9f82a849d9c2b7ee0c70d0adad88bb7770b637a9
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 8, .max = 18 },
158         .m2 = { .min = 3, .max = 7 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         reg = FDI_RX_CTL(pipe);
1153         val = I915_READ(reg);
1154         cur_state = !!(val & FDI_RX_ENABLE);
1155         WARN(cur_state != state,
1156              "FDI RX state assertion failure (expected %s, current %s)\n",
1157              state_string(state), state_string(cur_state));
1158 }
1159 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1160 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161
1162 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1163                                       enum pipe pipe)
1164 {
1165         int reg;
1166         u32 val;
1167
1168         /* ILK FDI PLL is always enabled */
1169         if (dev_priv->info->gen == 5)
1170                 return;
1171
1172         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1173         if (IS_HASWELL(dev_priv->dev))
1174                 return;
1175
1176         reg = FDI_TX_CTL(pipe);
1177         val = I915_READ(reg);
1178         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1179 }
1180
1181 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1182                                       enum pipe pipe)
1183 {
1184         int reg;
1185         u32 val;
1186
1187         reg = FDI_RX_CTL(pipe);
1188         val = I915_READ(reg);
1189         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         int pp_reg, lvds_reg;
1196         u32 val;
1197         enum pipe panel_pipe = PIPE_A;
1198         bool locked = true;
1199
1200         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201                 pp_reg = PCH_PP_CONTROL;
1202                 lvds_reg = PCH_LVDS;
1203         } else {
1204                 pp_reg = PP_CONTROL;
1205                 lvds_reg = LVDS;
1206         }
1207
1208         val = I915_READ(pp_reg);
1209         if (!(val & PANEL_POWER_ON) ||
1210             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211                 locked = false;
1212
1213         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214                 panel_pipe = PIPE_B;
1215
1216         WARN(panel_pipe == pipe && locked,
1217              "panel assertion failure, pipe %c regs locked\n",
1218              pipe_name(pipe));
1219 }
1220
1221 void assert_pipe(struct drm_i915_private *dev_priv,
1222                  enum pipe pipe, bool state)
1223 {
1224         int reg;
1225         u32 val;
1226         bool cur_state;
1227         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1228                                                                       pipe);
1229
1230         /* if we need the pipe A quirk it must be always on */
1231         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1232                 state = true;
1233
1234         reg = PIPECONF(cpu_transcoder);
1235         val = I915_READ(reg);
1236         cur_state = !!(val & PIPECONF_ENABLE);
1237         WARN(cur_state != state,
1238              "pipe %c assertion failure (expected %s, current %s)\n",
1239              pipe_name(pipe), state_string(state), state_string(cur_state));
1240 }
1241
1242 static void assert_plane(struct drm_i915_private *dev_priv,
1243                          enum plane plane, bool state)
1244 {
1245         int reg;
1246         u32 val;
1247         bool cur_state;
1248
1249         reg = DSPCNTR(plane);
1250         val = I915_READ(reg);
1251         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1252         WARN(cur_state != state,
1253              "plane %c assertion failure (expected %s, current %s)\n",
1254              plane_name(plane), state_string(state), state_string(cur_state));
1255 }
1256
1257 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1258 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1259
1260 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1261                                    enum pipe pipe)
1262 {
1263         int reg, i;
1264         u32 val;
1265         int cur_pipe;
1266
1267         /* Planes are fixed to pipes on ILK+ */
1268         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1269                 reg = DSPCNTR(pipe);
1270                 val = I915_READ(reg);
1271                 WARN((val & DISPLAY_PLANE_ENABLE),
1272                      "plane %c assertion failure, should be disabled but not\n",
1273                      plane_name(pipe));
1274                 return;
1275         }
1276
1277         /* Need to check both planes against the pipe */
1278         for (i = 0; i < 2; i++) {
1279                 reg = DSPCNTR(i);
1280                 val = I915_READ(reg);
1281                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1282                         DISPPLANE_SEL_PIPE_SHIFT;
1283                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1284                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1285                      plane_name(i), pipe_name(pipe));
1286         }
1287 }
1288
1289 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1290 {
1291         u32 val;
1292         bool enabled;
1293
1294         if (HAS_PCH_LPT(dev_priv->dev)) {
1295                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1296                 return;
1297         }
1298
1299         val = I915_READ(PCH_DREF_CONTROL);
1300         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1301                             DREF_SUPERSPREAD_SOURCE_MASK));
1302         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1303 }
1304
1305 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1306                                        enum pipe pipe)
1307 {
1308         int reg;
1309         u32 val;
1310         bool enabled;
1311
1312         reg = TRANSCONF(pipe);
1313         val = I915_READ(reg);
1314         enabled = !!(val & TRANS_ENABLE);
1315         WARN(enabled,
1316              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1317              pipe_name(pipe));
1318 }
1319
1320 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1321                             enum pipe pipe, u32 port_sel, u32 val)
1322 {
1323         if ((val & DP_PORT_EN) == 0)
1324                 return false;
1325
1326         if (HAS_PCH_CPT(dev_priv->dev)) {
1327                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1328                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1329                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1330                         return false;
1331         } else {
1332                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1333                         return false;
1334         }
1335         return true;
1336 }
1337
1338 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1339                               enum pipe pipe, u32 val)
1340 {
1341         if ((val & PORT_ENABLE) == 0)
1342                 return false;
1343
1344         if (HAS_PCH_CPT(dev_priv->dev)) {
1345                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1346                         return false;
1347         } else {
1348                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1349                         return false;
1350         }
1351         return true;
1352 }
1353
1354 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1355                               enum pipe pipe, u32 val)
1356 {
1357         if ((val & LVDS_PORT_EN) == 0)
1358                 return false;
1359
1360         if (HAS_PCH_CPT(dev_priv->dev)) {
1361                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362                         return false;
1363         } else {
1364                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1365                         return false;
1366         }
1367         return true;
1368 }
1369
1370 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1371                               enum pipe pipe, u32 val)
1372 {
1373         if ((val & ADPA_DAC_ENABLE) == 0)
1374                 return false;
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe, int reg, u32 port_sel)
1387 {
1388         u32 val = I915_READ(reg);
1389         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1390              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1391              reg, pipe_name(pipe));
1392
1393         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1394              && (val & DP_PIPEB_SELECT),
1395              "IBX PCH dp port still using transcoder B\n");
1396 }
1397
1398 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1399                                      enum pipe pipe, int reg)
1400 {
1401         u32 val = I915_READ(reg);
1402         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1403              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1404              reg, pipe_name(pipe));
1405
1406         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1407              && (val & SDVO_PIPE_B_SELECT),
1408              "IBX PCH hdmi port still using transcoder B\n");
1409 }
1410
1411 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1412                                       enum pipe pipe)
1413 {
1414         int reg;
1415         u32 val;
1416
1417         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1418         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1419         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1420
1421         reg = PCH_ADPA;
1422         val = I915_READ(reg);
1423         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1424              "PCH VGA enabled on transcoder %c, should be disabled\n",
1425              pipe_name(pipe));
1426
1427         reg = PCH_LVDS;
1428         val = I915_READ(reg);
1429         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1430              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1431              pipe_name(pipe));
1432
1433         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1434         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1435         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1436 }
1437
1438 /**
1439  * intel_enable_pll - enable a PLL
1440  * @dev_priv: i915 private structure
1441  * @pipe: pipe PLL to enable
1442  *
1443  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1444  * make sure the PLL reg is writable first though, since the panel write
1445  * protect mechanism may be enabled.
1446  *
1447  * Note!  This is for pre-ILK only.
1448  *
1449  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1450  */
1451 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1452 {
1453         int reg;
1454         u32 val;
1455
1456         /* No really, not for ILK+ */
1457         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1458
1459         /* PLL is protected by panel, make sure we can write it */
1460         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1461                 assert_panel_unlocked(dev_priv, pipe);
1462
1463         reg = DPLL(pipe);
1464         val = I915_READ(reg);
1465         val |= DPLL_VCO_ENABLE;
1466
1467         /* We do this three times for luck */
1468         I915_WRITE(reg, val);
1469         POSTING_READ(reg);
1470         udelay(150); /* wait for warmup */
1471         I915_WRITE(reg, val);
1472         POSTING_READ(reg);
1473         udelay(150); /* wait for warmup */
1474         I915_WRITE(reg, val);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477 }
1478
1479 /**
1480  * intel_disable_pll - disable a PLL
1481  * @dev_priv: i915 private structure
1482  * @pipe: pipe PLL to disable
1483  *
1484  * Disable the PLL for @pipe, making sure the pipe is off first.
1485  *
1486  * Note!  This is for pre-ILK only.
1487  */
1488 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1489 {
1490         int reg;
1491         u32 val;
1492
1493         /* Don't disable pipe A or pipe A PLLs if needed */
1494         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495                 return;
1496
1497         /* Make sure the pipe isn't still relying on us */
1498         assert_pipe_disabled(dev_priv, pipe);
1499
1500         reg = DPLL(pipe);
1501         val = I915_READ(reg);
1502         val &= ~DPLL_VCO_ENABLE;
1503         I915_WRITE(reg, val);
1504         POSTING_READ(reg);
1505 }
1506
1507 /* SBI access */
1508 static void
1509 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1510                 enum intel_sbi_destination destination)
1511 {
1512         unsigned long flags;
1513         u32 tmp;
1514
1515         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1516         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1517                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1518                 goto out_unlock;
1519         }
1520
1521         I915_WRITE(SBI_ADDR, (reg << 16));
1522         I915_WRITE(SBI_DATA, value);
1523
1524         if (destination == SBI_ICLK)
1525                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1526         else
1527                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1528         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1529
1530         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1531                                 100)) {
1532                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1533                 goto out_unlock;
1534         }
1535
1536 out_unlock:
1537         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542                enum intel_sbi_destination destination)
1543 {
1544         unsigned long flags;
1545         u32 value = 0;
1546
1547         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1548         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1549                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550                 goto out_unlock;
1551         }
1552
1553         I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555         if (destination == SBI_ICLK)
1556                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557         else
1558                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562                                 100)) {
1563                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564                 goto out_unlock;
1565         }
1566
1567         value = I915_READ(SBI_DATA);
1568
1569 out_unlock:
1570         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1571         return value;
1572 }
1573
1574 /**
1575  * ironlake_enable_pch_pll - enable PCH PLL
1576  * @dev_priv: i915 private structure
1577  * @pipe: pipe PLL to enable
1578  *
1579  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1580  * drives the transcoder clock.
1581  */
1582 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1583 {
1584         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1585         struct intel_pch_pll *pll;
1586         int reg;
1587         u32 val;
1588
1589         /* PCH PLLs only available on ILK, SNB and IVB */
1590         BUG_ON(dev_priv->info->gen < 5);
1591         pll = intel_crtc->pch_pll;
1592         if (pll == NULL)
1593                 return;
1594
1595         if (WARN_ON(pll->refcount == 0))
1596                 return;
1597
1598         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1599                       pll->pll_reg, pll->active, pll->on,
1600                       intel_crtc->base.base.id);
1601
1602         /* PCH refclock must be enabled first */
1603         assert_pch_refclk_enabled(dev_priv);
1604
1605         if (pll->active++ && pll->on) {
1606                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1607                 return;
1608         }
1609
1610         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1611
1612         reg = pll->pll_reg;
1613         val = I915_READ(reg);
1614         val |= DPLL_VCO_ENABLE;
1615         I915_WRITE(reg, val);
1616         POSTING_READ(reg);
1617         udelay(200);
1618
1619         pll->on = true;
1620 }
1621
1622 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1623 {
1624         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1625         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1626         int reg;
1627         u32 val;
1628
1629         /* PCH only available on ILK+ */
1630         BUG_ON(dev_priv->info->gen < 5);
1631         if (pll == NULL)
1632                return;
1633
1634         if (WARN_ON(pll->refcount == 0))
1635                 return;
1636
1637         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1638                       pll->pll_reg, pll->active, pll->on,
1639                       intel_crtc->base.base.id);
1640
1641         if (WARN_ON(pll->active == 0)) {
1642                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1643                 return;
1644         }
1645
1646         if (--pll->active) {
1647                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1652
1653         /* Make sure transcoder isn't still depending on us */
1654         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1655
1656         reg = pll->pll_reg;
1657         val = I915_READ(reg);
1658         val &= ~DPLL_VCO_ENABLE;
1659         I915_WRITE(reg, val);
1660         POSTING_READ(reg);
1661         udelay(200);
1662
1663         pll->on = false;
1664 }
1665
1666 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1667                                            enum pipe pipe)
1668 {
1669         struct drm_device *dev = dev_priv->dev;
1670         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1671         uint32_t reg, val, pipeconf_val;
1672
1673         /* PCH only available on ILK+ */
1674         BUG_ON(dev_priv->info->gen < 5);
1675
1676         /* Make sure PCH DPLL is enabled */
1677         assert_pch_pll_enabled(dev_priv,
1678                                to_intel_crtc(crtc)->pch_pll,
1679                                to_intel_crtc(crtc));
1680
1681         /* FDI must be feeding us bits for PCH ports */
1682         assert_fdi_tx_enabled(dev_priv, pipe);
1683         assert_fdi_rx_enabled(dev_priv, pipe);
1684
1685         if (HAS_PCH_CPT(dev)) {
1686                 /* Workaround: Set the timing override bit before enabling the
1687                  * pch transcoder. */
1688                 reg = TRANS_CHICKEN2(pipe);
1689                 val = I915_READ(reg);
1690                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1691                 I915_WRITE(reg, val);
1692         }
1693
1694         reg = TRANSCONF(pipe);
1695         val = I915_READ(reg);
1696         pipeconf_val = I915_READ(PIPECONF(pipe));
1697
1698         if (HAS_PCH_IBX(dev_priv->dev)) {
1699                 /*
1700                  * make the BPC in transcoder be consistent with
1701                  * that in pipeconf reg.
1702                  */
1703                 val &= ~PIPE_BPC_MASK;
1704                 val |= pipeconf_val & PIPE_BPC_MASK;
1705         }
1706
1707         val &= ~TRANS_INTERLACE_MASK;
1708         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1709                 if (HAS_PCH_IBX(dev_priv->dev) &&
1710                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1711                         val |= TRANS_LEGACY_INTERLACED_ILK;
1712                 else
1713                         val |= TRANS_INTERLACED;
1714         else
1715                 val |= TRANS_PROGRESSIVE;
1716
1717         I915_WRITE(reg, val | TRANS_ENABLE);
1718         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1719                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1720 }
1721
1722 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1723                                       enum transcoder cpu_transcoder)
1724 {
1725         u32 val, pipeconf_val;
1726
1727         /* PCH only available on ILK+ */
1728         BUG_ON(dev_priv->info->gen < 5);
1729
1730         /* FDI must be feeding us bits for PCH ports */
1731         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1732         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1733
1734         /* Workaround: set timing override bit. */
1735         val = I915_READ(_TRANSA_CHICKEN2);
1736         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1737         I915_WRITE(_TRANSA_CHICKEN2, val);
1738
1739         val = TRANS_ENABLE;
1740         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1741
1742         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1743             PIPECONF_INTERLACED_ILK)
1744                 val |= TRANS_INTERLACED;
1745         else
1746                 val |= TRANS_PROGRESSIVE;
1747
1748         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1749         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1750                 DRM_ERROR("Failed to enable PCH transcoder\n");
1751 }
1752
1753 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1754                                             enum pipe pipe)
1755 {
1756         struct drm_device *dev = dev_priv->dev;
1757         uint32_t reg, val;
1758
1759         /* FDI relies on the transcoder */
1760         assert_fdi_tx_disabled(dev_priv, pipe);
1761         assert_fdi_rx_disabled(dev_priv, pipe);
1762
1763         /* Ports must be off as well */
1764         assert_pch_ports_disabled(dev_priv, pipe);
1765
1766         reg = TRANSCONF(pipe);
1767         val = I915_READ(reg);
1768         val &= ~TRANS_ENABLE;
1769         I915_WRITE(reg, val);
1770         /* wait for PCH transcoder off, transcoder state */
1771         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1772                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1773
1774         if (!HAS_PCH_IBX(dev)) {
1775                 /* Workaround: Clear the timing override chicken bit again. */
1776                 reg = TRANS_CHICKEN2(pipe);
1777                 val = I915_READ(reg);
1778                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1779                 I915_WRITE(reg, val);
1780         }
1781 }
1782
1783 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1784 {
1785         u32 val;
1786
1787         val = I915_READ(_TRANSACONF);
1788         val &= ~TRANS_ENABLE;
1789         I915_WRITE(_TRANSACONF, val);
1790         /* wait for PCH transcoder off, transcoder state */
1791         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1792                 DRM_ERROR("Failed to disable PCH transcoder\n");
1793
1794         /* Workaround: clear timing override bit. */
1795         val = I915_READ(_TRANSA_CHICKEN2);
1796         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1797         I915_WRITE(_TRANSA_CHICKEN2, val);
1798 }
1799
1800 /**
1801  * intel_enable_pipe - enable a pipe, asserting requirements
1802  * @dev_priv: i915 private structure
1803  * @pipe: pipe to enable
1804  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1805  *
1806  * Enable @pipe, making sure that various hardware specific requirements
1807  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1808  *
1809  * @pipe should be %PIPE_A or %PIPE_B.
1810  *
1811  * Will wait until the pipe is actually running (i.e. first vblank) before
1812  * returning.
1813  */
1814 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1815                               bool pch_port)
1816 {
1817         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1818                                                                       pipe);
1819         enum transcoder pch_transcoder;
1820         int reg;
1821         u32 val;
1822
1823         if (IS_HASWELL(dev_priv->dev))
1824                 pch_transcoder = TRANSCODER_A;
1825         else
1826                 pch_transcoder = pipe;
1827
1828         /*
1829          * A pipe without a PLL won't actually be able to drive bits from
1830          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1831          * need the check.
1832          */
1833         if (!HAS_PCH_SPLIT(dev_priv->dev))
1834                 assert_pll_enabled(dev_priv, pipe);
1835         else {
1836                 if (pch_port) {
1837                         /* if driving the PCH, we need FDI enabled */
1838                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1839                         assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
1840                 }
1841                 /* FIXME: assert CPU port conditions for SNB+ */
1842         }
1843
1844         reg = PIPECONF(cpu_transcoder);
1845         val = I915_READ(reg);
1846         if (val & PIPECONF_ENABLE)
1847                 return;
1848
1849         I915_WRITE(reg, val | PIPECONF_ENABLE);
1850         intel_wait_for_vblank(dev_priv->dev, pipe);
1851 }
1852
1853 /**
1854  * intel_disable_pipe - disable a pipe, asserting requirements
1855  * @dev_priv: i915 private structure
1856  * @pipe: pipe to disable
1857  *
1858  * Disable @pipe, making sure that various hardware specific requirements
1859  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1860  *
1861  * @pipe should be %PIPE_A or %PIPE_B.
1862  *
1863  * Will wait until the pipe has shut down before returning.
1864  */
1865 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1866                                enum pipe pipe)
1867 {
1868         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1869                                                                       pipe);
1870         int reg;
1871         u32 val;
1872
1873         /*
1874          * Make sure planes won't keep trying to pump pixels to us,
1875          * or we might hang the display.
1876          */
1877         assert_planes_disabled(dev_priv, pipe);
1878
1879         /* Don't disable pipe A or pipe A PLLs if needed */
1880         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1881                 return;
1882
1883         reg = PIPECONF(cpu_transcoder);
1884         val = I915_READ(reg);
1885         if ((val & PIPECONF_ENABLE) == 0)
1886                 return;
1887
1888         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1889         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1890 }
1891
1892 /*
1893  * Plane regs are double buffered, going from enabled->disabled needs a
1894  * trigger in order to latch.  The display address reg provides this.
1895  */
1896 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1897                                       enum plane plane)
1898 {
1899         if (dev_priv->info->gen >= 4)
1900                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1901         else
1902                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1903 }
1904
1905 /**
1906  * intel_enable_plane - enable a display plane on a given pipe
1907  * @dev_priv: i915 private structure
1908  * @plane: plane to enable
1909  * @pipe: pipe being fed
1910  *
1911  * Enable @plane on @pipe, making sure that @pipe is running first.
1912  */
1913 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1914                                enum plane plane, enum pipe pipe)
1915 {
1916         int reg;
1917         u32 val;
1918
1919         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1920         assert_pipe_enabled(dev_priv, pipe);
1921
1922         reg = DSPCNTR(plane);
1923         val = I915_READ(reg);
1924         if (val & DISPLAY_PLANE_ENABLE)
1925                 return;
1926
1927         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1928         intel_flush_display_plane(dev_priv, plane);
1929         intel_wait_for_vblank(dev_priv->dev, pipe);
1930 }
1931
1932 /**
1933  * intel_disable_plane - disable a display plane
1934  * @dev_priv: i915 private structure
1935  * @plane: plane to disable
1936  * @pipe: pipe consuming the data
1937  *
1938  * Disable @plane; should be an independent operation.
1939  */
1940 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1941                                 enum plane plane, enum pipe pipe)
1942 {
1943         int reg;
1944         u32 val;
1945
1946         reg = DSPCNTR(plane);
1947         val = I915_READ(reg);
1948         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1949                 return;
1950
1951         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1952         intel_flush_display_plane(dev_priv, plane);
1953         intel_wait_for_vblank(dev_priv->dev, pipe);
1954 }
1955
1956 int
1957 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1958                            struct drm_i915_gem_object *obj,
1959                            struct intel_ring_buffer *pipelined)
1960 {
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         u32 alignment;
1963         int ret;
1964
1965         switch (obj->tiling_mode) {
1966         case I915_TILING_NONE:
1967                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1968                         alignment = 128 * 1024;
1969                 else if (INTEL_INFO(dev)->gen >= 4)
1970                         alignment = 4 * 1024;
1971                 else
1972                         alignment = 64 * 1024;
1973                 break;
1974         case I915_TILING_X:
1975                 /* pin() will align the object as required by fence */
1976                 alignment = 0;
1977                 break;
1978         case I915_TILING_Y:
1979                 /* FIXME: Is this true? */
1980                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1981                 return -EINVAL;
1982         default:
1983                 BUG();
1984         }
1985
1986         dev_priv->mm.interruptible = false;
1987         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1988         if (ret)
1989                 goto err_interruptible;
1990
1991         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1992          * fence, whereas 965+ only requires a fence if using
1993          * framebuffer compression.  For simplicity, we always install
1994          * a fence as the cost is not that onerous.
1995          */
1996         ret = i915_gem_object_get_fence(obj);
1997         if (ret)
1998                 goto err_unpin;
1999
2000         i915_gem_object_pin_fence(obj);
2001
2002         dev_priv->mm.interruptible = true;
2003         return 0;
2004
2005 err_unpin:
2006         i915_gem_object_unpin(obj);
2007 err_interruptible:
2008         dev_priv->mm.interruptible = true;
2009         return ret;
2010 }
2011
2012 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2013 {
2014         i915_gem_object_unpin_fence(obj);
2015         i915_gem_object_unpin(obj);
2016 }
2017
2018 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2019  * is assumed to be a power-of-two. */
2020 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2021                                                unsigned int bpp,
2022                                                unsigned int pitch)
2023 {
2024         int tile_rows, tiles;
2025
2026         tile_rows = *y / 8;
2027         *y %= 8;
2028         tiles = *x / (512/bpp);
2029         *x %= 512/bpp;
2030
2031         return tile_rows * pitch * 8 + tiles * 4096;
2032 }
2033
2034 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2035                              int x, int y)
2036 {
2037         struct drm_device *dev = crtc->dev;
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2040         struct intel_framebuffer *intel_fb;
2041         struct drm_i915_gem_object *obj;
2042         int plane = intel_crtc->plane;
2043         unsigned long linear_offset;
2044         u32 dspcntr;
2045         u32 reg;
2046
2047         switch (plane) {
2048         case 0:
2049         case 1:
2050                 break;
2051         default:
2052                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2053                 return -EINVAL;
2054         }
2055
2056         intel_fb = to_intel_framebuffer(fb);
2057         obj = intel_fb->obj;
2058
2059         reg = DSPCNTR(plane);
2060         dspcntr = I915_READ(reg);
2061         /* Mask out pixel format bits in case we change it */
2062         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2063         switch (fb->pixel_format) {
2064         case DRM_FORMAT_C8:
2065                 dspcntr |= DISPPLANE_8BPP;
2066                 break;
2067         case DRM_FORMAT_XRGB1555:
2068         case DRM_FORMAT_ARGB1555:
2069                 dspcntr |= DISPPLANE_BGRX555;
2070                 break;
2071         case DRM_FORMAT_RGB565:
2072                 dspcntr |= DISPPLANE_BGRX565;
2073                 break;
2074         case DRM_FORMAT_XRGB8888:
2075         case DRM_FORMAT_ARGB8888:
2076                 dspcntr |= DISPPLANE_BGRX888;
2077                 break;
2078         case DRM_FORMAT_XBGR8888:
2079         case DRM_FORMAT_ABGR8888:
2080                 dspcntr |= DISPPLANE_RGBX888;
2081                 break;
2082         case DRM_FORMAT_XRGB2101010:
2083         case DRM_FORMAT_ARGB2101010:
2084                 dspcntr |= DISPPLANE_BGRX101010;
2085                 break;
2086         case DRM_FORMAT_XBGR2101010:
2087         case DRM_FORMAT_ABGR2101010:
2088                 dspcntr |= DISPPLANE_RGBX101010;
2089                 break;
2090         default:
2091                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2092                 return -EINVAL;
2093         }
2094
2095         if (INTEL_INFO(dev)->gen >= 4) {
2096                 if (obj->tiling_mode != I915_TILING_NONE)
2097                         dspcntr |= DISPPLANE_TILED;
2098                 else
2099                         dspcntr &= ~DISPPLANE_TILED;
2100         }
2101
2102         I915_WRITE(reg, dspcntr);
2103
2104         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2105
2106         if (INTEL_INFO(dev)->gen >= 4) {
2107                 intel_crtc->dspaddr_offset =
2108                         intel_gen4_compute_offset_xtiled(&x, &y,
2109                                                          fb->bits_per_pixel / 8,
2110                                                          fb->pitches[0]);
2111                 linear_offset -= intel_crtc->dspaddr_offset;
2112         } else {
2113                 intel_crtc->dspaddr_offset = linear_offset;
2114         }
2115
2116         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2117                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2118         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2119         if (INTEL_INFO(dev)->gen >= 4) {
2120                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2121                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2122                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2123                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2124         } else
2125                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2126         POSTING_READ(reg);
2127
2128         return 0;
2129 }
2130
2131 static int ironlake_update_plane(struct drm_crtc *crtc,
2132                                  struct drm_framebuffer *fb, int x, int y)
2133 {
2134         struct drm_device *dev = crtc->dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137         struct intel_framebuffer *intel_fb;
2138         struct drm_i915_gem_object *obj;
2139         int plane = intel_crtc->plane;
2140         unsigned long linear_offset;
2141         u32 dspcntr;
2142         u32 reg;
2143
2144         switch (plane) {
2145         case 0:
2146         case 1:
2147         case 2:
2148                 break;
2149         default:
2150                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2151                 return -EINVAL;
2152         }
2153
2154         intel_fb = to_intel_framebuffer(fb);
2155         obj = intel_fb->obj;
2156
2157         reg = DSPCNTR(plane);
2158         dspcntr = I915_READ(reg);
2159         /* Mask out pixel format bits in case we change it */
2160         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2161         switch (fb->pixel_format) {
2162         case DRM_FORMAT_C8:
2163                 dspcntr |= DISPPLANE_8BPP;
2164                 break;
2165         case DRM_FORMAT_RGB565:
2166                 dspcntr |= DISPPLANE_BGRX565;
2167                 break;
2168         case DRM_FORMAT_XRGB8888:
2169         case DRM_FORMAT_ARGB8888:
2170                 dspcntr |= DISPPLANE_BGRX888;
2171                 break;
2172         case DRM_FORMAT_XBGR8888:
2173         case DRM_FORMAT_ABGR8888:
2174                 dspcntr |= DISPPLANE_RGBX888;
2175                 break;
2176         case DRM_FORMAT_XRGB2101010:
2177         case DRM_FORMAT_ARGB2101010:
2178                 dspcntr |= DISPPLANE_BGRX101010;
2179                 break;
2180         case DRM_FORMAT_XBGR2101010:
2181         case DRM_FORMAT_ABGR2101010:
2182                 dspcntr |= DISPPLANE_RGBX101010;
2183                 break;
2184         default:
2185                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2186                 return -EINVAL;
2187         }
2188
2189         if (obj->tiling_mode != I915_TILING_NONE)
2190                 dspcntr |= DISPPLANE_TILED;
2191         else
2192                 dspcntr &= ~DISPPLANE_TILED;
2193
2194         /* must disable */
2195         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2196
2197         I915_WRITE(reg, dspcntr);
2198
2199         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2200         intel_crtc->dspaddr_offset =
2201                 intel_gen4_compute_offset_xtiled(&x, &y,
2202                                                  fb->bits_per_pixel / 8,
2203                                                  fb->pitches[0]);
2204         linear_offset -= intel_crtc->dspaddr_offset;
2205
2206         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2207                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2208         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2209         I915_MODIFY_DISPBASE(DSPSURF(plane),
2210                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2211         if (IS_HASWELL(dev)) {
2212                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2213         } else {
2214                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2215                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2216         }
2217         POSTING_READ(reg);
2218
2219         return 0;
2220 }
2221
2222 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2223 static int
2224 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2225                            int x, int y, enum mode_set_atomic state)
2226 {
2227         struct drm_device *dev = crtc->dev;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229
2230         if (dev_priv->display.disable_fbc)
2231                 dev_priv->display.disable_fbc(dev);
2232         intel_increase_pllclock(crtc);
2233
2234         return dev_priv->display.update_plane(crtc, fb, x, y);
2235 }
2236
2237 static int
2238 intel_finish_fb(struct drm_framebuffer *old_fb)
2239 {
2240         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2241         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242         bool was_interruptible = dev_priv->mm.interruptible;
2243         int ret;
2244
2245         wait_event(dev_priv->pending_flip_queue,
2246                    atomic_read(&dev_priv->mm.wedged) ||
2247                    atomic_read(&obj->pending_flip) == 0);
2248
2249         /* Big Hammer, we also need to ensure that any pending
2250          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2251          * current scanout is retired before unpinning the old
2252          * framebuffer.
2253          *
2254          * This should only fail upon a hung GPU, in which case we
2255          * can safely continue.
2256          */
2257         dev_priv->mm.interruptible = false;
2258         ret = i915_gem_object_finish_gpu(obj);
2259         dev_priv->mm.interruptible = was_interruptible;
2260
2261         return ret;
2262 }
2263
2264 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2265 {
2266         struct drm_device *dev = crtc->dev;
2267         struct drm_i915_master_private *master_priv;
2268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269
2270         if (!dev->primary->master)
2271                 return;
2272
2273         master_priv = dev->primary->master->driver_priv;
2274         if (!master_priv->sarea_priv)
2275                 return;
2276
2277         switch (intel_crtc->pipe) {
2278         case 0:
2279                 master_priv->sarea_priv->pipeA_x = x;
2280                 master_priv->sarea_priv->pipeA_y = y;
2281                 break;
2282         case 1:
2283                 master_priv->sarea_priv->pipeB_x = x;
2284                 master_priv->sarea_priv->pipeB_y = y;
2285                 break;
2286         default:
2287                 break;
2288         }
2289 }
2290
2291 static int
2292 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2293                     struct drm_framebuffer *fb)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         struct drm_framebuffer *old_fb;
2299         int ret;
2300
2301         /* no fb bound */
2302         if (!fb) {
2303                 DRM_ERROR("No FB bound\n");
2304                 return 0;
2305         }
2306
2307         if(intel_crtc->plane > dev_priv->num_pipe) {
2308                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2309                                 intel_crtc->plane,
2310                                 dev_priv->num_pipe);
2311                 return -EINVAL;
2312         }
2313
2314         mutex_lock(&dev->struct_mutex);
2315         ret = intel_pin_and_fence_fb_obj(dev,
2316                                          to_intel_framebuffer(fb)->obj,
2317                                          NULL);
2318         if (ret != 0) {
2319                 mutex_unlock(&dev->struct_mutex);
2320                 DRM_ERROR("pin & fence failed\n");
2321                 return ret;
2322         }
2323
2324         if (crtc->fb)
2325                 intel_finish_fb(crtc->fb);
2326
2327         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2328         if (ret) {
2329                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2330                 mutex_unlock(&dev->struct_mutex);
2331                 DRM_ERROR("failed to update base address\n");
2332                 return ret;
2333         }
2334
2335         old_fb = crtc->fb;
2336         crtc->fb = fb;
2337         crtc->x = x;
2338         crtc->y = y;
2339
2340         if (old_fb) {
2341                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2342                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2343         }
2344
2345         intel_update_fbc(dev);
2346         mutex_unlock(&dev->struct_mutex);
2347
2348         intel_crtc_update_sarea_pos(crtc, x, y);
2349
2350         return 0;
2351 }
2352
2353 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357         u32 dpa_ctl;
2358
2359         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2360         dpa_ctl = I915_READ(DP_A);
2361         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2362
2363         if (clock < 200000) {
2364                 u32 temp;
2365                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2366                 /* workaround for 160Mhz:
2367                    1) program 0x4600c bits 15:0 = 0x8124
2368                    2) program 0x46010 bit 0 = 1
2369                    3) program 0x46034 bit 24 = 1
2370                    4) program 0x64000 bit 14 = 1
2371                    */
2372                 temp = I915_READ(0x4600c);
2373                 temp &= 0xffff0000;
2374                 I915_WRITE(0x4600c, temp | 0x8124);
2375
2376                 temp = I915_READ(0x46010);
2377                 I915_WRITE(0x46010, temp | 1);
2378
2379                 temp = I915_READ(0x46034);
2380                 I915_WRITE(0x46034, temp | (1 << 24));
2381         } else {
2382                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2383         }
2384         I915_WRITE(DP_A, dpa_ctl);
2385
2386         POSTING_READ(DP_A);
2387         udelay(500);
2388 }
2389
2390 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2391 {
2392         struct drm_device *dev = crtc->dev;
2393         struct drm_i915_private *dev_priv = dev->dev_private;
2394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2395         int pipe = intel_crtc->pipe;
2396         u32 reg, temp;
2397
2398         /* enable normal train */
2399         reg = FDI_TX_CTL(pipe);
2400         temp = I915_READ(reg);
2401         if (IS_IVYBRIDGE(dev)) {
2402                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2403                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2404         } else {
2405                 temp &= ~FDI_LINK_TRAIN_NONE;
2406                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2407         }
2408         I915_WRITE(reg, temp);
2409
2410         reg = FDI_RX_CTL(pipe);
2411         temp = I915_READ(reg);
2412         if (HAS_PCH_CPT(dev)) {
2413                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2414                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2415         } else {
2416                 temp &= ~FDI_LINK_TRAIN_NONE;
2417                 temp |= FDI_LINK_TRAIN_NONE;
2418         }
2419         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2420
2421         /* wait one idle pattern time */
2422         POSTING_READ(reg);
2423         udelay(1000);
2424
2425         /* IVB wants error correction enabled */
2426         if (IS_IVYBRIDGE(dev))
2427                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2428                            FDI_FE_ERRC_ENABLE);
2429 }
2430
2431 static void ivb_modeset_global_resources(struct drm_device *dev)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         struct intel_crtc *pipe_B_crtc =
2435                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2436         struct intel_crtc *pipe_C_crtc =
2437                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2438         uint32_t temp;
2439
2440         /* When everything is off disable fdi C so that we could enable fdi B
2441          * with all lanes. XXX: This misses the case where a pipe is not using
2442          * any pch resources and so doesn't need any fdi lanes. */
2443         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2444                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2445                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2446
2447                 temp = I915_READ(SOUTH_CHICKEN1);
2448                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2449                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2450                 I915_WRITE(SOUTH_CHICKEN1, temp);
2451         }
2452 }
2453
2454 /* The FDI link training functions for ILK/Ibexpeak. */
2455 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2456 {
2457         struct drm_device *dev = crtc->dev;
2458         struct drm_i915_private *dev_priv = dev->dev_private;
2459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2460         int pipe = intel_crtc->pipe;
2461         int plane = intel_crtc->plane;
2462         u32 reg, temp, tries;
2463
2464         /* FDI needs bits from pipe & plane first */
2465         assert_pipe_enabled(dev_priv, pipe);
2466         assert_plane_enabled(dev_priv, plane);
2467
2468         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469            for train result */
2470         reg = FDI_RX_IMR(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_RX_SYMBOL_LOCK;
2473         temp &= ~FDI_RX_BIT_LOCK;
2474         I915_WRITE(reg, temp);
2475         I915_READ(reg);
2476         udelay(150);
2477
2478         /* enable CPU FDI TX and PCH FDI RX */
2479         reg = FDI_TX_CTL(pipe);
2480         temp = I915_READ(reg);
2481         temp &= ~(7 << 19);
2482         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2483         temp &= ~FDI_LINK_TRAIN_NONE;
2484         temp |= FDI_LINK_TRAIN_PATTERN_1;
2485         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2486
2487         reg = FDI_RX_CTL(pipe);
2488         temp = I915_READ(reg);
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         /* Ironlake workaround, enable clock pointer after FDI enable*/
2497         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2498         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2499                    FDI_RX_PHASE_SYNC_POINTER_EN);
2500
2501         reg = FDI_RX_IIR(pipe);
2502         for (tries = 0; tries < 5; tries++) {
2503                 temp = I915_READ(reg);
2504                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2505
2506                 if ((temp & FDI_RX_BIT_LOCK)) {
2507                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2508                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2509                         break;
2510                 }
2511         }
2512         if (tries == 5)
2513                 DRM_ERROR("FDI train 1 fail!\n");
2514
2515         /* Train 2 */
2516         reg = FDI_TX_CTL(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_LINK_TRAIN_NONE;
2519         temp |= FDI_LINK_TRAIN_PATTERN_2;
2520         I915_WRITE(reg, temp);
2521
2522         reg = FDI_RX_CTL(pipe);
2523         temp = I915_READ(reg);
2524         temp &= ~FDI_LINK_TRAIN_NONE;
2525         temp |= FDI_LINK_TRAIN_PATTERN_2;
2526         I915_WRITE(reg, temp);
2527
2528         POSTING_READ(reg);
2529         udelay(150);
2530
2531         reg = FDI_RX_IIR(pipe);
2532         for (tries = 0; tries < 5; tries++) {
2533                 temp = I915_READ(reg);
2534                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2535
2536                 if (temp & FDI_RX_SYMBOL_LOCK) {
2537                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2538                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2539                         break;
2540                 }
2541         }
2542         if (tries == 5)
2543                 DRM_ERROR("FDI train 2 fail!\n");
2544
2545         DRM_DEBUG_KMS("FDI train done\n");
2546
2547 }
2548
2549 static const int snb_b_fdi_train_param[] = {
2550         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2551         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2552         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2553         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2554 };
2555
2556 /* The FDI link training functions for SNB/Cougarpoint. */
2557 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2558 {
2559         struct drm_device *dev = crtc->dev;
2560         struct drm_i915_private *dev_priv = dev->dev_private;
2561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2562         int pipe = intel_crtc->pipe;
2563         u32 reg, temp, i, retry;
2564
2565         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2566            for train result */
2567         reg = FDI_RX_IMR(pipe);
2568         temp = I915_READ(reg);
2569         temp &= ~FDI_RX_SYMBOL_LOCK;
2570         temp &= ~FDI_RX_BIT_LOCK;
2571         I915_WRITE(reg, temp);
2572
2573         POSTING_READ(reg);
2574         udelay(150);
2575
2576         /* enable CPU FDI TX and PCH FDI RX */
2577         reg = FDI_TX_CTL(pipe);
2578         temp = I915_READ(reg);
2579         temp &= ~(7 << 19);
2580         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2581         temp &= ~FDI_LINK_TRAIN_NONE;
2582         temp |= FDI_LINK_TRAIN_PATTERN_1;
2583         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2584         /* SNB-B */
2585         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2586         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2587
2588         I915_WRITE(FDI_RX_MISC(pipe),
2589                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2590
2591         reg = FDI_RX_CTL(pipe);
2592         temp = I915_READ(reg);
2593         if (HAS_PCH_CPT(dev)) {
2594                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2595                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2596         } else {
2597                 temp &= ~FDI_LINK_TRAIN_NONE;
2598                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2599         }
2600         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2601
2602         POSTING_READ(reg);
2603         udelay(150);
2604
2605         for (i = 0; i < 4; i++) {
2606                 reg = FDI_TX_CTL(pipe);
2607                 temp = I915_READ(reg);
2608                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2609                 temp |= snb_b_fdi_train_param[i];
2610                 I915_WRITE(reg, temp);
2611
2612                 POSTING_READ(reg);
2613                 udelay(500);
2614
2615                 for (retry = 0; retry < 5; retry++) {
2616                         reg = FDI_RX_IIR(pipe);
2617                         temp = I915_READ(reg);
2618                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619                         if (temp & FDI_RX_BIT_LOCK) {
2620                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2621                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2622                                 break;
2623                         }
2624                         udelay(50);
2625                 }
2626                 if (retry < 5)
2627                         break;
2628         }
2629         if (i == 4)
2630                 DRM_ERROR("FDI train 1 fail!\n");
2631
2632         /* Train 2 */
2633         reg = FDI_TX_CTL(pipe);
2634         temp = I915_READ(reg);
2635         temp &= ~FDI_LINK_TRAIN_NONE;
2636         temp |= FDI_LINK_TRAIN_PATTERN_2;
2637         if (IS_GEN6(dev)) {
2638                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639                 /* SNB-B */
2640                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2641         }
2642         I915_WRITE(reg, temp);
2643
2644         reg = FDI_RX_CTL(pipe);
2645         temp = I915_READ(reg);
2646         if (HAS_PCH_CPT(dev)) {
2647                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2648                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2649         } else {
2650                 temp &= ~FDI_LINK_TRAIN_NONE;
2651                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2652         }
2653         I915_WRITE(reg, temp);
2654
2655         POSTING_READ(reg);
2656         udelay(150);
2657
2658         for (i = 0; i < 4; i++) {
2659                 reg = FDI_TX_CTL(pipe);
2660                 temp = I915_READ(reg);
2661                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662                 temp |= snb_b_fdi_train_param[i];
2663                 I915_WRITE(reg, temp);
2664
2665                 POSTING_READ(reg);
2666                 udelay(500);
2667
2668                 for (retry = 0; retry < 5; retry++) {
2669                         reg = FDI_RX_IIR(pipe);
2670                         temp = I915_READ(reg);
2671                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2672                         if (temp & FDI_RX_SYMBOL_LOCK) {
2673                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2674                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2675                                 break;
2676                         }
2677                         udelay(50);
2678                 }
2679                 if (retry < 5)
2680                         break;
2681         }
2682         if (i == 4)
2683                 DRM_ERROR("FDI train 2 fail!\n");
2684
2685         DRM_DEBUG_KMS("FDI train done.\n");
2686 }
2687
2688 /* Manual link training for Ivy Bridge A0 parts */
2689 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2690 {
2691         struct drm_device *dev = crtc->dev;
2692         struct drm_i915_private *dev_priv = dev->dev_private;
2693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2694         int pipe = intel_crtc->pipe;
2695         u32 reg, temp, i;
2696
2697         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2698            for train result */
2699         reg = FDI_RX_IMR(pipe);
2700         temp = I915_READ(reg);
2701         temp &= ~FDI_RX_SYMBOL_LOCK;
2702         temp &= ~FDI_RX_BIT_LOCK;
2703         I915_WRITE(reg, temp);
2704
2705         POSTING_READ(reg);
2706         udelay(150);
2707
2708         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2709                       I915_READ(FDI_RX_IIR(pipe)));
2710
2711         /* enable CPU FDI TX and PCH FDI RX */
2712         reg = FDI_TX_CTL(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~(7 << 19);
2715         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2716         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2717         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2718         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2720         temp |= FDI_COMPOSITE_SYNC;
2721         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2722
2723         I915_WRITE(FDI_RX_MISC(pipe),
2724                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2725
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         temp &= ~FDI_LINK_TRAIN_AUTO;
2729         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2731         temp |= FDI_COMPOSITE_SYNC;
2732         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2733
2734         POSTING_READ(reg);
2735         udelay(150);
2736
2737         for (i = 0; i < 4; i++) {
2738                 reg = FDI_TX_CTL(pipe);
2739                 temp = I915_READ(reg);
2740                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2741                 temp |= snb_b_fdi_train_param[i];
2742                 I915_WRITE(reg, temp);
2743
2744                 POSTING_READ(reg);
2745                 udelay(500);
2746
2747                 reg = FDI_RX_IIR(pipe);
2748                 temp = I915_READ(reg);
2749                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2750
2751                 if (temp & FDI_RX_BIT_LOCK ||
2752                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2753                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2754                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2755                         break;
2756                 }
2757         }
2758         if (i == 4)
2759                 DRM_ERROR("FDI train 1 fail!\n");
2760
2761         /* Train 2 */
2762         reg = FDI_TX_CTL(pipe);
2763         temp = I915_READ(reg);
2764         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2765         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2766         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2767         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2768         I915_WRITE(reg, temp);
2769
2770         reg = FDI_RX_CTL(pipe);
2771         temp = I915_READ(reg);
2772         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2773         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2774         I915_WRITE(reg, temp);
2775
2776         POSTING_READ(reg);
2777         udelay(150);
2778
2779         for (i = 0; i < 4; i++) {
2780                 reg = FDI_TX_CTL(pipe);
2781                 temp = I915_READ(reg);
2782                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2783                 temp |= snb_b_fdi_train_param[i];
2784                 I915_WRITE(reg, temp);
2785
2786                 POSTING_READ(reg);
2787                 udelay(500);
2788
2789                 reg = FDI_RX_IIR(pipe);
2790                 temp = I915_READ(reg);
2791                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2792
2793                 if (temp & FDI_RX_SYMBOL_LOCK) {
2794                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2796                         break;
2797                 }
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 2 fail!\n");
2801
2802         DRM_DEBUG_KMS("FDI train done.\n");
2803 }
2804
2805 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2806 {
2807         struct drm_device *dev = intel_crtc->base.dev;
2808         struct drm_i915_private *dev_priv = dev->dev_private;
2809         int pipe = intel_crtc->pipe;
2810         u32 reg, temp;
2811
2812
2813         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         temp &= ~((0x7 << 19) | (0x7 << 16));
2817         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2818         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2819         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2820
2821         POSTING_READ(reg);
2822         udelay(200);
2823
2824         /* Switch from Rawclk to PCDclk */
2825         temp = I915_READ(reg);
2826         I915_WRITE(reg, temp | FDI_PCDCLK);
2827
2828         POSTING_READ(reg);
2829         udelay(200);
2830
2831         /* On Haswell, the PLL configuration for ports and pipes is handled
2832          * separately, as part of DDI setup */
2833         if (!IS_HASWELL(dev)) {
2834                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2835                 reg = FDI_TX_CTL(pipe);
2836                 temp = I915_READ(reg);
2837                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2838                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2839
2840                         POSTING_READ(reg);
2841                         udelay(100);
2842                 }
2843         }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848         struct drm_device *dev = intel_crtc->base.dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         int pipe = intel_crtc->pipe;
2851         u32 reg, temp;
2852
2853         /* Switch from PCDclk to Rawclk */
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858         /* Disable CPU FDI TX PLL */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865
2866         reg = FDI_RX_CTL(pipe);
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870         /* Wait for the clocks to turn off. */
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp;
2882
2883         /* disable CPU FDI tx and PCH FDI rx */
2884         reg = FDI_TX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887         POSTING_READ(reg);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         temp &= ~(0x7 << 16);
2892         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2893         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895         POSTING_READ(reg);
2896         udelay(100);
2897
2898         /* Ironlake workaround, disable clock pointer after downing FDI */
2899         if (HAS_PCH_IBX(dev)) {
2900                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901         }
2902
2903         /* still set train pattern 1 */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_LINK_TRAIN_NONE;
2907         temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         I915_WRITE(reg, temp);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         if (HAS_PCH_CPT(dev)) {
2913                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915         } else {
2916                 temp &= ~FDI_LINK_TRAIN_NONE;
2917                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918         }
2919         /* BPC in FDI rx is consistent with that in PIPECONF */
2920         temp &= ~(0x07 << 16);
2921         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2922         I915_WRITE(reg, temp);
2923
2924         POSTING_READ(reg);
2925         udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930         struct drm_device *dev = crtc->dev;
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         unsigned long flags;
2933         bool pending;
2934
2935         if (atomic_read(&dev_priv->mm.wedged))
2936                 return false;
2937
2938         spin_lock_irqsave(&dev->event_lock, flags);
2939         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2940         spin_unlock_irqrestore(&dev->event_lock, flags);
2941
2942         return pending;
2943 }
2944
2945 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2946 {
2947         struct drm_device *dev = crtc->dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949
2950         if (crtc->fb == NULL)
2951                 return;
2952
2953         wait_event(dev_priv->pending_flip_queue,
2954                    !intel_crtc_has_pending_flip(crtc));
2955
2956         mutex_lock(&dev->struct_mutex);
2957         intel_finish_fb(crtc->fb);
2958         mutex_unlock(&dev->struct_mutex);
2959 }
2960
2961 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct intel_encoder *intel_encoder;
2965
2966         /*
2967          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2968          * must be driven by its own crtc; no sharing is possible.
2969          */
2970         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2971                 switch (intel_encoder->type) {
2972                 case INTEL_OUTPUT_EDP:
2973                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2974                                 return false;
2975                         continue;
2976                 }
2977         }
2978
2979         return true;
2980 }
2981
2982 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2983 {
2984         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2985 }
2986
2987 /* Program iCLKIP clock to the desired frequency */
2988 static void lpt_program_iclkip(struct drm_crtc *crtc)
2989 {
2990         struct drm_device *dev = crtc->dev;
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2993         u32 temp;
2994
2995         /* It is necessary to ungate the pixclk gate prior to programming
2996          * the divisors, and gate it back when it is done.
2997          */
2998         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2999
3000         /* Disable SSCCTL */
3001         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3002                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3003                                 SBI_SSCCTL_DISABLE,
3004                         SBI_ICLK);
3005
3006         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3007         if (crtc->mode.clock == 20000) {
3008                 auxdiv = 1;
3009                 divsel = 0x41;
3010                 phaseinc = 0x20;
3011         } else {
3012                 /* The iCLK virtual clock root frequency is in MHz,
3013                  * but the crtc->mode.clock in in KHz. To get the divisors,
3014                  * it is necessary to divide one by another, so we
3015                  * convert the virtual clock precision to KHz here for higher
3016                  * precision.
3017                  */
3018                 u32 iclk_virtual_root_freq = 172800 * 1000;
3019                 u32 iclk_pi_range = 64;
3020                 u32 desired_divisor, msb_divisor_value, pi_value;
3021
3022                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3023                 msb_divisor_value = desired_divisor / iclk_pi_range;
3024                 pi_value = desired_divisor % iclk_pi_range;
3025
3026                 auxdiv = 0;
3027                 divsel = msb_divisor_value - 2;
3028                 phaseinc = pi_value;
3029         }
3030
3031         /* This should not happen with any sane values */
3032         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3033                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3034         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3035                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3036
3037         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3038                         crtc->mode.clock,
3039                         auxdiv,
3040                         divsel,
3041                         phasedir,
3042                         phaseinc);
3043
3044         /* Program SSCDIVINTPHASE6 */
3045         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3046         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3047         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3048         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3049         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3050         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3051         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3052         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3053
3054         /* Program SSCAUXDIV */
3055         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3056         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3057         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3058         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3059
3060         /* Enable modulator and associated divider */
3061         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3062         temp &= ~SBI_SSCCTL_DISABLE;
3063         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3064
3065         /* Wait for initialization time */
3066         udelay(24);
3067
3068         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3069 }
3070
3071 /*
3072  * Enable PCH resources required for PCH ports:
3073  *   - PCH PLLs
3074  *   - FDI training & RX/TX
3075  *   - update transcoder timings
3076  *   - DP transcoding bits
3077  *   - transcoder
3078  */
3079 static void ironlake_pch_enable(struct drm_crtc *crtc)
3080 {
3081         struct drm_device *dev = crtc->dev;
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084         int pipe = intel_crtc->pipe;
3085         u32 reg, temp;
3086
3087         assert_transcoder_disabled(dev_priv, pipe);
3088
3089         /* Write the TU size bits before fdi link training, so that error
3090          * detection works. */
3091         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3092                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3093
3094         /* For PCH output, training FDI link */
3095         dev_priv->display.fdi_link_train(crtc);
3096
3097         /* XXX: pch pll's can be enabled any time before we enable the PCH
3098          * transcoder, and we actually should do this to not upset any PCH
3099          * transcoder that already use the clock when we share it.
3100          *
3101          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3102          * unconditionally resets the pll - we need that to have the right LVDS
3103          * enable sequence. */
3104         ironlake_enable_pch_pll(intel_crtc);
3105
3106         if (HAS_PCH_CPT(dev)) {
3107                 u32 sel;
3108
3109                 temp = I915_READ(PCH_DPLL_SEL);
3110                 switch (pipe) {
3111                 default:
3112                 case 0:
3113                         temp |= TRANSA_DPLL_ENABLE;
3114                         sel = TRANSA_DPLLB_SEL;
3115                         break;
3116                 case 1:
3117                         temp |= TRANSB_DPLL_ENABLE;
3118                         sel = TRANSB_DPLLB_SEL;
3119                         break;
3120                 case 2:
3121                         temp |= TRANSC_DPLL_ENABLE;
3122                         sel = TRANSC_DPLLB_SEL;
3123                         break;
3124                 }
3125                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3126                         temp |= sel;
3127                 else
3128                         temp &= ~sel;
3129                 I915_WRITE(PCH_DPLL_SEL, temp);
3130         }
3131
3132         /* set transcoder timing, panel must allow it */
3133         assert_panel_unlocked(dev_priv, pipe);
3134         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3135         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3136         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3137
3138         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3139         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3140         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3141         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3142
3143         intel_fdi_normal_train(crtc);
3144
3145         /* For PCH DP, enable TRANS_DP_CTL */
3146         if (HAS_PCH_CPT(dev) &&
3147             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3148              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3149                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3150                 reg = TRANS_DP_CTL(pipe);
3151                 temp = I915_READ(reg);
3152                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3153                           TRANS_DP_SYNC_MASK |
3154                           TRANS_DP_BPC_MASK);
3155                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3156                          TRANS_DP_ENH_FRAMING);
3157                 temp |= bpc << 9; /* same format but at 11:9 */
3158
3159                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3160                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3161                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3162                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3163
3164                 switch (intel_trans_dp_port_sel(crtc)) {
3165                 case PCH_DP_B:
3166                         temp |= TRANS_DP_PORT_SEL_B;
3167                         break;
3168                 case PCH_DP_C:
3169                         temp |= TRANS_DP_PORT_SEL_C;
3170                         break;
3171                 case PCH_DP_D:
3172                         temp |= TRANS_DP_PORT_SEL_D;
3173                         break;
3174                 default:
3175                         BUG();
3176                 }
3177
3178                 I915_WRITE(reg, temp);
3179         }
3180
3181         ironlake_enable_pch_transcoder(dev_priv, pipe);
3182 }
3183
3184 static void lpt_pch_enable(struct drm_crtc *crtc)
3185 {
3186         struct drm_device *dev = crtc->dev;
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3189         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3190
3191         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3192
3193         lpt_program_iclkip(crtc);
3194
3195         /* Set transcoder timing. */
3196         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3197         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3198         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3199
3200         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3201         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3202         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3203         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3204
3205         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3206 }
3207
3208 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3209 {
3210         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3211
3212         if (pll == NULL)
3213                 return;
3214
3215         if (pll->refcount == 0) {
3216                 WARN(1, "bad PCH PLL refcount\n");
3217                 return;
3218         }
3219
3220         --pll->refcount;
3221         intel_crtc->pch_pll = NULL;
3222 }
3223
3224 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3225 {
3226         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3227         struct intel_pch_pll *pll;
3228         int i;
3229
3230         pll = intel_crtc->pch_pll;
3231         if (pll) {
3232                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3233                               intel_crtc->base.base.id, pll->pll_reg);
3234                 goto prepare;
3235         }
3236
3237         if (HAS_PCH_IBX(dev_priv->dev)) {
3238                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3239                 i = intel_crtc->pipe;
3240                 pll = &dev_priv->pch_plls[i];
3241
3242                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3243                               intel_crtc->base.base.id, pll->pll_reg);
3244
3245                 goto found;
3246         }
3247
3248         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3249                 pll = &dev_priv->pch_plls[i];
3250
3251                 /* Only want to check enabled timings first */
3252                 if (pll->refcount == 0)
3253                         continue;
3254
3255                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3256                     fp == I915_READ(pll->fp0_reg)) {
3257                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3258                                       intel_crtc->base.base.id,
3259                                       pll->pll_reg, pll->refcount, pll->active);
3260
3261                         goto found;
3262                 }
3263         }
3264
3265         /* Ok no matching timings, maybe there's a free one? */
3266         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3267                 pll = &dev_priv->pch_plls[i];
3268                 if (pll->refcount == 0) {
3269                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3270                                       intel_crtc->base.base.id, pll->pll_reg);
3271                         goto found;
3272                 }
3273         }
3274
3275         return NULL;
3276
3277 found:
3278         intel_crtc->pch_pll = pll;
3279         pll->refcount++;
3280         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3281 prepare: /* separate function? */
3282         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3283
3284         /* Wait for the clocks to stabilize before rewriting the regs */
3285         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3286         POSTING_READ(pll->pll_reg);
3287         udelay(150);
3288
3289         I915_WRITE(pll->fp0_reg, fp);
3290         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3291         pll->on = false;
3292         return pll;
3293 }
3294
3295 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3296 {
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         int dslreg = PIPEDSL(pipe);
3299         u32 temp;
3300
3301         temp = I915_READ(dslreg);
3302         udelay(500);
3303         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3304                 if (wait_for(I915_READ(dslreg) != temp, 5))
3305                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3306         }
3307 }
3308
3309 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3310 {
3311         struct drm_device *dev = crtc->dev;
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3314         struct intel_encoder *encoder;
3315         int pipe = intel_crtc->pipe;
3316         int plane = intel_crtc->plane;
3317         u32 temp;
3318         bool is_pch_port;
3319
3320         WARN_ON(!crtc->enabled);
3321
3322         if (intel_crtc->active)
3323                 return;
3324
3325         intel_crtc->active = true;
3326         intel_update_watermarks(dev);
3327
3328         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3329                 temp = I915_READ(PCH_LVDS);
3330                 if ((temp & LVDS_PORT_EN) == 0)
3331                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3332         }
3333
3334         is_pch_port = ironlake_crtc_driving_pch(crtc);
3335
3336         if (is_pch_port) {
3337                 /* Note: FDI PLL enabling _must_ be done before we enable the
3338                  * cpu pipes, hence this is separate from all the other fdi/pch
3339                  * enabling. */
3340                 ironlake_fdi_pll_enable(intel_crtc);
3341         } else {
3342                 assert_fdi_tx_disabled(dev_priv, pipe);
3343                 assert_fdi_rx_disabled(dev_priv, pipe);
3344         }
3345
3346         for_each_encoder_on_crtc(dev, crtc, encoder)
3347                 if (encoder->pre_enable)
3348                         encoder->pre_enable(encoder);
3349
3350         /* Enable panel fitting for LVDS */
3351         if (dev_priv->pch_pf_size &&
3352             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3353              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3354                 /* Force use of hard-coded filter coefficients
3355                  * as some pre-programmed values are broken,
3356                  * e.g. x201.
3357                  */
3358                 if (IS_IVYBRIDGE(dev))
3359                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3360                                                  PF_PIPE_SEL_IVB(pipe));
3361                 else
3362                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3363                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3364                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3365         }
3366
3367         /*
3368          * On ILK+ LUT must be loaded before the pipe is running but with
3369          * clocks enabled
3370          */
3371         intel_crtc_load_lut(crtc);
3372
3373         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3374         intel_enable_plane(dev_priv, plane, pipe);
3375
3376         if (is_pch_port)
3377                 ironlake_pch_enable(crtc);
3378
3379         mutex_lock(&dev->struct_mutex);
3380         intel_update_fbc(dev);
3381         mutex_unlock(&dev->struct_mutex);
3382
3383         intel_crtc_update_cursor(crtc, true);
3384
3385         for_each_encoder_on_crtc(dev, crtc, encoder)
3386                 encoder->enable(encoder);
3387
3388         if (HAS_PCH_CPT(dev))
3389                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3390
3391         /*
3392          * There seems to be a race in PCH platform hw (at least on some
3393          * outputs) where an enabled pipe still completes any pageflip right
3394          * away (as if the pipe is off) instead of waiting for vblank. As soon
3395          * as the first vblank happend, everything works as expected. Hence just
3396          * wait for one vblank before returning to avoid strange things
3397          * happening.
3398          */
3399         intel_wait_for_vblank(dev, intel_crtc->pipe);
3400 }
3401
3402 static void haswell_crtc_enable(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         struct intel_encoder *encoder;
3408         int pipe = intel_crtc->pipe;
3409         int plane = intel_crtc->plane;
3410         bool is_pch_port;
3411
3412         WARN_ON(!crtc->enabled);
3413
3414         if (intel_crtc->active)
3415                 return;
3416
3417         intel_crtc->active = true;
3418         intel_update_watermarks(dev);
3419
3420         is_pch_port = haswell_crtc_driving_pch(crtc);
3421
3422         if (is_pch_port)
3423                 dev_priv->display.fdi_link_train(crtc);
3424
3425         for_each_encoder_on_crtc(dev, crtc, encoder)
3426                 if (encoder->pre_enable)
3427                         encoder->pre_enable(encoder);
3428
3429         intel_ddi_enable_pipe_clock(intel_crtc);
3430
3431         /* Enable panel fitting for eDP */
3432         if (dev_priv->pch_pf_size &&
3433             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3434                 /* Force use of hard-coded filter coefficients
3435                  * as some pre-programmed values are broken,
3436                  * e.g. x201.
3437                  */
3438                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3439                                          PF_PIPE_SEL_IVB(pipe));
3440                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3441                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3442         }
3443
3444         /*
3445          * On ILK+ LUT must be loaded before the pipe is running but with
3446          * clocks enabled
3447          */
3448         intel_crtc_load_lut(crtc);
3449
3450         intel_ddi_set_pipe_settings(crtc);
3451         intel_ddi_enable_pipe_func(crtc);
3452
3453         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3454         intel_enable_plane(dev_priv, plane, pipe);
3455
3456         if (is_pch_port)
3457                 lpt_pch_enable(crtc);
3458
3459         mutex_lock(&dev->struct_mutex);
3460         intel_update_fbc(dev);
3461         mutex_unlock(&dev->struct_mutex);
3462
3463         intel_crtc_update_cursor(crtc, true);
3464
3465         for_each_encoder_on_crtc(dev, crtc, encoder)
3466                 encoder->enable(encoder);
3467
3468         /*
3469          * There seems to be a race in PCH platform hw (at least on some
3470          * outputs) where an enabled pipe still completes any pageflip right
3471          * away (as if the pipe is off) instead of waiting for vblank. As soon
3472          * as the first vblank happend, everything works as expected. Hence just
3473          * wait for one vblank before returning to avoid strange things
3474          * happening.
3475          */
3476         intel_wait_for_vblank(dev, intel_crtc->pipe);
3477 }
3478
3479 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3480 {
3481         struct drm_device *dev = crtc->dev;
3482         struct drm_i915_private *dev_priv = dev->dev_private;
3483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484         struct intel_encoder *encoder;
3485         int pipe = intel_crtc->pipe;
3486         int plane = intel_crtc->plane;
3487         u32 reg, temp;
3488
3489
3490         if (!intel_crtc->active)
3491                 return;
3492
3493         for_each_encoder_on_crtc(dev, crtc, encoder)
3494                 encoder->disable(encoder);
3495
3496         intel_crtc_wait_for_pending_flips(crtc);
3497         drm_vblank_off(dev, pipe);
3498         intel_crtc_update_cursor(crtc, false);
3499
3500         intel_disable_plane(dev_priv, plane, pipe);
3501
3502         if (dev_priv->cfb_plane == plane)
3503                 intel_disable_fbc(dev);
3504
3505         intel_disable_pipe(dev_priv, pipe);
3506
3507         /* Disable PF */
3508         I915_WRITE(PF_CTL(pipe), 0);
3509         I915_WRITE(PF_WIN_SZ(pipe), 0);
3510
3511         for_each_encoder_on_crtc(dev, crtc, encoder)
3512                 if (encoder->post_disable)
3513                         encoder->post_disable(encoder);
3514
3515         ironlake_fdi_disable(crtc);
3516
3517         ironlake_disable_pch_transcoder(dev_priv, pipe);
3518
3519         if (HAS_PCH_CPT(dev)) {
3520                 /* disable TRANS_DP_CTL */
3521                 reg = TRANS_DP_CTL(pipe);
3522                 temp = I915_READ(reg);
3523                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3524                 temp |= TRANS_DP_PORT_SEL_NONE;
3525                 I915_WRITE(reg, temp);
3526
3527                 /* disable DPLL_SEL */
3528                 temp = I915_READ(PCH_DPLL_SEL);
3529                 switch (pipe) {
3530                 case 0:
3531                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3532                         break;
3533                 case 1:
3534                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3535                         break;
3536                 case 2:
3537                         /* C shares PLL A or B */
3538                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3539                         break;
3540                 default:
3541                         BUG(); /* wtf */
3542                 }
3543                 I915_WRITE(PCH_DPLL_SEL, temp);
3544         }
3545
3546         /* disable PCH DPLL */
3547         intel_disable_pch_pll(intel_crtc);
3548
3549         ironlake_fdi_pll_disable(intel_crtc);
3550
3551         intel_crtc->active = false;
3552         intel_update_watermarks(dev);
3553
3554         mutex_lock(&dev->struct_mutex);
3555         intel_update_fbc(dev);
3556         mutex_unlock(&dev->struct_mutex);
3557 }
3558
3559 static void haswell_crtc_disable(struct drm_crtc *crtc)
3560 {
3561         struct drm_device *dev = crtc->dev;
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3564         struct intel_encoder *encoder;
3565         int pipe = intel_crtc->pipe;
3566         int plane = intel_crtc->plane;
3567         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3568         bool is_pch_port;
3569
3570         if (!intel_crtc->active)
3571                 return;
3572
3573         is_pch_port = haswell_crtc_driving_pch(crtc);
3574
3575         for_each_encoder_on_crtc(dev, crtc, encoder)
3576                 encoder->disable(encoder);
3577
3578         intel_crtc_wait_for_pending_flips(crtc);
3579         drm_vblank_off(dev, pipe);
3580         intel_crtc_update_cursor(crtc, false);
3581
3582         intel_disable_plane(dev_priv, plane, pipe);
3583
3584         if (dev_priv->cfb_plane == plane)
3585                 intel_disable_fbc(dev);
3586
3587         intel_disable_pipe(dev_priv, pipe);
3588
3589         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3590
3591         /* Disable PF */
3592         I915_WRITE(PF_CTL(pipe), 0);
3593         I915_WRITE(PF_WIN_SZ(pipe), 0);
3594
3595         intel_ddi_disable_pipe_clock(intel_crtc);
3596
3597         for_each_encoder_on_crtc(dev, crtc, encoder)
3598                 if (encoder->post_disable)
3599                         encoder->post_disable(encoder);
3600
3601         if (is_pch_port) {
3602                 lpt_disable_pch_transcoder(dev_priv);
3603                 intel_ddi_fdi_disable(crtc);
3604         }
3605
3606         intel_crtc->active = false;
3607         intel_update_watermarks(dev);
3608
3609         mutex_lock(&dev->struct_mutex);
3610         intel_update_fbc(dev);
3611         mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         intel_put_pch_pll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623
3624         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3625          * start using it. */
3626         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3627
3628         intel_ddi_put_crtc_pll(crtc);
3629 }
3630
3631 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3632 {
3633         if (!enable && intel_crtc->overlay) {
3634                 struct drm_device *dev = intel_crtc->base.dev;
3635                 struct drm_i915_private *dev_priv = dev->dev_private;
3636
3637                 mutex_lock(&dev->struct_mutex);
3638                 dev_priv->mm.interruptible = false;
3639                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3640                 dev_priv->mm.interruptible = true;
3641                 mutex_unlock(&dev->struct_mutex);
3642         }
3643
3644         /* Let userspace switch the overlay on again. In most cases userspace
3645          * has to recompute where to put it anyway.
3646          */
3647 }
3648
3649 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3650 {
3651         struct drm_device *dev = crtc->dev;
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3654         struct intel_encoder *encoder;
3655         int pipe = intel_crtc->pipe;
3656         int plane = intel_crtc->plane;
3657
3658         WARN_ON(!crtc->enabled);
3659
3660         if (intel_crtc->active)
3661                 return;
3662
3663         intel_crtc->active = true;
3664         intel_update_watermarks(dev);
3665
3666         intel_enable_pll(dev_priv, pipe);
3667         intel_enable_pipe(dev_priv, pipe, false);
3668         intel_enable_plane(dev_priv, plane, pipe);
3669
3670         intel_crtc_load_lut(crtc);
3671         intel_update_fbc(dev);
3672
3673         /* Give the overlay scaler a chance to enable if it's on this pipe */
3674         intel_crtc_dpms_overlay(intel_crtc, true);
3675         intel_crtc_update_cursor(crtc, true);
3676
3677         for_each_encoder_on_crtc(dev, crtc, encoder)
3678                 encoder->enable(encoder);
3679 }
3680
3681 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3682 {
3683         struct drm_device *dev = crtc->dev;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3686         struct intel_encoder *encoder;
3687         int pipe = intel_crtc->pipe;
3688         int plane = intel_crtc->plane;
3689         u32 pctl;
3690
3691
3692         if (!intel_crtc->active)
3693                 return;
3694
3695         for_each_encoder_on_crtc(dev, crtc, encoder)
3696                 encoder->disable(encoder);
3697
3698         /* Give the overlay scaler a chance to disable if it's on this pipe */
3699         intel_crtc_wait_for_pending_flips(crtc);
3700         drm_vblank_off(dev, pipe);
3701         intel_crtc_dpms_overlay(intel_crtc, false);
3702         intel_crtc_update_cursor(crtc, false);
3703
3704         if (dev_priv->cfb_plane == plane)
3705                 intel_disable_fbc(dev);
3706
3707         intel_disable_plane(dev_priv, plane, pipe);
3708         intel_disable_pipe(dev_priv, pipe);
3709
3710         /* Disable pannel fitter if it is on this pipe. */
3711         pctl = I915_READ(PFIT_CONTROL);
3712         if ((pctl & PFIT_ENABLE) &&
3713             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3714                 I915_WRITE(PFIT_CONTROL, 0);
3715
3716         intel_disable_pll(dev_priv, pipe);
3717
3718         intel_crtc->active = false;
3719         intel_update_fbc(dev);
3720         intel_update_watermarks(dev);
3721 }
3722
3723 static void i9xx_crtc_off(struct drm_crtc *crtc)
3724 {
3725 }
3726
3727 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3728                                     bool enabled)
3729 {
3730         struct drm_device *dev = crtc->dev;
3731         struct drm_i915_master_private *master_priv;
3732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3733         int pipe = intel_crtc->pipe;
3734
3735         if (!dev->primary->master)
3736                 return;
3737
3738         master_priv = dev->primary->master->driver_priv;
3739         if (!master_priv->sarea_priv)
3740                 return;
3741
3742         switch (pipe) {
3743         case 0:
3744                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3745                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3746                 break;
3747         case 1:
3748                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3749                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3750                 break;
3751         default:
3752                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3753                 break;
3754         }
3755 }
3756
3757 /**
3758  * Sets the power management mode of the pipe and plane.
3759  */
3760 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3761 {
3762         struct drm_device *dev = crtc->dev;
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764         struct intel_encoder *intel_encoder;
3765         bool enable = false;
3766
3767         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3768                 enable |= intel_encoder->connectors_active;
3769
3770         if (enable)
3771                 dev_priv->display.crtc_enable(crtc);
3772         else
3773                 dev_priv->display.crtc_disable(crtc);
3774
3775         intel_crtc_update_sarea(crtc, enable);
3776 }
3777
3778 static void intel_crtc_noop(struct drm_crtc *crtc)
3779 {
3780 }
3781
3782 static void intel_crtc_disable(struct drm_crtc *crtc)
3783 {
3784         struct drm_device *dev = crtc->dev;
3785         struct drm_connector *connector;
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787
3788         /* crtc should still be enabled when we disable it. */
3789         WARN_ON(!crtc->enabled);
3790
3791         dev_priv->display.crtc_disable(crtc);
3792         intel_crtc_update_sarea(crtc, false);
3793         dev_priv->display.off(crtc);
3794
3795         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3796         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3797
3798         if (crtc->fb) {
3799                 mutex_lock(&dev->struct_mutex);
3800                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3801                 mutex_unlock(&dev->struct_mutex);
3802                 crtc->fb = NULL;
3803         }
3804
3805         /* Update computed state. */
3806         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3807                 if (!connector->encoder || !connector->encoder->crtc)
3808                         continue;
3809
3810                 if (connector->encoder->crtc != crtc)
3811                         continue;
3812
3813                 connector->dpms = DRM_MODE_DPMS_OFF;
3814                 to_intel_encoder(connector->encoder)->connectors_active = false;
3815         }
3816 }
3817
3818 void intel_modeset_disable(struct drm_device *dev)
3819 {
3820         struct drm_crtc *crtc;
3821
3822         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3823                 if (crtc->enabled)
3824                         intel_crtc_disable(crtc);
3825         }
3826 }
3827
3828 void intel_encoder_noop(struct drm_encoder *encoder)
3829 {
3830 }
3831
3832 void intel_encoder_destroy(struct drm_encoder *encoder)
3833 {
3834         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3835
3836         drm_encoder_cleanup(encoder);
3837         kfree(intel_encoder);
3838 }
3839
3840 /* Simple dpms helper for encodres with just one connector, no cloning and only
3841  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3842  * state of the entire output pipe. */
3843 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3844 {
3845         if (mode == DRM_MODE_DPMS_ON) {
3846                 encoder->connectors_active = true;
3847
3848                 intel_crtc_update_dpms(encoder->base.crtc);
3849         } else {
3850                 encoder->connectors_active = false;
3851
3852                 intel_crtc_update_dpms(encoder->base.crtc);
3853         }
3854 }
3855
3856 /* Cross check the actual hw state with our own modeset state tracking (and it's
3857  * internal consistency). */
3858 static void intel_connector_check_state(struct intel_connector *connector)
3859 {
3860         if (connector->get_hw_state(connector)) {
3861                 struct intel_encoder *encoder = connector->encoder;
3862                 struct drm_crtc *crtc;
3863                 bool encoder_enabled;
3864                 enum pipe pipe;
3865
3866                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3867                               connector->base.base.id,
3868                               drm_get_connector_name(&connector->base));
3869
3870                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3871                      "wrong connector dpms state\n");
3872                 WARN(connector->base.encoder != &encoder->base,
3873                      "active connector not linked to encoder\n");
3874                 WARN(!encoder->connectors_active,
3875                      "encoder->connectors_active not set\n");
3876
3877                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3878                 WARN(!encoder_enabled, "encoder not enabled\n");
3879                 if (WARN_ON(!encoder->base.crtc))
3880                         return;
3881
3882                 crtc = encoder->base.crtc;
3883
3884                 WARN(!crtc->enabled, "crtc not enabled\n");
3885                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3886                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3887                      "encoder active on the wrong pipe\n");
3888         }
3889 }
3890
3891 /* Even simpler default implementation, if there's really no special case to
3892  * consider. */
3893 void intel_connector_dpms(struct drm_connector *connector, int mode)
3894 {
3895         struct intel_encoder *encoder = intel_attached_encoder(connector);
3896
3897         /* All the simple cases only support two dpms states. */
3898         if (mode != DRM_MODE_DPMS_ON)
3899                 mode = DRM_MODE_DPMS_OFF;
3900
3901         if (mode == connector->dpms)
3902                 return;
3903
3904         connector->dpms = mode;
3905
3906         /* Only need to change hw state when actually enabled */
3907         if (encoder->base.crtc)
3908                 intel_encoder_dpms(encoder, mode);
3909         else
3910                 WARN_ON(encoder->connectors_active != false);
3911
3912         intel_modeset_check_state(connector->dev);
3913 }
3914
3915 /* Simple connector->get_hw_state implementation for encoders that support only
3916  * one connector and no cloning and hence the encoder state determines the state
3917  * of the connector. */
3918 bool intel_connector_get_hw_state(struct intel_connector *connector)
3919 {
3920         enum pipe pipe = 0;
3921         struct intel_encoder *encoder = connector->encoder;
3922
3923         return encoder->get_hw_state(encoder, &pipe);
3924 }
3925
3926 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3927                                   const struct drm_display_mode *mode,
3928                                   struct drm_display_mode *adjusted_mode)
3929 {
3930         struct drm_device *dev = crtc->dev;
3931
3932         if (HAS_PCH_SPLIT(dev)) {
3933                 /* FDI link clock is fixed at 2.7G */
3934                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3935                         return false;
3936         }
3937
3938         /* All interlaced capable intel hw wants timings in frames. Note though
3939          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3940          * timings, so we need to be careful not to clobber these.*/
3941         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3942                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3943
3944         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3945          * with a hsync front porch of 0.
3946          */
3947         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3948                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3949                 return false;
3950
3951         return true;
3952 }
3953
3954 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3955 {
3956         return 400000; /* FIXME */
3957 }
3958
3959 static int i945_get_display_clock_speed(struct drm_device *dev)
3960 {
3961         return 400000;
3962 }
3963
3964 static int i915_get_display_clock_speed(struct drm_device *dev)
3965 {
3966         return 333000;
3967 }
3968
3969 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3970 {
3971         return 200000;
3972 }
3973
3974 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3975 {
3976         u16 gcfgc = 0;
3977
3978         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3979
3980         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3981                 return 133000;
3982         else {
3983                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3984                 case GC_DISPLAY_CLOCK_333_MHZ:
3985                         return 333000;
3986                 default:
3987                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3988                         return 190000;
3989                 }
3990         }
3991 }
3992
3993 static int i865_get_display_clock_speed(struct drm_device *dev)
3994 {
3995         return 266000;
3996 }
3997
3998 static int i855_get_display_clock_speed(struct drm_device *dev)
3999 {
4000         u16 hpllcc = 0;
4001         /* Assume that the hardware is in the high speed state.  This
4002          * should be the default.
4003          */
4004         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4005         case GC_CLOCK_133_200:
4006         case GC_CLOCK_100_200:
4007                 return 200000;
4008         case GC_CLOCK_166_250:
4009                 return 250000;
4010         case GC_CLOCK_100_133:
4011                 return 133000;
4012         }
4013
4014         /* Shouldn't happen */
4015         return 0;
4016 }
4017
4018 static int i830_get_display_clock_speed(struct drm_device *dev)
4019 {
4020         return 133000;
4021 }
4022
4023 struct fdi_m_n {
4024         u32        tu;
4025         u32        gmch_m;
4026         u32        gmch_n;
4027         u32        link_m;
4028         u32        link_n;
4029 };
4030
4031 static void
4032 fdi_reduce_ratio(u32 *num, u32 *den)
4033 {
4034         while (*num > 0xffffff || *den > 0xffffff) {
4035                 *num >>= 1;
4036                 *den >>= 1;
4037         }
4038 }
4039
4040 static void
4041 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4042                      int link_clock, struct fdi_m_n *m_n)
4043 {
4044         m_n->tu = 64; /* default size */
4045
4046         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4047         m_n->gmch_m = bits_per_pixel * pixel_clock;
4048         m_n->gmch_n = link_clock * nlanes * 8;
4049         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4050
4051         m_n->link_m = pixel_clock;
4052         m_n->link_n = link_clock;
4053         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4054 }
4055
4056 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4057 {
4058         if (i915_panel_use_ssc >= 0)
4059                 return i915_panel_use_ssc != 0;
4060         return dev_priv->lvds_use_ssc
4061                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4062 }
4063
4064 /**
4065  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4066  * @crtc: CRTC structure
4067  * @mode: requested mode
4068  *
4069  * A pipe may be connected to one or more outputs.  Based on the depth of the
4070  * attached framebuffer, choose a good color depth to use on the pipe.
4071  *
4072  * If possible, match the pipe depth to the fb depth.  In some cases, this
4073  * isn't ideal, because the connected output supports a lesser or restricted
4074  * set of depths.  Resolve that here:
4075  *    LVDS typically supports only 6bpc, so clamp down in that case
4076  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4077  *    Displays may support a restricted set as well, check EDID and clamp as
4078  *      appropriate.
4079  *    DP may want to dither down to 6bpc to fit larger modes
4080  *
4081  * RETURNS:
4082  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4083  * true if they don't match).
4084  */
4085 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4086                                          struct drm_framebuffer *fb,
4087                                          unsigned int *pipe_bpp,
4088                                          struct drm_display_mode *mode)
4089 {
4090         struct drm_device *dev = crtc->dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         struct drm_connector *connector;
4093         struct intel_encoder *intel_encoder;
4094         unsigned int display_bpc = UINT_MAX, bpc;
4095
4096         /* Walk the encoders & connectors on this crtc, get min bpc */
4097         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4098
4099                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4100                         unsigned int lvds_bpc;
4101
4102                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4103                             LVDS_A3_POWER_UP)
4104                                 lvds_bpc = 8;
4105                         else
4106                                 lvds_bpc = 6;
4107
4108                         if (lvds_bpc < display_bpc) {
4109                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4110                                 display_bpc = lvds_bpc;
4111                         }
4112                         continue;
4113                 }
4114
4115                 /* Not one of the known troublemakers, check the EDID */
4116                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4117                                     head) {
4118                         if (connector->encoder != &intel_encoder->base)
4119                                 continue;
4120
4121                         /* Don't use an invalid EDID bpc value */
4122                         if (connector->display_info.bpc &&
4123                             connector->display_info.bpc < display_bpc) {
4124                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4125                                 display_bpc = connector->display_info.bpc;
4126                         }
4127                 }
4128
4129                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4130                         /* Use VBT settings if we have an eDP panel */
4131                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4132
4133                         if (edp_bpc && edp_bpc < display_bpc) {
4134                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4135                                 display_bpc = edp_bpc;
4136                         }
4137                         continue;
4138                 }
4139
4140                 /*
4141                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4142                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4143                  */
4144                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4145                         if (display_bpc > 8 && display_bpc < 12) {
4146                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4147                                 display_bpc = 12;
4148                         } else {
4149                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4150                                 display_bpc = 8;
4151                         }
4152                 }
4153         }
4154
4155         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4156                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4157                 display_bpc = 6;
4158         }
4159
4160         /*
4161          * We could just drive the pipe at the highest bpc all the time and
4162          * enable dithering as needed, but that costs bandwidth.  So choose
4163          * the minimum value that expresses the full color range of the fb but
4164          * also stays within the max display bpc discovered above.
4165          */
4166
4167         switch (fb->depth) {
4168         case 8:
4169                 bpc = 8; /* since we go through a colormap */
4170                 break;
4171         case 15:
4172         case 16:
4173                 bpc = 6; /* min is 18bpp */
4174                 break;
4175         case 24:
4176                 bpc = 8;
4177                 break;
4178         case 30:
4179                 bpc = 10;
4180                 break;
4181         case 48:
4182                 bpc = 12;
4183                 break;
4184         default:
4185                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4186                 bpc = min((unsigned int)8, display_bpc);
4187                 break;
4188         }
4189
4190         display_bpc = min(display_bpc, bpc);
4191
4192         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4193                       bpc, display_bpc);
4194
4195         *pipe_bpp = display_bpc * 3;
4196
4197         return display_bpc != bpc;
4198 }
4199
4200 static int vlv_get_refclk(struct drm_crtc *crtc)
4201 {
4202         struct drm_device *dev = crtc->dev;
4203         struct drm_i915_private *dev_priv = dev->dev_private;
4204         int refclk = 27000; /* for DP & HDMI */
4205
4206         return 100000; /* only one validated so far */
4207
4208         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4209                 refclk = 96000;
4210         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4211                 if (intel_panel_use_ssc(dev_priv))
4212                         refclk = 100000;
4213                 else
4214                         refclk = 96000;
4215         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4216                 refclk = 100000;
4217         }
4218
4219         return refclk;
4220 }
4221
4222 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4223 {
4224         struct drm_device *dev = crtc->dev;
4225         struct drm_i915_private *dev_priv = dev->dev_private;
4226         int refclk;
4227
4228         if (IS_VALLEYVIEW(dev)) {
4229                 refclk = vlv_get_refclk(crtc);
4230         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4231             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4232                 refclk = dev_priv->lvds_ssc_freq * 1000;
4233                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4234                               refclk / 1000);
4235         } else if (!IS_GEN2(dev)) {
4236                 refclk = 96000;
4237         } else {
4238                 refclk = 48000;
4239         }
4240
4241         return refclk;
4242 }
4243
4244 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4245                                       intel_clock_t *clock)
4246 {
4247         /* SDVO TV has fixed PLL values depend on its clock range,
4248            this mirrors vbios setting. */
4249         if (adjusted_mode->clock >= 100000
4250             && adjusted_mode->clock < 140500) {
4251                 clock->p1 = 2;
4252                 clock->p2 = 10;
4253                 clock->n = 3;
4254                 clock->m1 = 16;
4255                 clock->m2 = 8;
4256         } else if (adjusted_mode->clock >= 140500
4257                    && adjusted_mode->clock <= 200000) {
4258                 clock->p1 = 1;
4259                 clock->p2 = 10;
4260                 clock->n = 6;
4261                 clock->m1 = 12;
4262                 clock->m2 = 8;
4263         }
4264 }
4265
4266 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4267                                      intel_clock_t *clock,
4268                                      intel_clock_t *reduced_clock)
4269 {
4270         struct drm_device *dev = crtc->dev;
4271         struct drm_i915_private *dev_priv = dev->dev_private;
4272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4273         int pipe = intel_crtc->pipe;
4274         u32 fp, fp2 = 0;
4275
4276         if (IS_PINEVIEW(dev)) {
4277                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4278                 if (reduced_clock)
4279                         fp2 = (1 << reduced_clock->n) << 16 |
4280                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4281         } else {
4282                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4283                 if (reduced_clock)
4284                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4285                                 reduced_clock->m2;
4286         }
4287
4288         I915_WRITE(FP0(pipe), fp);
4289
4290         intel_crtc->lowfreq_avail = false;
4291         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4292             reduced_clock && i915_powersave) {
4293                 I915_WRITE(FP1(pipe), fp2);
4294                 intel_crtc->lowfreq_avail = true;
4295         } else {
4296                 I915_WRITE(FP1(pipe), fp);
4297         }
4298 }
4299
4300 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4301                               struct drm_display_mode *adjusted_mode)
4302 {
4303         struct drm_device *dev = crtc->dev;
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306         int pipe = intel_crtc->pipe;
4307         u32 temp;
4308
4309         temp = I915_READ(LVDS);
4310         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4311         if (pipe == 1) {
4312                 temp |= LVDS_PIPEB_SELECT;
4313         } else {
4314                 temp &= ~LVDS_PIPEB_SELECT;
4315         }
4316         /* set the corresponsding LVDS_BORDER bit */
4317         temp |= dev_priv->lvds_border_bits;
4318         /* Set the B0-B3 data pairs corresponding to whether we're going to
4319          * set the DPLLs for dual-channel mode or not.
4320          */
4321         if (clock->p2 == 7)
4322                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4323         else
4324                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4325
4326         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4327          * appropriately here, but we need to look more thoroughly into how
4328          * panels behave in the two modes.
4329          */
4330         /* set the dithering flag on LVDS as needed */
4331         if (INTEL_INFO(dev)->gen >= 4) {
4332                 if (dev_priv->lvds_dither)
4333                         temp |= LVDS_ENABLE_DITHER;
4334                 else
4335                         temp &= ~LVDS_ENABLE_DITHER;
4336         }
4337         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4338         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4339                 temp |= LVDS_HSYNC_POLARITY;
4340         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4341                 temp |= LVDS_VSYNC_POLARITY;
4342         I915_WRITE(LVDS, temp);
4343 }
4344
4345 static void vlv_update_pll(struct drm_crtc *crtc,
4346                            struct drm_display_mode *mode,
4347                            struct drm_display_mode *adjusted_mode,
4348                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4349                            int num_connectors)
4350 {
4351         struct drm_device *dev = crtc->dev;
4352         struct drm_i915_private *dev_priv = dev->dev_private;
4353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4354         int pipe = intel_crtc->pipe;
4355         u32 dpll, mdiv, pdiv;
4356         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4357         bool is_sdvo;
4358         u32 temp;
4359
4360         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4361                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4362
4363         dpll = DPLL_VGA_MODE_DIS;
4364         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4365         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4366         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4367
4368         I915_WRITE(DPLL(pipe), dpll);
4369         POSTING_READ(DPLL(pipe));
4370
4371         bestn = clock->n;
4372         bestm1 = clock->m1;
4373         bestm2 = clock->m2;
4374         bestp1 = clock->p1;
4375         bestp2 = clock->p2;
4376
4377         /*
4378          * In Valleyview PLL and program lane counter registers are exposed
4379          * through DPIO interface
4380          */
4381         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4382         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4383         mdiv |= ((bestn << DPIO_N_SHIFT));
4384         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4385         mdiv |= (1 << DPIO_K_SHIFT);
4386         mdiv |= DPIO_ENABLE_CALIBRATION;
4387         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4388
4389         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4390
4391         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4392                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4393                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4394                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4395         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4396
4397         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4398
4399         dpll |= DPLL_VCO_ENABLE;
4400         I915_WRITE(DPLL(pipe), dpll);
4401         POSTING_READ(DPLL(pipe));
4402         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4403                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4404
4405         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4406
4407         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4408                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4409
4410         I915_WRITE(DPLL(pipe), dpll);
4411
4412         /* Wait for the clocks to stabilize. */
4413         POSTING_READ(DPLL(pipe));
4414         udelay(150);
4415
4416         temp = 0;
4417         if (is_sdvo) {
4418                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4419                 if (temp > 1)
4420                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4421                 else
4422                         temp = 0;
4423         }
4424         I915_WRITE(DPLL_MD(pipe), temp);
4425         POSTING_READ(DPLL_MD(pipe));
4426
4427         /* Now program lane control registers */
4428         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4429                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4430         {
4431                 temp = 0x1000C4;
4432                 if(pipe == 1)
4433                         temp |= (1 << 21);
4434                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4435         }
4436         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4437         {
4438                 temp = 0x1000C4;
4439                 if(pipe == 1)
4440                         temp |= (1 << 21);
4441                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4442         }
4443 }
4444
4445 static void i9xx_update_pll(struct drm_crtc *crtc,
4446                             struct drm_display_mode *mode,
4447                             struct drm_display_mode *adjusted_mode,
4448                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4449                             int num_connectors)
4450 {
4451         struct drm_device *dev = crtc->dev;
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4454         int pipe = intel_crtc->pipe;
4455         u32 dpll;
4456         bool is_sdvo;
4457
4458         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4459
4460         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4461                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4462
4463         dpll = DPLL_VGA_MODE_DIS;
4464
4465         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4466                 dpll |= DPLLB_MODE_LVDS;
4467         else
4468                 dpll |= DPLLB_MODE_DAC_SERIAL;
4469         if (is_sdvo) {
4470                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4471                 if (pixel_multiplier > 1) {
4472                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4473                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4474                 }
4475                 dpll |= DPLL_DVO_HIGH_SPEED;
4476         }
4477         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4478                 dpll |= DPLL_DVO_HIGH_SPEED;
4479
4480         /* compute bitmask from p1 value */
4481         if (IS_PINEVIEW(dev))
4482                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4483         else {
4484                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485                 if (IS_G4X(dev) && reduced_clock)
4486                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4487         }
4488         switch (clock->p2) {
4489         case 5:
4490                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4491                 break;
4492         case 7:
4493                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4494                 break;
4495         case 10:
4496                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4497                 break;
4498         case 14:
4499                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4500                 break;
4501         }
4502         if (INTEL_INFO(dev)->gen >= 4)
4503                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4504
4505         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4506                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4507         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4508                 /* XXX: just matching BIOS for now */
4509                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4510                 dpll |= 3;
4511         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4512                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4513                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4514         else
4515                 dpll |= PLL_REF_INPUT_DREFCLK;
4516
4517         dpll |= DPLL_VCO_ENABLE;
4518         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4519         POSTING_READ(DPLL(pipe));
4520         udelay(150);
4521
4522         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4523          * This is an exception to the general rule that mode_set doesn't turn
4524          * things on.
4525          */
4526         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4527                 intel_update_lvds(crtc, clock, adjusted_mode);
4528
4529         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4530                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4531
4532         I915_WRITE(DPLL(pipe), dpll);
4533
4534         /* Wait for the clocks to stabilize. */
4535         POSTING_READ(DPLL(pipe));
4536         udelay(150);
4537
4538         if (INTEL_INFO(dev)->gen >= 4) {
4539                 u32 temp = 0;
4540                 if (is_sdvo) {
4541                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4542                         if (temp > 1)
4543                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4544                         else
4545                                 temp = 0;
4546                 }
4547                 I915_WRITE(DPLL_MD(pipe), temp);
4548         } else {
4549                 /* The pixel multiplier can only be updated once the
4550                  * DPLL is enabled and the clocks are stable.
4551                  *
4552                  * So write it again.
4553                  */
4554                 I915_WRITE(DPLL(pipe), dpll);
4555         }
4556 }
4557
4558 static void i8xx_update_pll(struct drm_crtc *crtc,
4559                             struct drm_display_mode *adjusted_mode,
4560                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4561                             int num_connectors)
4562 {
4563         struct drm_device *dev = crtc->dev;
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4566         int pipe = intel_crtc->pipe;
4567         u32 dpll;
4568
4569         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4570
4571         dpll = DPLL_VGA_MODE_DIS;
4572
4573         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4574                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4575         } else {
4576                 if (clock->p1 == 2)
4577                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4578                 else
4579                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4580                 if (clock->p2 == 4)
4581                         dpll |= PLL_P2_DIVIDE_BY_4;
4582         }
4583
4584         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4585                 /* XXX: just matching BIOS for now */
4586                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4587                 dpll |= 3;
4588         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4589                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4590                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4591         else
4592                 dpll |= PLL_REF_INPUT_DREFCLK;
4593
4594         dpll |= DPLL_VCO_ENABLE;
4595         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4596         POSTING_READ(DPLL(pipe));
4597         udelay(150);
4598
4599         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4600          * This is an exception to the general rule that mode_set doesn't turn
4601          * things on.
4602          */
4603         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4604                 intel_update_lvds(crtc, clock, adjusted_mode);
4605
4606         I915_WRITE(DPLL(pipe), dpll);
4607
4608         /* Wait for the clocks to stabilize. */
4609         POSTING_READ(DPLL(pipe));
4610         udelay(150);
4611
4612         /* The pixel multiplier can only be updated once the
4613          * DPLL is enabled and the clocks are stable.
4614          *
4615          * So write it again.
4616          */
4617         I915_WRITE(DPLL(pipe), dpll);
4618 }
4619
4620 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4621                                    struct drm_display_mode *mode,
4622                                    struct drm_display_mode *adjusted_mode)
4623 {
4624         struct drm_device *dev = intel_crtc->base.dev;
4625         struct drm_i915_private *dev_priv = dev->dev_private;
4626         enum pipe pipe = intel_crtc->pipe;
4627         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4628         uint32_t vsyncshift;
4629
4630         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4631                 /* the chip adds 2 halflines automatically */
4632                 adjusted_mode->crtc_vtotal -= 1;
4633                 adjusted_mode->crtc_vblank_end -= 1;
4634                 vsyncshift = adjusted_mode->crtc_hsync_start
4635                              - adjusted_mode->crtc_htotal / 2;
4636         } else {
4637                 vsyncshift = 0;
4638         }
4639
4640         if (INTEL_INFO(dev)->gen > 3)
4641                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4642
4643         I915_WRITE(HTOTAL(cpu_transcoder),
4644                    (adjusted_mode->crtc_hdisplay - 1) |
4645                    ((adjusted_mode->crtc_htotal - 1) << 16));
4646         I915_WRITE(HBLANK(cpu_transcoder),
4647                    (adjusted_mode->crtc_hblank_start - 1) |
4648                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4649         I915_WRITE(HSYNC(cpu_transcoder),
4650                    (adjusted_mode->crtc_hsync_start - 1) |
4651                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4652
4653         I915_WRITE(VTOTAL(cpu_transcoder),
4654                    (adjusted_mode->crtc_vdisplay - 1) |
4655                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4656         I915_WRITE(VBLANK(cpu_transcoder),
4657                    (adjusted_mode->crtc_vblank_start - 1) |
4658                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4659         I915_WRITE(VSYNC(cpu_transcoder),
4660                    (adjusted_mode->crtc_vsync_start - 1) |
4661                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4662
4663         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4664          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4665          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4666          * bits. */
4667         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4668             (pipe == PIPE_B || pipe == PIPE_C))
4669                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4670
4671         /* pipesrc controls the size that is scaled from, which should
4672          * always be the user's requested size.
4673          */
4674         I915_WRITE(PIPESRC(pipe),
4675                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4676 }
4677
4678 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4679                               struct drm_display_mode *mode,
4680                               struct drm_display_mode *adjusted_mode,
4681                               int x, int y,
4682                               struct drm_framebuffer *fb)
4683 {
4684         struct drm_device *dev = crtc->dev;
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4687         int pipe = intel_crtc->pipe;
4688         int plane = intel_crtc->plane;
4689         int refclk, num_connectors = 0;
4690         intel_clock_t clock, reduced_clock;
4691         u32 dspcntr, pipeconf;
4692         bool ok, has_reduced_clock = false, is_sdvo = false;
4693         bool is_lvds = false, is_tv = false, is_dp = false;
4694         struct intel_encoder *encoder;
4695         const intel_limit_t *limit;
4696         int ret;
4697
4698         for_each_encoder_on_crtc(dev, crtc, encoder) {
4699                 switch (encoder->type) {
4700                 case INTEL_OUTPUT_LVDS:
4701                         is_lvds = true;
4702                         break;
4703                 case INTEL_OUTPUT_SDVO:
4704                 case INTEL_OUTPUT_HDMI:
4705                         is_sdvo = true;
4706                         if (encoder->needs_tv_clock)
4707                                 is_tv = true;
4708                         break;
4709                 case INTEL_OUTPUT_TVOUT:
4710                         is_tv = true;
4711                         break;
4712                 case INTEL_OUTPUT_DISPLAYPORT:
4713                         is_dp = true;
4714                         break;
4715                 }
4716
4717                 num_connectors++;
4718         }
4719
4720         refclk = i9xx_get_refclk(crtc, num_connectors);
4721
4722         /*
4723          * Returns a set of divisors for the desired target clock with the given
4724          * refclk, or FALSE.  The returned values represent the clock equation:
4725          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4726          */
4727         limit = intel_limit(crtc, refclk);
4728         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4729                              &clock);
4730         if (!ok) {
4731                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4732                 return -EINVAL;
4733         }
4734
4735         /* Ensure that the cursor is valid for the new mode before changing... */
4736         intel_crtc_update_cursor(crtc, true);
4737
4738         if (is_lvds && dev_priv->lvds_downclock_avail) {
4739                 /*
4740                  * Ensure we match the reduced clock's P to the target clock.
4741                  * If the clocks don't match, we can't switch the display clock
4742                  * by using the FP0/FP1. In such case we will disable the LVDS
4743                  * downclock feature.
4744                 */
4745                 has_reduced_clock = limit->find_pll(limit, crtc,
4746                                                     dev_priv->lvds_downclock,
4747                                                     refclk,
4748                                                     &clock,
4749                                                     &reduced_clock);
4750         }
4751
4752         if (is_sdvo && is_tv)
4753                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4754
4755         if (IS_GEN2(dev))
4756                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4757                                 has_reduced_clock ? &reduced_clock : NULL,
4758                                 num_connectors);
4759         else if (IS_VALLEYVIEW(dev))
4760                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4761                                 has_reduced_clock ? &reduced_clock : NULL,
4762                                 num_connectors);
4763         else
4764                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4765                                 has_reduced_clock ? &reduced_clock : NULL,
4766                                 num_connectors);
4767
4768         /* setup pipeconf */
4769         pipeconf = I915_READ(PIPECONF(pipe));
4770
4771         /* Set up the display plane register */
4772         dspcntr = DISPPLANE_GAMMA_ENABLE;
4773
4774         if (pipe == 0)
4775                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4776         else
4777                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4778
4779         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4780                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4781                  * core speed.
4782                  *
4783                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4784                  * pipe == 0 check?
4785                  */
4786                 if (mode->clock >
4787                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4788                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4789                 else
4790                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4791         }
4792
4793         /* default to 8bpc */
4794         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4795         if (is_dp) {
4796                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4797                         pipeconf |= PIPECONF_BPP_6 |
4798                                     PIPECONF_DITHER_EN |
4799                                     PIPECONF_DITHER_TYPE_SP;
4800                 }
4801         }
4802
4803         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4804                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4805                         pipeconf |= PIPECONF_BPP_6 |
4806                                         PIPECONF_ENABLE |
4807                                         I965_PIPECONF_ACTIVE;
4808                 }
4809         }
4810
4811         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4812         drm_mode_debug_printmodeline(mode);
4813
4814         if (HAS_PIPE_CXSR(dev)) {
4815                 if (intel_crtc->lowfreq_avail) {
4816                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4817                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4818                 } else {
4819                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4820                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4821                 }
4822         }
4823
4824         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4825         if (!IS_GEN2(dev) &&
4826             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4827                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4828         else
4829                 pipeconf |= PIPECONF_PROGRESSIVE;
4830
4831         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4832
4833         /* pipesrc and dspsize control the size that is scaled from,
4834          * which should always be the user's requested size.
4835          */
4836         I915_WRITE(DSPSIZE(plane),
4837                    ((mode->vdisplay - 1) << 16) |
4838                    (mode->hdisplay - 1));
4839         I915_WRITE(DSPPOS(plane), 0);
4840
4841         I915_WRITE(PIPECONF(pipe), pipeconf);
4842         POSTING_READ(PIPECONF(pipe));
4843         intel_enable_pipe(dev_priv, pipe, false);
4844
4845         intel_wait_for_vblank(dev, pipe);
4846
4847         I915_WRITE(DSPCNTR(plane), dspcntr);
4848         POSTING_READ(DSPCNTR(plane));
4849
4850         ret = intel_pipe_set_base(crtc, x, y, fb);
4851
4852         intel_update_watermarks(dev);
4853
4854         return ret;
4855 }
4856
4857 static void ironlake_init_pch_refclk(struct drm_device *dev)
4858 {
4859         struct drm_i915_private *dev_priv = dev->dev_private;
4860         struct drm_mode_config *mode_config = &dev->mode_config;
4861         struct intel_encoder *encoder;
4862         u32 temp;
4863         bool has_lvds = false;
4864         bool has_cpu_edp = false;
4865         bool has_pch_edp = false;
4866         bool has_panel = false;
4867         bool has_ck505 = false;
4868         bool can_ssc = false;
4869
4870         /* We need to take the global config into account */
4871         list_for_each_entry(encoder, &mode_config->encoder_list,
4872                             base.head) {
4873                 switch (encoder->type) {
4874                 case INTEL_OUTPUT_LVDS:
4875                         has_panel = true;
4876                         has_lvds = true;
4877                         break;
4878                 case INTEL_OUTPUT_EDP:
4879                         has_panel = true;
4880                         if (intel_encoder_is_pch_edp(&encoder->base))
4881                                 has_pch_edp = true;
4882                         else
4883                                 has_cpu_edp = true;
4884                         break;
4885                 }
4886         }
4887
4888         if (HAS_PCH_IBX(dev)) {
4889                 has_ck505 = dev_priv->display_clock_mode;
4890                 can_ssc = has_ck505;
4891         } else {
4892                 has_ck505 = false;
4893                 can_ssc = true;
4894         }
4895
4896         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4897                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4898                       has_ck505);
4899
4900         /* Ironlake: try to setup display ref clock before DPLL
4901          * enabling. This is only under driver's control after
4902          * PCH B stepping, previous chipset stepping should be
4903          * ignoring this setting.
4904          */
4905         temp = I915_READ(PCH_DREF_CONTROL);
4906         /* Always enable nonspread source */
4907         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4908
4909         if (has_ck505)
4910                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4911         else
4912                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4913
4914         if (has_panel) {
4915                 temp &= ~DREF_SSC_SOURCE_MASK;
4916                 temp |= DREF_SSC_SOURCE_ENABLE;
4917
4918                 /* SSC must be turned on before enabling the CPU output  */
4919                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4920                         DRM_DEBUG_KMS("Using SSC on panel\n");
4921                         temp |= DREF_SSC1_ENABLE;
4922                 } else
4923                         temp &= ~DREF_SSC1_ENABLE;
4924
4925                 /* Get SSC going before enabling the outputs */
4926                 I915_WRITE(PCH_DREF_CONTROL, temp);
4927                 POSTING_READ(PCH_DREF_CONTROL);
4928                 udelay(200);
4929
4930                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4931
4932                 /* Enable CPU source on CPU attached eDP */
4933                 if (has_cpu_edp) {
4934                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4935                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4936                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4937                         }
4938                         else
4939                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4940                 } else
4941                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4942
4943                 I915_WRITE(PCH_DREF_CONTROL, temp);
4944                 POSTING_READ(PCH_DREF_CONTROL);
4945                 udelay(200);
4946         } else {
4947                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4948
4949                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4950
4951                 /* Turn off CPU output */
4952                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4953
4954                 I915_WRITE(PCH_DREF_CONTROL, temp);
4955                 POSTING_READ(PCH_DREF_CONTROL);
4956                 udelay(200);
4957
4958                 /* Turn off the SSC source */
4959                 temp &= ~DREF_SSC_SOURCE_MASK;
4960                 temp |= DREF_SSC_SOURCE_DISABLE;
4961
4962                 /* Turn off SSC1 */
4963                 temp &= ~ DREF_SSC1_ENABLE;
4964
4965                 I915_WRITE(PCH_DREF_CONTROL, temp);
4966                 POSTING_READ(PCH_DREF_CONTROL);
4967                 udelay(200);
4968         }
4969 }
4970
4971 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4972 static void lpt_init_pch_refclk(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975         struct drm_mode_config *mode_config = &dev->mode_config;
4976         struct intel_encoder *encoder;
4977         bool has_vga = false;
4978         bool is_sdv = false;
4979         u32 tmp;
4980
4981         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4982                 switch (encoder->type) {
4983                 case INTEL_OUTPUT_ANALOG:
4984                         has_vga = true;
4985                         break;
4986                 }
4987         }
4988
4989         if (!has_vga)
4990                 return;
4991
4992         /* XXX: Rip out SDV support once Haswell ships for real. */
4993         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4994                 is_sdv = true;
4995
4996         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4997         tmp &= ~SBI_SSCCTL_DISABLE;
4998         tmp |= SBI_SSCCTL_PATHALT;
4999         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5000
5001         udelay(24);
5002
5003         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5004         tmp &= ~SBI_SSCCTL_PATHALT;
5005         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5006
5007         if (!is_sdv) {
5008                 tmp = I915_READ(SOUTH_CHICKEN2);
5009                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5010                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5011
5012                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5013                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5014                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5015
5016                 tmp = I915_READ(SOUTH_CHICKEN2);
5017                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5018                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5019
5020                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5021                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5022                                        100))
5023                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5024         }
5025
5026         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5027         tmp &= ~(0xFF << 24);
5028         tmp |= (0x12 << 24);
5029         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5030
5031         if (!is_sdv) {
5032                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5033                 tmp &= ~(0x3 << 6);
5034                 tmp |= (1 << 6) | (1 << 0);
5035                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5036         }
5037
5038         if (is_sdv) {
5039                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5040                 tmp |= 0x7FFF;
5041                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5042         }
5043
5044         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5045         tmp |= (1 << 11);
5046         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5047
5048         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5049         tmp |= (1 << 11);
5050         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5051
5052         if (is_sdv) {
5053                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5054                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5055                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5056
5057                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5058                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5059                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5060
5061                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5062                 tmp |= (0x3F << 8);
5063                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5064
5065                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5066                 tmp |= (0x3F << 8);
5067                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5068         }
5069
5070         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5071         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5072         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5073
5074         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5075         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5076         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5077
5078         if (!is_sdv) {
5079                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5080                 tmp &= ~(7 << 13);
5081                 tmp |= (5 << 13);
5082                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5083
5084                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5085                 tmp &= ~(7 << 13);
5086                 tmp |= (5 << 13);
5087                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5088         }
5089
5090         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5091         tmp &= ~0xFF;
5092         tmp |= 0x1C;
5093         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5094
5095         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5096         tmp &= ~0xFF;
5097         tmp |= 0x1C;
5098         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5099
5100         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5101         tmp &= ~(0xFF << 16);
5102         tmp |= (0x1C << 16);
5103         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5104
5105         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5106         tmp &= ~(0xFF << 16);
5107         tmp |= (0x1C << 16);
5108         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5109
5110         if (!is_sdv) {
5111                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5112                 tmp |= (1 << 27);
5113                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5114
5115                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5116                 tmp |= (1 << 27);
5117                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5118
5119                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5120                 tmp &= ~(0xF << 28);
5121                 tmp |= (4 << 28);
5122                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5123
5124                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5125                 tmp &= ~(0xF << 28);
5126                 tmp |= (4 << 28);
5127                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5128         }
5129
5130         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5131         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5132         tmp |= SBI_DBUFF0_ENABLE;
5133         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5134 }
5135
5136 /*
5137  * Initialize reference clocks when the driver loads
5138  */
5139 void intel_init_pch_refclk(struct drm_device *dev)
5140 {
5141         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5142                 ironlake_init_pch_refclk(dev);
5143         else if (HAS_PCH_LPT(dev))
5144                 lpt_init_pch_refclk(dev);
5145 }
5146
5147 static int ironlake_get_refclk(struct drm_crtc *crtc)
5148 {
5149         struct drm_device *dev = crtc->dev;
5150         struct drm_i915_private *dev_priv = dev->dev_private;
5151         struct intel_encoder *encoder;
5152         struct intel_encoder *edp_encoder = NULL;
5153         int num_connectors = 0;
5154         bool is_lvds = false;
5155
5156         for_each_encoder_on_crtc(dev, crtc, encoder) {
5157                 switch (encoder->type) {
5158                 case INTEL_OUTPUT_LVDS:
5159                         is_lvds = true;
5160                         break;
5161                 case INTEL_OUTPUT_EDP:
5162                         edp_encoder = encoder;
5163                         break;
5164                 }
5165                 num_connectors++;
5166         }
5167
5168         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5169                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5170                               dev_priv->lvds_ssc_freq);
5171                 return dev_priv->lvds_ssc_freq * 1000;
5172         }
5173
5174         return 120000;
5175 }
5176
5177 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5178                                   struct drm_display_mode *adjusted_mode,
5179                                   bool dither)
5180 {
5181         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5183         int pipe = intel_crtc->pipe;
5184         uint32_t val;
5185
5186         val = I915_READ(PIPECONF(pipe));
5187
5188         val &= ~PIPE_BPC_MASK;
5189         switch (intel_crtc->bpp) {
5190         case 18:
5191                 val |= PIPE_6BPC;
5192                 break;
5193         case 24:
5194                 val |= PIPE_8BPC;
5195                 break;
5196         case 30:
5197                 val |= PIPE_10BPC;
5198                 break;
5199         case 36:
5200                 val |= PIPE_12BPC;
5201                 break;
5202         default:
5203                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5204                 BUG();
5205         }
5206
5207         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5208         if (dither)
5209                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5210
5211         val &= ~PIPECONF_INTERLACE_MASK;
5212         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5213                 val |= PIPECONF_INTERLACED_ILK;
5214         else
5215                 val |= PIPECONF_PROGRESSIVE;
5216
5217         I915_WRITE(PIPECONF(pipe), val);
5218         POSTING_READ(PIPECONF(pipe));
5219 }
5220
5221 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5222                                  struct drm_display_mode *adjusted_mode,
5223                                  bool dither)
5224 {
5225         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5227         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5228         uint32_t val;
5229
5230         val = I915_READ(PIPECONF(cpu_transcoder));
5231
5232         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5233         if (dither)
5234                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5235
5236         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5237         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5238                 val |= PIPECONF_INTERLACED_ILK;
5239         else
5240                 val |= PIPECONF_PROGRESSIVE;
5241
5242         I915_WRITE(PIPECONF(cpu_transcoder), val);
5243         POSTING_READ(PIPECONF(cpu_transcoder));
5244 }
5245
5246 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5247                                     struct drm_display_mode *adjusted_mode,
5248                                     intel_clock_t *clock,
5249                                     bool *has_reduced_clock,
5250                                     intel_clock_t *reduced_clock)
5251 {
5252         struct drm_device *dev = crtc->dev;
5253         struct drm_i915_private *dev_priv = dev->dev_private;
5254         struct intel_encoder *intel_encoder;
5255         int refclk;
5256         const intel_limit_t *limit;
5257         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5258
5259         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5260                 switch (intel_encoder->type) {
5261                 case INTEL_OUTPUT_LVDS:
5262                         is_lvds = true;
5263                         break;
5264                 case INTEL_OUTPUT_SDVO:
5265                 case INTEL_OUTPUT_HDMI:
5266                         is_sdvo = true;
5267                         if (intel_encoder->needs_tv_clock)
5268                                 is_tv = true;
5269                         break;
5270                 case INTEL_OUTPUT_TVOUT:
5271                         is_tv = true;
5272                         break;
5273                 }
5274         }
5275
5276         refclk = ironlake_get_refclk(crtc);
5277
5278         /*
5279          * Returns a set of divisors for the desired target clock with the given
5280          * refclk, or FALSE.  The returned values represent the clock equation:
5281          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5282          */
5283         limit = intel_limit(crtc, refclk);
5284         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5285                               clock);
5286         if (!ret)
5287                 return false;
5288
5289         if (is_lvds && dev_priv->lvds_downclock_avail) {
5290                 /*
5291                  * Ensure we match the reduced clock's P to the target clock.
5292                  * If the clocks don't match, we can't switch the display clock
5293                  * by using the FP0/FP1. In such case we will disable the LVDS
5294                  * downclock feature.
5295                 */
5296                 *has_reduced_clock = limit->find_pll(limit, crtc,
5297                                                      dev_priv->lvds_downclock,
5298                                                      refclk,
5299                                                      clock,
5300                                                      reduced_clock);
5301         }
5302
5303         if (is_sdvo && is_tv)
5304                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5305
5306         return true;
5307 }
5308
5309 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5310 {
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         uint32_t temp;
5313
5314         temp = I915_READ(SOUTH_CHICKEN1);
5315         if (temp & FDI_BC_BIFURCATION_SELECT)
5316                 return;
5317
5318         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5319         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5320
5321         temp |= FDI_BC_BIFURCATION_SELECT;
5322         DRM_DEBUG_KMS("enabling fdi C rx\n");
5323         I915_WRITE(SOUTH_CHICKEN1, temp);
5324         POSTING_READ(SOUTH_CHICKEN1);
5325 }
5326
5327 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5328 {
5329         struct drm_device *dev = intel_crtc->base.dev;
5330         struct drm_i915_private *dev_priv = dev->dev_private;
5331         struct intel_crtc *pipe_B_crtc =
5332                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5333
5334         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5335                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5336         if (intel_crtc->fdi_lanes > 4) {
5337                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5338                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5339                 /* Clamp lanes to avoid programming the hw with bogus values. */
5340                 intel_crtc->fdi_lanes = 4;
5341
5342                 return false;
5343         }
5344
5345         if (dev_priv->num_pipe == 2)
5346                 return true;
5347
5348         switch (intel_crtc->pipe) {
5349         case PIPE_A:
5350                 return true;
5351         case PIPE_B:
5352                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5353                     intel_crtc->fdi_lanes > 2) {
5354                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5355                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5356                         /* Clamp lanes to avoid programming the hw with bogus values. */
5357                         intel_crtc->fdi_lanes = 2;
5358
5359                         return false;
5360                 }
5361
5362                 if (intel_crtc->fdi_lanes > 2)
5363                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5364                 else
5365                         cpt_enable_fdi_bc_bifurcation(dev);
5366
5367                 return true;
5368         case PIPE_C:
5369                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5370                         if (intel_crtc->fdi_lanes > 2) {
5371                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5372                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5373                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5374                                 intel_crtc->fdi_lanes = 2;
5375
5376                                 return false;
5377                         }
5378                 } else {
5379                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5380                         return false;
5381                 }
5382
5383                 cpt_enable_fdi_bc_bifurcation(dev);
5384
5385                 return true;
5386         default:
5387                 BUG();
5388         }
5389 }
5390
5391 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5392 {
5393         /*
5394          * Account for spread spectrum to avoid
5395          * oversubscribing the link. Max center spread
5396          * is 2.5%; use 5% for safety's sake.
5397          */
5398         u32 bps = target_clock * bpp * 21 / 20;
5399         return bps / (link_bw * 8) + 1;
5400 }
5401
5402 static void ironlake_set_m_n(struct drm_crtc *crtc,
5403                              struct drm_display_mode *mode,
5404                              struct drm_display_mode *adjusted_mode)
5405 {
5406         struct drm_device *dev = crtc->dev;
5407         struct drm_i915_private *dev_priv = dev->dev_private;
5408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5409         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5410         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5411         struct fdi_m_n m_n = {0};
5412         int target_clock, pixel_multiplier, lane, link_bw;
5413         bool is_dp = false, is_cpu_edp = false;
5414
5415         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5416                 switch (intel_encoder->type) {
5417                 case INTEL_OUTPUT_DISPLAYPORT:
5418                         is_dp = true;
5419                         break;
5420                 case INTEL_OUTPUT_EDP:
5421                         is_dp = true;
5422                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5423                                 is_cpu_edp = true;
5424                         edp_encoder = intel_encoder;
5425                         break;
5426                 }
5427         }
5428
5429         /* FDI link */
5430         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5431         lane = 0;
5432         /* CPU eDP doesn't require FDI link, so just set DP M/N
5433            according to current link config */
5434         if (is_cpu_edp) {
5435                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5436         } else {
5437                 /* FDI is a binary signal running at ~2.7GHz, encoding
5438                  * each output octet as 10 bits. The actual frequency
5439                  * is stored as a divider into a 100MHz clock, and the
5440                  * mode pixel clock is stored in units of 1KHz.
5441                  * Hence the bw of each lane in terms of the mode signal
5442                  * is:
5443                  */
5444                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5445         }
5446
5447         /* [e]DP over FDI requires target mode clock instead of link clock. */
5448         if (edp_encoder)
5449                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5450         else if (is_dp)
5451                 target_clock = mode->clock;
5452         else
5453                 target_clock = adjusted_mode->clock;
5454
5455         if (!lane)
5456                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5457                                                    intel_crtc->bpp);
5458
5459         intel_crtc->fdi_lanes = lane;
5460
5461         if (pixel_multiplier > 1)
5462                 link_bw *= pixel_multiplier;
5463         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5464                              &m_n);
5465
5466         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5467         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5468         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5469         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5470 }
5471
5472 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5473                                       struct drm_display_mode *adjusted_mode,
5474                                       intel_clock_t *clock, u32 fp)
5475 {
5476         struct drm_crtc *crtc = &intel_crtc->base;
5477         struct drm_device *dev = crtc->dev;
5478         struct drm_i915_private *dev_priv = dev->dev_private;
5479         struct intel_encoder *intel_encoder;
5480         uint32_t dpll;
5481         int factor, pixel_multiplier, num_connectors = 0;
5482         bool is_lvds = false, is_sdvo = false, is_tv = false;
5483         bool is_dp = false, is_cpu_edp = false;
5484
5485         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5486                 switch (intel_encoder->type) {
5487                 case INTEL_OUTPUT_LVDS:
5488                         is_lvds = true;
5489                         break;
5490                 case INTEL_OUTPUT_SDVO:
5491                 case INTEL_OUTPUT_HDMI:
5492                         is_sdvo = true;
5493                         if (intel_encoder->needs_tv_clock)
5494                                 is_tv = true;
5495                         break;
5496                 case INTEL_OUTPUT_TVOUT:
5497                         is_tv = true;
5498                         break;
5499                 case INTEL_OUTPUT_DISPLAYPORT:
5500                         is_dp = true;
5501                         break;
5502                 case INTEL_OUTPUT_EDP:
5503                         is_dp = true;
5504                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5505                                 is_cpu_edp = true;
5506                         break;
5507                 }
5508
5509                 num_connectors++;
5510         }
5511
5512         /* Enable autotuning of the PLL clock (if permissible) */
5513         factor = 21;
5514         if (is_lvds) {
5515                 if ((intel_panel_use_ssc(dev_priv) &&
5516                      dev_priv->lvds_ssc_freq == 100) ||
5517                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5518                         factor = 25;
5519         } else if (is_sdvo && is_tv)
5520                 factor = 20;
5521
5522         if (clock->m < factor * clock->n)
5523                 fp |= FP_CB_TUNE;
5524
5525         dpll = 0;
5526
5527         if (is_lvds)
5528                 dpll |= DPLLB_MODE_LVDS;
5529         else
5530                 dpll |= DPLLB_MODE_DAC_SERIAL;
5531         if (is_sdvo) {
5532                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5533                 if (pixel_multiplier > 1) {
5534                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5535                 }
5536                 dpll |= DPLL_DVO_HIGH_SPEED;
5537         }
5538         if (is_dp && !is_cpu_edp)
5539                 dpll |= DPLL_DVO_HIGH_SPEED;
5540
5541         /* compute bitmask from p1 value */
5542         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5543         /* also FPA1 */
5544         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5545
5546         switch (clock->p2) {
5547         case 5:
5548                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5549                 break;
5550         case 7:
5551                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5552                 break;
5553         case 10:
5554                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5555                 break;
5556         case 14:
5557                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5558                 break;
5559         }
5560
5561         if (is_sdvo && is_tv)
5562                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5563         else if (is_tv)
5564                 /* XXX: just matching BIOS for now */
5565                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5566                 dpll |= 3;
5567         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5568                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5569         else
5570                 dpll |= PLL_REF_INPUT_DREFCLK;
5571
5572         return dpll;
5573 }
5574
5575 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5576                                   struct drm_display_mode *mode,
5577                                   struct drm_display_mode *adjusted_mode,
5578                                   int x, int y,
5579                                   struct drm_framebuffer *fb)
5580 {
5581         struct drm_device *dev = crtc->dev;
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5584         int pipe = intel_crtc->pipe;
5585         int plane = intel_crtc->plane;
5586         int num_connectors = 0;
5587         intel_clock_t clock, reduced_clock;
5588         u32 dpll, fp = 0, fp2 = 0;
5589         bool ok, has_reduced_clock = false;
5590         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5591         struct intel_encoder *encoder;
5592         u32 temp;
5593         int ret;
5594         bool dither, fdi_config_ok;
5595
5596         for_each_encoder_on_crtc(dev, crtc, encoder) {
5597                 switch (encoder->type) {
5598                 case INTEL_OUTPUT_LVDS:
5599                         is_lvds = true;
5600                         break;
5601                 case INTEL_OUTPUT_DISPLAYPORT:
5602                         is_dp = true;
5603                         break;
5604                 case INTEL_OUTPUT_EDP:
5605                         is_dp = true;
5606                         if (!intel_encoder_is_pch_edp(&encoder->base))
5607                                 is_cpu_edp = true;
5608                         break;
5609                 }
5610
5611                 num_connectors++;
5612         }
5613
5614         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5615              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5616
5617         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5618                                      &has_reduced_clock, &reduced_clock);
5619         if (!ok) {
5620                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5621                 return -EINVAL;
5622         }
5623
5624         /* Ensure that the cursor is valid for the new mode before changing... */
5625         intel_crtc_update_cursor(crtc, true);
5626
5627         /* determine panel color depth */
5628         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5629                                               adjusted_mode);
5630         if (is_lvds && dev_priv->lvds_dither)
5631                 dither = true;
5632
5633         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5634         if (has_reduced_clock)
5635                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5636                         reduced_clock.m2;
5637
5638         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5639
5640         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5641         drm_mode_debug_printmodeline(mode);
5642
5643         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5644         if (!is_cpu_edp) {
5645                 struct intel_pch_pll *pll;
5646
5647                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5648                 if (pll == NULL) {
5649                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5650                                          pipe);
5651                         return -EINVAL;
5652                 }
5653         } else
5654                 intel_put_pch_pll(intel_crtc);
5655
5656         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5657          * This is an exception to the general rule that mode_set doesn't turn
5658          * things on.
5659          */
5660         if (is_lvds) {
5661                 temp = I915_READ(PCH_LVDS);
5662                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5663                 if (HAS_PCH_CPT(dev)) {
5664                         temp &= ~PORT_TRANS_SEL_MASK;
5665                         temp |= PORT_TRANS_SEL_CPT(pipe);
5666                 } else {
5667                         if (pipe == 1)
5668                                 temp |= LVDS_PIPEB_SELECT;
5669                         else
5670                                 temp &= ~LVDS_PIPEB_SELECT;
5671                 }
5672
5673                 /* set the corresponsding LVDS_BORDER bit */
5674                 temp |= dev_priv->lvds_border_bits;
5675                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5676                  * set the DPLLs for dual-channel mode or not.
5677                  */
5678                 if (clock.p2 == 7)
5679                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5680                 else
5681                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5682
5683                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5684                  * appropriately here, but we need to look more thoroughly into how
5685                  * panels behave in the two modes.
5686                  */
5687                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5688                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5689                         temp |= LVDS_HSYNC_POLARITY;
5690                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5691                         temp |= LVDS_VSYNC_POLARITY;
5692                 I915_WRITE(PCH_LVDS, temp);
5693         }
5694
5695         if (is_dp && !is_cpu_edp) {
5696                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5697         } else {
5698                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5699                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5700                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5701                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5702                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5703         }
5704
5705         if (intel_crtc->pch_pll) {
5706                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5707
5708                 /* Wait for the clocks to stabilize. */
5709                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5710                 udelay(150);
5711
5712                 /* The pixel multiplier can only be updated once the
5713                  * DPLL is enabled and the clocks are stable.
5714                  *
5715                  * So write it again.
5716                  */
5717                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5718         }
5719
5720         intel_crtc->lowfreq_avail = false;
5721         if (intel_crtc->pch_pll) {
5722                 if (is_lvds && has_reduced_clock && i915_powersave) {
5723                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5724                         intel_crtc->lowfreq_avail = true;
5725                 } else {
5726                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5727                 }
5728         }
5729
5730         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5731
5732         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5733          * ironlake_check_fdi_lanes. */
5734         ironlake_set_m_n(crtc, mode, adjusted_mode);
5735
5736         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5737
5738         if (is_cpu_edp)
5739                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5740
5741         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5742
5743         intel_wait_for_vblank(dev, pipe);
5744
5745         /* Set up the display plane register */
5746         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5747         POSTING_READ(DSPCNTR(plane));
5748
5749         ret = intel_pipe_set_base(crtc, x, y, fb);
5750
5751         intel_update_watermarks(dev);
5752
5753         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5754
5755         return fdi_config_ok ? ret : -EINVAL;
5756 }
5757
5758 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5759                                  struct drm_display_mode *mode,
5760                                  struct drm_display_mode *adjusted_mode,
5761                                  int x, int y,
5762                                  struct drm_framebuffer *fb)
5763 {
5764         struct drm_device *dev = crtc->dev;
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5767         int pipe = intel_crtc->pipe;
5768         int plane = intel_crtc->plane;
5769         int num_connectors = 0;
5770         intel_clock_t clock, reduced_clock;
5771         u32 dpll = 0, fp = 0, fp2 = 0;
5772         bool ok, has_reduced_clock = false;
5773         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5774         struct intel_encoder *encoder;
5775         u32 temp;
5776         int ret;
5777         bool dither;
5778
5779         for_each_encoder_on_crtc(dev, crtc, encoder) {
5780                 switch (encoder->type) {
5781                 case INTEL_OUTPUT_LVDS:
5782                         is_lvds = true;
5783                         break;
5784                 case INTEL_OUTPUT_DISPLAYPORT:
5785                         is_dp = true;
5786                         break;
5787                 case INTEL_OUTPUT_EDP:
5788                         is_dp = true;
5789                         if (!intel_encoder_is_pch_edp(&encoder->base))
5790                                 is_cpu_edp = true;
5791                         break;
5792                 }
5793
5794                 num_connectors++;
5795         }
5796
5797         if (is_cpu_edp)
5798                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5799         else
5800                 intel_crtc->cpu_transcoder = pipe;
5801
5802         /* We are not sure yet this won't happen. */
5803         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5804              INTEL_PCH_TYPE(dev));
5805
5806         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5807              num_connectors, pipe_name(pipe));
5808
5809         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5810                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5811
5812         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5813
5814         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5815                 return -EINVAL;
5816
5817         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5818                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5819                                              &has_reduced_clock,
5820                                              &reduced_clock);
5821                 if (!ok) {
5822                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5823                         return -EINVAL;
5824                 }
5825         }
5826
5827         /* Ensure that the cursor is valid for the new mode before changing... */
5828         intel_crtc_update_cursor(crtc, true);
5829
5830         /* determine panel color depth */
5831         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5832                                               adjusted_mode);
5833         if (is_lvds && dev_priv->lvds_dither)
5834                 dither = true;
5835
5836         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5837         drm_mode_debug_printmodeline(mode);
5838
5839         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5840                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5841                 if (has_reduced_clock)
5842                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5843                               reduced_clock.m2;
5844
5845                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5846                                              fp);
5847
5848                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5849                  * own on pre-Haswell/LPT generation */
5850                 if (!is_cpu_edp) {
5851                         struct intel_pch_pll *pll;
5852
5853                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5854                         if (pll == NULL) {
5855                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5856                                                  pipe);
5857                                 return -EINVAL;
5858                         }
5859                 } else
5860                         intel_put_pch_pll(intel_crtc);
5861
5862                 /* The LVDS pin pair needs to be on before the DPLLs are
5863                  * enabled.  This is an exception to the general rule that
5864                  * mode_set doesn't turn things on.
5865                  */
5866                 if (is_lvds) {
5867                         temp = I915_READ(PCH_LVDS);
5868                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5869                         if (HAS_PCH_CPT(dev)) {
5870                                 temp &= ~PORT_TRANS_SEL_MASK;
5871                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5872                         } else {
5873                                 if (pipe == 1)
5874                                         temp |= LVDS_PIPEB_SELECT;
5875                                 else
5876                                         temp &= ~LVDS_PIPEB_SELECT;
5877                         }
5878
5879                         /* set the corresponsding LVDS_BORDER bit */
5880                         temp |= dev_priv->lvds_border_bits;
5881                         /* Set the B0-B3 data pairs corresponding to whether
5882                          * we're going to set the DPLLs for dual-channel mode or
5883                          * not.
5884                          */
5885                         if (clock.p2 == 7)
5886                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5887                         else
5888                                 temp &= ~(LVDS_B0B3_POWER_UP |
5889                                           LVDS_CLKB_POWER_UP);
5890
5891                         /* It would be nice to set 24 vs 18-bit mode
5892                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5893                          * look more thoroughly into how panels behave in the
5894                          * two modes.
5895                          */
5896                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5897                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5898                                 temp |= LVDS_HSYNC_POLARITY;
5899                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5900                                 temp |= LVDS_VSYNC_POLARITY;
5901                         I915_WRITE(PCH_LVDS, temp);
5902                 }
5903         }
5904
5905         if (is_dp && !is_cpu_edp) {
5906                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5907         } else {
5908                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5909                         /* For non-DP output, clear any trans DP clock recovery
5910                          * setting.*/
5911                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5912                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5913                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5914                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5915                 }
5916         }
5917
5918         intel_crtc->lowfreq_avail = false;
5919         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5920                 if (intel_crtc->pch_pll) {
5921                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5922
5923                         /* Wait for the clocks to stabilize. */
5924                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5925                         udelay(150);
5926
5927                         /* The pixel multiplier can only be updated once the
5928                          * DPLL is enabled and the clocks are stable.
5929                          *
5930                          * So write it again.
5931                          */
5932                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5933                 }
5934
5935                 if (intel_crtc->pch_pll) {
5936                         if (is_lvds && has_reduced_clock && i915_powersave) {
5937                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5938                                 intel_crtc->lowfreq_avail = true;
5939                         } else {
5940                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5941                         }
5942                 }
5943         }
5944
5945         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5946
5947         if (!is_dp || is_cpu_edp)
5948                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5949
5950         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5951                 if (is_cpu_edp)
5952                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5953
5954         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5955
5956         /* Set up the display plane register */
5957         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5958         POSTING_READ(DSPCNTR(plane));
5959
5960         ret = intel_pipe_set_base(crtc, x, y, fb);
5961
5962         intel_update_watermarks(dev);
5963
5964         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5965
5966         return ret;
5967 }
5968
5969 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5970                                struct drm_display_mode *mode,
5971                                struct drm_display_mode *adjusted_mode,
5972                                int x, int y,
5973                                struct drm_framebuffer *fb)
5974 {
5975         struct drm_device *dev = crtc->dev;
5976         struct drm_i915_private *dev_priv = dev->dev_private;
5977         struct drm_encoder_helper_funcs *encoder_funcs;
5978         struct intel_encoder *encoder;
5979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5980         int pipe = intel_crtc->pipe;
5981         int ret;
5982
5983         drm_vblank_pre_modeset(dev, pipe);
5984
5985         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5986                                               x, y, fb);
5987         drm_vblank_post_modeset(dev, pipe);
5988
5989         if (ret != 0)
5990                 return ret;
5991
5992         for_each_encoder_on_crtc(dev, crtc, encoder) {
5993                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5994                         encoder->base.base.id,
5995                         drm_get_encoder_name(&encoder->base),
5996                         mode->base.id, mode->name);
5997                 encoder_funcs = encoder->base.helper_private;
5998                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5999         }
6000
6001         return 0;
6002 }
6003
6004 static bool intel_eld_uptodate(struct drm_connector *connector,
6005                                int reg_eldv, uint32_t bits_eldv,
6006                                int reg_elda, uint32_t bits_elda,
6007                                int reg_edid)
6008 {
6009         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6010         uint8_t *eld = connector->eld;
6011         uint32_t i;
6012
6013         i = I915_READ(reg_eldv);
6014         i &= bits_eldv;
6015
6016         if (!eld[0])
6017                 return !i;
6018
6019         if (!i)
6020                 return false;
6021
6022         i = I915_READ(reg_elda);
6023         i &= ~bits_elda;
6024         I915_WRITE(reg_elda, i);
6025
6026         for (i = 0; i < eld[2]; i++)
6027                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6028                         return false;
6029
6030         return true;
6031 }
6032
6033 static void g4x_write_eld(struct drm_connector *connector,
6034                           struct drm_crtc *crtc)
6035 {
6036         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6037         uint8_t *eld = connector->eld;
6038         uint32_t eldv;
6039         uint32_t len;
6040         uint32_t i;
6041
6042         i = I915_READ(G4X_AUD_VID_DID);
6043
6044         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6045                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6046         else
6047                 eldv = G4X_ELDV_DEVCTG;
6048
6049         if (intel_eld_uptodate(connector,
6050                                G4X_AUD_CNTL_ST, eldv,
6051                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6052                                G4X_HDMIW_HDMIEDID))
6053                 return;
6054
6055         i = I915_READ(G4X_AUD_CNTL_ST);
6056         i &= ~(eldv | G4X_ELD_ADDR);
6057         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6058         I915_WRITE(G4X_AUD_CNTL_ST, i);
6059
6060         if (!eld[0])
6061                 return;
6062
6063         len = min_t(uint8_t, eld[2], len);
6064         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6065         for (i = 0; i < len; i++)
6066                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6067
6068         i = I915_READ(G4X_AUD_CNTL_ST);
6069         i |= eldv;
6070         I915_WRITE(G4X_AUD_CNTL_ST, i);
6071 }
6072
6073 static void haswell_write_eld(struct drm_connector *connector,
6074                                      struct drm_crtc *crtc)
6075 {
6076         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6077         uint8_t *eld = connector->eld;
6078         struct drm_device *dev = crtc->dev;
6079         uint32_t eldv;
6080         uint32_t i;
6081         int len;
6082         int pipe = to_intel_crtc(crtc)->pipe;
6083         int tmp;
6084
6085         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6086         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6087         int aud_config = HSW_AUD_CFG(pipe);
6088         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6089
6090
6091         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6092
6093         /* Audio output enable */
6094         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6095         tmp = I915_READ(aud_cntrl_st2);
6096         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6097         I915_WRITE(aud_cntrl_st2, tmp);
6098
6099         /* Wait for 1 vertical blank */
6100         intel_wait_for_vblank(dev, pipe);
6101
6102         /* Set ELD valid state */
6103         tmp = I915_READ(aud_cntrl_st2);
6104         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6105         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6106         I915_WRITE(aud_cntrl_st2, tmp);
6107         tmp = I915_READ(aud_cntrl_st2);
6108         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6109
6110         /* Enable HDMI mode */
6111         tmp = I915_READ(aud_config);
6112         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6113         /* clear N_programing_enable and N_value_index */
6114         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6115         I915_WRITE(aud_config, tmp);
6116
6117         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6118
6119         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6120
6121         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6122                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6123                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6124                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6125         } else
6126                 I915_WRITE(aud_config, 0);
6127
6128         if (intel_eld_uptodate(connector,
6129                                aud_cntrl_st2, eldv,
6130                                aud_cntl_st, IBX_ELD_ADDRESS,
6131                                hdmiw_hdmiedid))
6132                 return;
6133
6134         i = I915_READ(aud_cntrl_st2);
6135         i &= ~eldv;
6136         I915_WRITE(aud_cntrl_st2, i);
6137
6138         if (!eld[0])
6139                 return;
6140
6141         i = I915_READ(aud_cntl_st);
6142         i &= ~IBX_ELD_ADDRESS;
6143         I915_WRITE(aud_cntl_st, i);
6144         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6145         DRM_DEBUG_DRIVER("port num:%d\n", i);
6146
6147         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6148         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6149         for (i = 0; i < len; i++)
6150                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6151
6152         i = I915_READ(aud_cntrl_st2);
6153         i |= eldv;
6154         I915_WRITE(aud_cntrl_st2, i);
6155
6156 }
6157
6158 static void ironlake_write_eld(struct drm_connector *connector,
6159                                      struct drm_crtc *crtc)
6160 {
6161         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6162         uint8_t *eld = connector->eld;
6163         uint32_t eldv;
6164         uint32_t i;
6165         int len;
6166         int hdmiw_hdmiedid;
6167         int aud_config;
6168         int aud_cntl_st;
6169         int aud_cntrl_st2;
6170         int pipe = to_intel_crtc(crtc)->pipe;
6171
6172         if (HAS_PCH_IBX(connector->dev)) {
6173                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6174                 aud_config = IBX_AUD_CFG(pipe);
6175                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6176                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6177         } else {
6178                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6179                 aud_config = CPT_AUD_CFG(pipe);
6180                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6181                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6182         }
6183
6184         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6185
6186         i = I915_READ(aud_cntl_st);
6187         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6188         if (!i) {
6189                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6190                 /* operate blindly on all ports */
6191                 eldv = IBX_ELD_VALIDB;
6192                 eldv |= IBX_ELD_VALIDB << 4;
6193                 eldv |= IBX_ELD_VALIDB << 8;
6194         } else {
6195                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6196                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6197         }
6198
6199         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6200                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6201                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6202                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6203         } else
6204                 I915_WRITE(aud_config, 0);
6205
6206         if (intel_eld_uptodate(connector,
6207                                aud_cntrl_st2, eldv,
6208                                aud_cntl_st, IBX_ELD_ADDRESS,
6209                                hdmiw_hdmiedid))
6210                 return;
6211
6212         i = I915_READ(aud_cntrl_st2);
6213         i &= ~eldv;
6214         I915_WRITE(aud_cntrl_st2, i);
6215
6216         if (!eld[0])
6217                 return;
6218
6219         i = I915_READ(aud_cntl_st);
6220         i &= ~IBX_ELD_ADDRESS;
6221         I915_WRITE(aud_cntl_st, i);
6222
6223         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6224         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6225         for (i = 0; i < len; i++)
6226                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6227
6228         i = I915_READ(aud_cntrl_st2);
6229         i |= eldv;
6230         I915_WRITE(aud_cntrl_st2, i);
6231 }
6232
6233 void intel_write_eld(struct drm_encoder *encoder,
6234                      struct drm_display_mode *mode)
6235 {
6236         struct drm_crtc *crtc = encoder->crtc;
6237         struct drm_connector *connector;
6238         struct drm_device *dev = encoder->dev;
6239         struct drm_i915_private *dev_priv = dev->dev_private;
6240
6241         connector = drm_select_eld(encoder, mode);
6242         if (!connector)
6243                 return;
6244
6245         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6246                          connector->base.id,
6247                          drm_get_connector_name(connector),
6248                          connector->encoder->base.id,
6249                          drm_get_encoder_name(connector->encoder));
6250
6251         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6252
6253         if (dev_priv->display.write_eld)
6254                 dev_priv->display.write_eld(connector, crtc);
6255 }
6256
6257 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6258 void intel_crtc_load_lut(struct drm_crtc *crtc)
6259 {
6260         struct drm_device *dev = crtc->dev;
6261         struct drm_i915_private *dev_priv = dev->dev_private;
6262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263         int palreg = PALETTE(intel_crtc->pipe);
6264         int i;
6265
6266         /* The clocks have to be on to load the palette. */
6267         if (!crtc->enabled || !intel_crtc->active)
6268                 return;
6269
6270         /* use legacy palette for Ironlake */
6271         if (HAS_PCH_SPLIT(dev))
6272                 palreg = LGC_PALETTE(intel_crtc->pipe);
6273
6274         for (i = 0; i < 256; i++) {
6275                 I915_WRITE(palreg + 4 * i,
6276                            (intel_crtc->lut_r[i] << 16) |
6277                            (intel_crtc->lut_g[i] << 8) |
6278                            intel_crtc->lut_b[i]);
6279         }
6280 }
6281
6282 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6283 {
6284         struct drm_device *dev = crtc->dev;
6285         struct drm_i915_private *dev_priv = dev->dev_private;
6286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6287         bool visible = base != 0;
6288         u32 cntl;
6289
6290         if (intel_crtc->cursor_visible == visible)
6291                 return;
6292
6293         cntl = I915_READ(_CURACNTR);
6294         if (visible) {
6295                 /* On these chipsets we can only modify the base whilst
6296                  * the cursor is disabled.
6297                  */
6298                 I915_WRITE(_CURABASE, base);
6299
6300                 cntl &= ~(CURSOR_FORMAT_MASK);
6301                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6302                 cntl |= CURSOR_ENABLE |
6303                         CURSOR_GAMMA_ENABLE |
6304                         CURSOR_FORMAT_ARGB;
6305         } else
6306                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6307         I915_WRITE(_CURACNTR, cntl);
6308
6309         intel_crtc->cursor_visible = visible;
6310 }
6311
6312 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6313 {
6314         struct drm_device *dev = crtc->dev;
6315         struct drm_i915_private *dev_priv = dev->dev_private;
6316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317         int pipe = intel_crtc->pipe;
6318         bool visible = base != 0;
6319
6320         if (intel_crtc->cursor_visible != visible) {
6321                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6322                 if (base) {
6323                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6324                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6325                         cntl |= pipe << 28; /* Connect to correct pipe */
6326                 } else {
6327                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6328                         cntl |= CURSOR_MODE_DISABLE;
6329                 }
6330                 I915_WRITE(CURCNTR(pipe), cntl);
6331
6332                 intel_crtc->cursor_visible = visible;
6333         }
6334         /* and commit changes on next vblank */
6335         I915_WRITE(CURBASE(pipe), base);
6336 }
6337
6338 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6339 {
6340         struct drm_device *dev = crtc->dev;
6341         struct drm_i915_private *dev_priv = dev->dev_private;
6342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6343         int pipe = intel_crtc->pipe;
6344         bool visible = base != 0;
6345
6346         if (intel_crtc->cursor_visible != visible) {
6347                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6348                 if (base) {
6349                         cntl &= ~CURSOR_MODE;
6350                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6351                 } else {
6352                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6353                         cntl |= CURSOR_MODE_DISABLE;
6354                 }
6355                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6356
6357                 intel_crtc->cursor_visible = visible;
6358         }
6359         /* and commit changes on next vblank */
6360         I915_WRITE(CURBASE_IVB(pipe), base);
6361 }
6362
6363 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6364 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6365                                      bool on)
6366 {
6367         struct drm_device *dev = crtc->dev;
6368         struct drm_i915_private *dev_priv = dev->dev_private;
6369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6370         int pipe = intel_crtc->pipe;
6371         int x = intel_crtc->cursor_x;
6372         int y = intel_crtc->cursor_y;
6373         u32 base, pos;
6374         bool visible;
6375
6376         pos = 0;
6377
6378         if (on && crtc->enabled && crtc->fb) {
6379                 base = intel_crtc->cursor_addr;
6380                 if (x > (int) crtc->fb->width)
6381                         base = 0;
6382
6383                 if (y > (int) crtc->fb->height)
6384                         base = 0;
6385         } else
6386                 base = 0;
6387
6388         if (x < 0) {
6389                 if (x + intel_crtc->cursor_width < 0)
6390                         base = 0;
6391
6392                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6393                 x = -x;
6394         }
6395         pos |= x << CURSOR_X_SHIFT;
6396
6397         if (y < 0) {
6398                 if (y + intel_crtc->cursor_height < 0)
6399                         base = 0;
6400
6401                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6402                 y = -y;
6403         }
6404         pos |= y << CURSOR_Y_SHIFT;
6405
6406         visible = base != 0;
6407         if (!visible && !intel_crtc->cursor_visible)
6408                 return;
6409
6410         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6411                 I915_WRITE(CURPOS_IVB(pipe), pos);
6412                 ivb_update_cursor(crtc, base);
6413         } else {
6414                 I915_WRITE(CURPOS(pipe), pos);
6415                 if (IS_845G(dev) || IS_I865G(dev))
6416                         i845_update_cursor(crtc, base);
6417                 else
6418                         i9xx_update_cursor(crtc, base);
6419         }
6420 }
6421
6422 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6423                                  struct drm_file *file,
6424                                  uint32_t handle,
6425                                  uint32_t width, uint32_t height)
6426 {
6427         struct drm_device *dev = crtc->dev;
6428         struct drm_i915_private *dev_priv = dev->dev_private;
6429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6430         struct drm_i915_gem_object *obj;
6431         uint32_t addr;
6432         int ret;
6433
6434         /* if we want to turn off the cursor ignore width and height */
6435         if (!handle) {
6436                 DRM_DEBUG_KMS("cursor off\n");
6437                 addr = 0;
6438                 obj = NULL;
6439                 mutex_lock(&dev->struct_mutex);
6440                 goto finish;
6441         }
6442
6443         /* Currently we only support 64x64 cursors */
6444         if (width != 64 || height != 64) {
6445                 DRM_ERROR("we currently only support 64x64 cursors\n");
6446                 return -EINVAL;
6447         }
6448
6449         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6450         if (&obj->base == NULL)
6451                 return -ENOENT;
6452
6453         if (obj->base.size < width * height * 4) {
6454                 DRM_ERROR("buffer is to small\n");
6455                 ret = -ENOMEM;
6456                 goto fail;
6457         }
6458
6459         /* we only need to pin inside GTT if cursor is non-phy */
6460         mutex_lock(&dev->struct_mutex);
6461         if (!dev_priv->info->cursor_needs_physical) {
6462                 if (obj->tiling_mode) {
6463                         DRM_ERROR("cursor cannot be tiled\n");
6464                         ret = -EINVAL;
6465                         goto fail_locked;
6466                 }
6467
6468                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6469                 if (ret) {
6470                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6471                         goto fail_locked;
6472                 }
6473
6474                 ret = i915_gem_object_put_fence(obj);
6475                 if (ret) {
6476                         DRM_ERROR("failed to release fence for cursor");
6477                         goto fail_unpin;
6478                 }
6479
6480                 addr = obj->gtt_offset;
6481         } else {
6482                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6483                 ret = i915_gem_attach_phys_object(dev, obj,
6484                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6485                                                   align);
6486                 if (ret) {
6487                         DRM_ERROR("failed to attach phys object\n");
6488                         goto fail_locked;
6489                 }
6490                 addr = obj->phys_obj->handle->busaddr;
6491         }
6492
6493         if (IS_GEN2(dev))
6494                 I915_WRITE(CURSIZE, (height << 12) | width);
6495
6496  finish:
6497         if (intel_crtc->cursor_bo) {
6498                 if (dev_priv->info->cursor_needs_physical) {
6499                         if (intel_crtc->cursor_bo != obj)
6500                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6501                 } else
6502                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6503                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6504         }
6505
6506         mutex_unlock(&dev->struct_mutex);
6507
6508         intel_crtc->cursor_addr = addr;
6509         intel_crtc->cursor_bo = obj;
6510         intel_crtc->cursor_width = width;
6511         intel_crtc->cursor_height = height;
6512
6513         intel_crtc_update_cursor(crtc, true);
6514
6515         return 0;
6516 fail_unpin:
6517         i915_gem_object_unpin(obj);
6518 fail_locked:
6519         mutex_unlock(&dev->struct_mutex);
6520 fail:
6521         drm_gem_object_unreference_unlocked(&obj->base);
6522         return ret;
6523 }
6524
6525 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6526 {
6527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6528
6529         intel_crtc->cursor_x = x;
6530         intel_crtc->cursor_y = y;
6531
6532         intel_crtc_update_cursor(crtc, true);
6533
6534         return 0;
6535 }
6536
6537 /** Sets the color ramps on behalf of RandR */
6538 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6539                                  u16 blue, int regno)
6540 {
6541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6542
6543         intel_crtc->lut_r[regno] = red >> 8;
6544         intel_crtc->lut_g[regno] = green >> 8;
6545         intel_crtc->lut_b[regno] = blue >> 8;
6546 }
6547
6548 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6549                              u16 *blue, int regno)
6550 {
6551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6552
6553         *red = intel_crtc->lut_r[regno] << 8;
6554         *green = intel_crtc->lut_g[regno] << 8;
6555         *blue = intel_crtc->lut_b[regno] << 8;
6556 }
6557
6558 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6559                                  u16 *blue, uint32_t start, uint32_t size)
6560 {
6561         int end = (start + size > 256) ? 256 : start + size, i;
6562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6563
6564         for (i = start; i < end; i++) {
6565                 intel_crtc->lut_r[i] = red[i] >> 8;
6566                 intel_crtc->lut_g[i] = green[i] >> 8;
6567                 intel_crtc->lut_b[i] = blue[i] >> 8;
6568         }
6569
6570         intel_crtc_load_lut(crtc);
6571 }
6572
6573 /**
6574  * Get a pipe with a simple mode set on it for doing load-based monitor
6575  * detection.
6576  *
6577  * It will be up to the load-detect code to adjust the pipe as appropriate for
6578  * its requirements.  The pipe will be connected to no other encoders.
6579  *
6580  * Currently this code will only succeed if there is a pipe with no encoders
6581  * configured for it.  In the future, it could choose to temporarily disable
6582  * some outputs to free up a pipe for its use.
6583  *
6584  * \return crtc, or NULL if no pipes are available.
6585  */
6586
6587 /* VESA 640x480x72Hz mode to set on the pipe */
6588 static struct drm_display_mode load_detect_mode = {
6589         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6590                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6591 };
6592
6593 static struct drm_framebuffer *
6594 intel_framebuffer_create(struct drm_device *dev,
6595                          struct drm_mode_fb_cmd2 *mode_cmd,
6596                          struct drm_i915_gem_object *obj)
6597 {
6598         struct intel_framebuffer *intel_fb;
6599         int ret;
6600
6601         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6602         if (!intel_fb) {
6603                 drm_gem_object_unreference_unlocked(&obj->base);
6604                 return ERR_PTR(-ENOMEM);
6605         }
6606
6607         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6608         if (ret) {
6609                 drm_gem_object_unreference_unlocked(&obj->base);
6610                 kfree(intel_fb);
6611                 return ERR_PTR(ret);
6612         }
6613
6614         return &intel_fb->base;
6615 }
6616
6617 static u32
6618 intel_framebuffer_pitch_for_width(int width, int bpp)
6619 {
6620         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6621         return ALIGN(pitch, 64);
6622 }
6623
6624 static u32
6625 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6626 {
6627         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6628         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6629 }
6630
6631 static struct drm_framebuffer *
6632 intel_framebuffer_create_for_mode(struct drm_device *dev,
6633                                   struct drm_display_mode *mode,
6634                                   int depth, int bpp)
6635 {
6636         struct drm_i915_gem_object *obj;
6637         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6638
6639         obj = i915_gem_alloc_object(dev,
6640                                     intel_framebuffer_size_for_mode(mode, bpp));
6641         if (obj == NULL)
6642                 return ERR_PTR(-ENOMEM);
6643
6644         mode_cmd.width = mode->hdisplay;
6645         mode_cmd.height = mode->vdisplay;
6646         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6647                                                                 bpp);
6648         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6649
6650         return intel_framebuffer_create(dev, &mode_cmd, obj);
6651 }
6652
6653 static struct drm_framebuffer *
6654 mode_fits_in_fbdev(struct drm_device *dev,
6655                    struct drm_display_mode *mode)
6656 {
6657         struct drm_i915_private *dev_priv = dev->dev_private;
6658         struct drm_i915_gem_object *obj;
6659         struct drm_framebuffer *fb;
6660
6661         if (dev_priv->fbdev == NULL)
6662                 return NULL;
6663
6664         obj = dev_priv->fbdev->ifb.obj;
6665         if (obj == NULL)
6666                 return NULL;
6667
6668         fb = &dev_priv->fbdev->ifb.base;
6669         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6670                                                                fb->bits_per_pixel))
6671                 return NULL;
6672
6673         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6674                 return NULL;
6675
6676         return fb;
6677 }
6678
6679 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6680                                 struct drm_display_mode *mode,
6681                                 struct intel_load_detect_pipe *old)
6682 {
6683         struct intel_crtc *intel_crtc;
6684         struct intel_encoder *intel_encoder =
6685                 intel_attached_encoder(connector);
6686         struct drm_crtc *possible_crtc;
6687         struct drm_encoder *encoder = &intel_encoder->base;
6688         struct drm_crtc *crtc = NULL;
6689         struct drm_device *dev = encoder->dev;
6690         struct drm_framebuffer *fb;
6691         int i = -1;
6692
6693         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6694                       connector->base.id, drm_get_connector_name(connector),
6695                       encoder->base.id, drm_get_encoder_name(encoder));
6696
6697         /*
6698          * Algorithm gets a little messy:
6699          *
6700          *   - if the connector already has an assigned crtc, use it (but make
6701          *     sure it's on first)
6702          *
6703          *   - try to find the first unused crtc that can drive this connector,
6704          *     and use that if we find one
6705          */
6706
6707         /* See if we already have a CRTC for this connector */
6708         if (encoder->crtc) {
6709                 crtc = encoder->crtc;
6710
6711                 old->dpms_mode = connector->dpms;
6712                 old->load_detect_temp = false;
6713
6714                 /* Make sure the crtc and connector are running */
6715                 if (connector->dpms != DRM_MODE_DPMS_ON)
6716                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6717
6718                 return true;
6719         }
6720
6721         /* Find an unused one (if possible) */
6722         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6723                 i++;
6724                 if (!(encoder->possible_crtcs & (1 << i)))
6725                         continue;
6726                 if (!possible_crtc->enabled) {
6727                         crtc = possible_crtc;
6728                         break;
6729                 }
6730         }
6731
6732         /*
6733          * If we didn't find an unused CRTC, don't use any.
6734          */
6735         if (!crtc) {
6736                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6737                 return false;
6738         }
6739
6740         intel_encoder->new_crtc = to_intel_crtc(crtc);
6741         to_intel_connector(connector)->new_encoder = intel_encoder;
6742
6743         intel_crtc = to_intel_crtc(crtc);
6744         old->dpms_mode = connector->dpms;
6745         old->load_detect_temp = true;
6746         old->release_fb = NULL;
6747
6748         if (!mode)
6749                 mode = &load_detect_mode;
6750
6751         /* We need a framebuffer large enough to accommodate all accesses
6752          * that the plane may generate whilst we perform load detection.
6753          * We can not rely on the fbcon either being present (we get called
6754          * during its initialisation to detect all boot displays, or it may
6755          * not even exist) or that it is large enough to satisfy the
6756          * requested mode.
6757          */
6758         fb = mode_fits_in_fbdev(dev, mode);
6759         if (fb == NULL) {
6760                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6761                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6762                 old->release_fb = fb;
6763         } else
6764                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6765         if (IS_ERR(fb)) {
6766                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6767                 return false;
6768         }
6769
6770         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6771                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6772                 if (old->release_fb)
6773                         old->release_fb->funcs->destroy(old->release_fb);
6774                 return false;
6775         }
6776
6777         /* let the connector get through one full cycle before testing */
6778         intel_wait_for_vblank(dev, intel_crtc->pipe);
6779         return true;
6780 }
6781
6782 void intel_release_load_detect_pipe(struct drm_connector *connector,
6783                                     struct intel_load_detect_pipe *old)
6784 {
6785         struct intel_encoder *intel_encoder =
6786                 intel_attached_encoder(connector);
6787         struct drm_encoder *encoder = &intel_encoder->base;
6788
6789         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6790                       connector->base.id, drm_get_connector_name(connector),
6791                       encoder->base.id, drm_get_encoder_name(encoder));
6792
6793         if (old->load_detect_temp) {
6794                 struct drm_crtc *crtc = encoder->crtc;
6795
6796                 to_intel_connector(connector)->new_encoder = NULL;
6797                 intel_encoder->new_crtc = NULL;
6798                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6799
6800                 if (old->release_fb)
6801                         old->release_fb->funcs->destroy(old->release_fb);
6802
6803                 return;
6804         }
6805
6806         /* Switch crtc and encoder back off if necessary */
6807         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6808                 connector->funcs->dpms(connector, old->dpms_mode);
6809 }
6810
6811 /* Returns the clock of the currently programmed mode of the given pipe. */
6812 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6813 {
6814         struct drm_i915_private *dev_priv = dev->dev_private;
6815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816         int pipe = intel_crtc->pipe;
6817         u32 dpll = I915_READ(DPLL(pipe));
6818         u32 fp;
6819         intel_clock_t clock;
6820
6821         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6822                 fp = I915_READ(FP0(pipe));
6823         else
6824                 fp = I915_READ(FP1(pipe));
6825
6826         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6827         if (IS_PINEVIEW(dev)) {
6828                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6829                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6830         } else {
6831                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6832                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6833         }
6834
6835         if (!IS_GEN2(dev)) {
6836                 if (IS_PINEVIEW(dev))
6837                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6838                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6839                 else
6840                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6841                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6842
6843                 switch (dpll & DPLL_MODE_MASK) {
6844                 case DPLLB_MODE_DAC_SERIAL:
6845                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6846                                 5 : 10;
6847                         break;
6848                 case DPLLB_MODE_LVDS:
6849                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6850                                 7 : 14;
6851                         break;
6852                 default:
6853                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6854                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6855                         return 0;
6856                 }
6857
6858                 /* XXX: Handle the 100Mhz refclk */
6859                 intel_clock(dev, 96000, &clock);
6860         } else {
6861                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6862
6863                 if (is_lvds) {
6864                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6865                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6866                         clock.p2 = 14;
6867
6868                         if ((dpll & PLL_REF_INPUT_MASK) ==
6869                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6870                                 /* XXX: might not be 66MHz */
6871                                 intel_clock(dev, 66000, &clock);
6872                         } else
6873                                 intel_clock(dev, 48000, &clock);
6874                 } else {
6875                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6876                                 clock.p1 = 2;
6877                         else {
6878                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6879                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6880                         }
6881                         if (dpll & PLL_P2_DIVIDE_BY_4)
6882                                 clock.p2 = 4;
6883                         else
6884                                 clock.p2 = 2;
6885
6886                         intel_clock(dev, 48000, &clock);
6887                 }
6888         }
6889
6890         /* XXX: It would be nice to validate the clocks, but we can't reuse
6891          * i830PllIsValid() because it relies on the xf86_config connector
6892          * configuration being accurate, which it isn't necessarily.
6893          */
6894
6895         return clock.dot;
6896 }
6897
6898 /** Returns the currently programmed mode of the given pipe. */
6899 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6900                                              struct drm_crtc *crtc)
6901 {
6902         struct drm_i915_private *dev_priv = dev->dev_private;
6903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6904         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6905         struct drm_display_mode *mode;
6906         int htot = I915_READ(HTOTAL(cpu_transcoder));
6907         int hsync = I915_READ(HSYNC(cpu_transcoder));
6908         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6909         int vsync = I915_READ(VSYNC(cpu_transcoder));
6910
6911         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6912         if (!mode)
6913                 return NULL;
6914
6915         mode->clock = intel_crtc_clock_get(dev, crtc);
6916         mode->hdisplay = (htot & 0xffff) + 1;
6917         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6918         mode->hsync_start = (hsync & 0xffff) + 1;
6919         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6920         mode->vdisplay = (vtot & 0xffff) + 1;
6921         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6922         mode->vsync_start = (vsync & 0xffff) + 1;
6923         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6924
6925         drm_mode_set_name(mode);
6926
6927         return mode;
6928 }
6929
6930 static void intel_increase_pllclock(struct drm_crtc *crtc)
6931 {
6932         struct drm_device *dev = crtc->dev;
6933         drm_i915_private_t *dev_priv = dev->dev_private;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         int pipe = intel_crtc->pipe;
6936         int dpll_reg = DPLL(pipe);
6937         int dpll;
6938
6939         if (HAS_PCH_SPLIT(dev))
6940                 return;
6941
6942         if (!dev_priv->lvds_downclock_avail)
6943                 return;
6944
6945         dpll = I915_READ(dpll_reg);
6946         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6947                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6948
6949                 assert_panel_unlocked(dev_priv, pipe);
6950
6951                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6952                 I915_WRITE(dpll_reg, dpll);
6953                 intel_wait_for_vblank(dev, pipe);
6954
6955                 dpll = I915_READ(dpll_reg);
6956                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6957                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6958         }
6959 }
6960
6961 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6962 {
6963         struct drm_device *dev = crtc->dev;
6964         drm_i915_private_t *dev_priv = dev->dev_private;
6965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6966
6967         if (HAS_PCH_SPLIT(dev))
6968                 return;
6969
6970         if (!dev_priv->lvds_downclock_avail)
6971                 return;
6972
6973         /*
6974          * Since this is called by a timer, we should never get here in
6975          * the manual case.
6976          */
6977         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6978                 int pipe = intel_crtc->pipe;
6979                 int dpll_reg = DPLL(pipe);
6980                 int dpll;
6981
6982                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6983
6984                 assert_panel_unlocked(dev_priv, pipe);
6985
6986                 dpll = I915_READ(dpll_reg);
6987                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6988                 I915_WRITE(dpll_reg, dpll);
6989                 intel_wait_for_vblank(dev, pipe);
6990                 dpll = I915_READ(dpll_reg);
6991                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6992                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6993         }
6994
6995 }
6996
6997 void intel_mark_busy(struct drm_device *dev)
6998 {
6999         i915_update_gfx_val(dev->dev_private);
7000 }
7001
7002 void intel_mark_idle(struct drm_device *dev)
7003 {
7004         struct drm_crtc *crtc;
7005
7006         if (!i915_powersave)
7007                 return;
7008
7009         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7010                 if (!crtc->fb)
7011                         continue;
7012
7013                 intel_decrease_pllclock(crtc);
7014         }
7015 }
7016
7017 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7018 {
7019         struct drm_device *dev = obj->base.dev;
7020         struct drm_crtc *crtc;
7021
7022         if (!i915_powersave)
7023                 return;
7024
7025         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7026                 if (!crtc->fb)
7027                         continue;
7028
7029                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7030                         intel_increase_pllclock(crtc);
7031         }
7032 }
7033
7034 static void intel_crtc_destroy(struct drm_crtc *crtc)
7035 {
7036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7037         struct drm_device *dev = crtc->dev;
7038         struct intel_unpin_work *work;
7039         unsigned long flags;
7040
7041         spin_lock_irqsave(&dev->event_lock, flags);
7042         work = intel_crtc->unpin_work;
7043         intel_crtc->unpin_work = NULL;
7044         spin_unlock_irqrestore(&dev->event_lock, flags);
7045
7046         if (work) {
7047                 cancel_work_sync(&work->work);
7048                 kfree(work);
7049         }
7050
7051         drm_crtc_cleanup(crtc);
7052
7053         kfree(intel_crtc);
7054 }
7055
7056 static void intel_unpin_work_fn(struct work_struct *__work)
7057 {
7058         struct intel_unpin_work *work =
7059                 container_of(__work, struct intel_unpin_work, work);
7060         struct drm_device *dev = work->crtc->dev;
7061
7062         mutex_lock(&dev->struct_mutex);
7063         intel_unpin_fb_obj(work->old_fb_obj);
7064         drm_gem_object_unreference(&work->pending_flip_obj->base);
7065         drm_gem_object_unreference(&work->old_fb_obj->base);
7066
7067         intel_update_fbc(dev);
7068         mutex_unlock(&dev->struct_mutex);
7069
7070         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7071         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7072
7073         kfree(work);
7074 }
7075
7076 static void do_intel_finish_page_flip(struct drm_device *dev,
7077                                       struct drm_crtc *crtc)
7078 {
7079         drm_i915_private_t *dev_priv = dev->dev_private;
7080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7081         struct intel_unpin_work *work;
7082         struct drm_i915_gem_object *obj;
7083         unsigned long flags;
7084
7085         /* Ignore early vblank irqs */
7086         if (intel_crtc == NULL)
7087                 return;
7088
7089         spin_lock_irqsave(&dev->event_lock, flags);
7090         work = intel_crtc->unpin_work;
7091
7092         /* Ensure we don't miss a work->pending update ... */
7093         smp_rmb();
7094
7095         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7096                 spin_unlock_irqrestore(&dev->event_lock, flags);
7097                 return;
7098         }
7099
7100         /* and that the unpin work is consistent wrt ->pending. */
7101         smp_rmb();
7102
7103         intel_crtc->unpin_work = NULL;
7104
7105         if (work->event)
7106                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7107
7108         drm_vblank_put(dev, intel_crtc->pipe);
7109
7110         spin_unlock_irqrestore(&dev->event_lock, flags);
7111
7112         obj = work->old_fb_obj;
7113
7114         atomic_clear_mask(1 << intel_crtc->plane,
7115                           &obj->pending_flip.counter);
7116         wake_up(&dev_priv->pending_flip_queue);
7117
7118         queue_work(dev_priv->wq, &work->work);
7119
7120         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7121 }
7122
7123 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7124 {
7125         drm_i915_private_t *dev_priv = dev->dev_private;
7126         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7127
7128         do_intel_finish_page_flip(dev, crtc);
7129 }
7130
7131 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7132 {
7133         drm_i915_private_t *dev_priv = dev->dev_private;
7134         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7135
7136         do_intel_finish_page_flip(dev, crtc);
7137 }
7138
7139 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7140 {
7141         drm_i915_private_t *dev_priv = dev->dev_private;
7142         struct intel_crtc *intel_crtc =
7143                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7144         unsigned long flags;
7145
7146         /* NB: An MMIO update of the plane base pointer will also
7147          * generate a page-flip completion irq, i.e. every modeset
7148          * is also accompanied by a spurious intel_prepare_page_flip().
7149          */
7150         spin_lock_irqsave(&dev->event_lock, flags);
7151         if (intel_crtc->unpin_work)
7152                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7153         spin_unlock_irqrestore(&dev->event_lock, flags);
7154 }
7155
7156 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7157 {
7158         /* Ensure that the work item is consistent when activating it ... */
7159         smp_wmb();
7160         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7161         /* and that it is marked active as soon as the irq could fire. */
7162         smp_wmb();
7163 }
7164
7165 static int intel_gen2_queue_flip(struct drm_device *dev,
7166                                  struct drm_crtc *crtc,
7167                                  struct drm_framebuffer *fb,
7168                                  struct drm_i915_gem_object *obj)
7169 {
7170         struct drm_i915_private *dev_priv = dev->dev_private;
7171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7172         u32 flip_mask;
7173         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7174         int ret;
7175
7176         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7177         if (ret)
7178                 goto err;
7179
7180         ret = intel_ring_begin(ring, 6);
7181         if (ret)
7182                 goto err_unpin;
7183
7184         /* Can't queue multiple flips, so wait for the previous
7185          * one to finish before executing the next.
7186          */
7187         if (intel_crtc->plane)
7188                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7189         else
7190                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7191         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7192         intel_ring_emit(ring, MI_NOOP);
7193         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7194                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7195         intel_ring_emit(ring, fb->pitches[0]);
7196         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7197         intel_ring_emit(ring, 0); /* aux display base address, unused */
7198
7199         intel_mark_page_flip_active(intel_crtc);
7200         intel_ring_advance(ring);
7201         return 0;
7202
7203 err_unpin:
7204         intel_unpin_fb_obj(obj);
7205 err:
7206         return ret;
7207 }
7208
7209 static int intel_gen3_queue_flip(struct drm_device *dev,
7210                                  struct drm_crtc *crtc,
7211                                  struct drm_framebuffer *fb,
7212                                  struct drm_i915_gem_object *obj)
7213 {
7214         struct drm_i915_private *dev_priv = dev->dev_private;
7215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7216         u32 flip_mask;
7217         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7218         int ret;
7219
7220         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7221         if (ret)
7222                 goto err;
7223
7224         ret = intel_ring_begin(ring, 6);
7225         if (ret)
7226                 goto err_unpin;
7227
7228         if (intel_crtc->plane)
7229                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7230         else
7231                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7232         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7233         intel_ring_emit(ring, MI_NOOP);
7234         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7235                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7236         intel_ring_emit(ring, fb->pitches[0]);
7237         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7238         intel_ring_emit(ring, MI_NOOP);
7239
7240         intel_mark_page_flip_active(intel_crtc);
7241         intel_ring_advance(ring);
7242         return 0;
7243
7244 err_unpin:
7245         intel_unpin_fb_obj(obj);
7246 err:
7247         return ret;
7248 }
7249
7250 static int intel_gen4_queue_flip(struct drm_device *dev,
7251                                  struct drm_crtc *crtc,
7252                                  struct drm_framebuffer *fb,
7253                                  struct drm_i915_gem_object *obj)
7254 {
7255         struct drm_i915_private *dev_priv = dev->dev_private;
7256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7257         uint32_t pf, pipesrc;
7258         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7259         int ret;
7260
7261         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7262         if (ret)
7263                 goto err;
7264
7265         ret = intel_ring_begin(ring, 4);
7266         if (ret)
7267                 goto err_unpin;
7268
7269         /* i965+ uses the linear or tiled offsets from the
7270          * Display Registers (which do not change across a page-flip)
7271          * so we need only reprogram the base address.
7272          */
7273         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7274                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7275         intel_ring_emit(ring, fb->pitches[0]);
7276         intel_ring_emit(ring,
7277                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7278                         obj->tiling_mode);
7279
7280         /* XXX Enabling the panel-fitter across page-flip is so far
7281          * untested on non-native modes, so ignore it for now.
7282          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7283          */
7284         pf = 0;
7285         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7286         intel_ring_emit(ring, pf | pipesrc);
7287
7288         intel_mark_page_flip_active(intel_crtc);
7289         intel_ring_advance(ring);
7290         return 0;
7291
7292 err_unpin:
7293         intel_unpin_fb_obj(obj);
7294 err:
7295         return ret;
7296 }
7297
7298 static int intel_gen6_queue_flip(struct drm_device *dev,
7299                                  struct drm_crtc *crtc,
7300                                  struct drm_framebuffer *fb,
7301                                  struct drm_i915_gem_object *obj)
7302 {
7303         struct drm_i915_private *dev_priv = dev->dev_private;
7304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7305         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7306         uint32_t pf, pipesrc;
7307         int ret;
7308
7309         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7310         if (ret)
7311                 goto err;
7312
7313         ret = intel_ring_begin(ring, 4);
7314         if (ret)
7315                 goto err_unpin;
7316
7317         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7318                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7319         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7320         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7321
7322         /* Contrary to the suggestions in the documentation,
7323          * "Enable Panel Fitter" does not seem to be required when page
7324          * flipping with a non-native mode, and worse causes a normal
7325          * modeset to fail.
7326          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7327          */
7328         pf = 0;
7329         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7330         intel_ring_emit(ring, pf | pipesrc);
7331
7332         intel_mark_page_flip_active(intel_crtc);
7333         intel_ring_advance(ring);
7334         return 0;
7335
7336 err_unpin:
7337         intel_unpin_fb_obj(obj);
7338 err:
7339         return ret;
7340 }
7341
7342 /*
7343  * On gen7 we currently use the blit ring because (in early silicon at least)
7344  * the render ring doesn't give us interrpts for page flip completion, which
7345  * means clients will hang after the first flip is queued.  Fortunately the
7346  * blit ring generates interrupts properly, so use it instead.
7347  */
7348 static int intel_gen7_queue_flip(struct drm_device *dev,
7349                                  struct drm_crtc *crtc,
7350                                  struct drm_framebuffer *fb,
7351                                  struct drm_i915_gem_object *obj)
7352 {
7353         struct drm_i915_private *dev_priv = dev->dev_private;
7354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7355         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7356         uint32_t plane_bit = 0;
7357         int ret;
7358
7359         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7360         if (ret)
7361                 goto err;
7362
7363         switch(intel_crtc->plane) {
7364         case PLANE_A:
7365                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7366                 break;
7367         case PLANE_B:
7368                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7369                 break;
7370         case PLANE_C:
7371                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7372                 break;
7373         default:
7374                 WARN_ONCE(1, "unknown plane in flip command\n");
7375                 ret = -ENODEV;
7376                 goto err_unpin;
7377         }
7378
7379         ret = intel_ring_begin(ring, 4);
7380         if (ret)
7381                 goto err_unpin;
7382
7383         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7384         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7385         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7386         intel_ring_emit(ring, (MI_NOOP));
7387
7388         intel_mark_page_flip_active(intel_crtc);
7389         intel_ring_advance(ring);
7390         return 0;
7391
7392 err_unpin:
7393         intel_unpin_fb_obj(obj);
7394 err:
7395         return ret;
7396 }
7397
7398 static int intel_default_queue_flip(struct drm_device *dev,
7399                                     struct drm_crtc *crtc,
7400                                     struct drm_framebuffer *fb,
7401                                     struct drm_i915_gem_object *obj)
7402 {
7403         return -ENODEV;
7404 }
7405
7406 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7407                                 struct drm_framebuffer *fb,
7408                                 struct drm_pending_vblank_event *event)
7409 {
7410         struct drm_device *dev = crtc->dev;
7411         struct drm_i915_private *dev_priv = dev->dev_private;
7412         struct intel_framebuffer *intel_fb;
7413         struct drm_i915_gem_object *obj;
7414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415         struct intel_unpin_work *work;
7416         unsigned long flags;
7417         int ret;
7418
7419         /* Can't change pixel format via MI display flips. */
7420         if (fb->pixel_format != crtc->fb->pixel_format)
7421                 return -EINVAL;
7422
7423         /*
7424          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7425          * Note that pitch changes could also affect these register.
7426          */
7427         if (INTEL_INFO(dev)->gen > 3 &&
7428             (fb->offsets[0] != crtc->fb->offsets[0] ||
7429              fb->pitches[0] != crtc->fb->pitches[0]))
7430                 return -EINVAL;
7431
7432         work = kzalloc(sizeof *work, GFP_KERNEL);
7433         if (work == NULL)
7434                 return -ENOMEM;
7435
7436         work->event = event;
7437         work->crtc = crtc;
7438         intel_fb = to_intel_framebuffer(crtc->fb);
7439         work->old_fb_obj = intel_fb->obj;
7440         INIT_WORK(&work->work, intel_unpin_work_fn);
7441
7442         ret = drm_vblank_get(dev, intel_crtc->pipe);
7443         if (ret)
7444                 goto free_work;
7445
7446         /* We borrow the event spin lock for protecting unpin_work */
7447         spin_lock_irqsave(&dev->event_lock, flags);
7448         if (intel_crtc->unpin_work) {
7449                 spin_unlock_irqrestore(&dev->event_lock, flags);
7450                 kfree(work);
7451                 drm_vblank_put(dev, intel_crtc->pipe);
7452
7453                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7454                 return -EBUSY;
7455         }
7456         intel_crtc->unpin_work = work;
7457         spin_unlock_irqrestore(&dev->event_lock, flags);
7458
7459         intel_fb = to_intel_framebuffer(fb);
7460         obj = intel_fb->obj;
7461
7462         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7463                 flush_workqueue(dev_priv->wq);
7464
7465         ret = i915_mutex_lock_interruptible(dev);
7466         if (ret)
7467                 goto cleanup;
7468
7469         /* Reference the objects for the scheduled work. */
7470         drm_gem_object_reference(&work->old_fb_obj->base);
7471         drm_gem_object_reference(&obj->base);
7472
7473         crtc->fb = fb;
7474
7475         work->pending_flip_obj = obj;
7476
7477         work->enable_stall_check = true;
7478
7479         /* Block clients from rendering to the new back buffer until
7480          * the flip occurs and the object is no longer visible.
7481          */
7482         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7483         atomic_inc(&intel_crtc->unpin_work_count);
7484
7485         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7486         if (ret)
7487                 goto cleanup_pending;
7488
7489         intel_disable_fbc(dev);
7490         intel_mark_fb_busy(obj);
7491         mutex_unlock(&dev->struct_mutex);
7492
7493         trace_i915_flip_request(intel_crtc->plane, obj);
7494
7495         return 0;
7496
7497 cleanup_pending:
7498         atomic_dec(&intel_crtc->unpin_work_count);
7499         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7500         drm_gem_object_unreference(&work->old_fb_obj->base);
7501         drm_gem_object_unreference(&obj->base);
7502         mutex_unlock(&dev->struct_mutex);
7503
7504 cleanup:
7505         spin_lock_irqsave(&dev->event_lock, flags);
7506         intel_crtc->unpin_work = NULL;
7507         spin_unlock_irqrestore(&dev->event_lock, flags);
7508
7509         drm_vblank_put(dev, intel_crtc->pipe);
7510 free_work:
7511         kfree(work);
7512
7513         return ret;
7514 }
7515
7516 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7517         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7518         .load_lut = intel_crtc_load_lut,
7519         .disable = intel_crtc_noop,
7520 };
7521
7522 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7523 {
7524         struct intel_encoder *other_encoder;
7525         struct drm_crtc *crtc = &encoder->new_crtc->base;
7526
7527         if (WARN_ON(!crtc))
7528                 return false;
7529
7530         list_for_each_entry(other_encoder,
7531                             &crtc->dev->mode_config.encoder_list,
7532                             base.head) {
7533
7534                 if (&other_encoder->new_crtc->base != crtc ||
7535                     encoder == other_encoder)
7536                         continue;
7537                 else
7538                         return true;
7539         }
7540
7541         return false;
7542 }
7543
7544 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7545                                   struct drm_crtc *crtc)
7546 {
7547         struct drm_device *dev;
7548         struct drm_crtc *tmp;
7549         int crtc_mask = 1;
7550
7551         WARN(!crtc, "checking null crtc?\n");
7552
7553         dev = crtc->dev;
7554
7555         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7556                 if (tmp == crtc)
7557                         break;
7558                 crtc_mask <<= 1;
7559         }
7560
7561         if (encoder->possible_crtcs & crtc_mask)
7562                 return true;
7563         return false;
7564 }
7565
7566 /**
7567  * intel_modeset_update_staged_output_state
7568  *
7569  * Updates the staged output configuration state, e.g. after we've read out the
7570  * current hw state.
7571  */
7572 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7573 {
7574         struct intel_encoder *encoder;
7575         struct intel_connector *connector;
7576
7577         list_for_each_entry(connector, &dev->mode_config.connector_list,
7578                             base.head) {
7579                 connector->new_encoder =
7580                         to_intel_encoder(connector->base.encoder);
7581         }
7582
7583         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7584                             base.head) {
7585                 encoder->new_crtc =
7586                         to_intel_crtc(encoder->base.crtc);
7587         }
7588 }
7589
7590 /**
7591  * intel_modeset_commit_output_state
7592  *
7593  * This function copies the stage display pipe configuration to the real one.
7594  */
7595 static void intel_modeset_commit_output_state(struct drm_device *dev)
7596 {
7597         struct intel_encoder *encoder;
7598         struct intel_connector *connector;
7599
7600         list_for_each_entry(connector, &dev->mode_config.connector_list,
7601                             base.head) {
7602                 connector->base.encoder = &connector->new_encoder->base;
7603         }
7604
7605         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7606                             base.head) {
7607                 encoder->base.crtc = &encoder->new_crtc->base;
7608         }
7609 }
7610
7611 static struct drm_display_mode *
7612 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7613                             struct drm_display_mode *mode)
7614 {
7615         struct drm_device *dev = crtc->dev;
7616         struct drm_display_mode *adjusted_mode;
7617         struct drm_encoder_helper_funcs *encoder_funcs;
7618         struct intel_encoder *encoder;
7619
7620         adjusted_mode = drm_mode_duplicate(dev, mode);
7621         if (!adjusted_mode)
7622                 return ERR_PTR(-ENOMEM);
7623
7624         /* Pass our mode to the connectors and the CRTC to give them a chance to
7625          * adjust it according to limitations or connector properties, and also
7626          * a chance to reject the mode entirely.
7627          */
7628         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7629                             base.head) {
7630
7631                 if (&encoder->new_crtc->base != crtc)
7632                         continue;
7633                 encoder_funcs = encoder->base.helper_private;
7634                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7635                                                 adjusted_mode))) {
7636                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7637                         goto fail;
7638                 }
7639         }
7640
7641         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7642                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7643                 goto fail;
7644         }
7645         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7646
7647         return adjusted_mode;
7648 fail:
7649         drm_mode_destroy(dev, adjusted_mode);
7650         return ERR_PTR(-EINVAL);
7651 }
7652
7653 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7654  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7655 static void
7656 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7657                              unsigned *prepare_pipes, unsigned *disable_pipes)
7658 {
7659         struct intel_crtc *intel_crtc;
7660         struct drm_device *dev = crtc->dev;
7661         struct intel_encoder *encoder;
7662         struct intel_connector *connector;
7663         struct drm_crtc *tmp_crtc;
7664
7665         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7666
7667         /* Check which crtcs have changed outputs connected to them, these need
7668          * to be part of the prepare_pipes mask. We don't (yet) support global
7669          * modeset across multiple crtcs, so modeset_pipes will only have one
7670          * bit set at most. */
7671         list_for_each_entry(connector, &dev->mode_config.connector_list,
7672                             base.head) {
7673                 if (connector->base.encoder == &connector->new_encoder->base)
7674                         continue;
7675
7676                 if (connector->base.encoder) {
7677                         tmp_crtc = connector->base.encoder->crtc;
7678
7679                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7680                 }
7681
7682                 if (connector->new_encoder)
7683                         *prepare_pipes |=
7684                                 1 << connector->new_encoder->new_crtc->pipe;
7685         }
7686
7687         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7688                             base.head) {
7689                 if (encoder->base.crtc == &encoder->new_crtc->base)
7690                         continue;
7691
7692                 if (encoder->base.crtc) {
7693                         tmp_crtc = encoder->base.crtc;
7694
7695                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7696                 }
7697
7698                 if (encoder->new_crtc)
7699                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7700         }
7701
7702         /* Check for any pipes that will be fully disabled ... */
7703         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7704                             base.head) {
7705                 bool used = false;
7706
7707                 /* Don't try to disable disabled crtcs. */
7708                 if (!intel_crtc->base.enabled)
7709                         continue;
7710
7711                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7712                                     base.head) {
7713                         if (encoder->new_crtc == intel_crtc)
7714                                 used = true;
7715                 }
7716
7717                 if (!used)
7718                         *disable_pipes |= 1 << intel_crtc->pipe;
7719         }
7720
7721
7722         /* set_mode is also used to update properties on life display pipes. */
7723         intel_crtc = to_intel_crtc(crtc);
7724         if (crtc->enabled)
7725                 *prepare_pipes |= 1 << intel_crtc->pipe;
7726
7727         /* We only support modeset on one single crtc, hence we need to do that
7728          * only for the passed in crtc iff we change anything else than just
7729          * disable crtcs.
7730          *
7731          * This is actually not true, to be fully compatible with the old crtc
7732          * helper we automatically disable _any_ output (i.e. doesn't need to be
7733          * connected to the crtc we're modesetting on) if it's disconnected.
7734          * Which is a rather nutty api (since changed the output configuration
7735          * without userspace's explicit request can lead to confusion), but
7736          * alas. Hence we currently need to modeset on all pipes we prepare. */
7737         if (*prepare_pipes)
7738                 *modeset_pipes = *prepare_pipes;
7739
7740         /* ... and mask these out. */
7741         *modeset_pipes &= ~(*disable_pipes);
7742         *prepare_pipes &= ~(*disable_pipes);
7743 }
7744
7745 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7746 {
7747         struct drm_encoder *encoder;
7748         struct drm_device *dev = crtc->dev;
7749
7750         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7751                 if (encoder->crtc == crtc)
7752                         return true;
7753
7754         return false;
7755 }
7756
7757 static void
7758 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7759 {
7760         struct intel_encoder *intel_encoder;
7761         struct intel_crtc *intel_crtc;
7762         struct drm_connector *connector;
7763
7764         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7765                             base.head) {
7766                 if (!intel_encoder->base.crtc)
7767                         continue;
7768
7769                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7770
7771                 if (prepare_pipes & (1 << intel_crtc->pipe))
7772                         intel_encoder->connectors_active = false;
7773         }
7774
7775         intel_modeset_commit_output_state(dev);
7776
7777         /* Update computed state. */
7778         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7779                             base.head) {
7780                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7781         }
7782
7783         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7784                 if (!connector->encoder || !connector->encoder->crtc)
7785                         continue;
7786
7787                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7788
7789                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7790                         struct drm_property *dpms_property =
7791                                 dev->mode_config.dpms_property;
7792
7793                         connector->dpms = DRM_MODE_DPMS_ON;
7794                         drm_object_property_set_value(&connector->base,
7795                                                          dpms_property,
7796                                                          DRM_MODE_DPMS_ON);
7797
7798                         intel_encoder = to_intel_encoder(connector->encoder);
7799                         intel_encoder->connectors_active = true;
7800                 }
7801         }
7802
7803 }
7804
7805 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7806         list_for_each_entry((intel_crtc), \
7807                             &(dev)->mode_config.crtc_list, \
7808                             base.head) \
7809                 if (mask & (1 <<(intel_crtc)->pipe)) \
7810
7811 void
7812 intel_modeset_check_state(struct drm_device *dev)
7813 {
7814         struct intel_crtc *crtc;
7815         struct intel_encoder *encoder;
7816         struct intel_connector *connector;
7817
7818         list_for_each_entry(connector, &dev->mode_config.connector_list,
7819                             base.head) {
7820                 /* This also checks the encoder/connector hw state with the
7821                  * ->get_hw_state callbacks. */
7822                 intel_connector_check_state(connector);
7823
7824                 WARN(&connector->new_encoder->base != connector->base.encoder,
7825                      "connector's staged encoder doesn't match current encoder\n");
7826         }
7827
7828         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7829                             base.head) {
7830                 bool enabled = false;
7831                 bool active = false;
7832                 enum pipe pipe, tracked_pipe;
7833
7834                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7835                               encoder->base.base.id,
7836                               drm_get_encoder_name(&encoder->base));
7837
7838                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7839                      "encoder's stage crtc doesn't match current crtc\n");
7840                 WARN(encoder->connectors_active && !encoder->base.crtc,
7841                      "encoder's active_connectors set, but no crtc\n");
7842
7843                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7844                                     base.head) {
7845                         if (connector->base.encoder != &encoder->base)
7846                                 continue;
7847                         enabled = true;
7848                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7849                                 active = true;
7850                 }
7851                 WARN(!!encoder->base.crtc != enabled,
7852                      "encoder's enabled state mismatch "
7853                      "(expected %i, found %i)\n",
7854                      !!encoder->base.crtc, enabled);
7855                 WARN(active && !encoder->base.crtc,
7856                      "active encoder with no crtc\n");
7857
7858                 WARN(encoder->connectors_active != active,
7859                      "encoder's computed active state doesn't match tracked active state "
7860                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7861
7862                 active = encoder->get_hw_state(encoder, &pipe);
7863                 WARN(active != encoder->connectors_active,
7864                      "encoder's hw state doesn't match sw tracking "
7865                      "(expected %i, found %i)\n",
7866                      encoder->connectors_active, active);
7867
7868                 if (!encoder->base.crtc)
7869                         continue;
7870
7871                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7872                 WARN(active && pipe != tracked_pipe,
7873                      "active encoder's pipe doesn't match"
7874                      "(expected %i, found %i)\n",
7875                      tracked_pipe, pipe);
7876
7877         }
7878
7879         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7880                             base.head) {
7881                 bool enabled = false;
7882                 bool active = false;
7883
7884                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7885                               crtc->base.base.id);
7886
7887                 WARN(crtc->active && !crtc->base.enabled,
7888                      "active crtc, but not enabled in sw tracking\n");
7889
7890                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7891                                     base.head) {
7892                         if (encoder->base.crtc != &crtc->base)
7893                                 continue;
7894                         enabled = true;
7895                         if (encoder->connectors_active)
7896                                 active = true;
7897                 }
7898                 WARN(active != crtc->active,
7899                      "crtc's computed active state doesn't match tracked active state "
7900                      "(expected %i, found %i)\n", active, crtc->active);
7901                 WARN(enabled != crtc->base.enabled,
7902                      "crtc's computed enabled state doesn't match tracked enabled state "
7903                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7904
7905                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7906         }
7907 }
7908
7909 bool intel_set_mode(struct drm_crtc *crtc,
7910                     struct drm_display_mode *mode,
7911                     int x, int y, struct drm_framebuffer *fb)
7912 {
7913         struct drm_device *dev = crtc->dev;
7914         drm_i915_private_t *dev_priv = dev->dev_private;
7915         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7916         struct intel_crtc *intel_crtc;
7917         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7918         bool ret = true;
7919
7920         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7921                                      &prepare_pipes, &disable_pipes);
7922
7923         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7924                       modeset_pipes, prepare_pipes, disable_pipes);
7925
7926         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7927                 intel_crtc_disable(&intel_crtc->base);
7928
7929         saved_hwmode = crtc->hwmode;
7930         saved_mode = crtc->mode;
7931
7932         /* Hack: Because we don't (yet) support global modeset on multiple
7933          * crtcs, we don't keep track of the new mode for more than one crtc.
7934          * Hence simply check whether any bit is set in modeset_pipes in all the
7935          * pieces of code that are not yet converted to deal with mutliple crtcs
7936          * changing their mode at the same time. */
7937         adjusted_mode = NULL;
7938         if (modeset_pipes) {
7939                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7940                 if (IS_ERR(adjusted_mode)) {
7941                         return false;
7942                 }
7943         }
7944
7945         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7946                 if (intel_crtc->base.enabled)
7947                         dev_priv->display.crtc_disable(&intel_crtc->base);
7948         }
7949
7950         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7951          * to set it here already despite that we pass it down the callchain.
7952          */
7953         if (modeset_pipes)
7954                 crtc->mode = *mode;
7955
7956         /* Only after disabling all output pipelines that will be changed can we
7957          * update the the output configuration. */
7958         intel_modeset_update_state(dev, prepare_pipes);
7959
7960         if (dev_priv->display.modeset_global_resources)
7961                 dev_priv->display.modeset_global_resources(dev);
7962
7963         /* Set up the DPLL and any encoders state that needs to adjust or depend
7964          * on the DPLL.
7965          */
7966         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7967                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7968                                            mode, adjusted_mode,
7969                                            x, y, fb);
7970                 if (!ret)
7971                     goto done;
7972         }
7973
7974         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7975         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7976                 dev_priv->display.crtc_enable(&intel_crtc->base);
7977
7978         if (modeset_pipes) {
7979                 /* Store real post-adjustment hardware mode. */
7980                 crtc->hwmode = *adjusted_mode;
7981
7982                 /* Calculate and store various constants which
7983                  * are later needed by vblank and swap-completion
7984                  * timestamping. They are derived from true hwmode.
7985                  */
7986                 drm_calc_timestamping_constants(crtc);
7987         }
7988
7989         /* FIXME: add subpixel order */
7990 done:
7991         drm_mode_destroy(dev, adjusted_mode);
7992         if (!ret && crtc->enabled) {
7993                 crtc->hwmode = saved_hwmode;
7994                 crtc->mode = saved_mode;
7995         } else {
7996                 intel_modeset_check_state(dev);
7997         }
7998
7999         return ret;
8000 }
8001
8002 #undef for_each_intel_crtc_masked
8003
8004 static void intel_set_config_free(struct intel_set_config *config)
8005 {
8006         if (!config)
8007                 return;
8008
8009         kfree(config->save_connector_encoders);
8010         kfree(config->save_encoder_crtcs);
8011         kfree(config);
8012 }
8013
8014 static int intel_set_config_save_state(struct drm_device *dev,
8015                                        struct intel_set_config *config)
8016 {
8017         struct drm_encoder *encoder;
8018         struct drm_connector *connector;
8019         int count;
8020
8021         config->save_encoder_crtcs =
8022                 kcalloc(dev->mode_config.num_encoder,
8023                         sizeof(struct drm_crtc *), GFP_KERNEL);
8024         if (!config->save_encoder_crtcs)
8025                 return -ENOMEM;
8026
8027         config->save_connector_encoders =
8028                 kcalloc(dev->mode_config.num_connector,
8029                         sizeof(struct drm_encoder *), GFP_KERNEL);
8030         if (!config->save_connector_encoders)
8031                 return -ENOMEM;
8032
8033         /* Copy data. Note that driver private data is not affected.
8034          * Should anything bad happen only the expected state is
8035          * restored, not the drivers personal bookkeeping.
8036          */
8037         count = 0;
8038         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8039                 config->save_encoder_crtcs[count++] = encoder->crtc;
8040         }
8041
8042         count = 0;
8043         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8044                 config->save_connector_encoders[count++] = connector->encoder;
8045         }
8046
8047         return 0;
8048 }
8049
8050 static void intel_set_config_restore_state(struct drm_device *dev,
8051                                            struct intel_set_config *config)
8052 {
8053         struct intel_encoder *encoder;
8054         struct intel_connector *connector;
8055         int count;
8056
8057         count = 0;
8058         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8059                 encoder->new_crtc =
8060                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8061         }
8062
8063         count = 0;
8064         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8065                 connector->new_encoder =
8066                         to_intel_encoder(config->save_connector_encoders[count++]);
8067         }
8068 }
8069
8070 static void
8071 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8072                                       struct intel_set_config *config)
8073 {
8074
8075         /* We should be able to check here if the fb has the same properties
8076          * and then just flip_or_move it */
8077         if (set->crtc->fb != set->fb) {
8078                 /* If we have no fb then treat it as a full mode set */
8079                 if (set->crtc->fb == NULL) {
8080                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8081                         config->mode_changed = true;
8082                 } else if (set->fb == NULL) {
8083                         config->mode_changed = true;
8084                 } else if (set->fb->depth != set->crtc->fb->depth) {
8085                         config->mode_changed = true;
8086                 } else if (set->fb->bits_per_pixel !=
8087                            set->crtc->fb->bits_per_pixel) {
8088                         config->mode_changed = true;
8089                 } else
8090                         config->fb_changed = true;
8091         }
8092
8093         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8094                 config->fb_changed = true;
8095
8096         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8097                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8098                 drm_mode_debug_printmodeline(&set->crtc->mode);
8099                 drm_mode_debug_printmodeline(set->mode);
8100                 config->mode_changed = true;
8101         }
8102 }
8103
8104 static int
8105 intel_modeset_stage_output_state(struct drm_device *dev,
8106                                  struct drm_mode_set *set,
8107                                  struct intel_set_config *config)
8108 {
8109         struct drm_crtc *new_crtc;
8110         struct intel_connector *connector;
8111         struct intel_encoder *encoder;
8112         int count, ro;
8113
8114         /* The upper layers ensure that we either disabl a crtc or have a list
8115          * of connectors. For paranoia, double-check this. */
8116         WARN_ON(!set->fb && (set->num_connectors != 0));
8117         WARN_ON(set->fb && (set->num_connectors == 0));
8118
8119         count = 0;
8120         list_for_each_entry(connector, &dev->mode_config.connector_list,
8121                             base.head) {
8122                 /* Otherwise traverse passed in connector list and get encoders
8123                  * for them. */
8124                 for (ro = 0; ro < set->num_connectors; ro++) {
8125                         if (set->connectors[ro] == &connector->base) {
8126                                 connector->new_encoder = connector->encoder;
8127                                 break;
8128                         }
8129                 }
8130
8131                 /* If we disable the crtc, disable all its connectors. Also, if
8132                  * the connector is on the changing crtc but not on the new
8133                  * connector list, disable it. */
8134                 if ((!set->fb || ro == set->num_connectors) &&
8135                     connector->base.encoder &&
8136                     connector->base.encoder->crtc == set->crtc) {
8137                         connector->new_encoder = NULL;
8138
8139                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8140                                 connector->base.base.id,
8141                                 drm_get_connector_name(&connector->base));
8142                 }
8143
8144
8145                 if (&connector->new_encoder->base != connector->base.encoder) {
8146                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8147                         config->mode_changed = true;
8148                 }
8149         }
8150         /* connector->new_encoder is now updated for all connectors. */
8151
8152         /* Update crtc of enabled connectors. */
8153         count = 0;
8154         list_for_each_entry(connector, &dev->mode_config.connector_list,
8155                             base.head) {
8156                 if (!connector->new_encoder)
8157                         continue;
8158
8159                 new_crtc = connector->new_encoder->base.crtc;
8160
8161                 for (ro = 0; ro < set->num_connectors; ro++) {
8162                         if (set->connectors[ro] == &connector->base)
8163                                 new_crtc = set->crtc;
8164                 }
8165
8166                 /* Make sure the new CRTC will work with the encoder */
8167                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8168                                            new_crtc)) {
8169                         return -EINVAL;
8170                 }
8171                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8172
8173                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8174                         connector->base.base.id,
8175                         drm_get_connector_name(&connector->base),
8176                         new_crtc->base.id);
8177         }
8178
8179         /* Check for any encoders that needs to be disabled. */
8180         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8181                             base.head) {
8182                 list_for_each_entry(connector,
8183                                     &dev->mode_config.connector_list,
8184                                     base.head) {
8185                         if (connector->new_encoder == encoder) {
8186                                 WARN_ON(!connector->new_encoder->new_crtc);
8187
8188                                 goto next_encoder;
8189                         }
8190                 }
8191                 encoder->new_crtc = NULL;
8192 next_encoder:
8193                 /* Only now check for crtc changes so we don't miss encoders
8194                  * that will be disabled. */
8195                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8196                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8197                         config->mode_changed = true;
8198                 }
8199         }
8200         /* Now we've also updated encoder->new_crtc for all encoders. */
8201
8202         return 0;
8203 }
8204
8205 static int intel_crtc_set_config(struct drm_mode_set *set)
8206 {
8207         struct drm_device *dev;
8208         struct drm_mode_set save_set;
8209         struct intel_set_config *config;
8210         int ret;
8211
8212         BUG_ON(!set);
8213         BUG_ON(!set->crtc);
8214         BUG_ON(!set->crtc->helper_private);
8215
8216         if (!set->mode)
8217                 set->fb = NULL;
8218
8219         /* The fb helper likes to play gross jokes with ->mode_set_config.
8220          * Unfortunately the crtc helper doesn't do much at all for this case,
8221          * so we have to cope with this madness until the fb helper is fixed up. */
8222         if (set->fb && set->num_connectors == 0)
8223                 return 0;
8224
8225         if (set->fb) {
8226                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8227                                 set->crtc->base.id, set->fb->base.id,
8228                                 (int)set->num_connectors, set->x, set->y);
8229         } else {
8230                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8231         }
8232
8233         dev = set->crtc->dev;
8234
8235         ret = -ENOMEM;
8236         config = kzalloc(sizeof(*config), GFP_KERNEL);
8237         if (!config)
8238                 goto out_config;
8239
8240         ret = intel_set_config_save_state(dev, config);
8241         if (ret)
8242                 goto out_config;
8243
8244         save_set.crtc = set->crtc;
8245         save_set.mode = &set->crtc->mode;
8246         save_set.x = set->crtc->x;
8247         save_set.y = set->crtc->y;
8248         save_set.fb = set->crtc->fb;
8249
8250         /* Compute whether we need a full modeset, only an fb base update or no
8251          * change at all. In the future we might also check whether only the
8252          * mode changed, e.g. for LVDS where we only change the panel fitter in
8253          * such cases. */
8254         intel_set_config_compute_mode_changes(set, config);
8255
8256         ret = intel_modeset_stage_output_state(dev, set, config);
8257         if (ret)
8258                 goto fail;
8259
8260         if (config->mode_changed) {
8261                 if (set->mode) {
8262                         DRM_DEBUG_KMS("attempting to set mode from"
8263                                         " userspace\n");
8264                         drm_mode_debug_printmodeline(set->mode);
8265                 }
8266
8267                 if (!intel_set_mode(set->crtc, set->mode,
8268                                     set->x, set->y, set->fb)) {
8269                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8270                                   set->crtc->base.id);
8271                         ret = -EINVAL;
8272                         goto fail;
8273                 }
8274         } else if (config->fb_changed) {
8275                 ret = intel_pipe_set_base(set->crtc,
8276                                           set->x, set->y, set->fb);
8277         }
8278
8279         intel_set_config_free(config);
8280
8281         return 0;
8282
8283 fail:
8284         intel_set_config_restore_state(dev, config);
8285
8286         /* Try to restore the config */
8287         if (config->mode_changed &&
8288             !intel_set_mode(save_set.crtc, save_set.mode,
8289                             save_set.x, save_set.y, save_set.fb))
8290                 DRM_ERROR("failed to restore config after modeset failure\n");
8291
8292 out_config:
8293         intel_set_config_free(config);
8294         return ret;
8295 }
8296
8297 static const struct drm_crtc_funcs intel_crtc_funcs = {
8298         .cursor_set = intel_crtc_cursor_set,
8299         .cursor_move = intel_crtc_cursor_move,
8300         .gamma_set = intel_crtc_gamma_set,
8301         .set_config = intel_crtc_set_config,
8302         .destroy = intel_crtc_destroy,
8303         .page_flip = intel_crtc_page_flip,
8304 };
8305
8306 static void intel_cpu_pll_init(struct drm_device *dev)
8307 {
8308         if (IS_HASWELL(dev))
8309                 intel_ddi_pll_init(dev);
8310 }
8311
8312 static void intel_pch_pll_init(struct drm_device *dev)
8313 {
8314         drm_i915_private_t *dev_priv = dev->dev_private;
8315         int i;
8316
8317         if (dev_priv->num_pch_pll == 0) {
8318                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8319                 return;
8320         }
8321
8322         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8323                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8324                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8325                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8326         }
8327 }
8328
8329 static void intel_crtc_init(struct drm_device *dev, int pipe)
8330 {
8331         drm_i915_private_t *dev_priv = dev->dev_private;
8332         struct intel_crtc *intel_crtc;
8333         int i;
8334
8335         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8336         if (intel_crtc == NULL)
8337                 return;
8338
8339         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8340
8341         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8342         for (i = 0; i < 256; i++) {
8343                 intel_crtc->lut_r[i] = i;
8344                 intel_crtc->lut_g[i] = i;
8345                 intel_crtc->lut_b[i] = i;
8346         }
8347
8348         /* Swap pipes & planes for FBC on pre-965 */
8349         intel_crtc->pipe = pipe;
8350         intel_crtc->plane = pipe;
8351         intel_crtc->cpu_transcoder = pipe;
8352         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8353                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8354                 intel_crtc->plane = !pipe;
8355         }
8356
8357         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8358                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8359         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8360         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8361
8362         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8363
8364         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8365 }
8366
8367 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8368                                 struct drm_file *file)
8369 {
8370         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8371         struct drm_mode_object *drmmode_obj;
8372         struct intel_crtc *crtc;
8373
8374         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8375                 return -ENODEV;
8376
8377         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8378                         DRM_MODE_OBJECT_CRTC);
8379
8380         if (!drmmode_obj) {
8381                 DRM_ERROR("no such CRTC id\n");
8382                 return -EINVAL;
8383         }
8384
8385         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8386         pipe_from_crtc_id->pipe = crtc->pipe;
8387
8388         return 0;
8389 }
8390
8391 static int intel_encoder_clones(struct intel_encoder *encoder)
8392 {
8393         struct drm_device *dev = encoder->base.dev;
8394         struct intel_encoder *source_encoder;
8395         int index_mask = 0;
8396         int entry = 0;
8397
8398         list_for_each_entry(source_encoder,
8399                             &dev->mode_config.encoder_list, base.head) {
8400
8401                 if (encoder == source_encoder)
8402                         index_mask |= (1 << entry);
8403
8404                 /* Intel hw has only one MUX where enocoders could be cloned. */
8405                 if (encoder->cloneable && source_encoder->cloneable)
8406                         index_mask |= (1 << entry);
8407
8408                 entry++;
8409         }
8410
8411         return index_mask;
8412 }
8413
8414 static bool has_edp_a(struct drm_device *dev)
8415 {
8416         struct drm_i915_private *dev_priv = dev->dev_private;
8417
8418         if (!IS_MOBILE(dev))
8419                 return false;
8420
8421         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8422                 return false;
8423
8424         if (IS_GEN5(dev) &&
8425             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8426                 return false;
8427
8428         return true;
8429 }
8430
8431 static void intel_setup_outputs(struct drm_device *dev)
8432 {
8433         struct drm_i915_private *dev_priv = dev->dev_private;
8434         struct intel_encoder *encoder;
8435         bool dpd_is_edp = false;
8436         bool has_lvds;
8437
8438         has_lvds = intel_lvds_init(dev);
8439         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8440                 /* disable the panel fitter on everything but LVDS */
8441                 I915_WRITE(PFIT_CONTROL, 0);
8442         }
8443
8444         if (!(IS_HASWELL(dev) &&
8445               (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8446                 intel_crt_init(dev);
8447
8448         if (IS_HASWELL(dev)) {
8449                 int found;
8450
8451                 /* Haswell uses DDI functions to detect digital outputs */
8452                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8453                 /* DDI A only supports eDP */
8454                 if (found)
8455                         intel_ddi_init(dev, PORT_A);
8456
8457                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8458                  * register */
8459                 found = I915_READ(SFUSE_STRAP);
8460
8461                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8462                         intel_ddi_init(dev, PORT_B);
8463                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8464                         intel_ddi_init(dev, PORT_C);
8465                 if (found & SFUSE_STRAP_DDID_DETECTED)
8466                         intel_ddi_init(dev, PORT_D);
8467         } else if (HAS_PCH_SPLIT(dev)) {
8468                 int found;
8469                 dpd_is_edp = intel_dpd_is_edp(dev);
8470
8471                 if (has_edp_a(dev))
8472                         intel_dp_init(dev, DP_A, PORT_A);
8473
8474                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8475                         /* PCH SDVOB multiplex with HDMIB */
8476                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8477                         if (!found)
8478                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8479                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8480                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8481                 }
8482
8483                 if (I915_READ(HDMIC) & PORT_DETECTED)
8484                         intel_hdmi_init(dev, HDMIC, PORT_C);
8485
8486                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8487                         intel_hdmi_init(dev, HDMID, PORT_D);
8488
8489                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8490                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8491
8492                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8493                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8494         } else if (IS_VALLEYVIEW(dev)) {
8495                 int found;
8496
8497                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8498                 if (I915_READ(DP_C) & DP_DETECTED)
8499                         intel_dp_init(dev, DP_C, PORT_C);
8500
8501                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8502                         /* SDVOB multiplex with HDMIB */
8503                         found = intel_sdvo_init(dev, SDVOB, true);
8504                         if (!found)
8505                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8506                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8507                                 intel_dp_init(dev, DP_B, PORT_B);
8508                 }
8509
8510                 if (I915_READ(SDVOC) & PORT_DETECTED)
8511                         intel_hdmi_init(dev, SDVOC, PORT_C);
8512
8513         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8514                 bool found = false;
8515
8516                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8517                         DRM_DEBUG_KMS("probing SDVOB\n");
8518                         found = intel_sdvo_init(dev, SDVOB, true);
8519                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8520                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8521                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8522                         }
8523
8524                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8525                                 DRM_DEBUG_KMS("probing DP_B\n");
8526                                 intel_dp_init(dev, DP_B, PORT_B);
8527                         }
8528                 }
8529
8530                 /* Before G4X SDVOC doesn't have its own detect register */
8531
8532                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8533                         DRM_DEBUG_KMS("probing SDVOC\n");
8534                         found = intel_sdvo_init(dev, SDVOC, false);
8535                 }
8536
8537                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8538
8539                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8540                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8541                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8542                         }
8543                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8544                                 DRM_DEBUG_KMS("probing DP_C\n");
8545                                 intel_dp_init(dev, DP_C, PORT_C);
8546                         }
8547                 }
8548
8549                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8550                     (I915_READ(DP_D) & DP_DETECTED)) {
8551                         DRM_DEBUG_KMS("probing DP_D\n");
8552                         intel_dp_init(dev, DP_D, PORT_D);
8553                 }
8554         } else if (IS_GEN2(dev))
8555                 intel_dvo_init(dev);
8556
8557         if (SUPPORTS_TV(dev))
8558                 intel_tv_init(dev);
8559
8560         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8561                 encoder->base.possible_crtcs = encoder->crtc_mask;
8562                 encoder->base.possible_clones =
8563                         intel_encoder_clones(encoder);
8564         }
8565
8566         intel_init_pch_refclk(dev);
8567
8568         drm_helper_move_panel_connectors_to_head(dev);
8569 }
8570
8571 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8572 {
8573         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8574
8575         drm_framebuffer_cleanup(fb);
8576         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8577
8578         kfree(intel_fb);
8579 }
8580
8581 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8582                                                 struct drm_file *file,
8583                                                 unsigned int *handle)
8584 {
8585         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8586         struct drm_i915_gem_object *obj = intel_fb->obj;
8587
8588         return drm_gem_handle_create(file, &obj->base, handle);
8589 }
8590
8591 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8592         .destroy = intel_user_framebuffer_destroy,
8593         .create_handle = intel_user_framebuffer_create_handle,
8594 };
8595
8596 int intel_framebuffer_init(struct drm_device *dev,
8597                            struct intel_framebuffer *intel_fb,
8598                            struct drm_mode_fb_cmd2 *mode_cmd,
8599                            struct drm_i915_gem_object *obj)
8600 {
8601         int ret;
8602
8603         if (obj->tiling_mode == I915_TILING_Y) {
8604                 DRM_DEBUG("hardware does not support tiling Y\n");
8605                 return -EINVAL;
8606         }
8607
8608         if (mode_cmd->pitches[0] & 63) {
8609                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8610                           mode_cmd->pitches[0]);
8611                 return -EINVAL;
8612         }
8613
8614         /* FIXME <= Gen4 stride limits are bit unclear */
8615         if (mode_cmd->pitches[0] > 32768) {
8616                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8617                           mode_cmd->pitches[0]);
8618                 return -EINVAL;
8619         }
8620
8621         if (obj->tiling_mode != I915_TILING_NONE &&
8622             mode_cmd->pitches[0] != obj->stride) {
8623                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8624                           mode_cmd->pitches[0], obj->stride);
8625                 return -EINVAL;
8626         }
8627
8628         /* Reject formats not supported by any plane early. */
8629         switch (mode_cmd->pixel_format) {
8630         case DRM_FORMAT_C8:
8631         case DRM_FORMAT_RGB565:
8632         case DRM_FORMAT_XRGB8888:
8633         case DRM_FORMAT_ARGB8888:
8634                 break;
8635         case DRM_FORMAT_XRGB1555:
8636         case DRM_FORMAT_ARGB1555:
8637                 if (INTEL_INFO(dev)->gen > 3) {
8638                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8639                         return -EINVAL;
8640                 }
8641                 break;
8642         case DRM_FORMAT_XBGR8888:
8643         case DRM_FORMAT_ABGR8888:
8644         case DRM_FORMAT_XRGB2101010:
8645         case DRM_FORMAT_ARGB2101010:
8646         case DRM_FORMAT_XBGR2101010:
8647         case DRM_FORMAT_ABGR2101010:
8648                 if (INTEL_INFO(dev)->gen < 4) {
8649                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8650                         return -EINVAL;
8651                 }
8652                 break;
8653         case DRM_FORMAT_YUYV:
8654         case DRM_FORMAT_UYVY:
8655         case DRM_FORMAT_YVYU:
8656         case DRM_FORMAT_VYUY:
8657                 if (INTEL_INFO(dev)->gen < 5) {
8658                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8659                         return -EINVAL;
8660                 }
8661                 break;
8662         default:
8663                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8664                 return -EINVAL;
8665         }
8666
8667         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8668         if (mode_cmd->offsets[0] != 0)
8669                 return -EINVAL;
8670
8671         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8672         if (ret) {
8673                 DRM_ERROR("framebuffer init failed %d\n", ret);
8674                 return ret;
8675         }
8676
8677         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8678         intel_fb->obj = obj;
8679         return 0;
8680 }
8681
8682 static struct drm_framebuffer *
8683 intel_user_framebuffer_create(struct drm_device *dev,
8684                               struct drm_file *filp,
8685                               struct drm_mode_fb_cmd2 *mode_cmd)
8686 {
8687         struct drm_i915_gem_object *obj;
8688
8689         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8690                                                 mode_cmd->handles[0]));
8691         if (&obj->base == NULL)
8692                 return ERR_PTR(-ENOENT);
8693
8694         return intel_framebuffer_create(dev, mode_cmd, obj);
8695 }
8696
8697 static const struct drm_mode_config_funcs intel_mode_funcs = {
8698         .fb_create = intel_user_framebuffer_create,
8699         .output_poll_changed = intel_fb_output_poll_changed,
8700 };
8701
8702 /* Set up chip specific display functions */
8703 static void intel_init_display(struct drm_device *dev)
8704 {
8705         struct drm_i915_private *dev_priv = dev->dev_private;
8706
8707         /* We always want a DPMS function */
8708         if (IS_HASWELL(dev)) {
8709                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8710                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8711                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8712                 dev_priv->display.off = haswell_crtc_off;
8713                 dev_priv->display.update_plane = ironlake_update_plane;
8714         } else if (HAS_PCH_SPLIT(dev)) {
8715                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8716                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8717                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8718                 dev_priv->display.off = ironlake_crtc_off;
8719                 dev_priv->display.update_plane = ironlake_update_plane;
8720         } else {
8721                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8722                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8723                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8724                 dev_priv->display.off = i9xx_crtc_off;
8725                 dev_priv->display.update_plane = i9xx_update_plane;
8726         }
8727
8728         /* Returns the core display clock speed */
8729         if (IS_VALLEYVIEW(dev))
8730                 dev_priv->display.get_display_clock_speed =
8731                         valleyview_get_display_clock_speed;
8732         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8733                 dev_priv->display.get_display_clock_speed =
8734                         i945_get_display_clock_speed;
8735         else if (IS_I915G(dev))
8736                 dev_priv->display.get_display_clock_speed =
8737                         i915_get_display_clock_speed;
8738         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8739                 dev_priv->display.get_display_clock_speed =
8740                         i9xx_misc_get_display_clock_speed;
8741         else if (IS_I915GM(dev))
8742                 dev_priv->display.get_display_clock_speed =
8743                         i915gm_get_display_clock_speed;
8744         else if (IS_I865G(dev))
8745                 dev_priv->display.get_display_clock_speed =
8746                         i865_get_display_clock_speed;
8747         else if (IS_I85X(dev))
8748                 dev_priv->display.get_display_clock_speed =
8749                         i855_get_display_clock_speed;
8750         else /* 852, 830 */
8751                 dev_priv->display.get_display_clock_speed =
8752                         i830_get_display_clock_speed;
8753
8754         if (HAS_PCH_SPLIT(dev)) {
8755                 if (IS_GEN5(dev)) {
8756                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8757                         dev_priv->display.write_eld = ironlake_write_eld;
8758                 } else if (IS_GEN6(dev)) {
8759                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8760                         dev_priv->display.write_eld = ironlake_write_eld;
8761                 } else if (IS_IVYBRIDGE(dev)) {
8762                         /* FIXME: detect B0+ stepping and use auto training */
8763                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8764                         dev_priv->display.write_eld = ironlake_write_eld;
8765                         dev_priv->display.modeset_global_resources =
8766                                 ivb_modeset_global_resources;
8767                 } else if (IS_HASWELL(dev)) {
8768                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8769                         dev_priv->display.write_eld = haswell_write_eld;
8770                 } else
8771                         dev_priv->display.update_wm = NULL;
8772         } else if (IS_G4X(dev)) {
8773                 dev_priv->display.write_eld = g4x_write_eld;
8774         }
8775
8776         /* Default just returns -ENODEV to indicate unsupported */
8777         dev_priv->display.queue_flip = intel_default_queue_flip;
8778
8779         switch (INTEL_INFO(dev)->gen) {
8780         case 2:
8781                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8782                 break;
8783
8784         case 3:
8785                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8786                 break;
8787
8788         case 4:
8789         case 5:
8790                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8791                 break;
8792
8793         case 6:
8794                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8795                 break;
8796         case 7:
8797                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8798                 break;
8799         }
8800 }
8801
8802 /*
8803  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8804  * resume, or other times.  This quirk makes sure that's the case for
8805  * affected systems.
8806  */
8807 static void quirk_pipea_force(struct drm_device *dev)
8808 {
8809         struct drm_i915_private *dev_priv = dev->dev_private;
8810
8811         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8812         DRM_INFO("applying pipe a force quirk\n");
8813 }
8814
8815 /*
8816  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8817  */
8818 static void quirk_ssc_force_disable(struct drm_device *dev)
8819 {
8820         struct drm_i915_private *dev_priv = dev->dev_private;
8821         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8822         DRM_INFO("applying lvds SSC disable quirk\n");
8823 }
8824
8825 /*
8826  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8827  * brightness value
8828  */
8829 static void quirk_invert_brightness(struct drm_device *dev)
8830 {
8831         struct drm_i915_private *dev_priv = dev->dev_private;
8832         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8833         DRM_INFO("applying inverted panel brightness quirk\n");
8834 }
8835
8836 struct intel_quirk {
8837         int device;
8838         int subsystem_vendor;
8839         int subsystem_device;
8840         void (*hook)(struct drm_device *dev);
8841 };
8842
8843 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8844 struct intel_dmi_quirk {
8845         void (*hook)(struct drm_device *dev);
8846         const struct dmi_system_id (*dmi_id_list)[];
8847 };
8848
8849 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8850 {
8851         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8852         return 1;
8853 }
8854
8855 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8856         {
8857                 .dmi_id_list = &(const struct dmi_system_id[]) {
8858                         {
8859                                 .callback = intel_dmi_reverse_brightness,
8860                                 .ident = "NCR Corporation",
8861                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8862                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8863                                 },
8864                         },
8865                         { }  /* terminating entry */
8866                 },
8867                 .hook = quirk_invert_brightness,
8868         },
8869 };
8870
8871 static struct intel_quirk intel_quirks[] = {
8872         /* HP Mini needs pipe A force quirk (LP: #322104) */
8873         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8874
8875         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8876         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8877
8878         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8879         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8880
8881         /* 830/845 need to leave pipe A & dpll A up */
8882         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8883         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8884
8885         /* Lenovo U160 cannot use SSC on LVDS */
8886         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8887
8888         /* Sony Vaio Y cannot use SSC on LVDS */
8889         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8890
8891         /* Acer Aspire 5734Z must invert backlight brightness */
8892         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8893 };
8894
8895 static void intel_init_quirks(struct drm_device *dev)
8896 {
8897         struct pci_dev *d = dev->pdev;
8898         int i;
8899
8900         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8901                 struct intel_quirk *q = &intel_quirks[i];
8902
8903                 if (d->device == q->device &&
8904                     (d->subsystem_vendor == q->subsystem_vendor ||
8905                      q->subsystem_vendor == PCI_ANY_ID) &&
8906                     (d->subsystem_device == q->subsystem_device ||
8907                      q->subsystem_device == PCI_ANY_ID))
8908                         q->hook(dev);
8909         }
8910         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8911                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8912                         intel_dmi_quirks[i].hook(dev);
8913         }
8914 }
8915
8916 /* Disable the VGA plane that we never use */
8917 static void i915_disable_vga(struct drm_device *dev)
8918 {
8919         struct drm_i915_private *dev_priv = dev->dev_private;
8920         u8 sr1;
8921         u32 vga_reg;
8922
8923         if (HAS_PCH_SPLIT(dev))
8924                 vga_reg = CPU_VGACNTRL;
8925         else
8926                 vga_reg = VGACNTRL;
8927
8928         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8929         outb(SR01, VGA_SR_INDEX);
8930         sr1 = inb(VGA_SR_DATA);
8931         outb(sr1 | 1<<5, VGA_SR_DATA);
8932         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8933         udelay(300);
8934
8935         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8936         POSTING_READ(vga_reg);
8937 }
8938
8939 void intel_modeset_init_hw(struct drm_device *dev)
8940 {
8941         /* We attempt to init the necessary power wells early in the initialization
8942          * time, so the subsystems that expect power to be enabled can work.
8943          */
8944         intel_init_power_wells(dev);
8945
8946         intel_prepare_ddi(dev);
8947
8948         intel_init_clock_gating(dev);
8949
8950         mutex_lock(&dev->struct_mutex);
8951         intel_enable_gt_powersave(dev);
8952         mutex_unlock(&dev->struct_mutex);
8953 }
8954
8955 void intel_modeset_init(struct drm_device *dev)
8956 {
8957         struct drm_i915_private *dev_priv = dev->dev_private;
8958         int i, ret;
8959
8960         drm_mode_config_init(dev);
8961
8962         dev->mode_config.min_width = 0;
8963         dev->mode_config.min_height = 0;
8964
8965         dev->mode_config.preferred_depth = 24;
8966         dev->mode_config.prefer_shadow = 1;
8967
8968         dev->mode_config.funcs = &intel_mode_funcs;
8969
8970         intel_init_quirks(dev);
8971
8972         intel_init_pm(dev);
8973
8974         intel_init_display(dev);
8975
8976         if (IS_GEN2(dev)) {
8977                 dev->mode_config.max_width = 2048;
8978                 dev->mode_config.max_height = 2048;
8979         } else if (IS_GEN3(dev)) {
8980                 dev->mode_config.max_width = 4096;
8981                 dev->mode_config.max_height = 4096;
8982         } else {
8983                 dev->mode_config.max_width = 8192;
8984                 dev->mode_config.max_height = 8192;
8985         }
8986         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8987
8988         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8989                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8990
8991         for (i = 0; i < dev_priv->num_pipe; i++) {
8992                 intel_crtc_init(dev, i);
8993                 ret = intel_plane_init(dev, i);
8994                 if (ret)
8995                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8996         }
8997
8998         intel_cpu_pll_init(dev);
8999         intel_pch_pll_init(dev);
9000
9001         /* Just disable it once at startup */
9002         i915_disable_vga(dev);
9003         intel_setup_outputs(dev);
9004 }
9005
9006 static void
9007 intel_connector_break_all_links(struct intel_connector *connector)
9008 {
9009         connector->base.dpms = DRM_MODE_DPMS_OFF;
9010         connector->base.encoder = NULL;
9011         connector->encoder->connectors_active = false;
9012         connector->encoder->base.crtc = NULL;
9013 }
9014
9015 static void intel_enable_pipe_a(struct drm_device *dev)
9016 {
9017         struct intel_connector *connector;
9018         struct drm_connector *crt = NULL;
9019         struct intel_load_detect_pipe load_detect_temp;
9020
9021         /* We can't just switch on the pipe A, we need to set things up with a
9022          * proper mode and output configuration. As a gross hack, enable pipe A
9023          * by enabling the load detect pipe once. */
9024         list_for_each_entry(connector,
9025                             &dev->mode_config.connector_list,
9026                             base.head) {
9027                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9028                         crt = &connector->base;
9029                         break;
9030                 }
9031         }
9032
9033         if (!crt)
9034                 return;
9035
9036         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9037                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9038
9039
9040 }
9041
9042 static bool
9043 intel_check_plane_mapping(struct intel_crtc *crtc)
9044 {
9045         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
9046         u32 reg, val;
9047
9048         if (dev_priv->num_pipe == 1)
9049                 return true;
9050
9051         reg = DSPCNTR(!crtc->plane);
9052         val = I915_READ(reg);
9053
9054         if ((val & DISPLAY_PLANE_ENABLE) &&
9055             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9056                 return false;
9057
9058         return true;
9059 }
9060
9061 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9062 {
9063         struct drm_device *dev = crtc->base.dev;
9064         struct drm_i915_private *dev_priv = dev->dev_private;
9065         u32 reg;
9066
9067         /* Clear any frame start delays used for debugging left by the BIOS */
9068         reg = PIPECONF(crtc->cpu_transcoder);
9069         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9070
9071         /* We need to sanitize the plane -> pipe mapping first because this will
9072          * disable the crtc (and hence change the state) if it is wrong. Note
9073          * that gen4+ has a fixed plane -> pipe mapping.  */
9074         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9075                 struct intel_connector *connector;
9076                 bool plane;
9077
9078                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9079                               crtc->base.base.id);
9080
9081                 /* Pipe has the wrong plane attached and the plane is active.
9082                  * Temporarily change the plane mapping and disable everything
9083                  * ...  */
9084                 plane = crtc->plane;
9085                 crtc->plane = !plane;
9086                 dev_priv->display.crtc_disable(&crtc->base);
9087                 crtc->plane = plane;
9088
9089                 /* ... and break all links. */
9090                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9091                                     base.head) {
9092                         if (connector->encoder->base.crtc != &crtc->base)
9093                                 continue;
9094
9095                         intel_connector_break_all_links(connector);
9096                 }
9097
9098                 WARN_ON(crtc->active);
9099                 crtc->base.enabled = false;
9100         }
9101
9102         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9103             crtc->pipe == PIPE_A && !crtc->active) {
9104                 /* BIOS forgot to enable pipe A, this mostly happens after
9105                  * resume. Force-enable the pipe to fix this, the update_dpms
9106                  * call below we restore the pipe to the right state, but leave
9107                  * the required bits on. */
9108                 intel_enable_pipe_a(dev);
9109         }
9110
9111         /* Adjust the state of the output pipe according to whether we
9112          * have active connectors/encoders. */
9113         intel_crtc_update_dpms(&crtc->base);
9114
9115         if (crtc->active != crtc->base.enabled) {
9116                 struct intel_encoder *encoder;
9117
9118                 /* This can happen either due to bugs in the get_hw_state
9119                  * functions or because the pipe is force-enabled due to the
9120                  * pipe A quirk. */
9121                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9122                               crtc->base.base.id,
9123                               crtc->base.enabled ? "enabled" : "disabled",
9124                               crtc->active ? "enabled" : "disabled");
9125
9126                 crtc->base.enabled = crtc->active;
9127
9128                 /* Because we only establish the connector -> encoder ->
9129                  * crtc links if something is active, this means the
9130                  * crtc is now deactivated. Break the links. connector
9131                  * -> encoder links are only establish when things are
9132                  *  actually up, hence no need to break them. */
9133                 WARN_ON(crtc->active);
9134
9135                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9136                         WARN_ON(encoder->connectors_active);
9137                         encoder->base.crtc = NULL;
9138                 }
9139         }
9140 }
9141
9142 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9143 {
9144         struct intel_connector *connector;
9145         struct drm_device *dev = encoder->base.dev;
9146
9147         /* We need to check both for a crtc link (meaning that the
9148          * encoder is active and trying to read from a pipe) and the
9149          * pipe itself being active. */
9150         bool has_active_crtc = encoder->base.crtc &&
9151                 to_intel_crtc(encoder->base.crtc)->active;
9152
9153         if (encoder->connectors_active && !has_active_crtc) {
9154                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9155                               encoder->base.base.id,
9156                               drm_get_encoder_name(&encoder->base));
9157
9158                 /* Connector is active, but has no active pipe. This is
9159                  * fallout from our resume register restoring. Disable
9160                  * the encoder manually again. */
9161                 if (encoder->base.crtc) {
9162                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9163                                       encoder->base.base.id,
9164                                       drm_get_encoder_name(&encoder->base));
9165                         encoder->disable(encoder);
9166                 }
9167
9168                 /* Inconsistent output/port/pipe state happens presumably due to
9169                  * a bug in one of the get_hw_state functions. Or someplace else
9170                  * in our code, like the register restore mess on resume. Clamp
9171                  * things to off as a safer default. */
9172                 list_for_each_entry(connector,
9173                                     &dev->mode_config.connector_list,
9174                                     base.head) {
9175                         if (connector->encoder != encoder)
9176                                 continue;
9177
9178                         intel_connector_break_all_links(connector);
9179                 }
9180         }
9181         /* Enabled encoders without active connectors will be fixed in
9182          * the crtc fixup. */
9183 }
9184
9185 static void i915_redisable_vga(struct drm_device *dev)
9186 {
9187         struct drm_i915_private *dev_priv = dev->dev_private;
9188         u32 vga_reg;
9189
9190         if (HAS_PCH_SPLIT(dev))
9191                 vga_reg = CPU_VGACNTRL;
9192         else
9193                 vga_reg = VGACNTRL;
9194
9195         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9196                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9197                 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9198                 POSTING_READ(vga_reg);
9199         }
9200 }
9201
9202 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9203  * and i915 state tracking structures. */
9204 void intel_modeset_setup_hw_state(struct drm_device *dev,
9205                                   bool force_restore)
9206 {
9207         struct drm_i915_private *dev_priv = dev->dev_private;
9208         enum pipe pipe;
9209         u32 tmp;
9210         struct intel_crtc *crtc;
9211         struct intel_encoder *encoder;
9212         struct intel_connector *connector;
9213
9214         if (IS_HASWELL(dev)) {
9215                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9216
9217                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9218                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9219                         case TRANS_DDI_EDP_INPUT_A_ON:
9220                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9221                                 pipe = PIPE_A;
9222                                 break;
9223                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9224                                 pipe = PIPE_B;
9225                                 break;
9226                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9227                                 pipe = PIPE_C;
9228                                 break;
9229                         }
9230
9231                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9232                         crtc->cpu_transcoder = TRANSCODER_EDP;
9233
9234                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9235                                       pipe_name(pipe));
9236                 }
9237         }
9238
9239         for_each_pipe(pipe) {
9240                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9241
9242                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9243                 if (tmp & PIPECONF_ENABLE)
9244                         crtc->active = true;
9245                 else
9246                         crtc->active = false;
9247
9248                 crtc->base.enabled = crtc->active;
9249
9250                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9251                               crtc->base.base.id,
9252                               crtc->active ? "enabled" : "disabled");
9253         }
9254
9255         if (IS_HASWELL(dev))
9256                 intel_ddi_setup_hw_pll_state(dev);
9257
9258         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9259                             base.head) {
9260                 pipe = 0;
9261
9262                 if (encoder->get_hw_state(encoder, &pipe)) {
9263                         encoder->base.crtc =
9264                                 dev_priv->pipe_to_crtc_mapping[pipe];
9265                 } else {
9266                         encoder->base.crtc = NULL;
9267                 }
9268
9269                 encoder->connectors_active = false;
9270                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9271                               encoder->base.base.id,
9272                               drm_get_encoder_name(&encoder->base),
9273                               encoder->base.crtc ? "enabled" : "disabled",
9274                               pipe);
9275         }
9276
9277         list_for_each_entry(connector, &dev->mode_config.connector_list,
9278                             base.head) {
9279                 if (connector->get_hw_state(connector)) {
9280                         connector->base.dpms = DRM_MODE_DPMS_ON;
9281                         connector->encoder->connectors_active = true;
9282                         connector->base.encoder = &connector->encoder->base;
9283                 } else {
9284                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9285                         connector->base.encoder = NULL;
9286                 }
9287                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9288                               connector->base.base.id,
9289                               drm_get_connector_name(&connector->base),
9290                               connector->base.encoder ? "enabled" : "disabled");
9291         }
9292
9293         /* HW state is read out, now we need to sanitize this mess. */
9294         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9295                             base.head) {
9296                 intel_sanitize_encoder(encoder);
9297         }
9298
9299         for_each_pipe(pipe) {
9300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9301                 intel_sanitize_crtc(crtc);
9302         }
9303
9304         if (force_restore) {
9305                 for_each_pipe(pipe) {
9306                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9307                         intel_set_mode(&crtc->base, &crtc->base.mode,
9308                                        crtc->base.x, crtc->base.y, crtc->base.fb);
9309                 }
9310
9311                 i915_redisable_vga(dev);
9312         } else {
9313                 intel_modeset_update_staged_output_state(dev);
9314         }
9315
9316         intel_modeset_check_state(dev);
9317
9318         drm_mode_config_reset(dev);
9319 }
9320
9321 void intel_modeset_gem_init(struct drm_device *dev)
9322 {
9323         intel_modeset_init_hw(dev);
9324
9325         intel_setup_overlay(dev);
9326
9327         intel_modeset_setup_hw_state(dev, false);
9328 }
9329
9330 void intel_modeset_cleanup(struct drm_device *dev)
9331 {
9332         struct drm_i915_private *dev_priv = dev->dev_private;
9333         struct drm_crtc *crtc;
9334         struct intel_crtc *intel_crtc;
9335
9336         drm_kms_helper_poll_fini(dev);
9337         mutex_lock(&dev->struct_mutex);
9338
9339         intel_unregister_dsm_handler();
9340
9341
9342         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9343                 /* Skip inactive CRTCs */
9344                 if (!crtc->fb)
9345                         continue;
9346
9347                 intel_crtc = to_intel_crtc(crtc);
9348                 intel_increase_pllclock(crtc);
9349         }
9350
9351         intel_disable_fbc(dev);
9352
9353         intel_disable_gt_powersave(dev);
9354
9355         ironlake_teardown_rc6(dev);
9356
9357         if (IS_VALLEYVIEW(dev))
9358                 vlv_init_dpio(dev);
9359
9360         mutex_unlock(&dev->struct_mutex);
9361
9362         /* Disable the irq before mode object teardown, for the irq might
9363          * enqueue unpin/hotplug work. */
9364         drm_irq_uninstall(dev);
9365         cancel_work_sync(&dev_priv->hotplug_work);
9366         cancel_work_sync(&dev_priv->rps.work);
9367
9368         /* flush any delayed tasks or pending work */
9369         flush_scheduled_work();
9370
9371         drm_mode_config_cleanup(dev);
9372 }
9373
9374 /*
9375  * Return which encoder is currently attached for connector.
9376  */
9377 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9378 {
9379         return &intel_attached_encoder(connector)->base;
9380 }
9381
9382 void intel_connector_attach_encoder(struct intel_connector *connector,
9383                                     struct intel_encoder *encoder)
9384 {
9385         connector->encoder = encoder;
9386         drm_mode_connector_attach_encoder(&connector->base,
9387                                           &encoder->base);
9388 }
9389
9390 /*
9391  * set vga decode state - true == enable VGA decode
9392  */
9393 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9394 {
9395         struct drm_i915_private *dev_priv = dev->dev_private;
9396         u16 gmch_ctrl;
9397
9398         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9399         if (state)
9400                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9401         else
9402                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9403         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9404         return 0;
9405 }
9406
9407 #ifdef CONFIG_DEBUG_FS
9408 #include <linux/seq_file.h>
9409
9410 struct intel_display_error_state {
9411         struct intel_cursor_error_state {
9412                 u32 control;
9413                 u32 position;
9414                 u32 base;
9415                 u32 size;
9416         } cursor[I915_MAX_PIPES];
9417
9418         struct intel_pipe_error_state {
9419                 u32 conf;
9420                 u32 source;
9421
9422                 u32 htotal;
9423                 u32 hblank;
9424                 u32 hsync;
9425                 u32 vtotal;
9426                 u32 vblank;
9427                 u32 vsync;
9428         } pipe[I915_MAX_PIPES];
9429
9430         struct intel_plane_error_state {
9431                 u32 control;
9432                 u32 stride;
9433                 u32 size;
9434                 u32 pos;
9435                 u32 addr;
9436                 u32 surface;
9437                 u32 tile_offset;
9438         } plane[I915_MAX_PIPES];
9439 };
9440
9441 struct intel_display_error_state *
9442 intel_display_capture_error_state(struct drm_device *dev)
9443 {
9444         drm_i915_private_t *dev_priv = dev->dev_private;
9445         struct intel_display_error_state *error;
9446         enum transcoder cpu_transcoder;
9447         int i;
9448
9449         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9450         if (error == NULL)
9451                 return NULL;
9452
9453         for_each_pipe(i) {
9454                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9455
9456                 error->cursor[i].control = I915_READ(CURCNTR(i));
9457                 error->cursor[i].position = I915_READ(CURPOS(i));
9458                 error->cursor[i].base = I915_READ(CURBASE(i));
9459
9460                 error->plane[i].control = I915_READ(DSPCNTR(i));
9461                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9462                 error->plane[i].size = I915_READ(DSPSIZE(i));
9463                 error->plane[i].pos = I915_READ(DSPPOS(i));
9464                 error->plane[i].addr = I915_READ(DSPADDR(i));
9465                 if (INTEL_INFO(dev)->gen >= 4) {
9466                         error->plane[i].surface = I915_READ(DSPSURF(i));
9467                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9468                 }
9469
9470                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9471                 error->pipe[i].source = I915_READ(PIPESRC(i));
9472                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9473                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9474                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9475                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9476                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9477                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9478         }
9479
9480         return error;
9481 }
9482
9483 void
9484 intel_display_print_error_state(struct seq_file *m,
9485                                 struct drm_device *dev,
9486                                 struct intel_display_error_state *error)
9487 {
9488         drm_i915_private_t *dev_priv = dev->dev_private;
9489         int i;
9490
9491         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9492         for_each_pipe(i) {
9493                 seq_printf(m, "Pipe [%d]:\n", i);
9494                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9495                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9496                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9497                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9498                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9499                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9500                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9501                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9502
9503                 seq_printf(m, "Plane [%d]:\n", i);
9504                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9505                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9506                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9507                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9508                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9509                 if (INTEL_INFO(dev)->gen >= 4) {
9510                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9511                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9512                 }
9513
9514                 seq_printf(m, "Cursor [%d]:\n", i);
9515                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9516                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9517                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9518         }
9519 }
9520 #endif