2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
42 #include "i915_vma_resource.h"
44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
47 * We may be forced to unbind when the vm is dead, to clean it up.
48 * This is the only exception to the requirement of the object lock
51 if (kref_read(&vma->vm->ref))
52 assert_object_held_shared(vma->obj);
55 static struct kmem_cache *slab_vmas;
57 static struct i915_vma *i915_vma_alloc(void)
59 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
62 static void i915_vma_free(struct i915_vma *vma)
64 return kmem_cache_free(slab_vmas, vma);
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
69 #include <linux/stackdepot.h>
71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
75 if (!vma->node.stack) {
76 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 vma->node.start, vma->node.size, reason);
81 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 vma->node.start, vma->node.size, reason, buf);
88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
96 return container_of(ref, typeof(struct i915_vma), active);
99 static int __i915_vma_active(struct i915_active *ref)
101 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
104 static void __i915_vma_retire(struct i915_active *ref)
106 i915_vma_put(active_to_vma(ref));
109 static struct i915_vma *
110 vma_create(struct drm_i915_gem_object *obj,
111 struct i915_address_space *vm,
112 const struct i915_ggtt_view *view)
114 struct i915_vma *pos = ERR_PTR(-E2BIG);
115 struct i915_vma *vma;
116 struct rb_node *rb, **p;
119 /* The aliasing_ppgtt should never be used directly! */
120 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
122 vma = i915_vma_alloc();
124 return ERR_PTR(-ENOMEM);
126 vma->ops = &vm->vma_ops;
128 vma->size = obj->base.size;
129 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
131 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
133 /* Declare ourselves safe for use inside shrinkers */
134 if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 fs_reclaim_acquire(GFP_KERNEL);
136 might_lock(&vma->active.mutex);
137 fs_reclaim_release(GFP_KERNEL);
140 INIT_LIST_HEAD(&vma->closed_link);
141 INIT_LIST_HEAD(&vma->obj_link);
142 RB_CLEAR_NODE(&vma->obj_node);
144 if (view && view->type != I915_GGTT_VIEW_NORMAL) {
145 vma->ggtt_view = *view;
146 if (view->type == I915_GGTT_VIEW_PARTIAL) {
147 GEM_BUG_ON(range_overflows_t(u64,
148 view->partial.offset,
150 obj->base.size >> PAGE_SHIFT));
151 vma->size = view->partial.size;
152 vma->size <<= PAGE_SHIFT;
153 GEM_BUG_ON(vma->size > obj->base.size);
154 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
155 vma->size = intel_rotation_info_size(&view->rotated);
156 vma->size <<= PAGE_SHIFT;
157 } else if (view->type == I915_GGTT_VIEW_REMAPPED) {
158 vma->size = intel_remapped_info_size(&view->remapped);
159 vma->size <<= PAGE_SHIFT;
163 if (unlikely(vma->size > vm->total))
166 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
168 err = mutex_lock_interruptible(&vm->mutex);
175 list_add_tail(&vma->vm_link, &vm->unbound_list);
177 spin_lock(&obj->vma.lock);
178 if (i915_is_ggtt(vm)) {
179 if (unlikely(overflows_type(vma->size, u32)))
182 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 i915_gem_object_get_tiling(obj),
184 i915_gem_object_get_stride(obj));
185 if (unlikely(vma->fence_size < vma->size || /* overflow */
186 vma->fence_size > vm->total))
189 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
191 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 i915_gem_object_get_tiling(obj),
193 i915_gem_object_get_stride(obj));
194 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
196 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
200 p = &obj->vma.tree.rb_node;
205 pos = rb_entry(rb, struct i915_vma, obj_node);
208 * If the view already exists in the tree, another thread
209 * already created a matching vma, so return the older instance
210 * and dispose of ours.
212 cmp = i915_vma_compare(pos, vm, view);
220 rb_link_node(&vma->obj_node, rb, p);
221 rb_insert_color(&vma->obj_node, &obj->vma.tree);
223 if (i915_vma_is_ggtt(vma))
225 * We put the GGTT vma at the start of the vma-list, followed
226 * by the ppGGTT vma. This allows us to break early when
227 * iterating over only the GGTT vma for an object, see
228 * for_each_ggtt_vma()
230 list_add(&vma->obj_link, &obj->vma.list);
232 list_add_tail(&vma->obj_link, &obj->vma.list);
234 spin_unlock(&obj->vma.lock);
235 mutex_unlock(&vm->mutex);
240 spin_unlock(&obj->vma.lock);
241 list_del_init(&vma->vm_link);
242 mutex_unlock(&vm->mutex);
248 static struct i915_vma *
249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 struct i915_address_space *vm,
251 const struct i915_ggtt_view *view)
255 rb = obj->vma.tree.rb_node;
257 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
260 cmp = i915_vma_compare(vma, vm, view);
274 * i915_vma_instance - return the singleton instance of the VMA
275 * @obj: parent &struct drm_i915_gem_object to be mapped
276 * @vm: address space in which the mapping is located
277 * @view: additional mapping requirements
279 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280 * the same @view characteristics. If a match is not found, one is created.
281 * Once created, the VMA is kept until either the object is freed, or the
282 * address space is closed.
284 * Returns the vma, or an error pointer.
287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 struct i915_address_space *vm,
289 const struct i915_ggtt_view *view)
291 struct i915_vma *vma;
293 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 GEM_BUG_ON(!kref_read(&vm->ref));
296 spin_lock(&obj->vma.lock);
297 vma = i915_vma_lookup(obj, vm, view);
298 spin_unlock(&obj->vma.lock);
300 /* vma_create() will resolve the race if another creates the vma */
302 vma = vma_create(obj, vm, view);
304 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
308 struct i915_vma_work {
309 struct dma_fence_work base;
310 struct i915_address_space *vm;
311 struct i915_vm_pt_stash stash;
312 struct i915_vma_resource *vma_res;
313 struct drm_i915_gem_object *obj;
314 struct i915_sw_dma_fence_cb cb;
315 enum i915_cache_level cache_level;
319 static void __vma_bind(struct dma_fence_work *work)
321 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 struct i915_vma_resource *vma_res = vw->vma_res;
325 * We are about the bind the object, which must mean we have already
326 * signaled the work to potentially clear/move the pages underneath. If
327 * something went wrong at that stage then the object should have
328 * unknown_state set, in which case we need to skip the bind.
330 if (i915_gem_object_has_unknown_state(vw->obj))
333 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
334 vma_res, vw->cache_level, vw->flags);
337 static void __vma_release(struct dma_fence_work *work)
339 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
342 i915_gem_object_put(vw->obj);
344 i915_vm_free_pt_stash(vw->vm, &vw->stash);
346 i915_vma_resource_put(vw->vma_res);
349 static const struct dma_fence_work_ops bind_ops = {
352 .release = __vma_release,
355 struct i915_vma_work *i915_vma_work(void)
357 struct i915_vma_work *vw;
359 vw = kzalloc(sizeof(*vw), GFP_KERNEL);
363 dma_fence_work_init(&vw->base, &bind_ops);
364 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
369 int i915_vma_wait_for_bind(struct i915_vma *vma)
373 if (rcu_access_pointer(vma->active.excl.fence)) {
374 struct dma_fence *fence;
377 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
380 err = dma_fence_wait(fence, true);
381 dma_fence_put(fence);
388 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
389 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
391 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
397 if (dma_fence_is_signaled(fence))
402 dma_fence_put(fence);
407 #define i915_vma_verify_bind_complete(_vma) 0
410 I915_SELFTEST_EXPORT void
411 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
412 struct i915_vma *vma)
414 struct drm_i915_gem_object *obj = vma->obj;
416 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
417 obj->mm.rsgt, i915_gem_object_is_readonly(obj),
418 i915_gem_object_is_lmem(obj), obj->mm.region,
419 vma->ops, vma->private, vma->node.start,
420 vma->node.size, vma->size);
424 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
426 * @cache_level: mapping cache level
427 * @flags: flags like global or local mapping
428 * @work: preallocated worker for allocating and binding the PTE
429 * @vma_res: pointer to a preallocated vma resource. The resource is either
432 * DMA addresses are taken from the scatter-gather table of this object (or of
433 * this VMA in case of non-default GGTT views) and PTE entries set up.
434 * Note that DMA addresses are also the only part of the SG table we care about.
436 int i915_vma_bind(struct i915_vma *vma,
437 enum i915_cache_level cache_level,
439 struct i915_vma_work *work,
440 struct i915_vma_resource *vma_res)
446 lockdep_assert_held(&vma->vm->mutex);
447 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
448 GEM_BUG_ON(vma->size > vma->node.size);
450 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
453 i915_vma_resource_free(vma_res);
457 if (GEM_DEBUG_WARN_ON(!flags)) {
458 i915_vma_resource_free(vma_res);
463 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
465 vma_flags = atomic_read(&vma->flags);
466 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
468 bind_flags &= ~vma_flags;
469 if (bind_flags == 0) {
470 i915_vma_resource_free(vma_res);
474 GEM_BUG_ON(!atomic_read(&vma->pages_count));
476 /* Wait for or await async unbinds touching our range */
477 if (work && bind_flags & vma->vm->bind_async_flags)
478 ret = i915_vma_resource_bind_dep_await(vma->vm,
484 __GFP_RETRY_MAYFAIL |
487 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
488 vma->node.size, true);
490 i915_vma_resource_free(vma_res);
494 if (vma->resource || !vma_res) {
495 /* Rebinding with an additional I915_VMA_*_BIND */
496 GEM_WARN_ON(!vma_flags);
497 i915_vma_resource_free(vma_res);
499 i915_vma_resource_init_from_vma(vma_res, vma);
500 vma->resource = vma_res;
502 trace_i915_vma_bind(vma, bind_flags);
503 if (work && bind_flags & vma->vm->bind_async_flags) {
504 struct dma_fence *prev;
506 work->vma_res = i915_vma_resource_get(vma->resource);
507 work->cache_level = cache_level;
508 work->flags = bind_flags;
511 * Note we only want to chain up to the migration fence on
512 * the pages (not the object itself). As we don't track that,
513 * yet, we have to use the exclusive fence instead.
515 * Also note that we do not want to track the async vma as
516 * part of the obj->resv->excl_fence as it only affects
517 * execution and not content or object's backing store lifetime.
519 prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
521 __i915_sw_fence_await_dma_fence(&work->base.chain,
527 work->base.dma.error = 0; /* enable the queue_work() */
528 work->obj = i915_gem_object_get(vma->obj);
530 ret = i915_gem_object_wait_moving_fence(vma->obj, true);
532 i915_vma_resource_free(vma->resource);
533 vma->resource = NULL;
537 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
541 set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
543 atomic_or(bind_flags, &vma->flags);
547 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
552 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
553 return IOMEM_ERR_PTR(-EINVAL);
555 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
556 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
557 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
559 ptr = READ_ONCE(vma->iomap);
562 * TODO: consider just using i915_gem_object_pin_map() for lmem
563 * instead, which already supports mapping non-contiguous chunks
564 * of pages, that way we can also drop the
565 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
567 if (i915_gem_object_is_lmem(vma->obj)) {
568 ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
569 vma->obj->base.size);
570 } else if (i915_vma_is_map_and_fenceable(vma)) {
571 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
575 ptr = (void __iomem *)
576 i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
581 ptr = page_pack_bits(ptr, 1);
589 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
590 if (page_unmask_bits(ptr))
591 __i915_gem_object_release_map(vma->obj);
593 io_mapping_unmap(ptr);
600 err = i915_vma_pin_fence(vma);
604 i915_vma_set_ggtt_write(vma);
606 /* NB Access through the GTT requires the device to be awake. */
607 return page_mask_bits(ptr);
610 __i915_vma_unpin(vma);
612 return IOMEM_ERR_PTR(err);
615 void i915_vma_flush_writes(struct i915_vma *vma)
617 if (i915_vma_unset_ggtt_write(vma))
618 intel_gt_flush_ggtt_writes(vma->vm->gt);
621 void i915_vma_unpin_iomap(struct i915_vma *vma)
623 GEM_BUG_ON(vma->iomap == NULL);
625 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
627 i915_vma_flush_writes(vma);
629 i915_vma_unpin_fence(vma);
633 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
635 struct i915_vma *vma;
636 struct drm_i915_gem_object *obj;
638 vma = fetch_and_zero(p_vma);
647 if (flags & I915_VMA_RELEASE_MAP)
648 i915_gem_object_unpin_map(obj);
650 i915_gem_object_put(obj);
653 bool i915_vma_misplaced(const struct i915_vma *vma,
654 u64 size, u64 alignment, u64 flags)
656 if (!drm_mm_node_allocated(&vma->node))
659 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
662 if (vma->node.size < size)
665 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
666 if (alignment && !IS_ALIGNED(vma->node.start, alignment))
669 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
672 if (flags & PIN_OFFSET_BIAS &&
673 vma->node.start < (flags & PIN_OFFSET_MASK))
676 if (flags & PIN_OFFSET_FIXED &&
677 vma->node.start != (flags & PIN_OFFSET_MASK))
683 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
685 bool mappable, fenceable;
687 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
688 GEM_BUG_ON(!vma->fence_size);
690 fenceable = (vma->node.size >= vma->fence_size &&
691 IS_ALIGNED(vma->node.start, vma->fence_alignment));
693 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
695 if (mappable && fenceable)
696 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
698 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
701 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
703 struct drm_mm_node *node = &vma->node;
704 struct drm_mm_node *other;
707 * On some machines we have to be careful when putting differing types
708 * of snoopable memory together to avoid the prefetcher crossing memory
709 * domains and dying. During vm initialisation, we decide whether or not
710 * these constraints apply and set the drm_mm.color_adjust
713 if (!i915_vm_has_cache_coloring(vma->vm))
716 /* Only valid to be called on an already inserted vma */
717 GEM_BUG_ON(!drm_mm_node_allocated(node));
718 GEM_BUG_ON(list_empty(&node->node_list));
720 other = list_prev_entry(node, node_list);
721 if (i915_node_color_differs(other, color) &&
722 !drm_mm_hole_follows(other))
725 other = list_next_entry(node, node_list);
726 if (i915_node_color_differs(other, color) &&
727 !drm_mm_hole_follows(node))
734 * i915_vma_insert - finds a slot for the vma in its address space
736 * @size: requested size in bytes (can be larger than the VMA)
737 * @alignment: required alignment
738 * @flags: mask of PIN_* flags to use
740 * First we try to allocate some free space that meets the requirements for
741 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
742 * preferrably the oldest idle entry to make room for the new VMA.
745 * 0 on success, negative error code otherwise.
748 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
749 u64 size, u64 alignment, u64 flags)
755 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
756 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
758 size = max(size, vma->size);
759 alignment = max(alignment, vma->display_alignment);
760 if (flags & PIN_MAPPABLE) {
761 size = max_t(typeof(size), size, vma->fence_size);
762 alignment = max_t(typeof(alignment),
763 alignment, vma->fence_alignment);
766 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
767 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
768 GEM_BUG_ON(!is_power_of_2(alignment));
770 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
771 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
773 end = vma->vm->total;
774 if (flags & PIN_MAPPABLE)
775 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
776 if (flags & PIN_ZONE_4G)
777 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
778 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
780 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
782 * for compact-pt we round up the reservation to prevent
783 * any smaller pages being used within the same PDE
785 if (NEEDS_COMPACT_PT(vma->vm->i915))
786 size = round_up(size, alignment);
788 /* If binding the object/GGTT view requires more space than the entire
789 * aperture has, reject it early before evicting everything in a vain
790 * attempt to find space.
793 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
794 size, flags & PIN_MAPPABLE ? "mappable" : "total",
801 if (i915_vm_has_cache_coloring(vma->vm))
802 color = vma->obj->cache_level;
804 if (flags & PIN_OFFSET_FIXED) {
805 u64 offset = flags & PIN_OFFSET_MASK;
806 if (!IS_ALIGNED(offset, alignment) ||
807 range_overflows(offset, size, end))
810 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
817 * We only support huge gtt pages through the 48b PPGTT,
818 * however we also don't want to force any alignment for
819 * objects which need to be tightly packed into the low 32bits.
821 * Note that we assume that GGTT are limited to 4GiB for the
822 * forseeable future. See also i915_ggtt_offset().
824 if (upper_32_bits(end - 1) &&
825 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
827 * We can't mix 64K and 4K PTEs in the same page-table
828 * (2M block), and so to avoid the ugliness and
829 * complexity of coloring we opt for just aligning 64K
833 rounddown_pow_of_two(vma->page_sizes.sg |
834 I915_GTT_PAGE_SIZE_2M);
837 * Check we don't expand for the limited Global GTT
838 * (mappable aperture is even more precious!). This
839 * also checks that we exclude the aliasing-ppgtt.
841 GEM_BUG_ON(i915_vma_is_ggtt(vma));
843 alignment = max(alignment, page_alignment);
845 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
846 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
849 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
850 size, alignment, color,
855 GEM_BUG_ON(vma->node.start < start);
856 GEM_BUG_ON(vma->node.start + vma->node.size > end);
858 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
859 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
861 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
867 i915_vma_detach(struct i915_vma *vma)
869 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
870 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
873 * And finally now the object is completely decoupled from this
874 * vma, we can drop its hold on the backing storage and allow
875 * it to be reaped by the shrinker.
877 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
880 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
884 bound = atomic_read(&vma->flags);
886 if (flags & PIN_VALIDATE) {
887 flags &= I915_VMA_BIND_MASK;
889 return (flags & bound) == flags;
892 /* with the lock mandatory for unbind, we don't race here */
893 flags &= I915_VMA_BIND_MASK;
895 if (unlikely(flags & ~bound))
898 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
901 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
902 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
907 static struct scatterlist *
908 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
909 unsigned int width, unsigned int height,
910 unsigned int src_stride, unsigned int dst_stride,
911 struct sg_table *st, struct scatterlist *sg)
913 unsigned int column, row;
914 unsigned int src_idx;
916 for (column = 0; column < width; column++) {
919 src_idx = src_stride * (height - 1) + column + offset;
920 for (row = 0; row < height; row++) {
923 * We don't need the pages, but need to initialize
924 * the entries so the sg list can be happily traversed.
925 * The only thing we need are DMA addresses.
927 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
929 i915_gem_object_get_dma_address(obj, src_idx);
930 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
932 src_idx -= src_stride;
935 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
943 * The DE ignores the PTEs for the padding tiles, the sg entry
944 * here is just a conenience to indicate how many padding PTEs
945 * to insert at this spot.
947 sg_set_page(sg, NULL, left, 0);
948 sg_dma_address(sg) = 0;
949 sg_dma_len(sg) = left;
956 static noinline struct sg_table *
957 intel_rotate_pages(struct intel_rotation_info *rot_info,
958 struct drm_i915_gem_object *obj)
960 unsigned int size = intel_rotation_info_size(rot_info);
961 struct drm_i915_private *i915 = to_i915(obj->base.dev);
963 struct scatterlist *sg;
967 /* Allocate target SG list. */
968 st = kmalloc(sizeof(*st), GFP_KERNEL);
972 ret = sg_alloc_table(st, size, GFP_KERNEL);
979 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
980 sg = rotate_pages(obj, rot_info->plane[i].offset,
981 rot_info->plane[i].width, rot_info->plane[i].height,
982 rot_info->plane[i].src_stride,
983 rot_info->plane[i].dst_stride,
992 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
993 obj->base.size, rot_info->plane[0].width,
994 rot_info->plane[0].height, size);
999 static struct scatterlist *
1000 add_padding_pages(unsigned int count,
1001 struct sg_table *st, struct scatterlist *sg)
1006 * The DE ignores the PTEs for the padding tiles, the sg entry
1007 * here is just a convenience to indicate how many padding PTEs
1008 * to insert at this spot.
1010 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1011 sg_dma_address(sg) = 0;
1012 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1018 static struct scatterlist *
1019 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1020 unsigned int offset, unsigned int alignment_pad,
1021 unsigned int width, unsigned int height,
1022 unsigned int src_stride, unsigned int dst_stride,
1023 struct sg_table *st, struct scatterlist *sg,
1024 unsigned int *gtt_offset)
1028 if (!width || !height)
1032 sg = add_padding_pages(alignment_pad, st, sg);
1034 for (row = 0; row < height; row++) {
1035 unsigned int left = width * I915_GTT_PAGE_SIZE;
1039 unsigned int length;
1042 * We don't need the pages, but need to initialize
1043 * the entries so the sg list can be happily traversed.
1044 * The only thing we need are DMA addresses.
1047 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1049 length = min(left, length);
1053 sg_set_page(sg, NULL, length, 0);
1054 sg_dma_address(sg) = addr;
1055 sg_dma_len(sg) = length;
1058 offset += length / I915_GTT_PAGE_SIZE;
1062 offset += src_stride - width;
1064 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1069 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1072 *gtt_offset += alignment_pad + dst_stride * height;
1077 static struct scatterlist *
1078 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1079 unsigned int obj_offset,
1081 struct sg_table *st, struct scatterlist *sg)
1083 struct scatterlist *iter;
1084 unsigned int offset;
1086 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1092 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1093 count << PAGE_SHIFT);
1094 sg_set_page(sg, NULL, len, 0);
1095 sg_dma_address(sg) =
1096 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1097 sg_dma_len(sg) = len;
1100 count -= len >> PAGE_SHIFT;
1105 iter = __sg_next(iter);
1110 static struct scatterlist *
1111 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1112 unsigned int obj_offset, unsigned int alignment_pad,
1114 struct sg_table *st, struct scatterlist *sg,
1115 unsigned int *gtt_offset)
1121 sg = add_padding_pages(alignment_pad, st, sg);
1123 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1126 *gtt_offset += alignment_pad + size;
1131 static struct scatterlist *
1132 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1133 struct drm_i915_gem_object *obj,
1135 struct sg_table *st, struct scatterlist *sg,
1136 unsigned int *gtt_offset)
1138 unsigned int alignment_pad = 0;
1140 if (rem_info->plane_alignment)
1141 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1143 if (rem_info->plane[color_plane].linear)
1144 sg = remap_linear_color_plane_pages(obj,
1145 rem_info->plane[color_plane].offset,
1147 rem_info->plane[color_plane].size,
1152 sg = remap_tiled_color_plane_pages(obj,
1153 rem_info->plane[color_plane].offset,
1155 rem_info->plane[color_plane].width,
1156 rem_info->plane[color_plane].height,
1157 rem_info->plane[color_plane].src_stride,
1158 rem_info->plane[color_plane].dst_stride,
1165 static noinline struct sg_table *
1166 intel_remap_pages(struct intel_remapped_info *rem_info,
1167 struct drm_i915_gem_object *obj)
1169 unsigned int size = intel_remapped_info_size(rem_info);
1170 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1171 struct sg_table *st;
1172 struct scatterlist *sg;
1173 unsigned int gtt_offset = 0;
1177 /* Allocate target SG list. */
1178 st = kmalloc(sizeof(*st), GFP_KERNEL);
1182 ret = sg_alloc_table(st, size, GFP_KERNEL);
1189 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1190 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset);
1200 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1201 obj->base.size, rem_info->plane[0].width,
1202 rem_info->plane[0].height, size);
1204 return ERR_PTR(ret);
1207 static noinline struct sg_table *
1208 intel_partial_pages(const struct i915_ggtt_view *view,
1209 struct drm_i915_gem_object *obj)
1211 struct sg_table *st;
1212 struct scatterlist *sg;
1213 unsigned int count = view->partial.size;
1216 st = kmalloc(sizeof(*st), GFP_KERNEL);
1220 ret = sg_alloc_table(st, count, GFP_KERNEL);
1226 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1229 i915_sg_trim(st); /* Drop any unused tail entries. */
1236 return ERR_PTR(ret);
1240 __i915_vma_get_pages(struct i915_vma *vma)
1242 struct sg_table *pages;
1245 * The vma->pages are only valid within the lifespan of the borrowed
1246 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1247 * must be the vma->pages. A simple rule is that vma->pages must only
1248 * be accessed when the obj->mm.pages are pinned.
1250 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1252 switch (vma->ggtt_view.type) {
1254 GEM_BUG_ON(vma->ggtt_view.type);
1256 case I915_GGTT_VIEW_NORMAL:
1257 pages = vma->obj->mm.pages;
1260 case I915_GGTT_VIEW_ROTATED:
1262 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1265 case I915_GGTT_VIEW_REMAPPED:
1267 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1270 case I915_GGTT_VIEW_PARTIAL:
1271 pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1275 if (IS_ERR(pages)) {
1276 drm_err(&vma->vm->i915->drm,
1277 "Failed to get pages for VMA view type %u (%ld)!\n",
1278 vma->ggtt_view.type, PTR_ERR(pages));
1279 return PTR_ERR(pages);
1287 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1291 if (atomic_add_unless(&vma->pages_count, 1, 0))
1294 err = i915_gem_object_pin_pages(vma->obj);
1298 err = __i915_vma_get_pages(vma);
1302 vma->page_sizes = vma->obj->mm.page_sizes;
1303 atomic_inc(&vma->pages_count);
1308 __i915_gem_object_unpin_pages(vma->obj);
1313 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1315 /* We allocate under vma_get_pages, so beware the shrinker */
1316 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1318 if (atomic_sub_return(count, &vma->pages_count) == 0) {
1319 if (vma->pages != vma->obj->mm.pages) {
1320 sg_free_table(vma->pages);
1325 i915_gem_object_unpin_pages(vma->obj);
1329 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1331 if (atomic_add_unless(&vma->pages_count, -1, 1))
1334 __vma_put_pages(vma, 1);
1337 static void vma_unbind_pages(struct i915_vma *vma)
1341 lockdep_assert_held(&vma->vm->mutex);
1343 /* The upper portion of pages_count is the number of bindings */
1344 count = atomic_read(&vma->pages_count);
1345 count >>= I915_VMA_PAGES_BIAS;
1348 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1351 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1352 u64 size, u64 alignment, u64 flags)
1354 struct i915_vma_work *work = NULL;
1355 struct dma_fence *moving = NULL;
1356 struct i915_vma_resource *vma_res = NULL;
1357 intel_wakeref_t wakeref = 0;
1361 assert_vma_held(vma);
1364 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1365 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1367 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1369 /* First try and grab the pin without rebinding the vma */
1370 if (try_qad_pin(vma, flags))
1373 err = i915_vma_get_pages(vma);
1377 if (flags & PIN_GLOBAL)
1378 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1380 if (flags & vma->vm->bind_async_flags) {
1382 err = i915_vm_lock_objects(vma->vm, ww);
1386 work = i915_vma_work();
1394 err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1398 dma_fence_work_chain(&work->base, moving);
1400 /* Allocate enough page directories to used PTE */
1401 if (vma->vm->allocate_va_range) {
1402 err = i915_vm_alloc_pt_stash(vma->vm,
1408 err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1414 vma_res = i915_vma_resource_alloc();
1415 if (IS_ERR(vma_res)) {
1416 err = PTR_ERR(vma_res);
1421 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1423 * We conflate the Global GTT with the user's vma when using the
1424 * aliasing-ppgtt, but it is still vitally important to try and
1425 * keep the use cases distinct. For example, userptr objects are
1426 * not allowed inside the Global GTT as that will cause lock
1427 * inversions when we have to evict them the mmu_notifier callbacks -
1428 * but they are allowed to be part of the user ppGTT which can never
1429 * be mapped. As such we try to give the distinct users of the same
1430 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1431 * and i915_ppgtt separate].
1433 * NB this may cause us to mask real lock inversions -- while the
1434 * code is safe today, lockdep may not be able to spot future
1437 err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1438 !(flags & PIN_GLOBAL));
1442 /* No more allocations allowed now we hold vm->mutex */
1444 if (unlikely(i915_vma_is_closed(vma))) {
1449 bound = atomic_read(&vma->flags);
1450 if (unlikely(bound & I915_VMA_ERROR)) {
1455 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1456 err = -EAGAIN; /* pins are meant to be fairly temporary */
1460 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1461 if (!(flags & PIN_VALIDATE))
1462 __i915_vma_pin(vma);
1466 err = i915_active_acquire(&vma->active);
1470 if (!(bound & I915_VMA_BIND_MASK)) {
1471 err = i915_vma_insert(vma, ww, size, alignment, flags);
1475 if (i915_is_ggtt(vma->vm))
1476 __i915_vma_set_map_and_fenceable(vma);
1479 GEM_BUG_ON(!vma->pages);
1480 err = i915_vma_bind(vma,
1481 vma->obj->cache_level,
1482 flags, work, vma_res);
1487 /* There should only be at most 2 active bindings (user, global) */
1488 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1489 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1490 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1492 if (!(flags & PIN_VALIDATE)) {
1493 __i915_vma_pin(vma);
1494 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1496 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1497 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1500 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1501 i915_vma_detach(vma);
1502 drm_mm_remove_node(&vma->node);
1505 i915_active_release(&vma->active);
1507 mutex_unlock(&vma->vm->mutex);
1509 i915_vma_resource_free(vma_res);
1512 dma_fence_work_commit_imm(&work->base);
1515 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1518 dma_fence_put(moving);
1520 i915_vma_put_pages(vma);
1524 static void flush_idle_contexts(struct intel_gt *gt)
1526 struct intel_engine_cs *engine;
1527 enum intel_engine_id id;
1529 for_each_engine(engine, gt, id)
1530 intel_engine_flush_barriers(engine);
1532 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1535 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1536 u32 align, unsigned int flags)
1538 struct i915_address_space *vm = vma->vm;
1542 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1544 if (err != -ENOSPC) {
1546 err = i915_vma_wait_for_bind(vma);
1548 i915_vma_unpin(vma);
1553 /* Unlike i915_vma_pin, we don't take no for an answer! */
1554 flush_idle_contexts(vm->gt);
1555 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1557 * We pass NULL ww here, as we don't want to unbind
1558 * locked objects when called from execbuf when pinning
1559 * is removed. This would probably regress badly.
1561 i915_gem_evict_vm(vm, NULL);
1562 mutex_unlock(&vm->mutex);
1567 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1568 u32 align, unsigned int flags)
1570 struct i915_gem_ww_ctx _ww;
1573 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1576 return __i915_ggtt_pin(vma, ww, align, flags);
1578 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1580 for_i915_gem_ww(&_ww, err, true) {
1581 err = i915_gem_object_lock(vma->obj, &_ww);
1583 err = __i915_ggtt_pin(vma, &_ww, align, flags);
1589 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1592 * We defer actually closing, unbinding and destroying the VMA until
1593 * the next idle point, or if the object is freed in the meantime. By
1594 * postponing the unbind, we allow for it to be resurrected by the
1595 * client, avoiding the work required to rebind the VMA. This is
1596 * advantageous for DRI, where the client/server pass objects
1597 * between themselves, temporarily opening a local VMA to the
1598 * object, and then closing it again. The same object is then reused
1599 * on the next frame (or two, depending on the depth of the swap queue)
1600 * causing us to rebind the VMA once more. This ends up being a lot
1601 * of wasted work for the steady state.
1603 GEM_BUG_ON(i915_vma_is_closed(vma));
1604 list_add(&vma->closed_link, >->closed_vma);
1607 void i915_vma_close(struct i915_vma *vma)
1609 struct intel_gt *gt = vma->vm->gt;
1610 unsigned long flags;
1612 if (i915_vma_is_ggtt(vma))
1615 GEM_BUG_ON(!atomic_read(&vma->open_count));
1616 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1619 __vma_close(vma, gt);
1620 spin_unlock_irqrestore(>->closed_lock, flags);
1624 static void __i915_vma_remove_closed(struct i915_vma *vma)
1626 list_del_init(&vma->closed_link);
1629 void i915_vma_reopen(struct i915_vma *vma)
1631 struct intel_gt *gt = vma->vm->gt;
1633 spin_lock_irq(>->closed_lock);
1634 if (i915_vma_is_closed(vma))
1635 __i915_vma_remove_closed(vma);
1636 spin_unlock_irq(>->closed_lock);
1639 static void force_unbind(struct i915_vma *vma)
1641 if (!drm_mm_node_allocated(&vma->node))
1644 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1645 WARN_ON(__i915_vma_unbind(vma));
1646 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1649 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1652 struct drm_i915_gem_object *obj = vma->obj;
1654 GEM_BUG_ON(i915_vma_is_active(vma));
1656 spin_lock(&obj->vma.lock);
1657 list_del(&vma->obj_link);
1658 if (!RB_EMPTY_NODE(&vma->obj_node))
1659 rb_erase(&vma->obj_node, &obj->vma.tree);
1661 spin_unlock(&obj->vma.lock);
1663 spin_lock_irq(>->closed_lock);
1664 __i915_vma_remove_closed(vma);
1665 spin_unlock_irq(>->closed_lock);
1668 i915_vm_resv_put(vma->vm);
1670 i915_active_fini(&vma->active);
1671 GEM_WARN_ON(vma->resource);
1676 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1677 * the initial reference.
1679 * This function should be called when it's decided the vma isn't needed
1680 * anymore. The caller must assure that it doesn't race with another lookup
1681 * plus destroy, typically by taking an appropriate reference.
1683 * Current callsites are
1684 * - __i915_gem_object_pages_fini()
1685 * - __i915_vm_close() - Blocks the above function by taking a reference on
1687 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1688 * on the vm and a reference on the object. Also takes the object lock so
1689 * destruction from __i915_vma_parked() can be blocked by holding the
1690 * object lock. Since the object lock is only allowed from within i915 with
1691 * an object refcount, holding the object lock also implicitly blocks the
1692 * vma freeing from __i915_gem_object_pages_fini().
1694 * Because of locks taken during destruction, a vma is also guaranteed to
1695 * stay alive while the following locks are held if it was looked up while
1696 * holding one of the locks:
1701 void i915_vma_destroy_locked(struct i915_vma *vma)
1703 lockdep_assert_held(&vma->vm->mutex);
1706 list_del_init(&vma->vm_link);
1707 release_references(vma, vma->vm->gt, false);
1710 void i915_vma_destroy(struct i915_vma *vma)
1712 struct intel_gt *gt;
1715 mutex_lock(&vma->vm->mutex);
1717 list_del_init(&vma->vm_link);
1718 vm_ddestroy = vma->vm_ddestroy;
1719 vma->vm_ddestroy = false;
1721 /* vma->vm may be freed when releasing vma->vm->mutex. */
1723 mutex_unlock(&vma->vm->mutex);
1724 release_references(vma, gt, vm_ddestroy);
1727 void i915_vma_parked(struct intel_gt *gt)
1729 struct i915_vma *vma, *next;
1732 spin_lock_irq(>->closed_lock);
1733 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) {
1734 struct drm_i915_gem_object *obj = vma->obj;
1735 struct i915_address_space *vm = vma->vm;
1737 /* XXX All to avoid keeping a reference on i915_vma itself */
1739 if (!kref_get_unless_zero(&obj->base.refcount))
1742 if (!i915_vm_tryget(vm)) {
1743 i915_gem_object_put(obj);
1747 list_move(&vma->closed_link, &closed);
1749 spin_unlock_irq(>->closed_lock);
1751 /* As the GT is held idle, no vma can be reopened as we destroy them */
1752 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1753 struct drm_i915_gem_object *obj = vma->obj;
1754 struct i915_address_space *vm = vma->vm;
1756 if (i915_gem_object_trylock(obj, NULL)) {
1757 INIT_LIST_HEAD(&vma->closed_link);
1758 i915_vma_destroy(vma);
1759 i915_gem_object_unlock(obj);
1762 spin_lock_irq(>->closed_lock);
1763 list_add(&vma->closed_link, >->closed_vma);
1764 spin_unlock_irq(>->closed_lock);
1767 i915_gem_object_put(obj);
1772 static void __i915_vma_iounmap(struct i915_vma *vma)
1774 GEM_BUG_ON(i915_vma_is_pinned(vma));
1776 if (vma->iomap == NULL)
1779 if (page_unmask_bits(vma->iomap))
1780 __i915_gem_object_release_map(vma->obj);
1782 io_mapping_unmap(vma->iomap);
1786 void i915_vma_revoke_mmap(struct i915_vma *vma)
1788 struct drm_vma_offset_node *node;
1791 if (!i915_vma_has_userfault(vma))
1794 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1795 GEM_BUG_ON(!vma->obj->userfault_count);
1797 node = &vma->mmo->vma_node;
1798 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1799 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1800 drm_vma_node_offset_addr(node) + vma_offset,
1804 i915_vma_unset_userfault(vma);
1805 if (!--vma->obj->userfault_count)
1806 list_del(&vma->obj->userfault_link);
1810 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1812 return __i915_request_await_exclusive(rq, &vma->active);
1815 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1819 /* Wait for the vma to be bound before we start! */
1820 err = __i915_request_await_bind(rq, vma);
1824 return i915_active_add_request(&vma->active, rq);
1827 int _i915_vma_move_to_active(struct i915_vma *vma,
1828 struct i915_request *rq,
1829 struct dma_fence *fence,
1832 struct drm_i915_gem_object *obj = vma->obj;
1835 assert_object_held(obj);
1837 GEM_BUG_ON(!vma->pages);
1839 err = __i915_vma_move_to_active(vma, rq);
1844 * Reserve fences slot early to prevent an allocation after preparing
1845 * the workload and associating fences with dma_resv.
1847 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1848 struct dma_fence *curr;
1851 dma_fence_array_for_each(curr, idx, fence)
1853 err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1858 if (flags & EXEC_OBJECT_WRITE) {
1859 struct intel_frontbuffer *front;
1861 front = __intel_frontbuffer_get(obj);
1862 if (unlikely(front)) {
1863 if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1864 i915_active_add_request(&front->write, rq);
1865 intel_frontbuffer_put(front);
1870 struct dma_fence *curr;
1871 enum dma_resv_usage usage;
1874 obj->read_domains = 0;
1875 if (flags & EXEC_OBJECT_WRITE) {
1876 usage = DMA_RESV_USAGE_WRITE;
1877 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1879 usage = DMA_RESV_USAGE_READ;
1882 dma_fence_array_for_each(curr, idx, fence)
1883 dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1886 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1887 i915_active_add_request(&vma->fence->active, rq);
1889 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1890 obj->mm.dirty = true;
1892 GEM_BUG_ON(!i915_vma_is_active(vma));
1896 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1898 struct i915_vma_resource *vma_res = vma->resource;
1899 struct dma_fence *unbind_fence;
1901 GEM_BUG_ON(i915_vma_is_pinned(vma));
1902 assert_vma_held_evict(vma);
1904 if (i915_vma_is_map_and_fenceable(vma)) {
1905 /* Force a pagefault for domain tracking on next user access */
1906 i915_vma_revoke_mmap(vma);
1909 * Check that we have flushed all writes through the GGTT
1910 * before the unbind, other due to non-strict nature of those
1911 * indirect writes they may end up referencing the GGTT PTE
1914 * Note that we may be concurrently poking at the GGTT_WRITE
1915 * bit from set-domain, as we mark all GGTT vma associated
1916 * with an object. We know this is for another vma, as we
1917 * are currently unbinding this one -- so if this vma will be
1918 * reused, it will be refaulted and have its dirty bit set
1919 * before the next write.
1921 i915_vma_flush_writes(vma);
1923 /* release the fence reg _after_ flushing */
1924 i915_vma_revoke_fence(vma);
1926 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1929 __i915_vma_iounmap(vma);
1931 GEM_BUG_ON(vma->fence);
1932 GEM_BUG_ON(i915_vma_has_userfault(vma));
1934 /* Object backend must be async capable. */
1935 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1937 /* If vm is not open, unbind is a nop. */
1938 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1939 kref_read(&vma->vm->ref);
1940 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1941 vma->vm->skip_pte_rewrite;
1942 trace_i915_vma_unbind(vma);
1944 unbind_fence = i915_vma_resource_unbind(vma_res);
1945 vma->resource = NULL;
1947 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1950 i915_vma_detach(vma);
1952 if (!async && unbind_fence) {
1953 dma_fence_wait(unbind_fence, false);
1954 dma_fence_put(unbind_fence);
1955 unbind_fence = NULL;
1959 * Binding itself may not have completed until the unbind fence signals,
1960 * so don't drop the pages until that happens, unless the resource is
1964 vma_unbind_pages(vma);
1965 return unbind_fence;
1968 int __i915_vma_unbind(struct i915_vma *vma)
1972 lockdep_assert_held(&vma->vm->mutex);
1973 assert_vma_held_evict(vma);
1975 if (!drm_mm_node_allocated(&vma->node))
1978 if (i915_vma_is_pinned(vma)) {
1979 vma_print_allocator(vma, "is pinned");
1984 * After confirming that no one else is pinning this vma, wait for
1985 * any laggards who may have crept in during the wait (through
1986 * a residual pin skipping the vm->mutex) to complete.
1988 ret = i915_vma_sync(vma);
1992 GEM_BUG_ON(i915_vma_is_active(vma));
1993 __i915_vma_evict(vma, false);
1995 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1999 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2001 struct dma_fence *fence;
2003 lockdep_assert_held(&vma->vm->mutex);
2005 if (!drm_mm_node_allocated(&vma->node))
2008 if (i915_vma_is_pinned(vma) ||
2009 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2010 return ERR_PTR(-EAGAIN);
2013 * We probably need to replace this with awaiting the fences of the
2014 * object's dma_resv when the vma active goes away. When doing that
2015 * we need to be careful to not add the vma_resource unbind fence
2016 * immediately to the object's dma_resv, because then unbinding
2017 * the next vma from the object, in case there are many, will
2018 * actually await the unbinding of the previous vmas, which is
2021 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2022 I915_ACTIVE_AWAIT_EXCL |
2023 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2024 return ERR_PTR(-EBUSY);
2027 fence = __i915_vma_evict(vma, true);
2029 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2034 int i915_vma_unbind(struct i915_vma *vma)
2036 struct i915_address_space *vm = vma->vm;
2037 intel_wakeref_t wakeref = 0;
2040 assert_object_held_shared(vma->obj);
2042 /* Optimistic wait before taking the mutex */
2043 err = i915_vma_sync(vma);
2047 if (!drm_mm_node_allocated(&vma->node))
2050 if (i915_vma_is_pinned(vma)) {
2051 vma_print_allocator(vma, "is pinned");
2055 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2056 /* XXX not always required: nop_clear_range */
2057 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2059 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2063 err = __i915_vma_unbind(vma);
2064 mutex_unlock(&vm->mutex);
2068 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2072 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2074 struct drm_i915_gem_object *obj = vma->obj;
2075 struct i915_address_space *vm = vma->vm;
2076 intel_wakeref_t wakeref = 0;
2077 struct dma_fence *fence;
2081 * We need the dma-resv lock since we add the
2082 * unbind fence to the dma-resv object.
2084 assert_object_held(obj);
2086 if (!drm_mm_node_allocated(&vma->node))
2089 if (i915_vma_is_pinned(vma)) {
2090 vma_print_allocator(vma, "is pinned");
2097 err = dma_resv_reserve_fences(obj->base.resv, 1);
2102 * It would be great if we could grab this wakeref from the
2103 * async unbind work if needed, but we can't because it uses
2104 * kmalloc and it's in the dma-fence signalling critical path.
2106 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2107 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2109 if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2112 } else if (!trylock_vm) {
2113 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2118 fence = __i915_vma_unbind_async(vma);
2119 mutex_unlock(&vm->mutex);
2120 if (IS_ERR_OR_NULL(fence)) {
2121 err = PTR_ERR_OR_ZERO(fence);
2125 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2126 dma_fence_put(fence);
2130 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2134 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2138 i915_gem_object_lock(vma->obj, NULL);
2139 err = i915_vma_unbind(vma);
2140 i915_gem_object_unlock(vma->obj);
2145 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2147 i915_gem_object_make_unshrinkable(vma->obj);
2151 void i915_vma_make_shrinkable(struct i915_vma *vma)
2153 i915_gem_object_make_shrinkable(vma->obj);
2156 void i915_vma_make_purgeable(struct i915_vma *vma)
2158 i915_gem_object_make_purgeable(vma->obj);
2161 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2162 #include "selftests/i915_vma.c"
2165 void i915_vma_module_exit(void)
2167 kmem_cache_destroy(slab_vmas);
2170 int __init i915_vma_module_init(void)
2172 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);