2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
34 #include <asm/set_memory.h>
37 #include <drm/i915_drm.h>
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48 * DOC: Global GTT views
50 * Background and previous state
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
77 * Implementation and usage
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
92 * Code wanting to add or use a new GGTT view needs to:
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
114 * Note that as an uncached mmio write, this will flush the
115 * WCB of the writes into the GGTT before it triggers the invalidate.
117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
122 gen6_ggtt_invalidate(dev_priv);
123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
128 intel_gtt_chipset_flush();
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
133 i915->ggtt.invalidate(i915);
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
140 bool has_full_48bit_ppgtt;
142 if (!dev_priv->info.has_aliasing_ppgtt)
145 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
148 if (intel_vgpu_active(dev_priv)) {
149 /* GVT-g has no support for 32bit ppgtt */
150 has_full_ppgtt = false;
151 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
155 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 * execlists, the sole mechanism available to submit work.
158 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
161 if (enable_ppgtt == 1)
164 if (enable_ppgtt == 2 && has_full_ppgtt)
167 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
170 /* Disable ppgtt on SNB if VT-d is on. */
171 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 DRM_INFO("Disabling PPGTT because VT-d is on\n");
176 if (has_full_48bit_ppgtt)
185 static int ppgtt_bind_vma(struct i915_vma *vma,
186 enum i915_cache_level cache_level,
192 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
193 err = vma->vm->allocate_va_range(vma->vm,
194 vma->node.start, vma->size);
199 /* Applicable to VLV, and gen8+ */
201 if (i915_gem_object_is_readonly(vma->obj))
202 pte_flags |= PTE_READ_ONLY;
204 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
209 static void ppgtt_unbind_vma(struct i915_vma *vma)
211 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
214 static int ppgtt_set_pages(struct i915_vma *vma)
216 GEM_BUG_ON(vma->pages);
218 vma->pages = vma->obj->mm.pages;
220 vma->page_sizes = vma->obj->mm.page_sizes;
225 static void clear_pages(struct i915_vma *vma)
227 GEM_BUG_ON(!vma->pages);
229 if (vma->pages != vma->obj->mm.pages) {
230 sg_free_table(vma->pages);
235 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
238 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
239 enum i915_cache_level level,
242 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
244 if (unlikely(flags & PTE_READ_ONLY))
248 case I915_CACHE_NONE:
249 pte |= PPAT_UNCACHED;
252 pte |= PPAT_DISPLAY_ELLC;
262 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
263 const enum i915_cache_level level)
265 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
267 if (level != I915_CACHE_NONE)
268 pde |= PPAT_CACHED_PDE;
270 pde |= PPAT_UNCACHED;
274 #define gen8_pdpe_encode gen8_pde_encode
275 #define gen8_pml4e_encode gen8_pde_encode
277 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
278 enum i915_cache_level level,
281 gen6_pte_t pte = GEN6_PTE_VALID;
282 pte |= GEN6_PTE_ADDR_ENCODE(addr);
285 case I915_CACHE_L3_LLC:
287 pte |= GEN6_PTE_CACHE_LLC;
289 case I915_CACHE_NONE:
290 pte |= GEN6_PTE_UNCACHED;
299 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
300 enum i915_cache_level level,
303 gen6_pte_t pte = GEN6_PTE_VALID;
304 pte |= GEN6_PTE_ADDR_ENCODE(addr);
307 case I915_CACHE_L3_LLC:
308 pte |= GEN7_PTE_CACHE_L3_LLC;
311 pte |= GEN6_PTE_CACHE_LLC;
313 case I915_CACHE_NONE:
314 pte |= GEN6_PTE_UNCACHED;
323 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
324 enum i915_cache_level level,
327 gen6_pte_t pte = GEN6_PTE_VALID;
328 pte |= GEN6_PTE_ADDR_ENCODE(addr);
330 if (!(flags & PTE_READ_ONLY))
331 pte |= BYT_PTE_WRITEABLE;
333 if (level != I915_CACHE_NONE)
334 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
340 enum i915_cache_level level,
343 gen6_pte_t pte = GEN6_PTE_VALID;
344 pte |= HSW_PTE_ADDR_ENCODE(addr);
346 if (level != I915_CACHE_NONE)
347 pte |= HSW_WB_LLC_AGE3;
352 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
353 enum i915_cache_level level,
356 gen6_pte_t pte = GEN6_PTE_VALID;
357 pte |= HSW_PTE_ADDR_ENCODE(addr);
360 case I915_CACHE_NONE:
363 pte |= HSW_WT_ELLC_LLC_AGE3;
366 pte |= HSW_WB_ELLC_LLC_AGE3;
373 static void stash_init(struct pagestash *stash)
375 pagevec_init(&stash->pvec);
376 spin_lock_init(&stash->lock);
379 static struct page *stash_pop_page(struct pagestash *stash)
381 struct page *page = NULL;
383 spin_lock(&stash->lock);
384 if (likely(stash->pvec.nr))
385 page = stash->pvec.pages[--stash->pvec.nr];
386 spin_unlock(&stash->lock);
391 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
395 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
397 nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
398 memcpy(stash->pvec.pages + stash->pvec.nr,
399 pvec->pages + pvec->nr - nr,
400 sizeof(pvec->pages[0]) * nr);
401 stash->pvec.nr += nr;
403 spin_unlock(&stash->lock);
408 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
410 struct pagevec stack;
413 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
414 i915_gem_shrink_all(vm->i915);
416 page = stash_pop_page(&vm->free_pages);
421 return alloc_page(gfp);
423 /* Look in our global stash of WC pages... */
424 page = stash_pop_page(&vm->i915->mm.wc_stash);
429 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
431 * We have to be careful as page allocation may trigger the shrinker
432 * (via direct reclaim) which will fill up the WC stash underneath us.
433 * So we add our WB pages into a temporary pvec on the stack and merge
434 * them into the WC stash after all the allocations are complete.
436 pagevec_init(&stack);
440 page = alloc_page(gfp);
444 stack.pages[stack.nr++] = page;
445 } while (pagevec_space(&stack));
447 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
448 page = stack.pages[--stack.nr];
450 /* Merge spare WC pages to the global stash */
451 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
453 /* Push any surplus WC pages onto the local VM stash */
455 stash_push_pagevec(&vm->free_pages, &stack);
458 /* Return unwanted leftovers */
459 if (unlikely(stack.nr)) {
460 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
461 __pagevec_release(&stack);
467 static void vm_free_pages_release(struct i915_address_space *vm,
470 struct pagevec *pvec = &vm->free_pages.pvec;
471 struct pagevec stack;
473 lockdep_assert_held(&vm->free_pages.lock);
474 GEM_BUG_ON(!pagevec_count(pvec));
476 if (vm->pt_kmap_wc) {
478 * When we use WC, first fill up the global stash and then
479 * only if full immediately free the overflow.
481 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
484 * As we have made some room in the VM's free_pages,
485 * we can wait for it to fill again. Unless we are
486 * inside i915_address_space_fini() and must
487 * immediately release the pages!
489 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
493 * We have to drop the lock to allow ourselves to sleep,
494 * so take a copy of the pvec and clear the stash for
495 * others to use it as we sleep.
498 pagevec_reinit(pvec);
499 spin_unlock(&vm->free_pages.lock);
502 set_pages_array_wb(pvec->pages, pvec->nr);
504 spin_lock(&vm->free_pages.lock);
507 __pagevec_release(pvec);
510 static void vm_free_page(struct i915_address_space *vm, struct page *page)
513 * On !llc, we need to change the pages back to WB. We only do so
514 * in bulk, so we rarely need to change the page attributes here,
515 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
516 * To make detection of the possible sleep more likely, use an
517 * unconditional might_sleep() for everybody.
520 spin_lock(&vm->free_pages.lock);
521 if (!pagevec_add(&vm->free_pages.pvec, page))
522 vm_free_pages_release(vm, false);
523 spin_unlock(&vm->free_pages.lock);
526 static void i915_address_space_init(struct i915_address_space *vm,
527 struct drm_i915_private *dev_priv)
530 * The vm->mutex must be reclaim safe (for use in the shrinker).
531 * Do a dummy acquire now under fs_reclaim so that any allocation
532 * attempt holding the lock is immediately reported by lockdep.
534 mutex_init(&vm->mutex);
535 i915_gem_shrinker_taints_mutex(&vm->mutex);
537 GEM_BUG_ON(!vm->total);
538 drm_mm_init(&vm->mm, 0, vm->total);
539 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
541 stash_init(&vm->free_pages);
543 INIT_LIST_HEAD(&vm->active_list);
544 INIT_LIST_HEAD(&vm->inactive_list);
545 INIT_LIST_HEAD(&vm->unbound_list);
548 static void i915_address_space_fini(struct i915_address_space *vm)
550 spin_lock(&vm->free_pages.lock);
551 if (pagevec_count(&vm->free_pages.pvec))
552 vm_free_pages_release(vm, true);
553 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
554 spin_unlock(&vm->free_pages.lock);
556 drm_mm_takedown(&vm->mm);
558 mutex_destroy(&vm->mutex);
561 static int __setup_page_dma(struct i915_address_space *vm,
562 struct i915_page_dma *p,
565 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
566 if (unlikely(!p->page))
569 p->daddr = dma_map_page_attrs(vm->dma,
570 p->page, 0, PAGE_SIZE,
571 PCI_DMA_BIDIRECTIONAL,
572 DMA_ATTR_SKIP_CPU_SYNC |
574 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
575 vm_free_page(vm, p->page);
582 static int setup_page_dma(struct i915_address_space *vm,
583 struct i915_page_dma *p)
585 return __setup_page_dma(vm, p, __GFP_HIGHMEM);
588 static void cleanup_page_dma(struct i915_address_space *vm,
589 struct i915_page_dma *p)
591 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
592 vm_free_page(vm, p->page);
595 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
597 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
598 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
599 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
600 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
602 static void fill_page_dma(struct i915_address_space *vm,
603 struct i915_page_dma *p,
606 u64 * const vaddr = kmap_atomic(p->page);
608 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
610 kunmap_atomic(vaddr);
613 static void fill_page_dma_32(struct i915_address_space *vm,
614 struct i915_page_dma *p,
617 fill_page_dma(vm, p, (u64)v << 32 | v);
621 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
626 * In order to utilize 64K pages for an object with a size < 2M, we will
627 * need to support a 64K scratch page, given that every 16th entry for a
628 * page-table operating in 64K mode must point to a properly aligned 64K
629 * region, including any PTEs which happen to point to scratch.
631 * This is only relevant for the 48b PPGTT where we support
632 * huge-gtt-pages, see also i915_vma_insert().
634 * TODO: we should really consider write-protecting the scratch-page and
635 * sharing between ppgtt
637 size = I915_GTT_PAGE_SIZE_4K;
638 if (i915_vm_is_48bit(vm) &&
639 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
640 size = I915_GTT_PAGE_SIZE_64K;
643 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
646 int order = get_order(size);
650 page = alloc_pages(gfp, order);
654 addr = dma_map_page_attrs(vm->dma,
656 PCI_DMA_BIDIRECTIONAL,
657 DMA_ATTR_SKIP_CPU_SYNC |
659 if (unlikely(dma_mapping_error(vm->dma, addr)))
662 if (unlikely(!IS_ALIGNED(addr, size)))
665 vm->scratch_page.page = page;
666 vm->scratch_page.daddr = addr;
667 vm->scratch_page.order = order;
671 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
673 __free_pages(page, order);
675 if (size == I915_GTT_PAGE_SIZE_4K)
678 size = I915_GTT_PAGE_SIZE_4K;
679 gfp &= ~__GFP_NOWARN;
683 static void cleanup_scratch_page(struct i915_address_space *vm)
685 struct i915_page_dma *p = &vm->scratch_page;
687 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
688 PCI_DMA_BIDIRECTIONAL);
689 __free_pages(p->page, p->order);
692 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
694 struct i915_page_table *pt;
696 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
698 return ERR_PTR(-ENOMEM);
700 if (unlikely(setup_px(vm, pt))) {
702 return ERR_PTR(-ENOMEM);
709 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
715 static void gen8_initialize_pt(struct i915_address_space *vm,
716 struct i915_page_table *pt)
719 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
722 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
723 struct i915_page_table *pt)
725 fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
728 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
730 struct i915_page_directory *pd;
732 pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
734 return ERR_PTR(-ENOMEM);
736 if (unlikely(setup_px(vm, pd))) {
738 return ERR_PTR(-ENOMEM);
745 static void free_pd(struct i915_address_space *vm,
746 struct i915_page_directory *pd)
752 static void gen8_initialize_pd(struct i915_address_space *vm,
753 struct i915_page_directory *pd)
756 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
757 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
760 static int __pdp_init(struct i915_address_space *vm,
761 struct i915_page_directory_pointer *pdp)
763 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
765 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
766 I915_GFP_ALLOW_FAIL);
767 if (unlikely(!pdp->page_directory))
770 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
775 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
777 kfree(pdp->page_directory);
778 pdp->page_directory = NULL;
781 static inline bool use_4lvl(const struct i915_address_space *vm)
783 return i915_vm_is_48bit(vm);
786 static struct i915_page_directory_pointer *
787 alloc_pdp(struct i915_address_space *vm)
789 struct i915_page_directory_pointer *pdp;
792 GEM_BUG_ON(!use_4lvl(vm));
794 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
796 return ERR_PTR(-ENOMEM);
798 ret = __pdp_init(vm, pdp);
802 ret = setup_px(vm, pdp);
816 static void free_pdp(struct i915_address_space *vm,
817 struct i915_page_directory_pointer *pdp)
828 static void gen8_initialize_pdp(struct i915_address_space *vm,
829 struct i915_page_directory_pointer *pdp)
831 gen8_ppgtt_pdpe_t scratch_pdpe;
833 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
835 fill_px(vm, pdp, scratch_pdpe);
838 static void gen8_initialize_pml4(struct i915_address_space *vm,
839 struct i915_pml4 *pml4)
842 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
843 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
846 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
847 * the page table structures, we mark them dirty so that
848 * context switching/execlist queuing code takes extra steps
849 * to ensure that tlbs are flushed.
851 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
853 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
856 /* Removes entries from a single page table, releasing it if it's empty.
857 * Caller can use the return value to update higher-level entries.
859 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
860 struct i915_page_table *pt,
861 u64 start, u64 length)
863 unsigned int num_entries = gen8_pte_count(start, length);
864 unsigned int pte = gen8_pte_index(start);
865 unsigned int pte_end = pte + num_entries;
866 const gen8_pte_t scratch_pte =
867 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
870 GEM_BUG_ON(num_entries > pt->used_ptes);
872 pt->used_ptes -= num_entries;
876 vaddr = kmap_atomic_px(pt);
877 while (pte < pte_end)
878 vaddr[pte++] = scratch_pte;
879 kunmap_atomic(vaddr);
884 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
885 struct i915_page_directory *pd,
886 struct i915_page_table *pt,
891 pd->page_table[pde] = pt;
893 vaddr = kmap_atomic_px(pd);
894 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
895 kunmap_atomic(vaddr);
898 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
899 struct i915_page_directory *pd,
900 u64 start, u64 length)
902 struct i915_page_table *pt;
905 gen8_for_each_pde(pt, pd, start, length, pde) {
906 GEM_BUG_ON(pt == vm->scratch_pt);
908 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
911 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
912 GEM_BUG_ON(!pd->used_pdes);
918 return !pd->used_pdes;
921 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
922 struct i915_page_directory_pointer *pdp,
923 struct i915_page_directory *pd,
926 gen8_ppgtt_pdpe_t *vaddr;
928 pdp->page_directory[pdpe] = pd;
932 vaddr = kmap_atomic_px(pdp);
933 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
934 kunmap_atomic(vaddr);
937 /* Removes entries from a single page dir pointer, releasing it if it's empty.
938 * Caller can use the return value to update higher-level entries
940 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
941 struct i915_page_directory_pointer *pdp,
942 u64 start, u64 length)
944 struct i915_page_directory *pd;
947 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
948 GEM_BUG_ON(pd == vm->scratch_pd);
950 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
953 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
954 GEM_BUG_ON(!pdp->used_pdpes);
960 return !pdp->used_pdpes;
963 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
964 u64 start, u64 length)
966 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
969 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
970 struct i915_page_directory_pointer *pdp,
973 gen8_ppgtt_pml4e_t *vaddr;
975 pml4->pdps[pml4e] = pdp;
977 vaddr = kmap_atomic_px(pml4);
978 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
979 kunmap_atomic(vaddr);
982 /* Removes entries from a single pml4.
983 * This is the top-level structure in 4-level page tables used on gen8+.
984 * Empty entries are always scratch pml4e.
986 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
987 u64 start, u64 length)
989 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
990 struct i915_pml4 *pml4 = &ppgtt->pml4;
991 struct i915_page_directory_pointer *pdp;
994 GEM_BUG_ON(!use_4lvl(vm));
996 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
997 GEM_BUG_ON(pdp == vm->scratch_pdp);
999 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
1002 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1008 static inline struct sgt_dma {
1009 struct scatterlist *sg;
1010 dma_addr_t dma, max;
1011 } sgt_dma(struct i915_vma *vma) {
1012 struct scatterlist *sg = vma->pages->sgl;
1013 dma_addr_t addr = sg_dma_address(sg);
1014 return (struct sgt_dma) { sg, addr, addr + sg->length };
1017 struct gen8_insert_pte {
1024 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1026 return (struct gen8_insert_pte) {
1027 gen8_pml4e_index(start),
1028 gen8_pdpe_index(start),
1029 gen8_pde_index(start),
1030 gen8_pte_index(start),
1034 static __always_inline bool
1035 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1036 struct i915_page_directory_pointer *pdp,
1037 struct sgt_dma *iter,
1038 struct gen8_insert_pte *idx,
1039 enum i915_cache_level cache_level,
1042 struct i915_page_directory *pd;
1043 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1047 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1048 pd = pdp->page_directory[idx->pdpe];
1049 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1051 vaddr[idx->pte] = pte_encode | iter->dma;
1053 iter->dma += I915_GTT_PAGE_SIZE;
1054 if (iter->dma >= iter->max) {
1055 iter->sg = __sg_next(iter->sg);
1061 iter->dma = sg_dma_address(iter->sg);
1062 iter->max = iter->dma + iter->sg->length;
1065 if (++idx->pte == GEN8_PTES) {
1068 if (++idx->pde == I915_PDES) {
1071 /* Limited by sg length for 3lvl */
1072 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1078 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1079 pd = pdp->page_directory[idx->pdpe];
1082 kunmap_atomic(vaddr);
1083 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1086 kunmap_atomic(vaddr);
1091 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1092 struct i915_vma *vma,
1093 enum i915_cache_level cache_level,
1096 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1097 struct sgt_dma iter = sgt_dma(vma);
1098 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1100 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1101 cache_level, flags);
1103 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1106 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1107 struct i915_page_directory_pointer **pdps,
1108 struct sgt_dma *iter,
1109 enum i915_cache_level cache_level,
1112 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1113 u64 start = vma->node.start;
1114 dma_addr_t rem = iter->sg->length;
1117 struct gen8_insert_pte idx = gen8_insert_pte(start);
1118 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1119 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1120 unsigned int page_size;
1121 bool maybe_64K = false;
1122 gen8_pte_t encode = pte_encode;
1126 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1127 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1128 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1131 page_size = I915_GTT_PAGE_SIZE_2M;
1133 encode |= GEN8_PDE_PS_2M;
1135 vaddr = kmap_atomic_px(pd);
1137 struct i915_page_table *pt = pd->page_table[idx.pde];
1141 page_size = I915_GTT_PAGE_SIZE;
1144 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1145 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1146 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1147 rem >= (max - index) * I915_GTT_PAGE_SIZE))
1150 vaddr = kmap_atomic_px(pt);
1154 GEM_BUG_ON(iter->sg->length < page_size);
1155 vaddr[index++] = encode | iter->dma;
1158 iter->dma += page_size;
1160 if (iter->dma >= iter->max) {
1161 iter->sg = __sg_next(iter->sg);
1165 rem = iter->sg->length;
1166 iter->dma = sg_dma_address(iter->sg);
1167 iter->max = iter->dma + rem;
1169 if (maybe_64K && index < max &&
1170 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1171 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1172 rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1175 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1178 } while (rem >= page_size && index < max);
1180 kunmap_atomic(vaddr);
1183 * Is it safe to mark the 2M block as 64K? -- Either we have
1184 * filled whole page-table with 64K entries, or filled part of
1185 * it and have reached the end of the sg table and we have
1190 (i915_vm_has_scratch_64K(vma->vm) &&
1191 !iter->sg && IS_ALIGNED(vma->node.start +
1193 I915_GTT_PAGE_SIZE_2M)))) {
1194 vaddr = kmap_atomic_px(pd);
1195 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1196 kunmap_atomic(vaddr);
1197 page_size = I915_GTT_PAGE_SIZE_64K;
1200 * We write all 4K page entries, even when using 64K
1201 * pages. In order to verify that the HW isn't cheating
1202 * by using the 4K PTE instead of the 64K PTE, we want
1203 * to remove all the surplus entries. If the HW skipped
1204 * the 64K PTE, it will read/write into the scratch page
1205 * instead - which we detect as missing results during
1208 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1211 encode = pte_encode | vma->vm->scratch_page.daddr;
1212 vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1214 for (i = 1; i < index; i += 16)
1215 memset64(vaddr + i, encode, 15);
1217 kunmap_atomic(vaddr);
1221 vma->page_sizes.gtt |= page_size;
1225 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1226 struct i915_vma *vma,
1227 enum i915_cache_level cache_level,
1230 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1231 struct sgt_dma iter = sgt_dma(vma);
1232 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1234 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1235 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1238 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1240 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1241 &iter, &idx, cache_level,
1243 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1245 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1249 static void gen8_free_page_tables(struct i915_address_space *vm,
1250 struct i915_page_directory *pd)
1254 for (i = 0; i < I915_PDES; i++) {
1255 if (pd->page_table[i] != vm->scratch_pt)
1256 free_pt(vm, pd->page_table[i]);
1260 static int gen8_init_scratch(struct i915_address_space *vm)
1264 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1268 vm->scratch_pt = alloc_pt(vm);
1269 if (IS_ERR(vm->scratch_pt)) {
1270 ret = PTR_ERR(vm->scratch_pt);
1271 goto free_scratch_page;
1274 vm->scratch_pd = alloc_pd(vm);
1275 if (IS_ERR(vm->scratch_pd)) {
1276 ret = PTR_ERR(vm->scratch_pd);
1281 vm->scratch_pdp = alloc_pdp(vm);
1282 if (IS_ERR(vm->scratch_pdp)) {
1283 ret = PTR_ERR(vm->scratch_pdp);
1288 gen8_initialize_pt(vm, vm->scratch_pt);
1289 gen8_initialize_pd(vm, vm->scratch_pd);
1291 gen8_initialize_pdp(vm, vm->scratch_pdp);
1296 free_pd(vm, vm->scratch_pd);
1298 free_pt(vm, vm->scratch_pt);
1300 cleanup_scratch_page(vm);
1305 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1307 struct i915_address_space *vm = &ppgtt->vm;
1308 struct drm_i915_private *dev_priv = vm->i915;
1309 enum vgt_g2v_type msg;
1313 const u64 daddr = px_dma(&ppgtt->pml4);
1315 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1316 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1318 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1319 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1321 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1322 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1324 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1325 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1328 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1329 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1332 I915_WRITE(vgtif_reg(g2v_notify), msg);
1337 static void gen8_free_scratch(struct i915_address_space *vm)
1340 free_pdp(vm, vm->scratch_pdp);
1341 free_pd(vm, vm->scratch_pd);
1342 free_pt(vm, vm->scratch_pt);
1343 cleanup_scratch_page(vm);
1346 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1347 struct i915_page_directory_pointer *pdp)
1349 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1352 for (i = 0; i < pdpes; i++) {
1353 if (pdp->page_directory[i] == vm->scratch_pd)
1356 gen8_free_page_tables(vm, pdp->page_directory[i]);
1357 free_pd(vm, pdp->page_directory[i]);
1363 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1367 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1368 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1371 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1374 cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1377 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1379 struct drm_i915_private *dev_priv = vm->i915;
1380 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1382 if (intel_vgpu_active(dev_priv))
1383 gen8_ppgtt_notify_vgt(ppgtt, false);
1386 gen8_ppgtt_cleanup_4lvl(ppgtt);
1388 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1390 gen8_free_scratch(vm);
1393 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1394 struct i915_page_directory *pd,
1395 u64 start, u64 length)
1397 struct i915_page_table *pt;
1401 gen8_for_each_pde(pt, pd, start, length, pde) {
1402 int count = gen8_pte_count(start, length);
1404 if (pt == vm->scratch_pt) {
1413 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1414 gen8_initialize_pt(vm, pt);
1416 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1417 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1420 pt->used_ptes += count;
1425 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1429 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1430 struct i915_page_directory_pointer *pdp,
1431 u64 start, u64 length)
1433 struct i915_page_directory *pd;
1438 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1439 if (pd == vm->scratch_pd) {
1448 gen8_initialize_pd(vm, pd);
1449 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1450 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1452 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1455 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1463 if (!pd->used_pdes) {
1464 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1465 GEM_BUG_ON(!pdp->used_pdpes);
1470 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1474 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1475 u64 start, u64 length)
1477 return gen8_ppgtt_alloc_pdp(vm,
1478 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1481 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1482 u64 start, u64 length)
1484 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1485 struct i915_pml4 *pml4 = &ppgtt->pml4;
1486 struct i915_page_directory_pointer *pdp;
1491 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1492 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1493 pdp = alloc_pdp(vm);
1497 gen8_initialize_pdp(vm, pdp);
1498 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1501 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1509 if (!pdp->used_pdpes) {
1510 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1514 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1518 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1519 struct i915_page_directory_pointer *pdp,
1520 u64 start, u64 length,
1521 gen8_pte_t scratch_pte,
1524 struct i915_address_space *vm = &ppgtt->vm;
1525 struct i915_page_directory *pd;
1528 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1529 struct i915_page_table *pt;
1530 u64 pd_len = length;
1531 u64 pd_start = start;
1534 if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1537 seq_printf(m, "\tPDPE #%d\n", pdpe);
1538 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1540 gen8_pte_t *pt_vaddr;
1542 if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1545 pt_vaddr = kmap_atomic_px(pt);
1546 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1547 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1548 pde << GEN8_PDE_SHIFT |
1549 pte << GEN8_PTE_SHIFT);
1553 for (i = 0; i < 4; i++)
1554 if (pt_vaddr[pte + i] != scratch_pte)
1559 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1560 for (i = 0; i < 4; i++) {
1561 if (pt_vaddr[pte + i] != scratch_pte)
1562 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1564 seq_puts(m, " SCRATCH ");
1568 kunmap_atomic(pt_vaddr);
1573 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1575 struct i915_address_space *vm = &ppgtt->vm;
1576 const gen8_pte_t scratch_pte =
1577 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1578 u64 start = 0, length = ppgtt->vm.total;
1582 struct i915_pml4 *pml4 = &ppgtt->pml4;
1583 struct i915_page_directory_pointer *pdp;
1585 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1586 if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1589 seq_printf(m, " PML4E #%llu\n", pml4e);
1590 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1593 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1597 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1599 struct i915_address_space *vm = &ppgtt->vm;
1600 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1601 struct i915_page_directory *pd;
1602 u64 start = 0, length = ppgtt->vm.total;
1606 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1611 gen8_initialize_pd(vm, pd);
1612 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1616 pdp->used_pdpes++; /* never remove */
1621 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1622 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1625 pdp->used_pdpes = 0;
1630 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1631 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1632 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1636 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1638 struct i915_hw_ppgtt *ppgtt;
1641 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1643 return ERR_PTR(-ENOMEM);
1645 kref_init(&ppgtt->ref);
1647 ppgtt->vm.i915 = i915;
1648 ppgtt->vm.dma = &i915->drm.pdev->dev;
1650 ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1655 * From bdw, there is support for read-only pages in the PPGTT.
1657 * XXX GVT is not honouring the lack of RW in the PTE bits.
1659 ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1661 i915_address_space_init(&ppgtt->vm, i915);
1663 /* There are only few exceptions for gen >=6. chv and bxt.
1664 * And we are not sure about the latter so play safe for now.
1666 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1667 ppgtt->vm.pt_kmap_wc = true;
1669 err = gen8_init_scratch(&ppgtt->vm);
1673 if (use_4lvl(&ppgtt->vm)) {
1674 err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1678 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1680 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1681 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1682 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1684 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1688 if (intel_vgpu_active(i915)) {
1689 err = gen8_preallocate_top_level_pdp(ppgtt);
1691 __pdp_fini(&ppgtt->pdp);
1696 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1697 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1698 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1701 if (intel_vgpu_active(i915))
1702 gen8_ppgtt_notify_vgt(ppgtt, true);
1704 ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1705 ppgtt->debug_dump = gen8_dump_ppgtt;
1707 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
1708 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
1709 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
1710 ppgtt->vm.vma_ops.clear_pages = clear_pages;
1715 gen8_free_scratch(&ppgtt->vm);
1718 return ERR_PTR(err);
1721 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1723 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1724 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1725 struct i915_page_table *pt;
1728 gen6_for_all_pdes(pt, &base->pd, pde) {
1731 if (pt == base->vm.scratch_pt)
1734 if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1736 GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1738 u32 pd_entry = readl(ppgtt->pd_addr + pde);
1740 if (pd_entry != expected)
1742 "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1747 seq_printf(m, "\tPDE: %x\n", pd_entry);
1750 vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1751 for (pte = 0; pte < GEN6_PTES; pte += 4) {
1754 for (i = 0; i < 4; i++)
1755 if (vaddr[pte + i] != scratch_pte)
1760 seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
1762 (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1763 for (i = 0; i < 4; i++) {
1764 if (vaddr[pte + i] != scratch_pte)
1765 seq_printf(m, " %08x", vaddr[pte + i]);
1767 seq_puts(m, " SCRATCH");
1771 kunmap_atomic(vaddr);
1775 /* Write pde (index) from the page directory @pd to the page table @pt */
1776 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1777 const unsigned int pde,
1778 const struct i915_page_table *pt)
1780 /* Caller needs to make sure the write completes if necessary */
1781 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1782 ppgtt->pd_addr + pde);
1785 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1787 struct intel_engine_cs *engine;
1788 enum intel_engine_id id;
1790 for_each_engine(engine, dev_priv, id) {
1791 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1792 GEN8_GFX_PPGTT_48B : 0;
1793 I915_WRITE(RING_MODE_GEN7(engine),
1794 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1798 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1800 struct intel_engine_cs *engine;
1801 u32 ecochk, ecobits;
1802 enum intel_engine_id id;
1804 ecobits = I915_READ(GAC_ECO_BITS);
1805 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1807 ecochk = I915_READ(GAM_ECOCHK);
1808 if (IS_HASWELL(dev_priv)) {
1809 ecochk |= ECOCHK_PPGTT_WB_HSW;
1811 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1812 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1814 I915_WRITE(GAM_ECOCHK, ecochk);
1816 for_each_engine(engine, dev_priv, id) {
1817 /* GFX_MODE is per-ring on gen7+ */
1818 I915_WRITE(RING_MODE_GEN7(engine),
1819 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1823 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1825 u32 ecochk, gab_ctl, ecobits;
1827 ecobits = I915_READ(GAC_ECO_BITS);
1828 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1829 ECOBITS_PPGTT_CACHE64B);
1831 gab_ctl = I915_READ(GAB_CTL);
1832 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1834 ecochk = I915_READ(GAM_ECOCHK);
1835 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1837 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1840 /* PPGTT support for Sandybdrige/Gen6 and later */
1841 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1842 u64 start, u64 length)
1844 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1845 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1846 unsigned int pde = first_entry / GEN6_PTES;
1847 unsigned int pte = first_entry % GEN6_PTES;
1848 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1849 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1851 while (num_entries) {
1852 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1853 const unsigned int end = min(pte + num_entries, GEN6_PTES);
1854 const unsigned int count = end - pte;
1857 GEM_BUG_ON(pt == vm->scratch_pt);
1859 num_entries -= count;
1861 GEM_BUG_ON(count > pt->used_ptes);
1862 pt->used_ptes -= count;
1864 ppgtt->scan_for_unused_pt = true;
1867 * Note that the hw doesn't support removing PDE on the fly
1868 * (they are cached inside the context with no means to
1869 * invalidate the cache), so we can only reset the PTE
1870 * entries back to scratch.
1873 vaddr = kmap_atomic_px(pt);
1875 vaddr[pte++] = scratch_pte;
1876 } while (pte < end);
1877 kunmap_atomic(vaddr);
1883 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1884 struct i915_vma *vma,
1885 enum i915_cache_level cache_level,
1888 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1889 unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1890 unsigned act_pt = first_entry / GEN6_PTES;
1891 unsigned act_pte = first_entry % GEN6_PTES;
1892 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1893 struct sgt_dma iter = sgt_dma(vma);
1896 GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1898 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1900 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1902 iter.dma += I915_GTT_PAGE_SIZE;
1903 if (iter.dma == iter.max) {
1904 iter.sg = __sg_next(iter.sg);
1908 iter.dma = sg_dma_address(iter.sg);
1909 iter.max = iter.dma + iter.sg->length;
1912 if (++act_pte == GEN6_PTES) {
1913 kunmap_atomic(vaddr);
1914 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1918 kunmap_atomic(vaddr);
1920 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1923 static int gen6_alloc_va_range(struct i915_address_space *vm,
1924 u64 start, u64 length)
1926 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1927 struct i915_page_table *pt;
1932 gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1933 const unsigned int count = gen6_pte_count(start, length);
1935 if (pt == vm->scratch_pt) {
1940 gen6_initialize_pt(ppgtt, pt);
1941 ppgtt->base.pd.page_table[pde] = pt;
1943 if (i915_vma_is_bound(ppgtt->vma,
1944 I915_VMA_GLOBAL_BIND)) {
1945 gen6_write_pde(ppgtt, pde, pt);
1949 GEM_BUG_ON(pt->used_ptes);
1952 pt->used_ptes += count;
1956 mark_tlbs_dirty(&ppgtt->base);
1957 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1963 gen6_ppgtt_clear_range(vm, from, start - from);
1967 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1969 struct i915_address_space * const vm = &ppgtt->base.vm;
1970 struct i915_page_table *unused;
1974 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1978 ppgtt->scratch_pte =
1979 vm->pte_encode(vm->scratch_page.daddr,
1980 I915_CACHE_NONE, PTE_READ_ONLY);
1982 vm->scratch_pt = alloc_pt(vm);
1983 if (IS_ERR(vm->scratch_pt)) {
1984 cleanup_scratch_page(vm);
1985 return PTR_ERR(vm->scratch_pt);
1988 gen6_initialize_pt(ppgtt, vm->scratch_pt);
1989 gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
1990 ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1995 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1997 free_pt(vm, vm->scratch_pt);
1998 cleanup_scratch_page(vm);
2001 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2003 struct i915_page_table *pt;
2006 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2007 if (pt != ppgtt->base.vm.scratch_pt)
2008 free_pt(&ppgtt->base.vm, pt);
2011 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2013 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2015 i915_vma_destroy(ppgtt->vma);
2017 gen6_ppgtt_free_pd(ppgtt);
2018 gen6_ppgtt_free_scratch(vm);
2021 static int pd_vma_set_pages(struct i915_vma *vma)
2023 vma->pages = ERR_PTR(-ENODEV);
2027 static void pd_vma_clear_pages(struct i915_vma *vma)
2029 GEM_BUG_ON(!vma->pages);
2034 static int pd_vma_bind(struct i915_vma *vma,
2035 enum i915_cache_level cache_level,
2038 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2039 struct gen6_hw_ppgtt *ppgtt = vma->private;
2040 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2041 struct i915_page_table *pt;
2044 ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2045 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2047 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2048 gen6_write_pde(ppgtt, pde, pt);
2050 mark_tlbs_dirty(&ppgtt->base);
2051 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2056 static void pd_vma_unbind(struct i915_vma *vma)
2058 struct gen6_hw_ppgtt *ppgtt = vma->private;
2059 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2060 struct i915_page_table *pt;
2063 if (!ppgtt->scan_for_unused_pt)
2066 /* Free all no longer used page tables */
2067 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2068 if (pt->used_ptes || pt == scratch_pt)
2071 free_pt(&ppgtt->base.vm, pt);
2072 ppgtt->base.pd.page_table[pde] = scratch_pt;
2075 ppgtt->scan_for_unused_pt = false;
2078 static const struct i915_vma_ops pd_vma_ops = {
2079 .set_pages = pd_vma_set_pages,
2080 .clear_pages = pd_vma_clear_pages,
2081 .bind_vma = pd_vma_bind,
2082 .unbind_vma = pd_vma_unbind,
2085 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2087 struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2088 struct i915_ggtt *ggtt = &i915->ggtt;
2089 struct i915_vma *vma;
2091 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2092 GEM_BUG_ON(size > ggtt->vm.total);
2094 vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2096 return ERR_PTR(-ENOMEM);
2098 init_request_active(&vma->last_fence, NULL);
2100 vma->vm = &ggtt->vm;
2101 vma->ops = &pd_vma_ops;
2102 vma->private = ppgtt;
2104 vma->active = RB_ROOT;
2107 vma->fence_size = size;
2108 vma->flags = I915_VMA_GGTT;
2109 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2111 INIT_LIST_HEAD(&vma->obj_link);
2112 list_add(&vma->vm_link, &vma->vm->unbound_list);
2117 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2119 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2122 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2123 * which will be pinned into every active context.
2124 * (When vma->pin_count becomes atomic, I expect we will naturally
2125 * need a larger, unpacked, type and kill this redundancy.)
2127 if (ppgtt->pin_count++)
2131 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2132 * allocator works in address space sizes, so it's multiplied by page
2133 * size. We allocate at the top of the GTT to avoid fragmentation.
2135 return i915_vma_pin(ppgtt->vma,
2137 PIN_GLOBAL | PIN_HIGH);
2140 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2142 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2144 GEM_BUG_ON(!ppgtt->pin_count);
2145 if (--ppgtt->pin_count)
2148 i915_vma_unpin(ppgtt->vma);
2151 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2153 struct i915_ggtt * const ggtt = &i915->ggtt;
2154 struct gen6_hw_ppgtt *ppgtt;
2157 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2159 return ERR_PTR(-ENOMEM);
2161 kref_init(&ppgtt->base.ref);
2163 ppgtt->base.vm.i915 = i915;
2164 ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2166 ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2168 i915_address_space_init(&ppgtt->base.vm, i915);
2170 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2171 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2172 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2173 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2174 ppgtt->base.debug_dump = gen6_dump_ppgtt;
2176 ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma;
2177 ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
2178 ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages;
2179 ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2181 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2183 err = gen6_ppgtt_init_scratch(ppgtt);
2187 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2188 if (IS_ERR(ppgtt->vma)) {
2189 err = PTR_ERR(ppgtt->vma);
2193 return &ppgtt->base;
2196 gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2199 return ERR_PTR(err);
2202 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2204 /* This function is for gtt related workarounds. This function is
2205 * called on driver load and after a GPU reset, so you can place
2206 * workarounds here even if they get overwritten by GPU reset.
2208 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2209 if (IS_BROADWELL(dev_priv))
2210 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2211 else if (IS_CHERRYVIEW(dev_priv))
2212 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2213 else if (IS_GEN9_LP(dev_priv))
2214 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2215 else if (INTEL_GEN(dev_priv) >= 9)
2216 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2219 * To support 64K PTEs we need to first enable the use of the
2220 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2221 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2222 * shouldn't be needed after GEN10.
2224 * 64K pages were first introduced from BDW+, although technically they
2225 * only *work* from gen9+. For pre-BDW we instead have the option for
2226 * 32K pages, but we don't currently have any support for it in our
2229 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2230 INTEL_GEN(dev_priv) <= 10)
2231 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2232 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2233 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2236 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2238 gtt_write_workarounds(dev_priv);
2240 /* In the case of execlists, PPGTT is enabled by the context descriptor
2241 * and the PDPs are contained within the context itself. We don't
2242 * need to do anything here. */
2243 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2246 if (!USES_PPGTT(dev_priv))
2249 if (IS_GEN6(dev_priv))
2250 gen6_ppgtt_enable(dev_priv);
2251 else if (IS_GEN7(dev_priv))
2252 gen7_ppgtt_enable(dev_priv);
2253 else if (INTEL_GEN(dev_priv) >= 8)
2254 gen8_ppgtt_enable(dev_priv);
2256 MISSING_CASE(INTEL_GEN(dev_priv));
2261 static struct i915_hw_ppgtt *
2262 __hw_ppgtt_create(struct drm_i915_private *i915)
2264 if (INTEL_GEN(i915) < 8)
2265 return gen6_ppgtt_create(i915);
2267 return gen8_ppgtt_create(i915);
2270 struct i915_hw_ppgtt *
2271 i915_ppgtt_create(struct drm_i915_private *i915,
2272 struct drm_i915_file_private *fpriv)
2274 struct i915_hw_ppgtt *ppgtt;
2276 ppgtt = __hw_ppgtt_create(i915);
2280 ppgtt->vm.file = fpriv;
2282 trace_i915_ppgtt_create(&ppgtt->vm);
2287 void i915_ppgtt_close(struct i915_address_space *vm)
2289 GEM_BUG_ON(vm->closed);
2293 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2295 struct list_head *phases[] = {
2303 for (phase = phases; *phase; phase++) {
2304 struct i915_vma *vma, *vn;
2306 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2307 i915_vma_destroy(vma);
2311 void i915_ppgtt_release(struct kref *kref)
2313 struct i915_hw_ppgtt *ppgtt =
2314 container_of(kref, struct i915_hw_ppgtt, ref);
2316 trace_i915_ppgtt_release(&ppgtt->vm);
2318 ppgtt_destroy_vma(&ppgtt->vm);
2320 GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2321 GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2322 GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2324 ppgtt->vm.cleanup(&ppgtt->vm);
2325 i915_address_space_fini(&ppgtt->vm);
2329 /* Certain Gen5 chipsets require require idling the GPU before
2330 * unmapping anything from the GTT when VT-d is enabled.
2332 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2334 /* Query intel_iommu to see if we need the workaround. Presumably that
2337 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2340 static void gen6_check_faults(struct drm_i915_private *dev_priv)
2342 struct intel_engine_cs *engine;
2343 enum intel_engine_id id;
2346 for_each_engine(engine, dev_priv, id) {
2347 fault = I915_READ(RING_FAULT_REG(engine));
2348 if (fault & RING_FAULT_VALID) {
2349 DRM_DEBUG_DRIVER("Unexpected fault\n"
2351 "\tAddress space: %s\n"
2355 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2356 RING_FAULT_SRCID(fault),
2357 RING_FAULT_FAULT_TYPE(fault));
2362 static void gen8_check_faults(struct drm_i915_private *dev_priv)
2364 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2366 if (fault & RING_FAULT_VALID) {
2367 u32 fault_data0, fault_data1;
2370 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2371 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2372 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2373 ((u64)fault_data0 << 12);
2375 DRM_DEBUG_DRIVER("Unexpected fault\n"
2376 "\tAddr: 0x%08x_%08x\n"
2377 "\tAddress space: %s\n"
2381 upper_32_bits(fault_addr),
2382 lower_32_bits(fault_addr),
2383 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2384 GEN8_RING_FAULT_ENGINE_ID(fault),
2385 RING_FAULT_SRCID(fault),
2386 RING_FAULT_FAULT_TYPE(fault));
2390 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2392 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2393 if (INTEL_GEN(dev_priv) >= 8)
2394 gen8_check_faults(dev_priv);
2395 else if (INTEL_GEN(dev_priv) >= 6)
2396 gen6_check_faults(dev_priv);
2400 i915_clear_error_registers(dev_priv);
2403 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2405 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2407 /* Don't bother messing with faults pre GEN6 as we have little
2408 * documentation supporting that it's a good idea.
2410 if (INTEL_GEN(dev_priv) < 6)
2413 i915_check_and_clear_faults(dev_priv);
2415 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2417 i915_ggtt_invalidate(dev_priv);
2420 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2421 struct sg_table *pages)
2424 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2425 pages->sgl, pages->nents,
2426 PCI_DMA_BIDIRECTIONAL,
2430 /* If the DMA remap fails, one cause can be that we have
2431 * too many objects pinned in a small remapping table,
2432 * such as swiotlb. Incrementally purge all other objects and
2433 * try again - if there are no more pages to remove from
2434 * the DMA remapper, i915_gem_shrink will return 0.
2436 GEM_BUG_ON(obj->mm.pages == pages);
2437 } while (i915_gem_shrink(to_i915(obj->base.dev),
2438 obj->base.size >> PAGE_SHIFT, NULL,
2440 I915_SHRINK_UNBOUND |
2441 I915_SHRINK_ACTIVE));
2446 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2451 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2454 enum i915_cache_level level,
2457 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2458 gen8_pte_t __iomem *pte =
2459 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2461 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2463 ggtt->invalidate(vm->i915);
2466 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2467 struct i915_vma *vma,
2468 enum i915_cache_level level,
2471 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2472 struct sgt_iter sgt_iter;
2473 gen8_pte_t __iomem *gtt_entries;
2474 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2478 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2479 * not to allow the user to override access to a read only page.
2482 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2483 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2484 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2485 gen8_set_pte(gtt_entries++, pte_encode | addr);
2488 * We want to flush the TLBs only after we're certain all the PTE
2489 * updates have finished.
2491 ggtt->invalidate(vm->i915);
2494 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2497 enum i915_cache_level level,
2500 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2501 gen6_pte_t __iomem *pte =
2502 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2504 iowrite32(vm->pte_encode(addr, level, flags), pte);
2506 ggtt->invalidate(vm->i915);
2510 * Binds an object into the global gtt with the specified cache level. The object
2511 * will be accessible to the GPU via commands whose operands reference offsets
2512 * within the global GTT as well as accessible by the GPU through the GMADR
2513 * mapped BAR (dev_priv->mm.gtt->gtt).
2515 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2516 struct i915_vma *vma,
2517 enum i915_cache_level level,
2520 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2521 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2522 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2523 struct sgt_iter iter;
2525 for_each_sgt_dma(addr, iter, vma->pages)
2526 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2529 * We want to flush the TLBs only after we're certain all the PTE
2530 * updates have finished.
2532 ggtt->invalidate(vm->i915);
2535 static void nop_clear_range(struct i915_address_space *vm,
2536 u64 start, u64 length)
2540 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2541 u64 start, u64 length)
2543 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2544 unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2545 unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2546 const gen8_pte_t scratch_pte =
2547 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2548 gen8_pte_t __iomem *gtt_base =
2549 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2550 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2553 if (WARN(num_entries > max_entries,
2554 "First entry = %d; Num entries = %d (max=%d)\n",
2555 first_entry, num_entries, max_entries))
2556 num_entries = max_entries;
2558 for (i = 0; i < num_entries; i++)
2559 gen8_set_pte(>t_base[i], scratch_pte);
2562 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2564 struct drm_i915_private *dev_priv = vm->i915;
2567 * Make sure the internal GAM fifo has been cleared of all GTT
2568 * writes before exiting stop_machine(). This guarantees that
2569 * any aperture accesses waiting to start in another process
2570 * cannot back up behind the GTT writes causing a hang.
2571 * The register can be any arbitrary GAM register.
2573 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2576 struct insert_page {
2577 struct i915_address_space *vm;
2580 enum i915_cache_level level;
2583 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2585 struct insert_page *arg = _arg;
2587 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2588 bxt_vtd_ggtt_wa(arg->vm);
2593 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2596 enum i915_cache_level level,
2599 struct insert_page arg = { vm, addr, offset, level };
2601 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2604 struct insert_entries {
2605 struct i915_address_space *vm;
2606 struct i915_vma *vma;
2607 enum i915_cache_level level;
2611 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2613 struct insert_entries *arg = _arg;
2615 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2616 bxt_vtd_ggtt_wa(arg->vm);
2621 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2622 struct i915_vma *vma,
2623 enum i915_cache_level level,
2626 struct insert_entries arg = { vm, vma, level, flags };
2628 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2631 struct clear_range {
2632 struct i915_address_space *vm;
2637 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2639 struct clear_range *arg = _arg;
2641 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2642 bxt_vtd_ggtt_wa(arg->vm);
2647 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2651 struct clear_range arg = { vm, start, length };
2653 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2656 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2657 u64 start, u64 length)
2659 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2660 unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2661 unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2662 gen6_pte_t scratch_pte, __iomem *gtt_base =
2663 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2664 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2667 if (WARN(num_entries > max_entries,
2668 "First entry = %d; Num entries = %d (max=%d)\n",
2669 first_entry, num_entries, max_entries))
2670 num_entries = max_entries;
2672 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2675 for (i = 0; i < num_entries; i++)
2676 iowrite32(scratch_pte, >t_base[i]);
2679 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2682 enum i915_cache_level cache_level,
2685 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2686 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2688 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2691 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2692 struct i915_vma *vma,
2693 enum i915_cache_level cache_level,
2696 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2697 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2699 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2703 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2704 u64 start, u64 length)
2706 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2709 static int ggtt_bind_vma(struct i915_vma *vma,
2710 enum i915_cache_level cache_level,
2713 struct drm_i915_private *i915 = vma->vm->i915;
2714 struct drm_i915_gem_object *obj = vma->obj;
2717 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2719 if (i915_gem_object_is_readonly(obj))
2720 pte_flags |= PTE_READ_ONLY;
2722 intel_runtime_pm_get(i915);
2723 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2724 intel_runtime_pm_put(i915);
2726 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2729 * Without aliasing PPGTT there's no difference between
2730 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2731 * upgrade to both bound if we bind either to avoid double-binding.
2733 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2738 static void ggtt_unbind_vma(struct i915_vma *vma)
2740 struct drm_i915_private *i915 = vma->vm->i915;
2742 intel_runtime_pm_get(i915);
2743 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2744 intel_runtime_pm_put(i915);
2747 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2748 enum i915_cache_level cache_level,
2751 struct drm_i915_private *i915 = vma->vm->i915;
2755 /* Currently applicable only to VLV */
2757 if (i915_gem_object_is_readonly(vma->obj))
2758 pte_flags |= PTE_READ_ONLY;
2760 if (flags & I915_VMA_LOCAL_BIND) {
2761 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2763 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2764 ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2771 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2775 if (flags & I915_VMA_GLOBAL_BIND) {
2776 intel_runtime_pm_get(i915);
2777 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2778 intel_runtime_pm_put(i915);
2784 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2786 struct drm_i915_private *i915 = vma->vm->i915;
2788 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2789 intel_runtime_pm_get(i915);
2790 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2791 intel_runtime_pm_put(i915);
2794 if (vma->flags & I915_VMA_LOCAL_BIND) {
2795 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2797 vm->clear_range(vm, vma->node.start, vma->size);
2801 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2802 struct sg_table *pages)
2804 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2805 struct device *kdev = &dev_priv->drm.pdev->dev;
2806 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2808 if (unlikely(ggtt->do_idle_maps)) {
2809 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2810 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2811 /* Wait a bit, in hopes it avoids the hang */
2816 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2819 static int ggtt_set_pages(struct i915_vma *vma)
2823 GEM_BUG_ON(vma->pages);
2825 ret = i915_get_ggtt_vma_pages(vma);
2829 vma->page_sizes = vma->obj->mm.page_sizes;
2834 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2835 unsigned long color,
2839 if (node->allocated && node->color != color)
2840 *start += I915_GTT_PAGE_SIZE;
2842 /* Also leave a space between the unallocated reserved node after the
2843 * GTT and any objects within the GTT, i.e. we use the color adjustment
2844 * to insert a guard page to prevent prefetches crossing over the
2847 node = list_next_entry(node, node_list);
2848 if (node->color != color)
2849 *end -= I915_GTT_PAGE_SIZE;
2852 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2854 struct i915_ggtt *ggtt = &i915->ggtt;
2855 struct i915_hw_ppgtt *ppgtt;
2858 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2860 return PTR_ERR(ppgtt);
2862 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2868 * Note we only pre-allocate as far as the end of the global
2869 * GTT. On 48b / 4-level page-tables, the difference is very,
2870 * very significant! We have to preallocate as GVT/vgpu does
2871 * not like the page directory disappearing.
2873 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2877 i915->mm.aliasing_ppgtt = ppgtt;
2879 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2880 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2882 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2883 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2888 i915_ppgtt_put(ppgtt);
2892 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2894 struct i915_ggtt *ggtt = &i915->ggtt;
2895 struct i915_hw_ppgtt *ppgtt;
2897 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2901 i915_ppgtt_put(ppgtt);
2903 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
2904 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2907 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2909 /* Let GEM Manage all of the aperture.
2911 * However, leave one page at the end still bound to the scratch page.
2912 * There are a number of places where the hardware apparently prefetches
2913 * past the end of the object, and we've seen multiple hangs with the
2914 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2915 * aperture. One page should be enough to keep any prefetching inside
2918 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2919 unsigned long hole_start, hole_end;
2920 struct drm_mm_node *entry;
2924 * GuC requires all resources that we're sharing with it to be placed in
2925 * non-WOPCM memory. If GuC is not present or not in use we still need a
2926 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2929 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2930 intel_guc_reserved_gtt_size(&dev_priv->guc));
2932 ret = intel_vgt_balloon(dev_priv);
2936 /* Reserve a mappable slot for our lockless error capture */
2937 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2938 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2939 0, ggtt->mappable_end,
2944 /* Clear any non-preallocated blocks */
2945 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2946 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2947 hole_start, hole_end);
2948 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2949 hole_end - hole_start);
2952 /* And finally clear the reserved guard page */
2953 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2955 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2956 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2964 drm_mm_remove_node(&ggtt->error_capture);
2969 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2970 * @dev_priv: i915 device
2972 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2974 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2975 struct i915_vma *vma, *vn;
2976 struct pagevec *pvec;
2978 ggtt->vm.closed = true;
2980 mutex_lock(&dev_priv->drm.struct_mutex);
2981 i915_gem_fini_aliasing_ppgtt(dev_priv);
2983 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2984 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2985 WARN_ON(i915_vma_unbind(vma));
2987 if (drm_mm_node_allocated(&ggtt->error_capture))
2988 drm_mm_remove_node(&ggtt->error_capture);
2990 if (drm_mm_initialized(&ggtt->vm.mm)) {
2991 intel_vgt_deballoon(dev_priv);
2992 i915_address_space_fini(&ggtt->vm);
2995 ggtt->vm.cleanup(&ggtt->vm);
2997 pvec = &dev_priv->mm.wc_stash.pvec;
2999 set_pages_array_wb(pvec->pages, pvec->nr);
3000 __pagevec_release(pvec);
3003 mutex_unlock(&dev_priv->drm.struct_mutex);
3005 arch_phys_wc_del(ggtt->mtrr);
3006 io_mapping_fini(&ggtt->iomap);
3008 i915_gem_cleanup_stolen(dev_priv);
3011 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3013 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3014 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3015 return snb_gmch_ctl << 20;
3018 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3020 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3021 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3023 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3025 #ifdef CONFIG_X86_32
3026 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
3027 if (bdw_gmch_ctl > 4)
3031 return bdw_gmch_ctl << 20;
3034 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3036 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3037 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3040 return 1 << (20 + gmch_ctrl);
3045 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
3047 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3048 struct pci_dev *pdev = dev_priv->drm.pdev;
3049 phys_addr_t phys_addr;
3052 /* For Modern GENs the PTEs and register space are split in the BAR */
3053 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3056 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3057 * will be dropped. For WC mappings in general we have 64 byte burst
3058 * writes when the WC buffer is flushed, so we can't use it, but have to
3059 * resort to an uncached mapping. The WC issue is easily caught by the
3060 * readback check when writing GTT PTE entries.
3062 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3063 ggtt->gsm = ioremap_nocache(phys_addr, size);
3065 ggtt->gsm = ioremap_wc(phys_addr, size);
3067 DRM_ERROR("Failed to map the ggtt page table\n");
3071 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3073 DRM_ERROR("Scratch setup failed\n");
3074 /* iounmap will also get called at remove, but meh */
3082 static struct intel_ppat_entry *
3083 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3085 struct intel_ppat_entry *entry = &ppat->entries[index];
3087 GEM_BUG_ON(index >= ppat->max_entries);
3088 GEM_BUG_ON(test_bit(index, ppat->used));
3091 entry->value = value;
3092 kref_init(&entry->ref);
3093 set_bit(index, ppat->used);
3094 set_bit(index, ppat->dirty);
3099 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3101 struct intel_ppat *ppat = entry->ppat;
3102 unsigned int index = entry - ppat->entries;
3104 GEM_BUG_ON(index >= ppat->max_entries);
3105 GEM_BUG_ON(!test_bit(index, ppat->used));
3107 entry->value = ppat->clear_value;
3108 clear_bit(index, ppat->used);
3109 set_bit(index, ppat->dirty);
3113 * intel_ppat_get - get a usable PPAT entry
3114 * @i915: i915 device instance
3115 * @value: the PPAT value required by the caller
3117 * The function tries to search if there is an existing PPAT entry which
3118 * matches with the required value. If perfectly matched, the existing PPAT
3119 * entry will be used. If only partially matched, it will try to check if
3120 * there is any available PPAT index. If yes, it will allocate a new PPAT
3121 * index for the required entry and update the HW. If not, the partially
3122 * matched entry will be used.
3124 const struct intel_ppat_entry *
3125 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3127 struct intel_ppat *ppat = &i915->ppat;
3128 struct intel_ppat_entry *entry = NULL;
3129 unsigned int scanned, best_score;
3132 GEM_BUG_ON(!ppat->max_entries);
3134 scanned = best_score = 0;
3135 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3138 score = ppat->match(ppat->entries[i].value, value);
3139 if (score > best_score) {
3140 entry = &ppat->entries[i];
3141 if (score == INTEL_PPAT_PERFECT_MATCH) {
3142 kref_get(&entry->ref);
3150 if (scanned == ppat->max_entries) {
3152 return ERR_PTR(-ENOSPC);
3154 kref_get(&entry->ref);
3158 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3159 entry = __alloc_ppat_entry(ppat, i, value);
3160 ppat->update_hw(i915);
3164 static void release_ppat(struct kref *kref)
3166 struct intel_ppat_entry *entry =
3167 container_of(kref, struct intel_ppat_entry, ref);
3168 struct drm_i915_private *i915 = entry->ppat->i915;
3170 __free_ppat_entry(entry);
3171 entry->ppat->update_hw(i915);
3175 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3176 * @entry: an intel PPAT entry
3178 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3179 * entry is dynamically allocated, its reference count will be decreased. Once
3180 * the reference count becomes into zero, the PPAT index becomes free again.
3182 void intel_ppat_put(const struct intel_ppat_entry *entry)
3184 struct intel_ppat *ppat = entry->ppat;
3185 unsigned int index = entry - ppat->entries;
3187 GEM_BUG_ON(!ppat->max_entries);
3189 kref_put(&ppat->entries[index].ref, release_ppat);
3192 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3194 struct intel_ppat *ppat = &dev_priv->ppat;
3197 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3198 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3199 clear_bit(i, ppat->dirty);
3203 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3205 struct intel_ppat *ppat = &dev_priv->ppat;
3209 for (i = 0; i < ppat->max_entries; i++)
3210 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3212 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3214 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3215 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3218 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3220 unsigned int score = 0;
3227 /* Cache attribute has to be matched. */
3228 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3233 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3236 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3239 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3240 return INTEL_PPAT_PERFECT_MATCH;
3245 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3247 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3248 INTEL_PPAT_PERFECT_MATCH : 0;
3251 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3253 ppat->max_entries = 8;
3254 ppat->update_hw = cnl_private_pat_update_hw;
3255 ppat->match = bdw_private_pat_match;
3256 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3258 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3259 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3260 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3261 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3262 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3263 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3264 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3265 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3268 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3269 * bits. When using advanced contexts each context stores its own PAT, but
3270 * writing this data shouldn't be harmful even in those cases. */
3271 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3273 ppat->max_entries = 8;
3274 ppat->update_hw = bdw_private_pat_update_hw;
3275 ppat->match = bdw_private_pat_match;
3276 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3278 if (!USES_PPGTT(ppat->i915)) {
3279 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3280 * so RTL will always use the value corresponding to
3282 * So let's disable cache for GGTT to avoid screen corruptions.
3283 * MOCS still can be used though.
3284 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3285 * before this patch, i.e. the same uncached + snooping access
3286 * like on gen6/7 seems to be in effect.
3287 * - So this just fixes blitter/render access. Again it looks
3288 * like it's not just uncached access, but uncached + snooping.
3289 * So we can still hold onto all our assumptions wrt cpu
3290 * clflushing on LLC machines.
3292 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3296 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3297 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3298 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3299 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3300 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3301 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3302 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3303 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3306 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3308 ppat->max_entries = 8;
3309 ppat->update_hw = bdw_private_pat_update_hw;
3310 ppat->match = chv_private_pat_match;
3311 ppat->clear_value = CHV_PPAT_SNOOP;
3314 * Map WB on BDW to snooped on CHV.
3316 * Only the snoop bit has meaning for CHV, the rest is
3319 * The hardware will never snoop for certain types of accesses:
3320 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3321 * - PPGTT page tables
3322 * - some other special cycles
3324 * As with BDW, we also need to consider the following for GT accesses:
3325 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3326 * so RTL will always use the value corresponding to
3328 * Which means we must set the snoop bit in PAT entry 0
3329 * in order to keep the global status page working.
3332 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3333 __alloc_ppat_entry(ppat, 1, 0);
3334 __alloc_ppat_entry(ppat, 2, 0);
3335 __alloc_ppat_entry(ppat, 3, 0);
3336 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3337 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3338 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3339 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3342 static void gen6_gmch_remove(struct i915_address_space *vm)
3344 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3347 cleanup_scratch_page(vm);
3350 static void setup_private_pat(struct drm_i915_private *dev_priv)
3352 struct intel_ppat *ppat = &dev_priv->ppat;
3355 ppat->i915 = dev_priv;
3357 if (INTEL_GEN(dev_priv) >= 10)
3358 cnl_setup_private_ppat(ppat);
3359 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3360 chv_setup_private_ppat(ppat);
3362 bdw_setup_private_ppat(ppat);
3364 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3366 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3367 ppat->entries[i].value = ppat->clear_value;
3368 ppat->entries[i].ppat = ppat;
3369 set_bit(i, ppat->dirty);
3372 ppat->update_hw(dev_priv);
3375 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3377 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3378 struct pci_dev *pdev = dev_priv->drm.pdev;
3383 /* TODO: We're not aware of mappable constraints on gen8 yet */
3385 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3386 pci_resource_len(pdev, 2));
3387 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3389 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3391 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3393 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3395 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3396 if (IS_CHERRYVIEW(dev_priv))
3397 size = chv_get_total_gtt_size(snb_gmch_ctl);
3399 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3401 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3402 ggtt->vm.cleanup = gen6_gmch_remove;
3403 ggtt->vm.insert_page = gen8_ggtt_insert_page;
3404 ggtt->vm.clear_range = nop_clear_range;
3405 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3406 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3408 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3410 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3411 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3412 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3413 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3414 if (ggtt->vm.clear_range != nop_clear_range)
3415 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3418 ggtt->invalidate = gen6_ggtt_invalidate;
3420 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3421 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3422 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3423 ggtt->vm.vma_ops.clear_pages = clear_pages;
3425 setup_private_pat(dev_priv);
3427 return ggtt_probe_common(ggtt, size);
3430 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3432 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3433 struct pci_dev *pdev = dev_priv->drm.pdev;
3439 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3440 pci_resource_len(pdev, 2));
3441 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3443 /* 64/512MB is the current min/max we actually know of, but this is just
3444 * a coarse sanity check.
3446 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3447 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3451 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3453 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3455 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3456 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3458 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3459 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3461 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3462 ggtt->vm.insert_page = gen6_ggtt_insert_page;
3463 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3464 ggtt->vm.cleanup = gen6_gmch_remove;
3466 ggtt->invalidate = gen6_ggtt_invalidate;
3468 if (HAS_EDRAM(dev_priv))
3469 ggtt->vm.pte_encode = iris_pte_encode;
3470 else if (IS_HASWELL(dev_priv))
3471 ggtt->vm.pte_encode = hsw_pte_encode;
3472 else if (IS_VALLEYVIEW(dev_priv))
3473 ggtt->vm.pte_encode = byt_pte_encode;
3474 else if (INTEL_GEN(dev_priv) >= 7)
3475 ggtt->vm.pte_encode = ivb_pte_encode;
3477 ggtt->vm.pte_encode = snb_pte_encode;
3479 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3480 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3481 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3482 ggtt->vm.vma_ops.clear_pages = clear_pages;
3484 return ggtt_probe_common(ggtt, size);
3487 static void i915_gmch_remove(struct i915_address_space *vm)
3489 intel_gmch_remove();
3492 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3494 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3495 phys_addr_t gmadr_base;
3498 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3500 DRM_ERROR("failed to set up gmch\n");
3504 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3507 (struct resource) DEFINE_RES_MEM(gmadr_base,
3508 ggtt->mappable_end);
3510 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3511 ggtt->vm.insert_page = i915_ggtt_insert_page;
3512 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3513 ggtt->vm.clear_range = i915_ggtt_clear_range;
3514 ggtt->vm.cleanup = i915_gmch_remove;
3516 ggtt->invalidate = gmch_ggtt_invalidate;
3518 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3519 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3520 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3521 ggtt->vm.vma_ops.clear_pages = clear_pages;
3523 if (unlikely(ggtt->do_idle_maps))
3524 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3530 * i915_ggtt_probe_hw - Probe GGTT hardware location
3531 * @dev_priv: i915 device
3533 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3535 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3538 ggtt->vm.i915 = dev_priv;
3539 ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3541 if (INTEL_GEN(dev_priv) <= 5)
3542 ret = i915_gmch_probe(ggtt);
3543 else if (INTEL_GEN(dev_priv) < 8)
3544 ret = gen6_gmch_probe(ggtt);
3546 ret = gen8_gmch_probe(ggtt);
3550 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3551 * This is easier than doing range restriction on the fly, as we
3552 * currently don't have any bits spare to pass in this upper
3555 if (USES_GUC(dev_priv)) {
3556 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3557 ggtt->mappable_end =
3558 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3561 if ((ggtt->vm.total - 1) >> 32) {
3562 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3563 " of address space! Found %lldM!\n",
3564 ggtt->vm.total >> 20);
3565 ggtt->vm.total = 1ULL << 32;
3566 ggtt->mappable_end =
3567 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3570 if (ggtt->mappable_end > ggtt->vm.total) {
3571 DRM_ERROR("mappable aperture extends past end of GGTT,"
3572 " aperture=%pa, total=%llx\n",
3573 &ggtt->mappable_end, ggtt->vm.total);
3574 ggtt->mappable_end = ggtt->vm.total;
3577 /* GMADR is the PCI mmio aperture into the global GTT. */
3578 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3579 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3580 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3581 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3582 if (intel_vtd_active())
3583 DRM_INFO("VT-d active for gfx access\n");
3589 * i915_ggtt_init_hw - Initialize GGTT hardware
3590 * @dev_priv: i915 device
3592 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3594 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3597 stash_init(&dev_priv->mm.wc_stash);
3599 /* Note that we use page colouring to enforce a guard page at the
3600 * end of the address space. This is required as the CS may prefetch
3601 * beyond the end of the batch buffer, across the page boundary,
3602 * and beyond the end of the GTT if we do not provide a guard.
3604 mutex_lock(&dev_priv->drm.struct_mutex);
3605 i915_address_space_init(&ggtt->vm, dev_priv);
3607 ggtt->vm.is_ggtt = true;
3609 /* Only VLV supports read-only GGTT mappings */
3610 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3612 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3613 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3614 mutex_unlock(&dev_priv->drm.struct_mutex);
3616 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3617 dev_priv->ggtt.gmadr.start,
3618 dev_priv->ggtt.mappable_end)) {
3620 goto out_gtt_cleanup;
3623 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3626 * Initialise stolen early so that we may reserve preallocated
3627 * objects for the BIOS to KMS transition.
3629 ret = i915_gem_init_stolen(dev_priv);
3631 goto out_gtt_cleanup;
3636 ggtt->vm.cleanup(&ggtt->vm);
3640 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3642 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3648 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3650 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3652 i915->ggtt.invalidate = guc_ggtt_invalidate;
3654 i915_ggtt_invalidate(i915);
3657 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3659 /* XXX Temporary pardon for error unload */
3660 if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
3663 /* We should only be called after i915_ggtt_enable_guc() */
3664 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3666 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3668 i915_ggtt_invalidate(i915);
3671 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3673 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3674 struct i915_vma *vma, *vn;
3676 i915_check_and_clear_faults(dev_priv);
3678 /* First fill our portion of the GTT with scratch pages */
3679 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3681 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3683 /* clflush objects bound into the GGTT and rebind them. */
3684 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3685 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3686 struct drm_i915_gem_object *obj = vma->obj;
3688 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3691 if (!i915_vma_unbind(vma))
3694 WARN_ON(i915_vma_bind(vma,
3695 obj ? obj->cache_level : 0,
3698 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3701 ggtt->vm.closed = false;
3702 i915_ggtt_invalidate(dev_priv);
3704 if (INTEL_GEN(dev_priv) >= 8) {
3705 struct intel_ppat *ppat = &dev_priv->ppat;
3707 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3708 dev_priv->ppat.update_hw(dev_priv);
3713 static struct scatterlist *
3714 rotate_pages(const dma_addr_t *in, unsigned int offset,
3715 unsigned int width, unsigned int height,
3716 unsigned int stride,
3717 struct sg_table *st, struct scatterlist *sg)
3719 unsigned int column, row;
3720 unsigned int src_idx;
3722 for (column = 0; column < width; column++) {
3723 src_idx = stride * (height - 1) + column;
3724 for (row = 0; row < height; row++) {
3726 /* We don't need the pages, but need to initialize
3727 * the entries so the sg list can be happily traversed.
3728 * The only thing we need are DMA addresses.
3730 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3731 sg_dma_address(sg) = in[offset + src_idx];
3732 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3741 static noinline struct sg_table *
3742 intel_rotate_pages(struct intel_rotation_info *rot_info,
3743 struct drm_i915_gem_object *obj)
3745 const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE;
3746 unsigned int size = intel_rotation_info_size(rot_info);
3747 struct sgt_iter sgt_iter;
3748 dma_addr_t dma_addr;
3750 dma_addr_t *page_addr_list;
3751 struct sg_table *st;
3752 struct scatterlist *sg;
3755 /* Allocate a temporary list of source pages for random access. */
3756 page_addr_list = kvmalloc_array(n_pages,
3759 if (!page_addr_list)
3760 return ERR_PTR(ret);
3762 /* Allocate target SG list. */
3763 st = kmalloc(sizeof(*st), GFP_KERNEL);
3767 ret = sg_alloc_table(st, size, GFP_KERNEL);
3771 /* Populate source page list from the object. */
3773 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3774 page_addr_list[i++] = dma_addr;
3776 GEM_BUG_ON(i != n_pages);
3780 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3781 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3782 rot_info->plane[i].width, rot_info->plane[i].height,
3783 rot_info->plane[i].stride, st, sg);
3786 kvfree(page_addr_list);
3793 kvfree(page_addr_list);
3795 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3796 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3798 return ERR_PTR(ret);
3801 static noinline struct sg_table *
3802 intel_partial_pages(const struct i915_ggtt_view *view,
3803 struct drm_i915_gem_object *obj)
3805 struct sg_table *st;
3806 struct scatterlist *sg, *iter;
3807 unsigned int count = view->partial.size;
3808 unsigned int offset;
3811 st = kmalloc(sizeof(*st), GFP_KERNEL);
3815 ret = sg_alloc_table(st, count, GFP_KERNEL);
3819 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3827 len = min(iter->length - (offset << PAGE_SHIFT),
3828 count << PAGE_SHIFT);
3829 sg_set_page(sg, NULL, len, 0);
3830 sg_dma_address(sg) =
3831 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3832 sg_dma_len(sg) = len;
3835 count -= len >> PAGE_SHIFT;
3842 iter = __sg_next(iter);
3849 return ERR_PTR(ret);
3853 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3857 /* The vma->pages are only valid within the lifespan of the borrowed
3858 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3859 * must be the vma->pages. A simple rule is that vma->pages must only
3860 * be accessed when the obj->mm.pages are pinned.
3862 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3864 switch (vma->ggtt_view.type) {
3866 GEM_BUG_ON(vma->ggtt_view.type);
3868 case I915_GGTT_VIEW_NORMAL:
3869 vma->pages = vma->obj->mm.pages;
3872 case I915_GGTT_VIEW_ROTATED:
3874 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3877 case I915_GGTT_VIEW_PARTIAL:
3878 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3883 if (unlikely(IS_ERR(vma->pages))) {
3884 ret = PTR_ERR(vma->pages);
3886 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3887 vma->ggtt_view.type, ret);
3893 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3894 * @vm: the &struct i915_address_space
3895 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3896 * @size: how much space to allocate inside the GTT,
3897 * must be #I915_GTT_PAGE_SIZE aligned
3898 * @offset: where to insert inside the GTT,
3899 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3900 * (@offset + @size) must fit within the address space
3901 * @color: color to apply to node, if this node is not from a VMA,
3902 * color must be #I915_COLOR_UNEVICTABLE
3903 * @flags: control search and eviction behaviour
3905 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3906 * the address space (using @size and @color). If the @node does not fit, it
3907 * tries to evict any overlapping nodes from the GTT, including any
3908 * neighbouring nodes if the colors do not match (to ensure guard pages between
3909 * differing domains). See i915_gem_evict_for_node() for the gory details
3910 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3911 * evicting active overlapping objects, and any overlapping node that is pinned
3912 * or marked as unevictable will also result in failure.
3914 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3915 * asked to wait for eviction and interrupted.
3917 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3918 struct drm_mm_node *node,
3919 u64 size, u64 offset, unsigned long color,
3925 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3926 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3927 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3928 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3929 GEM_BUG_ON(drm_mm_node_allocated(node));
3932 node->start = offset;
3933 node->color = color;
3935 err = drm_mm_reserve_node(&vm->mm, node);
3939 if (flags & PIN_NOEVICT)
3942 err = i915_gem_evict_for_node(vm, node, flags);
3944 err = drm_mm_reserve_node(&vm->mm, node);
3949 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3953 GEM_BUG_ON(range_overflows(start, len, end));
3954 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3956 range = round_down(end - len, align) - round_up(start, align);
3958 if (sizeof(unsigned long) == sizeof(u64)) {
3959 addr = get_random_long();
3961 addr = get_random_int();
3962 if (range > U32_MAX) {
3964 addr |= get_random_int();
3967 div64_u64_rem(addr, range, &addr);
3971 return round_up(start, align);
3975 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3976 * @vm: the &struct i915_address_space
3977 * @node: the &struct drm_mm_node (typically i915_vma.node)
3978 * @size: how much space to allocate inside the GTT,
3979 * must be #I915_GTT_PAGE_SIZE aligned
3980 * @alignment: required alignment of starting offset, may be 0 but
3981 * if specified, this must be a power-of-two and at least
3982 * #I915_GTT_MIN_ALIGNMENT
3983 * @color: color to apply to node
3984 * @start: start of any range restriction inside GTT (0 for all),
3985 * must be #I915_GTT_PAGE_SIZE aligned
3986 * @end: end of any range restriction inside GTT (U64_MAX for all),
3987 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3988 * @flags: control search and eviction behaviour
3990 * i915_gem_gtt_insert() first searches for an available hole into which
3991 * is can insert the node. The hole address is aligned to @alignment and
3992 * its @size must then fit entirely within the [@start, @end] bounds. The
3993 * nodes on either side of the hole must match @color, or else a guard page
3994 * will be inserted between the two nodes (or the node evicted). If no
3995 * suitable hole is found, first a victim is randomly selected and tested
3996 * for eviction, otherwise then the LRU list of objects within the GTT
3997 * is scanned to find the first set of replacement nodes to create the hole.
3998 * Those old overlapping nodes are evicted from the GTT (and so must be
3999 * rebound before any future use). Any node that is currently pinned cannot
4000 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4001 * active and #PIN_NONBLOCK is specified, that node is also skipped when
4002 * searching for an eviction candidate. See i915_gem_evict_something() for
4003 * the gory details on the eviction algorithm.
4005 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4006 * asked to wait for eviction and interrupted.
4008 int i915_gem_gtt_insert(struct i915_address_space *vm,
4009 struct drm_mm_node *node,
4010 u64 size, u64 alignment, unsigned long color,
4011 u64 start, u64 end, unsigned int flags)
4013 enum drm_mm_insert_mode mode;
4017 lockdep_assert_held(&vm->i915->drm.struct_mutex);
4019 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4020 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4021 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4022 GEM_BUG_ON(start >= end);
4023 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4024 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4025 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4026 GEM_BUG_ON(drm_mm_node_allocated(node));
4028 if (unlikely(range_overflows(start, size, end)))
4031 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4034 mode = DRM_MM_INSERT_BEST;
4035 if (flags & PIN_HIGH)
4036 mode = DRM_MM_INSERT_HIGHEST;
4037 if (flags & PIN_MAPPABLE)
4038 mode = DRM_MM_INSERT_LOW;
4040 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4041 * so we know that we always have a minimum alignment of 4096.
4042 * The drm_mm range manager is optimised to return results
4043 * with zero alignment, so where possible use the optimal
4046 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4047 if (alignment <= I915_GTT_MIN_ALIGNMENT)
4050 err = drm_mm_insert_node_in_range(&vm->mm, node,
4051 size, alignment, color,
4056 if (mode & DRM_MM_INSERT_ONCE) {
4057 err = drm_mm_insert_node_in_range(&vm->mm, node,
4058 size, alignment, color,
4060 DRM_MM_INSERT_BEST);
4065 if (flags & PIN_NOEVICT)
4068 /* No free space, pick a slot at random.
4070 * There is a pathological case here using a GTT shared between
4071 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4073 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4074 * (64k objects) (448k objects)
4076 * Now imagine that the eviction LRU is ordered top-down (just because
4077 * pathology meets real life), and that we need to evict an object to
4078 * make room inside the aperture. The eviction scan then has to walk
4079 * the 448k list before it finds one within range. And now imagine that
4080 * it has to search for a new hole between every byte inside the memcpy,
4081 * for several simultaneous clients.
4083 * On a full-ppgtt system, if we have run out of available space, there
4084 * will be lots and lots of objects in the eviction list! Again,
4085 * searching that LRU list may be slow if we are also applying any
4086 * range restrictions (e.g. restriction to low 4GiB) and so, for
4087 * simplicity and similarilty between different GTT, try the single
4088 * random replacement first.
4090 offset = random_offset(start, end,
4091 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4092 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4096 /* Randomly selected placement is pinned, do a search */
4097 err = i915_gem_evict_something(vm, size, alignment, color,
4102 return drm_mm_insert_node_in_range(&vm->mm, node,
4103 size, alignment, color,
4104 start, end, DRM_MM_INSERT_EVICT);
4107 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4108 #include "selftests/mock_gtt.c"
4109 #include "selftests/i915_gem_gtt.c"