drm/i915: Flush the PTEs after updating them before suspend
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS                4
67
68 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
70 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
72
73 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
74                                              enum i915_cache_level level,
75                                              bool valid)
76 {
77         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
78         pte |= addr;
79         if (level != I915_CACHE_NONE)
80                 pte |= PPAT_CACHED_INDEX;
81         else
82                 pte |= PPAT_UNCACHED_INDEX;
83         return pte;
84 }
85
86 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
87                                              dma_addr_t addr,
88                                              enum i915_cache_level level)
89 {
90         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
91         pde |= addr;
92         if (level != I915_CACHE_NONE)
93                 pde |= PPAT_CACHED_PDE_INDEX;
94         else
95                 pde |= PPAT_UNCACHED_INDEX;
96         return pde;
97 }
98
99 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
100                                      enum i915_cache_level level,
101                                      bool valid)
102 {
103         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
104         pte |= GEN6_PTE_ADDR_ENCODE(addr);
105
106         switch (level) {
107         case I915_CACHE_L3_LLC:
108         case I915_CACHE_LLC:
109                 pte |= GEN6_PTE_CACHE_LLC;
110                 break;
111         case I915_CACHE_NONE:
112                 pte |= GEN6_PTE_UNCACHED;
113                 break;
114         default:
115                 WARN_ON(1);
116         }
117
118         return pte;
119 }
120
121 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
122                                      enum i915_cache_level level,
123                                      bool valid)
124 {
125         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
126         pte |= GEN6_PTE_ADDR_ENCODE(addr);
127
128         switch (level) {
129         case I915_CACHE_L3_LLC:
130                 pte |= GEN7_PTE_CACHE_L3_LLC;
131                 break;
132         case I915_CACHE_LLC:
133                 pte |= GEN6_PTE_CACHE_LLC;
134                 break;
135         case I915_CACHE_NONE:
136                 pte |= GEN6_PTE_UNCACHED;
137                 break;
138         default:
139                 WARN_ON(1);
140         }
141
142         return pte;
143 }
144
145 #define BYT_PTE_WRITEABLE               (1 << 1)
146 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
147
148 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
149                                      enum i915_cache_level level,
150                                      bool valid)
151 {
152         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
153         pte |= GEN6_PTE_ADDR_ENCODE(addr);
154
155         /* Mark the page as writeable.  Other platforms don't have a
156          * setting for read-only/writable, so this matches that behavior.
157          */
158         pte |= BYT_PTE_WRITEABLE;
159
160         if (level != I915_CACHE_NONE)
161                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
162
163         return pte;
164 }
165
166 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
167                                      enum i915_cache_level level,
168                                      bool valid)
169 {
170         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
171         pte |= HSW_PTE_ADDR_ENCODE(addr);
172
173         if (level != I915_CACHE_NONE)
174                 pte |= HSW_WB_LLC_AGE3;
175
176         return pte;
177 }
178
179 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
180                                       enum i915_cache_level level,
181                                       bool valid)
182 {
183         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
184         pte |= HSW_PTE_ADDR_ENCODE(addr);
185
186         switch (level) {
187         case I915_CACHE_NONE:
188                 break;
189         case I915_CACHE_WT:
190                 pte |= HSW_WT_ELLC_LLC_AGE3;
191                 break;
192         default:
193                 pte |= HSW_WB_ELLC_LLC_AGE3;
194                 break;
195         }
196
197         return pte;
198 }
199
200 /* Broadwell Page Directory Pointer Descriptors */
201 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
202                            uint64_t val)
203 {
204         int ret;
205
206         BUG_ON(entry >= 4);
207
208         ret = intel_ring_begin(ring, 6);
209         if (ret)
210                 return ret;
211
212         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
213         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
214         intel_ring_emit(ring, (u32)(val >> 32));
215         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
216         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
217         intel_ring_emit(ring, (u32)(val));
218         intel_ring_advance(ring);
219
220         return 0;
221 }
222
223 static int gen8_ppgtt_enable(struct drm_device *dev)
224 {
225         struct drm_i915_private *dev_priv = dev->dev_private;
226         struct intel_ring_buffer *ring;
227         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
228         int i, j, ret;
229
230         /* bit of a hack to find the actual last used pd */
231         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
232
233         for_each_ring(ring, dev_priv, j) {
234                 I915_WRITE(RING_MODE_GEN7(ring),
235                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
236         }
237
238         for (i = used_pd - 1; i >= 0; i--) {
239                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
240                 for_each_ring(ring, dev_priv, j) {
241                         ret = gen8_write_pdp(ring, i, addr);
242                         if (ret)
243                                 goto err_out;
244                 }
245         }
246         return 0;
247
248 err_out:
249         for_each_ring(ring, dev_priv, j)
250                 I915_WRITE(RING_MODE_GEN7(ring),
251                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
252         return ret;
253 }
254
255 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
256                                    unsigned first_entry,
257                                    unsigned num_entries,
258                                    bool use_scratch)
259 {
260         struct i915_hw_ppgtt *ppgtt =
261                 container_of(vm, struct i915_hw_ppgtt, base);
262         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
263         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
264         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
265         unsigned last_pte, i;
266
267         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
268                                       I915_CACHE_LLC, use_scratch);
269
270         while (num_entries) {
271                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
272
273                 last_pte = first_pte + num_entries;
274                 if (last_pte > GEN8_PTES_PER_PAGE)
275                         last_pte = GEN8_PTES_PER_PAGE;
276
277                 pt_vaddr = kmap_atomic(page_table);
278
279                 for (i = first_pte; i < last_pte; i++)
280                         pt_vaddr[i] = scratch_pte;
281
282                 kunmap_atomic(pt_vaddr);
283
284                 num_entries -= last_pte - first_pte;
285                 first_pte = 0;
286                 act_pt++;
287         }
288 }
289
290 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
291                                       struct sg_table *pages,
292                                       unsigned first_entry,
293                                       enum i915_cache_level cache_level)
294 {
295         struct i915_hw_ppgtt *ppgtt =
296                 container_of(vm, struct i915_hw_ppgtt, base);
297         gen8_gtt_pte_t *pt_vaddr;
298         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
299         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
300         struct sg_page_iter sg_iter;
301
302         pt_vaddr = NULL;
303         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
304                 if (pt_vaddr == NULL)
305                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
306
307                 pt_vaddr[act_pte] =
308                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
309                                         cache_level, true);
310                 if (++act_pte == GEN8_PTES_PER_PAGE) {
311                         kunmap_atomic(pt_vaddr);
312                         pt_vaddr = NULL;
313                         act_pt++;
314                         act_pte = 0;
315                 }
316         }
317         if (pt_vaddr)
318                 kunmap_atomic(pt_vaddr);
319 }
320
321 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
322 {
323         struct i915_hw_ppgtt *ppgtt =
324                 container_of(vm, struct i915_hw_ppgtt, base);
325         int i, j;
326
327         drm_mm_takedown(&vm->mm);
328
329         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
330                 if (ppgtt->pd_dma_addr[i]) {
331                         pci_unmap_page(ppgtt->base.dev->pdev,
332                                        ppgtt->pd_dma_addr[i],
333                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
334
335                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
336                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
337                                 if (addr)
338                                         pci_unmap_page(ppgtt->base.dev->pdev,
339                                                        addr,
340                                                        PAGE_SIZE,
341                                                        PCI_DMA_BIDIRECTIONAL);
342
343                         }
344                 }
345                 kfree(ppgtt->gen8_pt_dma_addr[i]);
346         }
347
348         __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
349         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
350 }
351
352 /**
353  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
354  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
355  * represents 1GB of memory
356  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
357  *
358  * TODO: Do something with the size parameter
359  **/
360 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
361 {
362         struct page *pt_pages;
363         int i, j, ret = -ENOMEM;
364         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
365         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
366
367         if (size % (1<<30))
368                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
369
370         /* FIXME: split allocation into smaller pieces. For now we only ever do
371          * this once, but with full PPGTT, the multiple contiguous allocations
372          * will be bad.
373          */
374         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
375         if (!ppgtt->pd_pages)
376                 return -ENOMEM;
377
378         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
379         if (!pt_pages) {
380                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
381                 return -ENOMEM;
382         }
383
384         ppgtt->gen8_pt_pages = pt_pages;
385         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
386         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
387         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
388         ppgtt->enable = gen8_ppgtt_enable;
389         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
390         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
391         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
392         ppgtt->base.start = 0;
393         ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
394
395         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
396
397         /*
398          * - Create a mapping for the page directories.
399          * - For each page directory:
400          *      allocate space for page table mappings.
401          *      map each page table
402          */
403         for (i = 0; i < max_pdp; i++) {
404                 dma_addr_t temp;
405                 temp = pci_map_page(ppgtt->base.dev->pdev,
406                                     &ppgtt->pd_pages[i], 0,
407                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
408                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
409                         goto err_out;
410
411                 ppgtt->pd_dma_addr[i] = temp;
412
413                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
414                 if (!ppgtt->gen8_pt_dma_addr[i])
415                         goto err_out;
416
417                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
418                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
419                         temp = pci_map_page(ppgtt->base.dev->pdev,
420                                             p, 0, PAGE_SIZE,
421                                             PCI_DMA_BIDIRECTIONAL);
422
423                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
424                                 goto err_out;
425
426                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
427                 }
428         }
429
430         /* For now, the PPGTT helper functions all require that the PDEs are
431          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
432          * will never need to touch the PDEs again */
433         for (i = 0; i < max_pdp; i++) {
434                 gen8_ppgtt_pde_t *pd_vaddr;
435                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
436                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
437                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
438                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
439                                                       I915_CACHE_LLC);
440                 }
441                 kunmap_atomic(pd_vaddr);
442         }
443
444         ppgtt->base.clear_range(&ppgtt->base, 0,
445                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
446                                 true);
447
448         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
449                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
450         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
451                          ppgtt->num_pt_pages,
452                          (ppgtt->num_pt_pages - num_pt_pages) +
453                          size % (1<<30));
454         return 0;
455
456 err_out:
457         ppgtt->base.cleanup(&ppgtt->base);
458         return ret;
459 }
460
461 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
462 {
463         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
464         gen6_gtt_pte_t __iomem *pd_addr;
465         uint32_t pd_entry;
466         int i;
467
468         WARN_ON(ppgtt->pd_offset & 0x3f);
469         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
470                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
471         for (i = 0; i < ppgtt->num_pd_entries; i++) {
472                 dma_addr_t pt_addr;
473
474                 pt_addr = ppgtt->pt_dma_addr[i];
475                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
476                 pd_entry |= GEN6_PDE_VALID;
477
478                 writel(pd_entry, pd_addr + i);
479         }
480         readl(pd_addr);
481 }
482
483 static int gen6_ppgtt_enable(struct drm_device *dev)
484 {
485         drm_i915_private_t *dev_priv = dev->dev_private;
486         uint32_t pd_offset;
487         struct intel_ring_buffer *ring;
488         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
489         int i;
490
491         BUG_ON(ppgtt->pd_offset & 0x3f);
492
493         gen6_write_pdes(ppgtt);
494
495         pd_offset = ppgtt->pd_offset;
496         pd_offset /= 64; /* in cachelines, */
497         pd_offset <<= 16;
498
499         if (INTEL_INFO(dev)->gen == 6) {
500                 uint32_t ecochk, gab_ctl, ecobits;
501
502                 ecobits = I915_READ(GAC_ECO_BITS);
503                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
504                                          ECOBITS_PPGTT_CACHE64B);
505
506                 gab_ctl = I915_READ(GAB_CTL);
507                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
508
509                 ecochk = I915_READ(GAM_ECOCHK);
510                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
511                                        ECOCHK_PPGTT_CACHE64B);
512                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
513         } else if (INTEL_INFO(dev)->gen >= 7) {
514                 uint32_t ecochk, ecobits;
515
516                 ecobits = I915_READ(GAC_ECO_BITS);
517                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
518
519                 ecochk = I915_READ(GAM_ECOCHK);
520                 if (IS_HASWELL(dev)) {
521                         ecochk |= ECOCHK_PPGTT_WB_HSW;
522                 } else {
523                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
524                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
525                 }
526                 I915_WRITE(GAM_ECOCHK, ecochk);
527                 /* GFX_MODE is per-ring on gen7+ */
528         }
529
530         for_each_ring(ring, dev_priv, i) {
531                 if (INTEL_INFO(dev)->gen >= 7)
532                         I915_WRITE(RING_MODE_GEN7(ring),
533                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
534
535                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
536                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
537         }
538         return 0;
539 }
540
541 /* PPGTT support for Sandybdrige/Gen6 and later */
542 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
543                                    unsigned first_entry,
544                                    unsigned num_entries,
545                                    bool use_scratch)
546 {
547         struct i915_hw_ppgtt *ppgtt =
548                 container_of(vm, struct i915_hw_ppgtt, base);
549         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
550         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
551         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
552         unsigned last_pte, i;
553
554         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
555
556         while (num_entries) {
557                 last_pte = first_pte + num_entries;
558                 if (last_pte > I915_PPGTT_PT_ENTRIES)
559                         last_pte = I915_PPGTT_PT_ENTRIES;
560
561                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
562
563                 for (i = first_pte; i < last_pte; i++)
564                         pt_vaddr[i] = scratch_pte;
565
566                 kunmap_atomic(pt_vaddr);
567
568                 num_entries -= last_pte - first_pte;
569                 first_pte = 0;
570                 act_pt++;
571         }
572 }
573
574 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
575                                       struct sg_table *pages,
576                                       unsigned first_entry,
577                                       enum i915_cache_level cache_level)
578 {
579         struct i915_hw_ppgtt *ppgtt =
580                 container_of(vm, struct i915_hw_ppgtt, base);
581         gen6_gtt_pte_t *pt_vaddr;
582         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
583         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
584         struct sg_page_iter sg_iter;
585
586         pt_vaddr = NULL;
587         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
588                 if (pt_vaddr == NULL)
589                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
590
591                 pt_vaddr[act_pte] =
592                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
593                                        cache_level, true);
594                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
595                         kunmap_atomic(pt_vaddr);
596                         pt_vaddr = NULL;
597                         act_pt++;
598                         act_pte = 0;
599                 }
600         }
601         if (pt_vaddr)
602                 kunmap_atomic(pt_vaddr);
603 }
604
605 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
606 {
607         struct i915_hw_ppgtt *ppgtt =
608                 container_of(vm, struct i915_hw_ppgtt, base);
609         int i;
610
611         drm_mm_takedown(&ppgtt->base.mm);
612
613         if (ppgtt->pt_dma_addr) {
614                 for (i = 0; i < ppgtt->num_pd_entries; i++)
615                         pci_unmap_page(ppgtt->base.dev->pdev,
616                                        ppgtt->pt_dma_addr[i],
617                                        4096, PCI_DMA_BIDIRECTIONAL);
618         }
619
620         kfree(ppgtt->pt_dma_addr);
621         for (i = 0; i < ppgtt->num_pd_entries; i++)
622                 __free_page(ppgtt->pt_pages[i]);
623         kfree(ppgtt->pt_pages);
624         kfree(ppgtt);
625 }
626
627 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
628 {
629         struct drm_device *dev = ppgtt->base.dev;
630         struct drm_i915_private *dev_priv = dev->dev_private;
631         unsigned first_pd_entry_in_global_pt;
632         int i;
633         int ret = -ENOMEM;
634
635         /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
636          * entries. For aliasing ppgtt support we just steal them at the end for
637          * now. */
638         first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
639
640         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
641         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
642         ppgtt->enable = gen6_ppgtt_enable;
643         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
644         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
645         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
646         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
647         ppgtt->base.start = 0;
648         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
649         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
650                                   GFP_KERNEL);
651         if (!ppgtt->pt_pages)
652                 return -ENOMEM;
653
654         for (i = 0; i < ppgtt->num_pd_entries; i++) {
655                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
656                 if (!ppgtt->pt_pages[i])
657                         goto err_pt_alloc;
658         }
659
660         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
661                                      GFP_KERNEL);
662         if (!ppgtt->pt_dma_addr)
663                 goto err_pt_alloc;
664
665         for (i = 0; i < ppgtt->num_pd_entries; i++) {
666                 dma_addr_t pt_addr;
667
668                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
669                                        PCI_DMA_BIDIRECTIONAL);
670
671                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
672                         ret = -EIO;
673                         goto err_pd_pin;
674
675                 }
676                 ppgtt->pt_dma_addr[i] = pt_addr;
677         }
678
679         ppgtt->base.clear_range(&ppgtt->base, 0,
680                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
681
682         ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
683
684         return 0;
685
686 err_pd_pin:
687         if (ppgtt->pt_dma_addr) {
688                 for (i--; i >= 0; i--)
689                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
690                                        4096, PCI_DMA_BIDIRECTIONAL);
691         }
692 err_pt_alloc:
693         kfree(ppgtt->pt_dma_addr);
694         for (i = 0; i < ppgtt->num_pd_entries; i++) {
695                 if (ppgtt->pt_pages[i])
696                         __free_page(ppgtt->pt_pages[i]);
697         }
698         kfree(ppgtt->pt_pages);
699
700         return ret;
701 }
702
703 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         struct i915_hw_ppgtt *ppgtt;
707         int ret;
708
709         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
710         if (!ppgtt)
711                 return -ENOMEM;
712
713         ppgtt->base.dev = dev;
714
715         if (INTEL_INFO(dev)->gen < 8)
716                 ret = gen6_ppgtt_init(ppgtt);
717         else if (IS_GEN8(dev))
718                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
719         else
720                 BUG();
721
722         if (ret)
723                 kfree(ppgtt);
724         else {
725                 dev_priv->mm.aliasing_ppgtt = ppgtt;
726                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
727                             ppgtt->base.total);
728         }
729
730         return ret;
731 }
732
733 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
737
738         if (!ppgtt)
739                 return;
740
741         ppgtt->base.cleanup(&ppgtt->base);
742         dev_priv->mm.aliasing_ppgtt = NULL;
743 }
744
745 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
746                             struct drm_i915_gem_object *obj,
747                             enum i915_cache_level cache_level)
748 {
749         ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
750                                    i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
751                                    cache_level);
752 }
753
754 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
755                               struct drm_i915_gem_object *obj)
756 {
757         ppgtt->base.clear_range(&ppgtt->base,
758                                 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
759                                 obj->base.size >> PAGE_SHIFT,
760                                 true);
761 }
762
763 extern int intel_iommu_gfx_mapped;
764 /* Certain Gen5 chipsets require require idling the GPU before
765  * unmapping anything from the GTT when VT-d is enabled.
766  */
767 static inline bool needs_idle_maps(struct drm_device *dev)
768 {
769 #ifdef CONFIG_INTEL_IOMMU
770         /* Query intel_iommu to see if we need the workaround. Presumably that
771          * was loaded first.
772          */
773         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
774                 return true;
775 #endif
776         return false;
777 }
778
779 static bool do_idling(struct drm_i915_private *dev_priv)
780 {
781         bool ret = dev_priv->mm.interruptible;
782
783         if (unlikely(dev_priv->gtt.do_idle_maps)) {
784                 dev_priv->mm.interruptible = false;
785                 if (i915_gpu_idle(dev_priv->dev)) {
786                         DRM_ERROR("Couldn't idle GPU\n");
787                         /* Wait a bit, in hopes it avoids the hang */
788                         udelay(10);
789                 }
790         }
791
792         return ret;
793 }
794
795 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
796 {
797         if (unlikely(dev_priv->gtt.do_idle_maps))
798                 dev_priv->mm.interruptible = interruptible;
799 }
800
801 void i915_check_and_clear_faults(struct drm_device *dev)
802 {
803         struct drm_i915_private *dev_priv = dev->dev_private;
804         struct intel_ring_buffer *ring;
805         int i;
806
807         if (INTEL_INFO(dev)->gen < 6)
808                 return;
809
810         for_each_ring(ring, dev_priv, i) {
811                 u32 fault_reg;
812                 fault_reg = I915_READ(RING_FAULT_REG(ring));
813                 if (fault_reg & RING_FAULT_VALID) {
814                         DRM_DEBUG_DRIVER("Unexpected fault\n"
815                                          "\tAddr: 0x%08lx\\n"
816                                          "\tAddress space: %s\n"
817                                          "\tSource ID: %d\n"
818                                          "\tType: %d\n",
819                                          fault_reg & PAGE_MASK,
820                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
821                                          RING_FAULT_SRCID(fault_reg),
822                                          RING_FAULT_FAULT_TYPE(fault_reg));
823                         I915_WRITE(RING_FAULT_REG(ring),
824                                    fault_reg & ~RING_FAULT_VALID);
825                 }
826         }
827         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
828 }
829
830 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
831 {
832         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
833                 intel_gtt_chipset_flush();
834         } else {
835                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
836                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
837         }
838 }
839
840 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
841 {
842         struct drm_i915_private *dev_priv = dev->dev_private;
843
844         /* Don't bother messing with faults pre GEN6 as we have little
845          * documentation supporting that it's a good idea.
846          */
847         if (INTEL_INFO(dev)->gen < 6)
848                 return;
849
850         i915_check_and_clear_faults(dev);
851
852         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
853                                        dev_priv->gtt.base.start / PAGE_SIZE,
854                                        dev_priv->gtt.base.total / PAGE_SIZE,
855                                        true);
856
857         i915_ggtt_flush(dev_priv);
858 }
859
860 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
861 {
862         struct drm_i915_private *dev_priv = dev->dev_private;
863         struct drm_i915_gem_object *obj;
864
865         i915_check_and_clear_faults(dev);
866
867         /* First fill our portion of the GTT with scratch pages */
868         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
869                                        dev_priv->gtt.base.start / PAGE_SIZE,
870                                        dev_priv->gtt.base.total / PAGE_SIZE,
871                                        true);
872
873         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
874                 i915_gem_clflush_object(obj, obj->pin_display);
875                 i915_gem_gtt_bind_object(obj, obj->cache_level);
876         }
877
878         i915_ggtt_flush(dev_priv);
879 }
880
881 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
882 {
883         if (obj->has_dma_mapping)
884                 return 0;
885
886         if (!dma_map_sg(&obj->base.dev->pdev->dev,
887                         obj->pages->sgl, obj->pages->nents,
888                         PCI_DMA_BIDIRECTIONAL))
889                 return -ENOSPC;
890
891         return 0;
892 }
893
894 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
895 {
896 #ifdef writeq
897         writeq(pte, addr);
898 #else
899         iowrite32((u32)pte, addr);
900         iowrite32(pte >> 32, addr + 4);
901 #endif
902 }
903
904 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
905                                      struct sg_table *st,
906                                      unsigned int first_entry,
907                                      enum i915_cache_level level)
908 {
909         struct drm_i915_private *dev_priv = vm->dev->dev_private;
910         gen8_gtt_pte_t __iomem *gtt_entries =
911                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
912         int i = 0;
913         struct sg_page_iter sg_iter;
914         dma_addr_t addr;
915
916         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
917                 addr = sg_dma_address(sg_iter.sg) +
918                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
919                 gen8_set_pte(&gtt_entries[i],
920                              gen8_pte_encode(addr, level, true));
921                 i++;
922         }
923
924         /*
925          * XXX: This serves as a posting read to make sure that the PTE has
926          * actually been updated. There is some concern that even though
927          * registers and PTEs are within the same BAR that they are potentially
928          * of NUMA access patterns. Therefore, even with the way we assume
929          * hardware should work, we must keep this posting read for paranoia.
930          */
931         if (i != 0)
932                 WARN_ON(readq(&gtt_entries[i-1])
933                         != gen8_pte_encode(addr, level, true));
934
935         /* This next bit makes the above posting read even more important. We
936          * want to flush the TLBs only after we're certain all the PTE updates
937          * have finished.
938          */
939         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
940         POSTING_READ(GFX_FLSH_CNTL_GEN6);
941 }
942
943 /*
944  * Binds an object into the global gtt with the specified cache level. The object
945  * will be accessible to the GPU via commands whose operands reference offsets
946  * within the global GTT as well as accessible by the GPU through the GMADR
947  * mapped BAR (dev_priv->mm.gtt->gtt).
948  */
949 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
950                                      struct sg_table *st,
951                                      unsigned int first_entry,
952                                      enum i915_cache_level level)
953 {
954         struct drm_i915_private *dev_priv = vm->dev->dev_private;
955         gen6_gtt_pte_t __iomem *gtt_entries =
956                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
957         int i = 0;
958         struct sg_page_iter sg_iter;
959         dma_addr_t addr;
960
961         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
962                 addr = sg_page_iter_dma_address(&sg_iter);
963                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
964                 i++;
965         }
966
967         /* XXX: This serves as a posting read to make sure that the PTE has
968          * actually been updated. There is some concern that even though
969          * registers and PTEs are within the same BAR that they are potentially
970          * of NUMA access patterns. Therefore, even with the way we assume
971          * hardware should work, we must keep this posting read for paranoia.
972          */
973         if (i != 0)
974                 WARN_ON(readl(&gtt_entries[i-1]) !=
975                         vm->pte_encode(addr, level, true));
976
977         /* This next bit makes the above posting read even more important. We
978          * want to flush the TLBs only after we're certain all the PTE updates
979          * have finished.
980          */
981         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
982         POSTING_READ(GFX_FLSH_CNTL_GEN6);
983 }
984
985 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
986                                   unsigned int first_entry,
987                                   unsigned int num_entries,
988                                   bool use_scratch)
989 {
990         struct drm_i915_private *dev_priv = vm->dev->dev_private;
991         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
992                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
993         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
994         int i;
995
996         if (WARN(num_entries > max_entries,
997                  "First entry = %d; Num entries = %d (max=%d)\n",
998                  first_entry, num_entries, max_entries))
999                 num_entries = max_entries;
1000
1001         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1002                                       I915_CACHE_LLC,
1003                                       use_scratch);
1004         for (i = 0; i < num_entries; i++)
1005                 gen8_set_pte(&gtt_base[i], scratch_pte);
1006         readl(gtt_base);
1007 }
1008
1009 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1010                                   unsigned int first_entry,
1011                                   unsigned int num_entries,
1012                                   bool use_scratch)
1013 {
1014         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1015         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1016                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1017         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1018         int i;
1019
1020         if (WARN(num_entries > max_entries,
1021                  "First entry = %d; Num entries = %d (max=%d)\n",
1022                  first_entry, num_entries, max_entries))
1023                 num_entries = max_entries;
1024
1025         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1026
1027         for (i = 0; i < num_entries; i++)
1028                 iowrite32(scratch_pte, &gtt_base[i]);
1029         readl(gtt_base);
1030 }
1031
1032 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1033                                      struct sg_table *st,
1034                                      unsigned int pg_start,
1035                                      enum i915_cache_level cache_level)
1036 {
1037         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1038                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1039
1040         intel_gtt_insert_sg_entries(st, pg_start, flags);
1041
1042 }
1043
1044 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1045                                   unsigned int first_entry,
1046                                   unsigned int num_entries,
1047                                   bool unused)
1048 {
1049         intel_gtt_clear_range(first_entry, num_entries);
1050 }
1051
1052
1053 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1054                               enum i915_cache_level cache_level)
1055 {
1056         struct drm_device *dev = obj->base.dev;
1057         struct drm_i915_private *dev_priv = dev->dev_private;
1058         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1059
1060         dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1061                                           entry,
1062                                           cache_level);
1063
1064         obj->has_global_gtt_mapping = 1;
1065 }
1066
1067 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1068 {
1069         struct drm_device *dev = obj->base.dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1072
1073         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1074                                        entry,
1075                                        obj->base.size >> PAGE_SHIFT,
1076                                        true);
1077
1078         obj->has_global_gtt_mapping = 0;
1079 }
1080
1081 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1082 {
1083         struct drm_device *dev = obj->base.dev;
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085         bool interruptible;
1086
1087         interruptible = do_idling(dev_priv);
1088
1089         if (!obj->has_dma_mapping)
1090                 dma_unmap_sg(&dev->pdev->dev,
1091                              obj->pages->sgl, obj->pages->nents,
1092                              PCI_DMA_BIDIRECTIONAL);
1093
1094         undo_idling(dev_priv, interruptible);
1095 }
1096
1097 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1098                                   unsigned long color,
1099                                   unsigned long *start,
1100                                   unsigned long *end)
1101 {
1102         if (node->color != color)
1103                 *start += 4096;
1104
1105         if (!list_empty(&node->node_list)) {
1106                 node = list_entry(node->node_list.next,
1107                                   struct drm_mm_node,
1108                                   node_list);
1109                 if (node->allocated && node->color != color)
1110                         *end -= 4096;
1111         }
1112 }
1113
1114 void i915_gem_setup_global_gtt(struct drm_device *dev,
1115                                unsigned long start,
1116                                unsigned long mappable_end,
1117                                unsigned long end)
1118 {
1119         /* Let GEM Manage all of the aperture.
1120          *
1121          * However, leave one page at the end still bound to the scratch page.
1122          * There are a number of places where the hardware apparently prefetches
1123          * past the end of the object, and we've seen multiple hangs with the
1124          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1125          * aperture.  One page should be enough to keep any prefetching inside
1126          * of the aperture.
1127          */
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1130         struct drm_mm_node *entry;
1131         struct drm_i915_gem_object *obj;
1132         unsigned long hole_start, hole_end;
1133
1134         BUG_ON(mappable_end > end);
1135
1136         /* Subtract the guard page ... */
1137         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1138         if (!HAS_LLC(dev))
1139                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1140
1141         /* Mark any preallocated objects as occupied */
1142         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1143                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1144                 int ret;
1145                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1146                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1147
1148                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1149                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1150                 if (ret)
1151                         DRM_DEBUG_KMS("Reservation failed\n");
1152                 obj->has_global_gtt_mapping = 1;
1153         }
1154
1155         dev_priv->gtt.base.start = start;
1156         dev_priv->gtt.base.total = end - start;
1157
1158         /* Clear any non-preallocated blocks */
1159         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1160                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1161                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1162                               hole_start, hole_end);
1163                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1164         }
1165
1166         /* And finally clear the reserved guard page */
1167         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1168 }
1169
1170 static bool
1171 intel_enable_ppgtt(struct drm_device *dev)
1172 {
1173         if (i915_enable_ppgtt >= 0)
1174                 return i915_enable_ppgtt;
1175
1176 #ifdef CONFIG_INTEL_IOMMU
1177         /* Disable ppgtt on SNB if VT-d is on. */
1178         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1179                 return false;
1180 #endif
1181
1182         return true;
1183 }
1184
1185 void i915_gem_init_global_gtt(struct drm_device *dev)
1186 {
1187         struct drm_i915_private *dev_priv = dev->dev_private;
1188         unsigned long gtt_size, mappable_size;
1189
1190         gtt_size = dev_priv->gtt.base.total;
1191         mappable_size = dev_priv->gtt.mappable_end;
1192
1193         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1194                 int ret;
1195
1196                 if (INTEL_INFO(dev)->gen <= 7) {
1197                         /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1198                          * aperture accordingly when using aliasing ppgtt. */
1199                         gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1200                 }
1201
1202                 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1203
1204                 ret = i915_gem_init_aliasing_ppgtt(dev);
1205                 if (!ret)
1206                         return;
1207
1208                 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1209                 drm_mm_takedown(&dev_priv->gtt.base.mm);
1210                 if (INTEL_INFO(dev)->gen < 8)
1211                         gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1212         }
1213         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1214 }
1215
1216 static int setup_scratch_page(struct drm_device *dev)
1217 {
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         struct page *page;
1220         dma_addr_t dma_addr;
1221
1222         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1223         if (page == NULL)
1224                 return -ENOMEM;
1225         get_page(page);
1226         set_pages_uc(page, 1);
1227
1228 #ifdef CONFIG_INTEL_IOMMU
1229         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1230                                 PCI_DMA_BIDIRECTIONAL);
1231         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1232                 return -EINVAL;
1233 #else
1234         dma_addr = page_to_phys(page);
1235 #endif
1236         dev_priv->gtt.base.scratch.page = page;
1237         dev_priv->gtt.base.scratch.addr = dma_addr;
1238
1239         return 0;
1240 }
1241
1242 static void teardown_scratch_page(struct drm_device *dev)
1243 {
1244         struct drm_i915_private *dev_priv = dev->dev_private;
1245         struct page *page = dev_priv->gtt.base.scratch.page;
1246
1247         set_pages_wb(page, 1);
1248         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1249                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1250         put_page(page);
1251         __free_page(page);
1252 }
1253
1254 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1255 {
1256         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1257         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1258         return snb_gmch_ctl << 20;
1259 }
1260
1261 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1262 {
1263         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1264         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1265         if (bdw_gmch_ctl)
1266                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1267         if (bdw_gmch_ctl > 4) {
1268                 WARN_ON(!i915_preliminary_hw_support);
1269                 return 4<<20;
1270         }
1271
1272         return bdw_gmch_ctl << 20;
1273 }
1274
1275 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1276 {
1277         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1278         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1279         return snb_gmch_ctl << 25; /* 32 MB units */
1280 }
1281
1282 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1283 {
1284         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1285         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1286         return bdw_gmch_ctl << 25; /* 32 MB units */
1287 }
1288
1289 static int ggtt_probe_common(struct drm_device *dev,
1290                              size_t gtt_size)
1291 {
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293         phys_addr_t gtt_phys_addr;
1294         int ret;
1295
1296         /* For Modern GENs the PTEs and register space are split in the BAR */
1297         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1298                 (pci_resource_len(dev->pdev, 0) / 2);
1299
1300         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1301         if (!dev_priv->gtt.gsm) {
1302                 DRM_ERROR("Failed to map the gtt page table\n");
1303                 return -ENOMEM;
1304         }
1305
1306         ret = setup_scratch_page(dev);
1307         if (ret) {
1308                 DRM_ERROR("Scratch setup failed\n");
1309                 /* iounmap will also get called at remove, but meh */
1310                 iounmap(dev_priv->gtt.gsm);
1311         }
1312
1313         return ret;
1314 }
1315
1316 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1317  * bits. When using advanced contexts each context stores its own PAT, but
1318  * writing this data shouldn't be harmful even in those cases. */
1319 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1320 {
1321 #define GEN8_PPAT_UC            (0<<0)
1322 #define GEN8_PPAT_WC            (1<<0)
1323 #define GEN8_PPAT_WT            (2<<0)
1324 #define GEN8_PPAT_WB            (3<<0)
1325 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1326 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1327 #define GEN8_PPAT_LLC           (1<<2)
1328 #define GEN8_PPAT_LLCELLC       (2<<2)
1329 #define GEN8_PPAT_LLCeLLC       (3<<2)
1330 #define GEN8_PPAT_AGE(x)        (x<<4)
1331 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1332         uint64_t pat;
1333
1334         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1335               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1336               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1337               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1338               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1339               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1340               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1341               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1342
1343         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1344          * write would work. */
1345         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1346         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1347 }
1348
1349 static int gen8_gmch_probe(struct drm_device *dev,
1350                            size_t *gtt_total,
1351                            size_t *stolen,
1352                            phys_addr_t *mappable_base,
1353                            unsigned long *mappable_end)
1354 {
1355         struct drm_i915_private *dev_priv = dev->dev_private;
1356         unsigned int gtt_size;
1357         u16 snb_gmch_ctl;
1358         int ret;
1359
1360         /* TODO: We're not aware of mappable constraints on gen8 yet */
1361         *mappable_base = pci_resource_start(dev->pdev, 2);
1362         *mappable_end = pci_resource_len(dev->pdev, 2);
1363
1364         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1365                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1366
1367         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1368
1369         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1370
1371         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1372         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1373
1374         gen8_setup_private_ppat(dev_priv);
1375
1376         ret = ggtt_probe_common(dev, gtt_size);
1377
1378         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1379         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1380
1381         return ret;
1382 }
1383
1384 static int gen6_gmch_probe(struct drm_device *dev,
1385                            size_t *gtt_total,
1386                            size_t *stolen,
1387                            phys_addr_t *mappable_base,
1388                            unsigned long *mappable_end)
1389 {
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         unsigned int gtt_size;
1392         u16 snb_gmch_ctl;
1393         int ret;
1394
1395         *mappable_base = pci_resource_start(dev->pdev, 2);
1396         *mappable_end = pci_resource_len(dev->pdev, 2);
1397
1398         /* 64/512MB is the current min/max we actually know of, but this is just
1399          * a coarse sanity check.
1400          */
1401         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1402                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1403                           dev_priv->gtt.mappable_end);
1404                 return -ENXIO;
1405         }
1406
1407         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1408                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1409         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1410
1411         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1412
1413         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1414         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1415
1416         ret = ggtt_probe_common(dev, gtt_size);
1417
1418         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1419         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1420
1421         return ret;
1422 }
1423
1424 static void gen6_gmch_remove(struct i915_address_space *vm)
1425 {
1426
1427         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1428
1429         drm_mm_takedown(&vm->mm);
1430         iounmap(gtt->gsm);
1431         teardown_scratch_page(vm->dev);
1432 }
1433
1434 static int i915_gmch_probe(struct drm_device *dev,
1435                            size_t *gtt_total,
1436                            size_t *stolen,
1437                            phys_addr_t *mappable_base,
1438                            unsigned long *mappable_end)
1439 {
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         int ret;
1442
1443         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1444         if (!ret) {
1445                 DRM_ERROR("failed to set up gmch\n");
1446                 return -EIO;
1447         }
1448
1449         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1450
1451         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1452         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1453         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1454
1455         if (unlikely(dev_priv->gtt.do_idle_maps))
1456                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1457
1458         return 0;
1459 }
1460
1461 static void i915_gmch_remove(struct i915_address_space *vm)
1462 {
1463         intel_gmch_remove();
1464 }
1465
1466 int i915_gem_gtt_init(struct drm_device *dev)
1467 {
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469         struct i915_gtt *gtt = &dev_priv->gtt;
1470         int ret;
1471
1472         if (INTEL_INFO(dev)->gen <= 5) {
1473                 gtt->gtt_probe = i915_gmch_probe;
1474                 gtt->base.cleanup = i915_gmch_remove;
1475         } else if (INTEL_INFO(dev)->gen < 8) {
1476                 gtt->gtt_probe = gen6_gmch_probe;
1477                 gtt->base.cleanup = gen6_gmch_remove;
1478                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1479                         gtt->base.pte_encode = iris_pte_encode;
1480                 else if (IS_HASWELL(dev))
1481                         gtt->base.pte_encode = hsw_pte_encode;
1482                 else if (IS_VALLEYVIEW(dev))
1483                         gtt->base.pte_encode = byt_pte_encode;
1484                 else if (INTEL_INFO(dev)->gen >= 7)
1485                         gtt->base.pte_encode = ivb_pte_encode;
1486                 else
1487                         gtt->base.pte_encode = snb_pte_encode;
1488         } else {
1489                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1490                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1491         }
1492
1493         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1494                              &gtt->mappable_base, &gtt->mappable_end);
1495         if (ret)
1496                 return ret;
1497
1498         gtt->base.dev = dev;
1499
1500         /* GMADR is the PCI mmio aperture into the global GTT. */
1501         DRM_INFO("Memory usable by graphics device = %zdM\n",
1502                  gtt->base.total >> 20);
1503         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1504         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1505
1506         return 0;
1507 }