Merge branch 'linux-4.12' of git://github.com/skeggsb/linux into drm-next
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394         return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400                 return;
401
402         spin_lock_irq(&dev_priv->irq_lock);
403         dev_priv->rps.interrupts_enabled = false;
404
405         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409         spin_unlock_irq(&dev_priv->irq_lock);
410         synchronize_irq(dev_priv->drm.irq);
411
412         /* Now that we will not be generating any more work, flush any
413          * outsanding tasks. As we are called on the RPS idle path,
414          * we will reset the GPU to minimum frequencies, so the current
415          * state of the worker can be discarded.
416          */
417         cancel_work_sync(&dev_priv->rps.work);
418         gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423         spin_lock_irq(&dev_priv->irq_lock);
424         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425         spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430         spin_lock_irq(&dev_priv->irq_lock);
431         if (!dev_priv->guc.interrupts_enabled) {
432                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433                                        dev_priv->pm_guc_events);
434                 dev_priv->guc.interrupts_enabled = true;
435                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436         }
437         spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442         spin_lock_irq(&dev_priv->irq_lock);
443         dev_priv->guc.interrupts_enabled = false;
444
445         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447         spin_unlock_irq(&dev_priv->irq_lock);
448         synchronize_irq(dev_priv->drm.irq);
449
450         gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454  * bdw_update_port_irq - update DE port interrupt
455  * @dev_priv: driver private
456  * @interrupt_mask: mask of interrupt bits to update
457  * @enabled_irq_mask: mask of interrupt bits to enable
458  */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460                                 uint32_t interrupt_mask,
461                                 uint32_t enabled_irq_mask)
462 {
463         uint32_t new_val;
464         uint32_t old_val;
465
466         lockdep_assert_held(&dev_priv->irq_lock);
467
468         WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471                 return;
472
473         old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475         new_val = old_val;
476         new_val &= ~interrupt_mask;
477         new_val |= (~enabled_irq_mask & interrupt_mask);
478
479         if (new_val != old_val) {
480                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481                 POSTING_READ(GEN8_DE_PORT_IMR);
482         }
483 }
484
485 /**
486  * bdw_update_pipe_irq - update DE pipe interrupt
487  * @dev_priv: driver private
488  * @pipe: pipe whose interrupt to update
489  * @interrupt_mask: mask of interrupt bits to update
490  * @enabled_irq_mask: mask of interrupt bits to enable
491  */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493                          enum pipe pipe,
494                          uint32_t interrupt_mask,
495                          uint32_t enabled_irq_mask)
496 {
497         uint32_t new_val;
498
499         lockdep_assert_held(&dev_priv->irq_lock);
500
501         WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504                 return;
505
506         new_val = dev_priv->de_irq_mask[pipe];
507         new_val &= ~interrupt_mask;
508         new_val |= (~enabled_irq_mask & interrupt_mask);
509
510         if (new_val != dev_priv->de_irq_mask[pipe]) {
511                 dev_priv->de_irq_mask[pipe] = new_val;
512                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514         }
515 }
516
517 /**
518  * ibx_display_interrupt_update - update SDEIMR
519  * @dev_priv: driver private
520  * @interrupt_mask: mask of interrupt bits to update
521  * @enabled_irq_mask: mask of interrupt bits to enable
522  */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524                                   uint32_t interrupt_mask,
525                                   uint32_t enabled_irq_mask)
526 {
527         uint32_t sdeimr = I915_READ(SDEIMR);
528         sdeimr &= ~interrupt_mask;
529         sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531         WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533         lockdep_assert_held(&dev_priv->irq_lock);
534
535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536                 return;
537
538         I915_WRITE(SDEIMR, sdeimr);
539         POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544                        u32 enable_mask, u32 status_mask)
545 {
546         i915_reg_t reg = PIPESTAT(pipe);
547         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549         lockdep_assert_held(&dev_priv->irq_lock);
550         WARN_ON(!intel_irqs_enabled(dev_priv));
551
552         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
554                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555                       pipe_name(pipe), enable_mask, status_mask))
556                 return;
557
558         if ((pipestat & enable_mask) == enable_mask)
559                 return;
560
561         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563         /* Enable the interrupt, clear any pending status */
564         pipestat |= enable_mask | status_mask;
565         I915_WRITE(reg, pipestat);
566         POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571                         u32 enable_mask, u32 status_mask)
572 {
573         i915_reg_t reg = PIPESTAT(pipe);
574         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576         lockdep_assert_held(&dev_priv->irq_lock);
577         WARN_ON(!intel_irqs_enabled(dev_priv));
578
579         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
581                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582                       pipe_name(pipe), enable_mask, status_mask))
583                 return;
584
585         if ((pipestat & enable_mask) == 0)
586                 return;
587
588         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590         pipestat &= ~enable_mask;
591         I915_WRITE(reg, pipestat);
592         POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597         u32 enable_mask = status_mask << 16;
598
599         /*
600          * On pipe A we don't support the PSR interrupt yet,
601          * on pipe B and C the same bit MBZ.
602          */
603         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604                 return 0;
605         /*
606          * On pipe B and C we don't support the PSR interrupt yet, on pipe
607          * A the same bit is for perf counters which we don't use either.
608          */
609         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610                 return 0;
611
612         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613                          SPRITE0_FLIP_DONE_INT_EN_VLV |
614                          SPRITE1_FLIP_DONE_INT_EN_VLV);
615         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620         return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625                      u32 status_mask)
626 {
627         u32 enable_mask;
628
629         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631                                                            status_mask);
632         else
633                 enable_mask = status_mask << 16;
634         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639                       u32 status_mask)
640 {
641         u32 enable_mask;
642
643         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645                                                            status_mask);
646         else
647                 enable_mask = status_mask << 16;
648         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653  * @dev_priv: i915 device private
654  */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658                 return;
659
660         spin_lock_irq(&dev_priv->irq_lock);
661
662         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663         if (INTEL_GEN(dev_priv) >= 4)
664                 i915_enable_pipestat(dev_priv, PIPE_A,
665                                      PIPE_LEGACY_BLC_EVENT_STATUS);
666
667         spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671  * This timing diagram depicts the video signal in and
672  * around the vertical blanking period.
673  *
674  * Assumptions about the fictitious mode used in this example:
675  *  vblank_start >= 3
676  *  vsync_start = vblank_start + 1
677  *  vsync_end = vblank_start + 2
678  *  vtotal = vblank_start + 3
679  *
680  *           start of vblank:
681  *           latch double buffered registers
682  *           increment frame counter (ctg+)
683  *           generate start of vblank interrupt (gen4+)
684  *           |
685  *           |          frame start:
686  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
687  *           |          may be shifted forward 1-3 extra lines via PIPECONF
688  *           |          |
689  *           |          |  start of vsync:
690  *           |          |  generate vsync interrupt
691  *           |          |  |
692  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
693  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
694  * ----va---> <-----------------vb--------------------> <--------va-------------
695  *       |          |       <----vs----->                     |
696  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699  *       |          |                                         |
700  *       last visible pixel                                   first visible pixel
701  *                  |                                         increment frame counter (gen3/4)
702  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
703  *
704  * x  = horizontal active
705  * _  = horizontal blanking
706  * hs = horizontal sync
707  * va = vertical active
708  * vb = vertical blanking
709  * vs = vertical sync
710  * vbs = vblank_start (number)
711  *
712  * Summary:
713  * - most events happen at the start of horizontal sync
714  * - frame start happens at the start of horizontal blank, 1-4 lines
715  *   (depending on PIPECONF settings) after the start of vblank
716  * - gen3/4 pixel and frame counter are synchronized with the start
717  *   of horizontal active on the first line of vertical active
718  */
719
720 /* Called from drm generic code, passed a 'crtc', which
721  * we use as a pipe index
722  */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725         struct drm_i915_private *dev_priv = to_i915(dev);
726         i915_reg_t high_frame, low_frame;
727         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729                                                                 pipe);
730         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732         htotal = mode->crtc_htotal;
733         hsync_start = mode->crtc_hsync_start;
734         vbl_start = mode->crtc_vblank_start;
735         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738         /* Convert to pixel count */
739         vbl_start *= htotal;
740
741         /* Start of vblank event occurs at start of hsync */
742         vbl_start -= htotal - hsync_start;
743
744         high_frame = PIPEFRAME(pipe);
745         low_frame = PIPEFRAMEPIXEL(pipe);
746
747         /*
748          * High & low register fields aren't synchronized, so make sure
749          * we get a low value that's stable across two reads of the high
750          * register.
751          */
752         do {
753                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754                 low   = I915_READ(low_frame);
755                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756         } while (high1 != high2);
757
758         high1 >>= PIPE_FRAME_HIGH_SHIFT;
759         pixel = low & PIPE_PIXEL_MASK;
760         low >>= PIPE_FRAME_LOW_SHIFT;
761
762         /*
763          * The frame counter increments at beginning of active.
764          * Cook up a vblank counter by also checking the pixel
765          * counter against vblank start.
766          */
767         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772         struct drm_i915_private *dev_priv = to_i915(dev);
773
774         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         struct drm_i915_private *dev_priv = to_i915(dev);
782         const struct drm_display_mode *mode = &crtc->base.hwmode;
783         enum pipe pipe = crtc->pipe;
784         int position, vtotal;
785
786         if (!crtc->active)
787                 return -1;
788
789         vtotal = mode->crtc_vtotal;
790         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
791                 vtotal /= 2;
792
793         if (IS_GEN2(dev_priv))
794                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
795         else
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
797
798         /*
799          * On HSW, the DSL reg (0x70000) appears to return 0 if we
800          * read it just before the start of vblank.  So try it again
801          * so we don't accidentally end up spanning a vblank frame
802          * increment, causing the pipe_update_end() code to squak at us.
803          *
804          * The nature of this problem means we can't simply check the ISR
805          * bit and return the vblank start value; nor can we use the scanline
806          * debug register in the transcoder as it appears to have the same
807          * problem.  We may need to extend this to include other platforms,
808          * but so far testing only shows the problem on HSW.
809          */
810         if (HAS_DDI(dev_priv) && !position) {
811                 int i, temp;
812
813                 for (i = 0; i < 100; i++) {
814                         udelay(1);
815                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
816                                 DSL_LINEMASK_GEN3;
817                         if (temp != position) {
818                                 position = temp;
819                                 break;
820                         }
821                 }
822         }
823
824         /*
825          * See update_scanline_offset() for the details on the
826          * scanline_offset adjustment.
827          */
828         return (position + crtc->scanline_offset) % vtotal;
829 }
830
831 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
832                                     unsigned int flags, int *vpos, int *hpos,
833                                     ktime_t *stime, ktime_t *etime,
834                                     const struct drm_display_mode *mode)
835 {
836         struct drm_i915_private *dev_priv = to_i915(dev);
837         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
838                                                                 pipe);
839         int position;
840         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
841         bool in_vbl = true;
842         int ret = 0;
843         unsigned long irqflags;
844
845         if (WARN_ON(!mode->crtc_clock)) {
846                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847                                  "pipe %c\n", pipe_name(pipe));
848                 return 0;
849         }
850
851         htotal = mode->crtc_htotal;
852         hsync_start = mode->crtc_hsync_start;
853         vtotal = mode->crtc_vtotal;
854         vbl_start = mode->crtc_vblank_start;
855         vbl_end = mode->crtc_vblank_end;
856
857         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859                 vbl_end /= 2;
860                 vtotal /= 2;
861         }
862
863         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
864
865         /*
866          * Lock uncore.lock, as we will do multiple timing critical raw
867          * register reads, potentially with preemption disabled, so the
868          * following code must not block on uncore.lock.
869          */
870         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
871
872         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
873
874         /* Get optional system timestamp before query. */
875         if (stime)
876                 *stime = ktime_get();
877
878         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
879                 /* No obvious pixelcount register. Only query vertical
880                  * scanout position from Display scan line register.
881                  */
882                 position = __intel_get_crtc_scanline(intel_crtc);
883         } else {
884                 /* Have access to pixelcount since start of frame.
885                  * We can split this into vertical and horizontal
886                  * scanout position.
887                  */
888                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
889
890                 /* convert to pixel counts */
891                 vbl_start *= htotal;
892                 vbl_end *= htotal;
893                 vtotal *= htotal;
894
895                 /*
896                  * In interlaced modes, the pixel counter counts all pixels,
897                  * so one field will have htotal more pixels. In order to avoid
898                  * the reported position from jumping backwards when the pixel
899                  * counter is beyond the length of the shorter field, just
900                  * clamp the position the length of the shorter field. This
901                  * matches how the scanline counter based position works since
902                  * the scanline counter doesn't count the two half lines.
903                  */
904                 if (position >= vtotal)
905                         position = vtotal - 1;
906
907                 /*
908                  * Start of vblank interrupt is triggered at start of hsync,
909                  * just prior to the first active line of vblank. However we
910                  * consider lines to start at the leading edge of horizontal
911                  * active. So, should we get here before we've crossed into
912                  * the horizontal active of the first line in vblank, we would
913                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
914                  * always add htotal-hsync_start to the current pixel position.
915                  */
916                 position = (position + htotal - hsync_start) % vtotal;
917         }
918
919         /* Get optional system timestamp after query. */
920         if (etime)
921                 *etime = ktime_get();
922
923         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
924
925         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
926
927         in_vbl = position >= vbl_start && position < vbl_end;
928
929         /*
930          * While in vblank, position will be negative
931          * counting up towards 0 at vbl_end. And outside
932          * vblank, position will be positive counting
933          * up since vbl_end.
934          */
935         if (position >= vbl_start)
936                 position -= vbl_end;
937         else
938                 position += vtotal - vbl_end;
939
940         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
941                 *vpos = position;
942                 *hpos = 0;
943         } else {
944                 *vpos = position / htotal;
945                 *hpos = position - (*vpos * htotal);
946         }
947
948         /* In vblank? */
949         if (in_vbl)
950                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
951
952         return ret;
953 }
954
955 int intel_get_crtc_scanline(struct intel_crtc *crtc)
956 {
957         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
958         unsigned long irqflags;
959         int position;
960
961         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
962         position = __intel_get_crtc_scanline(crtc);
963         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
964
965         return position;
966 }
967
968 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
969                               int *max_error,
970                               struct timeval *vblank_time,
971                               unsigned flags)
972 {
973         struct drm_i915_private *dev_priv = to_i915(dev);
974         struct intel_crtc *crtc;
975
976         if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
977                 DRM_ERROR("Invalid crtc %u\n", pipe);
978                 return -EINVAL;
979         }
980
981         /* Get drm_crtc to timestamp: */
982         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
983         if (crtc == NULL) {
984                 DRM_ERROR("Invalid crtc %u\n", pipe);
985                 return -EINVAL;
986         }
987
988         if (!crtc->base.hwmode.crtc_clock) {
989                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
990                 return -EBUSY;
991         }
992
993         /* Helper routine in DRM core does all the work: */
994         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
995                                                      vblank_time, flags,
996                                                      &crtc->base.hwmode);
997 }
998
999 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1000 {
1001         u32 busy_up, busy_down, max_avg, min_avg;
1002         u8 new_delay;
1003
1004         spin_lock(&mchdev_lock);
1005
1006         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1007
1008         new_delay = dev_priv->ips.cur_delay;
1009
1010         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1011         busy_up = I915_READ(RCPREVBSYTUPAVG);
1012         busy_down = I915_READ(RCPREVBSYTDNAVG);
1013         max_avg = I915_READ(RCBMAXAVG);
1014         min_avg = I915_READ(RCBMINAVG);
1015
1016         /* Handle RCS change request from hw */
1017         if (busy_up > max_avg) {
1018                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1019                         new_delay = dev_priv->ips.cur_delay - 1;
1020                 if (new_delay < dev_priv->ips.max_delay)
1021                         new_delay = dev_priv->ips.max_delay;
1022         } else if (busy_down < min_avg) {
1023                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1024                         new_delay = dev_priv->ips.cur_delay + 1;
1025                 if (new_delay > dev_priv->ips.min_delay)
1026                         new_delay = dev_priv->ips.min_delay;
1027         }
1028
1029         if (ironlake_set_drps(dev_priv, new_delay))
1030                 dev_priv->ips.cur_delay = new_delay;
1031
1032         spin_unlock(&mchdev_lock);
1033
1034         return;
1035 }
1036
1037 static void notify_ring(struct intel_engine_cs *engine)
1038 {
1039         struct drm_i915_gem_request *rq = NULL;
1040         struct intel_wait *wait;
1041
1042         atomic_inc(&engine->irq_count);
1043         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1044
1045         spin_lock(&engine->breadcrumbs.irq_lock);
1046         wait = engine->breadcrumbs.irq_wait;
1047         if (wait) {
1048                 /* We use a callback from the dma-fence to submit
1049                  * requests after waiting on our own requests. To
1050                  * ensure minimum delay in queuing the next request to
1051                  * hardware, signal the fence now rather than wait for
1052                  * the signaler to be woken up. We still wake up the
1053                  * waiter in order to handle the irq-seqno coherency
1054                  * issues (we may receive the interrupt before the
1055                  * seqno is written, see __i915_request_irq_complete())
1056                  * and to handle coalescing of multiple seqno updates
1057                  * and many waiters.
1058                  */
1059                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1060                                       wait->seqno))
1061                         rq = i915_gem_request_get(wait->request);
1062
1063                 wake_up_process(wait->tsk);
1064         } else {
1065                 __intel_engine_disarm_breadcrumbs(engine);
1066         }
1067         spin_unlock(&engine->breadcrumbs.irq_lock);
1068
1069         if (rq) {
1070                 dma_fence_signal(&rq->fence);
1071                 i915_gem_request_put(rq);
1072         }
1073
1074         trace_intel_engine_notify(engine, wait);
1075 }
1076
1077 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1078                         struct intel_rps_ei *ei)
1079 {
1080         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1081         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1082         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1083 }
1084
1085 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1086                          const struct intel_rps_ei *old,
1087                          const struct intel_rps_ei *now,
1088                          int threshold)
1089 {
1090         u64 time, c0;
1091         unsigned int mul = 100;
1092
1093         if (old->cz_clock == 0)
1094                 return false;
1095
1096         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1097                 mul <<= 8;
1098
1099         time = now->cz_clock - old->cz_clock;
1100         time *= threshold * dev_priv->czclk_freq;
1101
1102         /* Workload can be split between render + media, e.g. SwapBuffers
1103          * being blitted in X after being rendered in mesa. To account for
1104          * this we need to combine both engines into our activity counter.
1105          */
1106         c0 = now->render_c0 - old->render_c0;
1107         c0 += now->media_c0 - old->media_c0;
1108         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1109
1110         return c0 >= time;
1111 }
1112
1113 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1114 {
1115         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1116         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1117 }
1118
1119 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1120 {
1121         struct intel_rps_ei now;
1122         u32 events = 0;
1123
1124         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1125                 return 0;
1126
1127         vlv_c0_read(dev_priv, &now);
1128         if (now.cz_clock == 0)
1129                 return 0;
1130
1131         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1132                 if (!vlv_c0_above(dev_priv,
1133                                   &dev_priv->rps.down_ei, &now,
1134                                   dev_priv->rps.down_threshold))
1135                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1136                 dev_priv->rps.down_ei = now;
1137         }
1138
1139         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1140                 if (vlv_c0_above(dev_priv,
1141                                  &dev_priv->rps.up_ei, &now,
1142                                  dev_priv->rps.up_threshold))
1143                         events |= GEN6_PM_RP_UP_THRESHOLD;
1144                 dev_priv->rps.up_ei = now;
1145         }
1146
1147         return events;
1148 }
1149
1150 static bool any_waiters(struct drm_i915_private *dev_priv)
1151 {
1152         struct intel_engine_cs *engine;
1153         enum intel_engine_id id;
1154
1155         for_each_engine(engine, dev_priv, id)
1156                 if (intel_engine_has_waiter(engine))
1157                         return true;
1158
1159         return false;
1160 }
1161
1162 static void gen6_pm_rps_work(struct work_struct *work)
1163 {
1164         struct drm_i915_private *dev_priv =
1165                 container_of(work, struct drm_i915_private, rps.work);
1166         bool client_boost;
1167         int new_delay, adj, min, max;
1168         u32 pm_iir;
1169
1170         spin_lock_irq(&dev_priv->irq_lock);
1171         /* Speed up work cancelation during disabling rps interrupts. */
1172         if (!dev_priv->rps.interrupts_enabled) {
1173                 spin_unlock_irq(&dev_priv->irq_lock);
1174                 return;
1175         }
1176
1177         pm_iir = dev_priv->rps.pm_iir;
1178         dev_priv->rps.pm_iir = 0;
1179         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1180         gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1181         client_boost = dev_priv->rps.client_boost;
1182         dev_priv->rps.client_boost = false;
1183         spin_unlock_irq(&dev_priv->irq_lock);
1184
1185         /* Make sure we didn't queue anything we're not going to process. */
1186         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1187
1188         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189                 return;
1190
1191         mutex_lock(&dev_priv->rps.hw_lock);
1192
1193         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195         adj = dev_priv->rps.last_adj;
1196         new_delay = dev_priv->rps.cur_freq;
1197         min = dev_priv->rps.min_freq_softlimit;
1198         max = dev_priv->rps.max_freq_softlimit;
1199         if (client_boost || any_waiters(dev_priv))
1200                 max = dev_priv->rps.max_freq;
1201         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1202                 new_delay = dev_priv->rps.boost_freq;
1203                 adj = 0;
1204         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205                 if (adj > 0)
1206                         adj *= 2;
1207                 else /* CHV needs even encode values */
1208                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1211                         adj = 0;
1212         } else if (client_boost || any_waiters(dev_priv)) {
1213                 adj = 0;
1214         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1216                         new_delay = dev_priv->rps.efficient_freq;
1217                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1218                         new_delay = dev_priv->rps.min_freq_softlimit;
1219                 adj = 0;
1220         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221                 if (adj < 0)
1222                         adj *= 2;
1223                 else /* CHV needs even encode values */
1224                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1227                         adj = 0;
1228         } else { /* unknown event */
1229                 adj = 0;
1230         }
1231
1232         dev_priv->rps.last_adj = adj;
1233
1234         /* sysfs frequency interfaces may have snuck in while servicing the
1235          * interrupt
1236          */
1237         new_delay += adj;
1238         new_delay = clamp_t(int, new_delay, min, max);
1239
1240         if (intel_set_rps(dev_priv, new_delay)) {
1241                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1242                 dev_priv->rps.last_adj = 0;
1243         }
1244
1245         mutex_unlock(&dev_priv->rps.hw_lock);
1246 }
1247
1248
1249 /**
1250  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1251  * occurred.
1252  * @work: workqueue struct
1253  *
1254  * Doesn't actually do anything except notify userspace. As a consequence of
1255  * this event, userspace should try to remap the bad rows since statistically
1256  * it is likely the same row is more likely to go bad again.
1257  */
1258 static void ivybridge_parity_work(struct work_struct *work)
1259 {
1260         struct drm_i915_private *dev_priv =
1261                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1262         u32 error_status, row, bank, subbank;
1263         char *parity_event[6];
1264         uint32_t misccpctl;
1265         uint8_t slice = 0;
1266
1267         /* We must turn off DOP level clock gating to access the L3 registers.
1268          * In order to prevent a get/put style interface, acquire struct mutex
1269          * any time we access those registers.
1270          */
1271         mutex_lock(&dev_priv->drm.struct_mutex);
1272
1273         /* If we've screwed up tracking, just let the interrupt fire again */
1274         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1275                 goto out;
1276
1277         misccpctl = I915_READ(GEN7_MISCCPCTL);
1278         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1279         POSTING_READ(GEN7_MISCCPCTL);
1280
1281         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1282                 i915_reg_t reg;
1283
1284                 slice--;
1285                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1286                         break;
1287
1288                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1289
1290                 reg = GEN7_L3CDERRST1(slice);
1291
1292                 error_status = I915_READ(reg);
1293                 row = GEN7_PARITY_ERROR_ROW(error_status);
1294                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1295                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1296
1297                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1298                 POSTING_READ(reg);
1299
1300                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1301                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1302                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1303                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1304                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1305                 parity_event[5] = NULL;
1306
1307                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1308                                    KOBJ_CHANGE, parity_event);
1309
1310                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1311                           slice, row, bank, subbank);
1312
1313                 kfree(parity_event[4]);
1314                 kfree(parity_event[3]);
1315                 kfree(parity_event[2]);
1316                 kfree(parity_event[1]);
1317         }
1318
1319         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1320
1321 out:
1322         WARN_ON(dev_priv->l3_parity.which_slice);
1323         spin_lock_irq(&dev_priv->irq_lock);
1324         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1325         spin_unlock_irq(&dev_priv->irq_lock);
1326
1327         mutex_unlock(&dev_priv->drm.struct_mutex);
1328 }
1329
1330 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1331                                                u32 iir)
1332 {
1333         if (!HAS_L3_DPF(dev_priv))
1334                 return;
1335
1336         spin_lock(&dev_priv->irq_lock);
1337         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1338         spin_unlock(&dev_priv->irq_lock);
1339
1340         iir &= GT_PARITY_ERROR(dev_priv);
1341         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1342                 dev_priv->l3_parity.which_slice |= 1 << 1;
1343
1344         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1345                 dev_priv->l3_parity.which_slice |= 1 << 0;
1346
1347         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1348 }
1349
1350 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1351                                u32 gt_iir)
1352 {
1353         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1354                 notify_ring(dev_priv->engine[RCS]);
1355         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1356                 notify_ring(dev_priv->engine[VCS]);
1357 }
1358
1359 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1360                                u32 gt_iir)
1361 {
1362         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1363                 notify_ring(dev_priv->engine[RCS]);
1364         if (gt_iir & GT_BSD_USER_INTERRUPT)
1365                 notify_ring(dev_priv->engine[VCS]);
1366         if (gt_iir & GT_BLT_USER_INTERRUPT)
1367                 notify_ring(dev_priv->engine[BCS]);
1368
1369         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1370                       GT_BSD_CS_ERROR_INTERRUPT |
1371                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1372                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1373
1374         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1375                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1376 }
1377
1378 static __always_inline void
1379 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1380 {
1381         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1382                 notify_ring(engine);
1383
1384         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1385                 set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1386                 tasklet_hi_schedule(&engine->irq_tasklet);
1387         }
1388 }
1389
1390 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1391                                    u32 master_ctl,
1392                                    u32 gt_iir[4])
1393 {
1394         irqreturn_t ret = IRQ_NONE;
1395
1396         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1397                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1398                 if (gt_iir[0]) {
1399                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1400                         ret = IRQ_HANDLED;
1401                 } else
1402                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1403         }
1404
1405         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1406                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1407                 if (gt_iir[1]) {
1408                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1409                         ret = IRQ_HANDLED;
1410                 } else
1411                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1412         }
1413
1414         if (master_ctl & GEN8_GT_VECS_IRQ) {
1415                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1416                 if (gt_iir[3]) {
1417                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1418                         ret = IRQ_HANDLED;
1419                 } else
1420                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1421         }
1422
1423         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1424                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1425                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1426                                  dev_priv->pm_guc_events)) {
1427                         I915_WRITE_FW(GEN8_GT_IIR(2),
1428                                       gt_iir[2] & (dev_priv->pm_rps_events |
1429                                                    dev_priv->pm_guc_events));
1430                         ret = IRQ_HANDLED;
1431                 } else
1432                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1433         }
1434
1435         return ret;
1436 }
1437
1438 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1439                                 u32 gt_iir[4])
1440 {
1441         if (gt_iir[0]) {
1442                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1443                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1444                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1445                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1446         }
1447
1448         if (gt_iir[1]) {
1449                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1450                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1451                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1452                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1453         }
1454
1455         if (gt_iir[3])
1456                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1457                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1458
1459         if (gt_iir[2] & dev_priv->pm_rps_events)
1460                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1461
1462         if (gt_iir[2] & dev_priv->pm_guc_events)
1463                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1464 }
1465
1466 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1467 {
1468         switch (port) {
1469         case PORT_A:
1470                 return val & PORTA_HOTPLUG_LONG_DETECT;
1471         case PORT_B:
1472                 return val & PORTB_HOTPLUG_LONG_DETECT;
1473         case PORT_C:
1474                 return val & PORTC_HOTPLUG_LONG_DETECT;
1475         default:
1476                 return false;
1477         }
1478 }
1479
1480 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1481 {
1482         switch (port) {
1483         case PORT_E:
1484                 return val & PORTE_HOTPLUG_LONG_DETECT;
1485         default:
1486                 return false;
1487         }
1488 }
1489
1490 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1491 {
1492         switch (port) {
1493         case PORT_A:
1494                 return val & PORTA_HOTPLUG_LONG_DETECT;
1495         case PORT_B:
1496                 return val & PORTB_HOTPLUG_LONG_DETECT;
1497         case PORT_C:
1498                 return val & PORTC_HOTPLUG_LONG_DETECT;
1499         case PORT_D:
1500                 return val & PORTD_HOTPLUG_LONG_DETECT;
1501         default:
1502                 return false;
1503         }
1504 }
1505
1506 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1507 {
1508         switch (port) {
1509         case PORT_A:
1510                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1511         default:
1512                 return false;
1513         }
1514 }
1515
1516 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1517 {
1518         switch (port) {
1519         case PORT_B:
1520                 return val & PORTB_HOTPLUG_LONG_DETECT;
1521         case PORT_C:
1522                 return val & PORTC_HOTPLUG_LONG_DETECT;
1523         case PORT_D:
1524                 return val & PORTD_HOTPLUG_LONG_DETECT;
1525         default:
1526                 return false;
1527         }
1528 }
1529
1530 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1531 {
1532         switch (port) {
1533         case PORT_B:
1534                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1535         case PORT_C:
1536                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1537         case PORT_D:
1538                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1539         default:
1540                 return false;
1541         }
1542 }
1543
1544 /*
1545  * Get a bit mask of pins that have triggered, and which ones may be long.
1546  * This can be called multiple times with the same masks to accumulate
1547  * hotplug detection results from several registers.
1548  *
1549  * Note that the caller is expected to zero out the masks initially.
1550  */
1551 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1552                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1553                              const u32 hpd[HPD_NUM_PINS],
1554                              bool long_pulse_detect(enum port port, u32 val))
1555 {
1556         enum port port;
1557         int i;
1558
1559         for_each_hpd_pin(i) {
1560                 if ((hpd[i] & hotplug_trigger) == 0)
1561                         continue;
1562
1563                 *pin_mask |= BIT(i);
1564
1565                 if (!intel_hpd_pin_to_port(i, &port))
1566                         continue;
1567
1568                 if (long_pulse_detect(port, dig_hotplug_reg))
1569                         *long_mask |= BIT(i);
1570         }
1571
1572         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1573                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1574
1575 }
1576
1577 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1578 {
1579         wake_up_all(&dev_priv->gmbus_wait_queue);
1580 }
1581
1582 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1583 {
1584         wake_up_all(&dev_priv->gmbus_wait_queue);
1585 }
1586
1587 #if defined(CONFIG_DEBUG_FS)
1588 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1589                                          enum pipe pipe,
1590                                          uint32_t crc0, uint32_t crc1,
1591                                          uint32_t crc2, uint32_t crc3,
1592                                          uint32_t crc4)
1593 {
1594         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1595         struct intel_pipe_crc_entry *entry;
1596         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1597         struct drm_driver *driver = dev_priv->drm.driver;
1598         uint32_t crcs[5];
1599         int head, tail;
1600
1601         spin_lock(&pipe_crc->lock);
1602         if (pipe_crc->source) {
1603                 if (!pipe_crc->entries) {
1604                         spin_unlock(&pipe_crc->lock);
1605                         DRM_DEBUG_KMS("spurious interrupt\n");
1606                         return;
1607                 }
1608
1609                 head = pipe_crc->head;
1610                 tail = pipe_crc->tail;
1611
1612                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1613                         spin_unlock(&pipe_crc->lock);
1614                         DRM_ERROR("CRC buffer overflowing\n");
1615                         return;
1616                 }
1617
1618                 entry = &pipe_crc->entries[head];
1619
1620                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1621                 entry->crc[0] = crc0;
1622                 entry->crc[1] = crc1;
1623                 entry->crc[2] = crc2;
1624                 entry->crc[3] = crc3;
1625                 entry->crc[4] = crc4;
1626
1627                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1628                 pipe_crc->head = head;
1629
1630                 spin_unlock(&pipe_crc->lock);
1631
1632                 wake_up_interruptible(&pipe_crc->wq);
1633         } else {
1634                 /*
1635                  * For some not yet identified reason, the first CRC is
1636                  * bonkers. So let's just wait for the next vblank and read
1637                  * out the buggy result.
1638                  *
1639                  * On CHV sometimes the second CRC is bonkers as well, so
1640                  * don't trust that one either.
1641                  */
1642                 if (pipe_crc->skipped == 0 ||
1643                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1644                         pipe_crc->skipped++;
1645                         spin_unlock(&pipe_crc->lock);
1646                         return;
1647                 }
1648                 spin_unlock(&pipe_crc->lock);
1649                 crcs[0] = crc0;
1650                 crcs[1] = crc1;
1651                 crcs[2] = crc2;
1652                 crcs[3] = crc3;
1653                 crcs[4] = crc4;
1654                 drm_crtc_add_crc_entry(&crtc->base, true,
1655                                        drm_accurate_vblank_count(&crtc->base),
1656                                        crcs);
1657         }
1658 }
1659 #else
1660 static inline void
1661 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1662                              enum pipe pipe,
1663                              uint32_t crc0, uint32_t crc1,
1664                              uint32_t crc2, uint32_t crc3,
1665                              uint32_t crc4) {}
1666 #endif
1667
1668
1669 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1670                                      enum pipe pipe)
1671 {
1672         display_pipe_crc_irq_handler(dev_priv, pipe,
1673                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1674                                      0, 0, 0, 0);
1675 }
1676
1677 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1678                                      enum pipe pipe)
1679 {
1680         display_pipe_crc_irq_handler(dev_priv, pipe,
1681                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1682                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1683                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1684                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1685                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1686 }
1687
1688 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1689                                       enum pipe pipe)
1690 {
1691         uint32_t res1, res2;
1692
1693         if (INTEL_GEN(dev_priv) >= 3)
1694                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1695         else
1696                 res1 = 0;
1697
1698         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1699                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1700         else
1701                 res2 = 0;
1702
1703         display_pipe_crc_irq_handler(dev_priv, pipe,
1704                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1705                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1706                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1707                                      res1, res2);
1708 }
1709
1710 /* The RPS events need forcewake, so we add them to a work queue and mask their
1711  * IMR bits until the work is done. Other interrupts can be processed without
1712  * the work queue. */
1713 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1714 {
1715         if (pm_iir & dev_priv->pm_rps_events) {
1716                 spin_lock(&dev_priv->irq_lock);
1717                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1718                 if (dev_priv->rps.interrupts_enabled) {
1719                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1720                         schedule_work(&dev_priv->rps.work);
1721                 }
1722                 spin_unlock(&dev_priv->irq_lock);
1723         }
1724
1725         if (INTEL_INFO(dev_priv)->gen >= 8)
1726                 return;
1727
1728         if (HAS_VEBOX(dev_priv)) {
1729                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1730                         notify_ring(dev_priv->engine[VECS]);
1731
1732                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1733                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1734         }
1735 }
1736
1737 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1738 {
1739         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1740                 /* Sample the log buffer flush related bits & clear them out now
1741                  * itself from the message identity register to minimize the
1742                  * probability of losing a flush interrupt, when there are back
1743                  * to back flush interrupts.
1744                  * There can be a new flush interrupt, for different log buffer
1745                  * type (like for ISR), whilst Host is handling one (for DPC).
1746                  * Since same bit is used in message register for ISR & DPC, it
1747                  * could happen that GuC sets the bit for 2nd interrupt but Host
1748                  * clears out the bit on handling the 1st interrupt.
1749                  */
1750                 u32 msg, flush;
1751
1752                 msg = I915_READ(SOFT_SCRATCH(15));
1753                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1754                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1755                 if (flush) {
1756                         /* Clear the message bits that are handled */
1757                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1758
1759                         /* Handle flush interrupt in bottom half */
1760                         queue_work(dev_priv->guc.log.flush_wq,
1761                                    &dev_priv->guc.log.flush_work);
1762
1763                         dev_priv->guc.log.flush_interrupt_count++;
1764                 } else {
1765                         /* Not clearing of unhandled event bits won't result in
1766                          * re-triggering of the interrupt.
1767                          */
1768                 }
1769         }
1770 }
1771
1772 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1773                                      enum pipe pipe)
1774 {
1775         bool ret;
1776
1777         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1778         if (ret)
1779                 intel_finish_page_flip_mmio(dev_priv, pipe);
1780
1781         return ret;
1782 }
1783
1784 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1785                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1786 {
1787         int pipe;
1788
1789         spin_lock(&dev_priv->irq_lock);
1790
1791         if (!dev_priv->display_irqs_enabled) {
1792                 spin_unlock(&dev_priv->irq_lock);
1793                 return;
1794         }
1795
1796         for_each_pipe(dev_priv, pipe) {
1797                 i915_reg_t reg;
1798                 u32 mask, iir_bit = 0;
1799
1800                 /*
1801                  * PIPESTAT bits get signalled even when the interrupt is
1802                  * disabled with the mask bits, and some of the status bits do
1803                  * not generate interrupts at all (like the underrun bit). Hence
1804                  * we need to be careful that we only handle what we want to
1805                  * handle.
1806                  */
1807
1808                 /* fifo underruns are filterered in the underrun handler. */
1809                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1810
1811                 switch (pipe) {
1812                 case PIPE_A:
1813                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1814                         break;
1815                 case PIPE_B:
1816                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1817                         break;
1818                 case PIPE_C:
1819                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1820                         break;
1821                 }
1822                 if (iir & iir_bit)
1823                         mask |= dev_priv->pipestat_irq_mask[pipe];
1824
1825                 if (!mask)
1826                         continue;
1827
1828                 reg = PIPESTAT(pipe);
1829                 mask |= PIPESTAT_INT_ENABLE_MASK;
1830                 pipe_stats[pipe] = I915_READ(reg) & mask;
1831
1832                 /*
1833                  * Clear the PIPE*STAT regs before the IIR
1834                  */
1835                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1836                                         PIPESTAT_INT_STATUS_MASK))
1837                         I915_WRITE(reg, pipe_stats[pipe]);
1838         }
1839         spin_unlock(&dev_priv->irq_lock);
1840 }
1841
1842 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1843                                             u32 pipe_stats[I915_MAX_PIPES])
1844 {
1845         enum pipe pipe;
1846
1847         for_each_pipe(dev_priv, pipe) {
1848                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1849                     intel_pipe_handle_vblank(dev_priv, pipe))
1850                         intel_check_page_flip(dev_priv, pipe);
1851
1852                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1853                         intel_finish_page_flip_cs(dev_priv, pipe);
1854
1855                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1856                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1857
1858                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1859                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1860         }
1861
1862         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1863                 gmbus_irq_handler(dev_priv);
1864 }
1865
1866 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1867 {
1868         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1869
1870         if (hotplug_status)
1871                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1872
1873         return hotplug_status;
1874 }
1875
1876 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1877                                  u32 hotplug_status)
1878 {
1879         u32 pin_mask = 0, long_mask = 0;
1880
1881         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1882             IS_CHERRYVIEW(dev_priv)) {
1883                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1884
1885                 if (hotplug_trigger) {
1886                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1887                                            hotplug_trigger, hpd_status_g4x,
1888                                            i9xx_port_hotplug_long_detect);
1889
1890                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1891                 }
1892
1893                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1894                         dp_aux_irq_handler(dev_priv);
1895         } else {
1896                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1897
1898                 if (hotplug_trigger) {
1899                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1900                                            hotplug_trigger, hpd_status_i915,
1901                                            i9xx_port_hotplug_long_detect);
1902                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1903                 }
1904         }
1905 }
1906
1907 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1908 {
1909         struct drm_device *dev = arg;
1910         struct drm_i915_private *dev_priv = to_i915(dev);
1911         irqreturn_t ret = IRQ_NONE;
1912
1913         if (!intel_irqs_enabled(dev_priv))
1914                 return IRQ_NONE;
1915
1916         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1917         disable_rpm_wakeref_asserts(dev_priv);
1918
1919         do {
1920                 u32 iir, gt_iir, pm_iir;
1921                 u32 pipe_stats[I915_MAX_PIPES] = {};
1922                 u32 hotplug_status = 0;
1923                 u32 ier = 0;
1924
1925                 gt_iir = I915_READ(GTIIR);
1926                 pm_iir = I915_READ(GEN6_PMIIR);
1927                 iir = I915_READ(VLV_IIR);
1928
1929                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1930                         break;
1931
1932                 ret = IRQ_HANDLED;
1933
1934                 /*
1935                  * Theory on interrupt generation, based on empirical evidence:
1936                  *
1937                  * x = ((VLV_IIR & VLV_IER) ||
1938                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1939                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1940                  *
1941                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1942                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1943                  * guarantee the CPU interrupt will be raised again even if we
1944                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1945                  * bits this time around.
1946                  */
1947                 I915_WRITE(VLV_MASTER_IER, 0);
1948                 ier = I915_READ(VLV_IER);
1949                 I915_WRITE(VLV_IER, 0);
1950
1951                 if (gt_iir)
1952                         I915_WRITE(GTIIR, gt_iir);
1953                 if (pm_iir)
1954                         I915_WRITE(GEN6_PMIIR, pm_iir);
1955
1956                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1957                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1958
1959                 /* Call regardless, as some status bits might not be
1960                  * signalled in iir */
1961                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1962
1963                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1964                            I915_LPE_PIPE_B_INTERRUPT))
1965                         intel_lpe_audio_irq_handler(dev_priv);
1966
1967                 /*
1968                  * VLV_IIR is single buffered, and reflects the level
1969                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1970                  */
1971                 if (iir)
1972                         I915_WRITE(VLV_IIR, iir);
1973
1974                 I915_WRITE(VLV_IER, ier);
1975                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1976                 POSTING_READ(VLV_MASTER_IER);
1977
1978                 if (gt_iir)
1979                         snb_gt_irq_handler(dev_priv, gt_iir);
1980                 if (pm_iir)
1981                         gen6_rps_irq_handler(dev_priv, pm_iir);
1982
1983                 if (hotplug_status)
1984                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1985
1986                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1987         } while (0);
1988
1989         enable_rpm_wakeref_asserts(dev_priv);
1990
1991         return ret;
1992 }
1993
1994 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1995 {
1996         struct drm_device *dev = arg;
1997         struct drm_i915_private *dev_priv = to_i915(dev);
1998         irqreturn_t ret = IRQ_NONE;
1999
2000         if (!intel_irqs_enabled(dev_priv))
2001                 return IRQ_NONE;
2002
2003         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2004         disable_rpm_wakeref_asserts(dev_priv);
2005
2006         do {
2007                 u32 master_ctl, iir;
2008                 u32 gt_iir[4] = {};
2009                 u32 pipe_stats[I915_MAX_PIPES] = {};
2010                 u32 hotplug_status = 0;
2011                 u32 ier = 0;
2012
2013                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2014                 iir = I915_READ(VLV_IIR);
2015
2016                 if (master_ctl == 0 && iir == 0)
2017                         break;
2018
2019                 ret = IRQ_HANDLED;
2020
2021                 /*
2022                  * Theory on interrupt generation, based on empirical evidence:
2023                  *
2024                  * x = ((VLV_IIR & VLV_IER) ||
2025                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2026                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2027                  *
2028                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2029                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2030                  * guarantee the CPU interrupt will be raised again even if we
2031                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2032                  * bits this time around.
2033                  */
2034                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2035                 ier = I915_READ(VLV_IER);
2036                 I915_WRITE(VLV_IER, 0);
2037
2038                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2039
2040                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2041                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2042
2043                 /* Call regardless, as some status bits might not be
2044                  * signalled in iir */
2045                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2046
2047                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2048                            I915_LPE_PIPE_B_INTERRUPT |
2049                            I915_LPE_PIPE_C_INTERRUPT))
2050                         intel_lpe_audio_irq_handler(dev_priv);
2051
2052                 /*
2053                  * VLV_IIR is single buffered, and reflects the level
2054                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2055                  */
2056                 if (iir)
2057                         I915_WRITE(VLV_IIR, iir);
2058
2059                 I915_WRITE(VLV_IER, ier);
2060                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2061                 POSTING_READ(GEN8_MASTER_IRQ);
2062
2063                 gen8_gt_irq_handler(dev_priv, gt_iir);
2064
2065                 if (hotplug_status)
2066                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2067
2068                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2069         } while (0);
2070
2071         enable_rpm_wakeref_asserts(dev_priv);
2072
2073         return ret;
2074 }
2075
2076 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2077                                 u32 hotplug_trigger,
2078                                 const u32 hpd[HPD_NUM_PINS])
2079 {
2080         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2081
2082         /*
2083          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2084          * unless we touch the hotplug register, even if hotplug_trigger is
2085          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2086          * errors.
2087          */
2088         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2089         if (!hotplug_trigger) {
2090                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2091                         PORTD_HOTPLUG_STATUS_MASK |
2092                         PORTC_HOTPLUG_STATUS_MASK |
2093                         PORTB_HOTPLUG_STATUS_MASK;
2094                 dig_hotplug_reg &= ~mask;
2095         }
2096
2097         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2098         if (!hotplug_trigger)
2099                 return;
2100
2101         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2102                            dig_hotplug_reg, hpd,
2103                            pch_port_hotplug_long_detect);
2104
2105         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2106 }
2107
2108 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2109 {
2110         int pipe;
2111         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2112
2113         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2114
2115         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2116                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2117                                SDE_AUDIO_POWER_SHIFT);
2118                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2119                                  port_name(port));
2120         }
2121
2122         if (pch_iir & SDE_AUX_MASK)
2123                 dp_aux_irq_handler(dev_priv);
2124
2125         if (pch_iir & SDE_GMBUS)
2126                 gmbus_irq_handler(dev_priv);
2127
2128         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2129                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2130
2131         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2132                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2133
2134         if (pch_iir & SDE_POISON)
2135                 DRM_ERROR("PCH poison interrupt\n");
2136
2137         if (pch_iir & SDE_FDI_MASK)
2138                 for_each_pipe(dev_priv, pipe)
2139                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2140                                          pipe_name(pipe),
2141                                          I915_READ(FDI_RX_IIR(pipe)));
2142
2143         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2144                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2145
2146         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2147                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2148
2149         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2150                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2151
2152         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2153                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2154 }
2155
2156 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2157 {
2158         u32 err_int = I915_READ(GEN7_ERR_INT);
2159         enum pipe pipe;
2160
2161         if (err_int & ERR_INT_POISON)
2162                 DRM_ERROR("Poison interrupt\n");
2163
2164         for_each_pipe(dev_priv, pipe) {
2165                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2166                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2167
2168                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2169                         if (IS_IVYBRIDGE(dev_priv))
2170                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2171                         else
2172                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2173                 }
2174         }
2175
2176         I915_WRITE(GEN7_ERR_INT, err_int);
2177 }
2178
2179 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2180 {
2181         u32 serr_int = I915_READ(SERR_INT);
2182
2183         if (serr_int & SERR_INT_POISON)
2184                 DRM_ERROR("PCH poison interrupt\n");
2185
2186         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2187                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2188
2189         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2190                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2191
2192         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2193                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2194
2195         I915_WRITE(SERR_INT, serr_int);
2196 }
2197
2198 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2199 {
2200         int pipe;
2201         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2202
2203         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2204
2205         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2206                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2207                                SDE_AUDIO_POWER_SHIFT_CPT);
2208                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2209                                  port_name(port));
2210         }
2211
2212         if (pch_iir & SDE_AUX_MASK_CPT)
2213                 dp_aux_irq_handler(dev_priv);
2214
2215         if (pch_iir & SDE_GMBUS_CPT)
2216                 gmbus_irq_handler(dev_priv);
2217
2218         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2219                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2220
2221         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2222                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2223
2224         if (pch_iir & SDE_FDI_MASK_CPT)
2225                 for_each_pipe(dev_priv, pipe)
2226                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2227                                          pipe_name(pipe),
2228                                          I915_READ(FDI_RX_IIR(pipe)));
2229
2230         if (pch_iir & SDE_ERROR_CPT)
2231                 cpt_serr_int_handler(dev_priv);
2232 }
2233
2234 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2235 {
2236         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2237                 ~SDE_PORTE_HOTPLUG_SPT;
2238         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2239         u32 pin_mask = 0, long_mask = 0;
2240
2241         if (hotplug_trigger) {
2242                 u32 dig_hotplug_reg;
2243
2244                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2245                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2246
2247                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2248                                    dig_hotplug_reg, hpd_spt,
2249                                    spt_port_hotplug_long_detect);
2250         }
2251
2252         if (hotplug2_trigger) {
2253                 u32 dig_hotplug_reg;
2254
2255                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2256                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2257
2258                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2259                                    dig_hotplug_reg, hpd_spt,
2260                                    spt_port_hotplug2_long_detect);
2261         }
2262
2263         if (pin_mask)
2264                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2265
2266         if (pch_iir & SDE_GMBUS_CPT)
2267                 gmbus_irq_handler(dev_priv);
2268 }
2269
2270 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2271                                 u32 hotplug_trigger,
2272                                 const u32 hpd[HPD_NUM_PINS])
2273 {
2274         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2275
2276         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2277         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2278
2279         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2280                            dig_hotplug_reg, hpd,
2281                            ilk_port_hotplug_long_detect);
2282
2283         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2284 }
2285
2286 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2287                                     u32 de_iir)
2288 {
2289         enum pipe pipe;
2290         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2291
2292         if (hotplug_trigger)
2293                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2294
2295         if (de_iir & DE_AUX_CHANNEL_A)
2296                 dp_aux_irq_handler(dev_priv);
2297
2298         if (de_iir & DE_GSE)
2299                 intel_opregion_asle_intr(dev_priv);
2300
2301         if (de_iir & DE_POISON)
2302                 DRM_ERROR("Poison interrupt\n");
2303
2304         for_each_pipe(dev_priv, pipe) {
2305                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2306                     intel_pipe_handle_vblank(dev_priv, pipe))
2307                         intel_check_page_flip(dev_priv, pipe);
2308
2309                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2310                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2311
2312                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2313                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2314
2315                 /* plane/pipes map 1:1 on ilk+ */
2316                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2317                         intel_finish_page_flip_cs(dev_priv, pipe);
2318         }
2319
2320         /* check event from PCH */
2321         if (de_iir & DE_PCH_EVENT) {
2322                 u32 pch_iir = I915_READ(SDEIIR);
2323
2324                 if (HAS_PCH_CPT(dev_priv))
2325                         cpt_irq_handler(dev_priv, pch_iir);
2326                 else
2327                         ibx_irq_handler(dev_priv, pch_iir);
2328
2329                 /* should clear PCH hotplug event before clear CPU irq */
2330                 I915_WRITE(SDEIIR, pch_iir);
2331         }
2332
2333         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2334                 ironlake_rps_change_irq_handler(dev_priv);
2335 }
2336
2337 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2338                                     u32 de_iir)
2339 {
2340         enum pipe pipe;
2341         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2342
2343         if (hotplug_trigger)
2344                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2345
2346         if (de_iir & DE_ERR_INT_IVB)
2347                 ivb_err_int_handler(dev_priv);
2348
2349         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2350                 dp_aux_irq_handler(dev_priv);
2351
2352         if (de_iir & DE_GSE_IVB)
2353                 intel_opregion_asle_intr(dev_priv);
2354
2355         for_each_pipe(dev_priv, pipe) {
2356                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2357                     intel_pipe_handle_vblank(dev_priv, pipe))
2358                         intel_check_page_flip(dev_priv, pipe);
2359
2360                 /* plane/pipes map 1:1 on ilk+ */
2361                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2362                         intel_finish_page_flip_cs(dev_priv, pipe);
2363         }
2364
2365         /* check event from PCH */
2366         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2367                 u32 pch_iir = I915_READ(SDEIIR);
2368
2369                 cpt_irq_handler(dev_priv, pch_iir);
2370
2371                 /* clear PCH hotplug event before clear CPU irq */
2372                 I915_WRITE(SDEIIR, pch_iir);
2373         }
2374 }
2375
2376 /*
2377  * To handle irqs with the minimum potential races with fresh interrupts, we:
2378  * 1 - Disable Master Interrupt Control.
2379  * 2 - Find the source(s) of the interrupt.
2380  * 3 - Clear the Interrupt Identity bits (IIR).
2381  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2382  * 5 - Re-enable Master Interrupt Control.
2383  */
2384 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2385 {
2386         struct drm_device *dev = arg;
2387         struct drm_i915_private *dev_priv = to_i915(dev);
2388         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2389         irqreturn_t ret = IRQ_NONE;
2390
2391         if (!intel_irqs_enabled(dev_priv))
2392                 return IRQ_NONE;
2393
2394         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2395         disable_rpm_wakeref_asserts(dev_priv);
2396
2397         /* disable master interrupt before clearing iir  */
2398         de_ier = I915_READ(DEIER);
2399         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2400         POSTING_READ(DEIER);
2401
2402         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2403          * interrupts will will be stored on its back queue, and then we'll be
2404          * able to process them after we restore SDEIER (as soon as we restore
2405          * it, we'll get an interrupt if SDEIIR still has something to process
2406          * due to its back queue). */
2407         if (!HAS_PCH_NOP(dev_priv)) {
2408                 sde_ier = I915_READ(SDEIER);
2409                 I915_WRITE(SDEIER, 0);
2410                 POSTING_READ(SDEIER);
2411         }
2412
2413         /* Find, clear, then process each source of interrupt */
2414
2415         gt_iir = I915_READ(GTIIR);
2416         if (gt_iir) {
2417                 I915_WRITE(GTIIR, gt_iir);
2418                 ret = IRQ_HANDLED;
2419                 if (INTEL_GEN(dev_priv) >= 6)
2420                         snb_gt_irq_handler(dev_priv, gt_iir);
2421                 else
2422                         ilk_gt_irq_handler(dev_priv, gt_iir);
2423         }
2424
2425         de_iir = I915_READ(DEIIR);
2426         if (de_iir) {
2427                 I915_WRITE(DEIIR, de_iir);
2428                 ret = IRQ_HANDLED;
2429                 if (INTEL_GEN(dev_priv) >= 7)
2430                         ivb_display_irq_handler(dev_priv, de_iir);
2431                 else
2432                         ilk_display_irq_handler(dev_priv, de_iir);
2433         }
2434
2435         if (INTEL_GEN(dev_priv) >= 6) {
2436                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2437                 if (pm_iir) {
2438                         I915_WRITE(GEN6_PMIIR, pm_iir);
2439                         ret = IRQ_HANDLED;
2440                         gen6_rps_irq_handler(dev_priv, pm_iir);
2441                 }
2442         }
2443
2444         I915_WRITE(DEIER, de_ier);
2445         POSTING_READ(DEIER);
2446         if (!HAS_PCH_NOP(dev_priv)) {
2447                 I915_WRITE(SDEIER, sde_ier);
2448                 POSTING_READ(SDEIER);
2449         }
2450
2451         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2452         enable_rpm_wakeref_asserts(dev_priv);
2453
2454         return ret;
2455 }
2456
2457 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2458                                 u32 hotplug_trigger,
2459                                 const u32 hpd[HPD_NUM_PINS])
2460 {
2461         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2462
2463         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2464         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2465
2466         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2467                            dig_hotplug_reg, hpd,
2468                            bxt_port_hotplug_long_detect);
2469
2470         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2471 }
2472
2473 static irqreturn_t
2474 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2475 {
2476         irqreturn_t ret = IRQ_NONE;
2477         u32 iir;
2478         enum pipe pipe;
2479
2480         if (master_ctl & GEN8_DE_MISC_IRQ) {
2481                 iir = I915_READ(GEN8_DE_MISC_IIR);
2482                 if (iir) {
2483                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2484                         ret = IRQ_HANDLED;
2485                         if (iir & GEN8_DE_MISC_GSE)
2486                                 intel_opregion_asle_intr(dev_priv);
2487                         else
2488                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2489                 }
2490                 else
2491                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2492         }
2493
2494         if (master_ctl & GEN8_DE_PORT_IRQ) {
2495                 iir = I915_READ(GEN8_DE_PORT_IIR);
2496                 if (iir) {
2497                         u32 tmp_mask;
2498                         bool found = false;
2499
2500                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2501                         ret = IRQ_HANDLED;
2502
2503                         tmp_mask = GEN8_AUX_CHANNEL_A;
2504                         if (INTEL_INFO(dev_priv)->gen >= 9)
2505                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2506                                             GEN9_AUX_CHANNEL_C |
2507                                             GEN9_AUX_CHANNEL_D;
2508
2509                         if (iir & tmp_mask) {
2510                                 dp_aux_irq_handler(dev_priv);
2511                                 found = true;
2512                         }
2513
2514                         if (IS_GEN9_LP(dev_priv)) {
2515                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2516                                 if (tmp_mask) {
2517                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2518                                                             hpd_bxt);
2519                                         found = true;
2520                                 }
2521                         } else if (IS_BROADWELL(dev_priv)) {
2522                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2523                                 if (tmp_mask) {
2524                                         ilk_hpd_irq_handler(dev_priv,
2525                                                             tmp_mask, hpd_bdw);
2526                                         found = true;
2527                                 }
2528                         }
2529
2530                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2531                                 gmbus_irq_handler(dev_priv);
2532                                 found = true;
2533                         }
2534
2535                         if (!found)
2536                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2537                 }
2538                 else
2539                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2540         }
2541
2542         for_each_pipe(dev_priv, pipe) {
2543                 u32 flip_done, fault_errors;
2544
2545                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2546                         continue;
2547
2548                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2549                 if (!iir) {
2550                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2551                         continue;
2552                 }
2553
2554                 ret = IRQ_HANDLED;
2555                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2556
2557                 if (iir & GEN8_PIPE_VBLANK &&
2558                     intel_pipe_handle_vblank(dev_priv, pipe))
2559                         intel_check_page_flip(dev_priv, pipe);
2560
2561                 flip_done = iir;
2562                 if (INTEL_INFO(dev_priv)->gen >= 9)
2563                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2564                 else
2565                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2566
2567                 if (flip_done)
2568                         intel_finish_page_flip_cs(dev_priv, pipe);
2569
2570                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2571                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2572
2573                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2574                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2575
2576                 fault_errors = iir;
2577                 if (INTEL_INFO(dev_priv)->gen >= 9)
2578                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2579                 else
2580                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2581
2582                 if (fault_errors)
2583                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2584                                   pipe_name(pipe),
2585                                   fault_errors);
2586         }
2587
2588         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2589             master_ctl & GEN8_DE_PCH_IRQ) {
2590                 /*
2591                  * FIXME(BDW): Assume for now that the new interrupt handling
2592                  * scheme also closed the SDE interrupt handling race we've seen
2593                  * on older pch-split platforms. But this needs testing.
2594                  */
2595                 iir = I915_READ(SDEIIR);
2596                 if (iir) {
2597                         I915_WRITE(SDEIIR, iir);
2598                         ret = IRQ_HANDLED;
2599
2600                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2601                                 spt_irq_handler(dev_priv, iir);
2602                         else
2603                                 cpt_irq_handler(dev_priv, iir);
2604                 } else {
2605                         /*
2606                          * Like on previous PCH there seems to be something
2607                          * fishy going on with forwarding PCH interrupts.
2608                          */
2609                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2610                 }
2611         }
2612
2613         return ret;
2614 }
2615
2616 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2617 {
2618         struct drm_device *dev = arg;
2619         struct drm_i915_private *dev_priv = to_i915(dev);
2620         u32 master_ctl;
2621         u32 gt_iir[4] = {};
2622         irqreturn_t ret;
2623
2624         if (!intel_irqs_enabled(dev_priv))
2625                 return IRQ_NONE;
2626
2627         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2628         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2629         if (!master_ctl)
2630                 return IRQ_NONE;
2631
2632         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2633
2634         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2635         disable_rpm_wakeref_asserts(dev_priv);
2636
2637         /* Find, clear, then process each source of interrupt */
2638         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2639         gen8_gt_irq_handler(dev_priv, gt_iir);
2640         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2641
2642         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2643         POSTING_READ_FW(GEN8_MASTER_IRQ);
2644
2645         enable_rpm_wakeref_asserts(dev_priv);
2646
2647         return ret;
2648 }
2649
2650 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2651 {
2652         /*
2653          * Notify all waiters for GPU completion events that reset state has
2654          * been changed, and that they need to restart their wait after
2655          * checking for potential errors (and bail out to drop locks if there is
2656          * a gpu reset pending so that i915_error_work_func can acquire them).
2657          */
2658
2659         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2660         wake_up_all(&dev_priv->gpu_error.wait_queue);
2661
2662         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2663         wake_up_all(&dev_priv->pending_flip_queue);
2664 }
2665
2666 /**
2667  * i915_reset_and_wakeup - do process context error handling work
2668  * @dev_priv: i915 device private
2669  *
2670  * Fire an error uevent so userspace can see that a hang or error
2671  * was detected.
2672  */
2673 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2674 {
2675         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2676         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2677         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2678         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2679
2680         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2681
2682         DRM_DEBUG_DRIVER("resetting chip\n");
2683         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2684
2685         /*
2686          * In most cases it's guaranteed that we get here with an RPM
2687          * reference held, for example because there is a pending GPU
2688          * request that won't finish until the reset is done. This
2689          * isn't the case at least when we get here by doing a
2690          * simulated reset via debugs, so get an RPM reference.
2691          */
2692         intel_runtime_pm_get(dev_priv);
2693         intel_prepare_reset(dev_priv);
2694
2695         do {
2696                 /*
2697                  * All state reset _must_ be completed before we update the
2698                  * reset counter, for otherwise waiters might miss the reset
2699                  * pending state and not properly drop locks, resulting in
2700                  * deadlocks with the reset work.
2701                  */
2702                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2703                         i915_reset(dev_priv);
2704                         mutex_unlock(&dev_priv->drm.struct_mutex);
2705                 }
2706
2707                 /* We need to wait for anyone holding the lock to wakeup */
2708         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2709                                      I915_RESET_IN_PROGRESS,
2710                                      TASK_UNINTERRUPTIBLE,
2711                                      HZ));
2712
2713         intel_finish_reset(dev_priv);
2714         intel_runtime_pm_put(dev_priv);
2715
2716         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2717                 kobject_uevent_env(kobj,
2718                                    KOBJ_CHANGE, reset_done_event);
2719
2720         /*
2721          * Note: The wake_up also serves as a memory barrier so that
2722          * waiters see the updated value of the dev_priv->gpu_error.
2723          */
2724         wake_up_all(&dev_priv->gpu_error.reset_queue);
2725 }
2726
2727 static inline void
2728 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2729                         struct intel_instdone *instdone)
2730 {
2731         int slice;
2732         int subslice;
2733
2734         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2735
2736         if (INTEL_GEN(dev_priv) <= 3)
2737                 return;
2738
2739         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2740
2741         if (INTEL_GEN(dev_priv) <= 6)
2742                 return;
2743
2744         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2745                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2746                        slice, subslice, instdone->sampler[slice][subslice]);
2747
2748         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2749                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2750                        slice, subslice, instdone->row[slice][subslice]);
2751 }
2752
2753 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2754 {
2755         u32 eir;
2756
2757         if (!IS_GEN2(dev_priv))
2758                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2759
2760         if (INTEL_GEN(dev_priv) < 4)
2761                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2762         else
2763                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2764
2765         I915_WRITE(EIR, I915_READ(EIR));
2766         eir = I915_READ(EIR);
2767         if (eir) {
2768                 /*
2769                  * some errors might have become stuck,
2770                  * mask them.
2771                  */
2772                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2773                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2774                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2775         }
2776 }
2777
2778 /**
2779  * i915_handle_error - handle a gpu error
2780  * @dev_priv: i915 device private
2781  * @engine_mask: mask representing engines that are hung
2782  * @fmt: Error message format string
2783  *
2784  * Do some basic checking of register state at error time and
2785  * dump it to the syslog.  Also call i915_capture_error_state() to make
2786  * sure we get a record and make it available in debugfs.  Fire a uevent
2787  * so userspace knows something bad happened (should trigger collection
2788  * of a ring dump etc.).
2789  */
2790 void i915_handle_error(struct drm_i915_private *dev_priv,
2791                        u32 engine_mask,
2792                        const char *fmt, ...)
2793 {
2794         va_list args;
2795         char error_msg[80];
2796
2797         va_start(args, fmt);
2798         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2799         va_end(args);
2800
2801         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2802         i915_clear_error_registers(dev_priv);
2803
2804         if (!engine_mask)
2805                 return;
2806
2807         if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2808                              &dev_priv->gpu_error.flags))
2809                 return;
2810
2811         /*
2812          * Wakeup waiting processes so that the reset function
2813          * i915_reset_and_wakeup doesn't deadlock trying to grab
2814          * various locks. By bumping the reset counter first, the woken
2815          * processes will see a reset in progress and back off,
2816          * releasing their locks and then wait for the reset completion.
2817          * We must do this for _all_ gpu waiters that might hold locks
2818          * that the reset work needs to acquire.
2819          *
2820          * Note: The wake_up also provides a memory barrier to ensure that the
2821          * waiters see the updated value of the reset flags.
2822          */
2823         i915_error_wake_up(dev_priv);
2824
2825         i915_reset_and_wakeup(dev_priv);
2826 }
2827
2828 /* Called from drm generic code, passed 'crtc' which
2829  * we use as a pipe index
2830  */
2831 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2832 {
2833         struct drm_i915_private *dev_priv = to_i915(dev);
2834         unsigned long irqflags;
2835
2836         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2837         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2838         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2839
2840         return 0;
2841 }
2842
2843 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845         struct drm_i915_private *dev_priv = to_i915(dev);
2846         unsigned long irqflags;
2847
2848         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849         i915_enable_pipestat(dev_priv, pipe,
2850                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2851         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2852
2853         return 0;
2854 }
2855
2856 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2857 {
2858         struct drm_i915_private *dev_priv = to_i915(dev);
2859         unsigned long irqflags;
2860         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2861                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2862
2863         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2864         ilk_enable_display_irq(dev_priv, bit);
2865         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2866
2867         return 0;
2868 }
2869
2870 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2871 {
2872         struct drm_i915_private *dev_priv = to_i915(dev);
2873         unsigned long irqflags;
2874
2875         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2876         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2877         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2878
2879         return 0;
2880 }
2881
2882 /* Called from drm generic code, passed 'crtc' which
2883  * we use as a pipe index
2884  */
2885 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2886 {
2887         struct drm_i915_private *dev_priv = to_i915(dev);
2888         unsigned long irqflags;
2889
2890         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2891         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2892         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2893 }
2894
2895 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2896 {
2897         struct drm_i915_private *dev_priv = to_i915(dev);
2898         unsigned long irqflags;
2899
2900         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2901         i915_disable_pipestat(dev_priv, pipe,
2902                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2903         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2904 }
2905
2906 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2907 {
2908         struct drm_i915_private *dev_priv = to_i915(dev);
2909         unsigned long irqflags;
2910         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2911                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2912
2913         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2914         ilk_disable_display_irq(dev_priv, bit);
2915         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2916 }
2917
2918 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2919 {
2920         struct drm_i915_private *dev_priv = to_i915(dev);
2921         unsigned long irqflags;
2922
2923         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2924         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2925         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2926 }
2927
2928 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2929 {
2930         if (HAS_PCH_NOP(dev_priv))
2931                 return;
2932
2933         GEN5_IRQ_RESET(SDE);
2934
2935         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2936                 I915_WRITE(SERR_INT, 0xffffffff);
2937 }
2938
2939 /*
2940  * SDEIER is also touched by the interrupt handler to work around missed PCH
2941  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2942  * instead we unconditionally enable all PCH interrupt sources here, but then
2943  * only unmask them as needed with SDEIMR.
2944  *
2945  * This function needs to be called before interrupts are enabled.
2946  */
2947 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2948 {
2949         struct drm_i915_private *dev_priv = to_i915(dev);
2950
2951         if (HAS_PCH_NOP(dev_priv))
2952                 return;
2953
2954         WARN_ON(I915_READ(SDEIER) != 0);
2955         I915_WRITE(SDEIER, 0xffffffff);
2956         POSTING_READ(SDEIER);
2957 }
2958
2959 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2960 {
2961         GEN5_IRQ_RESET(GT);
2962         if (INTEL_GEN(dev_priv) >= 6)
2963                 GEN5_IRQ_RESET(GEN6_PM);
2964 }
2965
2966 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2967 {
2968         enum pipe pipe;
2969
2970         if (IS_CHERRYVIEW(dev_priv))
2971                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2972         else
2973                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2974
2975         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2976         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2977
2978         for_each_pipe(dev_priv, pipe) {
2979                 I915_WRITE(PIPESTAT(pipe),
2980                            PIPE_FIFO_UNDERRUN_STATUS |
2981                            PIPESTAT_INT_STATUS_MASK);
2982                 dev_priv->pipestat_irq_mask[pipe] = 0;
2983         }
2984
2985         GEN5_IRQ_RESET(VLV_);
2986         dev_priv->irq_mask = ~0;
2987 }
2988
2989 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2990 {
2991         u32 pipestat_mask;
2992         u32 enable_mask;
2993         enum pipe pipe;
2994         u32 val;
2995
2996         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2997                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2998
2999         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3000         for_each_pipe(dev_priv, pipe)
3001                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3002
3003         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3004                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3005                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3006         if (IS_CHERRYVIEW(dev_priv))
3007                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3008
3009         WARN_ON(dev_priv->irq_mask != ~0);
3010
3011         val = (I915_LPE_PIPE_A_INTERRUPT |
3012                 I915_LPE_PIPE_B_INTERRUPT |
3013                 I915_LPE_PIPE_C_INTERRUPT);
3014
3015         enable_mask |= val;
3016
3017         dev_priv->irq_mask = ~enable_mask;
3018
3019         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3020 }
3021
3022 /* drm_dma.h hooks
3023 */
3024 static void ironlake_irq_reset(struct drm_device *dev)
3025 {
3026         struct drm_i915_private *dev_priv = to_i915(dev);
3027
3028         I915_WRITE(HWSTAM, 0xffffffff);
3029
3030         GEN5_IRQ_RESET(DE);
3031         if (IS_GEN7(dev_priv))
3032                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3033
3034         gen5_gt_irq_reset(dev_priv);
3035
3036         ibx_irq_reset(dev_priv);
3037 }
3038
3039 static void valleyview_irq_preinstall(struct drm_device *dev)
3040 {
3041         struct drm_i915_private *dev_priv = to_i915(dev);
3042
3043         I915_WRITE(VLV_MASTER_IER, 0);
3044         POSTING_READ(VLV_MASTER_IER);
3045
3046         gen5_gt_irq_reset(dev_priv);
3047
3048         spin_lock_irq(&dev_priv->irq_lock);
3049         if (dev_priv->display_irqs_enabled)
3050                 vlv_display_irq_reset(dev_priv);
3051         spin_unlock_irq(&dev_priv->irq_lock);
3052 }
3053
3054 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3055 {
3056         GEN8_IRQ_RESET_NDX(GT, 0);
3057         GEN8_IRQ_RESET_NDX(GT, 1);
3058         GEN8_IRQ_RESET_NDX(GT, 2);
3059         GEN8_IRQ_RESET_NDX(GT, 3);
3060 }
3061
3062 static void gen8_irq_reset(struct drm_device *dev)
3063 {
3064         struct drm_i915_private *dev_priv = to_i915(dev);
3065         int pipe;
3066
3067         I915_WRITE(GEN8_MASTER_IRQ, 0);
3068         POSTING_READ(GEN8_MASTER_IRQ);
3069
3070         gen8_gt_irq_reset(dev_priv);
3071
3072         for_each_pipe(dev_priv, pipe)
3073                 if (intel_display_power_is_enabled(dev_priv,
3074                                                    POWER_DOMAIN_PIPE(pipe)))
3075                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3076
3077         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3078         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3079         GEN5_IRQ_RESET(GEN8_PCU_);
3080
3081         if (HAS_PCH_SPLIT(dev_priv))
3082                 ibx_irq_reset(dev_priv);
3083 }
3084
3085 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3086                                      unsigned int pipe_mask)
3087 {
3088         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3089         enum pipe pipe;
3090
3091         spin_lock_irq(&dev_priv->irq_lock);
3092         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3093                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3094                                   dev_priv->de_irq_mask[pipe],
3095                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3096         spin_unlock_irq(&dev_priv->irq_lock);
3097 }
3098
3099 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3100                                      unsigned int pipe_mask)
3101 {
3102         enum pipe pipe;
3103
3104         spin_lock_irq(&dev_priv->irq_lock);
3105         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3106                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3107         spin_unlock_irq(&dev_priv->irq_lock);
3108
3109         /* make sure we're done processing display irqs */
3110         synchronize_irq(dev_priv->drm.irq);
3111 }
3112
3113 static void cherryview_irq_preinstall(struct drm_device *dev)
3114 {
3115         struct drm_i915_private *dev_priv = to_i915(dev);
3116
3117         I915_WRITE(GEN8_MASTER_IRQ, 0);
3118         POSTING_READ(GEN8_MASTER_IRQ);
3119
3120         gen8_gt_irq_reset(dev_priv);
3121
3122         GEN5_IRQ_RESET(GEN8_PCU_);
3123
3124         spin_lock_irq(&dev_priv->irq_lock);
3125         if (dev_priv->display_irqs_enabled)
3126                 vlv_display_irq_reset(dev_priv);
3127         spin_unlock_irq(&dev_priv->irq_lock);
3128 }
3129
3130 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3131                                   const u32 hpd[HPD_NUM_PINS])
3132 {
3133         struct intel_encoder *encoder;
3134         u32 enabled_irqs = 0;
3135
3136         for_each_intel_encoder(&dev_priv->drm, encoder)
3137                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3138                         enabled_irqs |= hpd[encoder->hpd_pin];
3139
3140         return enabled_irqs;
3141 }
3142
3143 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3144 {
3145         u32 hotplug;
3146
3147         /*
3148          * Enable digital hotplug on the PCH, and configure the DP short pulse
3149          * duration to 2ms (which is the minimum in the Display Port spec).
3150          * The pulse duration bits are reserved on LPT+.
3151          */
3152         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3153         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3154                      PORTC_PULSE_DURATION_MASK |
3155                      PORTD_PULSE_DURATION_MASK);
3156         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3157         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3158         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3159         /*
3160          * When CPU and PCH are on the same package, port A
3161          * HPD must be enabled in both north and south.
3162          */
3163         if (HAS_PCH_LPT_LP(dev_priv))
3164                 hotplug |= PORTA_HOTPLUG_ENABLE;
3165         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3166 }
3167
3168 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3169 {
3170         u32 hotplug_irqs, enabled_irqs;
3171
3172         if (HAS_PCH_IBX(dev_priv)) {
3173                 hotplug_irqs = SDE_HOTPLUG_MASK;
3174                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3175         } else {
3176                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3177                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3178         }
3179
3180         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3181
3182         ibx_hpd_detection_setup(dev_priv);
3183 }
3184
3185 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3186 {
3187         u32 hotplug;
3188
3189         /* Enable digital hotplug on the PCH */
3190         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3191         hotplug |= PORTA_HOTPLUG_ENABLE |
3192                    PORTB_HOTPLUG_ENABLE |
3193                    PORTC_HOTPLUG_ENABLE |
3194                    PORTD_HOTPLUG_ENABLE;
3195         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3196
3197         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3198         hotplug |= PORTE_HOTPLUG_ENABLE;
3199         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3200 }
3201
3202 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3203 {
3204         u32 hotplug_irqs, enabled_irqs;
3205
3206         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3207         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3208
3209         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3210
3211         spt_hpd_detection_setup(dev_priv);
3212 }
3213
3214 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3215 {
3216         u32 hotplug;
3217
3218         /*
3219          * Enable digital hotplug on the CPU, and configure the DP short pulse
3220          * duration to 2ms (which is the minimum in the Display Port spec)
3221          * The pulse duration bits are reserved on HSW+.
3222          */
3223         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3224         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3225         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3226                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3227         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3228 }
3229
3230 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3231 {
3232         u32 hotplug_irqs, enabled_irqs;
3233
3234         if (INTEL_GEN(dev_priv) >= 8) {
3235                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3236                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3237
3238                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3239         } else if (INTEL_GEN(dev_priv) >= 7) {
3240                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3241                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3242
3243                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3244         } else {
3245                 hotplug_irqs = DE_DP_A_HOTPLUG;
3246                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3247
3248                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3249         }
3250
3251         ilk_hpd_detection_setup(dev_priv);
3252
3253         ibx_hpd_irq_setup(dev_priv);
3254 }
3255
3256 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3257                                       u32 enabled_irqs)
3258 {
3259         u32 hotplug;
3260
3261         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3262         hotplug |= PORTA_HOTPLUG_ENABLE |
3263                    PORTB_HOTPLUG_ENABLE |
3264                    PORTC_HOTPLUG_ENABLE;
3265
3266         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3267                       hotplug, enabled_irqs);
3268         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3269
3270         /*
3271          * For BXT invert bit has to be set based on AOB design
3272          * for HPD detection logic, update it based on VBT fields.
3273          */
3274         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3275             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3276                 hotplug |= BXT_DDIA_HPD_INVERT;
3277         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3278             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3279                 hotplug |= BXT_DDIB_HPD_INVERT;
3280         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3281             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3282                 hotplug |= BXT_DDIC_HPD_INVERT;
3283
3284         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3285 }
3286
3287 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3288 {
3289         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3290 }
3291
3292 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3293 {
3294         u32 hotplug_irqs, enabled_irqs;
3295
3296         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3297         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3298
3299         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3300
3301         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3302 }
3303
3304 static void ibx_irq_postinstall(struct drm_device *dev)
3305 {
3306         struct drm_i915_private *dev_priv = to_i915(dev);
3307         u32 mask;
3308
3309         if (HAS_PCH_NOP(dev_priv))
3310                 return;
3311
3312         if (HAS_PCH_IBX(dev_priv))
3313                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3314         else
3315                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3316
3317         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3318         I915_WRITE(SDEIMR, ~mask);
3319
3320         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3321             HAS_PCH_LPT(dev_priv))
3322                 ibx_hpd_detection_setup(dev_priv);
3323         else
3324                 spt_hpd_detection_setup(dev_priv);
3325 }
3326
3327 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3328 {
3329         struct drm_i915_private *dev_priv = to_i915(dev);
3330         u32 pm_irqs, gt_irqs;
3331
3332         pm_irqs = gt_irqs = 0;
3333
3334         dev_priv->gt_irq_mask = ~0;
3335         if (HAS_L3_DPF(dev_priv)) {
3336                 /* L3 parity interrupt is always unmasked. */
3337                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3338                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3339         }
3340
3341         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3342         if (IS_GEN5(dev_priv)) {
3343                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3344         } else {
3345                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3346         }
3347
3348         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3349
3350         if (INTEL_GEN(dev_priv) >= 6) {
3351                 /*
3352                  * RPS interrupts will get enabled/disabled on demand when RPS
3353                  * itself is enabled/disabled.
3354                  */
3355                 if (HAS_VEBOX(dev_priv)) {
3356                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3357                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3358                 }
3359
3360                 dev_priv->pm_imr = 0xffffffff;
3361                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3362         }
3363 }
3364
3365 static int ironlake_irq_postinstall(struct drm_device *dev)
3366 {
3367         struct drm_i915_private *dev_priv = to_i915(dev);
3368         u32 display_mask, extra_mask;
3369
3370         if (INTEL_GEN(dev_priv) >= 7) {
3371                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3372                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3373                                 DE_PLANEB_FLIP_DONE_IVB |
3374                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3375                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3376                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3377                               DE_DP_A_HOTPLUG_IVB);
3378         } else {
3379                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3380                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3381                                 DE_AUX_CHANNEL_A |
3382                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3383                                 DE_POISON);
3384                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3385                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3386                               DE_DP_A_HOTPLUG);
3387         }
3388
3389         dev_priv->irq_mask = ~display_mask;
3390
3391         I915_WRITE(HWSTAM, 0xeffe);
3392
3393         ibx_irq_pre_postinstall(dev);
3394
3395         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3396
3397         gen5_gt_irq_postinstall(dev);
3398
3399         ilk_hpd_detection_setup(dev_priv);
3400
3401         ibx_irq_postinstall(dev);
3402
3403         if (IS_IRONLAKE_M(dev_priv)) {
3404                 /* Enable PCU event interrupts
3405                  *
3406                  * spinlocking not required here for correctness since interrupt
3407                  * setup is guaranteed to run in single-threaded context. But we
3408                  * need it to make the assert_spin_locked happy. */
3409                 spin_lock_irq(&dev_priv->irq_lock);
3410                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3411                 spin_unlock_irq(&dev_priv->irq_lock);
3412         }
3413
3414         return 0;
3415 }
3416
3417 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3418 {
3419         lockdep_assert_held(&dev_priv->irq_lock);
3420
3421         if (dev_priv->display_irqs_enabled)
3422                 return;
3423
3424         dev_priv->display_irqs_enabled = true;
3425
3426         if (intel_irqs_enabled(dev_priv)) {
3427                 vlv_display_irq_reset(dev_priv);
3428                 vlv_display_irq_postinstall(dev_priv);
3429         }
3430 }
3431
3432 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3433 {
3434         lockdep_assert_held(&dev_priv->irq_lock);
3435
3436         if (!dev_priv->display_irqs_enabled)
3437                 return;
3438
3439         dev_priv->display_irqs_enabled = false;
3440
3441         if (intel_irqs_enabled(dev_priv))
3442                 vlv_display_irq_reset(dev_priv);
3443 }
3444
3445
3446 static int valleyview_irq_postinstall(struct drm_device *dev)
3447 {
3448         struct drm_i915_private *dev_priv = to_i915(dev);
3449
3450         gen5_gt_irq_postinstall(dev);
3451
3452         spin_lock_irq(&dev_priv->irq_lock);
3453         if (dev_priv->display_irqs_enabled)
3454                 vlv_display_irq_postinstall(dev_priv);
3455         spin_unlock_irq(&dev_priv->irq_lock);
3456
3457         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3458         POSTING_READ(VLV_MASTER_IER);
3459
3460         return 0;
3461 }
3462
3463 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3464 {
3465         /* These are interrupts we'll toggle with the ring mask register */
3466         uint32_t gt_interrupts[] = {
3467                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3468                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3469                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3470                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3471                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3472                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3473                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3474                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3475                 0,
3476                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3477                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3478                 };
3479
3480         if (HAS_L3_DPF(dev_priv))
3481                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3482
3483         dev_priv->pm_ier = 0x0;
3484         dev_priv->pm_imr = ~dev_priv->pm_ier;
3485         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3486         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3487         /*
3488          * RPS interrupts will get enabled/disabled on demand when RPS itself
3489          * is enabled/disabled. Same wil be the case for GuC interrupts.
3490          */
3491         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3492         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3493 }
3494
3495 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3496 {
3497         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3498         uint32_t de_pipe_enables;
3499         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3500         u32 de_port_enables;
3501         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3502         enum pipe pipe;
3503
3504         if (INTEL_INFO(dev_priv)->gen >= 9) {
3505                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3506                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3507                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3508                                   GEN9_AUX_CHANNEL_D;
3509                 if (IS_GEN9_LP(dev_priv))
3510                         de_port_masked |= BXT_DE_PORT_GMBUS;
3511         } else {
3512                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3513                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3514         }
3515
3516         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3517                                            GEN8_PIPE_FIFO_UNDERRUN;
3518
3519         de_port_enables = de_port_masked;
3520         if (IS_GEN9_LP(dev_priv))
3521                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3522         else if (IS_BROADWELL(dev_priv))
3523                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3524
3525         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3526         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3527         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3528
3529         for_each_pipe(dev_priv, pipe)
3530                 if (intel_display_power_is_enabled(dev_priv,
3531                                 POWER_DOMAIN_PIPE(pipe)))
3532                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3533                                           dev_priv->de_irq_mask[pipe],
3534                                           de_pipe_enables);
3535
3536         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3537         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3538
3539         if (IS_GEN9_LP(dev_priv))
3540                 bxt_hpd_detection_setup(dev_priv);
3541         else if (IS_BROADWELL(dev_priv))
3542                 ilk_hpd_detection_setup(dev_priv);
3543 }
3544
3545 static int gen8_irq_postinstall(struct drm_device *dev)
3546 {
3547         struct drm_i915_private *dev_priv = to_i915(dev);
3548
3549         if (HAS_PCH_SPLIT(dev_priv))
3550                 ibx_irq_pre_postinstall(dev);
3551
3552         gen8_gt_irq_postinstall(dev_priv);
3553         gen8_de_irq_postinstall(dev_priv);
3554
3555         if (HAS_PCH_SPLIT(dev_priv))
3556                 ibx_irq_postinstall(dev);
3557
3558         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3559         POSTING_READ(GEN8_MASTER_IRQ);
3560
3561         return 0;
3562 }
3563
3564 static int cherryview_irq_postinstall(struct drm_device *dev)
3565 {
3566         struct drm_i915_private *dev_priv = to_i915(dev);
3567
3568         gen8_gt_irq_postinstall(dev_priv);
3569
3570         spin_lock_irq(&dev_priv->irq_lock);
3571         if (dev_priv->display_irqs_enabled)
3572                 vlv_display_irq_postinstall(dev_priv);
3573         spin_unlock_irq(&dev_priv->irq_lock);
3574
3575         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3576         POSTING_READ(GEN8_MASTER_IRQ);
3577
3578         return 0;
3579 }
3580
3581 static void gen8_irq_uninstall(struct drm_device *dev)
3582 {
3583         struct drm_i915_private *dev_priv = to_i915(dev);
3584
3585         if (!dev_priv)
3586                 return;
3587
3588         gen8_irq_reset(dev);
3589 }
3590
3591 static void valleyview_irq_uninstall(struct drm_device *dev)
3592 {
3593         struct drm_i915_private *dev_priv = to_i915(dev);
3594
3595         if (!dev_priv)
3596                 return;
3597
3598         I915_WRITE(VLV_MASTER_IER, 0);
3599         POSTING_READ(VLV_MASTER_IER);
3600
3601         gen5_gt_irq_reset(dev_priv);
3602
3603         I915_WRITE(HWSTAM, 0xffffffff);
3604
3605         spin_lock_irq(&dev_priv->irq_lock);
3606         if (dev_priv->display_irqs_enabled)
3607                 vlv_display_irq_reset(dev_priv);
3608         spin_unlock_irq(&dev_priv->irq_lock);
3609 }
3610
3611 static void cherryview_irq_uninstall(struct drm_device *dev)
3612 {
3613         struct drm_i915_private *dev_priv = to_i915(dev);
3614
3615         if (!dev_priv)
3616                 return;
3617
3618         I915_WRITE(GEN8_MASTER_IRQ, 0);
3619         POSTING_READ(GEN8_MASTER_IRQ);
3620
3621         gen8_gt_irq_reset(dev_priv);
3622
3623         GEN5_IRQ_RESET(GEN8_PCU_);
3624
3625         spin_lock_irq(&dev_priv->irq_lock);
3626         if (dev_priv->display_irqs_enabled)
3627                 vlv_display_irq_reset(dev_priv);
3628         spin_unlock_irq(&dev_priv->irq_lock);
3629 }
3630
3631 static void ironlake_irq_uninstall(struct drm_device *dev)
3632 {
3633         struct drm_i915_private *dev_priv = to_i915(dev);
3634
3635         if (!dev_priv)
3636                 return;
3637
3638         ironlake_irq_reset(dev);
3639 }
3640
3641 static void i8xx_irq_preinstall(struct drm_device * dev)
3642 {
3643         struct drm_i915_private *dev_priv = to_i915(dev);
3644         int pipe;
3645
3646         for_each_pipe(dev_priv, pipe)
3647                 I915_WRITE(PIPESTAT(pipe), 0);
3648         I915_WRITE16(IMR, 0xffff);
3649         I915_WRITE16(IER, 0x0);
3650         POSTING_READ16(IER);
3651 }
3652
3653 static int i8xx_irq_postinstall(struct drm_device *dev)
3654 {
3655         struct drm_i915_private *dev_priv = to_i915(dev);
3656
3657         I915_WRITE16(EMR,
3658                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3659
3660         /* Unmask the interrupts that we always want on. */
3661         dev_priv->irq_mask =
3662                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3663                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3664                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3665                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3666         I915_WRITE16(IMR, dev_priv->irq_mask);
3667
3668         I915_WRITE16(IER,
3669                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3670                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3671                      I915_USER_INTERRUPT);
3672         POSTING_READ16(IER);
3673
3674         /* Interrupt setup is already guaranteed to be single-threaded, this is
3675          * just to make the assert_spin_locked check happy. */
3676         spin_lock_irq(&dev_priv->irq_lock);
3677         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3678         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3679         spin_unlock_irq(&dev_priv->irq_lock);
3680
3681         return 0;
3682 }
3683
3684 /*
3685  * Returns true when a page flip has completed.
3686  */
3687 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3688                                int plane, int pipe, u32 iir)
3689 {
3690         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3691
3692         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3693                 return false;
3694
3695         if ((iir & flip_pending) == 0)
3696                 goto check_page_flip;
3697
3698         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3699          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3700          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3701          * the flip is completed (no longer pending). Since this doesn't raise
3702          * an interrupt per se, we watch for the change at vblank.
3703          */
3704         if (I915_READ16(ISR) & flip_pending)
3705                 goto check_page_flip;
3706
3707         intel_finish_page_flip_cs(dev_priv, pipe);
3708         return true;
3709
3710 check_page_flip:
3711         intel_check_page_flip(dev_priv, pipe);
3712         return false;
3713 }
3714
3715 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3716 {
3717         struct drm_device *dev = arg;
3718         struct drm_i915_private *dev_priv = to_i915(dev);
3719         u16 iir, new_iir;
3720         u32 pipe_stats[2];
3721         int pipe;
3722         u16 flip_mask =
3723                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3724                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3725         irqreturn_t ret;
3726
3727         if (!intel_irqs_enabled(dev_priv))
3728                 return IRQ_NONE;
3729
3730         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3731         disable_rpm_wakeref_asserts(dev_priv);
3732
3733         ret = IRQ_NONE;
3734         iir = I915_READ16(IIR);
3735         if (iir == 0)
3736                 goto out;
3737
3738         while (iir & ~flip_mask) {
3739                 /* Can't rely on pipestat interrupt bit in iir as it might
3740                  * have been cleared after the pipestat interrupt was received.
3741                  * It doesn't set the bit in iir again, but it still produces
3742                  * interrupts (for non-MSI).
3743                  */
3744                 spin_lock(&dev_priv->irq_lock);
3745                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3746                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3747
3748                 for_each_pipe(dev_priv, pipe) {
3749                         i915_reg_t reg = PIPESTAT(pipe);
3750                         pipe_stats[pipe] = I915_READ(reg);
3751
3752                         /*
3753                          * Clear the PIPE*STAT regs before the IIR
3754                          */
3755                         if (pipe_stats[pipe] & 0x8000ffff)
3756                                 I915_WRITE(reg, pipe_stats[pipe]);
3757                 }
3758                 spin_unlock(&dev_priv->irq_lock);
3759
3760                 I915_WRITE16(IIR, iir & ~flip_mask);
3761                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3762
3763                 if (iir & I915_USER_INTERRUPT)
3764                         notify_ring(dev_priv->engine[RCS]);
3765
3766                 for_each_pipe(dev_priv, pipe) {
3767                         int plane = pipe;
3768                         if (HAS_FBC(dev_priv))
3769                                 plane = !plane;
3770
3771                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3772                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3773                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3774
3775                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3776                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3777
3778                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3779                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3780                                                                     pipe);
3781                 }
3782
3783                 iir = new_iir;
3784         }
3785         ret = IRQ_HANDLED;
3786
3787 out:
3788         enable_rpm_wakeref_asserts(dev_priv);
3789
3790         return ret;
3791 }
3792
3793 static void i8xx_irq_uninstall(struct drm_device * dev)
3794 {
3795         struct drm_i915_private *dev_priv = to_i915(dev);
3796         int pipe;
3797
3798         for_each_pipe(dev_priv, pipe) {
3799                 /* Clear enable bits; then clear status bits */
3800                 I915_WRITE(PIPESTAT(pipe), 0);
3801                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3802         }
3803         I915_WRITE16(IMR, 0xffff);
3804         I915_WRITE16(IER, 0x0);
3805         I915_WRITE16(IIR, I915_READ16(IIR));
3806 }
3807
3808 static void i915_irq_preinstall(struct drm_device * dev)
3809 {
3810         struct drm_i915_private *dev_priv = to_i915(dev);
3811         int pipe;
3812
3813         if (I915_HAS_HOTPLUG(dev_priv)) {
3814                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3815                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3816         }
3817
3818         I915_WRITE16(HWSTAM, 0xeffe);
3819         for_each_pipe(dev_priv, pipe)
3820                 I915_WRITE(PIPESTAT(pipe), 0);
3821         I915_WRITE(IMR, 0xffffffff);
3822         I915_WRITE(IER, 0x0);
3823         POSTING_READ(IER);
3824 }
3825
3826 static int i915_irq_postinstall(struct drm_device *dev)
3827 {
3828         struct drm_i915_private *dev_priv = to_i915(dev);
3829         u32 enable_mask;
3830
3831         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3832
3833         /* Unmask the interrupts that we always want on. */
3834         dev_priv->irq_mask =
3835                 ~(I915_ASLE_INTERRUPT |
3836                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3837                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3838                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3839                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3840
3841         enable_mask =
3842                 I915_ASLE_INTERRUPT |
3843                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3844                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3845                 I915_USER_INTERRUPT;
3846
3847         if (I915_HAS_HOTPLUG(dev_priv)) {
3848                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3849                 POSTING_READ(PORT_HOTPLUG_EN);
3850
3851                 /* Enable in IER... */
3852                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3853                 /* and unmask in IMR */
3854                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3855         }
3856
3857         I915_WRITE(IMR, dev_priv->irq_mask);
3858         I915_WRITE(IER, enable_mask);
3859         POSTING_READ(IER);
3860
3861         i915_enable_asle_pipestat(dev_priv);
3862
3863         /* Interrupt setup is already guaranteed to be single-threaded, this is
3864          * just to make the assert_spin_locked check happy. */
3865         spin_lock_irq(&dev_priv->irq_lock);
3866         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3867         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3868         spin_unlock_irq(&dev_priv->irq_lock);
3869
3870         return 0;
3871 }
3872
3873 /*
3874  * Returns true when a page flip has completed.
3875  */
3876 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3877                                int plane, int pipe, u32 iir)
3878 {
3879         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3880
3881         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3882                 return false;
3883
3884         if ((iir & flip_pending) == 0)
3885                 goto check_page_flip;
3886
3887         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3888          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3889          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3890          * the flip is completed (no longer pending). Since this doesn't raise
3891          * an interrupt per se, we watch for the change at vblank.
3892          */
3893         if (I915_READ(ISR) & flip_pending)
3894                 goto check_page_flip;
3895
3896         intel_finish_page_flip_cs(dev_priv, pipe);
3897         return true;
3898
3899 check_page_flip:
3900         intel_check_page_flip(dev_priv, pipe);
3901         return false;
3902 }
3903
3904 static irqreturn_t i915_irq_handler(int irq, void *arg)
3905 {
3906         struct drm_device *dev = arg;
3907         struct drm_i915_private *dev_priv = to_i915(dev);
3908         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3909         u32 flip_mask =
3910                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3911                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3912         int pipe, ret = IRQ_NONE;
3913
3914         if (!intel_irqs_enabled(dev_priv))
3915                 return IRQ_NONE;
3916
3917         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3918         disable_rpm_wakeref_asserts(dev_priv);
3919
3920         iir = I915_READ(IIR);
3921         do {
3922                 bool irq_received = (iir & ~flip_mask) != 0;
3923                 bool blc_event = false;
3924
3925                 /* Can't rely on pipestat interrupt bit in iir as it might
3926                  * have been cleared after the pipestat interrupt was received.
3927                  * It doesn't set the bit in iir again, but it still produces
3928                  * interrupts (for non-MSI).
3929                  */
3930                 spin_lock(&dev_priv->irq_lock);
3931                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3932                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3933
3934                 for_each_pipe(dev_priv, pipe) {
3935                         i915_reg_t reg = PIPESTAT(pipe);
3936                         pipe_stats[pipe] = I915_READ(reg);
3937
3938                         /* Clear the PIPE*STAT regs before the IIR */
3939                         if (pipe_stats[pipe] & 0x8000ffff) {
3940                                 I915_WRITE(reg, pipe_stats[pipe]);
3941                                 irq_received = true;
3942                         }
3943                 }
3944                 spin_unlock(&dev_priv->irq_lock);
3945
3946                 if (!irq_received)
3947                         break;
3948
3949                 /* Consume port.  Then clear IIR or we'll miss events */
3950                 if (I915_HAS_HOTPLUG(dev_priv) &&
3951                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3952                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3953                         if (hotplug_status)
3954                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3955                 }
3956
3957                 I915_WRITE(IIR, iir & ~flip_mask);
3958                 new_iir = I915_READ(IIR); /* Flush posted writes */
3959
3960                 if (iir & I915_USER_INTERRUPT)
3961                         notify_ring(dev_priv->engine[RCS]);
3962
3963                 for_each_pipe(dev_priv, pipe) {
3964                         int plane = pipe;
3965                         if (HAS_FBC(dev_priv))
3966                                 plane = !plane;
3967
3968                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3969                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3970                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3971
3972                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3973                                 blc_event = true;
3974
3975                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3976                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3977
3978                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3979                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3980                                                                     pipe);
3981                 }
3982
3983                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3984                         intel_opregion_asle_intr(dev_priv);
3985
3986                 /* With MSI, interrupts are only generated when iir
3987                  * transitions from zero to nonzero.  If another bit got
3988                  * set while we were handling the existing iir bits, then
3989                  * we would never get another interrupt.
3990                  *
3991                  * This is fine on non-MSI as well, as if we hit this path
3992                  * we avoid exiting the interrupt handler only to generate
3993                  * another one.
3994                  *
3995                  * Note that for MSI this could cause a stray interrupt report
3996                  * if an interrupt landed in the time between writing IIR and
3997                  * the posting read.  This should be rare enough to never
3998                  * trigger the 99% of 100,000 interrupts test for disabling
3999                  * stray interrupts.
4000                  */
4001                 ret = IRQ_HANDLED;
4002                 iir = new_iir;
4003         } while (iir & ~flip_mask);
4004
4005         enable_rpm_wakeref_asserts(dev_priv);
4006
4007         return ret;
4008 }
4009
4010 static void i915_irq_uninstall(struct drm_device * dev)
4011 {
4012         struct drm_i915_private *dev_priv = to_i915(dev);
4013         int pipe;
4014
4015         if (I915_HAS_HOTPLUG(dev_priv)) {
4016                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4017                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4018         }
4019
4020         I915_WRITE16(HWSTAM, 0xffff);
4021         for_each_pipe(dev_priv, pipe) {
4022                 /* Clear enable bits; then clear status bits */
4023                 I915_WRITE(PIPESTAT(pipe), 0);
4024                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4025         }
4026         I915_WRITE(IMR, 0xffffffff);
4027         I915_WRITE(IER, 0x0);
4028
4029         I915_WRITE(IIR, I915_READ(IIR));
4030 }
4031
4032 static void i965_irq_preinstall(struct drm_device * dev)
4033 {
4034         struct drm_i915_private *dev_priv = to_i915(dev);
4035         int pipe;
4036
4037         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4038         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039
4040         I915_WRITE(HWSTAM, 0xeffe);
4041         for_each_pipe(dev_priv, pipe)
4042                 I915_WRITE(PIPESTAT(pipe), 0);
4043         I915_WRITE(IMR, 0xffffffff);
4044         I915_WRITE(IER, 0x0);
4045         POSTING_READ(IER);
4046 }
4047
4048 static int i965_irq_postinstall(struct drm_device *dev)
4049 {
4050         struct drm_i915_private *dev_priv = to_i915(dev);
4051         u32 enable_mask;
4052         u32 error_mask;
4053
4054         /* Unmask the interrupts that we always want on. */
4055         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4056                                I915_DISPLAY_PORT_INTERRUPT |
4057                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4058                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4059                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4060                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4061                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4062
4063         enable_mask = ~dev_priv->irq_mask;
4064         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4065                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4066         enable_mask |= I915_USER_INTERRUPT;
4067
4068         if (IS_G4X(dev_priv))
4069                 enable_mask |= I915_BSD_USER_INTERRUPT;
4070
4071         /* Interrupt setup is already guaranteed to be single-threaded, this is
4072          * just to make the assert_spin_locked check happy. */
4073         spin_lock_irq(&dev_priv->irq_lock);
4074         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4075         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4076         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4077         spin_unlock_irq(&dev_priv->irq_lock);
4078
4079         /*
4080          * Enable some error detection, note the instruction error mask
4081          * bit is reserved, so we leave it masked.
4082          */
4083         if (IS_G4X(dev_priv)) {
4084                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4085                                GM45_ERROR_MEM_PRIV |
4086                                GM45_ERROR_CP_PRIV |
4087                                I915_ERROR_MEMORY_REFRESH);
4088         } else {
4089                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4090                                I915_ERROR_MEMORY_REFRESH);
4091         }
4092         I915_WRITE(EMR, error_mask);
4093
4094         I915_WRITE(IMR, dev_priv->irq_mask);
4095         I915_WRITE(IER, enable_mask);
4096         POSTING_READ(IER);
4097
4098         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4099         POSTING_READ(PORT_HOTPLUG_EN);
4100
4101         i915_enable_asle_pipestat(dev_priv);
4102
4103         return 0;
4104 }
4105
4106 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4107 {
4108         u32 hotplug_en;
4109
4110         lockdep_assert_held(&dev_priv->irq_lock);
4111
4112         /* Note HDMI and DP share hotplug bits */
4113         /* enable bits are the same for all generations */
4114         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4115         /* Programming the CRT detection parameters tends
4116            to generate a spurious hotplug event about three
4117            seconds later.  So just do it once.
4118         */
4119         if (IS_G4X(dev_priv))
4120                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4121         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4122
4123         /* Ignore TV since it's buggy */
4124         i915_hotplug_interrupt_update_locked(dev_priv,
4125                                              HOTPLUG_INT_EN_MASK |
4126                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4127                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4128                                              hotplug_en);
4129 }
4130
4131 static irqreturn_t i965_irq_handler(int irq, void *arg)
4132 {
4133         struct drm_device *dev = arg;
4134         struct drm_i915_private *dev_priv = to_i915(dev);
4135         u32 iir, new_iir;
4136         u32 pipe_stats[I915_MAX_PIPES];
4137         int ret = IRQ_NONE, pipe;
4138         u32 flip_mask =
4139                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4140                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4141
4142         if (!intel_irqs_enabled(dev_priv))
4143                 return IRQ_NONE;
4144
4145         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4146         disable_rpm_wakeref_asserts(dev_priv);
4147
4148         iir = I915_READ(IIR);
4149
4150         for (;;) {
4151                 bool irq_received = (iir & ~flip_mask) != 0;
4152                 bool blc_event = false;
4153
4154                 /* Can't rely on pipestat interrupt bit in iir as it might
4155                  * have been cleared after the pipestat interrupt was received.
4156                  * It doesn't set the bit in iir again, but it still produces
4157                  * interrupts (for non-MSI).
4158                  */
4159                 spin_lock(&dev_priv->irq_lock);
4160                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4161                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4162
4163                 for_each_pipe(dev_priv, pipe) {
4164                         i915_reg_t reg = PIPESTAT(pipe);
4165                         pipe_stats[pipe] = I915_READ(reg);
4166
4167                         /*
4168                          * Clear the PIPE*STAT regs before the IIR
4169                          */
4170                         if (pipe_stats[pipe] & 0x8000ffff) {
4171                                 I915_WRITE(reg, pipe_stats[pipe]);
4172                                 irq_received = true;
4173                         }
4174                 }
4175                 spin_unlock(&dev_priv->irq_lock);
4176
4177                 if (!irq_received)
4178                         break;
4179
4180                 ret = IRQ_HANDLED;
4181
4182                 /* Consume port.  Then clear IIR or we'll miss events */
4183                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4184                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4185                         if (hotplug_status)
4186                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4187                 }
4188
4189                 I915_WRITE(IIR, iir & ~flip_mask);
4190                 new_iir = I915_READ(IIR); /* Flush posted writes */
4191
4192                 if (iir & I915_USER_INTERRUPT)
4193                         notify_ring(dev_priv->engine[RCS]);
4194                 if (iir & I915_BSD_USER_INTERRUPT)
4195                         notify_ring(dev_priv->engine[VCS]);
4196
4197                 for_each_pipe(dev_priv, pipe) {
4198                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4199                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4200                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4201
4202                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4203                                 blc_event = true;
4204
4205                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4206                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4207
4208                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4209                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4210                 }
4211
4212                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4213                         intel_opregion_asle_intr(dev_priv);
4214
4215                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4216                         gmbus_irq_handler(dev_priv);
4217
4218                 /* With MSI, interrupts are only generated when iir
4219                  * transitions from zero to nonzero.  If another bit got
4220                  * set while we were handling the existing iir bits, then
4221                  * we would never get another interrupt.
4222                  *
4223                  * This is fine on non-MSI as well, as if we hit this path
4224                  * we avoid exiting the interrupt handler only to generate
4225                  * another one.
4226                  *
4227                  * Note that for MSI this could cause a stray interrupt report
4228                  * if an interrupt landed in the time between writing IIR and
4229                  * the posting read.  This should be rare enough to never
4230                  * trigger the 99% of 100,000 interrupts test for disabling
4231                  * stray interrupts.
4232                  */
4233                 iir = new_iir;
4234         }
4235
4236         enable_rpm_wakeref_asserts(dev_priv);
4237
4238         return ret;
4239 }
4240
4241 static void i965_irq_uninstall(struct drm_device * dev)
4242 {
4243         struct drm_i915_private *dev_priv = to_i915(dev);
4244         int pipe;
4245
4246         if (!dev_priv)
4247                 return;
4248
4249         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4250         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4251
4252         I915_WRITE(HWSTAM, 0xffffffff);
4253         for_each_pipe(dev_priv, pipe)
4254                 I915_WRITE(PIPESTAT(pipe), 0);
4255         I915_WRITE(IMR, 0xffffffff);
4256         I915_WRITE(IER, 0x0);
4257
4258         for_each_pipe(dev_priv, pipe)
4259                 I915_WRITE(PIPESTAT(pipe),
4260                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4261         I915_WRITE(IIR, I915_READ(IIR));
4262 }
4263
4264 /**
4265  * intel_irq_init - initializes irq support
4266  * @dev_priv: i915 device instance
4267  *
4268  * This function initializes all the irq support including work items, timers
4269  * and all the vtables. It does not setup the interrupt itself though.
4270  */
4271 void intel_irq_init(struct drm_i915_private *dev_priv)
4272 {
4273         struct drm_device *dev = &dev_priv->drm;
4274
4275         intel_hpd_init_work(dev_priv);
4276
4277         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4278         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4279
4280         if (HAS_GUC_SCHED(dev_priv))
4281                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4282
4283         /* Let's track the enabled rps events */
4284         if (IS_VALLEYVIEW(dev_priv))
4285                 /* WaGsvRC0ResidencyMethod:vlv */
4286                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4287         else
4288                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4289
4290         dev_priv->rps.pm_intr_keep = 0;
4291
4292         /*
4293          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4294          * if GEN6_PM_UP_EI_EXPIRED is masked.
4295          *
4296          * TODO: verify if this can be reproduced on VLV,CHV.
4297          */
4298         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4299                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4300
4301         if (INTEL_INFO(dev_priv)->gen >= 8)
4302                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4303
4304         if (IS_GEN2(dev_priv)) {
4305                 /* Gen2 doesn't have a hardware frame counter */
4306                 dev->max_vblank_count = 0;
4307         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4308                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4309                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4310         } else {
4311                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4312                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4313         }
4314
4315         /*
4316          * Opt out of the vblank disable timer on everything except gen2.
4317          * Gen2 doesn't have a hardware frame counter and so depends on
4318          * vblank interrupts to produce sane vblank seuquence numbers.
4319          */
4320         if (!IS_GEN2(dev_priv))
4321                 dev->vblank_disable_immediate = true;
4322
4323         /* Most platforms treat the display irq block as an always-on
4324          * power domain. vlv/chv can disable it at runtime and need
4325          * special care to avoid writing any of the display block registers
4326          * outside of the power domain. We defer setting up the display irqs
4327          * in this case to the runtime pm.
4328          */
4329         dev_priv->display_irqs_enabled = true;
4330         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4331                 dev_priv->display_irqs_enabled = false;
4332
4333         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4334
4335         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4336         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4337
4338         if (IS_CHERRYVIEW(dev_priv)) {
4339                 dev->driver->irq_handler = cherryview_irq_handler;
4340                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4341                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4342                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4343                 dev->driver->enable_vblank = i965_enable_vblank;
4344                 dev->driver->disable_vblank = i965_disable_vblank;
4345                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4346         } else if (IS_VALLEYVIEW(dev_priv)) {
4347                 dev->driver->irq_handler = valleyview_irq_handler;
4348                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4349                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4350                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4351                 dev->driver->enable_vblank = i965_enable_vblank;
4352                 dev->driver->disable_vblank = i965_disable_vblank;
4353                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4354         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4355                 dev->driver->irq_handler = gen8_irq_handler;
4356                 dev->driver->irq_preinstall = gen8_irq_reset;
4357                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4358                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4359                 dev->driver->enable_vblank = gen8_enable_vblank;
4360                 dev->driver->disable_vblank = gen8_disable_vblank;
4361                 if (IS_GEN9_LP(dev_priv))
4362                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4363                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4364                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4365                 else
4366                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4367         } else if (HAS_PCH_SPLIT(dev_priv)) {
4368                 dev->driver->irq_handler = ironlake_irq_handler;
4369                 dev->driver->irq_preinstall = ironlake_irq_reset;
4370                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4371                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4372                 dev->driver->enable_vblank = ironlake_enable_vblank;
4373                 dev->driver->disable_vblank = ironlake_disable_vblank;
4374                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4375         } else {
4376                 if (IS_GEN2(dev_priv)) {
4377                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4378                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4379                         dev->driver->irq_handler = i8xx_irq_handler;
4380                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4381                         dev->driver->enable_vblank = i8xx_enable_vblank;
4382                         dev->driver->disable_vblank = i8xx_disable_vblank;
4383                 } else if (IS_GEN3(dev_priv)) {
4384                         dev->driver->irq_preinstall = i915_irq_preinstall;
4385                         dev->driver->irq_postinstall = i915_irq_postinstall;
4386                         dev->driver->irq_uninstall = i915_irq_uninstall;
4387                         dev->driver->irq_handler = i915_irq_handler;
4388                         dev->driver->enable_vblank = i8xx_enable_vblank;
4389                         dev->driver->disable_vblank = i8xx_disable_vblank;
4390                 } else {
4391                         dev->driver->irq_preinstall = i965_irq_preinstall;
4392                         dev->driver->irq_postinstall = i965_irq_postinstall;
4393                         dev->driver->irq_uninstall = i965_irq_uninstall;
4394                         dev->driver->irq_handler = i965_irq_handler;
4395                         dev->driver->enable_vblank = i965_enable_vblank;
4396                         dev->driver->disable_vblank = i965_disable_vblank;
4397                 }
4398                 if (I915_HAS_HOTPLUG(dev_priv))
4399                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4400         }
4401 }
4402
4403 /**
4404  * intel_irq_install - enables the hardware interrupt
4405  * @dev_priv: i915 device instance
4406  *
4407  * This function enables the hardware interrupt handling, but leaves the hotplug
4408  * handling still disabled. It is called after intel_irq_init().
4409  *
4410  * In the driver load and resume code we need working interrupts in a few places
4411  * but don't want to deal with the hassle of concurrent probe and hotplug
4412  * workers. Hence the split into this two-stage approach.
4413  */
4414 int intel_irq_install(struct drm_i915_private *dev_priv)
4415 {
4416         /*
4417          * We enable some interrupt sources in our postinstall hooks, so mark
4418          * interrupts as enabled _before_ actually enabling them to avoid
4419          * special cases in our ordering checks.
4420          */
4421         dev_priv->pm.irqs_enabled = true;
4422
4423         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4424 }
4425
4426 /**
4427  * intel_irq_uninstall - finilizes all irq handling
4428  * @dev_priv: i915 device instance
4429  *
4430  * This stops interrupt and hotplug handling and unregisters and frees all
4431  * resources acquired in the init functions.
4432  */
4433 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4434 {
4435         drm_irq_uninstall(&dev_priv->drm);
4436         intel_hpd_cancel_work(dev_priv);
4437         dev_priv->pm.irqs_enabled = false;
4438 }
4439
4440 /**
4441  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4442  * @dev_priv: i915 device instance
4443  *
4444  * This function is used to disable interrupts at runtime, both in the runtime
4445  * pm and the system suspend/resume code.
4446  */
4447 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4448 {
4449         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4450         dev_priv->pm.irqs_enabled = false;
4451         synchronize_irq(dev_priv->drm.irq);
4452 }
4453
4454 /**
4455  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4456  * @dev_priv: i915 device instance
4457  *
4458  * This function is used to enable interrupts at runtime, both in the runtime
4459  * pm and the system suspend/resume code.
4460  */
4461 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4462 {
4463         dev_priv->pm.irqs_enabled = true;
4464         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4465         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4466 }