2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
29 #include <drm/i915_drm.h>
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
36 * DOC: Global GTT views
38 * Background and previous state
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
65 * Implementation and usage
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
80 * Code wanting to add or use a new GGTT view needs to:
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
99 GEM_BUG_ON(!i915_is_ggtt(vm));
100 return container_of(vm, struct i915_ggtt, base);
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 .type = I915_GGTT_VIEW_NORMAL,
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 .type = I915_GGTT_VIEW_ROTATED,
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 bool has_aliasing_ppgtt;
118 bool has_full_48bit_ppgtt;
120 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 has_full_48bit_ppgtt =
123 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
125 if (intel_vgpu_active(dev_priv)) {
126 /* emulation is too hard */
127 has_full_ppgtt = false;
128 has_full_48bit_ppgtt = false;
131 if (!has_aliasing_ppgtt)
135 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
136 * execlists, the sole mechanism available to submit work.
138 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141 if (enable_ppgtt == 1)
144 if (enable_ppgtt == 2 && has_full_ppgtt)
147 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150 #ifdef CONFIG_INTEL_IOMMU
151 /* Disable ppgtt on SNB if VT-d is on. */
152 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
153 DRM_INFO("Disabling PPGTT because VT-d is on\n");
158 /* Early VLV doesn't have this */
159 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
160 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
164 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
165 return has_full_48bit_ppgtt ? 3 : 2;
167 return has_aliasing_ppgtt ? 1 : 0;
170 static int ppgtt_bind_vma(struct i915_vma *vma,
171 enum i915_cache_level cache_level,
176 /* Currently applicable only to VLV */
178 pte_flags |= PTE_READ_ONLY;
180 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
181 cache_level, pte_flags);
186 static void ppgtt_unbind_vma(struct i915_vma *vma)
188 vma->vm->clear_range(vma->vm,
194 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
195 enum i915_cache_level level,
198 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
202 case I915_CACHE_NONE:
203 pte |= PPAT_UNCACHED_INDEX;
206 pte |= PPAT_DISPLAY_ELLC_INDEX;
209 pte |= PPAT_CACHED_INDEX;
216 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
217 const enum i915_cache_level level)
219 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
221 if (level != I915_CACHE_NONE)
222 pde |= PPAT_CACHED_PDE_INDEX;
224 pde |= PPAT_UNCACHED_INDEX;
228 #define gen8_pdpe_encode gen8_pde_encode
229 #define gen8_pml4e_encode gen8_pde_encode
231 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
232 enum i915_cache_level level,
233 bool valid, u32 unused)
235 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
236 pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 case I915_CACHE_L3_LLC:
241 pte |= GEN6_PTE_CACHE_LLC;
243 case I915_CACHE_NONE:
244 pte |= GEN6_PTE_UNCACHED;
253 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
254 enum i915_cache_level level,
255 bool valid, u32 unused)
257 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
258 pte |= GEN6_PTE_ADDR_ENCODE(addr);
261 case I915_CACHE_L3_LLC:
262 pte |= GEN7_PTE_CACHE_L3_LLC;
265 pte |= GEN6_PTE_CACHE_LLC;
267 case I915_CACHE_NONE:
268 pte |= GEN6_PTE_UNCACHED;
277 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
278 enum i915_cache_level level,
279 bool valid, u32 flags)
281 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
282 pte |= GEN6_PTE_ADDR_ENCODE(addr);
284 if (!(flags & PTE_READ_ONLY))
285 pte |= BYT_PTE_WRITEABLE;
287 if (level != I915_CACHE_NONE)
288 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
293 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
294 enum i915_cache_level level,
295 bool valid, u32 unused)
297 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
298 pte |= HSW_PTE_ADDR_ENCODE(addr);
300 if (level != I915_CACHE_NONE)
301 pte |= HSW_WB_LLC_AGE3;
306 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
307 enum i915_cache_level level,
308 bool valid, u32 unused)
310 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
311 pte |= HSW_PTE_ADDR_ENCODE(addr);
314 case I915_CACHE_NONE:
317 pte |= HSW_WT_ELLC_LLC_AGE3;
320 pte |= HSW_WB_ELLC_LLC_AGE3;
327 static int __setup_page_dma(struct drm_device *dev,
328 struct i915_page_dma *p, gfp_t flags)
330 struct device *device = &dev->pdev->dev;
332 p->page = alloc_page(flags);
336 p->daddr = dma_map_page(device,
337 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
339 if (dma_mapping_error(device, p->daddr)) {
340 __free_page(p->page);
347 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
349 return __setup_page_dma(dev, p, GFP_KERNEL);
352 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
354 if (WARN_ON(!p->page))
357 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
358 __free_page(p->page);
359 memset(p, 0, sizeof(*p));
362 static void *kmap_page_dma(struct i915_page_dma *p)
364 return kmap_atomic(p->page);
367 /* We use the flushing unmap only with ppgtt structures:
368 * page directories, page tables and scratch pages.
370 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
372 /* There are only few exceptions for gen >=6. chv and bxt.
373 * And we are not sure about the latter so play safe for now.
375 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
376 drm_clflush_virt_range(vaddr, PAGE_SIZE);
378 kunmap_atomic(vaddr);
381 #define kmap_px(px) kmap_page_dma(px_base(px))
382 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
384 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
385 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
386 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
387 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
389 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
393 uint64_t * const vaddr = kmap_page_dma(p);
395 for (i = 0; i < 512; i++)
398 kunmap_page_dma(dev, vaddr);
401 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
402 const uint32_t val32)
408 fill_page_dma(dev, p, v);
411 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
413 struct i915_page_scratch *sp;
416 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
418 return ERR_PTR(-ENOMEM);
420 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
426 set_pages_uc(px_page(sp), 1);
431 static void free_scratch_page(struct drm_device *dev,
432 struct i915_page_scratch *sp)
434 set_pages_wb(px_page(sp), 1);
440 static struct i915_page_table *alloc_pt(struct drm_device *dev)
442 struct i915_page_table *pt;
443 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
444 GEN8_PTES : GEN6_PTES;
447 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
449 return ERR_PTR(-ENOMEM);
451 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
457 ret = setup_px(dev, pt);
464 kfree(pt->used_ptes);
471 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
474 kfree(pt->used_ptes);
478 static void gen8_initialize_pt(struct i915_address_space *vm,
479 struct i915_page_table *pt)
481 gen8_pte_t scratch_pte;
483 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
484 I915_CACHE_LLC, true);
486 fill_px(vm->dev, pt, scratch_pte);
489 static void gen6_initialize_pt(struct i915_address_space *vm,
490 struct i915_page_table *pt)
492 gen6_pte_t scratch_pte;
494 WARN_ON(px_dma(vm->scratch_page) == 0);
496 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
497 I915_CACHE_LLC, true, 0);
499 fill32_px(vm->dev, pt, scratch_pte);
502 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
504 struct i915_page_directory *pd;
507 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
509 return ERR_PTR(-ENOMEM);
511 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
512 sizeof(*pd->used_pdes), GFP_KERNEL);
516 ret = setup_px(dev, pd);
523 kfree(pd->used_pdes);
530 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
534 kfree(pd->used_pdes);
539 static void gen8_initialize_pd(struct i915_address_space *vm,
540 struct i915_page_directory *pd)
542 gen8_pde_t scratch_pde;
544 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
546 fill_px(vm->dev, pd, scratch_pde);
549 static int __pdp_init(struct drm_device *dev,
550 struct i915_page_directory_pointer *pdp)
552 size_t pdpes = I915_PDPES_PER_PDP(dev);
554 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
555 sizeof(unsigned long),
557 if (!pdp->used_pdpes)
560 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
562 if (!pdp->page_directory) {
563 kfree(pdp->used_pdpes);
564 /* the PDP might be the statically allocated top level. Keep it
565 * as clean as possible */
566 pdp->used_pdpes = NULL;
573 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
575 kfree(pdp->used_pdpes);
576 kfree(pdp->page_directory);
577 pdp->page_directory = NULL;
581 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
583 struct i915_page_directory_pointer *pdp;
586 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
588 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
590 return ERR_PTR(-ENOMEM);
592 ret = __pdp_init(dev, pdp);
596 ret = setup_px(dev, pdp);
610 static void free_pdp(struct drm_device *dev,
611 struct i915_page_directory_pointer *pdp)
614 if (USES_FULL_48BIT_PPGTT(dev)) {
615 cleanup_px(dev, pdp);
620 static void gen8_initialize_pdp(struct i915_address_space *vm,
621 struct i915_page_directory_pointer *pdp)
623 gen8_ppgtt_pdpe_t scratch_pdpe;
625 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
627 fill_px(vm->dev, pdp, scratch_pdpe);
630 static void gen8_initialize_pml4(struct i915_address_space *vm,
631 struct i915_pml4 *pml4)
633 gen8_ppgtt_pml4e_t scratch_pml4e;
635 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
638 fill_px(vm->dev, pml4, scratch_pml4e);
642 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
643 struct i915_page_directory_pointer *pdp,
644 struct i915_page_directory *pd,
647 gen8_ppgtt_pdpe_t *page_directorypo;
649 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
652 page_directorypo = kmap_px(pdp);
653 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
654 kunmap_px(ppgtt, page_directorypo);
658 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
659 struct i915_pml4 *pml4,
660 struct i915_page_directory_pointer *pdp,
663 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
665 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
666 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
667 kunmap_px(ppgtt, pagemap);
670 /* Broadwell Page Directory Pointer Descriptors */
671 static int gen8_write_pdp(struct drm_i915_gem_request *req,
675 struct intel_engine_cs *engine = req->engine;
680 ret = intel_ring_begin(req, 6);
684 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
685 intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
686 intel_ring_emit(engine, upper_32_bits(addr));
687 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
688 intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
689 intel_ring_emit(engine, lower_32_bits(addr));
690 intel_ring_advance(engine);
695 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
696 struct drm_i915_gem_request *req)
700 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
701 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
703 ret = gen8_write_pdp(req, i, pd_daddr);
711 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
712 struct drm_i915_gem_request *req)
714 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
717 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
718 struct i915_page_directory_pointer *pdp,
721 gen8_pte_t scratch_pte)
723 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
724 gen8_pte_t *pt_vaddr;
725 unsigned pdpe = gen8_pdpe_index(start);
726 unsigned pde = gen8_pde_index(start);
727 unsigned pte = gen8_pte_index(start);
728 unsigned num_entries = length >> PAGE_SHIFT;
729 unsigned last_pte, i;
734 while (num_entries) {
735 struct i915_page_directory *pd;
736 struct i915_page_table *pt;
738 if (WARN_ON(!pdp->page_directory[pdpe]))
741 pd = pdp->page_directory[pdpe];
743 if (WARN_ON(!pd->page_table[pde]))
746 pt = pd->page_table[pde];
748 if (WARN_ON(!px_page(pt)))
751 last_pte = pte + num_entries;
752 if (last_pte > GEN8_PTES)
753 last_pte = GEN8_PTES;
755 pt_vaddr = kmap_px(pt);
757 for (i = pte; i < last_pte; i++) {
758 pt_vaddr[i] = scratch_pte;
762 kunmap_px(ppgtt, pt_vaddr);
765 if (++pde == I915_PDES) {
766 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
773 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
778 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
779 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
780 I915_CACHE_LLC, use_scratch);
782 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
783 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
787 struct i915_page_directory_pointer *pdp;
789 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
790 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
797 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
798 struct i915_page_directory_pointer *pdp,
799 struct sg_page_iter *sg_iter,
801 enum i915_cache_level cache_level)
803 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
804 gen8_pte_t *pt_vaddr;
805 unsigned pdpe = gen8_pdpe_index(start);
806 unsigned pde = gen8_pde_index(start);
807 unsigned pte = gen8_pte_index(start);
811 while (__sg_page_iter_next(sg_iter)) {
812 if (pt_vaddr == NULL) {
813 struct i915_page_directory *pd = pdp->page_directory[pdpe];
814 struct i915_page_table *pt = pd->page_table[pde];
815 pt_vaddr = kmap_px(pt);
819 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
821 if (++pte == GEN8_PTES) {
822 kunmap_px(ppgtt, pt_vaddr);
824 if (++pde == I915_PDES) {
825 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
834 kunmap_px(ppgtt, pt_vaddr);
837 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
838 struct sg_table *pages,
840 enum i915_cache_level cache_level,
843 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
844 struct sg_page_iter sg_iter;
846 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
848 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
849 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
852 struct i915_page_directory_pointer *pdp;
854 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
856 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
857 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
863 static void gen8_free_page_tables(struct drm_device *dev,
864 struct i915_page_directory *pd)
871 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
872 if (WARN_ON(!pd->page_table[i]))
875 free_pt(dev, pd->page_table[i]);
876 pd->page_table[i] = NULL;
880 static int gen8_init_scratch(struct i915_address_space *vm)
882 struct drm_device *dev = vm->dev;
885 vm->scratch_page = alloc_scratch_page(dev);
886 if (IS_ERR(vm->scratch_page))
887 return PTR_ERR(vm->scratch_page);
889 vm->scratch_pt = alloc_pt(dev);
890 if (IS_ERR(vm->scratch_pt)) {
891 ret = PTR_ERR(vm->scratch_pt);
892 goto free_scratch_page;
895 vm->scratch_pd = alloc_pd(dev);
896 if (IS_ERR(vm->scratch_pd)) {
897 ret = PTR_ERR(vm->scratch_pd);
901 if (USES_FULL_48BIT_PPGTT(dev)) {
902 vm->scratch_pdp = alloc_pdp(dev);
903 if (IS_ERR(vm->scratch_pdp)) {
904 ret = PTR_ERR(vm->scratch_pdp);
909 gen8_initialize_pt(vm, vm->scratch_pt);
910 gen8_initialize_pd(vm, vm->scratch_pd);
911 if (USES_FULL_48BIT_PPGTT(dev))
912 gen8_initialize_pdp(vm, vm->scratch_pdp);
917 free_pd(dev, vm->scratch_pd);
919 free_pt(dev, vm->scratch_pt);
921 free_scratch_page(dev, vm->scratch_page);
926 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
928 enum vgt_g2v_type msg;
929 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
932 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
933 u64 daddr = px_dma(&ppgtt->pml4);
935 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
936 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
938 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
939 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
941 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
942 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
944 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
945 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
948 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
949 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
952 I915_WRITE(vgtif_reg(g2v_notify), msg);
957 static void gen8_free_scratch(struct i915_address_space *vm)
959 struct drm_device *dev = vm->dev;
961 if (USES_FULL_48BIT_PPGTT(dev))
962 free_pdp(dev, vm->scratch_pdp);
963 free_pd(dev, vm->scratch_pd);
964 free_pt(dev, vm->scratch_pt);
965 free_scratch_page(dev, vm->scratch_page);
968 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
969 struct i915_page_directory_pointer *pdp)
973 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
974 if (WARN_ON(!pdp->page_directory[i]))
977 gen8_free_page_tables(dev, pdp->page_directory[i]);
978 free_pd(dev, pdp->page_directory[i]);
984 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
988 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
989 if (WARN_ON(!ppgtt->pml4.pdps[i]))
992 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
995 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
998 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1000 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1002 if (intel_vgpu_active(to_i915(vm->dev)))
1003 gen8_ppgtt_notify_vgt(ppgtt, false);
1005 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1006 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1008 gen8_ppgtt_cleanup_4lvl(ppgtt);
1010 gen8_free_scratch(vm);
1014 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1015 * @vm: Master vm structure.
1016 * @pd: Page directory for this address range.
1017 * @start: Starting virtual address to begin allocations.
1018 * @length: Size of the allocations.
1019 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1020 * caller to free on error.
1022 * Allocate the required number of page tables. Extremely similar to
1023 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1024 * the page directory boundary (instead of the page directory pointer). That
1025 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1026 * possible, and likely that the caller will need to use multiple calls of this
1027 * function to achieve the appropriate allocation.
1029 * Return: 0 if success; negative error code otherwise.
1031 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1032 struct i915_page_directory *pd,
1035 unsigned long *new_pts)
1037 struct drm_device *dev = vm->dev;
1038 struct i915_page_table *pt;
1041 gen8_for_each_pde(pt, pd, start, length, pde) {
1042 /* Don't reallocate page tables */
1043 if (test_bit(pde, pd->used_pdes)) {
1044 /* Scratch is never allocated this way */
1045 WARN_ON(pt == vm->scratch_pt);
1053 gen8_initialize_pt(vm, pt);
1054 pd->page_table[pde] = pt;
1055 __set_bit(pde, new_pts);
1056 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1062 for_each_set_bit(pde, new_pts, I915_PDES)
1063 free_pt(dev, pd->page_table[pde]);
1069 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1070 * @vm: Master vm structure.
1071 * @pdp: Page directory pointer for this address range.
1072 * @start: Starting virtual address to begin allocations.
1073 * @length: Size of the allocations.
1074 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1075 * caller to free on error.
1077 * Allocate the required number of page directories starting at the pde index of
1078 * @start, and ending at the pde index @start + @length. This function will skip
1079 * over already allocated page directories within the range, and only allocate
1080 * new ones, setting the appropriate pointer within the pdp as well as the
1081 * correct position in the bitmap @new_pds.
1083 * The function will only allocate the pages within the range for a give page
1084 * directory pointer. In other words, if @start + @length straddles a virtually
1085 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1086 * required by the caller, This is not currently possible, and the BUG in the
1087 * code will prevent it.
1089 * Return: 0 if success; negative error code otherwise.
1092 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1093 struct i915_page_directory_pointer *pdp,
1096 unsigned long *new_pds)
1098 struct drm_device *dev = vm->dev;
1099 struct i915_page_directory *pd;
1101 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1103 WARN_ON(!bitmap_empty(new_pds, pdpes));
1105 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1106 if (test_bit(pdpe, pdp->used_pdpes))
1113 gen8_initialize_pd(vm, pd);
1114 pdp->page_directory[pdpe] = pd;
1115 __set_bit(pdpe, new_pds);
1116 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1122 for_each_set_bit(pdpe, new_pds, pdpes)
1123 free_pd(dev, pdp->page_directory[pdpe]);
1129 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1130 * @vm: Master vm structure.
1131 * @pml4: Page map level 4 for this address range.
1132 * @start: Starting virtual address to begin allocations.
1133 * @length: Size of the allocations.
1134 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1135 * caller to free on error.
1137 * Allocate the required number of page directory pointers. Extremely similar to
1138 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1139 * The main difference is here we are limited by the pml4 boundary (instead of
1140 * the page directory pointer).
1142 * Return: 0 if success; negative error code otherwise.
1145 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1146 struct i915_pml4 *pml4,
1149 unsigned long *new_pdps)
1151 struct drm_device *dev = vm->dev;
1152 struct i915_page_directory_pointer *pdp;
1155 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1157 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1158 if (!test_bit(pml4e, pml4->used_pml4es)) {
1159 pdp = alloc_pdp(dev);
1163 gen8_initialize_pdp(vm, pdp);
1164 pml4->pdps[pml4e] = pdp;
1165 __set_bit(pml4e, new_pdps);
1166 trace_i915_page_directory_pointer_entry_alloc(vm,
1176 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1177 free_pdp(dev, pml4->pdps[pml4e]);
1183 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1189 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1190 * of these are based on the number of PDPEs in the system.
1193 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1194 unsigned long **new_pts,
1200 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1204 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1215 free_gen8_temp_bitmaps(pds, pts);
1219 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1220 * the page table structures, we mark them dirty so that
1221 * context switching/execlist queuing code takes extra steps
1222 * to ensure that tlbs are flushed.
1224 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1226 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1229 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1230 struct i915_page_directory_pointer *pdp,
1234 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1235 unsigned long *new_page_dirs, *new_page_tables;
1236 struct drm_device *dev = vm->dev;
1237 struct i915_page_directory *pd;
1238 const uint64_t orig_start = start;
1239 const uint64_t orig_length = length;
1241 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1244 /* Wrap is never okay since we can only represent 48b, and we don't
1245 * actually use the other side of the canonical address space.
1247 if (WARN_ON(start + length < start))
1250 if (WARN_ON(start + length > vm->total))
1253 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1257 /* Do the allocations first so we can easily bail out */
1258 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1261 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1265 /* For every page directory referenced, allocate page tables */
1266 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1267 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1268 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1274 length = orig_length;
1276 /* Allocations have completed successfully, so set the bitmaps, and do
1278 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1279 gen8_pde_t *const page_directory = kmap_px(pd);
1280 struct i915_page_table *pt;
1281 uint64_t pd_len = length;
1282 uint64_t pd_start = start;
1285 /* Every pd should be allocated, we just did that above. */
1288 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1289 /* Same reasoning as pd */
1292 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1294 /* Set our used ptes within the page table */
1295 bitmap_set(pt->used_ptes,
1296 gen8_pte_index(pd_start),
1297 gen8_pte_count(pd_start, pd_len));
1299 /* Our pde is now pointing to the pagetable, pt */
1300 __set_bit(pde, pd->used_pdes);
1302 /* Map the PDE to the page table */
1303 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1305 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1306 gen8_pte_index(start),
1307 gen8_pte_count(start, length),
1310 /* NB: We haven't yet mapped ptes to pages. At this
1311 * point we're still relying on insert_entries() */
1314 kunmap_px(ppgtt, page_directory);
1315 __set_bit(pdpe, pdp->used_pdpes);
1316 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1319 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320 mark_tlbs_dirty(ppgtt);
1327 for_each_set_bit(temp, new_page_tables + pdpe *
1328 BITS_TO_LONGS(I915_PDES), I915_PDES)
1329 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1332 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1333 free_pd(dev, pdp->page_directory[pdpe]);
1335 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1336 mark_tlbs_dirty(ppgtt);
1340 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1341 struct i915_pml4 *pml4,
1345 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1346 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1347 struct i915_page_directory_pointer *pdp;
1351 /* Do the pml4 allocations first, so we don't need to track the newly
1352 * allocated tables below the pdp */
1353 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1355 /* The pagedirectory and pagetable allocations are done in the shared 3
1356 * and 4 level code. Just allocate the pdps.
1358 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1363 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1364 "The allocation has spanned more than 512GB. "
1365 "It is highly likely this is incorrect.");
1367 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1370 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1374 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1377 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1378 GEN8_PML4ES_PER_PML4);
1383 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1384 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1389 static int gen8_alloc_va_range(struct i915_address_space *vm,
1390 uint64_t start, uint64_t length)
1392 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1394 if (USES_FULL_48BIT_PPGTT(vm->dev))
1395 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1397 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1400 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1401 uint64_t start, uint64_t length,
1402 gen8_pte_t scratch_pte,
1405 struct i915_page_directory *pd;
1408 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1409 struct i915_page_table *pt;
1410 uint64_t pd_len = length;
1411 uint64_t pd_start = start;
1414 if (!test_bit(pdpe, pdp->used_pdpes))
1417 seq_printf(m, "\tPDPE #%d\n", pdpe);
1418 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1420 gen8_pte_t *pt_vaddr;
1422 if (!test_bit(pde, pd->used_pdes))
1425 pt_vaddr = kmap_px(pt);
1426 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1428 (pdpe << GEN8_PDPE_SHIFT) |
1429 (pde << GEN8_PDE_SHIFT) |
1430 (pte << GEN8_PTE_SHIFT);
1434 for (i = 0; i < 4; i++)
1435 if (pt_vaddr[pte + i] != scratch_pte)
1440 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1441 for (i = 0; i < 4; i++) {
1442 if (pt_vaddr[pte + i] != scratch_pte)
1443 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1445 seq_puts(m, " SCRATCH ");
1449 /* don't use kunmap_px, it could trigger
1450 * an unnecessary flush.
1452 kunmap_atomic(pt_vaddr);
1457 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1459 struct i915_address_space *vm = &ppgtt->base;
1460 uint64_t start = ppgtt->base.start;
1461 uint64_t length = ppgtt->base.total;
1462 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1463 I915_CACHE_LLC, true);
1465 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1466 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1469 struct i915_pml4 *pml4 = &ppgtt->pml4;
1470 struct i915_page_directory_pointer *pdp;
1472 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1473 if (!test_bit(pml4e, pml4->used_pml4es))
1476 seq_printf(m, " PML4E #%llu\n", pml4e);
1477 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1482 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1484 unsigned long *new_page_dirs, *new_page_tables;
1485 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1488 /* We allocate temp bitmap for page tables for no gain
1489 * but as this is for init only, lets keep the things simple
1491 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1495 /* Allocate for all pdps regardless of how the ppgtt
1498 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1502 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1504 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1510 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1511 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1512 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1516 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1520 ret = gen8_init_scratch(&ppgtt->base);
1524 ppgtt->base.start = 0;
1525 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1526 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1527 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1528 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1529 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1530 ppgtt->base.bind_vma = ppgtt_bind_vma;
1531 ppgtt->debug_dump = gen8_dump_ppgtt;
1533 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1534 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1538 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1540 ppgtt->base.total = 1ULL << 48;
1541 ppgtt->switch_mm = gen8_48b_mm_switch;
1543 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1547 ppgtt->base.total = 1ULL << 32;
1548 ppgtt->switch_mm = gen8_legacy_mm_switch;
1549 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1553 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1554 ret = gen8_preallocate_top_level_pdps(ppgtt);
1560 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1561 gen8_ppgtt_notify_vgt(ppgtt, true);
1566 gen8_free_scratch(&ppgtt->base);
1570 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1572 struct i915_address_space *vm = &ppgtt->base;
1573 struct i915_page_table *unused;
1574 gen6_pte_t scratch_pte;
1577 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1579 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1580 I915_CACHE_LLC, true, 0);
1582 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1584 gen6_pte_t *pt_vaddr;
1585 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1586 pd_entry = readl(ppgtt->pd_addr + pde);
1587 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1589 if (pd_entry != expected)
1590 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1594 seq_printf(m, "\tPDE: %x\n", pd_entry);
1596 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1598 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1600 (pde * PAGE_SIZE * GEN6_PTES) +
1604 for (i = 0; i < 4; i++)
1605 if (pt_vaddr[pte + i] != scratch_pte)
1610 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1611 for (i = 0; i < 4; i++) {
1612 if (pt_vaddr[pte + i] != scratch_pte)
1613 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1615 seq_puts(m, " SCRATCH ");
1619 kunmap_px(ppgtt, pt_vaddr);
1623 /* Write pde (index) from the page directory @pd to the page table @pt */
1624 static void gen6_write_pde(struct i915_page_directory *pd,
1625 const int pde, struct i915_page_table *pt)
1627 /* Caller needs to make sure the write completes if necessary */
1628 struct i915_hw_ppgtt *ppgtt =
1629 container_of(pd, struct i915_hw_ppgtt, pd);
1632 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1633 pd_entry |= GEN6_PDE_VALID;
1635 writel(pd_entry, ppgtt->pd_addr + pde);
1638 /* Write all the page tables found in the ppgtt structure to incrementing page
1640 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1641 struct i915_page_directory *pd,
1642 uint32_t start, uint32_t length)
1644 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1645 struct i915_page_table *pt;
1648 gen6_for_each_pde(pt, pd, start, length, pde)
1649 gen6_write_pde(pd, pde, pt);
1651 /* Make sure write is complete before other code can use this page
1652 * table. Also require for WC mapped PTEs */
1656 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1658 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1660 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1663 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1664 struct drm_i915_gem_request *req)
1666 struct intel_engine_cs *engine = req->engine;
1669 /* NB: TLBs must be flushed and invalidated before a switch */
1670 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1674 ret = intel_ring_begin(req, 6);
1678 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1679 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1680 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1681 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1682 intel_ring_emit(engine, get_pd_offset(ppgtt));
1683 intel_ring_emit(engine, MI_NOOP);
1684 intel_ring_advance(engine);
1689 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1690 struct drm_i915_gem_request *req)
1692 struct intel_engine_cs *engine = req->engine;
1695 /* NB: TLBs must be flushed and invalidated before a switch */
1696 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1700 ret = intel_ring_begin(req, 6);
1704 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1705 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1706 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1707 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1708 intel_ring_emit(engine, get_pd_offset(ppgtt));
1709 intel_ring_emit(engine, MI_NOOP);
1710 intel_ring_advance(engine);
1712 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1713 if (engine->id != RCS) {
1714 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1722 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1723 struct drm_i915_gem_request *req)
1725 struct intel_engine_cs *engine = req->engine;
1726 struct drm_i915_private *dev_priv = req->i915;
1728 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1729 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1733 static void gen8_ppgtt_enable(struct drm_device *dev)
1735 struct drm_i915_private *dev_priv = to_i915(dev);
1736 struct intel_engine_cs *engine;
1738 for_each_engine(engine, dev_priv) {
1739 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1740 I915_WRITE(RING_MODE_GEN7(engine),
1741 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1745 static void gen7_ppgtt_enable(struct drm_device *dev)
1747 struct drm_i915_private *dev_priv = to_i915(dev);
1748 struct intel_engine_cs *engine;
1749 uint32_t ecochk, ecobits;
1751 ecobits = I915_READ(GAC_ECO_BITS);
1752 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1754 ecochk = I915_READ(GAM_ECOCHK);
1755 if (IS_HASWELL(dev)) {
1756 ecochk |= ECOCHK_PPGTT_WB_HSW;
1758 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1759 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1761 I915_WRITE(GAM_ECOCHK, ecochk);
1763 for_each_engine(engine, dev_priv) {
1764 /* GFX_MODE is per-ring on gen7+ */
1765 I915_WRITE(RING_MODE_GEN7(engine),
1766 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1770 static void gen6_ppgtt_enable(struct drm_device *dev)
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 uint32_t ecochk, gab_ctl, ecobits;
1775 ecobits = I915_READ(GAC_ECO_BITS);
1776 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1777 ECOBITS_PPGTT_CACHE64B);
1779 gab_ctl = I915_READ(GAB_CTL);
1780 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1782 ecochk = I915_READ(GAM_ECOCHK);
1783 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1785 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1788 /* PPGTT support for Sandybdrige/Gen6 and later */
1789 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1794 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1795 gen6_pte_t *pt_vaddr, scratch_pte;
1796 unsigned first_entry = start >> PAGE_SHIFT;
1797 unsigned num_entries = length >> PAGE_SHIFT;
1798 unsigned act_pt = first_entry / GEN6_PTES;
1799 unsigned first_pte = first_entry % GEN6_PTES;
1800 unsigned last_pte, i;
1802 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1803 I915_CACHE_LLC, true, 0);
1805 while (num_entries) {
1806 last_pte = first_pte + num_entries;
1807 if (last_pte > GEN6_PTES)
1808 last_pte = GEN6_PTES;
1810 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1812 for (i = first_pte; i < last_pte; i++)
1813 pt_vaddr[i] = scratch_pte;
1815 kunmap_px(ppgtt, pt_vaddr);
1817 num_entries -= last_pte - first_pte;
1823 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1824 struct sg_table *pages,
1826 enum i915_cache_level cache_level, u32 flags)
1828 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1829 unsigned first_entry = start >> PAGE_SHIFT;
1830 unsigned act_pt = first_entry / GEN6_PTES;
1831 unsigned act_pte = first_entry % GEN6_PTES;
1832 gen6_pte_t *pt_vaddr = NULL;
1833 struct sgt_iter sgt_iter;
1836 for_each_sgt_dma(addr, sgt_iter, pages) {
1837 if (pt_vaddr == NULL)
1838 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1841 vm->pte_encode(addr, cache_level, true, flags);
1843 if (++act_pte == GEN6_PTES) {
1844 kunmap_px(ppgtt, pt_vaddr);
1852 kunmap_px(ppgtt, pt_vaddr);
1855 static int gen6_alloc_va_range(struct i915_address_space *vm,
1856 uint64_t start_in, uint64_t length_in)
1858 DECLARE_BITMAP(new_page_tables, I915_PDES);
1859 struct drm_device *dev = vm->dev;
1860 struct drm_i915_private *dev_priv = to_i915(dev);
1861 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863 struct i915_page_table *pt;
1864 uint32_t start, length, start_save, length_save;
1868 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1871 start = start_save = start_in;
1872 length = length_save = length_in;
1874 bitmap_zero(new_page_tables, I915_PDES);
1876 /* The allocation is done in two stages so that we can bail out with
1877 * minimal amount of pain. The first stage finds new page tables that
1878 * need allocation. The second stage marks use ptes within the page
1881 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1882 if (pt != vm->scratch_pt) {
1883 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1887 /* We've already allocated a page table */
1888 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1896 gen6_initialize_pt(vm, pt);
1898 ppgtt->pd.page_table[pde] = pt;
1899 __set_bit(pde, new_page_tables);
1900 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1904 length = length_save;
1906 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1907 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1909 bitmap_zero(tmp_bitmap, GEN6_PTES);
1910 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1911 gen6_pte_count(start, length));
1913 if (__test_and_clear_bit(pde, new_page_tables))
1914 gen6_write_pde(&ppgtt->pd, pde, pt);
1916 trace_i915_page_table_entry_map(vm, pde, pt,
1917 gen6_pte_index(start),
1918 gen6_pte_count(start, length),
1920 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1924 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1926 /* Make sure write is complete before other code can use this page
1927 * table. Also require for WC mapped PTEs */
1930 mark_tlbs_dirty(ppgtt);
1934 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1935 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1937 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1938 free_pt(vm->dev, pt);
1941 mark_tlbs_dirty(ppgtt);
1945 static int gen6_init_scratch(struct i915_address_space *vm)
1947 struct drm_device *dev = vm->dev;
1949 vm->scratch_page = alloc_scratch_page(dev);
1950 if (IS_ERR(vm->scratch_page))
1951 return PTR_ERR(vm->scratch_page);
1953 vm->scratch_pt = alloc_pt(dev);
1954 if (IS_ERR(vm->scratch_pt)) {
1955 free_scratch_page(dev, vm->scratch_page);
1956 return PTR_ERR(vm->scratch_pt);
1959 gen6_initialize_pt(vm, vm->scratch_pt);
1964 static void gen6_free_scratch(struct i915_address_space *vm)
1966 struct drm_device *dev = vm->dev;
1968 free_pt(dev, vm->scratch_pt);
1969 free_scratch_page(dev, vm->scratch_page);
1972 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1974 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1975 struct i915_page_directory *pd = &ppgtt->pd;
1976 struct drm_device *dev = vm->dev;
1977 struct i915_page_table *pt;
1980 drm_mm_remove_node(&ppgtt->node);
1982 gen6_for_all_pdes(pt, pd, pde)
1983 if (pt != vm->scratch_pt)
1986 gen6_free_scratch(vm);
1989 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1991 struct i915_address_space *vm = &ppgtt->base;
1992 struct drm_device *dev = ppgtt->base.dev;
1993 struct drm_i915_private *dev_priv = to_i915(dev);
1994 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1995 bool retried = false;
1998 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1999 * allocator works in address space sizes, so it's multiplied by page
2000 * size. We allocate at the top of the GTT to avoid fragmentation.
2002 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2004 ret = gen6_init_scratch(vm);
2009 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2010 &ppgtt->node, GEN6_PD_SIZE,
2012 0, ggtt->base.total,
2014 if (ret == -ENOSPC && !retried) {
2015 ret = i915_gem_evict_something(dev, &ggtt->base,
2016 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2018 0, ggtt->base.total,
2031 if (ppgtt->node.start < ggtt->mappable_end)
2032 DRM_DEBUG("Forced to use aperture for PDEs\n");
2037 gen6_free_scratch(vm);
2041 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2043 return gen6_ppgtt_allocate_page_directories(ppgtt);
2046 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2047 uint64_t start, uint64_t length)
2049 struct i915_page_table *unused;
2052 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2053 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2056 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2058 struct drm_device *dev = ppgtt->base.dev;
2059 struct drm_i915_private *dev_priv = to_i915(dev);
2060 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2063 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2064 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2065 ppgtt->switch_mm = gen6_mm_switch;
2066 else if (IS_HASWELL(dev))
2067 ppgtt->switch_mm = hsw_mm_switch;
2068 else if (IS_GEN7(dev))
2069 ppgtt->switch_mm = gen7_mm_switch;
2073 ret = gen6_ppgtt_alloc(ppgtt);
2077 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2078 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2079 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2080 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2081 ppgtt->base.bind_vma = ppgtt_bind_vma;
2082 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2083 ppgtt->base.start = 0;
2084 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2085 ppgtt->debug_dump = gen6_dump_ppgtt;
2087 ppgtt->pd.base.ggtt_offset =
2088 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2090 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2091 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2093 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2095 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2097 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2098 ppgtt->node.size >> 20,
2099 ppgtt->node.start / PAGE_SIZE);
2101 DRM_DEBUG("Adding PPGTT at offset %x\n",
2102 ppgtt->pd.base.ggtt_offset << 10);
2107 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2109 ppgtt->base.dev = dev;
2111 if (INTEL_INFO(dev)->gen < 8)
2112 return gen6_ppgtt_init(ppgtt);
2114 return gen8_ppgtt_init(ppgtt);
2117 static void i915_address_space_init(struct i915_address_space *vm,
2118 struct drm_i915_private *dev_priv)
2120 drm_mm_init(&vm->mm, vm->start, vm->total);
2121 vm->dev = &dev_priv->drm;
2122 INIT_LIST_HEAD(&vm->active_list);
2123 INIT_LIST_HEAD(&vm->inactive_list);
2124 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2127 static void gtt_write_workarounds(struct drm_device *dev)
2129 struct drm_i915_private *dev_priv = to_i915(dev);
2131 /* This function is for gtt related workarounds. This function is
2132 * called on driver load and after a GPU reset, so you can place
2133 * workarounds here even if they get overwritten by GPU reset.
2135 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2136 if (IS_BROADWELL(dev))
2137 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2138 else if (IS_CHERRYVIEW(dev))
2139 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2140 else if (IS_SKYLAKE(dev))
2141 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2142 else if (IS_BROXTON(dev))
2143 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2146 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2148 struct drm_i915_private *dev_priv = to_i915(dev);
2151 ret = __hw_ppgtt_init(dev, ppgtt);
2153 kref_init(&ppgtt->ref);
2154 i915_address_space_init(&ppgtt->base, dev_priv);
2160 int i915_ppgtt_init_hw(struct drm_device *dev)
2162 gtt_write_workarounds(dev);
2164 /* In the case of execlists, PPGTT is enabled by the context descriptor
2165 * and the PDPs are contained within the context itself. We don't
2166 * need to do anything here. */
2167 if (i915.enable_execlists)
2170 if (!USES_PPGTT(dev))
2174 gen6_ppgtt_enable(dev);
2175 else if (IS_GEN7(dev))
2176 gen7_ppgtt_enable(dev);
2177 else if (INTEL_INFO(dev)->gen >= 8)
2178 gen8_ppgtt_enable(dev);
2180 MISSING_CASE(INTEL_INFO(dev)->gen);
2185 struct i915_hw_ppgtt *
2186 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2188 struct i915_hw_ppgtt *ppgtt;
2191 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2193 return ERR_PTR(-ENOMEM);
2195 ret = i915_ppgtt_init(dev, ppgtt);
2198 return ERR_PTR(ret);
2201 ppgtt->file_priv = fpriv;
2203 trace_i915_ppgtt_create(&ppgtt->base);
2208 void i915_ppgtt_release(struct kref *kref)
2210 struct i915_hw_ppgtt *ppgtt =
2211 container_of(kref, struct i915_hw_ppgtt, ref);
2213 trace_i915_ppgtt_release(&ppgtt->base);
2215 /* vmas should already be unbound */
2216 WARN_ON(!list_empty(&ppgtt->base.active_list));
2217 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2219 list_del(&ppgtt->base.global_link);
2220 drm_mm_takedown(&ppgtt->base.mm);
2222 ppgtt->base.cleanup(&ppgtt->base);
2226 extern int intel_iommu_gfx_mapped;
2227 /* Certain Gen5 chipsets require require idling the GPU before
2228 * unmapping anything from the GTT when VT-d is enabled.
2230 static bool needs_idle_maps(struct drm_device *dev)
2232 #ifdef CONFIG_INTEL_IOMMU
2233 /* Query intel_iommu to see if we need the workaround. Presumably that
2236 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2242 static bool do_idling(struct drm_i915_private *dev_priv)
2244 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2245 bool ret = dev_priv->mm.interruptible;
2247 if (unlikely(ggtt->do_idle_maps)) {
2248 dev_priv->mm.interruptible = false;
2249 if (i915_gem_wait_for_idle(dev_priv)) {
2250 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2251 /* Wait a bit, in hopes it avoids the hang */
2259 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2261 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2263 if (unlikely(ggtt->do_idle_maps))
2264 dev_priv->mm.interruptible = interruptible;
2267 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2269 struct intel_engine_cs *engine;
2271 if (INTEL_INFO(dev_priv)->gen < 6)
2274 for_each_engine(engine, dev_priv) {
2276 fault_reg = I915_READ(RING_FAULT_REG(engine));
2277 if (fault_reg & RING_FAULT_VALID) {
2278 DRM_DEBUG_DRIVER("Unexpected fault\n"
2280 "\tAddress space: %s\n"
2283 fault_reg & PAGE_MASK,
2284 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2285 RING_FAULT_SRCID(fault_reg),
2286 RING_FAULT_FAULT_TYPE(fault_reg));
2287 I915_WRITE(RING_FAULT_REG(engine),
2288 fault_reg & ~RING_FAULT_VALID);
2291 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2294 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2296 if (INTEL_INFO(dev_priv)->gen < 6) {
2297 intel_gtt_chipset_flush();
2299 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2300 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2304 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2306 struct drm_i915_private *dev_priv = to_i915(dev);
2307 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2309 /* Don't bother messing with faults pre GEN6 as we have little
2310 * documentation supporting that it's a good idea.
2312 if (INTEL_INFO(dev)->gen < 6)
2315 i915_check_and_clear_faults(dev_priv);
2317 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2320 i915_ggtt_flush(dev_priv);
2323 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2325 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2326 obj->pages->sgl, obj->pages->nents,
2327 PCI_DMA_BIDIRECTIONAL))
2333 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2338 iowrite32((u32)pte, addr);
2339 iowrite32(pte >> 32, addr + 4);
2343 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2346 enum i915_cache_level level,
2349 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2350 gen8_pte_t __iomem *pte =
2351 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2352 (offset >> PAGE_SHIFT);
2355 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2357 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2359 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2360 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2362 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2365 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2366 struct sg_table *st,
2368 enum i915_cache_level level, u32 unused)
2370 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2371 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2372 struct sgt_iter sgt_iter;
2373 gen8_pte_t __iomem *gtt_entries;
2374 gen8_pte_t gtt_entry;
2379 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2381 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2383 for_each_sgt_dma(addr, sgt_iter, st) {
2384 gtt_entry = gen8_pte_encode(addr, level, true);
2385 gen8_set_pte(>t_entries[i++], gtt_entry);
2389 * XXX: This serves as a posting read to make sure that the PTE has
2390 * actually been updated. There is some concern that even though
2391 * registers and PTEs are within the same BAR that they are potentially
2392 * of NUMA access patterns. Therefore, even with the way we assume
2393 * hardware should work, we must keep this posting read for paranoia.
2396 WARN_ON(readq(>t_entries[i-1]) != gtt_entry);
2398 /* This next bit makes the above posting read even more important. We
2399 * want to flush the TLBs only after we're certain all the PTE updates
2402 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2403 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2405 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2408 struct insert_entries {
2409 struct i915_address_space *vm;
2410 struct sg_table *st;
2412 enum i915_cache_level level;
2416 static int gen8_ggtt_insert_entries__cb(void *_arg)
2418 struct insert_entries *arg = _arg;
2419 gen8_ggtt_insert_entries(arg->vm, arg->st,
2420 arg->start, arg->level, arg->flags);
2424 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2425 struct sg_table *st,
2427 enum i915_cache_level level,
2430 struct insert_entries arg = { vm, st, start, level, flags };
2431 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2434 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2437 enum i915_cache_level level,
2440 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2441 gen6_pte_t __iomem *pte =
2442 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2443 (offset >> PAGE_SHIFT);
2446 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2448 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2450 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2451 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2453 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2457 * Binds an object into the global gtt with the specified cache level. The object
2458 * will be accessible to the GPU via commands whose operands reference offsets
2459 * within the global GTT as well as accessible by the GPU through the GMADR
2460 * mapped BAR (dev_priv->mm.gtt->gtt).
2462 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2463 struct sg_table *st,
2465 enum i915_cache_level level, u32 flags)
2467 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2468 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2469 struct sgt_iter sgt_iter;
2470 gen6_pte_t __iomem *gtt_entries;
2471 gen6_pte_t gtt_entry;
2476 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2478 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2480 for_each_sgt_dma(addr, sgt_iter, st) {
2481 gtt_entry = vm->pte_encode(addr, level, true, flags);
2482 iowrite32(gtt_entry, >t_entries[i++]);
2485 /* XXX: This serves as a posting read to make sure that the PTE has
2486 * actually been updated. There is some concern that even though
2487 * registers and PTEs are within the same BAR that they are potentially
2488 * of NUMA access patterns. Therefore, even with the way we assume
2489 * hardware should work, we must keep this posting read for paranoia.
2492 WARN_ON(readl(>t_entries[i-1]) != gtt_entry);
2494 /* This next bit makes the above posting read even more important. We
2495 * want to flush the TLBs only after we're certain all the PTE updates
2498 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2499 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2501 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2504 static void nop_clear_range(struct i915_address_space *vm,
2511 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2516 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2517 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2518 unsigned first_entry = start >> PAGE_SHIFT;
2519 unsigned num_entries = length >> PAGE_SHIFT;
2520 gen8_pte_t scratch_pte, __iomem *gtt_base =
2521 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2522 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2526 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2528 if (WARN(num_entries > max_entries,
2529 "First entry = %d; Num entries = %d (max=%d)\n",
2530 first_entry, num_entries, max_entries))
2531 num_entries = max_entries;
2533 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2536 for (i = 0; i < num_entries; i++)
2537 gen8_set_pte(>t_base[i], scratch_pte);
2540 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2543 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2548 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2549 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2550 unsigned first_entry = start >> PAGE_SHIFT;
2551 unsigned num_entries = length >> PAGE_SHIFT;
2552 gen6_pte_t scratch_pte, __iomem *gtt_base =
2553 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2554 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2558 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2560 if (WARN(num_entries > max_entries,
2561 "First entry = %d; Num entries = %d (max=%d)\n",
2562 first_entry, num_entries, max_entries))
2563 num_entries = max_entries;
2565 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2566 I915_CACHE_LLC, use_scratch, 0);
2568 for (i = 0; i < num_entries; i++)
2569 iowrite32(scratch_pte, >t_base[i]);
2572 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2578 enum i915_cache_level cache_level,
2581 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2582 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2583 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2586 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2588 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2590 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2594 struct sg_table *pages,
2596 enum i915_cache_level cache_level, u32 unused)
2598 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2599 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2600 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2603 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2605 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2607 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2611 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2616 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2617 unsigned first_entry = start >> PAGE_SHIFT;
2618 unsigned num_entries = length >> PAGE_SHIFT;
2621 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2623 intel_gtt_clear_range(first_entry, num_entries);
2625 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2628 static int ggtt_bind_vma(struct i915_vma *vma,
2629 enum i915_cache_level cache_level,
2632 struct drm_i915_gem_object *obj = vma->obj;
2636 ret = i915_get_ggtt_vma_pages(vma);
2640 /* Currently applicable only to VLV */
2642 pte_flags |= PTE_READ_ONLY;
2644 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2646 cache_level, pte_flags);
2649 * Without aliasing PPGTT there's no difference between
2650 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2651 * upgrade to both bound if we bind either to avoid double-binding.
2653 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2658 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2659 enum i915_cache_level cache_level,
2665 ret = i915_get_ggtt_vma_pages(vma);
2669 /* Currently applicable only to VLV */
2671 if (vma->obj->gt_ro)
2672 pte_flags |= PTE_READ_ONLY;
2675 if (flags & GLOBAL_BIND) {
2676 vma->vm->insert_entries(vma->vm,
2677 vma->ggtt_view.pages,
2679 cache_level, pte_flags);
2682 if (flags & LOCAL_BIND) {
2683 struct i915_hw_ppgtt *appgtt =
2684 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2685 appgtt->base.insert_entries(&appgtt->base,
2686 vma->ggtt_view.pages,
2688 cache_level, pte_flags);
2694 static void ggtt_unbind_vma(struct i915_vma *vma)
2696 struct drm_device *dev = vma->vm->dev;
2697 struct drm_i915_private *dev_priv = to_i915(dev);
2698 struct drm_i915_gem_object *obj = vma->obj;
2699 const uint64_t size = min_t(uint64_t,
2703 if (vma->bound & GLOBAL_BIND) {
2704 vma->vm->clear_range(vma->vm,
2710 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2711 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2713 appgtt->base.clear_range(&appgtt->base,
2720 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2722 struct drm_device *dev = obj->base.dev;
2723 struct drm_i915_private *dev_priv = to_i915(dev);
2726 interruptible = do_idling(dev_priv);
2728 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2729 PCI_DMA_BIDIRECTIONAL);
2731 undo_idling(dev_priv, interruptible);
2734 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2735 unsigned long color,
2739 if (node->color != color)
2742 if (!list_empty(&node->node_list)) {
2743 node = list_entry(node->node_list.next,
2746 if (node->allocated && node->color != color)
2751 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2756 /* Let GEM Manage all of the aperture.
2758 * However, leave one page at the end still bound to the scratch page.
2759 * There are a number of places where the hardware apparently prefetches
2760 * past the end of the object, and we've seen multiple hangs with the
2761 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2762 * aperture. One page should be enough to keep any prefetching inside
2765 struct drm_i915_private *dev_priv = to_i915(dev);
2766 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2767 struct drm_mm_node *entry;
2768 struct drm_i915_gem_object *obj;
2769 unsigned long hole_start, hole_end;
2772 BUG_ON(mappable_end > end);
2774 ggtt->base.start = start;
2776 /* Subtract the guard page before address space initialization to
2777 * shrink the range used by drm_mm */
2778 ggtt->base.total = end - start - PAGE_SIZE;
2779 i915_address_space_init(&ggtt->base, dev_priv);
2780 ggtt->base.total += PAGE_SIZE;
2782 ret = intel_vgt_balloon(dev_priv);
2787 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2789 /* Mark any preallocated objects as occupied */
2790 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2791 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2793 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2794 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2796 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2797 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2799 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2802 vma->bound |= GLOBAL_BIND;
2803 __i915_vma_set_map_and_fenceable(vma);
2804 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2807 /* Clear any non-preallocated blocks */
2808 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2809 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2810 hole_start, hole_end);
2811 ggtt->base.clear_range(&ggtt->base, hole_start,
2812 hole_end - hole_start, true);
2815 /* And finally clear the reserved guard page */
2816 ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2818 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2819 struct i915_hw_ppgtt *ppgtt;
2821 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2825 ret = __hw_ppgtt_init(dev, ppgtt);
2827 ppgtt->base.cleanup(&ppgtt->base);
2832 if (ppgtt->base.allocate_va_range)
2833 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2836 ppgtt->base.cleanup(&ppgtt->base);
2841 ppgtt->base.clear_range(&ppgtt->base,
2846 dev_priv->mm.aliasing_ppgtt = ppgtt;
2847 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2848 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2855 * i915_gem_init_ggtt - Initialize GEM for Global GTT
2858 void i915_gem_init_ggtt(struct drm_device *dev)
2860 struct drm_i915_private *dev_priv = to_i915(dev);
2861 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2863 i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2867 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2870 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2872 struct drm_i915_private *dev_priv = to_i915(dev);
2873 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2875 if (dev_priv->mm.aliasing_ppgtt) {
2876 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2878 ppgtt->base.cleanup(&ppgtt->base);
2882 i915_gem_cleanup_stolen(dev);
2884 if (drm_mm_initialized(&ggtt->base.mm)) {
2885 intel_vgt_deballoon(dev_priv);
2887 drm_mm_takedown(&ggtt->base.mm);
2888 list_del(&ggtt->base.global_link);
2891 ggtt->base.cleanup(&ggtt->base);
2894 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2896 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2897 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2898 return snb_gmch_ctl << 20;
2901 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2903 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2904 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2906 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2908 #ifdef CONFIG_X86_32
2909 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2910 if (bdw_gmch_ctl > 4)
2914 return bdw_gmch_ctl << 20;
2917 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2919 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2920 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2923 return 1 << (20 + gmch_ctrl);
2928 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2930 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2931 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2932 return snb_gmch_ctl << 25; /* 32 MB units */
2935 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2937 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2938 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2939 return bdw_gmch_ctl << 25; /* 32 MB units */
2942 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2944 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2945 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2948 * 0x0 to 0x10: 32MB increments starting at 0MB
2949 * 0x11 to 0x16: 4MB increments starting at 8MB
2950 * 0x17 to 0x1d: 4MB increments start at 36MB
2952 if (gmch_ctrl < 0x11)
2953 return gmch_ctrl << 25;
2954 else if (gmch_ctrl < 0x17)
2955 return (gmch_ctrl - 0x11 + 2) << 22;
2957 return (gmch_ctrl - 0x17 + 9) << 22;
2960 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2962 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2963 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2965 if (gen9_gmch_ctl < 0xf0)
2966 return gen9_gmch_ctl << 25; /* 32 MB units */
2968 /* 4MB increments starting at 0xf0 for 4MB */
2969 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2972 static int ggtt_probe_common(struct drm_device *dev,
2975 struct drm_i915_private *dev_priv = to_i915(dev);
2976 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2977 struct i915_page_scratch *scratch_page;
2978 phys_addr_t ggtt_phys_addr;
2980 /* For Modern GENs the PTEs and register space are split in the BAR */
2981 ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2982 (pci_resource_len(dev->pdev, 0) / 2);
2985 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2986 * dropped. For WC mappings in general we have 64 byte burst writes
2987 * when the WC buffer is flushed, so we can't use it, but have to
2988 * resort to an uncached mapping. The WC issue is easily caught by the
2989 * readback check when writing GTT PTE entries.
2991 if (IS_BROXTON(dev))
2992 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2994 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2996 DRM_ERROR("Failed to map the gtt page table\n");
3000 scratch_page = alloc_scratch_page(dev);
3001 if (IS_ERR(scratch_page)) {
3002 DRM_ERROR("Scratch setup failed\n");
3003 /* iounmap will also get called at remove, but meh */
3005 return PTR_ERR(scratch_page);
3008 ggtt->base.scratch_page = scratch_page;
3013 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3014 * bits. When using advanced contexts each context stores its own PAT, but
3015 * writing this data shouldn't be harmful even in those cases. */
3016 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3020 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
3021 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3022 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3023 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
3024 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3025 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3026 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3027 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3029 if (!USES_PPGTT(dev_priv))
3030 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3031 * so RTL will always use the value corresponding to
3033 * So let's disable cache for GGTT to avoid screen corruptions.
3034 * MOCS still can be used though.
3035 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3036 * before this patch, i.e. the same uncached + snooping access
3037 * like on gen6/7 seems to be in effect.
3038 * - So this just fixes blitter/render access. Again it looks
3039 * like it's not just uncached access, but uncached + snooping.
3040 * So we can still hold onto all our assumptions wrt cpu
3041 * clflushing on LLC machines.
3043 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3045 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3046 * write would work. */
3047 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3048 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3051 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3056 * Map WB on BDW to snooped on CHV.
3058 * Only the snoop bit has meaning for CHV, the rest is
3061 * The hardware will never snoop for certain types of accesses:
3062 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3063 * - PPGTT page tables
3064 * - some other special cycles
3066 * As with BDW, we also need to consider the following for GT accesses:
3067 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3068 * so RTL will always use the value corresponding to
3070 * Which means we must set the snoop bit in PAT entry 0
3071 * in order to keep the global status page working.
3073 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3077 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3078 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3079 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3080 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3082 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3083 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3086 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3088 struct drm_device *dev = ggtt->base.dev;
3089 struct drm_i915_private *dev_priv = to_i915(dev);
3093 /* TODO: We're not aware of mappable constraints on gen8 yet */
3094 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3095 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3097 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3098 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3100 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3102 if (INTEL_INFO(dev)->gen >= 9) {
3103 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3104 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3105 } else if (IS_CHERRYVIEW(dev)) {
3106 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3107 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3109 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3110 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3113 ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3115 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3116 chv_setup_private_ppat(dev_priv);
3118 bdw_setup_private_ppat(dev_priv);
3120 ret = ggtt_probe_common(dev, ggtt->size);
3122 ggtt->base.bind_vma = ggtt_bind_vma;
3123 ggtt->base.unbind_vma = ggtt_unbind_vma;
3124 ggtt->base.insert_page = gen8_ggtt_insert_page;
3125 ggtt->base.clear_range = nop_clear_range;
3126 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3127 ggtt->base.clear_range = gen8_ggtt_clear_range;
3129 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3130 if (IS_CHERRYVIEW(dev_priv))
3131 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3136 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3138 struct drm_device *dev = ggtt->base.dev;
3142 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3143 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3145 /* 64/512MB is the current min/max we actually know of, but this is just
3146 * a coarse sanity check.
3148 if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3149 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3153 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3154 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3155 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3157 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3158 ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3159 ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3161 ret = ggtt_probe_common(dev, ggtt->size);
3163 ggtt->base.clear_range = gen6_ggtt_clear_range;
3164 ggtt->base.insert_page = gen6_ggtt_insert_page;
3165 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3166 ggtt->base.bind_vma = ggtt_bind_vma;
3167 ggtt->base.unbind_vma = ggtt_unbind_vma;
3172 static void gen6_gmch_remove(struct i915_address_space *vm)
3174 struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3177 free_scratch_page(vm->dev, vm->scratch_page);
3180 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3182 struct drm_device *dev = ggtt->base.dev;
3183 struct drm_i915_private *dev_priv = to_i915(dev);
3186 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3188 DRM_ERROR("failed to set up gmch\n");
3192 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3193 &ggtt->mappable_base, &ggtt->mappable_end);
3195 ggtt->do_idle_maps = needs_idle_maps(&dev_priv->drm);
3196 ggtt->base.insert_page = i915_ggtt_insert_page;
3197 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3198 ggtt->base.clear_range = i915_ggtt_clear_range;
3199 ggtt->base.bind_vma = ggtt_bind_vma;
3200 ggtt->base.unbind_vma = ggtt_unbind_vma;
3202 if (unlikely(ggtt->do_idle_maps))
3203 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3208 static void i915_gmch_remove(struct i915_address_space *vm)
3210 intel_gmch_remove();
3214 * i915_ggtt_init_hw - Initialize GGTT hardware
3217 int i915_ggtt_init_hw(struct drm_device *dev)
3219 struct drm_i915_private *dev_priv = to_i915(dev);
3220 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3223 if (INTEL_INFO(dev)->gen <= 5) {
3224 ggtt->probe = i915_gmch_probe;
3225 ggtt->base.cleanup = i915_gmch_remove;
3226 } else if (INTEL_INFO(dev)->gen < 8) {
3227 ggtt->probe = gen6_gmch_probe;
3228 ggtt->base.cleanup = gen6_gmch_remove;
3231 ggtt->base.pte_encode = iris_pte_encode;
3232 else if (IS_HASWELL(dev))
3233 ggtt->base.pte_encode = hsw_pte_encode;
3234 else if (IS_VALLEYVIEW(dev))
3235 ggtt->base.pte_encode = byt_pte_encode;
3236 else if (INTEL_INFO(dev)->gen >= 7)
3237 ggtt->base.pte_encode = ivb_pte_encode;
3239 ggtt->base.pte_encode = snb_pte_encode;
3241 ggtt->probe = gen8_gmch_probe;
3242 ggtt->base.cleanup = gen6_gmch_remove;
3245 ggtt->base.dev = dev;
3246 ggtt->base.is_ggtt = true;
3248 ret = ggtt->probe(ggtt);
3252 if ((ggtt->base.total - 1) >> 32) {
3253 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3254 "of address space! Found %lldM!\n",
3255 ggtt->base.total >> 20);
3256 ggtt->base.total = 1ULL << 32;
3257 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3261 * Initialise stolen early so that we may reserve preallocated
3262 * objects for the BIOS to KMS transition.
3264 ret = i915_gem_init_stolen(dev);
3266 goto out_gtt_cleanup;
3268 /* GMADR is the PCI mmio aperture into the global GTT. */
3269 DRM_INFO("Memory usable by graphics device = %lluM\n",
3270 ggtt->base.total >> 20);
3271 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3272 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3273 #ifdef CONFIG_INTEL_IOMMU
3274 if (intel_iommu_gfx_mapped)
3275 DRM_INFO("VT-d active for gfx access\n");
3281 ggtt->base.cleanup(&ggtt->base);
3286 int i915_ggtt_enable_hw(struct drm_device *dev)
3288 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3294 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3296 struct drm_i915_private *dev_priv = to_i915(dev);
3297 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3298 struct drm_i915_gem_object *obj;
3299 struct i915_vma *vma;
3301 i915_check_and_clear_faults(dev_priv);
3303 /* First fill our portion of the GTT with scratch pages */
3304 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3307 /* Cache flush objects bound into GGTT and rebind them. */
3308 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3309 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3310 if (vma->vm != &ggtt->base)
3313 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3317 if (obj->pin_display)
3318 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3321 if (INTEL_INFO(dev)->gen >= 8) {
3322 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3323 chv_setup_private_ppat(dev_priv);
3325 bdw_setup_private_ppat(dev_priv);
3330 if (USES_PPGTT(dev)) {
3331 struct i915_address_space *vm;
3333 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3334 /* TODO: Perhaps it shouldn't be gen6 specific */
3336 struct i915_hw_ppgtt *ppgtt;
3339 ppgtt = dev_priv->mm.aliasing_ppgtt;
3341 ppgtt = i915_vm_to_ppgtt(vm);
3343 gen6_write_page_range(dev_priv, &ppgtt->pd,
3344 0, ppgtt->base.total);
3348 i915_ggtt_flush(dev_priv);
3351 static struct i915_vma *
3352 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3353 struct i915_address_space *vm,
3354 const struct i915_ggtt_view *ggtt_view)
3356 struct i915_vma *vma;
3358 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3359 return ERR_PTR(-EINVAL);
3361 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3363 return ERR_PTR(-ENOMEM);
3365 INIT_LIST_HEAD(&vma->vm_link);
3366 INIT_LIST_HEAD(&vma->obj_link);
3367 INIT_LIST_HEAD(&vma->exec_list);
3370 vma->is_ggtt = i915_is_ggtt(vm);
3372 if (i915_is_ggtt(vm))
3373 vma->ggtt_view = *ggtt_view;
3375 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3377 list_add_tail(&vma->obj_link, &obj->vma_list);
3383 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3384 struct i915_address_space *vm)
3386 struct i915_vma *vma;
3388 vma = i915_gem_obj_to_vma(obj, vm);
3390 vma = __i915_gem_vma_create(obj, vm,
3391 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3397 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3398 const struct i915_ggtt_view *view)
3400 struct drm_device *dev = obj->base.dev;
3401 struct drm_i915_private *dev_priv = to_i915(dev);
3402 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3403 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3406 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3412 static struct scatterlist *
3413 rotate_pages(const dma_addr_t *in, unsigned int offset,
3414 unsigned int width, unsigned int height,
3415 unsigned int stride,
3416 struct sg_table *st, struct scatterlist *sg)
3418 unsigned int column, row;
3419 unsigned int src_idx;
3421 for (column = 0; column < width; column++) {
3422 src_idx = stride * (height - 1) + column;
3423 for (row = 0; row < height; row++) {
3425 /* We don't need the pages, but need to initialize
3426 * the entries so the sg list can be happily traversed.
3427 * The only thing we need are DMA addresses.
3429 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3430 sg_dma_address(sg) = in[offset + src_idx];
3431 sg_dma_len(sg) = PAGE_SIZE;
3440 static struct sg_table *
3441 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3442 struct drm_i915_gem_object *obj)
3444 const size_t n_pages = obj->base.size / PAGE_SIZE;
3445 unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3446 unsigned int size_pages_uv;
3447 struct sgt_iter sgt_iter;
3448 dma_addr_t dma_addr;
3450 dma_addr_t *page_addr_list;
3451 struct sg_table *st;
3452 unsigned int uv_start_page;
3453 struct scatterlist *sg;
3456 /* Allocate a temporary list of source pages for random access. */
3457 page_addr_list = drm_malloc_gfp(n_pages,
3460 if (!page_addr_list)
3461 return ERR_PTR(ret);
3463 /* Account for UV plane with NV12. */
3464 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3465 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3469 /* Allocate target SG list. */
3470 st = kmalloc(sizeof(*st), GFP_KERNEL);
3474 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3478 /* Populate source page list from the object. */
3480 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3481 page_addr_list[i++] = dma_addr;
3483 GEM_BUG_ON(i != n_pages);
3487 /* Rotate the pages. */
3488 sg = rotate_pages(page_addr_list, 0,
3489 rot_info->plane[0].width, rot_info->plane[0].height,
3490 rot_info->plane[0].width,
3493 /* Append the UV plane if NV12. */
3494 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3495 uv_start_page = size_pages;
3497 /* Check for tile-row un-alignment. */
3498 if (offset_in_page(rot_info->uv_offset))
3501 rot_info->uv_start_page = uv_start_page;
3503 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3504 rot_info->plane[1].width, rot_info->plane[1].height,
3505 rot_info->plane[1].width,
3509 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3510 obj->base.size, rot_info->plane[0].width,
3511 rot_info->plane[0].height, size_pages + size_pages_uv,
3514 drm_free_large(page_addr_list);
3521 drm_free_large(page_addr_list);
3523 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3524 obj->base.size, ret, rot_info->plane[0].width,
3525 rot_info->plane[0].height, size_pages + size_pages_uv,
3527 return ERR_PTR(ret);
3530 static struct sg_table *
3531 intel_partial_pages(const struct i915_ggtt_view *view,
3532 struct drm_i915_gem_object *obj)
3534 struct sg_table *st;
3535 struct scatterlist *sg;
3536 struct sg_page_iter obj_sg_iter;
3539 st = kmalloc(sizeof(*st), GFP_KERNEL);
3543 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3549 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3550 view->params.partial.offset)
3552 if (st->nents >= view->params.partial.size)
3555 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3556 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3557 sg_dma_len(sg) = PAGE_SIZE;
3568 return ERR_PTR(ret);
3572 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3576 if (vma->ggtt_view.pages)
3579 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3580 vma->ggtt_view.pages = vma->obj->pages;
3581 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3582 vma->ggtt_view.pages =
3583 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3584 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3585 vma->ggtt_view.pages =
3586 intel_partial_pages(&vma->ggtt_view, vma->obj);
3588 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3589 vma->ggtt_view.type);
3591 if (!vma->ggtt_view.pages) {
3592 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3593 vma->ggtt_view.type);
3595 } else if (IS_ERR(vma->ggtt_view.pages)) {
3596 ret = PTR_ERR(vma->ggtt_view.pages);
3597 vma->ggtt_view.pages = NULL;
3598 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3599 vma->ggtt_view.type, ret);
3606 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3608 * @cache_level: mapping cache level
3609 * @flags: flags like global or local mapping
3611 * DMA addresses are taken from the scatter-gather table of this object (or of
3612 * this VMA in case of non-default GGTT views) and PTE entries set up.
3613 * Note that DMA addresses are also the only part of the SG table we care about.
3615 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3621 if (WARN_ON(flags == 0))
3625 if (flags & PIN_GLOBAL)
3626 bind_flags |= GLOBAL_BIND;
3627 if (flags & PIN_USER)
3628 bind_flags |= LOCAL_BIND;
3630 if (flags & PIN_UPDATE)
3631 bind_flags |= vma->bound;
3633 bind_flags &= ~vma->bound;
3635 if (bind_flags == 0)
3638 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3639 /* XXX: i915_vma_pin() will fix this +- hack */
3641 trace_i915_va_alloc(vma);
3642 ret = vma->vm->allocate_va_range(vma->vm,
3650 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3654 vma->bound |= bind_flags;
3660 * i915_ggtt_view_size - Get the size of a GGTT view.
3661 * @obj: Object the view is of.
3662 * @view: The view in question.
3664 * @return The size of the GGTT view in bytes.
3667 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3668 const struct i915_ggtt_view *view)
3670 if (view->type == I915_GGTT_VIEW_NORMAL) {
3671 return obj->base.size;
3672 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3673 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3674 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3675 return view->params.partial.size << PAGE_SHIFT;
3677 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3678 return obj->base.size;
3682 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3686 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3687 if (WARN_ON(!vma->obj->map_and_fenceable))
3688 return ERR_PTR(-ENODEV);
3690 GEM_BUG_ON(!vma->is_ggtt);
3691 GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3695 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3699 return ERR_PTR(-ENOMEM);