;
695         dotclk = target * 1000;
696         bestppm = 1000000;
697         ppm = absppm = 0;
698         fastclk = dotclk / (2*100);
699         updrate = 0;
700         minupdate = 19200;
701         fracbits = 1;
702         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
703         bestm1 = bestm2 = bestp1 = bestp2 = 0;
704
705         /* based on hardware requirement, prefer smaller n to precision */
706         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
707                 updrate = refclk / n;
708                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
709                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
710                                 if (p2 > 10)
711                                         p2 = p2 - 1;
712                                 p = p1 * p2;
713                                 /* based on hardware requirement, prefer bigger m1,m2 values */
714                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
715                                         m2 = (((2*(fastclk * p * n / m1 )) +
716                                                refclk) / (2*refclk));
717                                         m = m1 * m2;
718                                         vco = updrate * m;
719                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
720                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
721                                                 absppm = (ppm > 0) ? ppm : (-ppm);
722                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
723                                                         bestppm = 0;
724                                                         flag = 1;
725                                                 }
726                                                 if (absppm < bestppm - 10) {
727                                                         bestppm = absppm;
728                                                         flag = 1;
729                                                 }
730                                                 if (flag) {
731                                                         bestn = n;
732                                                         bestm1 = m1;
733                                                         bestm2 = m2;
734                                                         bestp1 = p1;
735                                                         bestp2 = p2;
736                                                         flag = 0;
737                                                 }
738                                         }
739                                 }
740                         }
741                 }
742         }
743         best_clock->n = bestn;
744         best_clock->m1 = bestm1;
745         best_clock->m2 = bestm2;
746         best_clock->p1 = bestp1;
747         best_clock->p2 = bestp2;
748
749         return true;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753                                              enum pipe pipe)
754 {
755         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758         return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763         struct drm_i915_private *dev_priv = dev->dev_private;
764         u32 frame, frame_reg = PIPEFRAME(pipe);
765
766         frame = I915_READ(frame_reg);
767
768         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769                 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773  * intel_wait_for_vblank - wait for vblank on a given pipe
774  * @dev: drm device
775  * @pipe: pipe to wait for
776  *
777  * Wait for vblank to occur on a given pipe.  Needed for various bits of
778  * mode setting code.
779  */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782         struct drm_i915_private *dev_priv = dev->dev_private;
783         int pipestat_reg = PIPESTAT(pipe);
784
785         if (INTEL_INFO(dev)->gen >= 5) {
786                 ironlake_wait_for_vblank(dev, pipe);
787                 return;
788         }
789
790         /* Clear existing vblank status. Note this will clear any other
791          * sticky status fields as well.
792          *
793          * This races with i915_driver_irq_handler() with the result
794          * that either function could miss a vblank event.  Here it is not
795          * fatal, as we will either wait upon the next vblank interrupt or
796          * timeout.  Generally speaking intel_wait_for_vblank() is only
797          * called during modeset at which time the GPU should be idle and
798          * should *not* be performing page flips and thus not waiting on
799          * vblanks...
800          * Currently, the result of us stealing a vblank from the irq
801          * handler is that a single frame will be skipped during swapbuffers.
802          */
803         I915_WRITE(pipestat_reg,
804                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806         /* Wait for vblank interrupt bit to set */
807         if (wait_for(I915_READ(pipestat_reg) &
808                      PIPE_VBLANK_INTERRUPT_STATUS,
809                      50))
810                 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814  * intel_wait_for_pipe_off - wait for pipe to turn off
815  * @dev: drm device
816  * @pipe: pipe to wait for
817  *
818  * After disabling a pipe, we can't wait for vblank in the usual way,
819  * spinning on the vblank interrupt status bit, since we won't actually
820  * see an interrupt when the pipe is disabled.
821  *
822  * On Gen4 and above:
823  *   wait for the pipe register state bit to turn off
824  *
825  * Otherwise:
826  *   wait for the display line value to settle (it usually
827  *   ends up stopping at the start of the next frame).
828  *
829  */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832         struct drm_i915_private *dev_priv = dev->dev_private;
833         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834                                                                       pipe);
835
836         if (INTEL_INFO(dev)->gen >= 4) {
837                 int reg = PIPECONF(cpu_transcoder);
838
839                 /* Wait for the Pipe State to go off */
840                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841                              100))
842                         WARN(1, "pipe_off wait timed out\n");
843         } else {
844                 u32 last_line, line_mask;
845                 int reg = PIPEDSL(pipe);
846                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848                 if (IS_GEN2(dev))
849                         line_mask = DSL_LINEMASK_GEN2;
850                 else
851                         line_mask = DSL_LINEMASK_GEN3;
852
853                 /* Wait for the display line to settle */
854                 do {
855                         last_line = I915_READ(reg) & line_mask;
856                         mdelay(5);
857                 } while (((I915_READ(reg) & line_mask) != last_line) &&
858                          time_after(timeout, jiffies));
859                 if (time_after(jiffies, timeout))
860                         WARN(1, "pipe_off wait timed out\n");
861         }
862 }
863
864 /*
865  * ibx_digital_port_connected - is the specified port connected?
866  * @dev_priv: i915 private structure
867  * @port: the port to test
868  *
869  * Returns true if @port is connected, false otherwise.
870  */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872                                 struct intel_digital_port *port)
873 {
874         u32 bit;
875
876         if (HAS_PCH_IBX(dev_priv->dev)) {
877                 switch(port->port) {
878                 case PORT_B:
879                         bit = SDE_PORTB_HOTPLUG;
880                         break;
881                 case PORT_C:
882                         bit = SDE_PORTC_HOTPLUG;
883                         break;
884                 case PORT_D:
885                         bit = SDE_PORTD_HOTPLUG;
886                         break;
887                 default:
888                         return true;
889                 }
890         } else {
891                 switch(port->port) {
892                 case PORT_B:
893                         bit = SDE_PORTB_HOTPLUG_CPT;
894                         break;
895                 case PORT_C:
896                         bit = SDE_PORTC_HOTPLUG_CPT;
897                         break;
898                 case PORT_D:
899                         bit = SDE_PORTD_HOTPLUG_CPT;
900                         break;
901                 default:
902                         return true;
903                 }
904         }
905
906         return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911         return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916                 enum pipe pipe, bool state)
917 {
918         int reg;
919         u32 val;
920         bool cur_state;
921
922         reg = DPLL(pipe);
923         val = I915_READ(reg);
924         cur_state = !!(val & DPLL_VCO_ENABLE);
925         WARN(cur_state != state,
926              "PLL state assertion failure (expected %s, current %s)\n",
927              state_string(state), state_string(cur_state));
928 }
929
930 struct intel_shared_dpll *
931 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
932 {
933         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
934
935         if (crtc->config.shared_dpll < 0)
936                 return NULL;
937
938         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
939 }
940
941 /* For ILK+ */
942 void assert_shared_dpll(struct drm_i915_private *dev_priv,
943                         struct intel_shared_dpll *pll,
944                         bool state)
945 {
946         bool cur_state;
947         struct intel_dpll_hw_state hw_state;
948
949         if (HAS_PCH_LPT(dev_priv->dev)) {
950                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
951                 return;
952         }
953
954         if (WARN (!pll,
955                   "asserting DPLL %s with no DPLL\n", state_string(state)))
956                 return;
957
958         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
959         WARN(cur_state != state,
960              "%s assertion failure (expected %s, current %s)\n",
961              pll->name, state_string(state), state_string(cur_state));
962 }
963
964 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
965                           enum pipe pipe, bool state)
966 {
967         int reg;
968         u32 val;
969         bool cur_state;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (HAS_DDI(dev_priv->dev)) {
974                 /* DDI does not have a specific FDI_TX register */
975                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
976                 val = I915_READ(reg);
977                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
978         } else {
979                 reg = FDI_TX_CTL(pipe);
980                 val = I915_READ(reg);
981                 cur_state = !!(val & FDI_TX_ENABLE);
982         }
983         WARN(cur_state != state,
984              "FDI TX state assertion failure (expected %s, current %s)\n",
985              state_string(state), state_string(cur_state));
986 }
987 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
988 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
989
990 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
991                           enum pipe pipe, bool state)
992 {
993         int reg;
994         u32 val;
995         bool cur_state;
996
997         reg = FDI_RX_CTL(pipe);
998         val = I915_READ(reg);
999         cur_state = !!(val & FDI_RX_ENABLE);
1000         WARN(cur_state != state,
1001              "FDI RX state assertion failure (expected %s, current %s)\n",
1002              state_string(state), state_string(cur_state));
1003 }
1004 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1005 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1006
1007 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1008                                       enum pipe pipe)
1009 {
1010         int reg;
1011         u32 val;
1012
1013         /* ILK FDI PLL is always enabled */
1014         if (dev_priv->info->gen == 5)
1015                 return;
1016
1017         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1018         if (HAS_DDI(dev_priv->dev))
1019                 return;
1020
1021         reg = FDI_TX_CTL(pipe);
1022         val = I915_READ(reg);
1023         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1024 }
1025
1026 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1027                        enum pipe pipe, bool state)
1028 {
1029         int reg;
1030         u32 val;
1031         bool cur_state;
1032
1033         reg = FDI_RX_CTL(pipe);
1034         val = I915_READ(reg);
1035         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1036         WARN(cur_state != state,
1037              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1038              state_string(state), state_string(cur_state));
1039 }
1040
1041 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1042                                   enum pipe pipe)
1043 {
1044         int pp_reg, lvds_reg;
1045         u32 val;
1046         enum pipe panel_pipe = PIPE_A;
1047         bool locked = true;
1048
1049         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1050                 pp_reg = PCH_PP_CONTROL;
1051                 lvds_reg = PCH_LVDS;
1052         } else {
1053                 pp_reg = PP_CONTROL;
1054                 lvds_reg = LVDS;
1055         }
1056
1057         val = I915_READ(pp_reg);
1058         if (!(val & PANEL_POWER_ON) ||
1059             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1060                 locked = false;
1061
1062         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1063                 panel_pipe = PIPE_B;
1064
1065         WARN(panel_pipe == pipe && locked,
1066              "panel assertion failure, pipe %c regs locked\n",
1067              pipe_name(pipe));
1068 }
1069
1070 void assert_pipe(struct drm_i915_private *dev_priv,
1071                  enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         /* if we need the pipe A quirk it must be always on */
1080         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1081                 state = true;
1082
1083         if (!intel_display_power_enabled(dev_priv->dev,
1084                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1085                 cur_state = false;
1086         } else {
1087                 reg = PIPECONF(cpu_transcoder);
1088                 val = I915_READ(reg);
1089                 cur_state = !!(val & PIPECONF_ENABLE);
1090         }
1091
1092         WARN(cur_state != state,
1093              "pipe %c assertion failure (expected %s, current %s)\n",
1094              pipe_name(pipe), state_string(state), state_string(cur_state));
1095 }
1096
1097 static void assert_plane(struct drm_i915_private *dev_priv,
1098                          enum plane plane, bool state)
1099 {
1100         int reg;
1101         u32 val;
1102         bool cur_state;
1103
1104         reg = DSPCNTR(plane);
1105         val = I915_READ(reg);
1106         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1107         WARN(cur_state != state,
1108              "plane %c assertion failure (expected %s, current %s)\n",
1109              plane_name(plane), state_string(state), state_string(cur_state));
1110 }
1111
1112 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1113 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1114
1115 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1116                                    enum pipe pipe)
1117 {
1118         struct drm_device *dev = dev_priv->dev;
1119         int reg, i;
1120         u32 val;
1121         int cur_pipe;
1122
1123         /* Primary planes are fixed to pipes on gen4+ */
1124         if (INTEL_INFO(dev)->gen >= 4) {
1125                 reg = DSPCNTR(pipe);
1126                 val = I915_READ(reg);
1127                 WARN((val & DISPLAY_PLANE_ENABLE),
1128                      "plane %c assertion failure, should be disabled but not\n",
1129                      plane_name(pipe));
1130                 return;
1131         }
1132
1133         /* Need to check both planes against the pipe */
1134         for_each_pipe(i) {
1135                 reg = DSPCNTR(i);
1136                 val = I915_READ(reg);
1137                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1138                         DISPPLANE_SEL_PIPE_SHIFT;
1139                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1140                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1141                      plane_name(i), pipe_name(pipe));
1142         }
1143 }
1144
1145 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1146                                     enum pipe pipe)
1147 {
1148         struct drm_device *dev = dev_priv->dev;
1149         int reg, i;
1150         u32 val;
1151
1152         if (IS_VALLEYVIEW(dev)) {
1153                 for (i = 0; i < dev_priv->num_plane; i++) {
1154                         reg = SPCNTR(pipe, i);
1155                         val = I915_READ(reg);
1156                         WARN((val & SP_ENABLE),
1157                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1158                              sprite_name(pipe, i), pipe_name(pipe));
1159                 }
1160         } else if (INTEL_INFO(dev)->gen >= 7) {
1161                 reg = SPRCTL(pipe);
1162                 val = I915_READ(reg);
1163                 WARN((val & SPRITE_ENABLE),
1164                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1165                      plane_name(pipe), pipe_name(pipe));
1166         } else if (INTEL_INFO(dev)->gen >= 5) {
1167                 reg = DVSCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN((val & DVS_ENABLE),
1170                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1171                      plane_name(pipe), pipe_name(pipe));
1172         }
1173 }
1174
1175 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1176 {
1177         u32 val;
1178         bool enabled;
1179
1180         if (HAS_PCH_LPT(dev_priv->dev)) {
1181                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1182                 return;
1183         }
1184
1185         val = I915_READ(PCH_DREF_CONTROL);
1186         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1187                             DREF_SUPERSPREAD_SOURCE_MASK));
1188         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1189 }
1190
1191 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1192                                            enum pipe pipe)
1193 {
1194         int reg;
1195         u32 val;
1196         bool enabled;
1197
1198         reg = PCH_TRANSCONF(pipe);
1199         val = I915_READ(reg);
1200         enabled = !!(val & TRANS_ENABLE);
1201         WARN(enabled,
1202              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1203              pipe_name(pipe));
1204 }
1205
1206 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1207                             enum pipe pipe, u32 port_sel, u32 val)
1208 {
1209         if ((val & DP_PORT_EN) == 0)
1210                 return false;
1211
1212         if (HAS_PCH_CPT(dev_priv->dev)) {
1213                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1214                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1215                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1216                         return false;
1217         } else {
1218                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1219                         return false;
1220         }
1221         return true;
1222 }
1223
1224 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1225                               enum pipe pipe, u32 val)
1226 {
1227         if ((val & SDVO_ENABLE) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1232                         return false;
1233         } else {
1234                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1235                         return false;
1236         }
1237         return true;
1238 }
1239
1240 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1241                               enum pipe pipe, u32 val)
1242 {
1243         if ((val & LVDS_PORT_EN) == 0)
1244                 return false;
1245
1246         if (HAS_PCH_CPT(dev_priv->dev)) {
1247                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1248                         return false;
1249         } else {
1250                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1251                         return false;
1252         }
1253         return true;
1254 }
1255
1256 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1257                               enum pipe pipe, u32 val)
1258 {
1259         if ((val & ADPA_DAC_ENABLE) == 0)
1260                 return false;
1261         if (HAS_PCH_CPT(dev_priv->dev)) {
1262                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1263                         return false;
1264         } else {
1265                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1266                         return false;
1267         }
1268         return true;
1269 }
1270
1271 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe, int reg, u32 port_sel)
1273 {
1274         u32 val = I915_READ(reg);
1275         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1276              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1277              reg, pipe_name(pipe));
1278
1279         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1280              && (val & DP_PIPEB_SELECT),
1281              "IBX PCH dp port still using transcoder B\n");
1282 }
1283
1284 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1285                                      enum pipe pipe, int reg)
1286 {
1287         u32 val = I915_READ(reg);
1288         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1289              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1290              reg, pipe_name(pipe));
1291
1292         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1293              && (val & SDVO_PIPE_B_SELECT),
1294              "IBX PCH hdmi port still using transcoder B\n");
1295 }
1296
1297 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1298                                       enum pipe pipe)
1299 {
1300         int reg;
1301         u32 val;
1302
1303         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1304         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1306
1307         reg = PCH_ADPA;
1308         val = I915_READ(reg);
1309         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1310              "PCH VGA enabled on transcoder %c, should be disabled\n",
1311              pipe_name(pipe));
1312
1313         reg = PCH_LVDS;
1314         val = I915_READ(reg);
1315         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1316              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1317              pipe_name(pipe));
1318
1319         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1320         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1322 }
1323
1324 static void vlv_enable_pll(struct intel_crtc *crtc)
1325 {
1326         struct drm_device *dev = crtc->base.dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         int reg = DPLL(crtc->pipe);
1329         u32 dpll = crtc->config.dpll_hw_state.dpll;
1330
1331         assert_pipe_disabled(dev_priv, crtc->pipe);
1332
1333         /* No really, not for ILK+ */
1334         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1335
1336         /* PLL is protected by panel, make sure we can write it */
1337         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1338                 assert_panel_unlocked(dev_priv, crtc->pipe);
1339
1340         I915_WRITE(reg, dpll);
1341         POSTING_READ(reg);
1342         udelay(150);
1343
1344         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1345                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1346
1347         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1348         POSTING_READ(DPLL_MD(crtc->pipe));
1349
1350         /* We do this three times for luck */
1351         I915_WRITE(reg, dpll);
1352         POSTING_READ(reg);
1353         udelay(150); /* wait for warmup */
1354         I915_WRITE(reg, dpll);
1355         POSTING_READ(reg);
1356         udelay(150); /* wait for warmup */
1357         I915_WRITE(reg, dpll);
1358         POSTING_READ(reg);
1359         udelay(150); /* wait for warmup */
1360 }
1361
1362 static void i9xx_enable_pll(struct intel_crtc *crtc)
1363 {
1364         struct drm_device *dev = crtc->base.dev;
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         int reg = DPLL(crtc->pipe);
1367         u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369         assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371         /* No really, not for ILK+ */
1372         BUG_ON(dev_priv->info->gen >= 5);
1373
1374         /* PLL is protected by panel, make sure we can write it */
1375         if (IS_MOBILE(dev) && !IS_I830(dev))
1376                 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378         I915_WRITE(reg, dpll);
1379
1380         /* Wait for the clocks to stabilize. */
1381         POSTING_READ(reg);
1382         udelay(150);
1383
1384         if (INTEL_INFO(dev)->gen >= 4) {
1385                 I915_WRITE(DPLL_MD(crtc->pipe),
1386                            crtc->config.dpll_hw_state.dpll_md);
1387         } else {
1388                 /* The pixel multiplier can only be updated once the
1389                  * DPLL is enabled and the clocks are stable.
1390                  *
1391                  * So write it again.
1392                  */
1393                 I915_WRITE(reg, dpll);
1394         }
1395
1396         /* We do this three times for luck */
1397         I915_WRITE(reg, dpll);
1398         POSTING_READ(reg);
1399         udelay(150); /* wait for warmup */
1400         I915_WRITE(reg, dpll);
1401         POSTING_READ(reg);
1402         udelay(150); /* wait for warmup */
1403         I915_WRITE(reg, dpll);
1404         POSTING_READ(reg);
1405         udelay(150); /* wait for warmup */
1406 }
1407
1408 /**
1409  * i9xx_disable_pll - disable a PLL
1410  * @dev_priv: i915 private structure
1411  * @pipe: pipe PLL to disable
1412  *
1413  * Disable the PLL for @pipe, making sure the pipe is off first.
1414  *
1415  * Note!  This is for pre-ILK only.
1416  */
1417 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1418 {
1419         /* Don't disable pipe A or pipe A PLLs if needed */
1420         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1421                 return;
1422
1423         /* Make sure the pipe isn't still relying on us */
1424         assert_pipe_disabled(dev_priv, pipe);
1425
1426         I915_WRITE(DPLL(pipe), 0);
1427         POSTING_READ(DPLL(pipe));
1428 }
1429
1430 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1431 {
1432         u32 port_mask;
1433
1434         if (!port)
1435                 port_mask = DPLL_PORTB_READY_MASK;
1436         else
1437                 port_mask = DPLL_PORTC_READY_MASK;
1438
1439         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1440                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1441                      'B' + port, I915_READ(DPLL(0)));
1442 }
1443
1444 /**
1445  * ironlake_enable_shared_dpll - enable PCH PLL
1446  * @dev_priv: i915 private structure
1447  * @pipe: pipe PLL to enable
1448  *
1449  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1450  * drives the transcoder clock.
1451  */
1452 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1453 {
1454         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1455         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1456
1457         /* PCH PLLs only available on ILK, SNB and IVB */
1458         BUG_ON(dev_priv->info->gen < 5);
1459         if (WARN_ON(pll == NULL))
1460                 return;
1461
1462         if (WARN_ON(pll->refcount == 0))
1463                 return;
1464
1465         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1466                       pll->name, pll->active, pll->on,
1467                       crtc->base.base.id);
1468
1469         if (pll->active++) {
1470                 WARN_ON(!pll->on);
1471                 assert_shared_dpll_enabled(dev_priv, pll);
1472                 return;
1473         }
1474         WARN_ON(pll->on);
1475
1476         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1477         pll->enable(dev_priv, pll);
1478         pll->on = true;
1479 }
1480
1481 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1482 {
1483         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1484         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1485
1486         /* PCH only available on ILK+ */
1487         BUG_ON(dev_priv->info->gen < 5);
1488         if (WARN_ON(pll == NULL))
1489                return;
1490
1491         if (WARN_ON(pll->refcount == 0))
1492                 return;
1493
1494         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1495                       pll->name, pll->active, pll->on,
1496                       crtc->base.base.id);
1497
1498         if (WARN_ON(pll->active == 0)) {
1499                 assert_shared_dpll_disabled(dev_priv, pll);
1500                 return;
1501         }
1502
1503         assert_shared_dpll_enabled(dev_priv, pll);
1504         WARN_ON(!pll->on);
1505         if (--pll->active)
1506                 return;
1507
1508         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1509         pll->disable(dev_priv, pll);
1510         pll->on = false;
1511 }
1512
1513 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1514                                            enum pipe pipe)
1515 {
1516         struct drm_device *dev = dev_priv->dev;
1517         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1519         uint32_t reg, val, pipeconf_val;
1520
1521         /* PCH only available on ILK+ */
1522         BUG_ON(dev_priv->info->gen < 5);
1523
1524         /* Make sure PCH DPLL is enabled */
1525         assert_shared_dpll_enabled(dev_priv,
1526                                    intel_crtc_to_shared_dpll(intel_crtc));
1527
1528         /* FDI must be feeding us bits for PCH ports */
1529         assert_fdi_tx_enabled(dev_priv, pipe);
1530         assert_fdi_rx_enabled(dev_priv, pipe);
1531
1532         if (HAS_PCH_CPT(dev)) {
1533                 /* Workaround: Set the timing override bit before enabling the
1534                  * pch transcoder. */
1535                 reg = TRANS_CHICKEN2(pipe);
1536                 val = I915_READ(reg);
1537                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1538                 I915_WRITE(reg, val);
1539         }
1540
1541         reg = PCH_TRANSCONF(pipe);
1542         val = I915_READ(reg);
1543         pipeconf_val = I915_READ(PIPECONF(pipe));
1544
1545         if (HAS_PCH_IBX(dev_priv->dev)) {
1546                 /*
1547                  * make the BPC in transcoder be consistent with
1548                  * that in pipeconf reg.
1549                  */
1550                 val &= ~PIPECONF_BPC_MASK;
1551                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1552         }
1553
1554         val &= ~TRANS_INTERLACE_MASK;
1555         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1556                 if (HAS_PCH_IBX(dev_priv->dev) &&
1557                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1558                         val |= TRANS_LEGACY_INTERLACED_ILK;
1559                 else
1560                         val |= TRANS_INTERLACED;
1561         else
1562                 val |= TRANS_PROGRESSIVE;
1563
1564         I915_WRITE(reg, val | TRANS_ENABLE);
1565         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1566                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1567 }
1568
1569 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1570                                       enum transcoder cpu_transcoder)
1571 {
1572         u32 val, pipeconf_val;
1573
1574         /* PCH only available on ILK+ */
1575         BUG_ON(dev_priv->info->gen < 5);
1576
1577         /* FDI must be feeding us bits for PCH ports */
1578         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1579         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1580
1581         /* Workaround: set timing override bit. */
1582         val = I915_READ(_TRANSA_CHICKEN2);
1583         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1584         I915_WRITE(_TRANSA_CHICKEN2, val);
1585
1586         val = TRANS_ENABLE;
1587         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1588
1589         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1590             PIPECONF_INTERLACED_ILK)
1591                 val |= TRANS_INTERLACED;
1592         else
1593                 val |= TRANS_PROGRESSIVE;
1594
1595         I915_WRITE(LPT_TRANSCONF, val);
1596         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1597                 DRM_ERROR("Failed to enable PCH transcoder\n");
1598 }
1599
1600 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1601                                             enum pipe pipe)
1602 {
1603         struct drm_device *dev = dev_priv->dev;
1604         uint32_t reg, val;
1605
1606         /* FDI relies on the transcoder */
1607         assert_fdi_tx_disabled(dev_priv, pipe);
1608         assert_fdi_rx_disabled(dev_priv, pipe);
1609
1610         /* Ports must be off as well */
1611         assert_pch_ports_disabled(dev_priv, pipe);
1612
1613         reg = PCH_TRANSCONF(pipe);
1614         val = I915_READ(reg);
1615         val &= ~TRANS_ENABLE;
1616         I915_WRITE(reg, val);
1617         /* wait for PCH transcoder off, transcoder state */
1618         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1619                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1620
1621         if (!HAS_PCH_IBX(dev)) {
1622                 /* Workaround: Clear the timing override chicken bit again. */
1623                 reg = TRANS_CHICKEN2(pipe);
1624                 val = I915_READ(reg);
1625                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1626                 I915_WRITE(reg, val);
1627         }
1628 }
1629
1630 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1631 {
1632         u32 val;
1633
1634         val = I915_READ(LPT_TRANSCONF);
1635         val &= ~TRANS_ENABLE;
1636         I915_WRITE(LPT_TRANSCONF, val);
1637         /* wait for PCH transcoder off, transcoder state */
1638         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1639                 DRM_ERROR("Failed to disable PCH transcoder\n");
1640
1641         /* Workaround: clear timing override bit. */
1642         val = I915_READ(_TRANSA_CHICKEN2);
1643         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1644         I915_WRITE(_TRANSA_CHICKEN2, val);
1645 }
1646
1647 /**
1648  * intel_enable_pipe - enable a pipe, asserting requirements
1649  * @dev_priv: i915 private structure
1650  * @pipe: pipe to enable
1651  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1652  *
1653  * Enable @pipe, making sure that various hardware specific requirements
1654  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1655  *
1656  * @pipe should be %PIPE_A or %PIPE_B.
1657  *
1658  * Will wait until the pipe is actually running (i.e. first vblank) before
1659  * returning.
1660  */
1661 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1662                               bool pch_port)
1663 {
1664         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1665                                                                       pipe);
1666         enum pipe pch_transcoder;
1667         int reg;
1668         u32 val;
1669
1670         assert_planes_disabled(dev_priv, pipe);
1671         assert_sprites_disabled(dev_priv, pipe);
1672
1673         if (HAS_PCH_LPT(dev_priv->dev))
1674                 pch_transcoder = TRANSCODER_A;
1675         else
1676                 pch_transcoder = pipe;
1677
1678         /*
1679          * A pipe without a PLL won't actually be able to drive bits from
1680          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1681          * need the check.
1682          */
1683         if (!HAS_PCH_SPLIT(dev_priv->dev))
1684                 assert_pll_enabled(dev_priv, pipe);
1685         else {
1686                 if (pch_port) {
1687                         /* if driving the PCH, we need FDI enabled */
1688                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1689                         assert_fdi_tx_pll_enabled(dev_priv,
1690                                                   (enum pipe) cpu_transcoder);
1691                 }
1692                 /* FIXME: assert CPU port conditions for SNB+ */
1693         }
1694
1695         reg = PIPECONF(cpu_transcoder);
1696         val = I915_READ(reg);
1697         if (val & PIPECONF_ENABLE)
1698                 return;
1699
1700         I915_WRITE(reg, val | PIPECONF_ENABLE);
1701         intel_wait_for_vblank(dev_priv->dev, pipe);
1702 }
1703
1704 /**
1705  * intel_disable_pipe - disable a pipe, asserting requirements
1706  * @dev_priv: i915 private structure
1707  * @pipe: pipe to disable
1708  *
1709  * Disable @pipe, making sure that various hardware specific requirements
1710  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1711  *
1712  * @pipe should be %PIPE_A or %PIPE_B.
1713  *
1714  * Will wait until the pipe has shut down before returning.
1715  */
1716 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1717                                enum pipe pipe)
1718 {
1719         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1720                                                                       pipe);
1721         int reg;
1722         u32 val;
1723
1724         /*
1725          * Make sure planes won't keep trying to pump pixels to us,
1726          * or we might hang the display.
1727          */
1728         assert_planes_disabled(dev_priv, pipe);
1729         assert_sprites_disabled(dev_priv, pipe);
1730
1731         /* Don't disable pipe A or pipe A PLLs if needed */
1732         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1733                 return;
1734
1735         reg = PIPECONF(cpu_transcoder);
1736         val = I915_READ(reg);
1737         if ((val & PIPECONF_ENABLE) == 0)
1738                 return;
1739
1740         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1741         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1742 }
1743
1744 /*
1745  * Plane regs are double buffered, going from enabled->disabled needs a
1746  * trigger in order to latch.  The display address reg provides this.
1747  */
1748 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1749                                       enum plane plane)
1750 {
1751         if (dev_priv->info->gen >= 4)
1752                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1753         else
1754                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1755 }
1756
1757 /**
1758  * intel_enable_plane - enable a display plane on a given pipe
1759  * @dev_priv: i915 private structure
1760  * @plane: plane to enable
1761  * @pipe: pipe being fed
1762  *
1763  * Enable @plane on @pipe, making sure that @pipe is running first.
1764  */
1765 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1766                                enum plane plane, enum pipe pipe)
1767 {
1768         int reg;
1769         u32 val;
1770
1771         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1772         assert_pipe_enabled(dev_priv, pipe);
1773
1774         reg = DSPCNTR(plane);
1775         val = I915_READ(reg);
1776         if (val & DISPLAY_PLANE_ENABLE)
1777                 return;
1778
1779         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1780         intel_flush_display_plane(dev_priv, plane);
1781         intel_wait_for_vblank(dev_priv->dev, pipe);
1782 }
1783
1784 /**
1785  * intel_disable_plane - disable a display plane
1786  * @dev_priv: i915 private structure
1787  * @plane: plane to disable
1788  * @pipe: pipe consuming the data
1789  *
1790  * Disable @plane; should be an independent operation.
1791  */
1792 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1793                                 enum plane plane, enum pipe pipe)
1794 {
1795         int reg;
1796         u32 val;
1797
1798         reg = DSPCNTR(plane);
1799         val = I915_READ(reg);
1800         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1801                 return;
1802
1803         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1804         intel_flush_display_plane(dev_priv, plane);
1805         intel_wait_for_vblank(dev_priv->dev, pipe);
1806 }
1807
1808 static bool need_vtd_wa(struct drm_device *dev)
1809 {
1810 #ifdef CONFIG_INTEL_IOMMU
1811         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1812                 return true;
1813 #endif
1814         return false;
1815 }
1816
1817 int
1818 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1819                            struct drm_i915_gem_object *obj,
1820                            struct intel_ring_buffer *pipelined)
1821 {
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         u32 alignment;
1824         int ret;
1825
1826         switch (obj->tiling_mode) {
1827         case I915_TILING_NONE:
1828                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1829                         alignment = 128 * 1024;
1830                 else if (INTEL_INFO(dev)->gen >= 4)
1831                         alignment = 4 * 1024;
1832                 else
1833                         alignment = 64 * 1024;
1834                 break;
1835         case I915_TILING_X:
1836                 /* pin() will align the object as required by fence */
1837                 alignment = 0;
1838                 break;
1839         case I915_TILING_Y:
1840                 /* Despite that we check this in framebuffer_init userspace can
1841                  * screw us over and change the tiling after the fact. Only
1842                  * pinned buffers can't change their tiling. */
1843                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1844                 return -EINVAL;
1845         default:
1846                 BUG();
1847         }
1848
1849         /* Note that the w/a also requires 64 PTE of padding following the
1850          * bo. We currently fill all unused PTE with the shadow page and so
1851          * we should always have valid PTE following the scanout preventing
1852          * the VT-d warning.
1853          */
1854         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1855                 alignment = 256 * 1024;
1856
1857         dev_priv->mm.interruptible = false;
1858         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1859         if (ret)
1860                 goto err_interruptible;
1861
1862         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1863          * fence, whereas 965+ only requires a fence if using
1864          * framebuffer compression.  For simplicity, we always install
1865          * a fence as the cost is not that onerous.
1866          */
1867         ret = i915_gem_object_get_fence(obj);
1868         if (ret)
1869                 goto err_unpin;
1870
1871         i915_gem_object_pin_fence(obj);
1872
1873         dev_priv->mm.interruptible = true;
1874         return 0;
1875
1876 err_unpin:
1877         i915_gem_object_unpin(obj);
1878 err_interruptible:
1879         dev_priv->mm.interruptible = true;
1880         return ret;
1881 }
1882
1883 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1884 {
1885         i915_gem_object_unpin_fence(obj);
1886         i915_gem_object_unpin(obj);
1887 }
1888
1889 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1890  * is assumed to be a power-of-two. */
1891 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1892                                              unsigned int tiling_mode,
1893                                              unsigned int cpp,
1894                                              unsigned int pitch)
1895 {
1896         if (tiling_mode != I915_TILING_NONE) {
1897                 unsigned int tile_rows, tiles;
1898
1899                 tile_rows = *y / 8;
1900                 *y %= 8;
1901
1902                 tiles = *x / (512/cpp);
1903                 *x %= 512/cpp;
1904
1905                 return tile_rows * pitch * 8 + tiles * 4096;
1906         } else {
1907                 unsigned int offset;
1908
1909                 offset = *y * pitch + *x * cpp;
1910                 *y = 0;
1911                 *x = (offset & 4095) / cpp;
1912                 return offset & -4096;
1913         }
1914 }
1915
1916 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1917                              int x, int y)
1918 {
1919         struct drm_device *dev = crtc->dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922         struct intel_framebuffer *intel_fb;
1923         struct drm_i915_gem_object *obj;
1924         int plane = intel_crtc->plane;
1925         unsigned long linear_offset;
1926         u32 dspcntr;
1927         u32 reg;
1928
1929         switch (plane) {
1930         case 0:
1931         case 1:
1932                 break;
1933         default:
1934                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1935                 return -EINVAL;
1936         }
1937
1938         intel_fb = to_intel_framebuffer(fb);
1939         obj = intel_fb->obj;
1940
1941         reg = DSPCNTR(plane);
1942         dspcntr = I915_READ(reg);
1943         /* Mask out pixel format bits in case we change it */
1944         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1945         switch (fb->pixel_format) {
1946         case DRM_FORMAT_C8:
1947                 dspcntr |= DISPPLANE_8BPP;
1948                 break;
1949         case DRM_FORMAT_XRGB1555:
1950         case DRM_FORMAT_ARGB1555:
1951                 dspcntr |= DISPPLANE_BGRX555;
1952                 break;
1953         case DRM_FORMAT_RGB565:
1954                 dspcntr |= DISPPLANE_BGRX565;
1955                 break;
1956         case DRM_FORMAT_XRGB8888:
1957         case DRM_FORMAT_ARGB8888:
1958                 dspcntr |= DISPPLANE_BGRX888;
1959                 break;
1960         case DRM_FORMAT_XBGR8888:
1961         case DRM_FORMAT_ABGR8888:
1962                 dspcntr |= DISPPLANE_RGBX888;
1963                 break;
1964         case DRM_FORMAT_XRGB2101010:
1965         case DRM_FORMAT_ARGB2101010:
1966                 dspcntr |= DISPPLANE_BGRX101010;
1967                 break;
1968         case DRM_FORMAT_XBGR2101010:
1969         case DRM_FORMAT_ABGR2101010:
1970                 dspcntr |= DISPPLANE_RGBX101010;
1971                 break;
1972         default:
1973                 BUG();
1974         }
1975
1976         if (INTEL_INFO(dev)->gen >= 4) {
1977                 if (obj->tiling_mode != I915_TILING_NONE)
1978                         dspcntr |= DISPPLANE_TILED;
1979                 else
1980                         dspcntr &= ~DISPPLANE_TILED;
1981         }
1982
1983         if (IS_G4X(dev))
1984                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1985
1986         I915_WRITE(reg, dspcntr);
1987
1988         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1989
1990         if (INTEL_INFO(dev)->gen >= 4) {
1991                 intel_crtc->dspaddr_offset =
1992                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1993                                                        fb->bits_per_pixel / 8,
1994                                                        fb->pitches[0]);
1995                 linear_offset -= intel_crtc->dspaddr_offset;
1996         } else {
1997                 intel_crtc->dspaddr_offset = linear_offset;
1998         }
1999
2000         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2001                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2002                       fb->pitches[0]);
2003         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2004         if (INTEL_INFO(dev)->gen >= 4) {
2005                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2006                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2007                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2009         } else
2010                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2011         POSTING_READ(reg);
2012
2013         return 0;
2014 }
2015
2016 static int ironlake_update_plane(struct drm_crtc *crtc,
2017                                  struct drm_framebuffer *fb, int x, int y)
2018 {
2019         struct drm_device *dev = crtc->dev;
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022         struct intel_framebuffer *intel_fb;
2023         struct drm_i915_gem_object *obj;
2024         int plane = intel_crtc->plane;
2025         unsigned long linear_offset;
2026         u32 dspcntr;
2027         u32 reg;
2028
2029         switch (plane) {
2030         case 0:
2031         case 1:
2032         case 2:
2033                 break;
2034         default:
2035                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2036                 return -EINVAL;
2037         }
2038
2039         intel_fb = to_intel_framebuffer(fb);
2040         obj = intel_fb->obj;
2041
2042         reg = DSPCNTR(plane);
2043         dspcntr = I915_READ(reg);
2044         /* Mask out pixel format bits in case we change it */
2045         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2046         switch (fb->pixel_format) {
2047         case DRM_FORMAT_C8:
2048                 dspcntr |= DISPPLANE_8BPP;
2049                 break;
2050         case DRM_FORMAT_RGB565:
2051                 dspcntr |= DISPPLANE_BGRX565;
2052                 break;
2053         case DRM_FORMAT_XRGB8888:
2054         case DRM_FORMAT_ARGB8888:
2055                 dspcntr |= DISPPLANE_BGRX888;
2056                 break;
2057         case DRM_FORMAT_XBGR8888:
2058         case DRM_FORMAT_ABGR8888:
2059                 dspcntr |= DISPPLANE_RGBX888;
2060                 break;
2061         case DRM_FORMAT_XRGB2101010:
2062         case DRM_FORMAT_ARGB2101010:
2063                 dspcntr |= DISPPLANE_BGRX101010;
2064                 break;
2065         case DRM_FORMAT_XBGR2101010:
2066         case DRM_FORMAT_ABGR2101010:
2067                 dspcntr |= DISPPLANE_RGBX101010;
2068                 break;
2069         default:
2070                 BUG();
2071         }
2072
2073         if (obj->tiling_mode != I915_TILING_NONE)
2074                 dspcntr |= DISPPLANE_TILED;
2075         else
2076                 dspcntr &= ~DISPPLANE_TILED;
2077
2078         /* must disable */
2079         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2080
2081         I915_WRITE(reg, dspcntr);
2082
2083         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2084         intel_crtc->dspaddr_offset =
2085                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2086                                                fb->bits_per_pixel / 8,
2087                                                fb->pitches[0]);
2088         linear_offset -= intel_crtc->dspaddr_offset;
2089
2090         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2091                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2092                       fb->pitches[0]);
2093         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2094         I915_MODIFY_DISPBASE(DSPSURF(plane),
2095                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096         if (IS_HASWELL(dev)) {
2097                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2098         } else {
2099                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2100                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2101         }
2102         POSTING_READ(reg);
2103
2104         return 0;
2105 }
2106
2107 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2108 static int
2109 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2110                            int x, int y, enum mode_set_atomic state)
2111 {
2112         struct drm_device *dev = crtc->dev;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115         if (dev_priv->display.disable_fbc)
2116                 dev_priv->display.disable_fbc(dev);
2117         intel_increase_pllclock(crtc);
2118
2119         return dev_priv->display.update_plane(crtc, fb, x, y);
2120 }
2121
2122 void intel_display_handle_reset(struct drm_device *dev)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct drm_crtc *crtc;
2126
2127         /*
2128          * Flips in the rings have been nuked by the reset,
2129          * so complete all pending flips so that user space
2130          * will get its events and not get stuck.
2131          *
2132          * Also update the base address of all primary
2133          * planes to the the last fb to make sure we're
2134          * showing the correct fb after a reset.
2135          *
2136          * Need to make two loops over the crtcs so that we
2137          * don't try to grab a crtc mutex before the
2138          * pending_flip_queue really got woken up.
2139          */
2140
2141         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2142                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143                 enum plane plane = intel_crtc->plane;
2144
2145                 intel_prepare_page_flip(dev, plane);
2146                 intel_finish_page_flip_plane(dev, plane);
2147         }
2148
2149         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2150                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
2152                 mutex_lock(&crtc->mutex);
2153                 if (intel_crtc->active)
2154                         dev_priv->display.update_plane(crtc, crtc->fb,
2155                                                        crtc->x, crtc->y);
2156                 mutex_unlock(&crtc->mutex);
2157         }
2158 }
2159
2160 static int
2161 intel_finish_fb(struct drm_framebuffer *old_fb)
2162 {
2163         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2164         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2165         bool was_interruptible = dev_priv->mm.interruptible;
2166         int ret;
2167
2168         /* Big Hammer, we also need to ensure that any pending
2169          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2170          * current scanout is retired before unpinning the old
2171          * framebuffer.
2172          *
2173          * This should only fail upon a hung GPU, in which case we
2174          * can safely continue.
2175          */
2176         dev_priv->mm.interruptible = false;
2177         ret = i915_gem_object_finish_gpu(obj);
2178         dev_priv->mm.interruptible = was_interruptible;
2179
2180         return ret;
2181 }
2182
2183 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2184 {
2185         struct drm_device *dev = crtc->dev;
2186         struct drm_i915_master_private *master_priv;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188
2189         if (!dev->primary->master)
2190                 return;
2191
2192         master_priv = dev->primary->master->driver_priv;
2193         if (!master_priv->sarea_priv)
2194                 return;
2195
2196         switch (intel_crtc->pipe) {
2197         case 0:
2198                 master_priv->sarea_priv->pipeA_x = x;
2199                 master_priv->sarea_priv->pipeA_y = y;
2200                 break;
2201         case 1:
2202                 master_priv->sarea_priv->pipeB_x = x;
2203                 master_priv->sarea_priv->pipeB_y = y;
2204                 break;
2205         default:
2206                 break;
2207         }
2208 }
2209
2210 static int
2211 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2212                     struct drm_framebuffer *fb)
2213 {
2214         struct drm_device *dev = crtc->dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2217         struct drm_framebuffer *old_fb;
2218         int ret;
2219
2220         /* no fb bound */
2221         if (!fb) {
2222                 DRM_ERROR("No FB bound\n");
2223                 return 0;
2224         }
2225
2226         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2227                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2228                           plane_name(intel_crtc->plane),
2229                           INTEL_INFO(dev)->num_pipes);
2230                 return -EINVAL;
2231         }
2232
2233         mutex_lock(&dev->struct_mutex);
2234         ret = intel_pin_and_fence_fb_obj(dev,
2235                                          to_intel_framebuffer(fb)->obj,
2236                                          NULL);
2237         if (ret != 0) {
2238                 mutex_unlock(&dev->struct_mutex);
2239                 DRM_ERROR("pin & fence failed\n");
2240                 return ret;
2241         }
2242
2243         /* Update pipe size and adjust fitter if needed */
2244         if (i915_fastboot) {
2245                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2246                            ((crtc->mode.hdisplay - 1) << 16) |
2247                            (crtc->mode.vdisplay - 1));
2248                 if (!intel_crtc->config.pch_pfit.size &&
2249                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2250                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2251                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2252                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2253                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2254                 }
2255         }
2256
2257         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2258         if (ret) {
2259                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2260                 mutex_unlock(&dev->struct_mutex);
2261                 DRM_ERROR("failed to update base address\n");
2262                 return ret;
2263         }
2264
2265         old_fb = crtc->fb;
2266         crtc->fb = fb;
2267         crtc->x = x;
2268         crtc->y = y;
2269
2270         if (old_fb) {
2271                 if (intel_crtc->active && old_fb != fb)
2272                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2273                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2274         }
2275
2276         intel_update_fbc(dev);
2277         intel_edp_psr_update(dev);
2278         mutex_unlock(&dev->struct_mutex);
2279
2280         intel_crtc_update_sarea_pos(crtc, x, y);
2281
2282         return 0;
2283 }
2284
2285 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2286 {
2287         struct drm_device *dev = crtc->dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290         int pipe = intel_crtc->pipe;
2291         u32 reg, temp;
2292
2293         /* enable normal train */
2294         reg = FDI_TX_CTL(pipe);
2295         temp = I915_READ(reg);
2296         if (IS_IVYBRIDGE(dev)) {
2297                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2298                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2299         } else {
2300                 temp &= ~FDI_LINK_TRAIN_NONE;
2301                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2302         }
2303         I915_WRITE(reg, temp);
2304
2305         reg = FDI_RX_CTL(pipe);
2306         temp = I915_READ(reg);
2307         if (HAS_PCH_CPT(dev)) {
2308                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2310         } else {
2311                 temp &= ~FDI_LINK_TRAIN_NONE;
2312                 temp |= FDI_LINK_TRAIN_NONE;
2313         }
2314         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2315
2316         /* wait one idle pattern time */
2317         POSTING_READ(reg);
2318         udelay(1000);
2319
2320         /* IVB wants error correction enabled */
2321         if (IS_IVYBRIDGE(dev))
2322                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2323                            FDI_FE_ERRC_ENABLE);
2324 }
2325
2326 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2327 {
2328         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2329 }
2330
2331 static void ivb_modeset_global_resources(struct drm_device *dev)
2332 {
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *pipe_B_crtc =
2335                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2336         struct intel_crtc *pipe_C_crtc =
2337                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2338         uint32_t temp;
2339
2340         /*
2341          * When everything is off disable fdi C so that we could enable fdi B
2342          * with all lanes. Note that we don't care about enabled pipes without
2343          * an enabled pch encoder.
2344          */
2345         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2346             !pipe_has_enabled_pch(pipe_C_crtc)) {
2347                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2348                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2349
2350                 temp = I915_READ(SOUTH_CHICKEN1);
2351                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2352                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2353                 I915_WRITE(SOUTH_CHICKEN1, temp);
2354         }
2355 }
2356
2357 /* The FDI link training functions for ILK/Ibexpeak. */
2358 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2359 {
2360         struct drm_device *dev = crtc->dev;
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2363         int pipe = intel_crtc->pipe;
2364         int plane = intel_crtc->plane;
2365         u32 reg, temp, tries;
2366
2367         /* FDI needs bits from pipe & plane first */
2368         assert_pipe_enabled(dev_priv, pipe);
2369         assert_plane_enabled(dev_priv, plane);
2370
2371         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2372            for train result */
2373         reg = FDI_RX_IMR(pipe);
2374         temp = I915_READ(reg);
2375         temp &= ~FDI_RX_SYMBOL_LOCK;
2376         temp &= ~FDI_RX_BIT_LOCK;
2377         I915_WRITE(reg, temp);
2378         I915_READ(reg);
2379         udelay(150);
2380
2381         /* enable CPU FDI TX and PCH FDI RX */
2382         reg = FDI_TX_CTL(pipe);
2383         temp = I915_READ(reg);
2384         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2385         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2386         temp &= ~FDI_LINK_TRAIN_NONE;
2387         temp |= FDI_LINK_TRAIN_PATTERN_1;
2388         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2389
2390         reg = FDI_RX_CTL(pipe);
2391         temp = I915_READ(reg);
2392         temp &= ~FDI_LINK_TRAIN_NONE;
2393         temp |= FDI_LINK_TRAIN_PATTERN_1;
2394         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2395
2396         POSTING_READ(reg);
2397         udelay(150);
2398
2399         /* Ironlake workaround, enable clock pointer after FDI enable*/
2400         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2401         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2402                    FDI_RX_PHASE_SYNC_POINTER_EN);
2403
2404         reg = FDI_RX_IIR(pipe);
2405         for (tries = 0; tries < 5; tries++) {
2406                 temp = I915_READ(reg);
2407                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2408
2409                 if ((temp & FDI_RX_BIT_LOCK)) {
2410                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2411                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2412                         break;
2413                 }
2414         }
2415         if (tries == 5)
2416                 DRM_ERROR("FDI train 1 fail!\n");
2417
2418         /* Train 2 */
2419         reg = FDI_TX_CTL(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_LINK_TRAIN_NONE;
2422         temp |= FDI_LINK_TRAIN_PATTERN_2;
2423         I915_WRITE(reg, temp);
2424
2425         reg = FDI_RX_CTL(pipe);
2426         temp = I915_READ(reg);
2427         temp &= ~FDI_LINK_TRAIN_NONE;
2428         temp |= FDI_LINK_TRAIN_PATTERN_2;
2429         I915_WRITE(reg, temp);
2430
2431         POSTING_READ(reg);
2432         udelay(150);
2433
2434         reg = FDI_RX_IIR(pipe);
2435         for (tries = 0; tries < 5; tries++) {
2436                 temp = I915_READ(reg);
2437                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2438
2439                 if (temp & FDI_RX_SYMBOL_LOCK) {
2440                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2441                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2442                         break;
2443                 }
2444         }
2445         if (tries == 5)
2446                 DRM_ERROR("FDI train 2 fail!\n");
2447
2448         DRM_DEBUG_KMS("FDI train done\n");
2449
2450 }
2451
2452 static const int snb_b_fdi_train_param[] = {
2453         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2454         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2455         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2456         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2457 };
2458
2459 /* The FDI link training functions for SNB/Cougarpoint. */
2460 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2461 {
2462         struct drm_device *dev = crtc->dev;
2463         struct drm_i915_private *dev_priv = dev->dev_private;
2464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2465         int pipe = intel_crtc->pipe;
2466         u32 reg, temp, i, retry;
2467
2468         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469            for train result */
2470         reg = FDI_RX_IMR(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_RX_SYMBOL_LOCK;
2473         temp &= ~FDI_RX_BIT_LOCK;
2474         I915_WRITE(reg, temp);
2475
2476         POSTING_READ(reg);
2477         udelay(150);
2478
2479         /* enable CPU FDI TX and PCH FDI RX */
2480         reg = FDI_TX_CTL(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2483         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2484         temp &= ~FDI_LINK_TRAIN_NONE;
2485         temp |= FDI_LINK_TRAIN_PATTERN_1;
2486         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2487         /* SNB-B */
2488         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2489         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2490
2491         I915_WRITE(FDI_RX_MISC(pipe),
2492                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2493
2494         reg = FDI_RX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         if (HAS_PCH_CPT(dev)) {
2497                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2499         } else {
2500                 temp &= ~FDI_LINK_TRAIN_NONE;
2501                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         }
2503         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2504
2505         POSTING_READ(reg);
2506         udelay(150);
2507
2508         for (i = 0; i < 4; i++) {
2509                 reg = FDI_TX_CTL(pipe);
2510                 temp = I915_READ(reg);
2511                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2512                 temp |= snb_b_fdi_train_param[i];
2513                 I915_WRITE(reg, temp);
2514
2515                 POSTING_READ(reg);
2516                 udelay(500);
2517
2518                 for (retry = 0; retry < 5; retry++) {
2519                         reg = FDI_RX_IIR(pipe);
2520                         temp = I915_READ(reg);
2521                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522                         if (temp & FDI_RX_BIT_LOCK) {
2523                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2524                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2525                                 break;
2526                         }
2527                         udelay(50);
2528                 }
2529                 if (retry < 5)
2530                         break;
2531         }
2532         if (i == 4)
2533                 DRM_ERROR("FDI train 1 fail!\n");
2534
2535         /* Train 2 */
2536         reg = FDI_TX_CTL(pipe);
2537         temp = I915_READ(reg);
2538         temp &= ~FDI_LINK_TRAIN_NONE;
2539         temp |= FDI_LINK_TRAIN_PATTERN_2;
2540         if (IS_GEN6(dev)) {
2541                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542                 /* SNB-B */
2543                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544         }
2545         I915_WRITE(reg, temp);
2546
2547         reg = FDI_RX_CTL(pipe);
2548         temp = I915_READ(reg);
2549         if (HAS_PCH_CPT(dev)) {
2550                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552         } else {
2553                 temp &= ~FDI_LINK_TRAIN_NONE;
2554                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555         }
2556         I915_WRITE(reg, temp);
2557
2558         POSTING_READ(reg);
2559         udelay(150);
2560
2561         for (i = 0; i < 4; i++) {
2562                 reg = FDI_TX_CTL(pipe);
2563                 temp = I915_READ(reg);
2564                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565                 temp |= snb_b_fdi_train_param[i];
2566                 I915_WRITE(reg, temp);
2567
2568                 POSTING_READ(reg);
2569                 udelay(500);
2570
2571                 for (retry = 0; retry < 5; retry++) {
2572                         reg = FDI_RX_IIR(pipe);
2573                         temp = I915_READ(reg);
2574                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575                         if (temp & FDI_RX_SYMBOL_LOCK) {
2576                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578                                 break;
2579                         }
2580                         udelay(50);
2581                 }
2582                 if (retry < 5)
2583                         break;
2584         }
2585         if (i == 4)
2586                 DRM_ERROR("FDI train 2 fail!\n");
2587
2588         DRM_DEBUG_KMS("FDI train done.\n");
2589 }
2590
2591 /* Manual link training for Ivy Bridge A0 parts */
2592 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2593 {
2594         struct drm_device *dev = crtc->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         int pipe = intel_crtc->pipe;
2598         u32 reg, temp, i;
2599
2600         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2601            for train result */
2602         reg = FDI_RX_IMR(pipe);
2603         temp = I915_READ(reg);
2604         temp &= ~FDI_RX_SYMBOL_LOCK;
2605         temp &= ~FDI_RX_BIT_LOCK;
2606         I915_WRITE(reg, temp);
2607
2608         POSTING_READ(reg);
2609         udelay(150);
2610
2611         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2612                       I915_READ(FDI_RX_IIR(pipe)));
2613
2614         /* enable CPU FDI TX and PCH FDI RX */
2615         reg = FDI_TX_CTL(pipe);
2616         temp = I915_READ(reg);
2617         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2618         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2619         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2620         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2621         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         temp |= FDI_COMPOSITE_SYNC;
2624         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2625
2626         I915_WRITE(FDI_RX_MISC(pipe),
2627                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2628
2629         reg = FDI_RX_CTL(pipe);
2630         temp = I915_READ(reg);
2631         temp &= ~FDI_LINK_TRAIN_AUTO;
2632         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2633         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2634         temp |= FDI_COMPOSITE_SYNC;
2635         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2636
2637         POSTING_READ(reg);
2638         udelay(150);
2639
2640         for (i = 0; i < 4; i++) {
2641                 reg = FDI_TX_CTL(pipe);
2642                 temp = I915_READ(reg);
2643                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2644                 temp |= snb_b_fdi_train_param[i];
2645                 I915_WRITE(reg, temp);
2646
2647                 POSTING_READ(reg);
2648                 udelay(500);
2649
2650                 reg = FDI_RX_IIR(pipe);
2651                 temp = I915_READ(reg);
2652                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2653
2654                 if (temp & FDI_RX_BIT_LOCK ||
2655                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2656                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2657                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2658                         break;
2659                 }
2660         }
2661         if (i == 4)
2662                 DRM_ERROR("FDI train 1 fail!\n");
2663
2664         /* Train 2 */
2665         reg = FDI_TX_CTL(pipe);
2666         temp = I915_READ(reg);
2667         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2668         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2669         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2671         I915_WRITE(reg, temp);
2672
2673         reg = FDI_RX_CTL(pipe);
2674         temp = I915_READ(reg);
2675         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2676         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2677         I915_WRITE(reg, temp);
2678
2679         POSTING_READ(reg);
2680         udelay(150);
2681
2682         for (i = 0; i < 4; i++) {
2683                 reg = FDI_TX_CTL(pipe);
2684                 temp = I915_READ(reg);
2685                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2686                 temp |= snb_b_fdi_train_param[i];
2687                 I915_WRITE(reg, temp);
2688
2689                 POSTING_READ(reg);
2690                 udelay(500);
2691
2692                 reg = FDI_RX_IIR(pipe);
2693                 temp = I915_READ(reg);
2694                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2695
2696                 if (temp & FDI_RX_SYMBOL_LOCK) {
2697                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2698                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2699                         break;
2700                 }
2701         }
2702         if (i == 4)
2703                 DRM_ERROR("FDI train 2 fail!\n");
2704
2705         DRM_DEBUG_KMS("FDI train done.\n");
2706 }
2707
2708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2709 {
2710         struct drm_device *dev = intel_crtc->base.dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         int pipe = intel_crtc->pipe;
2713         u32 reg, temp;
2714
2715
2716         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2717         reg = FDI_RX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2720         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2721         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2722         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2723
2724         POSTING_READ(reg);
2725         udelay(200);
2726
2727         /* Switch from Rawclk to PCDclk */
2728         temp = I915_READ(reg);
2729         I915_WRITE(reg, temp | FDI_PCDCLK);
2730
2731         POSTING_READ(reg);
2732         udelay(200);
2733
2734         /* Enable CPU FDI TX PLL, always on for Ironlake */
2735         reg = FDI_TX_CTL(pipe);
2736         temp = I915_READ(reg);
2737         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2738                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2739
2740                 POSTING_READ(reg);
2741                 udelay(100);
2742         }
2743 }
2744
2745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2746 {
2747         struct drm_device *dev = intel_crtc->base.dev;
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         int pipe = intel_crtc->pipe;
2750         u32 reg, temp;
2751
2752         /* Switch from PCDclk to Rawclk */
2753         reg = FDI_RX_CTL(pipe);
2754         temp = I915_READ(reg);
2755         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2756
2757         /* Disable CPU FDI TX PLL */
2758         reg = FDI_TX_CTL(pipe);
2759         temp = I915_READ(reg);
2760         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2761
2762         POSTING_READ(reg);
2763         udelay(100);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2768
2769         /* Wait for the clocks to turn off. */
2770         POSTING_READ(reg);
2771         udelay(100);
2772 }
2773
2774 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2775 {
2776         struct drm_device *dev = crtc->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779         int pipe = intel_crtc->pipe;
2780         u32 reg, temp;
2781
2782         /* disable CPU FDI tx and PCH FDI rx */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2786         POSTING_READ(reg);
2787
2788         reg = FDI_RX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~(0x7 << 16);
2791         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2792         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2793
2794         POSTING_READ(reg);
2795         udelay(100);
2796
2797         /* Ironlake workaround, disable clock pointer after downing FDI */
2798         if (HAS_PCH_IBX(dev)) {
2799                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2800         }
2801
2802         /* still set train pattern 1 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_1;
2807         I915_WRITE(reg, temp);
2808
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         if (HAS_PCH_CPT(dev)) {
2812                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2813                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2814         } else {
2815                 temp &= ~FDI_LINK_TRAIN_NONE;
2816                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2817         }
2818         /* BPC in FDI rx is consistent with that in PIPECONF */
2819         temp &= ~(0x07 << 16);
2820         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2821         I915_WRITE(reg, temp);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825 }
2826
2827 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2828 {
2829         struct drm_device *dev = crtc->dev;
2830         struct drm_i915_private *dev_priv = dev->dev_private;
2831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2832         unsigned long flags;
2833         bool pending;
2834
2835         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2836             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2837                 return false;
2838
2839         spin_lock_irqsave(&dev->event_lock, flags);
2840         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2841         spin_unlock_irqrestore(&dev->event_lock, flags);
2842
2843         return pending;
2844 }
2845
2846 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851         if (crtc->fb == NULL)
2852                 return;
2853
2854         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2855
2856         wait_event(dev_priv->pending_flip_queue,
2857                    !intel_crtc_has_pending_flip(crtc));
2858
2859         mutex_lock(&dev->struct_mutex);
2860         intel_finish_fb(crtc->fb);
2861         mutex_unlock(&dev->struct_mutex);
2862 }
2863
2864 /* Program iCLKIP clock to the desired frequency */
2865 static void lpt_program_iclkip(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2870         u32 temp;
2871
2872         mutex_lock(&dev_priv->dpio_lock);
2873
2874         /* It is necessary to ungate the pixclk gate prior to programming
2875          * the divisors, and gate it back when it is done.
2876          */
2877         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2878
2879         /* Disable SSCCTL */
2880         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2881                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2882                                 SBI_SSCCTL_DISABLE,
2883                         SBI_ICLK);
2884
2885         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2886         if (crtc->mode.clock == 20000) {
2887                 auxdiv = 1;
2888                 divsel = 0x41;
2889                 phaseinc = 0x20;
2890         } else {
2891                 /* The iCLK virtual clock root frequency is in MHz,
2892                  * but the crtc->mode.clock in in KHz. To get the divisors,
2893                  * it is necessary to divide one by another, so we
2894                  * convert the virtual clock precision to KHz here for higher
2895                  * precision.
2896                  */
2897                 u32 iclk_virtual_root_freq = 172800 * 1000;
2898                 u32 iclk_pi_range = 64;
2899                 u32 desired_divisor, msb_divisor_value, pi_value;
2900
2901                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2902                 msb_divisor_value = desired_divisor / iclk_pi_range;
2903                 pi_value = desired_divisor % iclk_pi_range;
2904
2905                 auxdiv = 0;
2906                 divsel = msb_divisor_value - 2;
2907                 phaseinc = pi_value;
2908         }
2909
2910         /* This should not happen with any sane values */
2911         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2912                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2913         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2914                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2915
2916         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2917                         crtc->mode.clock,
2918                         auxdiv,
2919                         divsel,
2920                         phasedir,
2921                         phaseinc);
2922
2923         /* Program SSCDIVINTPHASE6 */
2924         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2925         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2926         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2927         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2928         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2929         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2930         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2931         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2932
2933         /* Program SSCAUXDIV */
2934         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2935         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2936         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2937         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2938
2939         /* Enable modulator and associated divider */
2940         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2941         temp &= ~SBI_SSCCTL_DISABLE;
2942         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2943
2944         /* Wait for initialization time */
2945         udelay(24);
2946
2947         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948
2949         mutex_unlock(&dev_priv->dpio_lock);
2950 }
2951
2952 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2953                                                 enum pipe pch_transcoder)
2954 {
2955         struct drm_device *dev = crtc->base.dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2958
2959         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2960                    I915_READ(HTOTAL(cpu_transcoder)));
2961         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2962                    I915_READ(HBLANK(cpu_transcoder)));
2963         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2964                    I915_READ(HSYNC(cpu_transcoder)));
2965
2966         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2967                    I915_READ(VTOTAL(cpu_transcoder)));
2968         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2969                    I915_READ(VBLANK(cpu_transcoder)));
2970         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2971                    I915_READ(VSYNC(cpu_transcoder)));
2972         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2973                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2974 }
2975
2976 /*
2977  * Enable PCH resources required for PCH ports:
2978  *   - PCH PLLs
2979  *   - FDI training & RX/TX
2980  *   - update transcoder timings
2981  *   - DP transcoding bits
2982  *   - transcoder
2983  */
2984 static void ironlake_pch_enable(struct drm_crtc *crtc)
2985 {
2986         struct drm_device *dev = crtc->dev;
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2989         int pipe = intel_crtc->pipe;
2990         u32 reg, temp;
2991
2992         assert_pch_transcoder_disabled(dev_priv, pipe);
2993
2994         /* Write the TU size bits before fdi link training, so that error
2995          * detection works. */
2996         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2997                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2998
2999         /* For PCH output, training FDI link */
3000         dev_priv->display.fdi_link_train(crtc);
3001
3002         /* We need to program the right clock selection before writing the pixel
3003          * mutliplier into the DPLL. */
3004         if (HAS_PCH_CPT(dev)) {
3005                 u32 sel;
3006
3007                 temp = I915_READ(PCH_DPLL_SEL);
3008                 temp |= TRANS_DPLL_ENABLE(pipe);
3009                 sel = TRANS_DPLLB_SEL(pipe);
3010                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3011                         temp |= sel;
3012                 else
3013                         temp &= ~sel;
3014                 I915_WRITE(PCH_DPLL_SEL, temp);
3015         }
3016
3017         /* XXX: pch pll's can be enabled any time before we enable the PCH
3018          * transcoder, and we actually should do this to not upset any PCH
3019          * transcoder that already use the clock when we share it.
3020          *
3021          * Note that enable_shared_dpll tries to do the right thing, but
3022          * get_shared_dpll unconditionally resets the pll - we need that to have
3023          * the right LVDS enable sequence. */
3024         ironlake_enable_shared_dpll(intel_crtc);
3025
3026         /* set transcoder timing, panel must allow it */
3027         assert_panel_unlocked(dev_priv, pipe);
3028         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3029
3030         intel_fdi_normal_train(crtc);
3031
3032         /* For PCH DP, enable TRANS_DP_CTL */
3033         if (HAS_PCH_CPT(dev) &&
3034             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3035              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3036                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3037                 reg = TRANS_DP_CTL(pipe);
3038                 temp = I915_READ(reg);
3039                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3040                           TRANS_DP_SYNC_MASK |
3041                           TRANS_DP_BPC_MASK);
3042                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3043                          TRANS_DP_ENH_FRAMING);
3044                 temp |= bpc << 9; /* same format but at 11:9 */
3045
3046                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3047                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3048                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3049                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3050
3051                 switch (intel_trans_dp_port_sel(crtc)) {
3052                 case PCH_DP_B:
3053                         temp |= TRANS_DP_PORT_SEL_B;
3054                         break;
3055                 case PCH_DP_C:
3056                         temp |= TRANS_DP_PORT_SEL_C;
3057                         break;
3058                 case PCH_DP_D:
3059                         temp |= TRANS_DP_PORT_SEL_D;
3060                         break;
3061                 default:
3062                         BUG();
3063                 }
3064
3065                 I915_WRITE(reg, temp);
3066         }
3067
3068         ironlake_enable_pch_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void lpt_pch_enable(struct drm_crtc *crtc)
3072 {
3073         struct drm_device *dev = crtc->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3076         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3077
3078         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3079
3080         lpt_program_iclkip(crtc);
3081
3082         /* Set transcoder timing. */
3083         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3084
3085         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3086 }
3087
3088 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3089 {
3090         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3091
3092         if (pll == NULL)
3093                 return;
3094
3095         if (pll->refcount == 0) {
3096                 WARN(1, "bad %s refcount\n", pll->name);
3097                 return;
3098         }
3099
3100         if (--pll->refcount == 0) {
3101                 WARN_ON(pll->on);
3102                 WARN_ON(pll->active);
3103         }
3104
3105         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3106 }
3107
3108 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3109 {
3110         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3111         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3112         enum intel_dpll_id i;
3113
3114         if (pll) {
3115                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3116                               crtc->base.base.id, pll->name);
3117                 intel_put_shared_dpll(crtc);
3118         }
3119
3120         if (HAS_PCH_IBX(dev_priv->dev)) {
3121                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3122                 i = (enum intel_dpll_id) crtc->pipe;
3123                 pll = &dev_priv->shared_dplls[i];
3124
3125                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3126                               crtc->base.base.id, pll->name);
3127
3128                 goto found;
3129         }
3130
3131         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3132                 pll = &dev_priv->shared_dplls[i];
3133
3134                 /* Only want to check enabled timings first */
3135                 if (pll->refcount == 0)
3136                         continue;
3137
3138                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3139                            sizeof(pll->hw_state)) == 0) {
3140                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3141                                       crtc->base.base.id,
3142                                       pll->name, pll->refcount, pll->active);
3143
3144                         goto found;
3145                 }
3146         }
3147
3148         /* Ok no matching timings, maybe there's a free one? */
3149         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3150                 pll = &dev_priv->shared_dplls[i];
3151                 if (pll->refcount == 0) {
3152                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3153                                       crtc->base.base.id, pll->name);
3154                         goto found;
3155                 }
3156         }
3157
3158         return NULL;
3159
3160 found:
3161         crtc->config.shared_dpll = i;
3162         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3163                          pipe_name(crtc->pipe));
3164
3165         if (pll->active == 0) {
3166                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3167                        sizeof(pll->hw_state));
3168
3169                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3170                 WARN_ON(pll->on);
3171                 assert_shared_dpll_disabled(dev_priv, pll);
3172
3173                 pll->mode_set(dev_priv, pll);
3174         }
3175         pll->refcount++;
3176
3177         return pll;
3178 }
3179
3180 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3181 {
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183         int dslreg = PIPEDSL(pipe);
3184         u32 temp;
3185
3186         temp = I915_READ(dslreg);
3187         udelay(500);
3188         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3189                 if (wait_for(I915_READ(dslreg) != temp, 5))
3190                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3191         }
3192 }
3193
3194 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3195 {
3196         struct drm_device *dev = crtc->base.dev;
3197         struct drm_i915_private *dev_priv = dev->dev_private;
3198         int pipe = crtc->pipe;
3199
3200         if (crtc->config.pch_pfit.size) {
3201                 /* Force use of hard-coded filter coefficients
3202                  * as some pre-programmed values are broken,
3203                  * e.g. x201.
3204                  */
3205                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3206                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3207                                                  PF_PIPE_SEL_IVB(pipe));
3208                 else
3209                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3210                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3211                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3212         }
3213 }
3214
3215 static void intel_enable_planes(struct drm_crtc *crtc)
3216 {
3217         struct drm_device *dev = crtc->dev;
3218         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3219         struct intel_plane *intel_plane;
3220
3221         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3222                 if (intel_plane->pipe == pipe)
3223                         intel_plane_restore(&intel_plane->base);
3224 }
3225
3226 static void intel_disable_planes(struct drm_crtc *crtc)
3227 {
3228         struct drm_device *dev = crtc->dev;
3229         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3230         struct intel_plane *intel_plane;
3231
3232         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3233                 if (intel_plane->pipe == pipe)
3234                         intel_plane_disable(&intel_plane->base);
3235 }
3236
3237 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242         struct intel_encoder *encoder;
3243         int pipe = intel_crtc->pipe;
3244         int plane = intel_crtc->plane;
3245
3246         WARN_ON(!crtc->enabled);
3247
3248         if (intel_crtc->active)
3249                 return;
3250
3251         intel_crtc->active = true;
3252
3253         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3254         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3255
3256         intel_update_watermarks(dev);
3257
3258         for_each_encoder_on_crtc(dev, crtc, encoder)
3259                 if (encoder->pre_enable)
3260                         encoder->pre_enable(encoder);
3261
3262         if (intel_crtc->config.has_pch_encoder) {
3263                 /* Note: FDI PLL enabling _must_ be done before we enable the
3264                  * cpu pipes, hence this is separate from all the other fdi/pch
3265                  * enabling. */
3266                 ironlake_fdi_pll_enable(intel_crtc);
3267         } else {
3268                 assert_fdi_tx_disabled(dev_priv, pipe);
3269                 assert_fdi_rx_disabled(dev_priv, pipe);
3270         }
3271
3272         ironlake_pfit_enable(intel_crtc);
3273
3274         /*
3275          * On ILK+ LUT must be loaded before the pipe is running but with
3276          * clocks enabled
3277          */
3278         intel_crtc_load_lut(crtc);
3279
3280         intel_enable_pipe(dev_priv, pipe,
3281                           intel_crtc->config.has_pch_encoder);
3282         intel_enable_plane(dev_priv, plane, pipe);
3283         intel_enable_planes(crtc);
3284         intel_crtc_update_cursor(crtc, true);
3285
3286         if (intel_crtc->config.has_pch_encoder)
3287                 ironlake_pch_enable(crtc);
3288
3289         mutex_lock(&dev->struct_mutex);
3290         intel_update_fbc(dev);
3291         mutex_unlock(&dev->struct_mutex);
3292
3293         for_each_encoder_on_crtc(dev, crtc, encoder)
3294                 encoder->enable(encoder);
3295
3296         if (HAS_PCH_CPT(dev))
3297                 cpt_verify_modeset(dev, intel_crtc->pipe);
3298
3299         /*
3300          * There seems to be a race in PCH platform hw (at least on some
3301          * outputs) where an enabled pipe still completes any pageflip right
3302          * away (as if the pipe is off) instead of waiting for vblank. As soon
3303          * as the first vblank happend, everything works as expected. Hence just
3304          * wait for one vblank before returning to avoid strange things
3305          * happening.
3306          */
3307         intel_wait_for_vblank(dev, intel_crtc->pipe);
3308 }
3309
3310 /* IPS only exists on ULT machines and is tied to pipe A. */
3311 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3312 {
3313         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3314 }
3315
3316 static void hsw_enable_ips(struct intel_crtc *crtc)
3317 {
3318         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3319
3320         if (!crtc->config.ips_enabled)
3321                 return;
3322
3323         /* We can only enable IPS after we enable a plane and wait for a vblank.
3324          * We guarantee that the plane is enabled by calling intel_enable_ips
3325          * only after intel_enable_plane. And intel_enable_plane already waits
3326          * for a vblank, so all we need to do here is to enable the IPS bit. */
3327         assert_plane_enabled(dev_priv, crtc->plane);
3328         I915_WRITE(IPS_CTL, IPS_ENABLE);
3329 }
3330
3331 static void hsw_disable_ips(struct intel_crtc *crtc)
3332 {
3333         struct drm_device *dev = crtc->base.dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335
3336         if (!crtc->config.ips_enabled)
3337                 return;
3338
3339         assert_plane_enabled(dev_priv, crtc->plane);
3340         I915_WRITE(IPS_CTL, 0);
3341
3342         /* We need to wait for a vblank before we can disable the plane. */
3343         intel_wait_for_vblank(dev, crtc->pipe);
3344 }
3345
3346 static void haswell_crtc_enable(struct drm_crtc *crtc)
3347 {
3348         struct drm_device *dev = crtc->dev;
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351         struct intel_encoder *encoder;
3352         int pipe = intel_crtc->pipe;
3353         int plane = intel_crtc->plane;
3354
3355         WARN_ON(!crtc->enabled);
3356
3357         if (intel_crtc->active)
3358                 return;
3359
3360         intel_crtc->active = true;
3361
3362         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3363         if (intel_crtc->config.has_pch_encoder)
3364                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3365
3366         intel_update_watermarks(dev);
3367
3368         if (intel_crtc->config.has_pch_encoder)
3369                 dev_priv->display.fdi_link_train(crtc);
3370
3371         for_each_encoder_on_crtc(dev, crtc, encoder)
3372                 if (encoder->pre_enable)
3373                         encoder->pre_enable(encoder);
3374
3375         intel_ddi_enable_pipe_clock(intel_crtc);
3376
3377         ironlake_pfit_enable(intel_crtc);
3378
3379         /*
3380          * On ILK+ LUT must be loaded before the pipe is running but with
3381          * clocks enabled
3382          */
3383         intel_crtc_load_lut(crtc);
3384
3385         intel_ddi_set_pipe_settings(crtc);
3386         intel_ddi_enable_transcoder_func(crtc);
3387
3388         intel_enable_pipe(dev_priv, pipe,
3389                           intel_crtc->config.has_pch_encoder);
3390         intel_enable_plane(dev_priv, plane, pipe);
3391         intel_enable_planes(crtc);
3392         intel_crtc_update_cursor(crtc, true);
3393
3394         hsw_enable_ips(intel_crtc);
3395
3396         if (intel_crtc->config.has_pch_encoder)
3397                 lpt_pch_enable(crtc);
3398
3399         mutex_lock(&dev->struct_mutex);
3400         intel_update_fbc(dev);
3401         mutex_unlock(&dev->struct_mutex);
3402
3403         for_each_encoder_on_crtc(dev, crtc, encoder)
3404                 encoder->enable(encoder);
3405
3406         /*
3407          * There seems to be a race in PCH platform hw (at least on some
3408          * outputs) where an enabled pipe still completes any pageflip right
3409          * away (as if the pipe is off) instead of waiting for vblank. As soon
3410          * as the first vblank happend, everything works as expected. Hence just
3411          * wait for one vblank before returning to avoid strange things
3412          * happening.
3413          */
3414         intel_wait_for_vblank(dev, intel_crtc->pipe);
3415 }
3416
3417 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3418 {
3419         struct drm_device *dev = crtc->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         int pipe = crtc->pipe;
3422
3423         /* To avoid upsetting the power well on haswell only disable the pfit if
3424          * it's in use. The hw state code will make sure we get this right. */
3425         if (crtc->config.pch_pfit.size) {
3426                 I915_WRITE(PF_CTL(pipe), 0);
3427                 I915_WRITE(PF_WIN_POS(pipe), 0);
3428                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3429         }
3430 }
3431
3432 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3433 {
3434         struct drm_device *dev = crtc->dev;
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3437         struct intel_encoder *encoder;
3438         int pipe = intel_crtc->pipe;
3439         int plane = intel_crtc->plane;
3440         u32 reg, temp;
3441
3442
3443         if (!intel_crtc->active)
3444                 return;
3445
3446         for_each_encoder_on_crtc(dev, crtc, encoder)
3447                 encoder->disable(encoder);
3448
3449         intel_crtc_wait_for_pending_flips(crtc);
3450         drm_vblank_off(dev, pipe);
3451
3452         if (dev_priv->fbc.plane == plane)
3453                 intel_disable_fbc(dev);
3454
3455         intel_crtc_update_cursor(crtc, false);
3456         intel_disable_planes(crtc);
3457         intel_disable_plane(dev_priv, plane, pipe);
3458
3459         if (intel_crtc->config.has_pch_encoder)
3460                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3461
3462         intel_disable_pipe(dev_priv, pipe);
3463
3464         ironlake_pfit_disable(intel_crtc);
3465
3466         for_each_encoder_on_crtc(dev, crtc, encoder)
3467                 if (encoder->post_disable)
3468                         encoder->post_disable(encoder);
3469
3470         if (intel_crtc->config.has_pch_encoder) {
3471                 ironlake_fdi_disable(crtc);
3472
3473                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3474                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3475
3476                 if (HAS_PCH_CPT(dev)) {
3477                         /* disable TRANS_DP_CTL */
3478                         reg = TRANS_DP_CTL(pipe);
3479                         temp = I915_READ(reg);
3480                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3481                                   TRANS_DP_PORT_SEL_MASK);
3482                         temp |= TRANS_DP_PORT_SEL_NONE;
3483                         I915_WRITE(reg, temp);
3484
3485                         /* disable DPLL_SEL */
3486                         temp = I915_READ(PCH_DPLL_SEL);
3487                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3488                         I915_WRITE(PCH_DPLL_SEL, temp);
3489                 }
3490
3491                 /* disable PCH DPLL */
3492                 intel_disable_shared_dpll(intel_crtc);
3493
3494                 ironlake_fdi_pll_disable(intel_crtc);
3495         }
3496
3497         intel_crtc->active = false;
3498         intel_update_watermarks(dev);
3499
3500         mutex_lock(&dev->struct_mutex);
3501         intel_update_fbc(dev);
3502         mutex_unlock(&dev->struct_mutex);
3503 }
3504
3505 static void haswell_crtc_disable(struct drm_crtc *crtc)
3506 {
3507         struct drm_device *dev = crtc->dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3510         struct intel_encoder *encoder;
3511         int pipe = intel_crtc->pipe;
3512         int plane = intel_crtc->plane;
3513         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3514
3515         if (!intel_crtc->active)
3516                 return;
3517
3518         for_each_encoder_on_crtc(dev, crtc, encoder)
3519                 encoder->disable(encoder);
3520
3521         intel_crtc_wait_for_pending_flips(crtc);
3522         drm_vblank_off(dev, pipe);
3523
3524         /* FBC must be disabled before disabling the plane on HSW. */
3525         if (dev_priv->fbc.plane == plane)
3526                 intel_disable_fbc(dev);
3527
3528         hsw_disable_ips(intel_crtc);
3529
3530         intel_crtc_update_cursor(crtc, false);
3531         intel_disable_planes(crtc);
3532         intel_disable_plane(dev_priv, plane, pipe);
3533
3534         if (intel_crtc->config.has_pch_encoder)
3535                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3536         intel_disable_pipe(dev_priv, pipe);
3537
3538         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3539
3540         ironlake_pfit_disable(intel_crtc);
3541
3542         intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         if (intel_crtc->config.has_pch_encoder) {
3549                 lpt_disable_pch_transcoder(dev_priv);
3550                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3551                 intel_ddi_fdi_disable(crtc);
3552         }
3553
3554         intel_crtc->active = false;
3555         intel_update_watermarks(dev);
3556
3557         mutex_lock(&dev->struct_mutex);
3558         intel_update_fbc(dev);
3559         mutex_unlock(&dev->struct_mutex);
3560 }
3561
3562 static void ironlake_crtc_off(struct drm_crtc *crtc)
3563 {
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565         intel_put_shared_dpll(intel_crtc);
3566 }
3567
3568 static void haswell_crtc_off(struct drm_crtc *crtc)
3569 {
3570         intel_ddi_put_crtc_pll(crtc);
3571 }
3572
3573 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574 {
3575         if (!enable && intel_crtc->overlay) {
3576                 struct drm_device *dev = intel_crtc->base.dev;
3577                 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579                 mutex_lock(&dev->struct_mutex);
3580                 dev_priv->mm.interruptible = false;
3581                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3582                 dev_priv->mm.interruptible = true;
3583                 mutex_unlock(&dev->struct_mutex);
3584         }
3585
3586         /* Let userspace switch the overlay on again. In most cases userspace
3587          * has to recompute where to put it anyway.
3588          */
3589 }
3590
3591 /**
3592  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593  * cursor plane briefly if not already running after enabling the display
3594  * plane.
3595  * This workaround avoids occasional blank screens when self refresh is
3596  * enabled.
3597  */
3598 static void
3599 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600 {
3601         u32 cntl = I915_READ(CURCNTR(pipe));
3602
3603         if ((cntl & CURSOR_MODE) == 0) {
3604                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
3606                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608                 intel_wait_for_vblank(dev_priv->dev, pipe);
3609                 I915_WRITE(CURCNTR(pipe), cntl);
3610                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612         }
3613 }
3614
3615 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->base.dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619         struct intel_crtc_config *pipe_config = &crtc->config;
3620
3621         if (!crtc->config.gmch_pfit.control)
3622                 return;
3623
3624         /*
3625          * The panel fitter should only be adjusted whilst the pipe is disabled,
3626          * according to register description and PRM.
3627          */
3628         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3629         assert_pipe_disabled(dev_priv, crtc->pipe);
3630
3631         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3632         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3633
3634         /* Border color in case we don't scale up to the full screen. Black by
3635          * default, change to something else for debugging. */
3636         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3637 }
3638
3639 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3640 {
3641         struct drm_device *dev = crtc->dev;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         struct intel_encoder *encoder;
3645         int pipe = intel_crtc->pipe;
3646         int plane = intel_crtc->plane;
3647
3648         WARN_ON(!crtc->enabled);
3649
3650         if (intel_crtc->active)
3651                 return;
3652
3653         intel_crtc->active = true;
3654         intel_update_watermarks(dev);
3655
3656         mutex_lock(&dev_priv->dpio_lock);
3657
3658         for_each_encoder_on_crtc(dev, crtc, encoder)
3659                 if (encoder->pre_pll_enable)
3660                         encoder->pre_pll_enable(encoder);
3661
3662         vlv_enable_pll(intel_crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         /* VLV wants encoder enabling _before_ the pipe is up. */
3669         for_each_encoder_on_crtc(dev, crtc, encoder)
3670                 encoder->enable(encoder);
3671
3672         i9xx_pfit_enable(intel_crtc);
3673
3674         intel_crtc_load_lut(crtc);
3675
3676         intel_enable_pipe(dev_priv, pipe, false);
3677         intel_enable_plane(dev_priv, plane, pipe);
3678         intel_enable_planes(crtc);
3679         intel_crtc_update_cursor(crtc, true);
3680
3681         intel_update_fbc(dev);
3682
3683         mutex_unlock(&dev_priv->dpio_lock);
3684 }
3685
3686 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3687 {
3688         struct drm_device *dev = crtc->dev;
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3691         struct intel_encoder *encoder;
3692         int pipe = intel_crtc->pipe;
3693         int plane = intel_crtc->plane;
3694
3695         WARN_ON(!crtc->enabled);
3696
3697         if (intel_crtc->active)
3698                 return;
3699
3700         intel_crtc->active = true;
3701         intel_update_watermarks(dev);
3702
3703         for_each_encoder_on_crtc(dev, crtc, encoder)
3704                 if (encoder->pre_enable)
3705                         encoder->pre_enable(encoder);
3706
3707         i9xx_enable_pll(intel_crtc);
3708
3709         i9xx_pfit_enable(intel_crtc);
3710
3711         intel_crtc_load_lut(crtc);
3712
3713         intel_enable_pipe(dev_priv, pipe, false);
3714         intel_enable_plane(dev_priv, plane, pipe);
3715         intel_enable_planes(crtc);
3716         /* The fixup needs to happen before cursor is enabled */
3717         if (IS_G4X(dev))
3718                 g4x_fixup_plane(dev_priv, pipe);
3719         intel_crtc_update_cursor(crtc, true);
3720
3721         /* Give the overlay scaler a chance to enable if it's on this pipe */
3722         intel_crtc_dpms_overlay(intel_crtc, true);
3723
3724         intel_update_fbc(dev);
3725
3726         for_each_encoder_on_crtc(dev, crtc, encoder)
3727                 encoder->enable(encoder);
3728 }
3729
3730 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3731 {
3732         struct drm_device *dev = crtc->base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735         if (!crtc->config.gmch_pfit.control)
3736                 return;
3737
3738         assert_pipe_disabled(dev_priv, crtc->pipe);
3739
3740         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3741                          I915_READ(PFIT_CONTROL));
3742         I915_WRITE(PFIT_CONTROL, 0);
3743 }
3744
3745 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3746 {
3747         struct drm_device *dev = crtc->dev;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750         struct intel_encoder *encoder;
3751         int pipe = intel_crtc->pipe;
3752         int plane = intel_crtc->plane;
3753
3754         if (!intel_crtc->active)
3755                 return;
3756
3757         for_each_encoder_on_crtc(dev, crtc, encoder)
3758                 encoder->disable(encoder);
3759
3760         /* Give the overlay scaler a chance to disable if it's on this pipe */
3761         intel_crtc_wait_for_pending_flips(crtc);
3762         drm_vblank_off(dev, pipe);
3763
3764         if (dev_priv->fbc.plane == plane)
3765                 intel_disable_fbc(dev);
3766
3767         intel_crtc_dpms_overlay(intel_crtc, false);
3768         intel_crtc_update_cursor(crtc, false);
3769         intel_disable_planes(crtc);
3770         intel_disable_plane(dev_priv, plane, pipe);
3771
3772         intel_disable_pipe(dev_priv, pipe);
3773
3774         i9xx_pfit_disable(intel_crtc);
3775
3776         for_each_encoder_on_crtc(dev, crtc, encoder)
3777                 if (encoder->post_disable)
3778                         encoder->post_disable(encoder);
3779
3780         i9xx_disable_pll(dev_priv, pipe);
3781
3782         intel_crtc->active = false;
3783         intel_update_fbc(dev);
3784         intel_update_watermarks(dev);
3785 }
3786
3787 static void i9xx_crtc_off(struct drm_crtc *crtc)
3788 {
3789 }
3790
3791 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3792                                     bool enabled)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_master_private *master_priv;
3796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797         int pipe = intel_crtc->pipe;
3798
3799         if (!dev->primary->master)
3800                 return;
3801
3802         master_priv = dev->primary->master->driver_priv;
3803         if (!master_priv->sarea_priv)
3804                 return;
3805
3806         switch (pipe) {
3807         case 0:
3808                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3809                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3810                 break;
3811         case 1:
3812                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3813                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3814                 break;
3815         default:
3816                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3817                 break;
3818         }
3819 }
3820
3821 /**
3822  * Sets the power management mode of the pipe and plane.
3823  */
3824 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3825 {
3826         struct drm_device *dev = crtc->dev;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         struct intel_encoder *intel_encoder;
3829         bool enable = false;
3830
3831         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3832                 enable |= intel_encoder->connectors_active;
3833
3834         if (enable)
3835                 dev_priv->display.crtc_enable(crtc);
3836         else
3837                 dev_priv->display.crtc_disable(crtc);
3838
3839         intel_crtc_update_sarea(crtc, enable);
3840 }
3841
3842 static void intel_crtc_disable(struct drm_crtc *crtc)
3843 {
3844         struct drm_device *dev = crtc->dev;
3845         struct drm_connector *connector;
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848
3849         /* crtc should still be enabled when we disable it. */
3850         WARN_ON(!crtc->enabled);
3851
3852         dev_priv->display.crtc_disable(crtc);
3853         intel_crtc->eld_vld = false;
3854         intel_crtc_update_sarea(crtc, false);
3855         dev_priv->display.off(crtc);
3856
3857         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3858         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3859
3860         if (crtc->fb) {
3861                 mutex_lock(&dev->struct_mutex);
3862                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3863                 mutex_unlock(&dev->struct_mutex);
3864                 crtc->fb = NULL;
3865         }
3866
3867         /* Update computed state. */
3868         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3869                 if (!connector->encoder || !connector->encoder->crtc)
3870                         continue;
3871
3872                 if (connector->encoder->crtc != crtc)
3873                         continue;
3874
3875                 connector->dpms = DRM_MODE_DPMS_OFF;
3876                 to_intel_encoder(connector->encoder)->connectors_active = false;
3877         }
3878 }
3879
3880 void intel_modeset_disable(struct drm_device *dev)
3881 {
3882         struct drm_crtc *crtc;
3883
3884         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3885                 if (crtc->enabled)
3886                         intel_crtc_disable(crtc);
3887         }
3888 }
3889
3890 void intel_encoder_destroy(struct drm_encoder *encoder)
3891 {
3892         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3893
3894         drm_encoder_cleanup(encoder);
3895         kfree(intel_encoder);
3896 }
3897
3898 /* Simple dpms helper for encodres with just one connector, no cloning and only
3899  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3900  * state of the entire output pipe. */
3901 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3902 {
3903         if (mode == DRM_MODE_DPMS_ON) {
3904                 encoder->connectors_active = true;
3905
3906                 intel_crtc_update_dpms(encoder->base.crtc);
3907         } else {
3908                 encoder->connectors_active = false;
3909
3910                 intel_crtc_update_dpms(encoder->base.crtc);
3911         }
3912 }
3913
3914 /* Cross check the actual hw state with our own modeset state tracking (and it's
3915  * internal consistency). */
3916 static void intel_connector_check_state(struct intel_connector *connector)
3917 {
3918         if (connector->get_hw_state(connector)) {
3919                 struct intel_encoder *encoder = connector->encoder;
3920                 struct drm_crtc *crtc;
3921                 bool encoder_enabled;
3922                 enum pipe pipe;
3923
3924                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3925                               connector->base.base.id,
3926                               drm_get_connector_name(&connector->base));
3927
3928                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3929                      "wrong connector dpms state\n");
3930                 WARN(connector->base.encoder != &encoder->base,
3931                      "active connector not linked to encoder\n");
3932                 WARN(!encoder->connectors_active,
3933                      "encoder->connectors_active not set\n");
3934
3935                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3936                 WARN(!encoder_enabled, "encoder not enabled\n");
3937                 if (WARN_ON(!encoder->base.crtc))
3938                         return;
3939
3940                 crtc = encoder->base.crtc;
3941
3942                 WARN(!crtc->enabled, "crtc not enabled\n");
3943                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3944                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3945                      "encoder active on the wrong pipe\n");
3946         }
3947 }
3948
3949 /* Even simpler default implementation, if there's really no special case to
3950  * consider. */
3951 void intel_connector_dpms(struct drm_connector *connector, int mode)
3952 {
3953         struct intel_encoder *encoder = intel_attached_encoder(connector);
3954
3955         /* All the simple cases only support two dpms states. */
3956         if (mode != DRM_MODE_DPMS_ON)
3957                 mode = DRM_MODE_DPMS_OFF;
3958
3959         if (mode == connector->dpms)
3960                 return;
3961
3962         connector->dpms = mode;
3963
3964         /* Only need to change hw state when actually enabled */
3965         if (encoder->base.crtc)
3966                 intel_encoder_dpms(encoder, mode);
3967         else
3968                 WARN_ON(encoder->connectors_active != false);
3969
3970         intel_modeset_check_state(connector->dev);
3971 }
3972
3973 /* Simple connector->get_hw_state implementation for encoders that support only
3974  * one connector and no cloning and hence the encoder state determines the state
3975  * of the connector. */
3976 bool intel_connector_get_hw_state(struct intel_connector *connector)
3977 {
3978         enum pipe pipe = 0;
3979         struct intel_encoder *encoder = connector->encoder;
3980
3981         return encoder->get_hw_state(encoder, &pipe);
3982 }
3983
3984 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3985                                      struct intel_crtc_config *pipe_config)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         struct intel_crtc *pipe_B_crtc =
3989                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3990
3991         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3992                       pipe_name(pipe), pipe_config->fdi_lanes);
3993         if (pipe_config->fdi_lanes > 4) {
3994                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3995                               pipe_name(pipe), pipe_config->fdi_lanes);
3996                 return false;
3997         }
3998
3999         if (IS_HASWELL(dev)) {
4000                 if (pipe_config->fdi_lanes > 2) {
4001                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4002                                       pipe_config->fdi_lanes);
4003                         return false;
4004                 } else {
4005                         return true;
4006                 }
4007         }
4008
4009         if (INTEL_INFO(dev)->num_pipes == 2)
4010                 return true;
4011
4012         /* Ivybridge 3 pipe is really complicated */
4013         switch (pipe) {
4014         case PIPE_A:
4015                 return true;
4016         case PIPE_B:
4017                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4018                     pipe_config->fdi_lanes > 2) {
4019                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020                                       pipe_name(pipe), pipe_config->fdi_lanes);
4021                         return false;
4022                 }
4023                 return true;
4024         case PIPE_C:
4025                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4026                     pipe_B_crtc->config.fdi_lanes <= 2) {
4027                         if (pipe_config->fdi_lanes > 2) {
4028                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4029                                               pipe_name(pipe), pipe_config->fdi_lanes);
4030                                 return false;
4031                         }
4032                 } else {
4033                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4034                         return false;
4035                 }
4036                 return true;
4037         default:
4038                 BUG();
4039         }
4040 }
4041
4042 #define RETRY 1
4043 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4044                                        struct intel_crtc_config *pipe_config)
4045 {
4046         struct drm_device *dev = intel_crtc->base.dev;
4047         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4048         int lane, link_bw, fdi_dotclock;
4049         bool setup_ok, needs_recompute = false;
4050
4051 retry:
4052         /* FDI is a binary signal running at ~2.7GHz, encoding
4053          * each output octet as 10 bits. The actual frequency
4054          * is stored as a divider into a 100MHz clock, and the
4055          * mode pixel clock is stored in units of 1KHz.
4056          * Hence the bw of each lane in terms of the mode signal
4057          * is:
4058          */
4059         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4060
4061         fdi_dotclock = adjusted_mode->clock;
4062         fdi_dotclock /= pipe_config->pixel_multiplier;
4063
4064         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4065                                            pipe_config->pipe_bpp);
4066
4067         pipe_config->fdi_lanes = lane;
4068
4069         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4070                                link_bw, &pipe_config->fdi_m_n);
4071
4072         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4073                                             intel_crtc->pipe, pipe_config);
4074         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4075                 pipe_config->pipe_bpp -= 2*3;
4076                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4077                               pipe_config->pipe_bpp);
4078                 needs_recompute = true;
4079                 pipe_config->bw_constrained = true;
4080
4081                 goto retry;
4082         }
4083
4084         if (needs_recompute)
4085                 return RETRY;
4086
4087         return setup_ok ? 0 : -EINVAL;
4088 }
4089
4090 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4091                                    struct intel_crtc_config *pipe_config)
4092 {
4093         pipe_config->ips_enabled = i915_enable_ips &&
4094                                    hsw_crtc_supports_ips(crtc) &&
4095                                    pipe_config->pipe_bpp == 24;
4096 }
4097
4098 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4099                                      struct intel_crtc_config *pipe_config)
4100 {
4101         struct drm_device *dev = crtc->base.dev;
4102         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4103
4104         if (HAS_PCH_SPLIT(dev)) {
4105                 /* FDI link clock is fixed at 2.7G */
4106                 if (pipe_config->requested_mode.clock * 3
4107                     > IRONLAKE_FDI_FREQ * 4)
4108                         return -EINVAL;
4109         }
4110
4111         /* All interlaced capable intel hw wants timings in frames. Note though
4112          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4113          * timings, so we need to be careful not to clobber these.*/
4114         if (!pipe_config->timings_set)
4115                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4116
4117         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4118          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4119          */
4120         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4121                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4122                 return -EINVAL;
4123
4124         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4125                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4126         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4127                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4128                  * for lvds. */
4129                 pipe_config->pipe_bpp = 8*3;
4130         }
4131
4132         if (HAS_IPS(dev))
4133                 hsw_compute_ips_config(crtc, pipe_config);
4134
4135         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4136          * clock survives for now. */
4137         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4138                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4139
4140         if (pipe_config->has_pch_encoder)
4141                 return ironlake_fdi_compute_config(crtc, pipe_config);
4142
4143         return 0;
4144 }
4145
4146 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4147 {
4148         return 400000; /* FIXME */
4149 }
4150
4151 static int i945_get_display_clock_speed(struct drm_device *dev)
4152 {
4153         return 400000;
4154 }
4155
4156 static int i915_get_display_clock_speed(struct drm_device *dev)
4157 {
4158         return 333000;
4159 }
4160
4161 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4162 {
4163         return 200000;
4164 }
4165
4166 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4167 {
4168         u16 gcfgc = 0;
4169
4170         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4171
4172         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4173                 return 133000;
4174         else {
4175                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4176                 case GC_DISPLAY_CLOCK_333_MHZ:
4177                         return 333000;
4178                 default:
4179                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4180                         return 190000;
4181                 }
4182         }
4183 }
4184
4185 static int i865_get_display_clock_speed(struct drm_device *dev)
4186 {
4187         return 266000;
4188 }
4189
4190 static int i855_get_display_clock_speed(struct drm_device *dev)
4191 {
4192         u16 hpllcc = 0;
4193         /* Assume that the hardware is in the high speed state.  This
4194          * should be the default.
4195          */
4196         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4197         case GC_CLOCK_133_200:
4198         case GC_CLOCK_100_200:
4199                 return 200000;
4200         case GC_CLOCK_166_250:
4201                 return 250000;
4202         case GC_CLOCK_100_133:
4203                 return 133000;
4204         }
4205
4206         /* Shouldn't happen */
4207         return 0;
4208 }
4209
4210 static int i830_get_display_clock_speed(struct drm_device *dev)
4211 {
4212         return 133000;
4213 }
4214
4215 static void
4216 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4217 {
4218         while (*num > DATA_LINK_M_N_MASK ||
4219                *den > DATA_LINK_M_N_MASK) {
4220                 *num >>= 1;
4221                 *den >>= 1;
4222         }
4223 }
4224
4225 static void compute_m_n(unsigned int m, unsigned int n,
4226                         uint32_t *ret_m, uint32_t *ret_n)
4227 {
4228         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4229         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4230         intel_reduce_m_n_ratio(ret_m, ret_n);
4231 }
4232
4233 void
4234 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4235                        int pixel_clock, int link_clock,
4236                        struct intel_link_m_n *m_n)
4237 {
4238         m_n->tu = 64;
4239
4240         compute_m_n(bits_per_pixel * pixel_clock,
4241                     link_clock * nlanes * 8,
4242                     &m_n->gmch_m, &m_n->gmch_n);
4243
4244         compute_m_n(pixel_clock, link_clock,
4245                     &m_n->link_m, &m_n->link_n);
4246 }
4247
4248 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4249 {
4250         if (i915_panel_use_ssc >= 0)
4251                 return i915_panel_use_ssc != 0;
4252         return dev_priv->vbt.lvds_use_ssc
4253                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4254 }
4255
4256 static int vlv_get_refclk(struct drm_crtc *crtc)
4257 {
4258         struct drm_device *dev = crtc->dev;
4259         struct drm_i915_private *dev_priv = dev->dev_private;
4260         int refclk = 27000; /* for DP & HDMI */
4261
4262         return 100000; /* only one validated so far */
4263
4264         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4265                 refclk = 96000;
4266         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4267                 if (intel_panel_use_ssc(dev_priv))
4268                         refclk = 100000;
4269                 else
4270                         refclk = 96000;
4271         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4272                 refclk = 100000;
4273         }
4274
4275         return refclk;
4276 }
4277
4278 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4279 {
4280         struct drm_device *dev = crtc->dev;
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         int refclk;
4283
4284         if (IS_VALLEYVIEW(dev)) {
4285                 refclk = vlv_get_refclk(crtc);
4286         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4287             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4288                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4289                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4290                               refclk / 1000);
4291         } else if (!IS_GEN2(dev)) {
4292                 refclk = 96000;
4293         } else {
4294                 refclk = 48000;
4295         }
4296
4297         return refclk;
4298 }
4299
4300 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4301 {
4302         return (1 << dpll->n) << 16 | dpll->m2;
4303 }
4304
4305 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4306 {
4307         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4308 }
4309
4310 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4311                                      intel_clock_t *reduced_clock)
4312 {
4313         struct drm_device *dev = crtc->base.dev;
4314         struct drm_i915_private *dev_priv = dev->dev_private;
4315         int pipe = crtc->pipe;
4316         u32 fp, fp2 = 0;
4317
4318         if (IS_PINEVIEW(dev)) {
4319                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4320                 if (reduced_clock)
4321                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4322         } else {
4323                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4324                 if (reduced_clock)
4325                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4326         }
4327
4328         I915_WRITE(FP0(pipe), fp);
4329         crtc->config.dpll_hw_state.fp0 = fp;
4330
4331         crtc->lowfreq_avail = false;
4332         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4333             reduced_clock && i915_powersave) {
4334                 I915_WRITE(FP1(pipe), fp2);
4335                 crtc->config.dpll_hw_state.fp1 = fp2;
4336                 crtc->lowfreq_avail = true;
4337         } else {
4338                 I915_WRITE(FP1(pipe), fp);
4339                 crtc->config.dpll_hw_state.fp1 = fp;
4340         }
4341 }
4342
4343 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4344 {
4345         u32 reg_val;
4346
4347         /*
4348          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4349          * and set it to a reasonable value instead.
4350          */
4351         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4352         reg_val &= 0xffffff00;
4353         reg_val |= 0x00000030;
4354         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4355
4356         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4357         reg_val &= 0x8cffffff;
4358         reg_val = 0x8c000000;
4359         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4360
4361         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4362         reg_val &= 0xffffff00;
4363         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4364
4365         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4366         reg_val &= 0x00ffffff;
4367         reg_val |= 0xb0000000;
4368         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4369 }
4370
4371 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4372                                          struct intel_link_m_n *m_n)
4373 {
4374         struct drm_device *dev = crtc->base.dev;
4375         struct drm_i915_private *dev_priv = dev->dev_private;
4376         int pipe = crtc->pipe;
4377
4378         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4379         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4380         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4381         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4382 }
4383
4384 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4385                                          struct intel_link_m_n *m_n)
4386 {
4387         struct drm_device *dev = crtc->base.dev;
4388         struct drm_i915_private *dev_priv = dev->dev_private;
4389         int pipe = crtc->pipe;
4390         enum transcoder transcoder = crtc->config.cpu_transcoder;
4391
4392         if (INTEL_INFO(dev)->gen >= 5) {
4393                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4394                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4395                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4396                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4397         } else {
4398                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4399                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4400                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4401                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4402         }
4403 }
4404
4405 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4406 {
4407         if (crtc->config.has_pch_encoder)
4408                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4409         else
4410                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4411 }
4412
4413 static void vlv_update_pll(struct intel_crtc *crtc)
4414 {
4415         struct drm_device *dev = crtc->base.dev;
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417         int pipe = crtc->pipe;
4418         u32 dpll, mdiv;
4419         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4420         bool is_hdmi;
4421         u32 coreclk, reg_val, dpll_md;
4422
4423         mutex_lock(&dev_priv->dpio_lock);
4424
4425         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4426
4427         bestn = crtc->config.dpll.n;
4428         bestm1 = crtc->config.dpll.m1;
4429         bestm2 = crtc->config.dpll.m2;
4430         bestp1 = crtc->config.dpll.p1;
4431         bestp2 = crtc->config.dpll.p2;
4432
4433         /* See eDP HDMI DPIO driver vbios notes doc */
4434
4435         /* PLL B needs special handling */
4436         if (pipe)
4437                 vlv_pllb_recal_opamp(dev_priv);
4438
4439         /* Set up Tx target for periodic Rcomp update */
4440         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4441
4442         /* Disable target IRef on PLL */
4443         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4444         reg_val &= 0x00ffffff;
4445         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4446
4447         /* Disable fast lock */
4448         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4449
4450         /* Set idtafcrecal before PLL is enabled */
4451         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4452         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4453         mdiv |= ((bestn << DPIO_N_SHIFT));
4454         mdiv |= (1 << DPIO_K_SHIFT);
4455
4456         /*
4457          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4458          * but we don't support that).
4459          * Note: don't use the DAC post divider as it seems unstable.
4460          */
4461         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4462         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4463
4464         mdiv |= DPIO_ENABLE_CALIBRATION;
4465         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4466
4467         /* Set HBR and RBR LPF coefficients */
4468         if (crtc->config.port_clock == 162000 ||
4469             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4470             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4471                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4472                                  0x009f0003);
4473         else
4474                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4475                                  0x00d0000f);
4476
4477         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4478             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4479                 /* Use SSC source */
4480                 if (!pipe)
4481                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4482                                          0x0df40000);
4483                 else
4484                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4485                                          0x0df70000);
4486         } else { /* HDMI or VGA */
4487                 /* Use bend source */
4488                 if (!pipe)
4489                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4490                                          0x0df70000);
4491                 else
4492                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4493                                          0x0df40000);
4494         }
4495
4496         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4497         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4498         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4499             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4500                 coreclk |= 0x01000000;
4501         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4502
4503         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4504
4505         /* Enable DPIO clock input */
4506         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4507                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4508         if (pipe)
4509                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4510
4511         dpll |= DPLL_VCO_ENABLE;
4512         crtc->config.dpll_hw_state.dpll = dpll;
4513
4514         dpll_md = (crtc->config.pixel_multiplier - 1)
4515                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4516         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4517
4518         if (crtc->config.has_dp_encoder)
4519                 intel_dp_set_m_n(crtc);
4520
4521         mutex_unlock(&dev_priv->dpio_lock);
4522 }
4523
4524 static void i9xx_update_pll(struct intel_crtc *crtc,
4525                             intel_clock_t *reduced_clock,
4526                             int num_connectors)
4527 {
4528         struct drm_device *dev = crtc->base.dev;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         u32 dpll;
4531         bool is_sdvo;
4532         struct dpll *clock = &crtc->config.dpll;
4533
4534         i9xx_update_pll_dividers(crtc, reduced_clock);
4535
4536         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4537                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4538
4539         dpll = DPLL_VGA_MODE_DIS;
4540
4541         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4542                 dpll |= DPLLB_MODE_LVDS;
4543         else
4544                 dpll |= DPLLB_MODE_DAC_SERIAL;
4545
4546         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4547                 dpll |= (crtc->config.pixel_multiplier - 1)
4548                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4549         }
4550
4551         if (is_sdvo)
4552                 dpll |= DPLL_SDVO_HIGH_SPEED;
4553
4554         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4555                 dpll |= DPLL_SDVO_HIGH_SPEED;
4556
4557         /* compute bitmask from p1 value */
4558         if (IS_PINEVIEW(dev))
4559                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4560         else {
4561                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4562                 if (IS_G4X(dev) && reduced_clock)
4563                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4564         }
4565         switch (clock->p2) {
4566         case 5:
4567                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4568                 break;
4569         case 7:
4570                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4571                 break;
4572         case 10:
4573                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4574                 break;
4575         case 14:
4576                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4577                 break;
4578         }
4579         if (INTEL_INFO(dev)->gen >= 4)
4580                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4581
4582         if (crtc->config.sdvo_tv_clock)
4583                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4584         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4585                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4586                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4587         else
4588                 dpll |= PLL_REF_INPUT_DREFCLK;
4589
4590         dpll |= DPLL_VCO_ENABLE;
4591         crtc->config.dpll_hw_state.dpll = dpll;
4592
4593         if (INTEL_INFO(dev)->gen >= 4) {
4594                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4595                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4596                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4597         }
4598
4599         if (crtc->config.has_dp_encoder)
4600                 intel_dp_set_m_n(crtc);
4601 }
4602
4603 static void i8xx_update_pll(struct intel_crtc *crtc,
4604                             intel_clock_t *reduced_clock,
4605                             int num_connectors)
4606 {
4607         struct drm_device *dev = crtc->base.dev;
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609         u32 dpll;
4610         struct dpll *clock = &crtc->config.dpll;
4611
4612         i9xx_update_pll_dividers(crtc, reduced_clock);
4613
4614         dpll = DPLL_VGA_MODE_DIS;
4615
4616         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4617                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4618         } else {
4619                 if (clock->p1 == 2)
4620                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4621                 else
4622                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4623                 if (clock->p2 == 4)
4624                         dpll |= PLL_P2_DIVIDE_BY_4;
4625         }
4626
4627         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4628                 dpll |= DPLL_DVO_2X_MODE;
4629
4630         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4631                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4632                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4633         else
4634                 dpll |= PLL_REF_INPUT_DREFCLK;
4635
4636         dpll |= DPLL_VCO_ENABLE;
4637         crtc->config.dpll_hw_state.dpll = dpll;
4638 }
4639
4640 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4641 {
4642         struct drm_device *dev = intel_crtc->base.dev;
4643         struct drm_i915_private *dev_priv = dev->dev_private;
4644         enum pipe pipe = intel_crtc->pipe;
4645         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4646         struct drm_display_mode *adjusted_mode =
4647                 &intel_crtc->config.adjusted_mode;
4648         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4649         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4650
4651         /* We need to be careful not to changed the adjusted mode, for otherwise
4652          * the hw state checker will get angry at the mismatch. */
4653         crtc_vtotal = adjusted_mode->crtc_vtotal;
4654         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4655
4656         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4657                 /* the chip adds 2 halflines automatically */
4658                 crtc_vtotal -= 1;
4659                 crtc_vblank_end -= 1;
4660                 vsyncshift = adjusted_mode->crtc_hsync_start
4661                              - adjusted_mode->crtc_htotal / 2;
4662         } else {
4663                 vsyncshift = 0;
4664         }
4665
4666         if (INTEL_INFO(dev)->gen > 3)
4667                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4668
4669         I915_WRITE(HTOTAL(cpu_transcoder),
4670                    (adjusted_mode->crtc_hdisplay - 1) |
4671                    ((adjusted_mode->crtc_htotal - 1) << 16));
4672         I915_WRITE(HBLANK(cpu_transcoder),
4673                    (adjusted_mode->crtc_hblank_start - 1) |
4674                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4675         I915_WRITE(HSYNC(cpu_transcoder),
4676                    (adjusted_mode->crtc_hsync_start - 1) |
4677                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4678
4679         I915_WRITE(VTOTAL(cpu_transcoder),
4680                    (adjusted_mode->crtc_vdisplay - 1) |
4681                    ((crtc_vtotal - 1) << 16));
4682         I915_WRITE(VBLANK(cpu_transcoder),
4683                    (adjusted_mode->crtc_vblank_start - 1) |
4684                    ((crtc_vblank_end - 1) << 16));
4685         I915_WRITE(VSYNC(cpu_transcoder),
4686                    (adjusted_mode->crtc_vsync_start - 1) |
4687                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4688
4689         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4690          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4691          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4692          * bits. */
4693         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4694             (pipe == PIPE_B || pipe == PIPE_C))
4695                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4696
4697         /* pipesrc controls the size that is scaled from, which should
4698          * always be the user's requested size.
4699          */
4700         I915_WRITE(PIPESRC(pipe),
4701                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4702 }
4703
4704 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4705                                    struct intel_crtc_config *pipe_config)
4706 {
4707         struct drm_device *dev = crtc->base.dev;
4708         struct drm_i915_private *dev_priv = dev->dev_private;
4709         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4710         uint32_t tmp;
4711
4712         tmp = I915_READ(HTOTAL(cpu_transcoder));
4713         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4714         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4715         tmp = I915_READ(HBLANK(cpu_transcoder));
4716         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4717         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4718         tmp = I915_READ(HSYNC(cpu_transcoder));
4719         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4720         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4721
4722         tmp = I915_READ(VTOTAL(cpu_transcoder));
4723         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4724         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4725         tmp = I915_READ(VBLANK(cpu_transcoder));
4726         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4727         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4728         tmp = I915_READ(VSYNC(cpu_transcoder));
4729         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4730         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4731
4732         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4733                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4734                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4735                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4736         }
4737
4738         tmp = I915_READ(PIPESRC(crtc->pipe));
4739         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4740         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4741 }
4742
4743 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4744                                              struct intel_crtc_config *pipe_config)
4745 {
4746         struct drm_crtc *crtc = &intel_crtc->base;
4747
4748         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4749         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4750         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4751         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4752
4753         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4754         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4755         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4756         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4757
4758         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4759
4760         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4761         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4762 }
4763
4764 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4765 {
4766         struct drm_device *dev = intel_crtc->base.dev;
4767         struct drm_i915_private *dev_priv = dev->dev_private;
4768         uint32_t pipeconf;
4769
4770         pipeconf = 0;
4771
4772         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4773                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4774                  * core speed.
4775                  *
4776                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4777                  * pipe == 0 check?
4778                  */
4779                 if (intel_crtc->config.requested_mode.clock >
4780                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4781                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4782         }
4783
4784         /* only g4x and later have fancy bpc/dither controls */
4785         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4786                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4787                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4788                         pipeconf |= PIPECONF_DITHER_EN |
4789                                     PIPECONF_DITHER_TYPE_SP;
4790
4791                 switch (intel_crtc->config.pipe_bpp) {
4792                 case 18:
4793                         pipeconf |= PIPECONF_6BPC;
4794                         break;
4795                 case 24:
4796                         pipeconf |= PIPECONF_8BPC;
4797                         break;
4798                 case 30:
4799                         pipeconf |= PIPECONF_10BPC;
4800                         break;
4801                 default:
4802                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4803                         BUG();
4804                 }
4805         }
4806
4807         if (HAS_PIPE_CXSR(dev)) {
4808                 if (intel_crtc->lowfreq_avail) {
4809                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4810                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4811                 } else {
4812                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4813                 }
4814         }
4815
4816         if (!IS_GEN2(dev) &&
4817             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4818                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4819         else
4820                 pipeconf |= PIPECONF_PROGRESSIVE;
4821
4822         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4823                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4824
4825         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4826         POSTING_READ(PIPECONF(intel_crtc->pipe));
4827 }
4828
4829 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4830                               int x, int y,
4831                               struct drm_framebuffer *fb)
4832 {
4833         struct drm_device *dev = crtc->dev;
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4836         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4837         int pipe = intel_crtc->pipe;
4838         int plane = intel_crtc->plane;
4839         int refclk, num_connectors = 0;
4840         intel_clock_t clock, reduced_clock;
4841         u32 dspcntr;
4842         bool ok, has_reduced_clock = false;
4843         bool is_lvds = false;
4844         struct intel_encoder *encoder;
4845         const intel_limit_t *limit;
4846         int ret;
4847
4848         for_each_encoder_on_crtc(dev, crtc, encoder) {
4849                 switch (encoder->type) {
4850                 case INTEL_OUTPUT_LVDS:
4851                         is_lvds = true;
4852                         break;
4853                 }
4854
4855                 num_connectors++;
4856         }
4857
4858         refclk = i9xx_get_refclk(crtc, num_connectors);
4859
4860         /*
4861          * Returns a set of divisors for the desired target clock with the given
4862          * refclk, or FALSE.  The returned values represent the clock equation:
4863          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4864          */
4865         limit = intel_limit(crtc, refclk);
4866         ok = dev_priv->display.find_dpll(limit, crtc,
4867                                          intel_crtc->config.port_clock,
4868                                          refclk, NULL, &clock);
4869         if (!ok && !intel_crtc->config.clock_set) {
4870                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4871                 return -EINVAL;
4872         }
4873
4874         /* Ensure that the cursor is valid for the new mode before changing... */
4875         intel_crtc_update_cursor(crtc, true);
4876
4877         if (is_lvds && dev_priv->lvds_downclock_avail) {
4878                 /*
4879                  * Ensure we match the reduced clock's P to the target clock.
4880                  * If the clocks don't match, we can't switch the display clock
4881                  * by using the FP0/FP1. In such case we will disable the LVDS
4882                  * downclock feature.
4883                 */
4884                 has_reduced_clock =
4885                         dev_priv->display.find_dpll(limit, crtc,
4886                                                     dev_priv->lvds_downclock,
4887                                                     refclk, &clock,
4888                                                     &reduced_clock);
4889         }
4890         /* Compat-code for transition, will disappear. */
4891         if (!intel_crtc->config.clock_set) {
4892                 intel_crtc->config.dpll.n = clock.n;
4893                 intel_crtc->config.dpll.m1 = clock.m1;
4894                 intel_crtc->config.dpll.m2 = clock.m2;
4895                 intel_crtc->config.dpll.p1 = clock.p1;
4896                 intel_crtc->config.dpll.p2 = clock.p2;
4897         }
4898
4899         if (IS_GEN2(dev))
4900                 i8xx_update_pll(intel_crtc,
4901                                 has_reduced_clock ? &reduced_clock : NULL,
4902                                 num_connectors);
4903         else if (IS_VALLEYVIEW(dev))
4904                 vlv_update_pll(intel_crtc);
4905         else
4906                 i9xx_update_pll(intel_crtc,
4907                                 has_reduced_clock ? &reduced_clock : NULL,
4908                                 num_connectors);
4909
4910         /* Set up the display plane register */
4911         dspcntr = DISPPLANE_GAMMA_ENABLE;
4912
4913         if (!IS_VALLEYVIEW(dev)) {
4914                 if (pipe == 0)
4915                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4916                 else
4917                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4918         }
4919
4920         intel_set_pipe_timings(intel_crtc);
4921
4922         /* pipesrc and dspsize control the size that is scaled from,
4923          * which should always be the user's requested size.
4924          */
4925         I915_WRITE(DSPSIZE(plane),
4926                    ((mode->vdisplay - 1) << 16) |
4927                    (mode->hdisplay - 1));
4928         I915_WRITE(DSPPOS(plane), 0);
4929
4930         i9xx_set_pipeconf(intel_crtc);
4931
4932         I915_WRITE(DSPCNTR(plane), dspcntr);
4933         POSTING_READ(DSPCNTR(plane));
4934
4935         ret = intel_pipe_set_base(crtc, x, y, fb);
4936
4937         intel_update_watermarks(dev);
4938
4939         return ret;
4940 }
4941
4942 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4943                                  struct intel_crtc_config *pipe_config)
4944 {
4945         struct drm_device *dev = crtc->base.dev;
4946         struct drm_i915_private *dev_priv = dev->dev_private;
4947         uint32_t tmp;
4948
4949         tmp = I915_READ(PFIT_CONTROL);
4950         if (!(tmp & PFIT_ENABLE))
4951                 return;
4952
4953         /* Check whether the pfit is attached to our pipe. */
4954         if (INTEL_INFO(dev)->gen < 4) {
4955                 if (crtc->pipe != PIPE_B)
4956                         return;
4957         } else {
4958                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4959                         return;
4960         }
4961
4962         pipe_config->gmch_pfit.control = tmp;
4963         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4964         if (INTEL_INFO(dev)->gen < 5)
4965                 pipe_config->gmch_pfit.lvds_border_bits =
4966                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4967 }
4968
4969 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4970                                  struct intel_crtc_config *pipe_config)
4971 {
4972         struct drm_device *dev = crtc->base.dev;
4973         struct drm_i915_private *dev_priv = dev->dev_private;
4974         uint32_t tmp;
4975
4976         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4977         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4978
4979         tmp = I915_READ(PIPECONF(crtc->pipe));
4980         if (!(tmp & PIPECONF_ENABLE))
4981                 return false;
4982
4983         intel_get_pipe_timings(crtc, pipe_config);
4984
4985         i9xx_get_pfit_config(crtc, pipe_config);
4986
4987         if (INTEL_INFO(dev)->gen >= 4) {
4988                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4989                 pipe_config->pixel_multiplier =
4990                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4991                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4992                 pipe_config->dpll_hw_state.dpll_md = tmp;
4993         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4994                 tmp = I915_READ(DPLL(crtc->pipe));
4995                 pipe_config->pixel_multiplier =
4996                         ((tmp & SDVO_MULTIPLIER_MASK)
4997                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4998         } else {
4999                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5000                  * port and will be fixed up in the encoder->get_config
5001                  * function. */
5002                 pipe_config->pixel_multiplier = 1;
5003         }
5004         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5005         if (!IS_VALLEYVIEW(dev)) {
5006                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5007                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5008         } else {
5009                 /* Mask out read-only status bits. */
5010                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5011                                                      DPLL_PORTC_READY_MASK |
5012                                                      DPLL_PORTB_READY_MASK);
5013         }
5014
5015         return true;
5016 }
5017
5018 static void ironlake_init_pch_refclk(struct drm_device *dev)
5019 {
5020         struct drm_i915_private *dev_priv = dev->dev_private;
5021         struct drm_mode_config *mode_config = &dev->mode_config;
5022         struct intel_encoder *encoder;
5023         u32 val, final;
5024         bool has_lvds = false;
5025         bool has_cpu_edp = false;
5026         bool has_panel = false;
5027         bool has_ck505 = false;
5028         bool can_ssc = false;
5029
5030         /* We need to take the global config into account */
5031         list_for_each_entry(encoder, &mode_config->encoder_list,
5032                             base.head) {
5033                 switch (encoder->type) {
5034                 case INTEL_OUTPUT_LVDS:
5035                         has_panel = true;
5036                         has_lvds = true;
5037                         break;
5038                 case INTEL_OUTPUT_EDP:
5039                         has_panel = true;
5040                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5041                                 has_cpu_edp = true;
5042                         break;
5043                 }
5044         }
5045
5046         if (HAS_PCH_IBX(dev)) {
5047                 has_ck505 = dev_priv->vbt.display_clock_mode;
5048                 can_ssc = has_ck505;
5049         } else {
5050                 has_ck505 = false;
5051                 can_ssc = true;
5052         }
5053
5054         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5055                       has_panel, has_lvds, has_ck505);
5056
5057         /* Ironlake: try to setup display ref clock before DPLL
5058          * enabling. This is only under driver's control after
5059          * PCH B stepping, previous chipset stepping should be
5060          * ignoring this setting.
5061          */
5062         val = I915_READ(PCH_DREF_CONTROL);
5063
5064         /* As we must carefully and slowly disable/enable each source in turn,
5065          * compute the final state we want first and check if we need to
5066          * make any changes at all.
5067          */
5068         final = val;
5069         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5070         if (has_ck505)
5071                 final |= DREF_NONSPREAD_CK505_ENABLE;
5072         else
5073                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5074
5075         final &= ~DREF_SSC_SOURCE_MASK;
5076         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5077         final &= ~DREF_SSC1_ENABLE;
5078
5079         if (has_panel) {
5080                 final |= DREF_SSC_SOURCE_ENABLE;
5081
5082                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5083                         final |= DREF_SSC1_ENABLE;
5084
5085                 if (has_cpu_edp) {
5086                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5087                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5088                         else
5089                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5090                 } else
5091                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5092         } else {
5093                 final |= DREF_SSC_SOURCE_DISABLE;
5094                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5095         }
5096
5097         if (final == val)
5098                 return;
5099
5100         /* Always enable nonspread source */
5101         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5102
5103         if (has_ck505)
5104                 val |= DREF_NONSPREAD_CK505_ENABLE;
5105         else
5106                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5107
5108         if (has_panel) {
5109                 val &= ~DREF_SSC_SOURCE_MASK;
5110                 val |= DREF_SSC_SOURCE_ENABLE;
5111
5112                 /* SSC must be turned on before enabling the CPU output  */
5113                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5114                         DRM_DEBUG_KMS("Using SSC on panel\n");
5115                         val |= DREF_SSC1_ENABLE;
5116                 } else
5117                         val &= ~DREF_SSC1_ENABLE;
5118
5119                 /* Get SSC going before enabling the outputs */
5120                 I915_WRITE(PCH_DREF_CONTROL, val);
5121                 POSTING_READ(PCH_DREF_CONTROL);
5122                 udelay(200);
5123
5124                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5125
5126                 /* Enable CPU source on CPU attached eDP */
5127                 if (has_cpu_edp) {
5128                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5129                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5130                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5131                         }
5132                         else
5133                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5134                 } else
5135                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5136
5137                 I915_WRITE(PCH_DREF_CONTROL, val);
5138                 POSTING_READ(PCH_DREF_CONTROL);
5139                 udelay(200);
5140         } else {
5141                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5142
5143                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5144
5145                 /* Turn off CPU output */
5146                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5147
5148                 I915_WRITE(PCH_DREF_CONTROL, val);
5149                 POSTING_READ(PCH_DREF_CONTROL);
5150                 udelay(200);
5151
5152                 /* Turn off the SSC source */
5153                 val &= ~DREF_SSC_SOURCE_MASK;
5154                 val |= DREF_SSC_SOURCE_DISABLE;
5155
5156                 /* Turn off SSC1 */
5157                 val &= ~DREF_SSC1_ENABLE;
5158
5159                 I915_WRITE(PCH_DREF_CONTROL, val);
5160                 POSTING_READ(PCH_DREF_CONTROL);
5161                 udelay(200);
5162         }
5163
5164         BUG_ON(val != final);
5165 }
5166
5167 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5168 {
5169         uint32_t tmp;
5170
5171         tmp = I915_READ(SOUTH_CHICKEN2);
5172         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5173         I915_WRITE(SOUTH_CHICKEN2, tmp);
5174
5175         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5176                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5177                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5178
5179         tmp = I915_READ(SOUTH_CHICKEN2);
5180         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5181         I915_WRITE(SOUTH_CHICKEN2, tmp);
5182
5183         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5184                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5185                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5186 }
5187
5188 /* WaMPhyProgramming:hsw */
5189 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5190 {
5191         uint32_t tmp;
5192
5193         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5194         tmp &= ~(0xFF << 24);
5195         tmp |= (0x12 << 24);
5196         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5197
5198         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5199         tmp |= (1 << 11);
5200         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5201
5202         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5203         tmp |= (1 << 11);
5204         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5205
5206         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5207         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5208         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5209
5210         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5211         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5212         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5213
5214         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5215         tmp &= ~(7 << 13);
5216         tmp |= (5 << 13);
5217         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5218
5219         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5220         tmp &= ~(7 << 13);
5221         tmp |= (5 << 13);
5222         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5223
5224         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5225         tmp &= ~0xFF;
5226         tmp |= 0x1C;
5227         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5228
5229         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5230         tmp &= ~0xFF;
5231         tmp |= 0x1C;
5232         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5233
5234         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5235         tmp &= ~(0xFF << 16);
5236         tmp |= (0x1C << 16);
5237         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5238
5239         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5240         tmp &= ~(0xFF << 16);
5241         tmp |= (0x1C << 16);
5242         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5243
5244         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5245         tmp |= (1 << 27);
5246         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5247
5248         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5249         tmp |= (1 << 27);
5250         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5251
5252         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5253         tmp &= ~(0xF << 28);
5254         tmp |= (4 << 28);
5255         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5256
5257         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5258         tmp &= ~(0xF << 28);
5259         tmp |= (4 << 28);
5260         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5261 }
5262
5263 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5264  * Programming" based on the parameters passed:
5265  * - Sequence to enable CLKOUT_DP
5266  * - Sequence to enable CLKOUT_DP without spread
5267  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5268  */
5269 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5270                                  bool with_fdi)
5271 {
5272         struct drm_i915_private *dev_priv = dev->dev_private;
5273         uint32_t reg, tmp;
5274
5275         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5276                 with_spread = true;
5277         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5278                  with_fdi, "LP PCH doesn't have FDI\n"))
5279                 with_fdi = false;
5280
5281         mutex_lock(&dev_priv->dpio_lock);
5282
5283         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5284         tmp &= ~SBI_SSCCTL_DISABLE;
5285         tmp |= SBI_SSCCTL_PATHALT;
5286         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5287
5288         udelay(24);
5289
5290         if (with_spread) {
5291                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5292                 tmp &= ~SBI_SSCCTL_PATHALT;
5293                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5294
5295                 if (with_fdi) {
5296                         lpt_reset_fdi_mphy(dev_priv);
5297                         lpt_program_fdi_mphy(dev_priv);
5298                 }
5299         }
5300
5301         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5302                SBI_GEN0 : SBI_DBUFF0;
5303         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5304         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5305         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5306
5307         mutex_unlock(&dev_priv->dpio_lock);
5308 }
5309
5310 /* Sequence to disable CLKOUT_DP */
5311 static void lpt_disable_clkout_dp(struct drm_device *dev)
5312 {
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314         uint32_t reg, tmp;
5315
5316         mutex_lock(&dev_priv->dpio_lock);
5317
5318         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5319                SBI_GEN0 : SBI_DBUFF0;
5320         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5321         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5322         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5323
5324         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5325         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5326                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5327                         tmp |= SBI_SSCCTL_PATHALT;
5328                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5329                         udelay(32);
5330                 }
5331                 tmp |= SBI_SSCCTL_DISABLE;
5332                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5333         }
5334
5335         mutex_unlock(&dev_priv->dpio_lock);
5336 }
5337
5338 static void lpt_init_pch_refclk(struct drm_device *dev)
5339 {
5340         struct drm_mode_config *mode_config = &dev->mode_config;
5341         struct intel_encoder *encoder;
5342         bool has_vga = false;
5343
5344         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5345                 switch (encoder->type) {
5346                 case INTEL_OUTPUT_ANALOG:
5347                         has_vga = true;
5348                         break;
5349                 }
5350         }
5351
5352         if (has_vga)
5353                 lpt_enable_clkout_dp(dev, true, true);
5354         else
5355                 lpt_disable_clkout_dp(dev);
5356 }
5357
5358 /*
5359  * Initialize reference clocks when the driver loads
5360  */
5361 void intel_init_pch_refclk(struct drm_device *dev)
5362 {
5363         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5364                 ironlake_init_pch_refclk(dev);
5365         else if (HAS_PCH_LPT(dev))
5366                 lpt_init_pch_refclk(dev);
5367 }
5368
5369 static int ironlake_get_refclk(struct drm_crtc *crtc)
5370 {
5371         struct drm_device *dev = crtc->dev;
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_encoder *encoder;
5374         int num_connectors = 0;
5375         bool is_lvds = false;
5376
5377         for_each_encoder_on_crtc(dev, crtc, encoder) {
5378                 switch (encoder->type) {
5379                 case INTEL_OUTPUT_LVDS:
5380                         is_lvds = true;
5381                         break;
5382                 }
5383                 num_connectors++;
5384         }
5385
5386         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5387                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5388                               dev_priv->vbt.lvds_ssc_freq);
5389                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5390         }
5391
5392         return 120000;
5393 }
5394
5395 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5396 {
5397         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5399         int pipe = intel_crtc->pipe;
5400         uint32_t val;
5401
5402         val = 0;
5403
5404         switch (intel_crtc->config.pipe_bpp) {
5405         case 18:
5406                 val |= PIPECONF_6BPC;
5407                 break;
5408         case 24:
5409                 val |= PIPECONF_8BPC;
5410                 break;
5411         case 30:
5412                 val |= PIPECONF_10BPC;
5413                 break;
5414         case 36:
5415                 val |= PIPECONF_12BPC;
5416                 break;
5417         default:
5418                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5419                 BUG();
5420         }
5421
5422         if (intel_crtc->config.dither)
5423                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5424
5425         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5426                 val |= PIPECONF_INTERLACED_ILK;
5427         else
5428                 val |= PIPECONF_PROGRESSIVE;
5429
5430         if (intel_crtc->config.limited_color_range)
5431                 val |= PIPECONF_COLOR_RANGE_SELECT;
5432
5433         I915_WRITE(PIPECONF(pipe), val);
5434         POSTING_READ(PIPECONF(pipe));
5435 }
5436
5437 /*
5438  * Set up the pipe CSC unit.
5439  *
5440  * Currently only full range RGB to limited range RGB conversion
5441  * is supported, but eventually this should handle various
5442  * RGB<->YCbCr scenarios as well.
5443  */
5444 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5445 {
5446         struct drm_device *dev = crtc->dev;
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5449         int pipe = intel_crtc->pipe;
5450         uint16_t coeff = 0x7800; /* 1.0 */
5451
5452         /*
5453          * TODO: Check what kind of values actually come out of the pipe
5454          * with these coeff/postoff values and adjust to get the best
5455          * accuracy. Perhaps we even need to take the bpc value into
5456          * consideration.
5457          */
5458
5459         if (intel_crtc->config.limited_color_range)
5460                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5461
5462         /*
5463          * GY/GU and RY/RU should be the other way around according
5464          * to BSpec, but reality doesn't agree. Just set them up in
5465          * a way that results in the correct picture.
5466          */
5467         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5468         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5469
5470         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5471         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5472
5473         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5474         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5475
5476         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5477         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5478         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5479
5480         if (INTEL_INFO(dev)->gen > 6) {
5481                 uint16_t postoff = 0;
5482
5483                 if (intel_crtc->config.limited_color_range)
5484                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5485
5486                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5487                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5488                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5489
5490                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5491         } else {
5492                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5493
5494                 if (intel_crtc->config.limited_color_range)
5495                         mode |= CSC_BLACK_SCREEN_OFFSET;
5496
5497                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5498         }
5499 }
5500
5501 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5502 {
5503         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5505         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5506         uint32_t val;
5507
5508         val = 0;
5509
5510         if (intel_crtc->config.dither)
5511                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5512
5513         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5514                 val |= PIPECONF_INTERLACED_ILK;
5515         else
5516                 val |= PIPECONF_PROGRESSIVE;
5517
5518         I915_WRITE(PIPECONF(cpu_transcoder), val);
5519         POSTING_READ(PIPECONF(cpu_transcoder));
5520
5521         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5522         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5523 }
5524
5525 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5526                                     intel_clock_t *clock,
5527                                     bool *has_reduced_clock,
5528                                     intel_clock_t *reduced_clock)
5529 {
5530         struct drm_device *dev = crtc->dev;
5531         struct drm_i915_private *dev_priv = dev->dev_private;
5532         struct intel_encoder *intel_encoder;
5533         int refclk;
5534         const intel_limit_t *limit;
5535         bool ret, is_lvds = false;
5536
5537         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5538                 switch (intel_encoder->type) {
5539                 case INTEL_OUTPUT_LVDS:
5540                         is_lvds = true;
5541                         break;
5542                 }
5543         }
5544
5545         refclk = ironlake_get_refclk(crtc);
5546
5547         /*
5548          * Returns a set of divisors for the desired target clock with the given
5549          * refclk, or FALSE.  The returned values represent the clock equation:
5550          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5551          */
5552         limit = intel_limit(crtc, refclk);
5553         ret = dev_priv->display.find_dpll(limit, crtc,
5554                                           to_intel_crtc(crtc)->config.port_clock,
5555                                           refclk, NULL, clock);
5556         if (!ret)
5557                 return false;
5558
5559         if (is_lvds && dev_priv->lvds_downclock_avail) {
5560                 /*
5561                  * Ensure we match the reduced clock's P to the target clock.
5562                  * If the clocks don't match, we can't switch the display clock
5563                  * by using the FP0/FP1. In such case we will disable the LVDS
5564                  * downclock feature.
5565                 */
5566                 *has_reduced_clock =
5567                         dev_priv->display.find_dpll(limit, crtc,
5568                                                     dev_priv->lvds_downclock,
5569                                                     refclk, clock,
5570                                                     reduced_clock);
5571         }
5572
5573         return true;
5574 }
5575
5576 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5577 {
5578         struct drm_i915_private *dev_priv = dev->dev_private;
5579         uint32_t temp;
5580
5581         temp = I915_READ(SOUTH_CHICKEN1);
5582         if (temp & FDI_BC_BIFURCATION_SELECT)
5583                 return;
5584
5585         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5586         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5587
5588         temp |= FDI_BC_BIFURCATION_SELECT;
5589         DRM_DEBUG_KMS("enabling fdi C rx\n");
5590         I915_WRITE(SOUTH_CHICKEN1, temp);
5591         POSTING_READ(SOUTH_CHICKEN1);
5592 }
5593
5594 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5595 {
5596         struct drm_device *dev = intel_crtc->base.dev;
5597         struct drm_i915_private *dev_priv = dev->dev_private;
5598
5599         switch (intel_crtc->pipe) {
5600         case PIPE_A:
5601                 break;
5602         case PIPE_B:
5603                 if (intel_crtc->config.fdi_lanes > 2)
5604                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5605                 else
5606                         cpt_enable_fdi_bc_bifurcation(dev);
5607
5608                 break;
5609         case PIPE_C:
5610                 cpt_enable_fdi_bc_bifurcation(dev);
5611
5612                 break;
5613         default:
5614                 BUG();
5615         }
5616 }
5617
5618 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5619 {
5620         /*
5621          * Account for spread spectrum to avoid
5622          * oversubscribing the link. Max center spread
5623          * is 2.5%; use 5% for safety's sake.
5624          */
5625         u32 bps = target_clock * bpp * 21 / 20;
5626         return bps / (link_bw * 8) + 1;
5627 }
5628
5629 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5630 {
5631         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5632 }
5633
5634 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5635                                       u32 *fp,
5636                                       intel_clock_t *reduced_clock, u32 *fp2)
5637 {
5638         struct drm_crtc *crtc = &intel_crtc->base;
5639         struct drm_device *dev = crtc->dev;
5640         struct drm_i915_private *dev_priv = dev->dev_private;
5641         struct intel_encoder *intel_encoder;
5642         uint32_t dpll;
5643         int factor, num_connectors = 0;
5644         bool is_lvds = false, is_sdvo = false;
5645
5646         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5647                 switch (intel_encoder->type) {
5648                 case INTEL_OUTPUT_LVDS:
5649                         is_lvds = true;
5650                         break;
5651                 case INTEL_OUTPUT_SDVO:
5652                 case INTEL_OUTPUT_HDMI:
5653                         is_sdvo = true;
5654                         break;
5655                 }
5656
5657                 num_connectors++;
5658         }
5659
5660         /* Enable autotuning of the PLL clock (if permissible) */
5661         factor = 21;
5662         if (is_lvds) {
5663                 if ((intel_panel_use_ssc(dev_priv) &&
5664                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5665                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5666                         factor = 25;
5667         } else if (intel_crtc->config.sdvo_tv_clock)
5668                 factor = 20;
5669
5670         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5671                 *fp |= FP_CB_TUNE;
5672
5673         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5674                 *fp2 |= FP_CB_TUNE;
5675
5676         dpll = 0;
5677
5678         if (is_lvds)
5679                 dpll |= DPLLB_MODE_LVDS;
5680         else
5681                 dpll |= DPLLB_MODE_DAC_SERIAL;
5682
5683         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5684                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5685
5686         if (is_sdvo)
5687                 dpll |= DPLL_SDVO_HIGH_SPEED;
5688         if (intel_crtc->config.has_dp_encoder)
5689                 dpll |= DPLL_SDVO_HIGH_SPEED;
5690
5691         /* compute bitmask from p1 value */
5692         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5693         /* also FPA1 */
5694         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5695
5696         switch (intel_crtc->config.dpll.p2) {
5697         case 5:
5698                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5699                 break;
5700         case 7:
5701                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5702                 break;
5703         case 10:
5704                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5705                 break;
5706         case 14:
5707                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5708                 break;
5709         }
5710
5711         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5712                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5713         else
5714                 dpll |= PLL_REF_INPUT_DREFCLK;
5715
5716         return dpll | DPLL_VCO_ENABLE;
5717 }
5718
5719 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5720                                   int x, int y,
5721                                   struct drm_framebuffer *fb)
5722 {
5723         struct drm_device *dev = crtc->dev;
5724         struct drm_i915_private *dev_priv = dev->dev_private;
5725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5726         int pipe = intel_crtc->pipe;
5727         int plane = intel_crtc->plane;
5728         int num_connectors = 0;
5729         intel_clock_t clock, reduced_clock;
5730         u32 dpll = 0, fp = 0, fp2 = 0;
5731         bool ok, has_reduced_clock = false;
5732         bool is_lvds = false;
5733         struct intel_encoder *encoder;
5734         struct intel_shared_dpll *pll;
5735         int ret;
5736
5737         for_each_encoder_on_crtc(dev, crtc, encoder) {
5738                 switch (encoder->type) {
5739                 case INTEL_OUTPUT_LVDS:
5740                         is_lvds = true;
5741                         break;
5742                 }
5743
5744                 num_connectors++;
5745         }
5746
5747         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5748              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5749
5750         ok = ironlake_compute_clocks(crtc, &clock,
5751                                      &has_reduced_clock, &reduced_clock);
5752         if (!ok && !intel_crtc->config.clock_set) {
5753                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5754                 return -EINVAL;
5755         }
5756         /* Compat-code for transition, will disappear. */
5757         if (!intel_crtc->config.clock_set) {
5758                 intel_crtc->config.dpll.n = clock.n;
5759                 intel_crtc->config.dpll.m1 = clock.m1;
5760                 intel_crtc->config.dpll.m2 = clock.m2;
5761                 intel_crtc->config.dpll.p1 = clock.p1;
5762                 intel_crtc->config.dpll.p2 = clock.p2;
5763         }
5764
5765         /* Ensure that the cursor is valid for the new mode before changing... */
5766         intel_crtc_update_cursor(crtc, true);
5767
5768         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5769         if (intel_crtc->config.has_pch_encoder) {
5770                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5771                 if (has_reduced_clock)
5772                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5773
5774                 dpll = ironlake_compute_dpll(intel_crtc,
5775                                              &fp, &reduced_clock,
5776                                              has_reduced_clock ? &fp2 : NULL);
5777
5778                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5779                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5780                 if (has_reduced_clock)
5781                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5782                 else
5783                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5784
5785                 pll = intel_get_shared_dpll(intel_crtc);
5786                 if (pll == NULL) {
5787                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5788                                          pipe_name(pipe));
5789                         return -EINVAL;
5790                 }
5791         } else
5792                 intel_put_shared_dpll(intel_crtc);
5793
5794         if (intel_crtc->config.has_dp_encoder)
5795                 intel_dp_set_m_n(intel_crtc);
5796
5797         if (is_lvds && has_reduced_clock && i915_powersave)
5798                 intel_crtc->lowfreq_avail = true;
5799         else
5800                 intel_crtc->lowfreq_avail = false;
5801
5802         if (intel_crtc->config.has_pch_encoder) {
5803                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5804
5805         }
5806
5807         intel_set_pipe_timings(intel_crtc);
5808
5809         if (intel_crtc->config.has_pch_encoder) {
5810                 intel_cpu_transcoder_set_m_n(intel_crtc,
5811                                              &intel_crtc->config.fdi_m_n);
5812         }
5813
5814         if (IS_IVYBRIDGE(dev))
5815                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5816
5817         ironlake_set_pipeconf(crtc);
5818
5819         /* Set up the display plane register */
5820         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5821         POSTING_READ(DSPCNTR(plane));
5822
5823         ret = intel_pipe_set_base(crtc, x, y, fb);
5824
5825         intel_update_watermarks(dev);
5826
5827         return ret;
5828 }
5829
5830 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5831                                         struct intel_crtc_config *pipe_config)
5832 {
5833         struct drm_device *dev = crtc->base.dev;
5834         struct drm_i915_private *dev_priv = dev->dev_private;
5835         enum transcoder transcoder = pipe_config->cpu_transcoder;
5836
5837         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5838         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5839         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5840                                         & ~TU_SIZE_MASK;
5841         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5842         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5843                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5844 }
5845
5846 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5847                                      struct intel_crtc_config *pipe_config)
5848 {
5849         struct drm_device *dev = crtc->base.dev;
5850         struct drm_i915_private *dev_priv = dev->dev_private;
5851         uint32_t tmp;
5852
5853         tmp = I915_READ(PF_CTL(crtc->pipe));
5854
5855         if (tmp & PF_ENABLE) {
5856                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5857                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5858
5859                 /* We currently do not free assignements of panel fitters on
5860                  * ivb/hsw (since we don't use the higher upscaling modes which
5861                  * differentiates them) so just WARN about this case for now. */
5862                 if (IS_GEN7(dev)) {
5863                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5864                                 PF_PIPE_SEL_IVB(crtc->pipe));
5865                 }
5866         }
5867 }
5868
5869 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5870                                      struct intel_crtc_config *pipe_config)
5871 {
5872         struct drm_device *dev = crtc->base.dev;
5873         struct drm_i915_private *dev_priv = dev->dev_private;
5874         uint32_t tmp;
5875
5876         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5877         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5878
5879         tmp = I915_READ(PIPECONF(crtc->pipe));
5880         if (!(tmp & PIPECONF_ENABLE))
5881                 return false;
5882
5883         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5884                 struct intel_shared_dpll *pll;
5885
5886                 pipe_config->has_pch_encoder = true;
5887
5888                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5889                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5890                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5891
5892                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5893
5894                 if (HAS_PCH_IBX(dev_priv->dev)) {
5895                         pipe_config->shared_dpll =
5896                                 (enum intel_dpll_id) crtc->pipe;
5897                 } else {
5898                         tmp = I915_READ(PCH_DPLL_SEL);
5899                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5900                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5901                         else
5902                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5903                 }
5904
5905                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5906
5907                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5908                                            &pipe_config->dpll_hw_state));
5909
5910                 tmp = pipe_config->dpll_hw_state.dpll;
5911                 pipe_config->pixel_multiplier =
5912                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5913                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5914         } else {
5915                 pipe_config->pixel_multiplier = 1;
5916         }
5917
5918         intel_get_pipe_timings(crtc, pipe_config);
5919
5920         ironlake_get_pfit_config(crtc, pipe_config);
5921
5922         return true;
5923 }
5924
5925 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5926 {
5927         struct drm_device *dev = dev_priv->dev;
5928         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5929         struct intel_crtc *crtc;
5930         unsigned long irqflags;
5931         uint32_t val, pch_hpd_mask;
5932
5933         pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5934         if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5935                 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5936
5937         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5938                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5939                      pipe_name(crtc->pipe));
5940
5941         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5942         WARN(plls->spll_refcount, "SPLL enabled\n");
5943         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5944         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5945         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5946         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5947              "CPU PWM1 enabled\n");
5948         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5949              "CPU PWM2 enabled\n");
5950         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5951              "PCH PWM1 enabled\n");
5952         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5953              "Utility pin enabled\n");
5954         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5955
5956         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5957         val = I915_READ(DEIMR);
5958         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5959              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5960         val = I915_READ(SDEIMR);
5961         WARN((val & ~pch_hpd_mask) != val,
5962              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5963         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5964 }
5965
5966 /*
5967  * This function implements pieces of two sequences from BSpec:
5968  * - Sequence for display software to disable LCPLL
5969  * - Sequence for display software to allow package C8+
5970  * The steps implemented here are just the steps that actually touch the LCPLL
5971  * register. Callers should take care of disabling all the display engine
5972  * functions, doing the mode unset, fixing interrupts, etc.
5973  */
5974 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5975                        bool switch_to_fclk, bool allow_power_down)
5976 {
5977         uint32_t val;
5978
5979         assert_can_disable_lcpll(dev_priv);
5980
5981         val = I915_READ(LCPLL_CTL);
5982
5983         if (switch_to_fclk) {
5984                 val |= LCPLL_CD_SOURCE_FCLK;
5985                 I915_WRITE(LCPLL_CTL, val);
5986
5987                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5988                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
5989                         DRM_ERROR("Switching to FCLK failed\n");
5990
5991                 val = I915_READ(LCPLL_CTL);
5992         }
5993
5994         val |= LCPLL_PLL_DISABLE;
5995         I915_WRITE(LCPLL_CTL, val);
5996         POSTING_READ(LCPLL_CTL);
5997
5998         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
5999                 DRM_ERROR("LCPLL still locked\n");
6000
6001         val = I915_READ(D_COMP);
6002         val |= D_COMP_COMP_DISABLE;
6003         I915_WRITE(D_COMP, val);
6004         POSTING_READ(D_COMP);
6005         ndelay(100);
6006
6007         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6008                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6009
6010         if (allow_power_down) {
6011                 val = I915_READ(LCPLL_CTL);
6012                 val |= LCPLL_POWER_DOWN_ALLOW;
6013                 I915_WRITE(LCPLL_CTL, val);
6014                 POSTING_READ(LCPLL_CTL);
6015         }
6016 }
6017
6018 /*
6019  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6020  * source.
6021  */
6022 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6023 {
6024         uint32_t val;
6025
6026         val = I915_READ(LCPLL_CTL);
6027
6028         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6029                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6030                 return;
6031
6032         if (val & LCPLL_POWER_DOWN_ALLOW) {
6033                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6034                 I915_WRITE(LCPLL_CTL, val);
6035         }
6036
6037         val = I915_READ(D_COMP);
6038         val |= D_COMP_COMP_FORCE;
6039         val &= ~D_COMP_COMP_DISABLE;
6040         I915_WRITE(D_COMP, val);
6041         I915_READ(D_COMP);
6042
6043         val = I915_READ(LCPLL_CTL);
6044         val &= ~LCPLL_PLL_DISABLE;
6045         I915_WRITE(LCPLL_CTL, val);
6046
6047         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6048                 DRM_ERROR("LCPLL not locked yet\n");
6049
6050         if (val & LCPLL_CD_SOURCE_FCLK) {
6051                 val = I915_READ(LCPLL_CTL);
6052                 val &= ~LCPLL_CD_SOURCE_FCLK;
6053                 I915_WRITE(LCPLL_CTL, val);
6054
6055                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6056                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6057                         DRM_ERROR("Switching back to LCPLL failed\n");
6058         }
6059 }
6060
6061 static void haswell_modeset_global_resources(struct drm_device *dev)
6062 {
6063         bool enable = false;
6064         struct intel_crtc *crtc;
6065
6066         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6067                 if (!crtc->base.enabled)
6068                         continue;
6069
6070                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6071                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6072                         enable = true;
6073         }
6074
6075         intel_set_power_well(dev, enable);
6076 }
6077
6078 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6079                                  int x, int y,
6080                                  struct drm_framebuffer *fb)
6081 {
6082         struct drm_device *dev = crtc->dev;
6083         struct drm_i915_private *dev_priv = dev->dev_private;
6084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6085         int plane = intel_crtc->plane;
6086         int ret;
6087
6088         if (!intel_ddi_pll_mode_set(crtc))
6089                 return -EINVAL;
6090
6091         /* Ensure that the cursor is valid for the new mode before changing... */
6092         intel_crtc_update_cursor(crtc, true);
6093
6094         if (intel_crtc->config.has_dp_encoder)
6095                 intel_dp_set_m_n(intel_crtc);
6096
6097         intel_crtc->lowfreq_avail = false;
6098
6099         intel_set_pipe_timings(intel_crtc);
6100
6101         if (intel_crtc->config.has_pch_encoder) {
6102                 intel_cpu_transcoder_set_m_n(intel_crtc,
6103                                              &intel_crtc->config.fdi_m_n);
6104         }
6105
6106         haswell_set_pipeconf(crtc);
6107
6108         intel_set_pipe_csc(crtc);
6109
6110         /* Set up the display plane register */
6111         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6112         POSTING_READ(DSPCNTR(plane));
6113
6114         ret = intel_pipe_set_base(crtc, x, y, fb);
6115
6116         intel_update_watermarks(dev);
6117
6118         return ret;
6119 }
6120
6121 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6122                                     struct intel_crtc_config *pipe_config)
6123 {
6124         struct drm_device *dev = crtc->base.dev;
6125         struct drm_i915_private *dev_priv = dev->dev_private;
6126         enum intel_display_power_domain pfit_domain;
6127         uint32_t tmp;
6128
6129         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6130         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6131
6132         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6133         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6134                 enum pipe trans_edp_pipe;
6135                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6136                 default:
6137                         WARN(1, "unknown pipe linked to edp transcoder\n");
6138                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6139                 case TRANS_DDI_EDP_INPUT_A_ON:
6140                         trans_edp_pipe = PIPE_A;
6141                         break;
6142                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6143                         trans_edp_pipe = PIPE_B;
6144                         break;
6145                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6146                         trans_edp_pipe = PIPE_C;
6147                         break;
6148                 }
6149
6150                 if (trans_edp_pipe == crtc->pipe)
6151                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6152         }
6153
6154         if (!intel_display_power_enabled(dev,
6155                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6156                 return false;
6157
6158         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6159         if (!(tmp & PIPECONF_ENABLE))
6160                 return false;
6161
6162         /*
6163          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6164          * DDI E. So just check whether this pipe is wired to DDI E and whether
6165          * the PCH transcoder is on.
6166          */
6167         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6168         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6169             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6170                 pipe_config->has_pch_encoder = true;
6171
6172                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6173                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6174                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6175
6176                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6177         }
6178
6179         intel_get_pipe_timings(crtc, pipe_config);
6180
6181         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6182         if (intel_display_power_enabled(dev, pfit_domain))
6183                 ironlake_get_pfit_config(crtc, pipe_config);
6184
6185         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6186                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6187
6188         pipe_config->pixel_multiplier = 1;
6189
6190         return true;
6191 }
6192
6193 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6194                                int x, int y,
6195                                struct drm_framebuffer *fb)
6196 {
6197         struct drm_device *dev = crtc->dev;
6198         struct drm_i915_private *dev_priv = dev->dev_private;
6199         struct drm_encoder_helper_funcs *encoder_funcs;
6200         struct intel_encoder *encoder;
6201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202         struct drm_display_mode *adjusted_mode =
6203                 &intel_crtc->config.adjusted_mode;
6204         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6205         int pipe = intel_crtc->pipe;
6206         int ret;
6207
6208         drm_vblank_pre_modeset(dev, pipe);
6209
6210         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6211
6212         drm_vblank_post_modeset(dev, pipe);
6213
6214         if (ret != 0)
6215                 return ret;
6216
6217         for_each_encoder_on_crtc(dev, crtc, encoder) {
6218                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6219                         encoder->base.base.id,
6220                         drm_get_encoder_name(&encoder->base),
6221                         mode->base.id, mode->name);
6222                 if (encoder->mode_set) {
6223                         encoder->mode_set(encoder);
6224                 } else {
6225                         encoder_funcs = encoder->base.helper_private;
6226                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6227                 }
6228         }
6229
6230         return 0;
6231 }
6232
6233 static bool intel_eld_uptodate(struct drm_connector *connector,
6234                                int reg_eldv, uint32_t bits_eldv,
6235                                int reg_elda, uint32_t bits_elda,
6236                                int reg_edid)
6237 {
6238         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6239         uint8_t *eld = connector->eld;
6240         uint32_t i;
6241
6242         i = I915_READ(reg_eldv);
6243         i &= bits_eldv;
6244
6245         if (!eld[0])
6246                 return !i;
6247
6248         if (!i)
6249                 return false;
6250
6251         i = I915_READ(reg_elda);
6252         i &= ~bits_elda;
6253         I915_WRITE(reg_elda, i);
6254
6255         for (i = 0; i < eld[2]; i++)
6256                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6257                         return false;
6258
6259         return true;
6260 }
6261
6262 static void g4x_write_eld(struct drm_connector *connector,
6263                           struct drm_crtc *crtc)
6264 {
6265         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6266         uint8_t *eld = connector->eld;
6267         uint32_t eldv;
6268         uint32_t len;
6269         uint32_t i;
6270
6271         i = I915_READ(G4X_AUD_VID_DID);
6272
6273         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6274                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6275         else
6276                 eldv = G4X_ELDV_DEVCTG;
6277
6278         if (intel_eld_uptodate(connector,
6279                                G4X_AUD_CNTL_ST, eldv,
6280                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6281                                G4X_HDMIW_HDMIEDID))
6282                 return;
6283
6284         i = I915_READ(G4X_AUD_CNTL_ST);
6285         i &= ~(eldv | G4X_ELD_ADDR);
6286         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6287         I915_WRITE(G4X_AUD_CNTL_ST, i);
6288
6289         if (!eld[0])
6290                 return;
6291
6292         len = min_t(uint8_t, eld[2], len);
6293         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6294         for (i = 0; i < len; i++)
6295                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6296
6297         i = I915_READ(G4X_AUD_CNTL_ST);
6298         i |= eldv;
6299         I915_WRITE(G4X_AUD_CNTL_ST, i);
6300 }
6301
6302 static void haswell_write_eld(struct drm_connector *connector,
6303                                      struct drm_crtc *crtc)
6304 {
6305         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6306         uint8_t *eld = connector->eld;
6307         struct drm_device *dev = crtc->dev;
6308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309         uint32_t eldv;
6310         uint32_t i;
6311         int len;
6312         int pipe = to_intel_crtc(crtc)->pipe;
6313         int tmp;
6314
6315         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6316         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6317         int aud_config = HSW_AUD_CFG(pipe);
6318         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6319
6320
6321         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6322
6323         /* Audio output enable */
6324         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6325         tmp = I915_READ(aud_cntrl_st2);
6326         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6327         I915_WRITE(aud_cntrl_st2, tmp);
6328
6329         /* Wait for 1 vertical blank */
6330         intel_wait_for_vblank(dev, pipe);
6331
6332         /* Set ELD valid state */
6333         tmp = I915_READ(aud_cntrl_st2);
6334         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6335         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6336         I915_WRITE(aud_cntrl_st2, tmp);
6337         tmp = I915_READ(aud_cntrl_st2);
6338         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6339
6340         /* Enable HDMI mode */
6341         tmp = I915_READ(aud_config);
6342         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6343         /* clear N_programing_enable and N_value_index */
6344         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6345         I915_WRITE(aud_config, tmp);
6346
6347         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6348
6349         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6350         intel_crtc->eld_vld = true;
6351
6352         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6353                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6354                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6355                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6356         } else
6357                 I915_WRITE(aud_config, 0);
6358
6359         if (intel_eld_uptodate(connector,
6360                                aud_cntrl_st2, eldv,
6361                                aud_cntl_st, IBX_ELD_ADDRESS,
6362                                hdmiw_hdmiedid))
6363                 return;
6364
6365         i = I915_READ(aud_cntrl_st2);
6366         i &= ~eldv;
6367         I915_WRITE(aud_cntrl_st2, i);
6368
6369         if (!eld[0])
6370                 return;
6371
6372         i = I915_READ(aud_cntl_st);
6373         i &= ~IBX_ELD_ADDRESS;
6374         I915_WRITE(aud_cntl_st, i);
6375         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6376         DRM_DEBUG_DRIVER("port num:%d\n", i);
6377
6378         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6379         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6380         for (i = 0; i < len; i++)
6381                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6382
6383         i = I915_READ(aud_cntrl_st2);
6384         i |= eldv;
6385         I915_WRITE(aud_cntrl_st2, i);
6386
6387 }
6388
6389 static void ironlake_write_eld(struct drm_connector *connector,
6390                                      struct drm_crtc *crtc)
6391 {
6392         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6393         uint8_t *eld = connector->eld;
6394         uint32_t eldv;
6395         uint32_t i;
6396         int len;
6397         int hdmiw_hdmiedid;
6398         int aud_config;
6399         int aud_cntl_st;
6400         int aud_cntrl_st2;
6401         int pipe = to_intel_crtc(crtc)->pipe;
6402
6403         if (HAS_PCH_IBX(connector->dev)) {
6404                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6405                 aud_config = IBX_AUD_CFG(pipe);
6406                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6407                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6408         } else {
6409                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6410                 aud_config = CPT_AUD_CFG(pipe);
6411                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6412                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6413         }
6414
6415         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6416
6417         i = I915_READ(aud_cntl_st);
6418         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6419         if (!i) {
6420                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6421                 /* operate blindly on all ports */
6422                 eldv = IBX_ELD_VALIDB;
6423                 eldv |= IBX_ELD_VALIDB << 4;
6424                 eldv |= IBX_ELD_VALIDB << 8;
6425         } else {
6426                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6427                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6428         }
6429
6430         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6431                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6432                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6433                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6434         } else
6435                 I915_WRITE(aud_config, 0);
6436
6437         if (intel_eld_uptodate(connector,
6438                                aud_cntrl_st2, eldv,
6439                                aud_cntl_st, IBX_ELD_ADDRESS,
6440                                hdmiw_hdmiedid))
6441                 return;
6442
6443         i = I915_READ(aud_cntrl_st2);
6444         i &= ~eldv;
6445         I915_WRITE(aud_cntrl_st2, i);
6446
6447         if (!eld[0])
6448                 return;
6449
6450         i = I915_READ(aud_cntl_st);
6451         i &= ~IBX_ELD_ADDRESS;
6452         I915_WRITE(aud_cntl_st, i);
6453
6454         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6455         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6456         for (i = 0; i < len; i++)
6457                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6458
6459         i = I915_READ(aud_cntrl_st2);
6460         i |= eldv;
6461         I915_WRITE(aud_cntrl_st2, i);
6462 }
6463
6464 void intel_write_eld(struct drm_encoder *encoder,
6465                      struct drm_display_mode *mode)
6466 {
6467         struct drm_crtc *crtc = encoder->crtc;
6468         struct drm_connector *connector;
6469         struct drm_device *dev = encoder->dev;
6470         struct drm_i915_private *dev_priv = dev->dev_private;
6471
6472         connector = drm_select_eld(encoder, mode);
6473         if (!connector)
6474                 return;
6475
6476         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6477                          connector->base.id,
6478                          drm_get_connector_name(connector),
6479                          connector->encoder->base.id,
6480                          drm_get_encoder_name(connector->encoder));
6481
6482         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6483
6484         if (dev_priv->display.write_eld)
6485                 dev_priv->display.write_eld(connector, crtc);
6486 }
6487
6488 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6489 void intel_crtc_load_lut(struct drm_crtc *crtc)
6490 {
6491         struct drm_device *dev = crtc->dev;
6492         struct drm_i915_private *dev_priv = dev->dev_private;
6493         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6494         enum pipe pipe = intel_crtc->pipe;
6495         int palreg = PALETTE(pipe);
6496         int i;
6497         bool reenable_ips = false;
6498
6499         /* The clocks have to be on to load the palette. */
6500         if (!crtc->enabled || !intel_crtc->active)
6501                 return;
6502
6503         if (!HAS_PCH_SPLIT(dev_priv->dev))
6504                 assert_pll_enabled(dev_priv, pipe);
6505
6506         /* use legacy palette for Ironlake */
6507         if (HAS_PCH_SPLIT(dev))
6508                 palreg = LGC_PALETTE(pipe);
6509
6510         /* Workaround : Do not read or write the pipe palette/gamma data while
6511          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6512          */
6513         if (intel_crtc->config.ips_enabled &&
6514             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6515              GAMMA_MODE_MODE_SPLIT)) {
6516                 hsw_disable_ips(intel_crtc);
6517                 reenable_ips = true;
6518         }
6519
6520         for (i = 0; i < 256; i++) {
6521                 I915_WRITE(palreg + 4 * i,
6522                            (intel_crtc->lut_r[i] << 16) |
6523                            (intel_crtc->lut_g[i] << 8) |
6524                            intel_crtc->lut_b[i]);
6525         }
6526
6527         if (reenable_ips)
6528                 hsw_enable_ips(intel_crtc);
6529 }
6530
6531 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6532 {
6533         struct drm_device *dev = crtc->dev;
6534         struct drm_i915_private *dev_priv = dev->dev_private;
6535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6536         bool visible = base != 0;
6537         u32 cntl;
6538
6539         if (intel_crtc->cursor_visible == visible)
6540                 return;
6541
6542         cntl = I915_READ(_CURACNTR);
6543         if (visible) {
6544                 /* On these chipsets we can only modify the base whilst
6545                  * the cursor is disabled.
6546                  */
6547                 I915_WRITE(_CURABASE, base);
6548
6549                 cntl &= ~(CURSOR_FORMAT_MASK);
6550                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6551                 cntl |= CURSOR_ENABLE |
6552                         CURSOR_GAMMA_ENABLE |
6553                         CURSOR_FORMAT_ARGB;
6554         } else
6555                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6556         I915_WRITE(_CURACNTR, cntl);
6557
6558         intel_crtc->cursor_visible = visible;
6559 }
6560
6561 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6562 {
6563         struct drm_device *dev = crtc->dev;
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6566         int pipe = intel_crtc->pipe;
6567         bool visible = base != 0;
6568
6569         if (intel_crtc->cursor_visible != visible) {
6570                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6571                 if (base) {
6572                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6573                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6574                         cntl |= pipe << 28; /* Connect to correct pipe */
6575                 } else {
6576                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6577                         cntl |= CURSOR_MODE_DISABLE;
6578                 }
6579                 I915_WRITE(CURCNTR(pipe), cntl);
6580
6581                 intel_crtc->cursor_visible = visible;
6582         }
6583         /* and commit changes on next vblank */
6584         I915_WRITE(CURBASE(pipe), base);
6585 }
6586
6587 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6588 {
6589         struct drm_device *dev = crtc->dev;
6590         struct drm_i915_private *dev_priv = dev->dev_private;
6591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6592         int pipe = intel_crtc->pipe;
6593         bool visible = base != 0;
6594
6595         if (intel_crtc->cursor_visible != visible) {
6596                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6597                 if (base) {
6598                         cntl &= ~CURSOR_MODE;
6599                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6600                 } else {
6601                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6602                         cntl |= CURSOR_MODE_DISABLE;
6603                 }
6604                 if (IS_HASWELL(dev))
6605                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6606                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6607
6608                 intel_crtc->cursor_visible = visible;
6609         }
6610         /* and commit changes on next vblank */
6611         I915_WRITE(CURBASE_IVB(pipe), base);
6612 }
6613
6614 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6615 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6616                                      bool on)
6617 {
6618         struct drm_device *dev = crtc->dev;
6619         struct drm_i915_private *dev_priv = dev->dev_private;
6620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6621         int pipe = intel_crtc->pipe;
6622         int x = intel_crtc->cursor_x;
6623         int y = intel_crtc->cursor_y;
6624         u32 base, pos;
6625         bool visible;
6626
6627         pos = 0;
6628
6629         if (on && crtc->enabled && crtc->fb) {
6630                 base = intel_crtc->cursor_addr;
6631                 if (x > (int) crtc->fb->width)
6632                         base = 0;
6633
6634                 if (y > (int) crtc->fb->height)
6635                         base = 0;
6636         } else
6637                 base = 0;
6638
6639         if (x < 0) {
6640                 if (x + intel_crtc->cursor_width < 0)
6641                         base = 0;
6642
6643                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6644                 x = -x;
6645         }
6646         pos |= x << CURSOR_X_SHIFT;
6647
6648         if (y < 0) {
6649                 if (y + intel_crtc->cursor_height < 0)
6650                         base = 0;
6651
6652                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6653                 y = -y;
6654         }
6655         pos |= y << CURSOR_Y_SHIFT;
6656
6657         visible = base != 0;
6658         if (!visible && !intel_crtc->cursor_visible)
6659                 return;
6660
6661         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6662                 I915_WRITE(CURPOS_IVB(pipe), pos);
6663                 ivb_update_cursor(crtc, base);
6664         } else {
6665                 I915_WRITE(CURPOS(pipe), pos);
6666                 if (IS_845G(dev) || IS_I865G(dev))
6667                         i845_update_cursor(crtc, base);
6668                 else
6669                         i9xx_update_cursor(crtc, base);
6670         }
6671 }
6672
6673 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6674                                  struct drm_file *file,
6675                                  uint32_t handle,
6676                                  uint32_t width, uint32_t height)
6677 {
6678         struct drm_device *dev = crtc->dev;
6679         struct drm_i915_private *dev_priv = dev->dev_private;
6680         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6681         struct drm_i915_gem_object *obj;
6682         uint32_t addr;
6683         int ret;
6684
6685         /* if we want to turn off the cursor ignore width and height */
6686         if (!handle) {
6687                 DRM_DEBUG_KMS("cursor off\n");
6688                 addr = 0;
6689                 obj = NULL;
6690                 mutex_lock(&dev->struct_mutex);
6691                 goto finish;
6692         }
6693
6694         /* Currently we only support 64x64 cursors */
6695         if (width != 64 || height != 64) {
6696                 DRM_ERROR("we currently only support 64x64 cursors\n");
6697                 return -EINVAL;
6698         }
6699
6700         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6701         if (&obj->base == NULL)
6702                 return -ENOENT;
6703
6704         if (obj->base.size < width * height * 4) {
6705                 DRM_ERROR("buffer is to small\n");
6706                 ret = -ENOMEM;
6707                 goto fail;
6708         }
6709
6710         /* we only need to pin inside GTT if cursor is non-phy */
6711         mutex_lock(&dev->struct_mutex);
6712         if (!dev_priv->info->cursor_needs_physical) {
6713                 unsigned alignment;
6714
6715                 if (obj->tiling_mode) {
6716                         DRM_ERROR("cursor cannot be tiled\n");
6717                         ret = -EINVAL;
6718                         goto fail_locked;
6719                 }
6720
6721                 /* Note that the w/a also requires 2 PTE of padding following
6722                  * the bo. We currently fill all unused PTE with the shadow
6723                  * page and so we should always have valid PTE following the
6724                  * cursor preventing the VT-d warning.
6725                  */
6726                 alignment = 0;
6727                 if (need_vtd_wa(dev))
6728                         alignment = 64*1024;
6729
6730                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6731                 if (ret) {
6732                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6733                         goto fail_locked;
6734                 }
6735
6736                 ret = i915_gem_object_put_fence(obj);
6737                 if (ret) {
6738                         DRM_ERROR("failed to release fence for cursor");
6739                         goto fail_unpin;
6740                 }
6741
6742                 addr = i915_gem_obj_ggtt_offset(obj);
6743         } else {
6744                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6745                 ret = i915_gem_attach_phys_object(dev, obj,
6746                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6747                                                   align);
6748                 if (ret) {
6749                         DRM_ERROR("failed to attach phys object\n");
6750                         goto fail_locked;
6751                 }
6752                 addr = obj->phys_obj->handle->busaddr;
6753         }
6754
6755         if (IS_GEN2(dev))
6756                 I915_WRITE(CURSIZE, (height << 12) | width);
6757
6758  finish:
6759         if (intel_crtc->cursor_bo) {
6760                 if (dev_priv->info->cursor_needs_physical) {
6761                         if (intel_crtc->cursor_bo != obj)
6762                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6763                 } else
6764                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6765                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6766         }
6767
6768         mutex_unlock(&dev->struct_mutex);
6769
6770         intel_crtc->cursor_addr = addr;
6771         intel_crtc->cursor_bo = obj;
6772         intel_crtc->cursor_width = width;
6773         intel_crtc->cursor_height = height;
6774
6775         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6776
6777         return 0;
6778 fail_unpin:
6779         i915_gem_object_unpin(obj);
6780 fail_locked:
6781         mutex_unlock(&dev->struct_mutex);
6782 fail:
6783         drm_gem_object_unreference_unlocked(&obj->base);
6784         return ret;
6785 }
6786
6787 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6788 {
6789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6790
6791         intel_crtc->cursor_x = x;
6792         intel_crtc->cursor_y = y;
6793
6794         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6795
6796         return 0;
6797 }
6798
6799 /** Sets the color ramps on behalf of RandR */
6800 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6801                                  u16 blue, int regno)
6802 {
6803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6804
6805         intel_crtc->lut_r[regno] = red >> 8;
6806         intel_crtc->lut_g[regno] = green >> 8;
6807         intel_crtc->lut_b[regno] = blue >> 8;
6808 }
6809
6810 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6811                              u16 *blue, int regno)
6812 {
6813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814
6815         *red = intel_crtc->lut_r[regno] << 8;
6816         *green = intel_crtc->lut_g[regno] << 8;
6817         *blue = intel_crtc->lut_b[regno] << 8;
6818 }
6819
6820 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6821                                  u16 *blue, uint32_t start, uint32_t size)
6822 {
6823         int end = (start + size > 256) ? 256 : start + size, i;
6824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6825
6826         for (i = start; i < end; i++) {
6827                 intel_crtc->lut_r[i] = red[i] >> 8;
6828                 intel_crtc->lut_g[i] = green[i] >> 8;
6829                 intel_crtc->lut_b[i] = blue[i] >> 8;
6830         }
6831
6832         intel_crtc_load_lut(crtc);
6833 }
6834
6835 /* VESA 640x480x72Hz mode to set on the pipe */
6836 static struct drm_display_mode load_detect_mode = {
6837         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6838                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6839 };
6840
6841 static struct drm_framebuffer *
6842 intel_framebuffer_create(struct drm_device *dev,
6843                          struct drm_mode_fb_cmd2 *mode_cmd,
6844                          struct drm_i915_gem_object *obj)
6845 {
6846         struct intel_framebuffer *intel_fb;
6847         int ret;
6848
6849         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6850         if (!intel_fb) {
6851                 drm_gem_object_unreference_unlocked(&obj->base);
6852                 return ERR_PTR(-ENOMEM);
6853         }
6854
6855         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6856         if (ret) {
6857                 drm_gem_object_unreference_unlocked(&obj->base);
6858                 kfree(intel_fb);
6859                 return ERR_PTR(ret);
6860         }
6861
6862         return &intel_fb->base;
6863 }
6864
6865 static u32
6866 intel_framebuffer_pitch_for_width(int width, int bpp)
6867 {
6868         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6869         return ALIGN(pitch, 64);
6870 }
6871
6872 static u32
6873 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6874 {
6875         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6876         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6877 }
6878
6879 static struct drm_framebuffer *
6880 intel_framebuffer_create_for_mode(struct drm_device *dev,
6881                                   struct drm_display_mode *mode,
6882                                   int depth, int bpp)
6883 {
6884         struct drm_i915_gem_object *obj;
6885         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6886
6887         obj = i915_gem_alloc_object(dev,
6888                                     intel_framebuffer_size_for_mode(mode, bpp));
6889         if (obj == NULL)
6890                 return ERR_PTR(-ENOMEM);
6891
6892         mode_cmd.width = mode->hdisplay;
6893         mode_cmd.height = mode->vdisplay;
6894         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6895                                                                 bpp);
6896         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6897
6898         return intel_framebuffer_create(dev, &mode_cmd, obj);
6899 }
6900
6901 static struct drm_framebuffer *
6902 mode_fits_in_fbdev(struct drm_device *dev,
6903                    struct drm_display_mode *mode)
6904 {
6905         struct drm_i915_private *dev_priv = dev->dev_private;
6906         struct drm_i915_gem_object *obj;
6907         struct drm_framebuffer *fb;
6908
6909         if (dev_priv->fbdev == NULL)
6910                 return NULL;
6911
6912         obj = dev_priv->fbdev->ifb.obj;
6913         if (obj == NULL)
6914                 return NULL;
6915
6916         fb = &dev_priv->fbdev->ifb.base;
6917         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6918                                                                fb->bits_per_pixel))
6919                 return NULL;
6920
6921         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6922                 return NULL;
6923
6924         return fb;
6925 }
6926
6927 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6928                                 struct drm_display_mode *mode,
6929                                 struct intel_load_detect_pipe *old)
6930 {
6931         struct intel_crtc *intel_crtc;
6932         struct intel_encoder *intel_encoder =
6933                 intel_attached_encoder(connector);
6934         struct drm_crtc *possible_crtc;
6935         struct drm_encoder *encoder = &intel_encoder->base;
6936         struct drm_crtc *crtc = NULL;
6937         struct drm_device *dev = encoder->dev;
6938         struct drm_framebuffer *fb;
6939         int i = -1;
6940
6941         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6942                       connector->base.id, drm_get_connector_name(connector),
6943                       encoder->base.id, drm_get_encoder_name(encoder));
6944
6945         /*
6946          * Algorithm gets a little messy:
6947          *
6948          *   - if the connector already has an assigned crtc, use it (but make
6949          *     sure it's on first)
6950          *
6951          *   - try to find the first unused crtc that can drive this connector,
6952          *     and use that if we find one
6953          */
6954
6955         /* See if we already have a CRTC for this connector */
6956         if (encoder->crtc) {
6957                 crtc = encoder->crtc;
6958
6959                 mutex_lock(&crtc->mutex);
6960
6961                 old->dpms_mode = connector->dpms;
6962                 old->load_detect_temp = false;
6963
6964                 /* Make sure the crtc and connector are running */
6965                 if (connector->dpms != DRM_MODE_DPMS_ON)
6966                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6967
6968                 return true;
6969         }
6970
6971         /* Find an unused one (if possible) */
6972         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6973                 i++;
6974                 if (!(encoder->possible_crtcs & (1 << i)))
6975                         continue;
6976                 if (!possible_crtc->enabled) {
6977                         crtc = possible_crtc;
6978                         break;
6979                 }
6980         }
6981
6982         /*
6983          * If we didn't find an unused CRTC, don't use any.
6984          */
6985         if (!crtc) {
6986                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6987                 return false;
6988         }
6989
6990         mutex_lock(&crtc->mutex);
6991         intel_encoder->new_crtc = to_intel_crtc(crtc);
6992         to_intel_connector(connector)->new_encoder = intel_encoder;
6993
6994         intel_crtc = to_intel_crtc(crtc);
6995         old->dpms_mode = connector->dpms;
6996         old->load_detect_temp = true;
6997         old->release_fb = NULL;
6998
6999         if (!mode)
7000                 mode = &load_detect_mode;
7001
7002         /* We need a framebuffer large enough to accommodate all accesses
7003          * that the plane may generate whilst we perform load detection.
7004          * We can not rely on the fbcon either being present (we get called
7005          * during its initialisation to detect all boot displays, or it may
7006          * not even exist) or that it is large enough to satisfy the
7007          * requested mode.
7008          */
7009         fb = mode_fits_in_fbdev(dev, mode);
7010         if (fb == NULL) {
7011                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7012                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7013                 old->release_fb = fb;
7014         } else
7015                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7016         if (IS_ERR(fb)) {
7017                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7018                 mutex_unlock(&crtc->mutex);
7019                 return false;
7020         }
7021
7022         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7023                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7024                 if (old->release_fb)
7025                         old->release_fb->funcs->destroy(old->release_fb);
7026                 mutex_unlock(&crtc->mutex);
7027                 return false;
7028         }
7029
7030         /* let the connector get through one full cycle before testing */
7031         intel_wait_for_vblank(dev, intel_crtc->pipe);
7032         return true;
7033 }
7034
7035 void intel_release_load_detect_pipe(struct drm_connector *connector,
7036                                     struct intel_load_detect_pipe *old)
7037 {
7038         struct intel_encoder *intel_encoder =
7039                 intel_attached_encoder(connector);
7040         struct drm_encoder *encoder = &intel_encoder->base;
7041         struct drm_crtc *crtc = encoder->crtc;
7042
7043         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7044                       connector->base.id, drm_get_connector_name(connector),
7045                       encoder->base.id, drm_get_encoder_name(encoder));
7046
7047         if (old->load_detect_temp) {
7048                 to_intel_connector(connector)->new_encoder = NULL;
7049                 intel_encoder->new_crtc = NULL;
7050                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7051
7052                 if (old->release_fb) {
7053                         drm_framebuffer_unregister_private(old->release_fb);
7054                         drm_framebuffer_unreference(old->release_fb);
7055                 }
7056
7057                 mutex_unlock(&crtc->mutex);
7058                 return;
7059         }
7060
7061         /* Switch crtc and encoder back off if necessary */
7062         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7063                 connector->funcs->dpms(connector, old->dpms_mode);
7064
7065         mutex_unlock(&crtc->mutex);
7066 }
7067
7068 /* Returns the clock of the currently programmed mode of the given pipe. */
7069 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7070                                 struct intel_crtc_config *pipe_config)
7071 {
7072         struct drm_device *dev = crtc->base.dev;
7073         struct drm_i915_private *dev_priv = dev->dev_private;
7074         int pipe = pipe_config->cpu_transcoder;
7075         u32 dpll = I915_READ(DPLL(pipe));
7076         u32 fp;
7077         intel_clock_t clock;
7078
7079         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7080                 fp = I915_READ(FP0(pipe));
7081         else
7082                 fp = I915_READ(FP1(pipe));
7083
7084         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7085         if (IS_PINEVIEW(dev)) {
7086                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7087                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7088         } else {
7089                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7090                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7091         }
7092
7093         if (!IS_GEN2(dev)) {
7094                 if (IS_PINEVIEW(dev))
7095                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7096                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7097                 else
7098                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7099                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7100
7101                 switch (dpll & DPLL_MODE_MASK) {
7102                 case DPLLB_MODE_DAC_SERIAL:
7103                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7104                                 5 : 10;
7105                         break;
7106                 case DPLLB_MODE_LVDS:
7107                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7108                                 7 : 14;
7109                         break;
7110                 default:
7111                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7112                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7113                         pipe_config->adjusted_mode.clock = 0;
7114                         return;
7115                 }
7116
7117                 if (IS_PINEVIEW(dev))
7118                         pineview_clock(96000, &clock);
7119                 else
7120                         i9xx_clock(96000, &clock);
7121         } else {
7122                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7123
7124                 if (is_lvds) {
7125                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7126                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7127                         clock.p2 = 14;
7128
7129                         if ((dpll & PLL_REF_INPUT_MASK) ==
7130                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7131                                 /* XXX: might not be 66MHz */
7132                                 i9xx_clock(66000, &clock);
7133                         } else
7134                                 i9xx_clock(48000, &clock);
7135                 } else {
7136                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7137                                 clock.p1 = 2;
7138                         else {
7139                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7140                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7141                         }
7142                         if (dpll & PLL_P2_DIVIDE_BY_4)
7143                                 clock.p2 = 4;
7144                         else
7145                                 clock.p2 = 2;
7146
7147                         i9xx_clock(48000, &clock);
7148                 }
7149         }
7150
7151         pipe_config->adjusted_mode.clock = clock.dot *
7152                 pipe_config->pixel_multiplier;
7153 }
7154
7155 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7156                                     struct intel_crtc_config *pipe_config)
7157 {
7158         struct drm_device *dev = crtc->base.dev;
7159         struct drm_i915_private *dev_priv = dev->dev_private;
7160         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7161         int link_freq, repeat;
7162         u64 clock;
7163         u32 link_m, link_n;
7164
7165         repeat = pipe_config->pixel_multiplier;
7166
7167         /*
7168          * The calculation for the data clock is:
7169          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7170          * But we want to avoid losing precison if possible, so:
7171          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7172          *
7173          * and the link clock is simpler:
7174          * link_clock = (m * link_clock * repeat) / n
7175          */
7176
7177         /*
7178          * We need to get the FDI or DP link clock here to derive
7179          * the M/N dividers.
7180          *
7181          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7182          * For DP, it's either 1.62GHz or 2.7GHz.
7183          * We do our calculations in 10*MHz since we don't need much precison.
7184          */
7185         if (pipe_config->has_pch_encoder)
7186                 link_freq = intel_fdi_link_freq(dev) * 10000;
7187         else
7188                 link_freq = pipe_config->port_clock;
7189
7190         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7191         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7192
7193         if (!link_m || !link_n)
7194                 return;
7195
7196         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7197         do_div(clock, link_n);
7198
7199         pipe_config->adjusted_mode.clock = clock;
7200 }
7201
7202 /** Returns the currently programmed mode of the given pipe. */
7203 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7204                                              struct drm_crtc *crtc)
7205 {
7206         struct drm_i915_private *dev_priv = dev->dev_private;
7207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7208         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7209         struct drm_display_mode *mode;
7210         struct intel_crtc_config pipe_config;
7211         int htot = I915_READ(HTOTAL(cpu_transcoder));
7212         int hsync = I915_READ(HSYNC(cpu_transcoder));
7213         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7214         int vsync = I915_READ(VSYNC(cpu_transcoder));
7215
7216         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7217         if (!mode)
7218                 return NULL;
7219
7220         /*
7221          * Construct a pipe_config sufficient for getting the clock info
7222          * back out of crtc_clock_get.
7223          *
7224          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7225          * to use a real value here instead.
7226          */
7227         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7228         pipe_config.pixel_multiplier = 1;
7229         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7230
7231         mode->clock = pipe_config.adjusted_mode.clock;
7232         mode->hdisplay = (htot & 0xffff) + 1;
7233         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7234         mode->hsync_start = (hsync & 0xffff) + 1;
7235         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7236         mode->vdisplay = (vtot & 0xffff) + 1;
7237         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7238         mode->vsync_start = (vsync & 0xffff) + 1;
7239         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7240
7241         drm_mode_set_name(mode);
7242
7243         return mode;
7244 }
7245
7246 static void intel_increase_pllclock(struct drm_crtc *crtc)
7247 {
7248         struct drm_device *dev = crtc->dev;
7249         drm_i915_private_t *dev_priv = dev->dev_private;
7250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7251         int pipe = intel_crtc->pipe;
7252         int dpll_reg = DPLL(pipe);
7253         int dpll;
7254
7255         if (HAS_PCH_SPLIT(dev))
7256                 return;
7257
7258         if (!dev_priv->lvds_downclock_avail)
7259                 return;
7260
7261         dpll = I915_READ(dpll_reg);
7262         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7263                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7264
7265                 assert_panel_unlocked(dev_priv, pipe);
7266
7267                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7268                 I915_WRITE(dpll_reg, dpll);
7269                 intel_wait_for_vblank(dev, pipe);
7270
7271                 dpll = I915_READ(dpll_reg);
7272                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7273                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7274         }
7275 }
7276
7277 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7278 {
7279         struct drm_device *dev = crtc->dev;
7280         drm_i915_private_t *dev_priv = dev->dev_private;
7281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7282
7283         if (HAS_PCH_SPLIT(dev))
7284                 return;
7285
7286         if (!dev_priv->lvds_downclock_avail)
7287                 return;
7288
7289         /*
7290          * Since this is called by a timer, we should never get here in
7291          * the manual case.
7292          */
7293         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7294                 int pipe = intel_crtc->pipe;
7295                 int dpll_reg = DPLL(pipe);
7296                 int dpll;
7297
7298                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7299
7300                 assert_panel_unlocked(dev_priv, pipe);
7301
7302                 dpll = I915_READ(dpll_reg);
7303                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7304                 I915_WRITE(dpll_reg, dpll);
7305                 intel_wait_for_vblank(dev, pipe);
7306                 dpll = I915_READ(dpll_reg);
7307                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7308                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7309         }
7310
7311 }
7312
7313 void intel_mark_busy(struct drm_device *dev)
7314 {
7315         i915_update_gfx_val(dev->dev_private);
7316 }
7317
7318 void intel_mark_idle(struct drm_device *dev)
7319 {
7320         struct drm_crtc *crtc;
7321
7322         if (!i915_powersave)
7323                 return;
7324
7325         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7326                 if (!crtc->fb)
7327                         continue;
7328
7329                 intel_decrease_pllclock(crtc);
7330         }
7331 }
7332
7333 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7334                         struct intel_ring_buffer *ring)
7335 {
7336         struct drm_device *dev = obj->base.dev;
7337         struct drm_crtc *crtc;
7338
7339         if (!i915_powersave)
7340                 return;
7341
7342         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7343                 if (!crtc->fb)
7344                         continue;
7345
7346                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7347                         continue;
7348
7349                 intel_increase_pllclock(crtc);
7350                 if (ring && intel_fbc_enabled(dev))
7351                         ring->fbc_dirty = true;
7352         }
7353 }
7354
7355 static void intel_crtc_destroy(struct drm_crtc *crtc)
7356 {
7357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7358         struct drm_device *dev = crtc->dev;
7359         struct intel_unpin_work *work;
7360         unsigned long flags;
7361
7362         spin_lock_irqsave(&dev->event_lock, flags);
7363         work = intel_crtc->unpin_work;
7364         intel_crtc->unpin_work = NULL;
7365         spin_unlock_irqrestore(&dev->event_lock, flags);
7366
7367         if (work) {
7368                 cancel_work_sync(&work->work);
7369                 kfree(work);
7370         }
7371
7372         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7373
7374         drm_crtc_cleanup(crtc);
7375
7376         kfree(intel_crtc);
7377 }
7378
7379 static void intel_unpin_work_fn(struct work_struct *__work)
7380 {
7381         struct intel_unpin_work *work =
7382                 container_of(__work, struct intel_unpin_work, work);
7383         struct drm_device *dev = work->crtc->dev;
7384
7385         mutex_lock(&dev->struct_mutex);
7386         intel_unpin_fb_obj(work->old_fb_obj);
7387         drm_gem_object_unreference(&work->pending_flip_obj->base);
7388         drm_gem_object_unreference(&work->old_fb_obj->base);
7389
7390         intel_update_fbc(dev);
7391         mutex_unlock(&dev->struct_mutex);
7392
7393         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7394         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7395
7396         kfree(work);
7397 }
7398
7399 static void do_intel_finish_page_flip(struct drm_device *dev,
7400                                       struct drm_crtc *crtc)
7401 {
7402         drm_i915_private_t *dev_priv = dev->dev_private;
7403         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7404         struct intel_unpin_work *work;
7405         unsigned long flags;
7406
7407         /* Ignore early vblank irqs */
7408         if (intel_crtc == NULL)
7409                 return;
7410
7411         spin_lock_irqsave(&dev->event_lock, flags);
7412         work = intel_crtc->unpin_work;
7413
7414         /* Ensure we don't miss a work->pending update ... */
7415         smp_rmb();
7416
7417         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7418                 spin_unlock_irqrestore(&dev->event_lock, flags);
7419                 return;
7420         }
7421
7422         /* and that the unpin work is consistent wrt ->pending. */
7423         smp_rmb();
7424
7425         intel_crtc->unpin_work = NULL;
7426
7427         if (work->event)
7428                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7429
7430         drm_vblank_put(dev, intel_crtc->pipe);
7431
7432         spin_unlock_irqrestore(&dev->event_lock, flags);
7433
7434         wake_up_all(&dev_priv->pending_flip_queue);
7435
7436         queue_work(dev_priv->wq, &work->work);
7437
7438         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7439 }
7440
7441 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7442 {
7443         drm_i915_private_t *dev_priv = dev->dev_private;
7444         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7445
7446         do_intel_finish_page_flip(dev, crtc);
7447 }
7448
7449 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7450 {
7451         drm_i915_private_t *dev_priv = dev->dev_private;
7452         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7453
7454         do_intel_finish_page_flip(dev, crtc);
7455 }
7456
7457 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7458 {
7459         drm_i915_private_t *dev_priv = dev->dev_private;
7460         struct intel_crtc *intel_crtc =
7461                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7462         unsigned long flags;
7463
7464         /* NB: An MMIO update of the plane base pointer will also
7465          * generate a page-flip completion irq, i.e. every modeset
7466          * is also accompanied by a spurious intel_prepare_page_flip().
7467          */
7468         spin_lock_irqsave(&dev->event_lock, flags);
7469         if (intel_crtc->unpin_work)
7470                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7471         spin_unlock_irqrestore(&dev->event_lock, flags);
7472 }
7473
7474 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7475 {
7476         /* Ensure that the work item is consistent when activating it ... */
7477         smp_wmb();
7478         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7479         /* and that it is marked active as soon as the irq could fire. */
7480         smp_wmb();
7481 }
7482
7483 static int intel_gen2_queue_flip(struct drm_device *dev,
7484                                  struct drm_crtc *crtc,
7485                                  struct drm_framebuffer *fb,
7486                                  struct drm_i915_gem_object *obj)
7487 {
7488         struct drm_i915_private *dev_priv = dev->dev_private;
7489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7490         u32 flip_mask;
7491         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7492         int ret;
7493
7494         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7495         if (ret)
7496                 goto err;
7497
7498         ret = intel_ring_begin(ring, 6);
7499         if (ret)
7500                 goto err_unpin;
7501
7502         /* Can't queue multiple flips, so wait for the previous
7503          * one to finish before executing the next.
7504          */
7505         if (intel_crtc->plane)
7506                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7507         else
7508                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7509         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7510         intel_ring_emit(ring, MI_NOOP);
7511         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7512                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7513         intel_ring_emit(ring, fb->pitches[0]);
7514         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7515         intel_ring_emit(ring, 0); /* aux display base address, unused */
7516
7517         intel_mark_page_flip_active(intel_crtc);
7518         intel_ring_advance(ring);
7519         return 0;
7520
7521 err_unpin:
7522         intel_unpin_fb_obj(obj);
7523 err:
7524         return ret;
7525 }
7526
7527 static int intel_gen3_queue_flip(struct drm_device *dev,
7528                                  struct drm_crtc *crtc,
7529                                  struct drm_framebuffer *fb,
7530                                  struct drm_i915_gem_object *obj)
7531 {
7532         struct drm_i915_private *dev_priv = dev->dev_private;
7533         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7534         u32 flip_mask;
7535         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7536         int ret;
7537
7538         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7539         if (ret)
7540                 goto err;
7541
7542         ret = intel_ring_begin(ring, 6);
7543         if (ret)
7544                 goto err_unpin;
7545
7546         if (intel_crtc->plane)
7547                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7548         else
7549                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7550         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7551         intel_ring_emit(ring, MI_NOOP);
7552         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7553                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7554         intel_ring_emit(ring, fb->pitches[0]);
7555         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7556         intel_ring_emit(ring, MI_NOOP);
7557
7558         intel_mark_page_flip_active(intel_crtc);
7559         intel_ring_advance(ring);
7560         return 0;
7561
7562 err_unpin:
7563         intel_unpin_fb_obj(obj);
7564 err:
7565         return ret;
7566 }
7567
7568 static int intel_gen4_queue_flip(struct drm_device *dev,
7569                                  struct drm_crtc *crtc,
7570                                  struct drm_framebuffer *fb,
7571                                  struct drm_i915_gem_object *obj)
7572 {
7573         struct drm_i915_private *dev_priv = dev->dev_private;
7574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7575         uint32_t pf, pipesrc;
7576         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7577         int ret;
7578
7579         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7580         if (ret)
7581                 goto err;
7582
7583         ret = intel_ring_begin(ring, 4);
7584         if (ret)
7585                 goto err_unpin;
7586
7587         /* i965+ uses the linear or tiled offsets from the
7588          * Display Registers (which do not change across a page-flip)
7589          * so we need only reprogram the base address.
7590          */
7591         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7592                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7593         intel_ring_emit(ring, fb->pitches[0]);
7594         intel_ring_emit(ring,
7595                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7596                         obj->tiling_mode);
7597
7598         /* XXX Enabling the panel-fitter across page-flip is so far
7599          * untested on non-native modes, so ignore it for now.
7600          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7601          */
7602         pf = 0;
7603         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7604         intel_ring_emit(ring, pf | pipesrc);
7605
7606         intel_mark_page_flip_active(intel_crtc);
7607         intel_ring_advance(ring);
7608         return 0;
7609
7610 err_unpin:
7611         intel_unpin_fb_obj(obj);
7612 err:
7613         return ret;
7614 }
7615
7616 static int intel_gen6_queue_flip(struct drm_device *dev,
7617                                  struct drm_crtc *crtc,
7618                                  struct drm_framebuffer *fb,
7619                                  struct drm_i915_gem_object *obj)
7620 {
7621         struct drm_i915_private *dev_priv = dev->dev_private;
7622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7623         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7624         uint32_t pf, pipesrc;
7625         int ret;
7626
7627         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7628         if (ret)
7629                 goto err;
7630
7631         ret = intel_ring_begin(ring, 4);
7632         if (ret)
7633                 goto err_unpin;
7634
7635         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7636                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7637         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7638         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7639
7640         /* Contrary to the suggestions in the documentation,
7641          * "Enable Panel Fitter" does not seem to be required when page
7642          * flipping with a non-native mode, and worse causes a normal
7643          * modeset to fail.
7644          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7645          */
7646         pf = 0;
7647         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7648         intel_ring_emit(ring, pf | pipesrc);
7649
7650         intel_mark_page_flip_active(intel_crtc);
7651         intel_ring_advance(ring);
7652         return 0;
7653
7654 err_unpin:
7655         intel_unpin_fb_obj(obj);
7656 err:
7657         return ret;
7658 }
7659
7660 /*
7661  * On gen7 we currently use the blit ring because (in early silicon at least)
7662  * the render ring doesn't give us interrpts for page flip completion, which
7663  * means clients will hang after the first flip is queued.  Fortunately the
7664  * blit ring generates interrupts properly, so use it instead.
7665  */
7666 static int intel_gen7_queue_flip(struct drm_device *dev,
7667                                  struct drm_crtc *crtc,
7668                                  struct drm_framebuffer *fb,
7669                                  struct drm_i915_gem_object *obj)
7670 {
7671         struct drm_i915_private *dev_priv = dev->dev_private;
7672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7673         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7674         uint32_t plane_bit = 0;
7675         int ret;
7676
7677         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7678         if (ret)
7679                 goto err;
7680
7681         switch(intel_crtc->plane) {
7682         case PLANE_A:
7683                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7684                 break;
7685         case PLANE_B:
7686                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7687                 break;
7688         case PLANE_C:
7689                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7690                 break;
7691         default:
7692                 WARN_ONCE(1, "unknown plane in flip command\n");
7693                 ret = -ENODEV;
7694                 goto err_unpin;
7695         }
7696
7697         ret = intel_ring_begin(ring, 4);
7698         if (ret)
7699                 goto err_unpin;
7700
7701         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7702         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7703         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7704         intel_ring_emit(ring, (MI_NOOP));
7705
7706         intel_mark_page_flip_active(intel_crtc);
7707         intel_ring_advance(ring);
7708         return 0;
7709
7710 err_unpin:
7711         intel_unpin_fb_obj(obj);
7712 err:
7713         return ret;
7714 }
7715
7716 static int intel_default_queue_flip(struct drm_device *dev,
7717                                     struct drm_crtc *crtc,
7718                                     struct drm_framebuffer *fb,
7719                                     struct drm_i915_gem_object *obj)
7720 {
7721         return -ENODEV;
7722 }
7723
7724 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7725                                 struct drm_framebuffer *fb,
7726                                 struct drm_pending_vblank_event *event)
7727 {
7728         struct drm_device *dev = crtc->dev;
7729         struct drm_i915_private *dev_priv = dev->dev_private;
7730         struct drm_framebuffer *old_fb = crtc->fb;
7731         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7733         struct intel_unpin_work *work;
7734         unsigned long flags;
7735         int ret;
7736
7737         /* Can't change pixel format via MI display flips. */
7738         if (fb->pixel_format != crtc->fb->pixel_format)
7739                 return -EINVAL;
7740
7741         /*
7742          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7743          * Note that pitch changes could also affect these register.
7744          */
7745         if (INTEL_INFO(dev)->gen > 3 &&
7746             (fb->offsets[0] != crtc->fb->offsets[0] ||
7747              fb->pitches[0] != crtc->fb->pitches[0]))
7748                 return -EINVAL;
7749
7750         work = kzalloc(sizeof *work, GFP_KERNEL);
7751         if (work == NULL)
7752                 return -ENOMEM;
7753
7754         work->event = event;
7755         work->crtc = crtc;
7756         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7757         INIT_WORK(&work->work, intel_unpin_work_fn);
7758
7759         ret = drm_vblank_get(dev, intel_crtc->pipe);
7760         if (ret)
7761                 goto free_work;
7762
7763         /* We borrow the event spin lock for protecting unpin_work */
7764         spin_lock_irqsave(&dev->event_lock, flags);
7765         if (intel_crtc->unpin_work) {
7766                 spin_unlock_irqrestore(&dev->event_lock, flags);
7767                 kfree(work);
7768                 drm_vblank_put(dev, intel_crtc->pipe);
7769
7770                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7771                 return -EBUSY;
7772         }
7773         intel_crtc->unpin_work = work;
7774         spin_unlock_irqrestore(&dev->event_lock, flags);
7775
7776         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7777                 flush_workqueue(dev_priv->wq);
7778
7779         ret = i915_mutex_lock_interruptible(dev);
7780         if (ret)
7781                 goto cleanup;
7782
7783         /* Reference the objects for the scheduled work. */
7784         drm_gem_object_reference(&work->old_fb_obj->base);
7785         drm_gem_object_reference(&obj->base);
7786
7787         crtc->fb = fb;
7788
7789         work->pending_flip_obj = obj;
7790
7791         work->enable_stall_check = true;
7792
7793         atomic_inc(&intel_crtc->unpin_work_count);
7794         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7795
7796         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7797         if (ret)
7798                 goto cleanup_pending;
7799
7800         intel_disable_fbc(dev);
7801         intel_mark_fb_busy(obj, NULL);
7802         mutex_unlock(&dev->struct_mutex);
7803
7804         trace_i915_flip_request(intel_crtc->plane, obj);
7805
7806         return 0;
7807
7808 cleanup_pending:
7809         atomic_dec(&intel_crtc->unpin_work_count);
7810         crtc->fb = old_fb;
7811         drm_gem_object_unreference(&work->old_fb_obj->base);
7812         drm_gem_object_unreference(&obj->base);
7813         mutex_unlock(&dev->struct_mutex);
7814
7815 cleanup:
7816         spin_lock_irqsave(&dev->event_lock, flags);
7817         intel_crtc->unpin_work = NULL;
7818         spin_unlock_irqrestore(&dev->event_lock, flags);
7819
7820         drm_vblank_put(dev, intel_crtc->pipe);
7821 free_work:
7822         kfree(work);
7823
7824         return ret;
7825 }
7826
7827 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7828         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7829         .load_lut = intel_crtc_load_lut,
7830 };
7831
7832 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7833                                   struct drm_crtc *crtc)
7834 {
7835         struct drm_device *dev;
7836         struct drm_crtc *tmp;
7837         int crtc_mask = 1;
7838
7839         WARN(!crtc, "checking null crtc?\n");
7840
7841         dev = crtc->dev;
7842
7843         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7844                 if (tmp == crtc)
7845                         break;
7846                 crtc_mask <<= 1;
7847         }
7848
7849         if (encoder->possible_crtcs & crtc_mask)
7850                 return true;
7851         return false;
7852 }
7853
7854 /**
7855  * intel_modeset_update_staged_output_state
7856  *
7857  * Updates the staged output configuration state, e.g. after we've read out the
7858  * current hw state.
7859  */
7860 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7861 {
7862         struct intel_encoder *encoder;
7863         struct intel_connector *connector;
7864
7865         list_for_each_entry(connector, &dev->mode_config.connector_list,
7866                             base.head) {
7867                 connector->new_encoder =
7868                         to_intel_encoder(connector->base.encoder);
7869         }
7870
7871         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7872                             base.head) {
7873                 encoder->new_crtc =
7874                         to_intel_crtc(encoder->base.crtc);
7875         }
7876 }
7877
7878 /**
7879  * intel_modeset_commit_output_state
7880  *
7881  * This function copies the stage display pipe configuration to the real one.
7882  */
7883 static void intel_modeset_commit_output_state(struct drm_device *dev)
7884 {
7885         struct intel_encoder *encoder;
7886         struct intel_connector *connector;
7887
7888         list_for_each_entry(connector, &dev->mode_config.connector_list,
7889                             base.head) {
7890                 connector->base.encoder = &connector->new_encoder->base;
7891         }
7892
7893         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7894                             base.head) {
7895                 encoder->base.crtc = &encoder->new_crtc->base;
7896         }
7897 }
7898
7899 static void
7900 connected_sink_compute_bpp(struct intel_connector * connector,
7901                            struct intel_crtc_config *pipe_config)
7902 {
7903         int bpp = pipe_config->pipe_bpp;
7904
7905         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7906                 connector->base.base.id,
7907                 drm_get_connector_name(&connector->base));
7908
7909         /* Don't use an invalid EDID bpc value */
7910         if (connector->base.display_info.bpc &&
7911             connector->base.display_info.bpc * 3 < bpp) {
7912                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7913                               bpp, connector->base.display_info.bpc*3);
7914                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7915         }
7916
7917         /* Clamp bpp to 8 on screens without EDID 1.4 */
7918         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7919                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7920                               bpp);
7921                 pipe_config->pipe_bpp = 24;
7922         }
7923 }
7924
7925 static int
7926 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7927                           struct drm_framebuffer *fb,
7928                           struct intel_crtc_config *pipe_config)
7929 {
7930         struct drm_device *dev = crtc->base.dev;
7931         struct intel_connector *connector;
7932         int bpp;
7933
7934         switch (fb->pixel_format) {
7935         case DRM_FORMAT_C8:
7936                 bpp = 8*3; /* since we go through a colormap */
7937                 break;
7938         case DRM_FORMAT_XRGB1555:
7939         case DRM_FORMAT_ARGB1555:
7940                 /* checked in intel_framebuffer_init already */
7941                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7942                         return -EINVAL;
7943         case DRM_FORMAT_RGB565:
7944                 bpp = 6*3; /* min is 18bpp */
7945                 break;
7946         case DRM_FORMAT_XBGR8888:
7947         case DRM_FORMAT_ABGR8888:
7948                 /* checked in intel_framebuffer_init already */
7949                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7950                         return -EINVAL;
7951         case DRM_FORMAT_XRGB8888:
7952         case DRM_FORMAT_ARGB8888:
7953                 bpp = 8*3;
7954                 break;
7955         case DRM_FORMAT_XRGB2101010:
7956         case DRM_FORMAT_ARGB2101010:
7957         case DRM_FORMAT_XBGR2101010:
7958         case DRM_FORMAT_ABGR2101010:
7959                 /* checked in intel_framebuffer_init already */
7960                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7961                         return -EINVAL;
7962                 bpp = 10*3;
7963                 break;
7964         /* TODO: gen4+ supports 16 bpc floating point, too. */
7965         default:
7966                 DRM_DEBUG_KMS("unsupported depth\n");
7967                 return -EINVAL;
7968         }
7969
7970         pipe_config->pipe_bpp = bpp;
7971
7972         /* Clamp display bpp to EDID value */
7973         list_for_each_entry(connector, &dev->mode_config.connector_list,
7974                             base.head) {
7975                 if (!connector->new_encoder ||
7976                     connector->new_encoder->new_crtc != crtc)
7977                         continue;
7978
7979                 connected_sink_compute_bpp(connector, pipe_config);
7980         }
7981
7982         return bpp;
7983 }
7984
7985 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7986                                    struct intel_crtc_config *pipe_config,
7987                                    const char *context)
7988 {
7989         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7990                       context, pipe_name(crtc->pipe));
7991
7992         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7993         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7994                       pipe_config->pipe_bpp, pipe_config->dither);
7995         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7996                       pipe_config->has_pch_encoder,
7997                       pipe_config->fdi_lanes,
7998                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7999                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8000                       pipe_config->fdi_m_n.tu);
8001         DRM_DEBUG_KMS("requested mode:\n");
8002         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8003         DRM_DEBUG_KMS("adjusted mode:\n");
8004         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8005         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8006                       pipe_config->gmch_pfit.control,
8007                       pipe_config->gmch_pfit.pgm_ratios,
8008                       pipe_config->gmch_pfit.lvds_border_bits);
8009         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8010                       pipe_config->pch_pfit.pos,
8011                       pipe_config->pch_pfit.size);
8012         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8013 }
8014
8015 static bool check_encoder_cloning(struct drm_crtc *crtc)
8016 {
8017         int num_encoders = 0;
8018         bool uncloneable_encoders = false;
8019         struct intel_encoder *encoder;
8020
8021         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8022                             base.head) {
8023                 if (&encoder->new_crtc->base != crtc)
8024                         continue;
8025
8026                 num_encoders++;
8027                 if (!encoder->cloneable)
8028                         uncloneable_encoders = true;
8029         }
8030
8031         return !(num_encoders > 1 && uncloneable_encoders);
8032 }
8033
8034 static struct intel_crtc_config *
8035 intel_modeset_pipe_config(struct drm_crtc *crtc,
8036                           struct drm_framebuffer *fb,
8037                           struct drm_display_mode *mode)
8038 {
8039         struct drm_device *dev = crtc->dev;
8040         struct drm_encoder_helper_funcs *encoder_funcs;
8041         struct intel_encoder *encoder;
8042         struct intel_crtc_config *pipe_config;
8043         int plane_bpp, ret = -EINVAL;
8044         bool retry = true;
8045
8046         if (!check_encoder_cloning(crtc)) {
8047                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8048                 return ERR_PTR(-EINVAL);
8049         }
8050
8051         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8052         if (!pipe_config)
8053                 return ERR_PTR(-ENOMEM);
8054
8055         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8056         drm_mode_copy(&pipe_config->requested_mode, mode);
8057         pipe_config->cpu_transcoder =
8058                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8059         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8060
8061         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8062          * plane pixel format and any sink constraints into account. Returns the
8063          * source plane bpp so that dithering can be selected on mismatches
8064          * after encoders and crtc also have had their say. */
8065         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8066                                               fb, pipe_config);
8067         if (plane_bpp < 0)
8068                 goto fail;
8069
8070 encoder_retry:
8071         /* Ensure the port clock defaults are reset when retrying. */
8072         pipe_config->port_clock = 0;
8073         pipe_config->pixel_multiplier = 1;
8074
8075         /* Pass our mode to the connectors and the CRTC to give them a chance to
8076          * adjust it according to limitations or connector properties, and also
8077          * a chance to reject the mode entirely.
8078          */
8079         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8080                             base.head) {
8081
8082                 if (&encoder->new_crtc->base != crtc)
8083                         continue;
8084
8085                 if (encoder->compute_config) {
8086                         if (!(encoder->compute_config(encoder, pipe_config))) {
8087                                 DRM_DEBUG_KMS("Encoder config failure\n");
8088                                 goto fail;
8089                         }
8090
8091                         continue;
8092                 }
8093
8094                 encoder_funcs = encoder->base.helper_private;
8095                 if (!(encoder_funcs->mode_fixup(&encoder->base,
8096                                                 &pipe_config->requested_mode,
8097                                                 &pipe_config->adjusted_mode))) {
8098                         DRM_DEBUG_KMS("Encoder fixup failed\n");
8099                         goto fail;
8100                 }
8101         }
8102
8103         /* Set default port clock if not overwritten by the encoder. Needs to be
8104          * done afterwards in case the encoder adjusts the mode. */
8105         if (!pipe_config->port_clock)
8106                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8107
8108         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8109         if (ret < 0) {
8110                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8111                 goto fail;
8112         }
8113
8114         if (ret == RETRY) {
8115                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8116                         ret = -EINVAL;
8117                         goto fail;
8118                 }
8119
8120                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8121                 retry = false;
8122                 goto encoder_retry;
8123         }
8124
8125         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8126         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8127                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8128
8129         return pipe_config;
8130 fail:
8131         kfree(pipe_config);
8132         return ERR_PTR(ret);
8133 }
8134
8135 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8136  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8137 static void
8138 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8139                              unsigned *prepare_pipes, unsigned *disable_pipes)
8140 {
8141         struct intel_crtc *intel_crtc;
8142         struct drm_device *dev = crtc->dev;
8143         struct intel_encoder *encoder;
8144         struct intel_connector *connector;
8145         struct drm_crtc *tmp_crtc;
8146
8147         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8148
8149         /* Check which crtcs have changed outputs connected to them, these need
8150          * to be part of the prepare_pipes mask. We don't (yet) support global
8151          * modeset across multiple crtcs, so modeset_pipes will only have one
8152          * bit set at most. */
8153         list_for_each_entry(connector, &dev->mode_config.connector_list,
8154                             base.head) {
8155                 if (connector->base.encoder == &connector->new_encoder->base)
8156                         continue;
8157
8158                 if (connector->base.encoder) {
8159                         tmp_crtc = connector->base.encoder->crtc;
8160
8161                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8162                 }
8163
8164                 if (connector->new_encoder)
8165                         *prepare_pipes |=
8166                                 1 << connector->new_encoder->new_crtc->pipe;
8167         }
8168
8169         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8170                             base.head) {
8171                 if (encoder->base.crtc == &encoder->new_crtc->base)
8172                         continue;
8173
8174                 if (encoder->base.crtc) {
8175                         tmp_crtc = encoder->base.crtc;
8176
8177                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8178                 }
8179
8180                 if (encoder->new_crtc)
8181                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8182         }
8183
8184         /* Check for any pipes that will be fully disabled ... */
8185         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8186                             base.head) {
8187                 bool used = false;
8188
8189                 /* Don't try to disable disabled crtcs. */
8190                 if (!intel_crtc->base.enabled)
8191                         continue;
8192
8193                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8194                                     base.head) {
8195                         if (encoder->new_crtc == intel_crtc)
8196                                 used = true;
8197                 }
8198
8199                 if (!used)
8200                         *disable_pipes |= 1 << intel_crtc->pipe;
8201         }
8202
8203
8204         /* set_mode is also used to update properties on life display pipes. */
8205         intel_crtc = to_intel_crtc(crtc);
8206         if (crtc->enabled)
8207                 *prepare_pipes |= 1 << intel_crtc->pipe;
8208
8209         /*
8210          * For simplicity do a full modeset on any pipe where the output routing
8211          * changed. We could be more clever, but that would require us to be
8212          * more careful with calling the relevant encoder->mode_set functions.
8213          */
8214         if (*prepare_pipes)
8215                 *modeset_pipes = *prepare_pipes;
8216
8217         /* ... and mask these out. */
8218         *modeset_pipes &= ~(*disable_pipes);
8219         *prepare_pipes &= ~(*disable_pipes);
8220
8221         /*
8222          * HACK: We don't (yet) fully support global modesets. intel_set_config
8223          * obies this rule, but the modeset restore mode of
8224          * intel_modeset_setup_hw_state does not.
8225          */
8226         *modeset_pipes &= 1 << intel_crtc->pipe;
8227         *prepare_pipes &= 1 << intel_crtc->pipe;
8228
8229         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8230                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8231 }
8232
8233 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8234 {
8235         struct drm_encoder *encoder;
8236         struct drm_device *dev = crtc->dev;
8237
8238         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8239                 if (encoder->crtc == crtc)
8240                         return true;
8241
8242         return false;
8243 }
8244
8245 static void
8246 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8247 {
8248         struct intel_encoder *intel_encoder;
8249         struct intel_crtc *intel_crtc;
8250         struct drm_connector *connector;
8251
8252         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8253                             base.head) {
8254                 if (!intel_encoder->base.crtc)
8255                         continue;
8256
8257                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8258
8259                 if (prepare_pipes & (1 << intel_crtc->pipe))
8260                         intel_encoder->connectors_active = false;
8261         }
8262
8263         intel_modeset_commit_output_state(dev);
8264
8265         /* Update computed state. */
8266         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8267                             base.head) {
8268                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8269         }
8270
8271         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8272                 if (!connector->encoder || !connector->encoder->crtc)
8273                         continue;
8274
8275                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8276
8277                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8278                         struct drm_property *dpms_property =
8279                                 dev->mode_config.dpms_property;
8280
8281                         connector->dpms = DRM_MODE_DPMS_ON;
8282                         drm_object_property_set_value(&connector->base,
8283                                                          dpms_property,
8284                                                          DRM_MODE_DPMS_ON);
8285
8286                         intel_encoder = to_intel_encoder(connector->encoder);
8287                         intel_encoder->connectors_active = true;
8288                 }
8289         }
8290
8291 }
8292
8293 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8294                                     struct intel_crtc_config *new)
8295 {
8296         int clock1, clock2, diff;
8297
8298         clock1 = cur->adjusted_mode.clock;
8299         clock2 = new->adjusted_mode.clock;
8300
8301         if (clock1 == clock2)
8302                 return true;
8303
8304         if (!clock1 || !clock2)
8305                 return false;
8306
8307         diff = abs(clock1 - clock2);
8308
8309         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8310                 return true;
8311
8312         return false;
8313 }
8314
8315 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8316         list_for_each_entry((intel_crtc), \
8317                             &(dev)->mode_config.crtc_list, \
8318                             base.head) \
8319                 if (mask & (1 <<(intel_crtc)->pipe))
8320
8321 static bool
8322 intel_pipe_config_compare(struct drm_device *dev,
8323                           struct intel_crtc_config *current_config,
8324                           struct intel_crtc_config *pipe_config)
8325 {
8326 #define PIPE_CONF_CHECK_X(name) \
8327         if (current_config->name != pipe_config->name) { \
8328                 DRM_ERROR("mismatch in " #name " " \
8329                           "(expected 0x%08x, found 0x%08x)\n", \
8330                           current_config->name, \
8331                           pipe_config->name); \
8332                 return false; \
8333         }
8334
8335 #define PIPE_CONF_CHECK_I(name) \
8336         if (current_config->name != pipe_config->name) { \
8337                 DRM_ERROR("mismatch in " #name " " \
8338                           "(expected %i, found %i)\n", \
8339                           current_config->name, \
8340                           pipe_config->name); \
8341                 return false; \
8342         }
8343
8344 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8345         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8346                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8347                           "(expected %i, found %i)\n", \
8348                           current_config->name & (mask), \
8349                           pipe_config->name & (mask)); \
8350                 return false; \
8351         }
8352
8353 #define PIPE_CONF_QUIRK(quirk)  \
8354         ((current_config->quirks | pipe_config->quirks) & (quirk))
8355
8356         PIPE_CONF_CHECK_I(cpu_transcoder);
8357
8358         PIPE_CONF_CHECK_I(has_pch_encoder);
8359         PIPE_CONF_CHECK_I(fdi_lanes);
8360         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8361         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8362         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8363         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8364         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8365
8366         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8367         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8368         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8369         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8370         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8371         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8372
8373         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8374         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8375         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8376         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8377         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8378         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8379
8380         PIPE_CONF_CHECK_I(pixel_multiplier);
8381
8382         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8383                               DRM_MODE_FLAG_INTERLACE);
8384
8385         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8386                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8387                                       DRM_MODE_FLAG_PHSYNC);
8388                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8389                                       DRM_MODE_FLAG_NHSYNC);
8390                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8391                                       DRM_MODE_FLAG_PVSYNC);
8392                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8393                                       DRM_MODE_FLAG_NVSYNC);
8394         }
8395
8396         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8397         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8398
8399         PIPE_CONF_CHECK_I(gmch_pfit.control);
8400         /* pfit ratios are autocomputed by the hw on gen4+ */
8401         if (INTEL_INFO(dev)->gen < 4)
8402                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8403         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8404         PIPE_CONF_CHECK_I(pch_pfit.pos);
8405         PIPE_CONF_CHECK_I(pch_pfit.size);
8406
8407         PIPE_CONF_CHECK_I(ips_enabled);
8408
8409         PIPE_CONF_CHECK_I(shared_dpll);
8410         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8411         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8412         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8413         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8414
8415 #undef PIPE_CONF_CHECK_X
8416 #undef PIPE_CONF_CHECK_I
8417 #undef PIPE_CONF_CHECK_FLAGS
8418 #undef PIPE_CONF_QUIRK
8419
8420         if (!IS_HASWELL(dev)) {
8421                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8422                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8423                                   current_config->adjusted_mode.clock,
8424                                   pipe_config->adjusted_mode.clock);
8425                         return false;
8426                 }
8427         }
8428
8429         return true;
8430 }
8431
8432 static void
8433 check_connector_state(struct drm_device *dev)
8434 {
8435         struct intel_connector *connector;
8436
8437         list_for_each_entry(connector, &dev->mode_config.connector_list,
8438                             base.head) {
8439                 /* This also checks the encoder/connector hw state with the
8440                  * ->get_hw_state callbacks. */
8441                 intel_connector_check_state(connector);
8442
8443                 WARN(&connector->new_encoder->base != connector->base.encoder,
8444                      "connector's staged encoder doesn't match current encoder\n");
8445         }
8446 }
8447
8448 static void
8449 check_encoder_state(struct drm_device *dev)
8450 {
8451         struct intel_encoder *encoder;
8452         struct intel_connector *connector;
8453
8454         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8455                             base.head) {
8456                 bool enabled = false;
8457                 bool active = false;
8458                 enum pipe pipe, tracked_pipe;
8459
8460                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8461                               encoder->base.base.id,
8462                               drm_get_encoder_name(&encoder->base));
8463
8464                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8465                      "encoder's stage crtc doesn't match current crtc\n");
8466                 WARN(encoder->connectors_active && !encoder->base.crtc,
8467                      "encoder's active_connectors set, but no crtc\n");
8468
8469                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8470                                     base.head) {
8471                         if (connector->base.encoder != &encoder->base)
8472                                 continue;
8473                         enabled = true;
8474                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8475                                 active = true;
8476                 }
8477                 WARN(!!encoder->base.crtc != enabled,
8478                      "encoder's enabled state mismatch "
8479                      "(expected %i, found %i)\n",
8480                      !!encoder->base.crtc, enabled);
8481                 WARN(active && !encoder->base.crtc,
8482                      "active encoder with no crtc\n");
8483
8484                 WARN(encoder->connectors_active != active,
8485                      "encoder's computed active state doesn't match tracked active state "
8486                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8487
8488                 active = encoder->get_hw_state(encoder, &pipe);
8489                 WARN(active != encoder->connectors_active,
8490                      "encoder's hw state doesn't match sw tracking "
8491                      "(expected %i, found %i)\n",
8492                      encoder->connectors_active, active);
8493
8494                 if (!encoder->base.crtc)
8495                         continue;
8496
8497                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8498                 WARN(active && pipe != tracked_pipe,
8499                      "active encoder's pipe doesn't match"
8500                      "(expected %i, found %i)\n",
8501                      tracked_pipe, pipe);
8502
8503         }
8504 }
8505
8506 static void
8507 check_crtc_state(struct drm_device *dev)
8508 {
8509         drm_i915_private_t *dev_priv = dev->dev_private;
8510         struct intel_crtc *crtc;
8511         struct intel_encoder *encoder;
8512         struct intel_crtc_config pipe_config;
8513
8514         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8515                             base.head) {
8516                 bool enabled = false;
8517                 bool active = false;
8518
8519                 memset(&pipe_config, 0, sizeof(pipe_config));
8520
8521                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8522                               crtc->base.base.id);
8523
8524                 WARN(crtc->active && !crtc->base.enabled,
8525                      "active crtc, but not enabled in sw tracking\n");
8526
8527                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8528                                     base.head) {
8529                         if (encoder->base.crtc != &crtc->base)
8530                                 continue;
8531                         enabled = true;
8532                         if (encoder->connectors_active)
8533                                 active = true;
8534                 }
8535
8536                 WARN(active != crtc->active,
8537                      "crtc's computed active state doesn't match tracked active state "
8538                      "(expected %i, found %i)\n", active, crtc->active);
8539                 WARN(enabled != crtc->base.enabled,
8540                      "crtc's computed enabled state doesn't match tracked enabled state "
8541                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8542
8543                 active = dev_priv->display.get_pipe_config(crtc,
8544                                                            &pipe_config);
8545
8546                 /* hw state is inconsistent with the pipe A quirk */
8547                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8548                         active = crtc->active;
8549
8550                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8551                                     base.head) {
8552                         if (encoder->base.crtc != &crtc->base)
8553                                 continue;
8554                         if (encoder->get_config)
8555                                 encoder->get_config(encoder, &pipe_config);
8556                 }
8557
8558                 if (dev_priv->display.get_clock)
8559                         dev_priv->display.get_clock(crtc, &pipe_config);
8560
8561                 WARN(crtc->active != active,
8562                      "crtc active state doesn't match with hw state "
8563                      "(expected %i, found %i)\n", crtc->active, active);
8564
8565                 if (active &&
8566                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8567                         WARN(1, "pipe state doesn't match!\n");
8568                         intel_dump_pipe_config(crtc, &pipe_config,
8569                                                "[hw state]");
8570                         intel_dump_pipe_config(crtc, &crtc->config,
8571                                                "[sw state]");
8572                 }
8573         }
8574 }
8575
8576 static void
8577 check_shared_dpll_state(struct drm_device *dev)
8578 {
8579         drm_i915_private_t *dev_priv = dev->dev_private;
8580         struct intel_crtc *crtc;
8581         struct intel_dpll_hw_state dpll_hw_state;
8582         int i;
8583
8584         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8585                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8586                 int enabled_crtcs = 0, active_crtcs = 0;
8587                 bool active;
8588
8589                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8590
8591                 DRM_DEBUG_KMS("%s\n", pll->name);
8592
8593                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8594
8595                 WARN(pll->active > pll->refcount,
8596                      "more active pll users than references: %i vs %i\n",
8597                      pll->active, pll->refcount);
8598                 WARN(pll->active && !pll->on,
8599                      "pll in active use but not on in sw tracking\n");
8600                 WARN(pll->on && !pll->active,
8601                      "pll in on but not on in use in sw tracking\n");
8602                 WARN(pll->on != active,
8603                      "pll on state mismatch (expected %i, found %i)\n",
8604                      pll->on, active);
8605
8606                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8607                                     base.head) {
8608                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8609                                 enabled_crtcs++;
8610                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8611                                 active_crtcs++;
8612                 }
8613                 WARN(pll->active != active_crtcs,
8614                      "pll active crtcs mismatch (expected %i, found %i)\n",
8615                      pll->active, active_crtcs);
8616                 WARN(pll->refcount != enabled_crtcs,
8617                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8618                      pll->refcount, enabled_crtcs);
8619
8620                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8621                                        sizeof(dpll_hw_state)),
8622                      "pll hw state mismatch\n");
8623         }
8624 }
8625
8626 void
8627 intel_modeset_check_state(struct drm_device *dev)
8628 {
8629         check_connector_state(dev);
8630         check_encoder_state(dev);
8631         check_crtc_state(dev);
8632         check_shared_dpll_state(dev);
8633 }
8634
8635 static int __intel_set_mode(struct drm_crtc *crtc,
8636                             struct drm_display_mode *mode,
8637                             int x, int y, struct drm_framebuffer *fb)
8638 {
8639         struct drm_device *dev = crtc->dev;
8640         drm_i915_private_t *dev_priv = dev->dev_private;
8641         struct drm_display_mode *saved_mode, *saved_hwmode;
8642         struct intel_crtc_config *pipe_config = NULL;
8643         struct intel_crtc *intel_crtc;
8644         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8645         int ret = 0;
8646
8647         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8648         if (!saved_mode)
8649                 return -ENOMEM;
8650         saved_hwmode = saved_mode + 1;
8651
8652         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8653                                      &prepare_pipes, &disable_pipes);
8654
8655         *saved_hwmode = crtc->hwmode;
8656         *saved_mode = crtc->mode;
8657
8658         /* Hack: Because we don't (yet) support global modeset on multiple
8659          * crtcs, we don't keep track of the new mode for more than one crtc.
8660          * Hence simply check whether any bit is set in modeset_pipes in all the
8661          * pieces of code that are not yet converted to deal with mutliple crtcs
8662          * changing their mode at the same time. */
8663         if (modeset_pipes) {
8664                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8665                 if (IS_ERR(pipe_config)) {
8666                         ret = PTR_ERR(pipe_config);
8667                         pipe_config = NULL;
8668
8669                         goto out;
8670                 }
8671                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8672                                        "[modeset]");
8673         }
8674
8675         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8676                 intel_crtc_disable(&intel_crtc->base);
8677
8678         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8679                 if (intel_crtc->base.enabled)
8680                         dev_priv->display.crtc_disable(&intel_crtc->base);
8681         }
8682
8683         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8684          * to set it here already despite that we pass it down the callchain.
8685          */
8686         if (modeset_pipes) {
8687                 crtc->mode = *mode;
8688                 /* mode_set/enable/disable functions rely on a correct pipe
8689                  * config. */
8690                 to_intel_crtc(crtc)->config = *pipe_config;
8691         }
8692
8693         /* Only after disabling all output pipelines that will be changed can we
8694          * update the the output configuration. */
8695         intel_modeset_update_state(dev, prepare_pipes);
8696
8697         if (dev_priv->display.modeset_global_resources)
8698                 dev_priv->display.modeset_global_resources(dev);
8699
8700         /* Set up the DPLL and any encoders state that needs to adjust or depend
8701          * on the DPLL.
8702          */
8703         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8704                 ret = intel_crtc_mode_set(&intel_crtc->base,
8705                                           x, y, fb);
8706                 if (ret)
8707                         goto done;
8708         }
8709
8710         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8711         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8712                 dev_priv->display.crtc_enable(&intel_crtc->base);
8713
8714         if (modeset_pipes) {
8715                 /* Store real post-adjustment hardware mode. */
8716                 crtc->hwmode = pipe_config->adjusted_mode;
8717
8718                 /* Calculate and store various constants which
8719                  * are later needed by vblank and swap-completion
8720                  * timestamping. They are derived from true hwmode.
8721                  */
8722                 drm_calc_timestamping_constants(crtc);
8723         }
8724
8725         /* FIXME: add subpixel order */
8726 done:
8727         if (ret && crtc->enabled) {
8728                 crtc->hwmode = *saved_hwmode;
8729                 crtc->mode = *saved_mode;
8730         }
8731
8732 out:
8733         kfree(pipe_config);
8734         kfree(saved_mode);
8735         return ret;
8736 }
8737
8738 int intel_set_mode(struct drm_crtc *crtc,
8739                      struct drm_display_mode *mode,
8740                      int x, int y, struct drm_framebuffer *fb)
8741 {
8742         int ret;
8743
8744         ret = __intel_set_mode(crtc, mode, x, y, fb);
8745
8746         if (ret == 0)
8747                 intel_modeset_check_state(crtc->dev);
8748
8749         return ret;
8750 }
8751
8752 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8753 {
8754         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8755 }
8756
8757 #undef for_each_intel_crtc_masked
8758
8759 static void intel_set_config_free(struct intel_set_config *config)
8760 {
8761         if (!config)
8762                 return;
8763
8764         kfree(config->save_connector_encoders);
8765         kfree(config->save_encoder_crtcs);
8766         kfree(config);
8767 }
8768
8769 static int intel_set_config_save_state(struct drm_device *dev,
8770                                        struct intel_set_config *config)
8771 {
8772         struct drm_encoder *encoder;
8773         struct drm_connector *connector;
8774         int count;
8775
8776         config->save_encoder_crtcs =
8777                 kcalloc(dev->mode_config.num_encoder,
8778                         sizeof(struct drm_crtc *), GFP_KERNEL);
8779         if (!config->save_encoder_crtcs)
8780                 return -ENOMEM;
8781
8782         config->save_connector_encoders =
8783                 kcalloc(dev->mode_config.num_connector,
8784                         sizeof(struct drm_encoder *), GFP_KERNEL);
8785         if (!config->save_connector_encoders)
8786                 return -ENOMEM;
8787
8788         /* Copy data. Note that driver private data is not affected.
8789          * Should anything bad happen only the expected state is
8790          * restored, not the drivers personal bookkeeping.
8791          */
8792         count = 0;
8793         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8794                 config->save_encoder_crtcs[count++] = encoder->crtc;
8795         }
8796
8797         count = 0;
8798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8799                 config->save_connector_encoders[count++] = connector->encoder;
8800         }
8801
8802         return 0;
8803 }
8804
8805 static void intel_set_config_restore_state(struct drm_device *dev,
8806                                            struct intel_set_config *config)
8807 {
8808         struct intel_encoder *encoder;
8809         struct intel_connector *connector;
8810         int count;
8811
8812         count = 0;
8813         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8814                 encoder->new_crtc =
8815                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8816         }
8817
8818         count = 0;
8819         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8820                 connector->new_encoder =
8821                         to_intel_encoder(config->save_connector_encoders[count++]);
8822         }
8823 }
8824
8825 static bool
8826 is_crtc_connector_off(struct drm_mode_set *set)
8827 {
8828         int i;
8829
8830         if (set->num_connectors == 0)
8831                 return false;
8832
8833         if (WARN_ON(set->connectors == NULL))
8834                 return false;
8835
8836         for (i = 0; i < set->num_connectors; i++)
8837                 if (set->connectors[i]->encoder &&
8838                     set->connectors[i]->encoder->crtc == set->crtc &&
8839                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8840                         return true;
8841
8842         return false;
8843 }
8844
8845 static void
8846 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8847                                       struct intel_set_config *config)
8848 {
8849
8850         /* We should be able to check here if the fb has the same properties
8851          * and then just flip_or_move it */
8852         if (is_crtc_connector_off(set)) {
8853                 config->mode_changed = true;
8854         } else if (set->crtc->fb != set->fb) {
8855                 /* If we have no fb then treat it as a full mode set */
8856                 if (set->crtc->fb == NULL) {
8857                         struct intel_crtc *intel_crtc =
8858                                 to_intel_crtc(set->crtc);
8859
8860                         if (intel_crtc->active && i915_fastboot) {
8861                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8862                                 config->fb_changed = true;
8863                         } else {
8864                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8865                                 config->mode_changed = true;
8866                         }
8867                 } else if (set->fb == NULL) {
8868                         config->mode_changed = true;
8869                 } else if (set->fb->pixel_format !=
8870                            set->crtc->fb->pixel_format) {
8871                         config->mode_changed = true;
8872                 } else {
8873                         config->fb_changed = true;
8874                 }
8875         }
8876
8877         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8878                 config->fb_changed = true;
8879
8880         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8881                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8882                 drm_mode_debug_printmodeline(&set->crtc->mode);
8883                 drm_mode_debug_printmodeline(set->mode);
8884                 config->mode_changed = true;
8885         }
8886 }
8887
8888 static int
8889 intel_modeset_stage_output_state(struct drm_device *dev,
8890                                  struct drm_mode_set *set,
8891                                  struct intel_set_config *config)
8892 {
8893         struct drm_crtc *new_crtc;
8894         struct intel_connector *connector;
8895         struct intel_encoder *encoder;
8896         int count, ro;
8897
8898         /* The upper layers ensure that we either disable a crtc or have a list
8899          * of connectors. For paranoia, double-check this. */
8900         WARN_ON(!set->fb && (set->num_connectors != 0));
8901         WARN_ON(set->fb && (set->num_connectors == 0));
8902
8903         count = 0;
8904         list_for_each_entry(connector, &dev->mode_config.connector_list,
8905                             base.head) {
8906                 /* Otherwise traverse passed in connector list and get encoders
8907                  * for them. */
8908                 for (ro = 0; ro < set->num_connectors; ro++) {
8909                         if (set->connectors[ro] == &connector->base) {
8910                                 connector->new_encoder = connector->encoder;
8911                                 break;
8912                         }
8913                 }
8914
8915                 /* If we disable the crtc, disable all its connectors. Also, if
8916                  * the connector is on the changing crtc but not on the new
8917                  * connector list, disable it. */
8918                 if ((!set->fb || ro == set->num_connectors) &&
8919                     connector->base.encoder &&
8920                     connector->base.encoder->crtc == set->crtc) {
8921                         connector->new_encoder = NULL;
8922
8923                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8924                                 connector->base.base.id,
8925                                 drm_get_connector_name(&connector->base));
8926                 }
8927
8928
8929                 if (&connector->new_encoder->base != connector->base.encoder) {
8930                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8931                         config->mode_changed = true;
8932                 }
8933         }
8934         /* connector->new_encoder is now updated for all connectors. */
8935
8936         /* Update crtc of enabled connectors. */
8937         count = 0;
8938         list_for_each_entry(connector, &dev->mode_config.connector_list,
8939                             base.head) {
8940                 if (!connector->new_encoder)
8941                         continue;
8942
8943                 new_crtc = connector->new_encoder->base.crtc;
8944
8945                 for (ro = 0; ro < set->num_connectors; ro++) {
8946                         if (set->connectors[ro] == &connector->base)
8947                                 new_crtc = set->crtc;
8948                 }
8949
8950                 /* Make sure the new CRTC will work with the encoder */
8951                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8952                                            new_crtc)) {
8953                         return -EINVAL;
8954                 }
8955                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8956
8957                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8958                         connector->base.base.id,
8959                         drm_get_connector_name(&connector->base),
8960                         new_crtc->base.id);
8961         }
8962
8963         /* Check for any encoders that needs to be disabled. */
8964         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8965                             base.head) {
8966                 list_for_each_entry(connector,
8967                                     &dev->mode_config.connector_list,
8968                                     base.head) {
8969                         if (connector->new_encoder == encoder) {
8970                                 WARN_ON(!connector->new_encoder->new_crtc);
8971
8972                                 goto next_encoder;
8973                         }
8974                 }
8975                 encoder->new_crtc = NULL;
8976 next_encoder:
8977                 /* Only now check for crtc changes so we don't miss encoders
8978                  * that will be disabled. */
8979                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8980                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8981                         config->mode_changed = true;
8982                 }
8983         }
8984         /* Now we've also updated encoder->new_crtc for all encoders. */
8985
8986         return 0;
8987 }
8988
8989 static int intel_crtc_set_config(struct drm_mode_set *set)
8990 {
8991         struct drm_device *dev;
8992         struct drm_mode_set save_set;
8993         struct intel_set_config *config;
8994         int ret;
8995
8996         BUG_ON(!set);
8997         BUG_ON(!set->crtc);
8998         BUG_ON(!set->crtc->helper_private);
8999
9000         /* Enforce sane interface api - has been abused by the fb helper. */
9001         BUG_ON(!set->mode && set->fb);
9002         BUG_ON(set->fb && set->num_connectors == 0);
9003
9004         if (set->fb) {
9005                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9006                                 set->crtc->base.id, set->fb->base.id,
9007                                 (int)set->num_connectors, set->x, set->y);
9008         } else {
9009                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9010         }
9011
9012         dev = set->crtc->dev;
9013
9014         ret = -ENOMEM;
9015         config = kzalloc(sizeof(*config), GFP_KERNEL);
9016         if (!config)
9017                 goto out_config;
9018
9019         ret = intel_set_config_save_state(dev, config);
9020         if (ret)
9021                 goto out_config;
9022
9023         save_set.crtc = set->crtc;
9024         save_set.mode = &set->crtc->mode;
9025         save_set.x = set->crtc->x;
9026         save_set.y = set->crtc->y;
9027         save_set.fb = set->crtc->fb;
9028
9029         /* Compute whether we need a full modeset, only an fb base update or no
9030          * change at all. In the future we might also check whether only the
9031          * mode changed, e.g. for LVDS where we only change the panel fitter in
9032          * such cases. */
9033         intel_set_config_compute_mode_changes(set, config);
9034
9035         ret = intel_modeset_stage_output_state(dev, set, config);
9036         if (ret)
9037                 goto fail;
9038
9039         if (config->mode_changed) {
9040                 ret = intel_set_mode(set->crtc, set->mode,
9041                                      set->x, set->y, set->fb);
9042         } else if (config->fb_changed) {
9043                 intel_crtc_wait_for_pending_flips(set->crtc);
9044
9045                 ret = intel_pipe_set_base(set->crtc,
9046                                           set->x, set->y, set->fb);
9047         }
9048
9049         if (ret) {
9050                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9051                               set->crtc->base.id, ret);
9052 fail:
9053                 intel_set_config_restore_state(dev, config);
9054
9055                 /* Try to restore the config */
9056                 if (config->mode_changed &&
9057                     intel_set_mode(save_set.crtc, save_set.mode,
9058                                    save_set.x, save_set.y, save_set.fb))
9059                         DRM_ERROR("failed to restore config after modeset failure\n");
9060         }
9061
9062 out_config:
9063         intel_set_config_free(config);
9064         return ret;
9065 }
9066
9067 static const struct drm_crtc_funcs intel_crtc_funcs = {
9068         .cursor_set = intel_crtc_cursor_set,
9069         .cursor_move = intel_crtc_cursor_move,
9070         .gamma_set = intel_crtc_gamma_set,
9071         .set_config = intel_crtc_set_config,
9072         .destroy = intel_crtc_destroy,
9073         .page_flip = intel_crtc_page_flip,
9074 };
9075
9076 static void intel_cpu_pll_init(struct drm_device *dev)
9077 {
9078         if (HAS_DDI(dev))
9079                 intel_ddi_pll_init(dev);
9080 }
9081
9082 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9083                                       struct intel_shared_dpll *pll,
9084                                       struct intel_dpll_hw_state *hw_state)
9085 {
9086         uint32_t val;
9087
9088         val = I915_READ(PCH_DPLL(pll->id));
9089         hw_state->dpll = val;
9090         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9091         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9092
9093         return val & DPLL_VCO_ENABLE;
9094 }
9095
9096 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9097                                   struct intel_shared_dpll *pll)
9098 {
9099         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9100         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9101 }
9102
9103 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9104                                 struct intel_shared_dpll *pll)
9105 {
9106         /* PCH refclock must be enabled first */
9107         assert_pch_refclk_enabled(dev_priv);
9108
9109         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9110
9111         /* Wait for the clocks to stabilize. */
9112         POSTING_READ(PCH_DPLL(pll->id));
9113         udelay(150);
9114
9115         /* The pixel multiplier can only be updated once the
9116          * DPLL is enabled and the clocks are stable.
9117          *
9118          * So write it again.
9119          */
9120         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9121         POSTING_READ(PCH_DPLL(pll->id));
9122         udelay(200);
9123 }
9124
9125 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9126                                  struct intel_shared_dpll *pll)
9127 {
9128         struct drm_device *dev = dev_priv->dev;
9129         struct intel_crtc *crtc;
9130
9131         /* Make sure no transcoder isn't still depending on us. */
9132         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9133                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9134                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9135         }
9136
9137         I915_WRITE(PCH_DPLL(pll->id), 0);
9138         POSTING_READ(PCH_DPLL(pll->id));
9139         udelay(200);
9140 }
9141
9142 static char *ibx_pch_dpll_names[] = {
9143         "PCH DPLL A",
9144         "PCH DPLL B",
9145 };
9146
9147 static void ibx_pch_dpll_init(struct drm_device *dev)
9148 {
9149         struct drm_i915_private *dev_priv = dev->dev_private;
9150         int i;
9151
9152         dev_priv->num_shared_dpll = 2;
9153
9154         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9155                 dev_priv->shared_dplls[i].id = i;
9156                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9157                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9158                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9159                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9160                 dev_priv->shared_dplls[i].get_hw_state =
9161                         ibx_pch_dpll_get_hw_state;
9162         }
9163 }
9164
9165 static void intel_shared_dpll_init(struct drm_device *dev)
9166 {
9167         struct drm_i915_private *dev_priv = dev->dev_private;
9168
9169         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9170                 ibx_pch_dpll_init(dev);
9171         else
9172                 dev_priv->num_shared_dpll = 0;
9173
9174         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9175         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9176                       dev_priv->num_shared_dpll);
9177 }
9178
9179 static void intel_crtc_init(struct drm_device *dev, int pipe)
9180 {
9181         drm_i915_private_t *dev_priv = dev->dev_private;
9182         struct intel_crtc *intel_crtc;
9183         int i;
9184
9185         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9186         if (intel_crtc == NULL)
9187                 return;
9188
9189         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9190
9191         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9192         for (i = 0; i < 256; i++) {
9193                 intel_crtc->lut_r[i] = i;
9194                 intel_crtc->lut_g[i] = i;
9195                 intel_crtc->lut_b[i] = i;
9196         }
9197
9198         /* Swap pipes & planes for FBC on pre-965 */
9199         intel_crtc->pipe = pipe;
9200         intel_crtc->plane = pipe;
9201         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9202                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9203                 intel_crtc->plane = !pipe;
9204         }
9205
9206         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9207                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9208         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9209         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9210
9211         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9212 }
9213
9214 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9215                                 struct drm_file *file)
9216 {
9217         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9218         struct drm_mode_object *drmmode_obj;
9219         struct intel_crtc *crtc;
9220
9221         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9222                 return -ENODEV;
9223
9224         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9225                         DRM_MODE_OBJECT_CRTC);
9226
9227         if (!drmmode_obj) {
9228                 DRM_ERROR("no such CRTC id\n");
9229                 return -EINVAL;
9230         }
9231
9232         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9233         pipe_from_crtc_id->pipe = crtc->pipe;
9234
9235         return 0;
9236 }
9237
9238 static int intel_encoder_clones(struct intel_encoder *encoder)
9239 {
9240         struct drm_device *dev = encoder->base.dev;
9241         struct intel_encoder *source_encoder;
9242         int index_mask = 0;
9243         int entry = 0;
9244
9245         list_for_each_entry(source_encoder,
9246                             &dev->mode_config.encoder_list, base.head) {
9247
9248                 if (encoder == source_encoder)
9249                         index_mask |= (1 << entry);
9250
9251                 /* Intel hw has only one MUX where enocoders could be cloned. */
9252                 if (encoder->cloneable && source_encoder->cloneable)
9253                         index_mask |= (1 << entry);
9254
9255                 entry++;
9256         }
9257
9258         return index_mask;
9259 }
9260
9261 static bool has_edp_a(struct drm_device *dev)
9262 {
9263         struct drm_i915_private *dev_priv = dev->dev_private;
9264
9265         if (!IS_MOBILE(dev))
9266                 return false;
9267
9268         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9269                 return false;
9270
9271         if (IS_GEN5(dev) &&
9272             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9273                 return false;
9274
9275         return true;
9276 }
9277
9278 static void intel_setup_outputs(struct drm_device *dev)
9279 {
9280         struct drm_i915_private *dev_priv = dev->dev_private;
9281         struct intel_encoder *encoder;
9282         bool dpd_is_edp = false;
9283
9284         intel_lvds_init(dev);
9285
9286         if (!IS_ULT(dev))
9287                 intel_crt_init(dev);
9288
9289         if (HAS_DDI(dev)) {
9290                 int found;
9291
9292                 /* Haswell uses DDI functions to detect digital outputs */
9293                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9294                 /* DDI A only supports eDP */
9295                 if (found)
9296                         intel_ddi_init(dev, PORT_A);
9297
9298                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9299                  * register */
9300                 found = I915_READ(SFUSE_STRAP);
9301
9302                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9303                         intel_ddi_init(dev, PORT_B);
9304                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9305                         intel_ddi_init(dev, PORT_C);
9306                 if (found & SFUSE_STRAP_DDID_DETECTED)
9307                         intel_ddi_init(dev, PORT_D);
9308         } else if (HAS_PCH_SPLIT(dev)) {
9309                 int found;
9310                 dpd_is_edp = intel_dpd_is_edp(dev);
9311
9312                 if (has_edp_a(dev))
9313                         intel_dp_init(dev, DP_A, PORT_A);
9314
9315                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9316                         /* PCH SDVOB multiplex with HDMIB */
9317                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9318                         if (!found)
9319                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9320                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9321                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9322                 }
9323
9324                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9325                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9326
9327                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9328                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9329
9330                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9331                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9332
9333                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9334                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9335         } else if (IS_VALLEYVIEW(dev)) {
9336                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9337                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9338                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9339
9340                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9341                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9342                                         PORT_B);
9343                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9344                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9345                 }
9346         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9347                 bool found = false;
9348
9349                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9350                         DRM_DEBUG_KMS("probing SDVOB\n");
9351                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9352                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9353                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9354                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9355                         }
9356
9357                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9358                                 intel_dp_init(dev, DP_B, PORT_B);
9359                 }
9360
9361                 /* Before G4X SDVOC doesn't have its own detect register */
9362
9363                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9364                         DRM_DEBUG_KMS("probing SDVOC\n");
9365                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9366                 }
9367
9368                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9369
9370                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9371                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9372                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9373                         }
9374                         if (SUPPORTS_INTEGRATED_DP(dev))
9375                                 intel_dp_init(dev, DP_C, PORT_C);
9376                 }
9377
9378                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9379                     (I915_READ(DP_D) & DP_DETECTED))
9380                         intel_dp_init(dev, DP_D, PORT_D);
9381         } else if (IS_GEN2(dev))
9382                 intel_dvo_init(dev);
9383
9384         if (SUPPORTS_TV(dev))
9385                 intel_tv_init(dev);
9386
9387         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9388                 encoder->base.possible_crtcs = encoder->crtc_mask;
9389                 encoder->base.possible_clones =
9390                         intel_encoder_clones(encoder);
9391         }
9392
9393         intel_init_pch_refclk(dev);
9394
9395         drm_helper_move_panel_connectors_to_head(dev);
9396 }
9397
9398 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9399 {
9400         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9401
9402         drm_framebuffer_cleanup(fb);
9403         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9404
9405         kfree(intel_fb);
9406 }
9407
9408 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9409                                                 struct drm_file *file,
9410                                                 unsigned int *handle)
9411 {
9412         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9413         struct drm_i915_gem_object *obj = intel_fb->obj;
9414
9415         return drm_gem_handle_create(file, &obj->base, handle);
9416 }
9417
9418 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9419         .destroy = intel_user_framebuffer_destroy,
9420         .create_handle = intel_user_framebuffer_create_handle,
9421 };
9422
9423 int intel_framebuffer_init(struct drm_device *dev,
9424                            struct intel_framebuffer *intel_fb,
9425                            struct drm_mode_fb_cmd2 *mode_cmd,
9426                            struct drm_i915_gem_object *obj)
9427 {
9428         int pitch_limit;
9429         int ret;
9430
9431         if (obj->tiling_mode == I915_TILING_Y) {
9432                 DRM_DEBUG("hardware does not support tiling Y\n");
9433                 return -EINVAL;
9434         }
9435
9436         if (mode_cmd->pitches[0] & 63) {
9437                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9438                           mode_cmd->pitches[0]);
9439                 return -EINVAL;
9440         }
9441
9442         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9443                 pitch_limit = 32*1024;
9444         } else if (INTEL_INFO(dev)->gen >= 4) {
9445                 if (obj->tiling_mode)
9446                         pitch_limit = 16*1024;
9447                 else
9448                         pitch_limit = 32*1024;
9449         } else if (INTEL_INFO(dev)->gen >= 3) {
9450                 if (obj->tiling_mode)
9451                         pitch_limit = 8*1024;
9452                 else
9453                         pitch_limit = 16*1024;
9454         } else
9455                 /* XXX DSPC is limited to 4k tiled */
9456                 pitch_limit = 8*1024;
9457
9458         if (mode_cmd->pitches[0] > pitch_limit) {
9459                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9460                           obj->tiling_mode ? "tiled" : "linear",
9461                           mode_cmd->pitches[0], pitch_limit);
9462                 return -EINVAL;
9463         }
9464
9465         if (obj->tiling_mode != I915_TILING_NONE &&
9466             mode_cmd->pitches[0] != obj->stride) {
9467                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9468                           mode_cmd->pitches[0], obj->stride);
9469                 return -EINVAL;
9470         }
9471
9472         /* Reject formats not supported by any plane early. */
9473         switch (mode_cmd->pixel_format) {
9474         case DRM_FORMAT_C8:
9475         case DRM_FORMAT_RGB565:
9476         case DRM_FORMAT_XRGB8888:
9477         case DRM_FORMAT_ARGB8888:
9478                 break;
9479         case DRM_FORMAT_XRGB1555:
9480         case DRM_FORMAT_ARGB1555:
9481                 if (INTEL_INFO(dev)->gen > 3) {
9482                         DRM_DEBUG("unsupported pixel format: %s\n",
9483                                   drm_get_format_name(mode_cmd->pixel_format));
9484                         return -EINVAL;
9485                 }
9486                 break;
9487         case DRM_FORMAT_XBGR8888:
9488         case DRM_FORMAT_ABGR8888:
9489         case DRM_FORMAT_XRGB2101010:
9490         case DRM_FORMAT_ARGB2101010:
9491         case DRM_FORMAT_XBGR2101010:
9492         case DRM_FORMAT_ABGR2101010:
9493                 if (INTEL_INFO(dev)->gen < 4) {
9494                         DRM_DEBUG("unsupported pixel format: %s\n",
9495                                   drm_get_format_name(mode_cmd->pixel_format));
9496                         return -EINVAL;
9497                 }
9498                 break;
9499         case DRM_FORMAT_YUYV:
9500         case DRM_FORMAT_UYVY:
9501         case DRM_FORMAT_YVYU:
9502         case DRM_FORMAT_VYUY:
9503                 if (INTEL_INFO(dev)->gen < 5) {
9504                         DRM_DEBUG("unsupported pixel format: %s\n",
9505                                   drm_get_format_name(mode_cmd->pixel_format));
9506                         return -EINVAL;
9507                 }
9508                 break;
9509         default:
9510                 DRM_DEBUG("unsupported pixel format: %s\n",
9511                           drm_get_format_name(mode_cmd->pixel_format));
9512                 return -EINVAL;
9513         }
9514
9515         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9516         if (mode_cmd->offsets[0] != 0)
9517                 return -EINVAL;
9518
9519         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9520         intel_fb->obj = obj;
9521
9522         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9523         if (ret) {
9524                 DRM_ERROR("framebuffer init failed %d\n", ret);
9525                 return ret;
9526         }
9527
9528         return 0;
9529 }
9530
9531 static struct drm_framebuffer *
9532 intel_user_framebuffer_create(struct drm_device *dev,
9533                               struct drm_file *filp,
9534                               struct drm_mode_fb_cmd2 *mode_cmd)
9535 {
9536         struct drm_i915_gem_object *obj;
9537
9538         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9539                                                 mode_cmd->handles[0]));
9540         if (&obj->base == NULL)
9541                 return ERR_PTR(-ENOENT);
9542
9543         return intel_framebuffer_create(dev, mode_cmd, obj);
9544 }
9545
9546 static const struct drm_mode_config_funcs intel_mode_funcs = {
9547         .fb_create = intel_user_framebuffer_create,
9548         .output_poll_changed = intel_fb_output_poll_changed,
9549 };
9550
9551 /* Set up chip specific display functions */
9552 static void intel_init_display(struct drm_device *dev)
9553 {
9554         struct drm_i915_private *dev_priv = dev->dev_private;
9555
9556         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9557                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9558         else if (IS_VALLEYVIEW(dev))
9559                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9560         else if (IS_PINEVIEW(dev))
9561                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9562         else
9563                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9564
9565         if (HAS_DDI(dev)) {
9566                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9567                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9568                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9569                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9570                 dev_priv->display.off = haswell_crtc_off;
9571                 dev_priv->display.update_plane = ironlake_update_plane;
9572         } else if (HAS_PCH_SPLIT(dev)) {
9573                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9574                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9575                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9576                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9577                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9578                 dev_priv->display.off = ironlake_crtc_off;
9579                 dev_priv->display.update_plane = ironlake_update_plane;
9580         } else if (IS_VALLEYVIEW(dev)) {
9581                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9582                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9583                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9584                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9585                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9586                 dev_priv->display.off = i9xx_crtc_off;
9587                 dev_priv->display.update_plane = i9xx_update_plane;
9588         } else {
9589                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9590                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9591                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9592                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9593                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9594                 dev_priv->display.off = i9xx_crtc_off;
9595                 dev_priv->display.update_plane = i9xx_update_plane;
9596         }
9597
9598         /* Returns the core display clock speed */
9599         if (IS_VALLEYVIEW(dev))
9600                 dev_priv->display.get_display_clock_speed =
9601                         valleyview_get_display_clock_speed;
9602         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9603                 dev_priv->display.get_display_clock_speed =
9604                         i945_get_display_clock_speed;
9605         else if (IS_I915G(dev))
9606                 dev_priv->display.get_display_clock_speed =
9607                         i915_get_display_clock_speed;
9608         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9609                 dev_priv->display.get_display_clock_speed =
9610                         i9xx_misc_get_display_clock_speed;
9611         else if (IS_I915GM(dev))
9612                 dev_priv->display.get_display_clock_speed =
9613                         i915gm_get_display_clock_speed;
9614         else if (IS_I865G(dev))
9615                 dev_priv->display.get_display_clock_speed =
9616                         i865_get_display_clock_speed;
9617         else if (IS_I85X(dev))
9618                 dev_priv->display.get_display_clock_speed =
9619                         i855_get_display_clock_speed;
9620         else /* 852, 830 */
9621                 dev_priv->display.get_display_clock_speed =
9622                         i830_get_display_clock_speed;
9623
9624         if (HAS_PCH_SPLIT(dev)) {
9625                 if (IS_GEN5(dev)) {
9626                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9627                         dev_priv->display.write_eld = ironlake_write_eld;
9628                 } else if (IS_GEN6(dev)) {
9629                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9630                         dev_priv->display.write_eld = ironlake_write_eld;
9631                 } else if (IS_IVYBRIDGE(dev)) {
9632                         /* FIXME: detect B0+ stepping and use auto training */
9633                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9634                         dev_priv->display.write_eld = ironlake_write_eld;
9635                         dev_priv->display.modeset_global_resources =
9636                                 ivb_modeset_global_resources;
9637                 } else if (IS_HASWELL(dev)) {
9638                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9639                         dev_priv->display.write_eld = haswell_write_eld;
9640                         dev_priv->display.modeset_global_resources =
9641                                 haswell_modeset_global_resources;
9642                 }
9643         } else if (IS_G4X(dev)) {
9644                 dev_priv->display.write_eld = g4x_write_eld;
9645         }
9646
9647         /* Default just returns -ENODEV to indicate unsupported */
9648         dev_priv->display.queue_flip = intel_default_queue_flip;
9649
9650         switch (INTEL_INFO(dev)->gen) {
9651         case 2:
9652                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9653                 break;
9654
9655         case 3:
9656                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9657                 break;
9658
9659         case 4:
9660         case 5:
9661                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9662                 break;
9663
9664         case 6:
9665                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9666                 break;
9667         case 7:
9668                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9669                 break;
9670         }
9671 }
9672
9673 /*
9674  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9675  * resume, or other times.  This quirk makes sure that's the case for
9676  * affected systems.
9677  */
9678 static void quirk_pipea_force(struct drm_device *dev)
9679 {
9680         struct drm_i915_private *dev_priv = dev->dev_private;
9681
9682         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9683         DRM_INFO("applying pipe a force quirk\n");
9684 }
9685
9686 /*
9687  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9688  */
9689 static void quirk_ssc_force_disable(struct drm_device *dev)
9690 {
9691         struct drm_i915_private *dev_priv = dev->dev_private;
9692         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9693         DRM_INFO("applying lvds SSC disable quirk\n");
9694 }
9695
9696 /*
9697  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9698  * brightness value
9699  */
9700 static void quirk_invert_brightness(struct drm_device *dev)
9701 {
9702         struct drm_i915_private *dev_priv = dev->dev_private;
9703         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9704         DRM_INFO("applying inverted panel brightness quirk\n");
9705 }
9706
9707 /*
9708  * Some machines (Dell XPS13) suffer broken backlight controls if
9709  * BLM_PCH_PWM_ENABLE is set.
9710  */
9711 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9712 {
9713         struct drm_i915_private *dev_priv = dev->dev_private;
9714         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9715         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9716 }
9717
9718 struct intel_quirk {
9719         int device;
9720         int subsystem_vendor;
9721         int subsystem_device;
9722         void (*hook)(struct drm_device *dev);
9723 };
9724
9725 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9726 struct intel_dmi_quirk {
9727         void (*hook)(struct drm_device *dev);
9728         const struct dmi_system_id (*dmi_id_list)[];
9729 };
9730
9731 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9732 {
9733         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9734         return 1;
9735 }
9736
9737 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9738         {
9739                 .dmi_id_list = &(const struct dmi_system_id[]) {
9740                         {
9741                                 .callback = intel_dmi_reverse_brightness,
9742                                 .ident = "NCR Corporation",
9743                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9744                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9745                                 },
9746                         },
9747                         { }  /* terminating entry */
9748                 },
9749                 .hook = quirk_invert_brightness,
9750         },
9751 };
9752
9753 static struct intel_quirk intel_quirks[] = {
9754         /* HP Mini needs pipe A force quirk (LP: #322104) */
9755         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9756
9757         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9758         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9759
9760         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9761         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9762
9763         /* 830/845 need to leave pipe A & dpll A up */
9764         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9765         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9766
9767         /* Lenovo U160 cannot use SSC on LVDS */
9768         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9769
9770         /* Sony Vaio Y cannot use SSC on LVDS */
9771         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9772
9773         /* Acer Aspire 5734Z must invert backlight brightness */
9774         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9775
9776         /* Acer/eMachines G725 */
9777         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9778
9779         /* Acer/eMachines e725 */
9780         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9781
9782         /* Acer/Packard Bell NCL20 */
9783         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9784
9785         /* Acer Aspire 4736Z */
9786         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9787
9788         /* Dell XPS13 HD Sandy Bridge */
9789         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9790         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9791         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9792 };
9793
9794 static void intel_init_quirks(struct drm_device *dev)
9795 {
9796         struct pci_dev *d = dev->pdev;
9797         int i;
9798
9799         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9800                 struct intel_quirk *q = &intel_quirks[i];
9801
9802                 if (d->device == q->device &&
9803                     (d->subsystem_vendor == q->subsystem_vendor ||
9804                      q->subsystem_vendor == PCI_ANY_ID) &&
9805                     (d->subsystem_device == q->subsystem_device ||
9806                      q->subsystem_device == PCI_ANY_ID))
9807                         q->hook(dev);
9808         }
9809         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9810                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9811                         intel_dmi_quirks[i].hook(dev);
9812         }
9813 }
9814
9815 /* Disable the VGA plane that we never use */
9816 static void i915_disable_vga(struct drm_device *dev)
9817 {
9818         struct drm_i915_private *dev_priv = dev->dev_private;
9819         u8 sr1;
9820         u32 vga_reg = i915_vgacntrl_reg(dev);
9821
9822         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9823         outb(SR01, VGA_SR_INDEX);
9824         sr1 = inb(VGA_SR_DATA);
9825         outb(sr1 | 1<<5, VGA_SR_DATA);
9826         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9827         udelay(300);
9828
9829         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9830         POSTING_READ(vga_reg);
9831 }
9832
9833 void intel_modeset_init_hw(struct drm_device *dev)
9834 {
9835         intel_init_power_well(dev);
9836
9837         intel_prepare_ddi(dev);
9838
9839         intel_init_clock_gating(dev);
9840
9841         mutex_lock(&dev->struct_mutex);
9842         intel_enable_gt_powersave(dev);
9843         mutex_unlock(&dev->struct_mutex);
9844 }
9845
9846 void intel_modeset_suspend_hw(struct drm_device *dev)
9847 {
9848         intel_suspend_hw(dev);
9849 }
9850
9851 void intel_modeset_init(struct drm_device *dev)
9852 {
9853         struct drm_i915_private *dev_priv = dev->dev_private;
9854         int i, j, ret;
9855
9856         drm_mode_config_init(dev);
9857
9858         dev->mode_config.min_width = 0;
9859         dev->mode_config.min_height = 0;
9860
9861         dev->mode_config.preferred_depth = 24;
9862         dev->mode_config.prefer_shadow = 1;
9863
9864         dev->mode_config.funcs = &intel_mode_funcs;
9865
9866         intel_init_quirks(dev);
9867
9868         intel_init_pm(dev);
9869
9870         if (INTEL_INFO(dev)->num_pipes == 0)
9871                 return;
9872
9873         intel_init_display(dev);
9874
9875         if (IS_GEN2(dev)) {
9876                 dev->mode_config.max_width = 2048;
9877                 dev->mode_config.max_height = 2048;
9878         } else if (IS_GEN3(dev)) {
9879                 dev->mode_config.max_width = 4096;
9880                 dev->mode_config.max_height = 4096;
9881         } else {
9882                 dev->mode_config.max_width = 8192;
9883                 dev->mode_config.max_height = 8192;
9884         }
9885         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9886
9887         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9888                       INTEL_INFO(dev)->num_pipes,
9889                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9890
9891         for_each_pipe(i) {
9892                 intel_crtc_init(dev, i);
9893                 for (j = 0; j < dev_priv->num_plane; j++) {
9894                         ret = intel_plane_init(dev, i, j);
9895                         if (ret)
9896                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9897                                               pipe_name(i), sprite_name(i, j), ret);
9898                 }
9899         }
9900
9901         intel_cpu_pll_init(dev);
9902         intel_shared_dpll_init(dev);
9903
9904         /* Just disable it once at startup */
9905         i915_disable_vga(dev);
9906         intel_setup_outputs(dev);
9907
9908         /* Just in case the BIOS is doing something questionable. */
9909         intel_disable_fbc(dev);
9910 }
9911
9912 static void
9913 intel_connector_break_all_links(struct intel_connector *connector)
9914 {
9915         connector->base.dpms = DRM_MODE_DPMS_OFF;
9916         connector->base.encoder = NULL;
9917         connector->encoder->connectors_active = false;
9918         connector->encoder->base.crtc = NULL;
9919 }
9920
9921 static void intel_enable_pipe_a(struct drm_device *dev)
9922 {
9923         struct intel_connector *connector;
9924         struct drm_connector *crt = NULL;
9925         struct intel_load_detect_pipe load_detect_temp;
9926
9927         /* We can't just switch on the pipe A, we need to set things up with a
9928          * proper mode and output configuration. As a gross hack, enable pipe A
9929          * by enabling the load detect pipe once. */
9930         list_for_each_entry(connector,
9931                             &dev->mode_config.connector_list,
9932                             base.head) {
9933                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9934                         crt = &connector->base;
9935                         break;
9936                 }
9937         }
9938
9939         if (!crt)
9940                 return;
9941
9942         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9943                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9944
9945
9946 }
9947
9948 static bool
9949 intel_check_plane_mapping(struct intel_crtc *crtc)
9950 {
9951         struct drm_device *dev = crtc->base.dev;
9952         struct drm_i915_private *dev_priv = dev->dev_private;
9953         u32 reg, val;
9954
9955         if (INTEL_INFO(dev)->num_pipes == 1)
9956                 return true;
9957
9958         reg = DSPCNTR(!crtc->plane);
9959         val = I915_READ(reg);
9960
9961         if ((val & DISPLAY_PLANE_ENABLE) &&
9962             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9963                 return false;
9964
9965         return true;
9966 }
9967
9968 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9969 {
9970         struct drm_device *dev = crtc->base.dev;
9971         struct drm_i915_private *dev_priv = dev->dev_private;
9972         u32 reg;
9973
9974         /* Clear any frame start delays used for debugging left by the BIOS */
9975         reg = PIPECONF(crtc->config.cpu_transcoder);
9976         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9977
9978         /* We need to sanitize the plane -> pipe mapping first because this will
9979          * disable the crtc (and hence change the state) if it is wrong. Note
9980          * that gen4+ has a fixed plane -> pipe mapping.  */
9981         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9982                 struct intel_connector *connector;
9983                 bool plane;
9984
9985                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9986                               crtc->base.base.id);
9987
9988                 /* Pipe has the wrong plane attached and the plane is active.
9989                  * Temporarily change the plane mapping and disable everything
9990                  * ...  */
9991                 plane = crtc->plane;
9992                 crtc->plane = !plane;
9993                 dev_priv->display.crtc_disable(&crtc->base);
9994                 crtc->plane = plane;
9995
9996                 /* ... and break all links. */
9997                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9998                                     base.head) {
9999                         if (connector->encoder->base.crtc != &crtc->base)
10000                                 continue;
10001
10002                         intel_connector_break_all_links(connector);
10003                 }
10004
10005                 WARN_ON(crtc->active);
10006                 crtc->base.enabled = false;
10007         }
10008
10009         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10010             crtc->pipe == PIPE_A && !crtc->active) {
10011                 /* BIOS forgot to enable pipe A, this mostly happens after
10012                  * resume. Force-enable the pipe to fix this, the update_dpms
10013                  * call below we restore the pipe to the right state, but leave
10014                  * the required bits on. */
10015                 intel_enable_pipe_a(dev);
10016         }
10017
10018         /* Adjust the state of the output pipe according to whether we
10019          * have active connectors/encoders. */
10020         intel_crtc_update_dpms(&crtc->base);
10021
10022         if (crtc->active != crtc->base.enabled) {
10023                 struct intel_encoder *encoder;
10024
10025                 /* This can happen either due to bugs in the get_hw_state
10026                  * functions or because the pipe is force-enabled due to the
10027                  * pipe A quirk. */
10028                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10029                               crtc->base.base.id,
10030                               crtc->base.enabled ? "enabled" : "disabled",
10031                               crtc->active ? "enabled" : "disabled");
10032
10033                 crtc->base.enabled = crtc->active;
10034
10035                 /* Because we only establish the connector -> encoder ->
10036                  * crtc links if something is active, this means the
10037                  * crtc is now deactivated. Break the links. connector
10038                  * -> encoder links are only establish when things are
10039                  *  actually up, hence no need to break them. */
10040                 WARN_ON(crtc->active);
10041
10042                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10043                         WARN_ON(encoder->connectors_active);
10044                         encoder->base.crtc = NULL;
10045                 }
10046         }
10047 }
10048
10049 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10050 {
10051         struct intel_connector *connector;
10052         struct drm_device *dev = encoder->base.dev;
10053
10054         /* We need to check both for a crtc link (meaning that the
10055          * encoder is active and trying to read from a pipe) and the
10056          * pipe itself being active. */
10057         bool has_active_crtc = encoder->base.crtc &&
10058                 to_intel_crtc(encoder->base.crtc)->active;
10059
10060         if (encoder->connectors_active && !has_active_crtc) {
10061                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10062                               encoder->base.base.id,
10063                               drm_get_encoder_name(&encoder->base));
10064
10065                 /* Connector is active, but has no active pipe. This is
10066                  * fallout from our resume register restoring. Disable
10067                  * the encoder manually again. */
10068                 if (encoder->base.crtc) {
10069                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10070                                       encoder->base.base.id,
10071                                       drm_get_encoder_name(&encoder->base));
10072                         encoder->disable(encoder);
10073                 }
10074
10075                 /* Inconsistent output/port/pipe state happens presumably due to
10076                  * a bug in one of the get_hw_state functions. Or someplace else
10077                  * in our code, like the register restore mess on resume. Clamp
10078                  * things to off as a safer default. */
10079                 list_for_each_entry(connector,
10080                                     &dev->mode_config.connector_list,
10081                                     base.head) {
10082                         if (connector->encoder != encoder)
10083                                 continue;
10084
10085                         intel_connector_break_all_links(connector);
10086                 }
10087         }
10088         /* Enabled encoders without active connectors will be fixed in
10089          * the crtc fixup. */
10090 }
10091
10092 void i915_redisable_vga(struct drm_device *dev)
10093 {
10094         struct drm_i915_private *dev_priv = dev->dev_private;
10095         u32 vga_reg = i915_vgacntrl_reg(dev);
10096
10097         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10098                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10099                 i915_disable_vga(dev);
10100         }
10101 }
10102
10103 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10104 {
10105         struct drm_i915_private *dev_priv = dev->dev_private;
10106         enum pipe pipe;
10107         struct intel_crtc *crtc;
10108         struct intel_encoder *encoder;
10109         struct intel_connector *connector;
10110         int i;
10111
10112         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10113                             base.head) {
10114                 memset(&crtc->config, 0, sizeof(crtc->config));
10115
10116                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10117                                                                  &crtc->config);
10118
10119                 crtc->base.enabled = crtc->active;
10120
10121                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10122                               crtc->base.base.id,
10123                               crtc->active ? "enabled" : "disabled");
10124         }
10125
10126         /* FIXME: Smash this into the new shared dpll infrastructure. */
10127         if (HAS_DDI(dev))
10128                 intel_ddi_setup_hw_pll_state(dev);
10129
10130         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10131                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10132
10133                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10134                 pll->active = 0;
10135                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10136                                     base.head) {
10137                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10138                                 pll->active++;
10139                 }
10140                 pll->refcount = pll->active;
10141
10142                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10143                               pll->name, pll->refcount, pll->on);
10144         }
10145
10146         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10147                             base.head) {
10148                 pipe = 0;
10149
10150                 if (encoder->get_hw_state(encoder, &pipe)) {
10151                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10152                         encoder->base.crtc = &crtc->base;
10153                         if (encoder->get_config)
10154                                 encoder->get_config(encoder, &crtc->config);
10155                 } else {
10156                         encoder->base.crtc = NULL;
10157                 }
10158
10159                 encoder->connectors_active = false;
10160                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10161                               encoder->base.base.id,
10162                               drm_get_encoder_name(&encoder->base),
10163                               encoder->base.crtc ? "enabled" : "disabled",
10164                               pipe);
10165         }
10166
10167         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10168                             base.head) {
10169                 if (!crtc->active)
10170                         continue;
10171                 if (dev_priv->display.get_clock)
10172                         dev_priv->display.get_clock(crtc,
10173                                                     &crtc->config);
10174         }
10175
10176         list_for_each_entry(connector, &dev->mode_config.connector_list,
10177                             base.head) {
10178                 if (connector->get_hw_state(connector)) {
10179                         connector->base.dpms = DRM_MODE_DPMS_ON;
10180                         connector->encoder->connectors_active = true;
10181                         connector->base.encoder = &connector->encoder->base;
10182                 } else {
10183                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10184                         connector->base.encoder = NULL;
10185                 }
10186                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10187                               connector->base.base.id,
10188                               drm_get_connector_name(&connector->base),
10189                               connector->base.encoder ? "enabled" : "disabled");
10190         }
10191 }
10192
10193 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10194  * and i915 state tracking structures. */
10195 void intel_modeset_setup_hw_state(struct drm_device *dev,
10196                                   bool force_restore)
10197 {
10198         struct drm_i915_private *dev_priv = dev->dev_private;
10199         enum pipe pipe;
10200         struct drm_plane *plane;
10201         struct intel_crtc *crtc;
10202         struct intel_encoder *encoder;
10203         int i;
10204
10205         intel_modeset_readout_hw_state(dev);
10206
10207         /*
10208          * Now that we have the config, copy it to each CRTC struct
10209          * Note that this could go away if we move to using crtc_config
10210          * checking everywhere.
10211          */
10212         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10213                             base.head) {
10214                 if (crtc->active && i915_fastboot) {
10215                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10216
10217                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10218                                       crtc->base.base.id);
10219                         drm_mode_debug_printmodeline(&crtc->base.mode);
10220                 }
10221         }
10222
10223         /* HW state is read out, now we need to sanitize this mess. */
10224         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10225                             base.head) {
10226                 intel_sanitize_encoder(encoder);
10227         }
10228
10229         for_each_pipe(pipe) {
10230                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10231                 intel_sanitize_crtc(crtc);
10232                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10233         }
10234
10235         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10236                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10237
10238                 if (!pll->on || pll->active)
10239                         continue;
10240
10241                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10242
10243                 pll->disable(dev_priv, pll);
10244                 pll->on = false;
10245         }
10246
10247         if (force_restore) {
10248                 /*
10249                  * We need to use raw interfaces for restoring state to avoid
10250                  * checking (bogus) intermediate states.
10251                  */
10252                 for_each_pipe(pipe) {
10253                         struct drm_crtc *crtc =
10254                                 dev_priv->pipe_to_crtc_mapping[pipe];
10255
10256                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10257                                          crtc->fb);
10258                 }
10259                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10260                         intel_plane_restore(plane);
10261
10262                 i915_redisable_vga(dev);
10263         } else {
10264                 intel_modeset_update_staged_output_state(dev);
10265         }
10266
10267         intel_modeset_check_state(dev);
10268
10269         drm_mode_config_reset(dev);
10270 }
10271
10272 void intel_modeset_gem_init(struct drm_device *dev)
10273 {
10274         intel_modeset_init_hw(dev);
10275
10276         intel_setup_overlay(dev);
10277
10278         intel_modeset_setup_hw_state(dev, false);
10279 }
10280
10281 void intel_modeset_cleanup(struct drm_device *dev)
10282 {
10283         struct drm_i915_private *dev_priv = dev->dev_private;
10284         struct drm_crtc *crtc;
10285         struct intel_crtc *intel_crtc;
10286
10287         /*
10288          * Interrupts and polling as the first thing to avoid creating havoc.
10289          * Too much stuff here (turning of rps, connectors, ...) would
10290          * experience fancy races otherwise.
10291          */
10292         drm_irq_uninstall(dev);
10293         cancel_work_sync(&dev_priv->hotplug_work);
10294         /*
10295          * Due to the hpd irq storm handling the hotplug work can re-arm the
10296          * poll handlers. Hence disable polling after hpd handling is shut down.
10297          */
10298         drm_kms_helper_poll_fini(dev);
10299
10300         mutex_lock(&dev->struct_mutex);
10301
10302         intel_unregister_dsm_handler();
10303
10304         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10305                 /* Skip inactive CRTCs */
10306                 if (!crtc->fb)
10307                         continue;
10308
10309                 intel_crtc = to_intel_crtc(crtc);
10310                 intel_increase_pllclock(crtc);
10311         }
10312
10313         intel_disable_fbc(dev);
10314
10315         intel_disable_gt_powersave(dev);
10316
10317         ironlake_teardown_rc6(dev);
10318
10319         mutex_unlock(&dev->struct_mutex);
10320
10321         /* flush any delayed tasks or pending work */
10322         flush_scheduled_work();
10323
10324         /* destroy backlight, if any, before the connectors */
10325         intel_panel_destroy_backlight(dev);
10326
10327         drm_mode_config_cleanup(dev);
10328
10329         intel_cleanup_overlay(dev);
10330 }
10331
10332 /*
10333  * Return which encoder is currently attached for connector.
10334  */
10335 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10336 {
10337         return &intel_attached_encoder(connector)->base;
10338 }
10339
10340 void intel_connector_attach_encoder(struct intel_connector *connector,
10341                                     struct intel_encoder *encoder)
10342 {
10343         connector->encoder = encoder;
10344         drm_mode_connector_attach_encoder(&connector->base,
10345                                           &encoder->base);
10346 }
10347
10348 /*
10349  * set vga decode state - true == enable VGA decode
10350  */
10351 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10352 {
10353         struct drm_i915_private *dev_priv = dev->dev_private;
10354         u16 gmch_ctrl;
10355
10356         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10357         if (state)
10358                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10359         else
10360                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10361         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10362         return 0;
10363 }
10364
10365 struct intel_display_error_state {
10366
10367         u32 power_well_driver;
10368
10369         struct intel_cursor_error_state {
10370                 u32 control;
10371                 u32 position;
10372                 u32 base;
10373                 u32 size;
10374         } cursor[I915_MAX_PIPES];
10375
10376         struct intel_pipe_error_state {
10377                 enum transcoder cpu_transcoder;
10378                 u32 conf;
10379                 u32 source;
10380
10381                 u32 htotal;
10382                 u32 hblank;
10383                 u32 hsync;
10384                 u32 vtotal;
10385                 u32 vblank;
10386                 u32 vsync;
10387         } pipe[I915_MAX_PIPES];
10388
10389         struct intel_plane_error_state {
10390                 u32 control;
10391                 u32 stride;
10392                 u32 size;
10393                 u32 pos;
10394                 u32 addr;
10395                 u32 surface;
10396                 u32 tile_offset;
10397         } plane[I915_MAX_PIPES];
10398 };
10399
10400 struct intel_display_error_state *
10401 intel_display_capture_error_state(struct drm_device *dev)
10402 {
10403         drm_i915_private_t *dev_priv = dev->dev_private;
10404         struct intel_display_error_state *error;
10405         enum transcoder cpu_transcoder;
10406         int i;
10407
10408         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10409         if (error == NULL)
10410                 return NULL;
10411
10412         if (HAS_POWER_WELL(dev))
10413                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10414
10415         for_each_pipe(i) {
10416                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10417                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10418
10419                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10420                         error->cursor[i].control = I915_READ(CURCNTR(i));
10421                         error->cursor[i].position = I915_READ(CURPOS(i));
10422                         error->cursor[i].base = I915_READ(CURBASE(i));
10423                 } else {
10424                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10425                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10426                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10427                 }
10428
10429                 error->plane[i].control = I915_READ(DSPCNTR(i));
10430                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10431                 if (INTEL_INFO(dev)->gen <= 3) {
10432                         error->plane[i].size = I915_READ(DSPSIZE(i));
10433                         error->plane[i].pos = I915_READ(DSPPOS(i));
10434                 }
10435                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10436                         error->plane[i].addr = I915_READ(DSPADDR(i));
10437                 if (INTEL_INFO(dev)->gen >= 4) {
10438                         error->plane[i].surface = I915_READ(DSPSURF(i));
10439                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10440                 }
10441
10442                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10443                 error->pipe[i].source = I915_READ(PIPESRC(i));
10444                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10445                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10446                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10447                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10448                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10449                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10450         }
10451
10452         /* In the code above we read the registers without checking if the power
10453          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10454          * prevent the next I915_WRITE from detecting it and printing an error
10455          * message. */
10456         if (HAS_POWER_WELL(dev))
10457                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10458
10459         return error;
10460 }
10461
10462 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10463
10464 void
10465 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10466                                 struct drm_device *dev,
10467                                 struct intel_display_error_state *error)
10468 {
10469         int i;
10470
10471         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10472         if (HAS_POWER_WELL(dev))
10473                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10474                            error->power_well_driver);
10475         for_each_pipe(i) {
10476                 err_printf(m, "Pipe [%d]:\n", i);
10477                 err_printf(m, "  CPU transcoder: %c\n",
10478                            transcoder_name(error->pipe[i].cpu_transcoder));
10479                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10480                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10481                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10482                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10483                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10484                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10485                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10486                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10487
10488                 err_printf(m, "Plane [%d]:\n", i);
10489                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10490                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10491                 if (INTEL_INFO(dev)->gen <= 3) {
10492                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10493                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10494                 }
10495                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10496                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10497                 if (INTEL_INFO(dev)->gen >= 4) {
10498                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10499                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10500                 }
10501
10502                 err_printf(m, "Cursor [%d]:\n", i);
10503                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10504                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10505                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10506         }
10507 }