m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99         GEM_BUG_ON(!i915_is_ggtt(vm));
100         return container_of(vm, struct i915_ggtt, base);
101 }
102
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107         .type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110         .type = I915_GGTT_VIEW_ROTATED,
111 };
112
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114                                 int enable_ppgtt)
115 {
116         bool has_aliasing_ppgtt;
117         bool has_full_ppgtt;
118         bool has_full_48bit_ppgtt;
119
120         has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121         has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122         has_full_48bit_ppgtt =
123                 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124
125         if (intel_vgpu_active(dev_priv))
126                 has_full_ppgtt = false; /* emulation is too hard */
127
128         if (!has_aliasing_ppgtt)
129                 return 0;
130
131         /*
132          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133          * execlists, the sole mechanism available to submit work.
134          */
135         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136                 return 0;
137
138         if (enable_ppgtt == 1)
139                 return 1;
140
141         if (enable_ppgtt == 2 && has_full_ppgtt)
142                 return 2;
143
144         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145                 return 3;
146
147 #ifdef CONFIG_INTEL_IOMMU
148         /* Disable ppgtt on SNB if VT-d is on. */
149         if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
151                 return 0;
152         }
153 #endif
154
155         /* Early VLV doesn't have this */
156         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158                 return 0;
159         }
160
161         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162                 return has_full_48bit_ppgtt ? 3 : 2;
163         else
164                 return has_aliasing_ppgtt ? 1 : 0;
165 }
166
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168                           enum i915_cache_level cache_level,
169                           u32 unused)
170 {
171         u32 pte_flags = 0;
172
173         /* Currently applicable only to VLV */
174         if (vma->obj->gt_ro)
175                 pte_flags |= PTE_READ_ONLY;
176
177         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178                                 cache_level, pte_flags);
179
180         return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185         vma->vm->clear_range(vma->vm,
186                              vma->node.start,
187                              vma->obj->base.size,
188                              true);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192                                   enum i915_cache_level level,
193                                   bool valid)
194 {
195         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196         pte |= addr;
197
198         switch (level) {
199         case I915_CACHE_NONE:
200                 pte |= PPAT_UNCACHED_INDEX;
201                 break;
202         case I915_CACHE_WT:
203                 pte |= PPAT_DISPLAY_ELLC_INDEX;
204                 break;
205         default:
206                 pte |= PPAT_CACHED_INDEX;
207                 break;
208         }
209
210         return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214                                   const enum i915_cache_level level)
215 {
216         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217         pde |= addr;
218         if (level != I915_CACHE_NONE)
219                 pde |= PPAT_CACHED_PDE_INDEX;
220         else
221                 pde |= PPAT_UNCACHED_INDEX;
222         return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229                                  enum i915_cache_level level,
230                                  bool valid, u32 unused)
231 {
232         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233         pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235         switch (level) {
236         case I915_CACHE_L3_LLC:
237         case I915_CACHE_LLC:
238                 pte |= GEN6_PTE_CACHE_LLC;
239                 break;
240         case I915_CACHE_NONE:
241                 pte |= GEN6_PTE_UNCACHED;
242                 break;
243         default:
244                 MISSING_CASE(level);
245         }
246
247         return pte;
248 }
249
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251                                  enum i915_cache_level level,
252                                  bool valid, u32 unused)
253 {
254         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255         pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257         switch (level) {
258         case I915_CACHE_L3_LLC:
259                 pte |= GEN7_PTE_CACHE_L3_LLC;
260                 break;
261         case I915_CACHE_LLC:
262                 pte |= GEN6_PTE_CACHE_LLC;
263                 break;
264         case I915_CACHE_NONE:
265                 pte |= GEN6_PTE_UNCACHED;
266                 break;
267         default:
268                 MISSING_CASE(level);
269         }
270
271         return pte;
272 }
273
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275                                  enum i915_cache_level level,
276                                  bool valid, u32 flags)
277 {
278         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279         pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281         if (!(flags & PTE_READ_ONLY))
282                 pte |= BYT_PTE_WRITEABLE;
283
284         if (level != I915_CACHE_NONE)
285                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287         return pte;
288 }
289
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291                                  enum i915_cache_level level,
292                                  bool valid, u32 unused)
293 {
294         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295         pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297         if (level != I915_CACHE_NONE)
298                 pte |= HSW_WB_LLC_AGE3;
299
300         return pte;
301 }
302
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304                                   enum i915_cache_level level,
305                                   bool valid, u32 unused)
306 {
307         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308         pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310         switch (level) {
311         case I915_CACHE_NONE:
312                 break;
313         case I915_CACHE_WT:
314                 pte |= HSW_WT_ELLC_LLC_AGE3;
315                 break;
316         default:
317                 pte |= HSW_WB_ELLC_LLC_AGE3;
318                 break;
319         }
320
321         return pte;
322 }
323
324 static int __setup_page_dma(struct drm_device *dev,
325                             struct i915_page_dma *p, gfp_t flags)
326 {
327         struct device *device = &dev->pdev->dev;
328
329         p->page = alloc_page(flags);
330         if (!p->page)
331                 return -ENOMEM;
332
333         p->daddr = dma_map_page(device,
334                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335
336         if (dma_mapping_error(device, p->daddr)) {
337                 __free_page(p->page);
338                 return -EINVAL;
339         }
340
341         return 0;
342 }
343
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346         return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351         if (WARN_ON(!p->page))
352                 return;
353
354         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355         __free_page(p->page);
356         memset(p, 0, sizeof(*p));
357 }
358
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361         return kmap_atomic(p->page);
362 }
363
364 /* We use the flushing unmap only with ppgtt structures:
365  * page directories, page tables and scratch pages.
366  */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369         /* There are only few exceptions for gen >=6. chv and bxt.
370          * And we are not sure about the latter so play safe for now.
371          */
372         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
374
375         kunmap_atomic(vaddr);
376 }
377
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387                           const uint64_t val)
388 {
389         int i;
390         uint64_t * const vaddr = kmap_page_dma(p);
391
392         for (i = 0; i < 512; i++)
393                 vaddr[i] = val;
394
395         kunmap_page_dma(dev, vaddr);
396 }
397
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399                              const uint32_t val32)
400 {
401         uint64_t v = val32;
402
403         v = v << 32 | val32;
404
405         fill_page_dma(dev, p, v);
406 }
407
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410         struct i915_page_scratch *sp;
411         int ret;
412
413         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414         if (sp == NULL)
415                 return ERR_PTR(-ENOMEM);
416
417         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418         if (ret) {
419                 kfree(sp);
420                 return ERR_PTR(ret);
421         }
422
423         set_pages_uc(px_page(sp), 1);
424
425         return sp;
426 }
427
428 static void free_scratch_page(struct drm_device *dev,
429                               struct i915_page_scratch *sp)
430 {
431         set_pages_wb(px_page(sp), 1);
432
433         cleanup_px(dev, sp);
434         kfree(sp);
435 }
436
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439         struct i915_page_table *pt;
440         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441                 GEN8_PTES : GEN6_PTES;
442         int ret = -ENOMEM;
443
444         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445         if (!pt)
446                 return ERR_PTR(-ENOMEM);
447
448         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449                                 GFP_KERNEL);
450
451         if (!pt->used_ptes)
452                 goto fail_bitmap;
453
454         ret = setup_px(dev, pt);
455         if (ret)
456                 goto fail_page_m;
457
458         return pt;
459
460 fail_page_m:
461         kfree(pt->used_ptes);
462 fail_bitmap:
463         kfree(pt);
464
465         return ERR_PTR(ret);
466 }
467
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470         cleanup_px(dev, pt);
471         kfree(pt->used_ptes);
472         kfree(pt);
473 }
474
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476                                struct i915_page_table *pt)
477 {
478         gen8_pte_t scratch_pte;
479
480         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481                                       I915_CACHE_LLC, true);
482
483         fill_px(vm->dev, pt, scratch_pte);
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487                                struct i915_page_table *pt)
488 {
489         gen6_pte_t scratch_pte;
490
491         WARN_ON(px_dma(vm->scratch_page) == 0);
492
493         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494                                      I915_CACHE_LLC, true, 0);
495
496         fill32_px(vm->dev, pt, scratch_pte);
497 }
498
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501         struct i915_page_directory *pd;
502         int ret = -ENOMEM;
503
504         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505         if (!pd)
506                 return ERR_PTR(-ENOMEM);
507
508         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509                                 sizeof(*pd->used_pdes), GFP_KERNEL);
510         if (!pd->used_pdes)
511                 goto fail_bitmap;
512
513         ret = setup_px(dev, pd);
514         if (ret)
515                 goto fail_page_m;
516
517         return pd;
518
519 fail_page_m:
520         kfree(pd->used_pdes);
521 fail_bitmap:
522         kfree(pd);
523
524         return ERR_PTR(ret);
525 }
526
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529         if (px_page(pd)) {
530                 cleanup_px(dev, pd);
531                 kfree(pd->used_pdes);
532                 kfree(pd);
533         }
534 }
535
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537                                struct i915_page_directory *pd)
538 {
539         gen8_pde_t scratch_pde;
540
541         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542
543         fill_px(vm->dev, pd, scratch_pde);
544 }
545
546 static int __pdp_init(struct drm_device *dev,
547                       struct i915_page_directory_pointer *pdp)
548 {
549         size_t pdpes = I915_PDPES_PER_PDP(dev);
550
551         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552                                   sizeof(unsigned long),
553                                   GFP_KERNEL);
554         if (!pdp->used_pdpes)
555                 return -ENOMEM;
556
557         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558                                       GFP_KERNEL);
559         if (!pdp->page_directory) {
560                 kfree(pdp->used_pdpes);
561                 /* the PDP might be the statically allocated top level. Keep it
562                  * as clean as possible */
563                 pdp->used_pdpes = NULL;
564                 return -ENOMEM;
565         }
566
567         return 0;
568 }
569
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572         kfree(pdp->used_pdpes);
573         kfree(pdp->page_directory);
574         pdp->page_directory = NULL;
575 }
576
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580         struct i915_page_directory_pointer *pdp;
581         int ret = -ENOMEM;
582
583         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584
585         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586         if (!pdp)
587                 return ERR_PTR(-ENOMEM);
588
589         ret = __pdp_init(dev, pdp);
590         if (ret)
591                 goto fail_bitmap;
592
593         ret = setup_px(dev, pdp);
594         if (ret)
595                 goto fail_page_m;
596
597         return pdp;
598
599 fail_page_m:
600         __pdp_fini(pdp);
601 fail_bitmap:
602         kfree(pdp);
603
604         return ERR_PTR(ret);
605 }
606
607 static void free_pdp(struct drm_device *dev,
608                      struct i915_page_directory_pointer *pdp)
609 {
610         __pdp_fini(pdp);
611         if (USES_FULL_48BIT_PPGTT(dev)) {
612                 cleanup_px(dev, pdp);
613                 kfree(pdp);
614         }
615 }
616
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618                                 struct i915_page_directory_pointer *pdp)
619 {
620         gen8_ppgtt_pdpe_t scratch_pdpe;
621
622         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623
624         fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628                                  struct i915_pml4 *pml4)
629 {
630         gen8_ppgtt_pml4e_t scratch_pml4e;
631
632         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633                                           I915_CACHE_LLC);
634
635         fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640                           struct i915_page_directory_pointer *pdp,
641                           struct i915_page_directory *pd,
642                           int index)
643 {
644         gen8_ppgtt_pdpe_t *page_directorypo;
645
646         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647                 return;
648
649         page_directorypo = kmap_px(pdp);
650         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651         kunmap_px(ppgtt, page_directorypo);
652 }
653
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656                                   struct i915_pml4 *pml4,
657                                   struct i915_page_directory_pointer *pdp,
658                                   int index)
659 {
660         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661
662         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664         kunmap_px(ppgtt, pagemap);
665 }
666
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669                           unsigned entry,
670                           dma_addr_t addr)
671 {
672         struct intel_engine_cs *engine = req->engine;
673         int ret;
674
675         BUG_ON(entry >= 4);
676
677         ret = intel_ring_begin(req, 6);
678         if (ret)
679                 return ret;
680
681         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
682         intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
683         intel_ring_emit(engine, upper_32_bits(addr));
684         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
685         intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
686         intel_ring_emit(engine, lower_32_bits(addr));
687         intel_ring_advance(engine);
688
689         return 0;
690 }
691
692 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
693                                  struct drm_i915_gem_request *req)
694 {
695         int i, ret;
696
697         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
698                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
699
700                 ret = gen8_write_pdp(req, i, pd_daddr);
701                 if (ret)
702                         return ret;
703         }
704
705         return 0;
706 }
707
708 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
709                               struct drm_i915_gem_request *req)
710 {
711         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
712 }
713
714 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
715                                        struct i915_page_directory_pointer *pdp,
716                                        uint64_t start,
717                                        uint64_t length,
718                                        gen8_pte_t scratch_pte)
719 {
720         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
721         gen8_pte_t *pt_vaddr;
722         unsigned pdpe = gen8_pdpe_index(start);
723         unsigned pde = gen8_pde_index(start);
724         unsigned pte = gen8_pte_index(start);
725         unsigned num_entries = length >> PAGE_SHIFT;
726         unsigned last_pte, i;
727
728         if (WARN_ON(!pdp))
729                 return;
730
731         while (num_entries) {
732                 struct i915_page_directory *pd;
733                 struct i915_page_table *pt;
734
735                 if (WARN_ON(!pdp->page_directory[pdpe]))
736                         break;
737
738                 pd = pdp->page_directory[pdpe];
739
740                 if (WARN_ON(!pd->page_table[pde]))
741                         break;
742
743                 pt = pd->page_table[pde];
744
745                 if (WARN_ON(!px_page(pt)))
746                         break;
747
748                 last_pte = pte + num_entries;
749                 if (last_pte > GEN8_PTES)
750                         last_pte = GEN8_PTES;
751
752                 pt_vaddr = kmap_px(pt);
753
754                 for (i = pte; i < last_pte; i++) {
755                         pt_vaddr[i] = scratch_pte;
756                         num_entries--;
757                 }
758
759                 kunmap_px(ppgtt, pt_vaddr);
760
761                 pte = 0;
762                 if (++pde == I915_PDES) {
763                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
764                                 break;
765                         pde = 0;
766                 }
767         }
768 }
769
770 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
771                                    uint64_t start,
772                                    uint64_t length,
773                                    bool use_scratch)
774 {
775         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
776         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
777                                                  I915_CACHE_LLC, use_scratch);
778
779         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
780                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
781                                            scratch_pte);
782         } else {
783                 uint64_t pml4e;
784                 struct i915_page_directory_pointer *pdp;
785
786                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
787                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
788                                                    scratch_pte);
789                 }
790         }
791 }
792
793 static void
794 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
795                               struct i915_page_directory_pointer *pdp,
796                               struct sg_page_iter *sg_iter,
797                               uint64_t start,
798                               enum i915_cache_level cache_level)
799 {
800         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
801         gen8_pte_t *pt_vaddr;
802         unsigned pdpe = gen8_pdpe_index(start);
803         unsigned pde = gen8_pde_index(start);
804         unsigned pte = gen8_pte_index(start);
805
806         pt_vaddr = NULL;
807
808         while (__sg_page_iter_next(sg_iter)) {
809                 if (pt_vaddr == NULL) {
810                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
811                         struct i915_page_table *pt = pd->page_table[pde];
812                         pt_vaddr = kmap_px(pt);
813                 }
814
815                 pt_vaddr[pte] =
816                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
817                                         cache_level, true);
818                 if (++pte == GEN8_PTES) {
819                         kunmap_px(ppgtt, pt_vaddr);
820                         pt_vaddr = NULL;
821                         if (++pde == I915_PDES) {
822                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
823                                         break;
824                                 pde = 0;
825                         }
826                         pte = 0;
827                 }
828         }
829
830         if (pt_vaddr)
831                 kunmap_px(ppgtt, pt_vaddr);
832 }
833
834 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
835                                       struct sg_table *pages,
836                                       uint64_t start,
837                                       enum i915_cache_level cache_level,
838                                       u32 unused)
839 {
840         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
841         struct sg_page_iter sg_iter;
842
843         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
844
845         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
846                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
847                                               cache_level);
848         } else {
849                 struct i915_page_directory_pointer *pdp;
850                 uint64_t pml4e;
851                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
852
853                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
854                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
855                                                       start, cache_level);
856                 }
857         }
858 }
859
860 static void gen8_free_page_tables(struct drm_device *dev,
861                                   struct i915_page_directory *pd)
862 {
863         int i;
864
865         if (!px_page(pd))
866                 return;
867
868         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
869                 if (WARN_ON(!pd->page_table[i]))
870                         continue;
871
872                 free_pt(dev, pd->page_table[i]);
873                 pd->page_table[i] = NULL;
874         }
875 }
876
877 static int gen8_init_scratch(struct i915_address_space *vm)
878 {
879         struct drm_device *dev = vm->dev;
880         int ret;
881
882         vm->scratch_page = alloc_scratch_page(dev);
883         if (IS_ERR(vm->scratch_page))
884                 return PTR_ERR(vm->scratch_page);
885
886         vm->scratch_pt = alloc_pt(dev);
887         if (IS_ERR(vm->scratch_pt)) {
888                 ret = PTR_ERR(vm->scratch_pt);
889                 goto free_scratch_page;
890         }
891
892         vm->scratch_pd = alloc_pd(dev);
893         if (IS_ERR(vm->scratch_pd)) {
894                 ret = PTR_ERR(vm->scratch_pd);
895                 goto free_pt;
896         }
897
898         if (USES_FULL_48BIT_PPGTT(dev)) {
899                 vm->scratch_pdp = alloc_pdp(dev);
900                 if (IS_ERR(vm->scratch_pdp)) {
901                         ret = PTR_ERR(vm->scratch_pdp);
902                         goto free_pd;
903                 }
904         }
905
906         gen8_initialize_pt(vm, vm->scratch_pt);
907         gen8_initialize_pd(vm, vm->scratch_pd);
908         if (USES_FULL_48BIT_PPGTT(dev))
909                 gen8_initialize_pdp(vm, vm->scratch_pdp);
910
911         return 0;
912
913 free_pd:
914         free_pd(dev, vm->scratch_pd);
915 free_pt:
916         free_pt(dev, vm->scratch_pt);
917 free_scratch_page:
918         free_scratch_page(dev, vm->scratch_page);
919
920         return ret;
921 }
922
923 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
924 {
925         enum vgt_g2v_type msg;
926         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
927         int i;
928
929         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
930                 u64 daddr = px_dma(&ppgtt->pml4);
931
932                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
933                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
934
935                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
936                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
937         } else {
938                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
939                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
940
941                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
942                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
943                 }
944
945                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
946                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
947         }
948
949         I915_WRITE(vgtif_reg(g2v_notify), msg);
950
951         return 0;
952 }
953
954 static void gen8_free_scratch(struct i915_address_space *vm)
955 {
956         struct drm_device *dev = vm->dev;
957
958         if (USES_FULL_48BIT_PPGTT(dev))
959                 free_pdp(dev, vm->scratch_pdp);
960         free_pd(dev, vm->scratch_pd);
961         free_pt(dev, vm->scratch_pt);
962         free_scratch_page(dev, vm->scratch_page);
963 }
964
965 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
966                                     struct i915_page_directory_pointer *pdp)
967 {
968         int i;
969
970         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
971                 if (WARN_ON(!pdp->page_directory[i]))
972                         continue;
973
974                 gen8_free_page_tables(dev, pdp->page_directory[i]);
975                 free_pd(dev, pdp->page_directory[i]);
976         }
977
978         free_pdp(dev, pdp);
979 }
980
981 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
982 {
983         int i;
984
985         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
986                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
987                         continue;
988
989                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
990         }
991
992         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
993 }
994
995 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
996 {
997         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998
999         if (intel_vgpu_active(to_i915(vm->dev)))
1000                 gen8_ppgtt_notify_vgt(ppgtt, false);
1001
1002         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1003                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1004         else
1005                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1006
1007         gen8_free_scratch(vm);
1008 }
1009
1010 /**
1011  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1012  * @vm: Master vm structure.
1013  * @pd: Page directory for this address range.
1014  * @start:      Starting virtual address to begin allocations.
1015  * @length:     Size of the allocations.
1016  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1017  *              caller to free on error.
1018  *
1019  * Allocate the required number of page tables. Extremely similar to
1020  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1021  * the page directory boundary (instead of the page directory pointer). That
1022  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1023  * possible, and likely that the caller will need to use multiple calls of this
1024  * function to achieve the appropriate allocation.
1025  *
1026  * Return: 0 if success; negative error code otherwise.
1027  */
1028 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1029                                      struct i915_page_directory *pd,
1030                                      uint64_t start,
1031                                      uint64_t length,
1032                                      unsigned long *new_pts)
1033 {
1034         struct drm_device *dev = vm->dev;
1035         struct i915_page_table *pt;
1036         uint32_t pde;
1037
1038         gen8_for_each_pde(pt, pd, start, length, pde) {
1039                 /* Don't reallocate page tables */
1040                 if (test_bit(pde, pd->used_pdes)) {
1041                         /* Scratch is never allocated this way */
1042                         WARN_ON(pt == vm->scratch_pt);
1043                         continue;
1044                 }
1045
1046                 pt = alloc_pt(dev);
1047                 if (IS_ERR(pt))
1048                         goto unwind_out;
1049
1050                 gen8_initialize_pt(vm, pt);
1051                 pd->page_table[pde] = pt;
1052                 __set_bit(pde, new_pts);
1053                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1054         }
1055
1056         return 0;
1057
1058 unwind_out:
1059         for_each_set_bit(pde, new_pts, I915_PDES)
1060                 free_pt(dev, pd->page_table[pde]);
1061
1062         return -ENOMEM;
1063 }
1064
1065 /**
1066  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1067  * @vm: Master vm structure.
1068  * @pdp:        Page directory pointer for this address range.
1069  * @start:      Starting virtual address to begin allocations.
1070  * @length:     Size of the allocations.
1071  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1072  *              caller to free on error.
1073  *
1074  * Allocate the required number of page directories starting at the pde index of
1075  * @start, and ending at the pde index @start + @length. This function will skip
1076  * over already allocated page directories within the range, and only allocate
1077  * new ones, setting the appropriate pointer within the pdp as well as the
1078  * correct position in the bitmap @new_pds.
1079  *
1080  * The function will only allocate the pages within the range for a give page
1081  * directory pointer. In other words, if @start + @length straddles a virtually
1082  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1083  * required by the caller, This is not currently possible, and the BUG in the
1084  * code will prevent it.
1085  *
1086  * Return: 0 if success; negative error code otherwise.
1087  */
1088 static int
1089 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1090                                   struct i915_page_directory_pointer *pdp,
1091                                   uint64_t start,
1092                                   uint64_t length,
1093                                   unsigned long *new_pds)
1094 {
1095         struct drm_device *dev = vm->dev;
1096         struct i915_page_directory *pd;
1097         uint32_t pdpe;
1098         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1099
1100         WARN_ON(!bitmap_empty(new_pds, pdpes));
1101
1102         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1103                 if (test_bit(pdpe, pdp->used_pdpes))
1104                         continue;
1105
1106                 pd = alloc_pd(dev);
1107                 if (IS_ERR(pd))
1108                         goto unwind_out;
1109
1110                 gen8_initialize_pd(vm, pd);
1111                 pdp->page_directory[pdpe] = pd;
1112                 __set_bit(pdpe, new_pds);
1113                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1114         }
1115
1116         return 0;
1117
1118 unwind_out:
1119         for_each_set_bit(pdpe, new_pds, pdpes)
1120                 free_pd(dev, pdp->page_directory[pdpe]);
1121
1122         return -ENOMEM;
1123 }
1124
1125 /**
1126  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1127  * @vm: Master vm structure.
1128  * @pml4:       Page map level 4 for this address range.
1129  * @start:      Starting virtual address to begin allocations.
1130  * @length:     Size of the allocations.
1131  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1132  *              caller to free on error.
1133  *
1134  * Allocate the required number of page directory pointers. Extremely similar to
1135  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1136  * The main difference is here we are limited by the pml4 boundary (instead of
1137  * the page directory pointer).
1138  *
1139  * Return: 0 if success; negative error code otherwise.
1140  */
1141 static int
1142 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1143                                   struct i915_pml4 *pml4,
1144                                   uint64_t start,
1145                                   uint64_t length,
1146                                   unsigned long *new_pdps)
1147 {
1148         struct drm_device *dev = vm->dev;
1149         struct i915_page_directory_pointer *pdp;
1150         uint32_t pml4e;
1151
1152         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1153
1154         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1155                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1156                         pdp = alloc_pdp(dev);
1157                         if (IS_ERR(pdp))
1158                                 goto unwind_out;
1159
1160                         gen8_initialize_pdp(vm, pdp);
1161                         pml4->pdps[pml4e] = pdp;
1162                         __set_bit(pml4e, new_pdps);
1163                         trace_i915_page_directory_pointer_entry_alloc(vm,
1164                                                                       pml4e,
1165                                                                       start,
1166                                                                       GEN8_PML4E_SHIFT);
1167                 }
1168         }
1169
1170         return 0;
1171
1172 unwind_out:
1173         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1174                 free_pdp(dev, pml4->pdps[pml4e]);
1175
1176         return -ENOMEM;
1177 }
1178
1179 static void
1180 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1181 {
1182         kfree(new_pts);
1183         kfree(new_pds);
1184 }
1185
1186 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1187  * of these are based on the number of PDPEs in the system.
1188  */
1189 static
1190 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1191                                          unsigned long **new_pts,
1192                                          uint32_t pdpes)
1193 {
1194         unsigned long *pds;
1195         unsigned long *pts;
1196
1197         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1198         if (!pds)
1199                 return -ENOMEM;
1200
1201         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1202                       GFP_TEMPORARY);
1203         if (!pts)
1204                 goto err_out;
1205
1206         *new_pds = pds;
1207         *new_pts = pts;
1208
1209         return 0;
1210
1211 err_out:
1212         free_gen8_temp_bitmaps(pds, pts);
1213         return -ENOMEM;
1214 }
1215
1216 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1217  * the page table structures, we mark them dirty so that
1218  * context switching/execlist queuing code takes extra steps
1219  * to ensure that tlbs are flushed.
1220  */
1221 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1222 {
1223         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1224 }
1225
1226 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1227                                     struct i915_page_directory_pointer *pdp,
1228                                     uint64_t start,
1229                                     uint64_t length)
1230 {
1231         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1232         unsigned long *new_page_dirs, *new_page_tables;
1233         struct drm_device *dev = vm->dev;
1234         struct i915_page_directory *pd;
1235         const uint64_t orig_start = start;
1236         const uint64_t orig_length = length;
1237         uint32_t pdpe;
1238         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1239         int ret;
1240
1241         /* Wrap is never okay since we can only represent 48b, and we don't
1242          * actually use the other side of the canonical address space.
1243          */
1244         if (WARN_ON(start + length < start))
1245                 return -ENODEV;
1246
1247         if (WARN_ON(start + length > vm->total))
1248                 return -ENODEV;
1249
1250         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1251         if (ret)
1252                 return ret;
1253
1254         /* Do the allocations first so we can easily bail out */
1255         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1256                                                 new_page_dirs);
1257         if (ret) {
1258                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1259                 return ret;
1260         }
1261
1262         /* For every page directory referenced, allocate page tables */
1263         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1264                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1265                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1266                 if (ret)
1267                         goto err_out;
1268         }
1269
1270         start = orig_start;
1271         length = orig_length;
1272
1273         /* Allocations have completed successfully, so set the bitmaps, and do
1274          * the mappings. */
1275         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1276                 gen8_pde_t *const page_directory = kmap_px(pd);
1277                 struct i915_page_table *pt;
1278                 uint64_t pd_len = length;
1279                 uint64_t pd_start = start;
1280                 uint32_t pde;
1281
1282                 /* Every pd should be allocated, we just did that above. */
1283                 WARN_ON(!pd);
1284
1285                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1286                         /* Same reasoning as pd */
1287                         WARN_ON(!pt);
1288                         WARN_ON(!pd_len);
1289                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1290
1291                         /* Set our used ptes within the page table */
1292                         bitmap_set(pt->used_ptes,
1293                                    gen8_pte_index(pd_start),
1294                                    gen8_pte_count(pd_start, pd_len));
1295
1296                         /* Our pde is now pointing to the pagetable, pt */
1297                         __set_bit(pde, pd->used_pdes);
1298
1299                         /* Map the PDE to the page table */
1300                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1301                                                               I915_CACHE_LLC);
1302                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1303                                                         gen8_pte_index(start),
1304                                                         gen8_pte_count(start, length),
1305                                                         GEN8_PTES);
1306
1307                         /* NB: We haven't yet mapped ptes to pages. At this
1308                          * point we're still relying on insert_entries() */
1309                 }
1310
1311                 kunmap_px(ppgtt, page_directory);
1312                 __set_bit(pdpe, pdp->used_pdpes);
1313                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1314         }
1315
1316         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1317         mark_tlbs_dirty(ppgtt);
1318         return 0;
1319
1320 err_out:
1321         while (pdpe--) {
1322                 unsigned long temp;
1323
1324                 for_each_set_bit(temp, new_page_tables + pdpe *
1325                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1326                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1327         }
1328
1329         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1330                 free_pd(dev, pdp->page_directory[pdpe]);
1331
1332         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1333         mark_tlbs_dirty(ppgtt);
1334         return ret;
1335 }
1336
1337 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1338                                     struct i915_pml4 *pml4,
1339                                     uint64_t start,
1340                                     uint64_t length)
1341 {
1342         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1343         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1344         struct i915_page_directory_pointer *pdp;
1345         uint64_t pml4e;
1346         int ret = 0;
1347
1348         /* Do the pml4 allocations first, so we don't need to track the newly
1349          * allocated tables below the pdp */
1350         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1351
1352         /* The pagedirectory and pagetable allocations are done in the shared 3
1353          * and 4 level code. Just allocate the pdps.
1354          */
1355         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1356                                                 new_pdps);
1357         if (ret)
1358                 return ret;
1359
1360         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1361              "The allocation has spanned more than 512GB. "
1362              "It is highly likely this is incorrect.");
1363
1364         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1365                 WARN_ON(!pdp);
1366
1367                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1368                 if (ret)
1369                         goto err_out;
1370
1371                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1372         }
1373
1374         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1375                   GEN8_PML4ES_PER_PML4);
1376
1377         return 0;
1378
1379 err_out:
1380         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1381                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1382
1383         return ret;
1384 }
1385
1386 static int gen8_alloc_va_range(struct i915_address_space *vm,
1387                                uint64_t start, uint64_t length)
1388 {
1389         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1390
1391         if (USES_FULL_48BIT_PPGTT(vm->dev))
1392                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1393         else
1394                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1395 }
1396
1397 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1398                           uint64_t start, uint64_t length,
1399                           gen8_pte_t scratch_pte,
1400                           struct seq_file *m)
1401 {
1402         struct i915_page_directory *pd;
1403         uint32_t pdpe;
1404
1405         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406                 struct i915_page_table *pt;
1407                 uint64_t pd_len = length;
1408                 uint64_t pd_start = start;
1409                 uint32_t pde;
1410
1411                 if (!test_bit(pdpe, pdp->used_pdpes))
1412                         continue;
1413
1414                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1415                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1416                         uint32_t  pte;
1417                         gen8_pte_t *pt_vaddr;
1418
1419                         if (!test_bit(pde, pd->used_pdes))
1420                                 continue;
1421
1422                         pt_vaddr = kmap_px(pt);
1423                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1424                                 uint64_t va =
1425                                         (pdpe << GEN8_PDPE_SHIFT) |
1426                                         (pde << GEN8_PDE_SHIFT) |
1427                                         (pte << GEN8_PTE_SHIFT);
1428                                 int i;
1429                                 bool found = false;
1430
1431                                 for (i = 0; i < 4; i++)
1432                                         if (pt_vaddr[pte + i] != scratch_pte)
1433                                                 found = true;
1434                                 if (!found)
1435                                         continue;
1436
1437                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1438                                 for (i = 0; i < 4; i++) {
1439                                         if (pt_vaddr[pte + i] != scratch_pte)
1440                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1441                                         else
1442                                                 seq_puts(m, "  SCRATCH ");
1443                                 }
1444                                 seq_puts(m, "\n");
1445                         }
1446                         /* don't use kunmap_px, it could trigger
1447                          * an unnecessary flush.
1448                          */
1449                         kunmap_atomic(pt_vaddr);
1450                 }
1451         }
1452 }
1453
1454 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1455 {
1456         struct i915_address_space *vm = &ppgtt->base;
1457         uint64_t start = ppgtt->base.start;
1458         uint64_t length = ppgtt->base.total;
1459         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1460                                                  I915_CACHE_LLC, true);
1461
1462         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1463                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1464         } else {
1465                 uint64_t pml4e;
1466                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1467                 struct i915_page_directory_pointer *pdp;
1468
1469                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1470                         if (!test_bit(pml4e, pml4->used_pml4es))
1471                                 continue;
1472
1473                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1474                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1475                 }
1476         }
1477 }
1478
1479 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1480 {
1481         unsigned long *new_page_dirs, *new_page_tables;
1482         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1483         int ret;
1484
1485         /* We allocate temp bitmap for page tables for no gain
1486          * but as this is for init only, lets keep the things simple
1487          */
1488         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1489         if (ret)
1490                 return ret;
1491
1492         /* Allocate for all pdps regardless of how the ppgtt
1493          * was defined.
1494          */
1495         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1496                                                 0, 1ULL << 32,
1497                                                 new_page_dirs);
1498         if (!ret)
1499                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1500
1501         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1502
1503         return ret;
1504 }
1505
1506 /*
1507  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1508  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1509  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1510  * space.
1511  *
1512  */
1513 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1514 {
1515         int ret;
1516
1517         ret = gen8_init_scratch(&ppgtt->base);
1518         if (ret)
1519                 return ret;
1520
1521         ppgtt->base.start = 0;
1522         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1523         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1524         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1525         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1526         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1527         ppgtt->base.bind_vma = ppgtt_bind_vma;
1528         ppgtt->debug_dump = gen8_dump_ppgtt;
1529
1530         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1531                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1532                 if (ret)
1533                         goto free_scratch;
1534
1535                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1536
1537                 ppgtt->base.total = 1ULL << 48;
1538                 ppgtt->switch_mm = gen8_48b_mm_switch;
1539         } else {
1540                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1541                 if (ret)
1542                         goto free_scratch;
1543
1544                 ppgtt->base.total = 1ULL << 32;
1545                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1546                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1547                                                               0, 0,
1548                                                               GEN8_PML4E_SHIFT);
1549
1550                 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1551                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1552                         if (ret)
1553                                 goto free_scratch;
1554                 }
1555         }
1556
1557         if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1558                 gen8_ppgtt_notify_vgt(ppgtt, true);
1559
1560         return 0;
1561
1562 free_scratch:
1563         gen8_free_scratch(&ppgtt->base);
1564         return ret;
1565 }
1566
1567 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1568 {
1569         struct i915_address_space *vm = &ppgtt->base;
1570         struct i915_page_table *unused;
1571         gen6_pte_t scratch_pte;
1572         uint32_t pd_entry;
1573         uint32_t  pte, pde;
1574         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1575
1576         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1577                                      I915_CACHE_LLC, true, 0);
1578
1579         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1580                 u32 expected;
1581                 gen6_pte_t *pt_vaddr;
1582                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1583                 pd_entry = readl(ppgtt->pd_addr + pde);
1584                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1585
1586                 if (pd_entry != expected)
1587                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1588                                    pde,
1589                                    pd_entry,
1590                                    expected);
1591                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1592
1593                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1594
1595                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1596                         unsigned long va =
1597                                 (pde * PAGE_SIZE * GEN6_PTES) +
1598                                 (pte * PAGE_SIZE);
1599                         int i;
1600                         bool found = false;
1601                         for (i = 0; i < 4; i++)
1602                                 if (pt_vaddr[pte + i] != scratch_pte)
1603                                         found = true;
1604                         if (!found)
1605                                 continue;
1606
1607                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1608                         for (i = 0; i < 4; i++) {
1609                                 if (pt_vaddr[pte + i] != scratch_pte)
1610                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1611                                 else
1612                                         seq_puts(m, "  SCRATCH ");
1613                         }
1614                         seq_puts(m, "\n");
1615                 }
1616                 kunmap_px(ppgtt, pt_vaddr);
1617         }
1618 }
1619
1620 /* Write pde (index) from the page directory @pd to the page table @pt */
1621 static void gen6_write_pde(struct i915_page_directory *pd,
1622                             const int pde, struct i915_page_table *pt)
1623 {
1624         /* Caller needs to make sure the write completes if necessary */
1625         struct i915_hw_ppgtt *ppgtt =
1626                 container_of(pd, struct i915_hw_ppgtt, pd);
1627         u32 pd_entry;
1628
1629         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1630         pd_entry |= GEN6_PDE_VALID;
1631
1632         writel(pd_entry, ppgtt->pd_addr + pde);
1633 }
1634
1635 /* Write all the page tables found in the ppgtt structure to incrementing page
1636  * directories. */
1637 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1638                                   struct i915_page_directory *pd,
1639                                   uint32_t start, uint32_t length)
1640 {
1641         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642         struct i915_page_table *pt;
1643         uint32_t pde;
1644
1645         gen6_for_each_pde(pt, pd, start, length, pde)
1646                 gen6_write_pde(pd, pde, pt);
1647
1648         /* Make sure write is complete before other code can use this page
1649          * table. Also require for WC mapped PTEs */
1650         readl(ggtt->gsm);
1651 }
1652
1653 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1654 {
1655         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1656
1657         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1658 }
1659
1660 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1661                          struct drm_i915_gem_request *req)
1662 {
1663         struct intel_engine_cs *engine = req->engine;
1664         int ret;
1665
1666         /* NB: TLBs must be flushed and invalidated before a switch */
1667         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1668         if (ret)
1669                 return ret;
1670
1671         ret = intel_ring_begin(req, 6);
1672         if (ret)
1673                 return ret;
1674
1675         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1676         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1677         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1678         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1679         intel_ring_emit(engine, get_pd_offset(ppgtt));
1680         intel_ring_emit(engine, MI_NOOP);
1681         intel_ring_advance(engine);
1682
1683         return 0;
1684 }
1685
1686 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687                           struct drm_i915_gem_request *req)
1688 {
1689         struct intel_engine_cs *engine = req->engine;
1690         int ret;
1691
1692         /* NB: TLBs must be flushed and invalidated before a switch */
1693         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694         if (ret)
1695                 return ret;
1696
1697         ret = intel_ring_begin(req, 6);
1698         if (ret)
1699                 return ret;
1700
1701         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1702         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1703         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1704         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1705         intel_ring_emit(engine, get_pd_offset(ppgtt));
1706         intel_ring_emit(engine, MI_NOOP);
1707         intel_ring_advance(engine);
1708
1709         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1710         if (engine->id != RCS) {
1711                 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712                 if (ret)
1713                         return ret;
1714         }
1715
1716         return 0;
1717 }
1718
1719 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720                           struct drm_i915_gem_request *req)
1721 {
1722         struct intel_engine_cs *engine = req->engine;
1723         struct drm_i915_private *dev_priv = req->i915;
1724
1725         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1726         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1727         return 0;
1728 }
1729
1730 static void gen8_ppgtt_enable(struct drm_device *dev)
1731 {
1732         struct drm_i915_private *dev_priv = to_i915(dev);
1733         struct intel_engine_cs *engine;
1734
1735         for_each_engine(engine, dev_priv) {
1736                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1737                 I915_WRITE(RING_MODE_GEN7(engine),
1738                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1739         }
1740 }
1741
1742 static void gen7_ppgtt_enable(struct drm_device *dev)
1743 {
1744         struct drm_i915_private *dev_priv = to_i915(dev);
1745         struct intel_engine_cs *engine;
1746         uint32_t ecochk, ecobits;
1747
1748         ecobits = I915_READ(GAC_ECO_BITS);
1749         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1750
1751         ecochk = I915_READ(GAM_ECOCHK);
1752         if (IS_HASWELL(dev)) {
1753                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1754         } else {
1755                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1756                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1757         }
1758         I915_WRITE(GAM_ECOCHK, ecochk);
1759
1760         for_each_engine(engine, dev_priv) {
1761                 /* GFX_MODE is per-ring on gen7+ */
1762                 I915_WRITE(RING_MODE_GEN7(engine),
1763                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1764         }
1765 }
1766
1767 static void gen6_ppgtt_enable(struct drm_device *dev)
1768 {
1769         struct drm_i915_private *dev_priv = to_i915(dev);
1770         uint32_t ecochk, gab_ctl, ecobits;
1771
1772         ecobits = I915_READ(GAC_ECO_BITS);
1773         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1774                    ECOBITS_PPGTT_CACHE64B);
1775
1776         gab_ctl = I915_READ(GAB_CTL);
1777         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1778
1779         ecochk = I915_READ(GAM_ECOCHK);
1780         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1781
1782         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1783 }
1784
1785 /* PPGTT support for Sandybdrige/Gen6 and later */
1786 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1787                                    uint64_t start,
1788                                    uint64_t length,
1789                                    bool use_scratch)
1790 {
1791         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1792         gen6_pte_t *pt_vaddr, scratch_pte;
1793         unsigned first_entry = start >> PAGE_SHIFT;
1794         unsigned num_entries = length >> PAGE_SHIFT;
1795         unsigned act_pt = first_entry / GEN6_PTES;
1796         unsigned first_pte = first_entry % GEN6_PTES;
1797         unsigned last_pte, i;
1798
1799         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1800                                      I915_CACHE_LLC, true, 0);
1801
1802         while (num_entries) {
1803                 last_pte = first_pte + num_entries;
1804                 if (last_pte > GEN6_PTES)
1805                         last_pte = GEN6_PTES;
1806
1807                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1808
1809                 for (i = first_pte; i < last_pte; i++)
1810                         pt_vaddr[i] = scratch_pte;
1811
1812                 kunmap_px(ppgtt, pt_vaddr);
1813
1814                 num_entries -= last_pte - first_pte;
1815                 first_pte = 0;
1816                 act_pt++;
1817         }
1818 }
1819
1820 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1821                                       struct sg_table *pages,
1822                                       uint64_t start,
1823                                       enum i915_cache_level cache_level, u32 flags)
1824 {
1825         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1826         unsigned first_entry = start >> PAGE_SHIFT;
1827         unsigned act_pt = first_entry / GEN6_PTES;
1828         unsigned act_pte = first_entry % GEN6_PTES;
1829         gen6_pte_t *pt_vaddr = NULL;
1830         struct sgt_iter sgt_iter;
1831         dma_addr_t addr;
1832
1833         for_each_sgt_dma(addr, sgt_iter, pages) {
1834                 if (pt_vaddr == NULL)
1835                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1836
1837                 pt_vaddr[act_pte] =
1838                         vm->pte_encode(addr, cache_level, true, flags);
1839
1840                 if (++act_pte == GEN6_PTES) {
1841                         kunmap_px(ppgtt, pt_vaddr);
1842                         pt_vaddr = NULL;
1843                         act_pt++;
1844                         act_pte = 0;
1845                 }
1846         }
1847
1848         if (pt_vaddr)
1849                 kunmap_px(ppgtt, pt_vaddr);
1850 }
1851
1852 static int gen6_alloc_va_range(struct i915_address_space *vm,
1853                                uint64_t start_in, uint64_t length_in)
1854 {
1855         DECLARE_BITMAP(new_page_tables, I915_PDES);
1856         struct drm_device *dev = vm->dev;
1857         struct drm_i915_private *dev_priv = to_i915(dev);
1858         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1859         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1860         struct i915_page_table *pt;
1861         uint32_t start, length, start_save, length_save;
1862         uint32_t pde;
1863         int ret;
1864
1865         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1866                 return -ENODEV;
1867
1868         start = start_save = start_in;
1869         length = length_save = length_in;
1870
1871         bitmap_zero(new_page_tables, I915_PDES);
1872
1873         /* The allocation is done in two stages so that we can bail out with
1874          * minimal amount of pain. The first stage finds new page tables that
1875          * need allocation. The second stage marks use ptes within the page
1876          * tables.
1877          */
1878         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1879                 if (pt != vm->scratch_pt) {
1880                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1881                         continue;
1882                 }
1883
1884                 /* We've already allocated a page table */
1885                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1886
1887                 pt = alloc_pt(dev);
1888                 if (IS_ERR(pt)) {
1889                         ret = PTR_ERR(pt);
1890                         goto unwind_out;
1891                 }
1892
1893                 gen6_initialize_pt(vm, pt);
1894
1895                 ppgtt->pd.page_table[pde] = pt;
1896                 __set_bit(pde, new_page_tables);
1897                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1898         }
1899
1900         start = start_save;
1901         length = length_save;
1902
1903         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1904                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1905
1906                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1907                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1908                            gen6_pte_count(start, length));
1909
1910                 if (__test_and_clear_bit(pde, new_page_tables))
1911                         gen6_write_pde(&ppgtt->pd, pde, pt);
1912
1913                 trace_i915_page_table_entry_map(vm, pde, pt,
1914                                          gen6_pte_index(start),
1915                                          gen6_pte_count(start, length),
1916                                          GEN6_PTES);
1917                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1918                                 GEN6_PTES);
1919         }
1920
1921         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1922
1923         /* Make sure write is complete before other code can use this page
1924          * table. Also require for WC mapped PTEs */
1925         readl(ggtt->gsm);
1926
1927         mark_tlbs_dirty(ppgtt);
1928         return 0;
1929
1930 unwind_out:
1931         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1932                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1933
1934                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1935                 free_pt(vm->dev, pt);
1936         }
1937
1938         mark_tlbs_dirty(ppgtt);
1939         return ret;
1940 }
1941
1942 static int gen6_init_scratch(struct i915_address_space *vm)
1943 {
1944         struct drm_device *dev = vm->dev;
1945
1946         vm->scratch_page = alloc_scratch_page(dev);
1947         if (IS_ERR(vm->scratch_page))
1948                 return PTR_ERR(vm->scratch_page);
1949
1950         vm->scratch_pt = alloc_pt(dev);
1951         if (IS_ERR(vm->scratch_pt)) {
1952                 free_scratch_page(dev, vm->scratch_page);
1953                 return PTR_ERR(vm->scratch_pt);
1954         }
1955
1956         gen6_initialize_pt(vm, vm->scratch_pt);
1957
1958         return 0;
1959 }
1960
1961 static void gen6_free_scratch(struct i915_address_space *vm)
1962 {
1963         struct drm_device *dev = vm->dev;
1964
1965         free_pt(dev, vm->scratch_pt);
1966         free_scratch_page(dev, vm->scratch_page);
1967 }
1968
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1972         struct i915_page_directory *pd = &ppgtt->pd;
1973         struct drm_device *dev = vm->dev;
1974         struct i915_page_table *pt;
1975         uint32_t pde;
1976
1977         drm_mm_remove_node(&ppgtt->node);
1978
1979         gen6_for_all_pdes(pt, pd, pde)
1980                 if (pt != vm->scratch_pt)
1981                         free_pt(dev, pt);
1982
1983         gen6_free_scratch(vm);
1984 }
1985
1986 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987 {
1988         struct i915_address_space *vm = &ppgtt->base;
1989         struct drm_device *dev = ppgtt->base.dev;
1990         struct drm_i915_private *dev_priv = to_i915(dev);
1991         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1992         bool retried = false;
1993         int ret;
1994
1995         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1996          * allocator works in address space sizes, so it's multiplied by page
1997          * size. We allocate at the top of the GTT to avoid fragmentation.
1998          */
1999         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2000
2001         ret = gen6_init_scratch(vm);
2002         if (ret)
2003                 return ret;
2004
2005 alloc:
2006         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2007                                                   &ppgtt->node, GEN6_PD_SIZE,
2008                                                   GEN6_PD_ALIGN, 0,
2009                                                   0, ggtt->base.total,
2010                                                   DRM_MM_TOPDOWN);
2011         if (ret == -ENOSPC && !retried) {
2012                 ret = i915_gem_evict_something(dev, &ggtt->base,
2013                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2014                                                I915_CACHE_NONE,
2015                                                0, ggtt->base.total,
2016                                                0);
2017                 if (ret)
2018                         goto err_out;
2019
2020                 retried = true;
2021                 goto alloc;
2022         }
2023
2024         if (ret)
2025                 goto err_out;
2026
2027
2028         if (ppgtt->node.start < ggtt->mappable_end)
2029                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2030
2031         return 0;
2032
2033 err_out:
2034         gen6_free_scratch(vm);
2035         return ret;
2036 }
2037
2038 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2039 {
2040         return gen6_ppgtt_allocate_page_directories(ppgtt);
2041 }
2042
2043 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2044                                   uint64_t start, uint64_t length)
2045 {
2046         struct i915_page_table *unused;
2047         uint32_t pde;
2048
2049         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2050                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2051 }
2052
2053 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2054 {
2055         struct drm_device *dev = ppgtt->base.dev;
2056         struct drm_i915_private *dev_priv = to_i915(dev);
2057         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2058         int ret;
2059
2060         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2061         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2062                 ppgtt->switch_mm = gen6_mm_switch;
2063         else if (IS_HASWELL(dev))
2064                 ppgtt->switch_mm = hsw_mm_switch;
2065         else if (IS_GEN7(dev))
2066                 ppgtt->switch_mm = gen7_mm_switch;
2067         else
2068                 BUG();
2069
2070         ret = gen6_ppgtt_alloc(ppgtt);
2071         if (ret)
2072                 return ret;
2073
2074         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2075         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2076         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2077         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2078         ppgtt->base.bind_vma = ppgtt_bind_vma;
2079         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2080         ppgtt->base.start = 0;
2081         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2082         ppgtt->debug_dump = gen6_dump_ppgtt;
2083
2084         ppgtt->pd.base.ggtt_offset =
2085                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2086
2087         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2088                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2089
2090         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2091
2092         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2093
2094         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2095                          ppgtt->node.size >> 20,
2096                          ppgtt->node.start / PAGE_SIZE);
2097
2098         DRM_DEBUG("Adding PPGTT at offset %x\n",
2099                   ppgtt->pd.base.ggtt_offset << 10);
2100
2101         return 0;
2102 }
2103
2104 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2105 {
2106         ppgtt->base.dev = dev;
2107
2108         if (INTEL_INFO(dev)->gen < 8)
2109                 return gen6_ppgtt_init(ppgtt);
2110         else
2111                 return gen8_ppgtt_init(ppgtt);
2112 }
2113
2114 static void i915_address_space_init(struct i915_address_space *vm,
2115                                     struct drm_i915_private *dev_priv)
2116 {
2117         drm_mm_init(&vm->mm, vm->start, vm->total);
2118         vm->dev = &dev_priv->drm;
2119         INIT_LIST_HEAD(&vm->active_list);
2120         INIT_LIST_HEAD(&vm->inactive_list);
2121         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2122 }
2123
2124 static void gtt_write_workarounds(struct drm_device *dev)
2125 {
2126         struct drm_i915_private *dev_priv = to_i915(dev);
2127
2128         /* This function is for gtt related workarounds. This function is
2129          * called on driver load and after a GPU reset, so you can place
2130          * workarounds here even if they get overwritten by GPU reset.
2131          */
2132         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2133         if (IS_BROADWELL(dev))
2134                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2135         else if (IS_CHERRYVIEW(dev))
2136                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2137         else if (IS_SKYLAKE(dev))
2138                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2139         else if (IS_BROXTON(dev))
2140                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2141 }
2142
2143 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2144 {
2145         struct drm_i915_private *dev_priv = to_i915(dev);
2146         int ret = 0;
2147
2148         ret = __hw_ppgtt_init(dev, ppgtt);
2149         if (ret == 0) {
2150                 kref_init(&ppgtt->ref);
2151                 i915_address_space_init(&ppgtt->base, dev_priv);
2152         }
2153
2154         return ret;
2155 }
2156
2157 int i915_ppgtt_init_hw(struct drm_device *dev)
2158 {
2159         gtt_write_workarounds(dev);
2160
2161         /* In the case of execlists, PPGTT is enabled by the context descriptor
2162          * and the PDPs are contained within the context itself.  We don't
2163          * need to do anything here. */
2164         if (i915.enable_execlists)
2165                 return 0;
2166
2167         if (!USES_PPGTT(dev))
2168                 return 0;
2169
2170         if (IS_GEN6(dev))
2171                 gen6_ppgtt_enable(dev);
2172         else if (IS_GEN7(dev))
2173                 gen7_ppgtt_enable(dev);
2174         else if (INTEL_INFO(dev)->gen >= 8)
2175                 gen8_ppgtt_enable(dev);
2176         else
2177                 MISSING_CASE(INTEL_INFO(dev)->gen);
2178
2179         return 0;
2180 }
2181
2182 struct i915_hw_ppgtt *
2183 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2184 {
2185         struct i915_hw_ppgtt *ppgtt;
2186         int ret;
2187
2188         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2189         if (!ppgtt)
2190                 return ERR_PTR(-ENOMEM);
2191
2192         ret = i915_ppgtt_init(dev, ppgtt);
2193         if (ret) {
2194                 kfree(ppgtt);
2195                 return ERR_PTR(ret);
2196         }
2197
2198         ppgtt->file_priv = fpriv;
2199
2200         trace_i915_ppgtt_create(&ppgtt->base);
2201
2202         return ppgtt;
2203 }
2204
2205 void  i915_ppgtt_release(struct kref *kref)
2206 {
2207         struct i915_hw_ppgtt *ppgtt =
2208                 container_of(kref, struct i915_hw_ppgtt, ref);
2209
2210         trace_i915_ppgtt_release(&ppgtt->base);
2211
2212         /* vmas should already be unbound */
2213         WARN_ON(!list_empty(&ppgtt->base.active_list));
2214         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215
2216         list_del(&ppgtt->base.global_link);
2217         drm_mm_takedown(&ppgtt->base.mm);
2218
2219         ppgtt->base.cleanup(&ppgtt->base);
2220         kfree(ppgtt);
2221 }
2222
2223 extern int intel_iommu_gfx_mapped;
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225  * unmapping anything from the GTT when VT-d is enabled.
2226  */
2227 static bool needs_idle_maps(struct drm_device *dev)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230         /* Query intel_iommu to see if we need the workaround. Presumably that
2231          * was loaded first.
2232          */
2233         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2234                 return true;
2235 #endif
2236         return false;
2237 }
2238
2239 static bool do_idling(struct drm_i915_private *dev_priv)
2240 {
2241         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2242         bool ret = dev_priv->mm.interruptible;
2243
2244         if (unlikely(ggtt->do_idle_maps)) {
2245                 dev_priv->mm.interruptible = false;
2246                 if (i915_gem_wait_for_idle(dev_priv)) {
2247                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2248                         /* Wait a bit, in hopes it avoids the hang */
2249                         udelay(10);
2250                 }
2251         }
2252
2253         return ret;
2254 }
2255
2256 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2257 {
2258         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2259
2260         if (unlikely(ggtt->do_idle_maps))
2261                 dev_priv->mm.interruptible = interruptible;
2262 }
2263
2264 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2265 {
2266         struct intel_engine_cs *engine;
2267
2268         if (INTEL_INFO(dev_priv)->gen < 6)
2269                 return;
2270
2271         for_each_engine(engine, dev_priv) {
2272                 u32 fault_reg;
2273                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2274                 if (fault_reg & RING_FAULT_VALID) {
2275                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2276                                          "\tAddr: 0x%08lx\n"
2277                                          "\tAddress space: %s\n"
2278                                          "\tSource ID: %d\n"
2279                                          "\tType: %d\n",
2280                                          fault_reg & PAGE_MASK,
2281                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2282                                          RING_FAULT_SRCID(fault_reg),
2283                                          RING_FAULT_FAULT_TYPE(fault_reg));
2284                         I915_WRITE(RING_FAULT_REG(engine),
2285                                    fault_reg & ~RING_FAULT_VALID);
2286                 }
2287         }
2288         POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2289 }
2290
2291 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2292 {
2293         if (INTEL_INFO(dev_priv)->gen < 6) {
2294                 intel_gtt_chipset_flush();
2295         } else {
2296                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2297                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2298         }
2299 }
2300
2301 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2302 {
2303         struct drm_i915_private *dev_priv = to_i915(dev);
2304         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2305
2306         /* Don't bother messing with faults pre GEN6 as we have little
2307          * documentation supporting that it's a good idea.
2308          */
2309         if (INTEL_INFO(dev)->gen < 6)
2310                 return;
2311
2312         i915_check_and_clear_faults(dev_priv);
2313
2314         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2315                              true);
2316
2317         i915_ggtt_flush(dev_priv);
2318 }
2319
2320 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2321 {
2322         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2323                         obj->pages->sgl, obj->pages->nents,
2324                         PCI_DMA_BIDIRECTIONAL))
2325                 return -ENOSPC;
2326
2327         return 0;
2328 }
2329
2330 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2331 {
2332 #ifdef writeq
2333         writeq(pte, addr);
2334 #else
2335         iowrite32((u32)pte, addr);
2336         iowrite32(pte >> 32, addr + 4);
2337 #endif
2338 }
2339
2340 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2341                                   dma_addr_t addr,
2342                                   uint64_t offset,
2343                                   enum i915_cache_level level,
2344                                   u32 unused)
2345 {
2346         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2347         gen8_pte_t __iomem *pte =
2348                 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2349                 (offset >> PAGE_SHIFT);
2350         int rpm_atomic_seq;
2351
2352         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2353
2354         gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2355
2356         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2357         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2358
2359         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2360 }
2361
2362 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2363                                      struct sg_table *st,
2364                                      uint64_t start,
2365                                      enum i915_cache_level level, u32 unused)
2366 {
2367         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2368         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2369         struct sgt_iter sgt_iter;
2370         gen8_pte_t __iomem *gtt_entries;
2371         gen8_pte_t gtt_entry;
2372         dma_addr_t addr;
2373         int rpm_atomic_seq;
2374         int i = 0;
2375
2376         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2377
2378         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2379
2380         for_each_sgt_dma(addr, sgt_iter, st) {
2381                 gtt_entry = gen8_pte_encode(addr, level, true);
2382                 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2383         }
2384
2385         /*
2386          * XXX: This serves as a posting read to make sure that the PTE has
2387          * actually been updated. There is some concern that even though
2388          * registers and PTEs are within the same BAR that they are potentially
2389          * of NUMA access patterns. Therefore, even with the way we assume
2390          * hardware should work, we must keep this posting read for paranoia.
2391          */
2392         if (i != 0)
2393                 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2394
2395         /* This next bit makes the above posting read even more important. We
2396          * want to flush the TLBs only after we're certain all the PTE updates
2397          * have finished.
2398          */
2399         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2400         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2401
2402         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2403 }
2404
2405 struct insert_entries {
2406         struct i915_address_space *vm;
2407         struct sg_table *st;
2408         uint64_t start;
2409         enum i915_cache_level level;
2410         u32 flags;
2411 };
2412
2413 static int gen8_ggtt_insert_entries__cb(void *_arg)
2414 {
2415         struct insert_entries *arg = _arg;
2416         gen8_ggtt_insert_entries(arg->vm, arg->st,
2417                                  arg->start, arg->level, arg->flags);
2418         return 0;
2419 }
2420
2421 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2422                                           struct sg_table *st,
2423                                           uint64_t start,
2424                                           enum i915_cache_level level,
2425                                           u32 flags)
2426 {
2427         struct insert_entries arg = { vm, st, start, level, flags };
2428         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2429 }
2430
2431 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2432                                   dma_addr_t addr,
2433                                   uint64_t offset,
2434                                   enum i915_cache_level level,
2435                                   u32 flags)
2436 {
2437         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2438         gen6_pte_t __iomem *pte =
2439                 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2440                 (offset >> PAGE_SHIFT);
2441         int rpm_atomic_seq;
2442
2443         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444
2445         iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2446
2447         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2448         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2449
2450         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2451 }
2452
2453 /*
2454  * Binds an object into the global gtt with the specified cache level. The object
2455  * will be accessible to the GPU via commands whose operands reference offsets
2456  * within the global GTT as well as accessible by the GPU through the GMADR
2457  * mapped BAR (dev_priv->mm.gtt->gtt).
2458  */
2459 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2460                                      struct sg_table *st,
2461                                      uint64_t start,
2462                                      enum i915_cache_level level, u32 flags)
2463 {
2464         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2465         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2466         struct sgt_iter sgt_iter;
2467         gen6_pte_t __iomem *gtt_entries;
2468         gen6_pte_t gtt_entry;
2469         dma_addr_t addr;
2470         int rpm_atomic_seq;
2471         int i = 0;
2472
2473         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2474
2475         gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2476
2477         for_each_sgt_dma(addr, sgt_iter, st) {
2478                 gtt_entry = vm->pte_encode(addr, level, true, flags);
2479                 iowrite32(gtt_entry, &gtt_entries[i++]);
2480         }
2481
2482         /* XXX: This serves as a posting read to make sure that the PTE has
2483          * actually been updated. There is some concern that even though
2484          * registers and PTEs are within the same BAR that they are potentially
2485          * of NUMA access patterns. Therefore, even with the way we assume
2486          * hardware should work, we must keep this posting read for paranoia.
2487          */
2488         if (i != 0)
2489                 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2490
2491         /* This next bit makes the above posting read even more important. We
2492          * want to flush the TLBs only after we're certain all the PTE updates
2493          * have finished.
2494          */
2495         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2496         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2497
2498         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2499 }
2500
2501 static void nop_clear_range(struct i915_address_space *vm,
2502                             uint64_t start,
2503                             uint64_t length,
2504                             bool use_scratch)
2505 {
2506 }
2507
2508 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2509                                   uint64_t start,
2510                                   uint64_t length,
2511                                   bool use_scratch)
2512 {
2513         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2514         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2515         unsigned first_entry = start >> PAGE_SHIFT;
2516         unsigned num_entries = length >> PAGE_SHIFT;
2517         gen8_pte_t scratch_pte, __iomem *gtt_base =
2518                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2519         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2520         int i;
2521         int rpm_atomic_seq;
2522
2523         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2524
2525         if (WARN(num_entries > max_entries,
2526                  "First entry = %d; Num entries = %d (max=%d)\n",
2527                  first_entry, num_entries, max_entries))
2528                 num_entries = max_entries;
2529
2530         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2531                                       I915_CACHE_LLC,
2532                                       use_scratch);
2533         for (i = 0; i < num_entries; i++)
2534                 gen8_set_pte(&gtt_base[i], scratch_pte);
2535         readl(gtt_base);
2536
2537         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2538 }
2539
2540 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2541                                   uint64_t start,
2542                                   uint64_t length,
2543                                   bool use_scratch)
2544 {
2545         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2546         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2547         unsigned first_entry = start >> PAGE_SHIFT;
2548         unsigned num_entries = length >> PAGE_SHIFT;
2549         gen6_pte_t scratch_pte, __iomem *gtt_base =
2550                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2551         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2552         int i;
2553         int rpm_atomic_seq;
2554
2555         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2556
2557         if (WARN(num_entries > max_entries,
2558                  "First entry = %d; Num entries = %d (max=%d)\n",
2559                  first_entry, num_entries, max_entries))
2560                 num_entries = max_entries;
2561
2562         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2563                                      I915_CACHE_LLC, use_scratch, 0);
2564
2565         for (i = 0; i < num_entries; i++)
2566                 iowrite32(scratch_pte, &gtt_base[i]);
2567         readl(gtt_base);
2568
2569         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2570 }
2571
2572 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2573                                   dma_addr_t addr,
2574                                   uint64_t offset,
2575                                   enum i915_cache_level cache_level,
2576                                   u32 unused)
2577 {
2578         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2579         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2580                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2581         int rpm_atomic_seq;
2582
2583         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2584
2585         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2586
2587         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2588 }
2589
2590 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2591                                      struct sg_table *pages,
2592                                      uint64_t start,
2593                                      enum i915_cache_level cache_level, u32 unused)
2594 {
2595         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2596         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2597                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2598         int rpm_atomic_seq;
2599
2600         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2601
2602         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2603
2604         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2605
2606 }
2607
2608 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2609                                   uint64_t start,
2610                                   uint64_t length,
2611                                   bool unused)
2612 {
2613         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2614         unsigned first_entry = start >> PAGE_SHIFT;
2615         unsigned num_entries = length >> PAGE_SHIFT;
2616         int rpm_atomic_seq;
2617
2618         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2619
2620         intel_gtt_clear_range(first_entry, num_entries);
2621
2622         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2623 }
2624
2625 static int ggtt_bind_vma(struct i915_vma *vma,
2626                          enum i915_cache_level cache_level,
2627                          u32 flags)
2628 {
2629         struct drm_i915_gem_object *obj = vma->obj;
2630         u32 pte_flags = 0;
2631         int ret;
2632
2633         ret = i915_get_ggtt_vma_pages(vma);
2634         if (ret)
2635                 return ret;
2636
2637         /* Currently applicable only to VLV */
2638         if (obj->gt_ro)
2639                 pte_flags |= PTE_READ_ONLY;
2640
2641         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2642                                 vma->node.start,
2643                                 cache_level, pte_flags);
2644
2645         /*
2646          * Without aliasing PPGTT there's no difference between
2647          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2648          * upgrade to both bound if we bind either to avoid double-binding.
2649          */
2650         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2651
2652         return 0;
2653 }
2654
2655 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2656                                  enum i915_cache_level cache_level,
2657                                  u32 flags)
2658 {
2659         u32 pte_flags;
2660         int ret;
2661
2662         ret = i915_get_ggtt_vma_pages(vma);
2663         if (ret)
2664                 return ret;
2665
2666         /* Currently applicable only to VLV */
2667         pte_flags = 0;
2668         if (vma->obj->gt_ro)
2669                 pte_flags |= PTE_READ_ONLY;
2670
2671
2672         if (flags & GLOBAL_BIND) {
2673                 vma->vm->insert_entries(vma->vm,
2674                                         vma->ggtt_view.pages,
2675                                         vma->node.start,
2676                                         cache_level, pte_flags);
2677         }
2678
2679         if (flags & LOCAL_BIND) {
2680                 struct i915_hw_ppgtt *appgtt =
2681                         to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2682                 appgtt->base.insert_entries(&appgtt->base,
2683                                             vma->ggtt_view.pages,
2684                                             vma->node.start,
2685                                             cache_level, pte_flags);
2686         }
2687
2688         return 0;
2689 }
2690
2691 static void ggtt_unbind_vma(struct i915_vma *vma)
2692 {
2693         struct drm_device *dev = vma->vm->dev;
2694         struct drm_i915_private *dev_priv = to_i915(dev);
2695         struct drm_i915_gem_object *obj = vma->obj;
2696         const uint64_t size = min_t(uint64_t,
2697                                     obj->base.size,
2698                                     vma->node.size);
2699
2700         if (vma->bound & GLOBAL_BIND) {
2701                 vma->vm->clear_range(vma->vm,
2702                                      vma->node.start,
2703                                      size,
2704                                      true);
2705         }
2706
2707         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2708                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2709
2710                 appgtt->base.clear_range(&appgtt->base,
2711                                          vma->node.start,
2712                                          size,
2713                                          true);
2714         }
2715 }
2716
2717 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2718 {
2719         struct drm_device *dev = obj->base.dev;
2720         struct drm_i915_private *dev_priv = to_i915(dev);
2721         bool interruptible;
2722
2723         interruptible = do_idling(dev_priv);
2724
2725         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2726                      PCI_DMA_BIDIRECTIONAL);
2727
2728         undo_idling(dev_priv, interruptible);
2729 }
2730
2731 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2732                                   unsigned long color,
2733                                   u64 *start,
2734                                   u64 *end)
2735 {
2736         if (node->color != color)
2737                 *start += 4096;
2738
2739         if (!list_empty(&node->node_list)) {
2740                 node = list_entry(node->node_list.next,
2741                                   struct drm_mm_node,
2742                                   node_list);
2743                 if (node->allocated && node->color != color)
2744                         *end -= 4096;
2745         }
2746 }
2747
2748 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2749                                      u64 start,
2750                                      u64 mappable_end,
2751                                      u64 end)
2752 {
2753         /* Let GEM Manage all of the aperture.
2754          *
2755          * However, leave one page at the end still bound to the scratch page.
2756          * There are a number of places where the hardware apparently prefetches
2757          * past the end of the object, and we've seen multiple hangs with the
2758          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2759          * aperture.  One page should be enough to keep any prefetching inside
2760          * of the aperture.
2761          */
2762         struct drm_i915_private *dev_priv = to_i915(dev);
2763         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2764         struct drm_mm_node *entry;
2765         struct drm_i915_gem_object *obj;
2766         unsigned long hole_start, hole_end;
2767         int ret;
2768
2769         BUG_ON(mappable_end > end);
2770
2771         ggtt->base.start = start;
2772
2773         /* Subtract the guard page before address space initialization to
2774          * shrink the range used by drm_mm */
2775         ggtt->base.total = end - start - PAGE_SIZE;
2776         i915_address_space_init(&ggtt->base, dev_priv);
2777         ggtt->base.total += PAGE_SIZE;
2778
2779         ret = intel_vgt_balloon(dev_priv);
2780         if (ret)
2781                 return ret;
2782
2783         if (!HAS_LLC(dev))
2784                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2785
2786         /* Mark any preallocated objects as occupied */
2787         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2788                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2789
2790                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2791                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2792
2793                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2794                 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2795                 if (ret) {
2796                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2797                         return ret;
2798                 }
2799                 vma->bound |= GLOBAL_BIND;
2800                 __i915_vma_set_map_and_fenceable(vma);
2801                 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2802         }
2803
2804         /* Clear any non-preallocated blocks */
2805         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2806                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2807                               hole_start, hole_end);
2808                 ggtt->base.clear_range(&ggtt->base, hole_start,
2809                                      hole_end - hole_start, true);
2810         }
2811
2812         /* And finally clear the reserved guard page */
2813         ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2814
2815         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2816                 struct i915_hw_ppgtt *ppgtt;
2817
2818                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2819                 if (!ppgtt)
2820                         return -ENOMEM;
2821
2822                 ret = __hw_ppgtt_init(dev, ppgtt);
2823                 if (ret) {
2824                         ppgtt->base.cleanup(&ppgtt->base);
2825                         kfree(ppgtt);
2826                         return ret;
2827                 }
2828
2829                 if (ppgtt->base.allocate_va_range)
2830                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2831                                                             ppgtt->base.total);
2832                 if (ret) {
2833                         ppgtt->base.cleanup(&ppgtt->base);
2834                         kfree(ppgtt);
2835                         return ret;
2836                 }
2837
2838                 ppgtt->base.clear_range(&ppgtt->base,
2839                                         ppgtt->base.start,
2840                                         ppgtt->base.total,
2841                                         true);
2842
2843                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2844                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2845                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2846         }
2847
2848         return 0;
2849 }
2850
2851 /**
2852  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2853  * @dev: DRM device
2854  */
2855 void i915_gem_init_ggtt(struct drm_device *dev)
2856 {
2857         struct drm_i915_private *dev_priv = to_i915(dev);
2858         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2859
2860         i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2861 }
2862
2863 /**
2864  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2865  * @dev: DRM device
2866  */
2867 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2868 {
2869         struct drm_i915_private *dev_priv = to_i915(dev);
2870         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2871
2872         if (dev_priv->mm.aliasing_ppgtt) {
2873                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2874
2875                 ppgtt->base.cleanup(&ppgtt->base);
2876         }
2877
2878         i915_gem_cleanup_stolen(dev);
2879
2880         if (drm_mm_initialized(&ggtt->base.mm)) {
2881                 intel_vgt_deballoon(dev_priv);
2882
2883                 drm_mm_takedown(&ggtt->base.mm);
2884                 list_del(&ggtt->base.global_link);
2885         }
2886
2887         ggtt->base.cleanup(&ggtt->base);
2888 }
2889
2890 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2891 {
2892         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2893         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2894         return snb_gmch_ctl << 20;
2895 }
2896
2897 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2898 {
2899         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2900         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2901         if (bdw_gmch_ctl)
2902                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2903
2904 #ifdef CONFIG_X86_32
2905         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2906         if (bdw_gmch_ctl > 4)
2907                 bdw_gmch_ctl = 4;
2908 #endif
2909
2910         return bdw_gmch_ctl << 20;
2911 }
2912
2913 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2914 {
2915         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2916         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2917
2918         if (gmch_ctrl)
2919                 return 1 << (20 + gmch_ctrl);
2920
2921         return 0;
2922 }
2923
2924 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2925 {
2926         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2927         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2928         return snb_gmch_ctl << 25; /* 32 MB units */
2929 }
2930
2931 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2932 {
2933         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2934         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2935         return bdw_gmch_ctl << 25; /* 32 MB units */
2936 }
2937
2938 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2939 {
2940         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2941         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2942
2943         /*
2944          * 0x0  to 0x10: 32MB increments starting at 0MB
2945          * 0x11 to 0x16: 4MB increments starting at 8MB
2946          * 0x17 to 0x1d: 4MB increments start at 36MB
2947          */
2948         if (gmch_ctrl < 0x11)
2949                 return gmch_ctrl << 25;
2950         else if (gmch_ctrl < 0x17)
2951                 return (gmch_ctrl - 0x11 + 2) << 22;
2952         else
2953                 return (gmch_ctrl - 0x17 + 9) << 22;
2954 }
2955
2956 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2957 {
2958         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2959         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2960
2961         if (gen9_gmch_ctl < 0xf0)
2962                 return gen9_gmch_ctl << 25; /* 32 MB units */
2963         else
2964                 /* 4MB increments starting at 0xf0 for 4MB */
2965                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2966 }
2967
2968 static int ggtt_probe_common(struct drm_device *dev,
2969                              size_t gtt_size)
2970 {
2971         struct drm_i915_private *dev_priv = to_i915(dev);
2972         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2973         struct i915_page_scratch *scratch_page;
2974         phys_addr_t ggtt_phys_addr;
2975
2976         /* For Modern GENs the PTEs and register space are split in the BAR */
2977         ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2978                          (pci_resource_len(dev->pdev, 0) / 2);
2979
2980         /*
2981          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2982          * dropped. For WC mappings in general we have 64 byte burst writes
2983          * when the WC buffer is flushed, so we can't use it, but have to
2984          * resort to an uncached mapping. The WC issue is easily caught by the
2985          * readback check when writing GTT PTE entries.
2986          */
2987         if (IS_BROXTON(dev))
2988                 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2989         else
2990                 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2991         if (!ggtt->gsm) {
2992                 DRM_ERROR("Failed to map the gtt page table\n");
2993                 return -ENOMEM;
2994         }
2995
2996         scratch_page = alloc_scratch_page(dev);
2997         if (IS_ERR(scratch_page)) {
2998                 DRM_ERROR("Scratch setup failed\n");
2999                 /* iounmap will also get called at remove, but meh */
3000                 iounmap(ggtt->gsm);
3001                 return PTR_ERR(scratch_page);
3002         }
3003
3004         ggtt->base.scratch_page = scratch_page;
3005
3006         return 0;
3007 }
3008
3009 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3010  * bits. When using advanced contexts each context stores its own PAT, but
3011  * writing this data shouldn't be harmful even in those cases. */
3012 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3013 {
3014         uint64_t pat;
3015
3016         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
3017               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3018               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3019               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
3020               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3021               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3022               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3023               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3024
3025         if (!USES_PPGTT(dev_priv))
3026                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3027                  * so RTL will always use the value corresponding to
3028                  * pat_sel = 000".
3029                  * So let's disable cache for GGTT to avoid screen corruptions.
3030                  * MOCS still can be used though.
3031                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3032                  * before this patch, i.e. the same uncached + snooping access
3033                  * like on gen6/7 seems to be in effect.
3034                  * - So this just fixes blitter/render access. Again it looks
3035                  * like it's not just uncached access, but uncached + snooping.
3036                  * So we can still hold onto all our assumptions wrt cpu
3037                  * clflushing on LLC machines.
3038                  */
3039                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3040
3041         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3042          * write would work. */
3043         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3044         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3045 }
3046
3047 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3048 {
3049         uint64_t pat;
3050
3051         /*
3052          * Map WB on BDW to snooped on CHV.
3053          *
3054          * Only the snoop bit has meaning for CHV, the rest is
3055          * ignored.
3056          *
3057          * The hardware will never snoop for certain types of accesses:
3058          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3059          * - PPGTT page tables
3060          * - some other special cycles
3061          *
3062          * As with BDW, we also need to consider the following for GT accesses:
3063          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3064          * so RTL will always use the value corresponding to
3065          * pat_sel = 000".
3066          * Which means we must set the snoop bit in PAT entry 0
3067          * in order to keep the global status page working.
3068          */
3069         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3070               GEN8_PPAT(1, 0) |
3071               GEN8_PPAT(2, 0) |
3072               GEN8_PPAT(3, 0) |
3073               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3074               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3075               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3076               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3077
3078         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3079         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3080 }
3081
3082 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3083 {
3084         struct drm_device *dev = ggtt->base.dev;
3085         struct drm_i915_private *dev_priv = to_i915(dev);
3086         u16 snb_gmch_ctl;
3087         int ret;
3088
3089         /* TODO: We're not aware of mappable constraints on gen8 yet */
3090         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3091         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3092
3093         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3094                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3095
3096         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3097
3098         if (INTEL_INFO(dev)->gen >= 9) {
3099                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3100                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3101         } else if (IS_CHERRYVIEW(dev)) {
3102                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3103                 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3104         } else {
3105                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3106                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3107         }
3108
3109         ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3110
3111         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3112                 chv_setup_private_ppat(dev_priv);
3113         else
3114                 bdw_setup_private_ppat(dev_priv);
3115
3116         ret = ggtt_probe_common(dev, ggtt->size);
3117
3118         ggtt->base.bind_vma = ggtt_bind_vma;
3119         ggtt->base.unbind_vma = ggtt_unbind_vma;
3120         ggtt->base.insert_page = gen8_ggtt_insert_page;
3121         ggtt->base.clear_range = nop_clear_range;
3122         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3123                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3124
3125         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3126         if (IS_CHERRYVIEW(dev_priv))
3127                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3128
3129         return ret;
3130 }
3131
3132 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3133 {
3134         struct drm_device *dev = ggtt->base.dev;
3135         u16 snb_gmch_ctl;
3136         int ret;
3137
3138         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3139         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3140
3141         /* 64/512MB is the current min/max we actually know of, but this is just
3142          * a coarse sanity check.
3143          */
3144         if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3145                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3146                 return -ENXIO;
3147         }
3148
3149         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3150                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3151         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3152
3153         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3154         ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3155         ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3156
3157         ret = ggtt_probe_common(dev, ggtt->size);
3158
3159         ggtt->base.clear_range = gen6_ggtt_clear_range;
3160         ggtt->base.insert_page = gen6_ggtt_insert_page;
3161         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3162         ggtt->base.bind_vma = ggtt_bind_vma;
3163         ggtt->base.unbind_vma = ggtt_unbind_vma;
3164
3165         return ret;
3166 }
3167
3168 static void gen6_gmch_remove(struct i915_address_space *vm)
3169 {
3170         struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3171
3172         iounmap(ggtt->gsm);
3173         free_scratch_page(vm->dev, vm->scratch_page);
3174 }
3175
3176 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3177 {
3178         struct drm_device *dev = ggtt->base.dev;
3179         struct drm_i915_private *dev_priv = to_i915(dev);
3180         int ret;
3181
3182         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3183         if (!ret) {
3184                 DRM_ERROR("failed to set up gmch\n");
3185                 return -EIO;
3186         }
3187
3188         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3189                       &ggtt->mappable_base, &ggtt->mappable_end);
3190
3191         ggtt->do_idle_maps = needs_idle_maps(&dev_priv->drm);
3192         ggtt->base.insert_page = i915_ggtt_insert_page;
3193         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3194         ggtt->base.clear_range = i915_ggtt_clear_range;
3195         ggtt->base.bind_vma = ggtt_bind_vma;
3196         ggtt->base.unbind_vma = ggtt_unbind_vma;
3197
3198         if (unlikely(ggtt->do_idle_maps))
3199                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3200
3201         return 0;
3202 }
3203
3204 static void i915_gmch_remove(struct i915_address_space *vm)
3205 {
3206         intel_gmch_remove();
3207 }
3208
3209 /**
3210  * i915_ggtt_init_hw - Initialize GGTT hardware
3211  * @dev: DRM device
3212  */
3213 int i915_ggtt_init_hw(struct drm_device *dev)
3214 {
3215         struct drm_i915_private *dev_priv = to_i915(dev);
3216         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3217         int ret;
3218
3219         if (INTEL_INFO(dev)->gen <= 5) {
3220                 ggtt->probe = i915_gmch_probe;
3221                 ggtt->base.cleanup = i915_gmch_remove;
3222         } else if (INTEL_INFO(dev)->gen < 8) {
3223                 ggtt->probe = gen6_gmch_probe;
3224                 ggtt->base.cleanup = gen6_gmch_remove;
3225
3226                 if (HAS_EDRAM(dev))
3227                         ggtt->base.pte_encode = iris_pte_encode;
3228                 else if (IS_HASWELL(dev))
3229                         ggtt->base.pte_encode = hsw_pte_encode;
3230                 else if (IS_VALLEYVIEW(dev))
3231                         ggtt->base.pte_encode = byt_pte_encode;
3232                 else if (INTEL_INFO(dev)->gen >= 7)
3233                         ggtt->base.pte_encode = ivb_pte_encode;
3234                 else
3235                         ggtt->base.pte_encode = snb_pte_encode;
3236         } else {
3237                 ggtt->probe = gen8_gmch_probe;
3238                 ggtt->base.cleanup = gen6_gmch_remove;
3239         }
3240
3241         ggtt->base.dev = dev;
3242         ggtt->base.is_ggtt = true;
3243
3244         ret = ggtt->probe(ggtt);
3245         if (ret)
3246                 return ret;
3247
3248         if ((ggtt->base.total - 1) >> 32) {
3249                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3250                           "of address space! Found %lldM!\n",
3251                           ggtt->base.total >> 20);
3252                 ggtt->base.total = 1ULL << 32;
3253                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3254         }
3255
3256         /*
3257          * Initialise stolen early so that we may reserve preallocated
3258          * objects for the BIOS to KMS transition.
3259          */
3260         ret = i915_gem_init_stolen(dev);
3261         if (ret)
3262                 goto out_gtt_cleanup;
3263
3264         /* GMADR is the PCI mmio aperture into the global GTT. */
3265         DRM_INFO("Memory usable by graphics device = %lluM\n",
3266                  ggtt->base.total >> 20);
3267         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3268         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3269 #ifdef CONFIG_INTEL_IOMMU
3270         if (intel_iommu_gfx_mapped)
3271                 DRM_INFO("VT-d active for gfx access\n");
3272 #endif
3273
3274         return 0;
3275
3276 out_gtt_cleanup:
3277         ggtt->base.cleanup(&ggtt->base);
3278
3279         return ret;
3280 }
3281
3282 int i915_ggtt_enable_hw(struct drm_device *dev)
3283 {
3284         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3285                 return -EIO;
3286
3287         return 0;
3288 }
3289
3290 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3291 {
3292         struct drm_i915_private *dev_priv = to_i915(dev);
3293         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3294         struct drm_i915_gem_object *obj;
3295         struct i915_vma *vma;
3296
3297         i915_check_and_clear_faults(dev_priv);
3298
3299         /* First fill our portion of the GTT with scratch pages */
3300         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3301                                true);
3302
3303         /* Cache flush objects bound into GGTT and rebind them. */
3304         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3305                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3306                         if (vma->vm != &ggtt->base)
3307                                 continue;
3308
3309                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3310                                               PIN_UPDATE));
3311                 }
3312
3313                 if (obj->pin_display)
3314                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3315         }
3316
3317         if (INTEL_INFO(dev)->gen >= 8) {
3318                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3319                         chv_setup_private_ppat(dev_priv);
3320                 else
3321                         bdw_setup_private_ppat(dev_priv);
3322
3323                 return;
3324         }
3325
3326         if (USES_PPGTT(dev)) {
3327                 struct i915_address_space *vm;
3328
3329                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3330                         /* TODO: Perhaps it shouldn't be gen6 specific */
3331
3332                         struct i915_hw_ppgtt *ppgtt;
3333
3334                         if (vm->is_ggtt)
3335                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3336                         else
3337                                 ppgtt = i915_vm_to_ppgtt(vm);
3338
3339                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3340                                               0, ppgtt->base.total);
3341                 }
3342         }
3343
3344         i915_ggtt_flush(dev_priv);
3345 }
3346
3347 static struct i915_vma *
3348 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3349                       struct i915_address_space *vm,
3350                       const struct i915_ggtt_view *ggtt_view)
3351 {
3352         struct i915_vma *vma;
3353
3354         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3355                 return ERR_PTR(-EINVAL);
3356
3357         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3358         if (vma == NULL)
3359                 return ERR_PTR(-ENOMEM);
3360
3361         INIT_LIST_HEAD(&vma->vm_link);
3362         INIT_LIST_HEAD(&vma->obj_link);
3363         INIT_LIST_HEAD(&vma->exec_list);
3364         vma->vm = vm;
3365         vma->obj = obj;
3366         vma->is_ggtt = i915_is_ggtt(vm);
3367
3368         if (i915_is_ggtt(vm))
3369                 vma->ggtt_view = *ggtt_view;
3370         else
3371                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3372
3373         list_add_tail(&vma->obj_link, &obj->vma_list);
3374
3375         return vma;
3376 }
3377
3378 struct i915_vma *
3379 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3380                                   struct i915_address_space *vm)
3381 {
3382         struct i915_vma *vma;
3383
3384         vma = i915_gem_obj_to_vma(obj, vm);
3385         if (!vma)
3386                 vma = __i915_gem_vma_create(obj, vm,
3387                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3388
3389         return vma;
3390 }
3391
3392 struct i915_vma *
3393 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3394                                        const struct i915_ggtt_view *view)
3395 {
3396         struct drm_device *dev = obj->base.dev;
3397         struct drm_i915_private *dev_priv = to_i915(dev);
3398         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3399         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3400
3401         if (!vma)
3402                 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3403
3404         return vma;
3405
3406 }
3407
3408 static struct scatterlist *
3409 rotate_pages(const dma_addr_t *in, unsigned int offset,
3410              unsigned int width, unsigned int height,
3411              unsigned int stride,
3412              struct sg_table *st, struct scatterlist *sg)
3413 {
3414         unsigned int column, row;
3415         unsigned int src_idx;
3416
3417         for (column = 0; column < width; column++) {
3418                 src_idx = stride * (height - 1) + column;
3419                 for (row = 0; row < height; row++) {
3420                         st->nents++;
3421                         /* We don't need the pages, but need to initialize
3422                          * the entries so the sg list can be happily traversed.
3423                          * The only thing we need are DMA addresses.
3424                          */
3425                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3426                         sg_dma_address(sg) = in[offset + src_idx];
3427                         sg_dma_len(sg) = PAGE_SIZE;
3428                         sg = sg_next(sg);
3429                         src_idx -= stride;
3430                 }
3431         }
3432
3433         return sg;
3434 }
3435
3436 static struct sg_table *
3437 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3438                           struct drm_i915_gem_object *obj)
3439 {
3440         const size_t n_pages = obj->base.size / PAGE_SIZE;
3441         unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3442         unsigned int size_pages_uv;
3443         struct sgt_iter sgt_iter;
3444         dma_addr_t dma_addr;
3445         unsigned long i;
3446         dma_addr_t *page_addr_list;
3447         struct sg_table *st;
3448         unsigned int uv_start_page;
3449         struct scatterlist *sg;
3450         int ret = -ENOMEM;
3451
3452         /* Allocate a temporary list of source pages for random access. */
3453         page_addr_list = drm_malloc_gfp(n_pages,
3454                                         sizeof(dma_addr_t),
3455                                         GFP_TEMPORARY);
3456         if (!page_addr_list)
3457                 return ERR_PTR(ret);
3458
3459         /* Account for UV plane with NV12. */
3460         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3461                 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3462         else
3463                 size_pages_uv = 0;
3464
3465         /* Allocate target SG list. */
3466         st = kmalloc(sizeof(*st), GFP_KERNEL);
3467         if (!st)
3468                 goto err_st_alloc;
3469
3470         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3471         if (ret)
3472                 goto err_sg_alloc;
3473
3474         /* Populate source page list from the object. */
3475         i = 0;
3476         for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3477                 page_addr_list[i++] = dma_addr;
3478
3479         GEM_BUG_ON(i != n_pages);
3480         st->nents = 0;
3481         sg = st->sgl;
3482
3483         /* Rotate the pages. */
3484         sg = rotate_pages(page_addr_list, 0,
3485                           rot_info->plane[0].width, rot_info->plane[0].height,
3486                           rot_info->plane[0].width,
3487                           st, sg);
3488
3489         /* Append the UV plane if NV12. */
3490         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3491                 uv_start_page = size_pages;
3492
3493                 /* Check for tile-row un-alignment. */
3494                 if (offset_in_page(rot_info->uv_offset))
3495                         uv_start_page--;
3496
3497                 rot_info->uv_start_page = uv_start_page;
3498
3499                 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3500                                   rot_info->plane[1].width, rot_info->plane[1].height,
3501                                   rot_info->plane[1].width,
3502                                   st, sg);
3503         }
3504
3505         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3506                       obj->base.size, rot_info->plane[0].width,
3507                       rot_info->plane[0].height, size_pages + size_pages_uv,
3508                       size_pages);
3509
3510         drm_free_large(page_addr_list);
3511
3512         return st;
3513
3514 err_sg_alloc:
3515         kfree(st);
3516 err_st_alloc:
3517         drm_free_large(page_addr_list);
3518
3519         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3520                       obj->base.size, ret, rot_info->plane[0].width,
3521                       rot_info->plane[0].height, size_pages + size_pages_uv,
3522                       size_pages);
3523         return ERR_PTR(ret);
3524 }
3525
3526 static struct sg_table *
3527 intel_partial_pages(const struct i915_ggtt_view *view,
3528                     struct drm_i915_gem_object *obj)
3529 {
3530         struct sg_table *st;
3531         struct scatterlist *sg;
3532         struct sg_page_iter obj_sg_iter;
3533         int ret = -ENOMEM;
3534
3535         st = kmalloc(sizeof(*st), GFP_KERNEL);
3536         if (!st)
3537                 goto err_st_alloc;
3538
3539         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3540         if (ret)
3541                 goto err_sg_alloc;
3542
3543         sg = st->sgl;
3544         st->nents = 0;
3545         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3546                 view->params.partial.offset)
3547         {
3548                 if (st->nents >= view->params.partial.size)
3549                         break;
3550
3551                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3552                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3553                 sg_dma_len(sg) = PAGE_SIZE;
3554
3555                 sg = sg_next(sg);
3556                 st->nents++;
3557         }
3558
3559         return st;
3560
3561 err_sg_alloc:
3562         kfree(st);
3563 err_st_alloc:
3564         return ERR_PTR(ret);
3565 }
3566
3567 static int
3568 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3569 {
3570         int ret = 0;
3571
3572         if (vma->ggtt_view.pages)
3573                 return 0;
3574
3575         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3576                 vma->ggtt_view.pages = vma->obj->pages;
3577         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3578                 vma->ggtt_view.pages =
3579                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3580         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3581                 vma->ggtt_view.pages =
3582                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3583         else
3584                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3585                           vma->ggtt_view.type);
3586
3587         if (!vma->ggtt_view.pages) {
3588                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3589                           vma->ggtt_view.type);
3590                 ret = -EINVAL;
3591         } else if (IS_ERR(vma->ggtt_view.pages)) {
3592                 ret = PTR_ERR(vma->ggtt_view.pages);
3593                 vma->ggtt_view.pages = NULL;
3594                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3595                           vma->ggtt_view.type, ret);
3596         }
3597
3598         return ret;
3599 }
3600
3601 /**
3602  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3603  * @vma: VMA to map
3604  * @cache_level: mapping cache level
3605  * @flags: flags like global or local mapping
3606  *
3607  * DMA addresses are taken from the scatter-gather table of this object (or of
3608  * this VMA in case of non-default GGTT views) and PTE entries set up.
3609  * Note that DMA addresses are also the only part of the SG table we care about.
3610  */
3611 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3612                   u32 flags)
3613 {
3614         int ret;
3615         u32 bind_flags;
3616
3617         if (WARN_ON(flags == 0))
3618                 return -EINVAL;
3619
3620         bind_flags = 0;
3621         if (flags & PIN_GLOBAL)
3622                 bind_flags |= GLOBAL_BIND;
3623         if (flags & PIN_USER)
3624                 bind_flags |= LOCAL_BIND;
3625
3626         if (flags & PIN_UPDATE)
3627                 bind_flags |= vma->bound;
3628         else
3629                 bind_flags &= ~vma->bound;
3630
3631         if (bind_flags == 0)
3632                 return 0;
3633
3634         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3635                 /* XXX: i915_vma_pin() will fix this +- hack */
3636                 vma->pin_count++;
3637                 trace_i915_va_alloc(vma);
3638                 ret = vma->vm->allocate_va_range(vma->vm,
3639                                                  vma->node.start,
3640                                                  vma->node.size);
3641                 vma->pin_count--;
3642                 if (ret)
3643                         return ret;
3644         }
3645
3646         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3647         if (ret)
3648                 return ret;
3649
3650         vma->bound |= bind_flags;
3651
3652         return 0;
3653 }
3654
3655 /**
3656  * i915_ggtt_view_size - Get the size of a GGTT view.
3657  * @obj: Object the view is of.
3658  * @view: The view in question.
3659  *
3660  * @return The size of the GGTT view in bytes.
3661  */
3662 size_t
3663 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3664                     const struct i915_ggtt_view *view)
3665 {
3666         if (view->type == I915_GGTT_VIEW_NORMAL) {
3667                 return obj->base.size;
3668         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3669                 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3670         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3671                 return view->params.partial.size << PAGE_SHIFT;
3672         } else {
3673                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3674                 return obj->base.size;
3675         }
3676 }
3677
3678 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3679 {
3680         void __iomem *ptr;
3681
3682         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3683         if (WARN_ON(!vma->obj->map_and_fenceable))
3684                 return ERR_PTR(-ENODEV);
3685
3686         GEM_BUG_ON(!vma->is_ggtt);
3687         GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3688
3689         ptr = vma->iomap;
3690         if (ptr == NULL) {
3691                 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3692                                         vma->node.start,
3693                                         vma->node.size);
3694                 if (ptr == NULL)
3695                         return ERR_PTR(-ENOMEM);
3696
3697                 vma->iomap = ptr;
3698         }
3699
3700         vma->pin_count++;
3701         return ptr;
3702 }