Merge branch 'vmwgfx-next' of git://people.freedesktop.org/~thomash/linux into drm...
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->cache_dirty)
55                 return false;
56
57         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58                 return true;
59
60         return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142         GEM_TRACE("\n");
143
144         lockdep_assert_held(&i915->drm.struct_mutex);
145         GEM_BUG_ON(i915->gt.active_requests);
146         GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148         if (!i915->gt.awake)
149                 return I915_EPOCH_INVALID;
150
151         GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153         /*
154          * Be paranoid and flush a concurrent interrupt to make sure
155          * we don't reactivate any irq tasklets after parking.
156          *
157          * FIXME: Note that even though we have waited for execlists to be idle,
158          * there may still be an in-flight interrupt even though the CSB
159          * is now empty. synchronize_irq() makes sure that a residual interrupt
160          * is completed before we continue, but it doesn't prevent the HW from
161          * raising a spurious interrupt later. To complete the shield we should
162          * coordinate disabling the CS irq with flushing the interrupts.
163          */
164         synchronize_irq(i915->drm.irq);
165
166         intel_engines_park(i915);
167         i915_timelines_park(i915);
168
169         i915_pmu_gt_parked(i915);
170         i915_vma_parked(i915);
171
172         i915->gt.awake = false;
173
174         if (INTEL_GEN(i915) >= 6)
175                 gen6_rps_idle(i915);
176
177         intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179         intel_runtime_pm_put(i915);
180
181         return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186         GEM_TRACE("\n");
187
188         lockdep_assert_held(&i915->drm.struct_mutex);
189         GEM_BUG_ON(i915->gt.active_requests);
190
191         if (!i915->gt.awake)
192                 return;
193
194         /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195         mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200         GEM_TRACE("\n");
201
202         lockdep_assert_held(&i915->drm.struct_mutex);
203         GEM_BUG_ON(!i915->gt.active_requests);
204
205         if (i915->gt.awake)
206                 return;
207
208         intel_runtime_pm_get_noresume(i915);
209
210         /*
211          * It seems that the DMC likes to transition between the DC states a lot
212          * when there are no connected displays (no active power domains) during
213          * command submission.
214          *
215          * This activity has negative impact on the performance of the chip with
216          * huge latencies observed in the interrupt handler and elsewhere.
217          *
218          * Work around it by grabbing a GT IRQ power domain whilst there is any
219          * GT activity, preventing any DC state transitions.
220          */
221         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223         i915->gt.awake = true;
224         if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225                 i915->gt.epoch = 1;
226
227         intel_enable_gt_powersave(i915);
228         i915_update_gfx_val(i915);
229         if (INTEL_GEN(i915) >= 6)
230                 gen6_rps_busy(i915);
231         i915_pmu_gt_unparked(i915);
232
233         intel_engines_unpark(i915);
234
235         i915_queue_hangcheck(i915);
236
237         queue_delayed_work(i915->wq,
238                            &i915->gt.retire_work,
239                            round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244                             struct drm_file *file)
245 {
246         struct drm_i915_private *dev_priv = to_i915(dev);
247         struct i915_ggtt *ggtt = &dev_priv->ggtt;
248         struct drm_i915_gem_get_aperture *args = data;
249         struct i915_vma *vma;
250         u64 pinned;
251
252         pinned = ggtt->vm.reserved;
253         mutex_lock(&dev->struct_mutex);
254         list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255                 if (i915_vma_is_pinned(vma))
256                         pinned += vma->node.size;
257         list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258                 if (i915_vma_is_pinned(vma))
259                         pinned += vma->node.size;
260         mutex_unlock(&dev->struct_mutex);
261
262         args->aper_size = ggtt->vm.total;
263         args->aper_available_size = args->aper_size - pinned;
264
265         return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270         struct address_space *mapping = obj->base.filp->f_mapping;
271         drm_dma_handle_t *phys;
272         struct sg_table *st;
273         struct scatterlist *sg;
274         char *vaddr;
275         int i;
276         int err;
277
278         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279                 return -EINVAL;
280
281         /* Always aligning to the object size, allows a single allocation
282          * to handle all possible callers, and given typical object sizes,
283          * the alignment of the buddy allocation will naturally match.
284          */
285         phys = drm_pci_alloc(obj->base.dev,
286                              roundup_pow_of_two(obj->base.size),
287                              roundup_pow_of_two(obj->base.size));
288         if (!phys)
289                 return -ENOMEM;
290
291         vaddr = phys->vaddr;
292         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293                 struct page *page;
294                 char *src;
295
296                 page = shmem_read_mapping_page(mapping, i);
297                 if (IS_ERR(page)) {
298                         err = PTR_ERR(page);
299                         goto err_phys;
300                 }
301
302                 src = kmap_atomic(page);
303                 memcpy(vaddr, src, PAGE_SIZE);
304                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305                 kunmap_atomic(src);
306
307                 put_page(page);
308                 vaddr += PAGE_SIZE;
309         }
310
311         i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313         st = kmalloc(sizeof(*st), GFP_KERNEL);
314         if (!st) {
315                 err = -ENOMEM;
316                 goto err_phys;
317         }
318
319         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320                 kfree(st);
321                 err = -ENOMEM;
322                 goto err_phys;
323         }
324
325         sg = st->sgl;
326         sg->offset = 0;
327         sg->length = obj->base.size;
328
329         sg_dma_address(sg) = phys->busaddr;
330         sg_dma_len(sg) = obj->base.size;
331
332         obj->phys_handle = phys;
333
334         __i915_gem_object_set_pages(obj, st, sg->length);
335
336         return 0;
337
338 err_phys:
339         drm_pci_free(obj->base.dev, phys);
340
341         return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346         obj->read_domains = I915_GEM_DOMAIN_CPU;
347         obj->write_domain = I915_GEM_DOMAIN_CPU;
348         if (cpu_write_needs_clflush(obj))
349                 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354                                 struct sg_table *pages,
355                                 bool needs_clflush)
356 {
357         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359         if (obj->mm.madv == I915_MADV_DONTNEED)
360                 obj->mm.dirty = false;
361
362         if (needs_clflush &&
363             (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365                 drm_clflush_sg(pages);
366
367         __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372                                struct sg_table *pages)
373 {
374         __i915_gem_object_release_shmem(obj, pages, false);
375
376         if (obj->mm.dirty) {
377                 struct address_space *mapping = obj->base.filp->f_mapping;
378                 char *vaddr = obj->phys_handle->vaddr;
379                 int i;
380
381                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382                         struct page *page;
383                         char *dst;
384
385                         page = shmem_read_mapping_page(mapping, i);
386                         if (IS_ERR(page))
387                                 continue;
388
389                         dst = kmap_atomic(page);
390                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
391                         memcpy(dst, vaddr, PAGE_SIZE);
392                         kunmap_atomic(dst);
393
394                         set_page_dirty(page);
395                         if (obj->mm.madv == I915_MADV_WILLNEED)
396                                 mark_page_accessed(page);
397                         put_page(page);
398                         vaddr += PAGE_SIZE;
399                 }
400                 obj->mm.dirty = false;
401         }
402
403         sg_free_table(pages);
404         kfree(pages);
405
406         drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412         i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416         .get_pages = i915_gem_object_get_pages_phys,
417         .put_pages = i915_gem_object_put_pages_phys,
418         .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425         struct i915_vma *vma;
426         LIST_HEAD(still_in_list);
427         int ret;
428
429         lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431         /* Closed vma are removed from the obj->vma_list - but they may
432          * still have an active binding on the object. To remove those we
433          * must wait for all rendering to complete to the object (as unbinding
434          * must anyway), and retire the requests.
435          */
436         ret = i915_gem_object_set_to_cpu_domain(obj, false);
437         if (ret)
438                 return ret;
439
440         while ((vma = list_first_entry_or_null(&obj->vma_list,
441                                                struct i915_vma,
442                                                obj_link))) {
443                 list_move_tail(&vma->obj_link, &still_in_list);
444                 ret = i915_vma_unbind(vma);
445                 if (ret)
446                         break;
447         }
448         list_splice(&still_in_list, &obj->vma_list);
449
450         return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455                            unsigned int flags,
456                            long timeout,
457                            struct intel_rps_client *rps_client)
458 {
459         struct i915_request *rq;
460
461         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464                 return timeout;
465
466         if (!dma_fence_is_i915(fence))
467                 return dma_fence_wait_timeout(fence,
468                                               flags & I915_WAIT_INTERRUPTIBLE,
469                                               timeout);
470
471         rq = to_request(fence);
472         if (i915_request_completed(rq))
473                 goto out;
474
475         /*
476          * This client is about to stall waiting for the GPU. In many cases
477          * this is undesirable and limits the throughput of the system, as
478          * many clients cannot continue processing user input/output whilst
479          * blocked. RPS autotuning may take tens of milliseconds to respond
480          * to the GPU load and thus incurs additional latency for the client.
481          * We can circumvent that by promoting the GPU frequency to maximum
482          * before we wait. This makes the GPU throttle up much more quickly
483          * (good for benchmarks and user experience, e.g. window animations),
484          * but at a cost of spending more power processing the workload
485          * (bad for battery). Not all clients even want their results
486          * immediately and for them we should just let the GPU select its own
487          * frequency to maximise efficiency. To prevent a single client from
488          * forcing the clocks too high for the whole system, we only allow
489          * each client to waitboost once in a busy period.
490          */
491         if (rps_client && !i915_request_started(rq)) {
492                 if (INTEL_GEN(rq->i915) >= 6)
493                         gen6_rps_boost(rq, rps_client);
494         }
495
496         timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499         if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500                 i915_request_retire_upto(rq);
501
502         return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507                                  unsigned int flags,
508                                  long timeout,
509                                  struct intel_rps_client *rps_client)
510 {
511         unsigned int seq = __read_seqcount_begin(&resv->seq);
512         struct dma_fence *excl;
513         bool prune_fences = false;
514
515         if (flags & I915_WAIT_ALL) {
516                 struct dma_fence **shared;
517                 unsigned int count, i;
518                 int ret;
519
520                 ret = reservation_object_get_fences_rcu(resv,
521                                                         &excl, &count, &shared);
522                 if (ret)
523                         return ret;
524
525                 for (i = 0; i < count; i++) {
526                         timeout = i915_gem_object_wait_fence(shared[i],
527                                                              flags, timeout,
528                                                              rps_client);
529                         if (timeout < 0)
530                                 break;
531
532                         dma_fence_put(shared[i]);
533                 }
534
535                 for (; i < count; i++)
536                         dma_fence_put(shared[i]);
537                 kfree(shared);
538
539                 /*
540                  * If both shared fences and an exclusive fence exist,
541                  * then by construction the shared fences must be later
542                  * than the exclusive fence. If we successfully wait for
543                  * all the shared fences, we know that the exclusive fence
544                  * must all be signaled. If all the shared fences are
545                  * signaled, we can prune the array and recover the
546                  * floating references on the fences/requests.
547                  */
548                 prune_fences = count && timeout >= 0;
549         } else {
550                 excl = reservation_object_get_excl_rcu(resv);
551         }
552
553         if (excl && timeout >= 0)
554                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555                                                      rps_client);
556
557         dma_fence_put(excl);
558
559         /*
560          * Opportunistically prune the fences iff we know they have *all* been
561          * signaled and that the reservation object has not been changed (i.e.
562          * no new fences have been added).
563          */
564         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565                 if (reservation_object_trylock(resv)) {
566                         if (!__read_seqcount_retry(&resv->seq, seq))
567                                 reservation_object_add_excl_fence(resv, NULL);
568                         reservation_object_unlock(resv);
569                 }
570         }
571
572         return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576                                  const struct i915_sched_attr *attr)
577 {
578         struct i915_request *rq;
579         struct intel_engine_cs *engine;
580
581         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582                 return;
583
584         rq = to_request(fence);
585         engine = rq->engine;
586
587         local_bh_disable();
588         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589         if (engine->schedule)
590                 engine->schedule(rq, attr);
591         rcu_read_unlock();
592         local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596                                const struct i915_sched_attr *attr)
597 {
598         /* Recurse once into a fence-array */
599         if (dma_fence_is_array(fence)) {
600                 struct dma_fence_array *array = to_dma_fence_array(fence);
601                 int i;
602
603                 for (i = 0; i < array->num_fences; i++)
604                         __fence_set_priority(array->fences[i], attr);
605         } else {
606                 __fence_set_priority(fence, attr);
607         }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612                               unsigned int flags,
613                               const struct i915_sched_attr *attr)
614 {
615         struct dma_fence *excl;
616
617         if (flags & I915_WAIT_ALL) {
618                 struct dma_fence **shared;
619                 unsigned int count, i;
620                 int ret;
621
622                 ret = reservation_object_get_fences_rcu(obj->resv,
623                                                         &excl, &count, &shared);
624                 if (ret)
625                         return ret;
626
627                 for (i = 0; i < count; i++) {
628                         fence_set_priority(shared[i], attr);
629                         dma_fence_put(shared[i]);
630                 }
631
632                 kfree(shared);
633         } else {
634                 excl = reservation_object_get_excl_rcu(obj->resv);
635         }
636
637         if (excl) {
638                 fence_set_priority(excl, attr);
639                 dma_fence_put(excl);
640         }
641         return 0;
642 }
643
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653                      unsigned int flags,
654                      long timeout,
655                      struct intel_rps_client *rps_client)
656 {
657         might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659         GEM_BUG_ON(debug_locks &&
660                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661                    !!(flags & I915_WAIT_LOCKED));
662 #endif
663         GEM_BUG_ON(timeout < 0);
664
665         timeout = i915_gem_object_wait_reservation(obj->resv,
666                                                    flags, timeout,
667                                                    rps_client);
668         return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673         struct drm_i915_file_private *fpriv = file->driver_priv;
674
675         return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680                      struct drm_i915_gem_pwrite *args,
681                      struct drm_file *file)
682 {
683         void *vaddr = obj->phys_handle->vaddr + args->offset;
684         char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686         /* We manually control the domain here and pretend that it
687          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688          */
689         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690         if (copy_from_user(vaddr, user_data, args->size))
691                 return -EFAULT;
692
693         drm_clflush_virt_range(vaddr, args->size);
694         i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696         intel_fb_obj_flush(obj, ORIGIN_CPU);
697         return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708         kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713                 struct drm_i915_private *dev_priv,
714                 uint64_t size,
715                 uint32_t *handle_p)
716 {
717         struct drm_i915_gem_object *obj;
718         int ret;
719         u32 handle;
720
721         size = roundup(size, PAGE_SIZE);
722         if (size == 0)
723                 return -EINVAL;
724
725         /* Allocate the new object */
726         obj = i915_gem_object_create(dev_priv, size);
727         if (IS_ERR(obj))
728                 return PTR_ERR(obj);
729
730         ret = drm_gem_handle_create(file, &obj->base, &handle);
731         /* drop reference from allocate - handle holds it now */
732         i915_gem_object_put(obj);
733         if (ret)
734                 return ret;
735
736         *handle_p = handle;
737         return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742                      struct drm_device *dev,
743                      struct drm_mode_create_dumb *args)
744 {
745         /* have to work out size/pitch and return them */
746         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747         args->size = args->pitch * args->height;
748         return i915_gem_create(file, to_i915(dev),
749                                args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754         return !(obj->cache_level == I915_CACHE_NONE ||
755                  obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766                       struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = to_i915(dev);
769         struct drm_i915_gem_create *args = data;
770
771         i915_gem_flush_free_objects(dev_priv);
772
773         return i915_gem_create(file, dev_priv,
774                                args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780         return (domain == I915_GEM_DOMAIN_GTT ?
781                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786         /*
787          * No actual flushing is required for the GTT write domain for reads
788          * from the GTT domain. Writes to it "immediately" go to main memory
789          * as far as we know, so there's no chipset flush. It also doesn't
790          * land in the GPU render cache.
791          *
792          * However, we do have to enforce the order so that all writes through
793          * the GTT land before any writes to the device, such as updates to
794          * the GATT itself.
795          *
796          * We also have to wait a bit for the writes to land from the GTT.
797          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798          * timing. This issue has only been observed when switching quickly
799          * between GTT writes and CPU reads from inside the kernel on recent hw,
800          * and it appears to only affect discrete GTT blocks (i.e. on LLC
801          * system agents we cannot reproduce this behaviour, until Cannonlake
802          * that was!).
803          */
804
805         wmb();
806
807         if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808                 return;
809
810         i915_gem_chipset_flush(dev_priv);
811
812         intel_runtime_pm_get(dev_priv);
813         spin_lock_irq(&dev_priv->uncore.lock);
814
815         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817         spin_unlock_irq(&dev_priv->uncore.lock);
818         intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825         struct i915_vma *vma;
826
827         if (!(obj->write_domain & flush_domains))
828                 return;
829
830         switch (obj->write_domain) {
831         case I915_GEM_DOMAIN_GTT:
832                 i915_gem_flush_ggtt_writes(dev_priv);
833
834                 intel_fb_obj_flush(obj,
835                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837                 for_each_ggtt_vma(vma, obj) {
838                         if (vma->iomap)
839                                 continue;
840
841                         i915_vma_unset_ggtt_write(vma);
842                 }
843                 break;
844
845         case I915_GEM_DOMAIN_WC:
846                 wmb();
847                 break;
848
849         case I915_GEM_DOMAIN_CPU:
850                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851                 break;
852
853         case I915_GEM_DOMAIN_RENDER:
854                 if (gpu_write_needs_clflush(obj))
855                         obj->cache_dirty = true;
856                 break;
857         }
858
859         obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864                         const char *gpu_vaddr, int gpu_offset,
865                         int length)
866 {
867         int ret, cpu_offset = 0;
868
869         while (length > 0) {
870                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871                 int this_length = min(cacheline_end - gpu_offset, length);
872                 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875                                      gpu_vaddr + swizzled_gpu_offset,
876                                      this_length);
877                 if (ret)
878                         return ret + length;
879
880                 cpu_offset += this_length;
881                 gpu_offset += this_length;
882                 length -= this_length;
883         }
884
885         return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890                           const char __user *cpu_vaddr,
891                           int length)
892 {
893         int ret, cpu_offset = 0;
894
895         while (length > 0) {
896                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897                 int this_length = min(cacheline_end - gpu_offset, length);
898                 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901                                        cpu_vaddr + cpu_offset,
902                                        this_length);
903                 if (ret)
904                         return ret + length;
905
906                 cpu_offset += this_length;
907                 gpu_offset += this_length;
908                 length -= this_length;
909         }
910
911         return 0;
912 }
913
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920                                     unsigned int *needs_clflush)
921 {
922         int ret;
923
924         lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926         *needs_clflush = 0;
927         if (!i915_gem_object_has_struct_page(obj))
928                 return -ENODEV;
929
930         ret = i915_gem_object_wait(obj,
931                                    I915_WAIT_INTERRUPTIBLE |
932                                    I915_WAIT_LOCKED,
933                                    MAX_SCHEDULE_TIMEOUT,
934                                    NULL);
935         if (ret)
936                 return ret;
937
938         ret = i915_gem_object_pin_pages(obj);
939         if (ret)
940                 return ret;
941
942         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945                 if (ret)
946                         goto err_unpin;
947                 else
948                         goto out;
949         }
950
951         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953         /* If we're not in the cpu read domain, set ourself into the gtt
954          * read domain and manually flush cachelines (if required). This
955          * optimizes for the case when the gpu will dirty the data
956          * anyway again before the next pread happens.
957          */
958         if (!obj->cache_dirty &&
959             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960                 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963         /* return with the pages pinned */
964         return 0;
965
966 err_unpin:
967         i915_gem_object_unpin_pages(obj);
968         return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972                                      unsigned int *needs_clflush)
973 {
974         int ret;
975
976         lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978         *needs_clflush = 0;
979         if (!i915_gem_object_has_struct_page(obj))
980                 return -ENODEV;
981
982         ret = i915_gem_object_wait(obj,
983                                    I915_WAIT_INTERRUPTIBLE |
984                                    I915_WAIT_LOCKED |
985                                    I915_WAIT_ALL,
986                                    MAX_SCHEDULE_TIMEOUT,
987                                    NULL);
988         if (ret)
989                 return ret;
990
991         ret = i915_gem_object_pin_pages(obj);
992         if (ret)
993                 return ret;
994
995         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998                 if (ret)
999                         goto err_unpin;
1000                 else
1001                         goto out;
1002         }
1003
1004         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006         /* If we're not in the cpu write domain, set ourself into the
1007          * gtt write domain and manually flush cachelines (as required).
1008          * This optimizes for the case when the gpu will use the data
1009          * right away and we therefore have to clflush anyway.
1010          */
1011         if (!obj->cache_dirty) {
1012                 *needs_clflush |= CLFLUSH_AFTER;
1013
1014                 /*
1015                  * Same trick applies to invalidate partially written
1016                  * cachelines read before writing.
1017                  */
1018                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019                         *needs_clflush |= CLFLUSH_BEFORE;
1020         }
1021
1022 out:
1023         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024         obj->mm.dirty = true;
1025         /* return with the pages pinned */
1026         return 0;
1027
1028 err_unpin:
1029         i915_gem_object_unpin_pages(obj);
1030         return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035                              bool swizzled)
1036 {
1037         if (unlikely(swizzled)) {
1038                 unsigned long start = (unsigned long) addr;
1039                 unsigned long end = (unsigned long) addr + length;
1040
1041                 /* For swizzling simply ensure that we always flush both
1042                  * channels. Lame, but simple and it works. Swizzled
1043                  * pwrite/pread is far from a hotpath - current userspace
1044                  * doesn't use it at all. */
1045                 start = round_down(start, 128);
1046                 end = round_up(end, 128);
1047
1048                 drm_clflush_virt_range((void *)start, end - start);
1049         } else {
1050                 drm_clflush_virt_range(addr, length);
1051         }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059                  char __user *user_data,
1060                  bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062         char *vaddr;
1063         int ret;
1064
1065         vaddr = kmap(page);
1066         if (needs_clflush)
1067                 shmem_clflush_swizzled_range(vaddr + offset, length,
1068                                              page_do_bit17_swizzling);
1069
1070         if (page_do_bit17_swizzling)
1071                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072         else
1073                 ret = __copy_to_user(user_data, vaddr + offset, length);
1074         kunmap(page);
1075
1076         return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081             bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083         int ret;
1084
1085         ret = -ENODEV;
1086         if (!page_do_bit17_swizzling) {
1087                 char *vaddr = kmap_atomic(page);
1088
1089                 if (needs_clflush)
1090                         drm_clflush_virt_range(vaddr + offset, length);
1091                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092                 kunmap_atomic(vaddr);
1093         }
1094         if (ret == 0)
1095                 return 0;
1096
1097         return shmem_pread_slow(page, offset, length, user_data,
1098                                 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103                      struct drm_i915_gem_pread *args)
1104 {
1105         char __user *user_data;
1106         u64 remain;
1107         unsigned int obj_do_bit17_swizzling;
1108         unsigned int needs_clflush;
1109         unsigned int idx, offset;
1110         int ret;
1111
1112         obj_do_bit17_swizzling = 0;
1113         if (i915_gem_object_needs_bit17_swizzle(obj))
1114                 obj_do_bit17_swizzling = BIT(17);
1115
1116         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117         if (ret)
1118                 return ret;
1119
1120         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121         mutex_unlock(&obj->base.dev->struct_mutex);
1122         if (ret)
1123                 return ret;
1124
1125         remain = args->size;
1126         user_data = u64_to_user_ptr(args->data_ptr);
1127         offset = offset_in_page(args->offset);
1128         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129                 struct page *page = i915_gem_object_get_page(obj, idx);
1130                 int length;
1131
1132                 length = remain;
1133                 if (offset + length > PAGE_SIZE)
1134                         length = PAGE_SIZE - offset;
1135
1136                 ret = shmem_pread(page, offset, length, user_data,
1137                                   page_to_phys(page) & obj_do_bit17_swizzling,
1138                                   needs_clflush);
1139                 if (ret)
1140                         break;
1141
1142                 remain -= length;
1143                 user_data += length;
1144                 offset = 0;
1145         }
1146
1147         i915_gem_obj_finish_shmem_access(obj);
1148         return ret;
1149 }
1150
1151 static inline bool
1152 gtt_user_read(struct io_mapping *mapping,
1153               loff_t base, int offset,
1154               char __user *user_data, int length)
1155 {
1156         void __iomem *vaddr;
1157         unsigned long unwritten;
1158
1159         /* We can use the cpu mem copy function because this is X86. */
1160         vaddr = io_mapping_map_atomic_wc(mapping, base);
1161         unwritten = __copy_to_user_inatomic(user_data,
1162                                             (void __force *)vaddr + offset,
1163                                             length);
1164         io_mapping_unmap_atomic(vaddr);
1165         if (unwritten) {
1166                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167                 unwritten = copy_to_user(user_data,
1168                                          (void __force *)vaddr + offset,
1169                                          length);
1170                 io_mapping_unmap(vaddr);
1171         }
1172         return unwritten;
1173 }
1174
1175 static int
1176 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1177                    const struct drm_i915_gem_pread *args)
1178 {
1179         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1180         struct i915_ggtt *ggtt = &i915->ggtt;
1181         struct drm_mm_node node;
1182         struct i915_vma *vma;
1183         void __user *user_data;
1184         u64 remain, offset;
1185         int ret;
1186
1187         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1188         if (ret)
1189                 return ret;
1190
1191         intel_runtime_pm_get(i915);
1192         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1193                                        PIN_MAPPABLE |
1194                                        PIN_NONFAULT |
1195                                        PIN_NONBLOCK);
1196         if (!IS_ERR(vma)) {
1197                 node.start = i915_ggtt_offset(vma);
1198                 node.allocated = false;
1199                 ret = i915_vma_put_fence(vma);
1200                 if (ret) {
1201                         i915_vma_unpin(vma);
1202                         vma = ERR_PTR(ret);
1203                 }
1204         }
1205         if (IS_ERR(vma)) {
1206                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1207                 if (ret)
1208                         goto out_unlock;
1209                 GEM_BUG_ON(!node.allocated);
1210         }
1211
1212         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1213         if (ret)
1214                 goto out_unpin;
1215
1216         mutex_unlock(&i915->drm.struct_mutex);
1217
1218         user_data = u64_to_user_ptr(args->data_ptr);
1219         remain = args->size;
1220         offset = args->offset;
1221
1222         while (remain > 0) {
1223                 /* Operation in this page
1224                  *
1225                  * page_base = page offset within aperture
1226                  * page_offset = offset within page
1227                  * page_length = bytes to copy for this page
1228                  */
1229                 u32 page_base = node.start;
1230                 unsigned page_offset = offset_in_page(offset);
1231                 unsigned page_length = PAGE_SIZE - page_offset;
1232                 page_length = remain < page_length ? remain : page_length;
1233                 if (node.allocated) {
1234                         wmb();
1235                         ggtt->vm.insert_page(&ggtt->vm,
1236                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1237                                              node.start, I915_CACHE_NONE, 0);
1238                         wmb();
1239                 } else {
1240                         page_base += offset & PAGE_MASK;
1241                 }
1242
1243                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1244                                   user_data, page_length)) {
1245                         ret = -EFAULT;
1246                         break;
1247                 }
1248
1249                 remain -= page_length;
1250                 user_data += page_length;
1251                 offset += page_length;
1252         }
1253
1254         mutex_lock(&i915->drm.struct_mutex);
1255 out_unpin:
1256         if (node.allocated) {
1257                 wmb();
1258                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1259                 remove_mappable_node(&node);
1260         } else {
1261                 i915_vma_unpin(vma);
1262         }
1263 out_unlock:
1264         intel_runtime_pm_put(i915);
1265         mutex_unlock(&i915->drm.struct_mutex);
1266
1267         return ret;
1268 }
1269
1270 /**
1271  * Reads data from the object referenced by handle.
1272  * @dev: drm device pointer
1273  * @data: ioctl data blob
1274  * @file: drm file pointer
1275  *
1276  * On error, the contents of *data are undefined.
1277  */
1278 int
1279 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1280                      struct drm_file *file)
1281 {
1282         struct drm_i915_gem_pread *args = data;
1283         struct drm_i915_gem_object *obj;
1284         int ret;
1285
1286         if (args->size == 0)
1287                 return 0;
1288
1289         if (!access_ok(VERIFY_WRITE,
1290                        u64_to_user_ptr(args->data_ptr),
1291                        args->size))
1292                 return -EFAULT;
1293
1294         obj = i915_gem_object_lookup(file, args->handle);
1295         if (!obj)
1296                 return -ENOENT;
1297
1298         /* Bounds check source.  */
1299         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1300                 ret = -EINVAL;
1301                 goto out;
1302         }
1303
1304         trace_i915_gem_object_pread(obj, args->offset, args->size);
1305
1306         ret = i915_gem_object_wait(obj,
1307                                    I915_WAIT_INTERRUPTIBLE,
1308                                    MAX_SCHEDULE_TIMEOUT,
1309                                    to_rps_client(file));
1310         if (ret)
1311                 goto out;
1312
1313         ret = i915_gem_object_pin_pages(obj);
1314         if (ret)
1315                 goto out;
1316
1317         ret = i915_gem_shmem_pread(obj, args);
1318         if (ret == -EFAULT || ret == -ENODEV)
1319                 ret = i915_gem_gtt_pread(obj, args);
1320
1321         i915_gem_object_unpin_pages(obj);
1322 out:
1323         i915_gem_object_put(obj);
1324         return ret;
1325 }
1326
1327 /* This is the fast write path which cannot handle
1328  * page faults in the source data
1329  */
1330
1331 static inline bool
1332 ggtt_write(struct io_mapping *mapping,
1333            loff_t base, int offset,
1334            char __user *user_data, int length)
1335 {
1336         void __iomem *vaddr;
1337         unsigned long unwritten;
1338
1339         /* We can use the cpu mem copy function because this is X86. */
1340         vaddr = io_mapping_map_atomic_wc(mapping, base);
1341         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1342                                                       user_data, length);
1343         io_mapping_unmap_atomic(vaddr);
1344         if (unwritten) {
1345                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1346                 unwritten = copy_from_user((void __force *)vaddr + offset,
1347                                            user_data, length);
1348                 io_mapping_unmap(vaddr);
1349         }
1350
1351         return unwritten;
1352 }
1353
1354 /**
1355  * This is the fast pwrite path, where we copy the data directly from the
1356  * user into the GTT, uncached.
1357  * @obj: i915 GEM object
1358  * @args: pwrite arguments structure
1359  */
1360 static int
1361 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1362                          const struct drm_i915_gem_pwrite *args)
1363 {
1364         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365         struct i915_ggtt *ggtt = &i915->ggtt;
1366         struct drm_mm_node node;
1367         struct i915_vma *vma;
1368         u64 remain, offset;
1369         void __user *user_data;
1370         int ret;
1371
1372         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1373         if (ret)
1374                 return ret;
1375
1376         if (i915_gem_object_has_struct_page(obj)) {
1377                 /*
1378                  * Avoid waking the device up if we can fallback, as
1379                  * waking/resuming is very slow (worst-case 10-100 ms
1380                  * depending on PCI sleeps and our own resume time).
1381                  * This easily dwarfs any performance advantage from
1382                  * using the cache bypass of indirect GGTT access.
1383                  */
1384                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1385                         ret = -EFAULT;
1386                         goto out_unlock;
1387                 }
1388         } else {
1389                 /* No backing pages, no fallback, we must force GGTT access */
1390                 intel_runtime_pm_get(i915);
1391         }
1392
1393         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1394                                        PIN_MAPPABLE |
1395                                        PIN_NONFAULT |
1396                                        PIN_NONBLOCK);
1397         if (!IS_ERR(vma)) {
1398                 node.start = i915_ggtt_offset(vma);
1399                 node.allocated = false;
1400                 ret = i915_vma_put_fence(vma);
1401                 if (ret) {
1402                         i915_vma_unpin(vma);
1403                         vma = ERR_PTR(ret);
1404                 }
1405         }
1406         if (IS_ERR(vma)) {
1407                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1408                 if (ret)
1409                         goto out_rpm;
1410                 GEM_BUG_ON(!node.allocated);
1411         }
1412
1413         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1414         if (ret)
1415                 goto out_unpin;
1416
1417         mutex_unlock(&i915->drm.struct_mutex);
1418
1419         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1420
1421         user_data = u64_to_user_ptr(args->data_ptr);
1422         offset = args->offset;
1423         remain = args->size;
1424         while (remain) {
1425                 /* Operation in this page
1426                  *
1427                  * page_base = page offset within aperture
1428                  * page_offset = offset within page
1429                  * page_length = bytes to copy for this page
1430                  */
1431                 u32 page_base = node.start;
1432                 unsigned int page_offset = offset_in_page(offset);
1433                 unsigned int page_length = PAGE_SIZE - page_offset;
1434                 page_length = remain < page_length ? remain : page_length;
1435                 if (node.allocated) {
1436                         wmb(); /* flush the write before we modify the GGTT */
1437                         ggtt->vm.insert_page(&ggtt->vm,
1438                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1439                                              node.start, I915_CACHE_NONE, 0);
1440                         wmb(); /* flush modifications to the GGTT (insert_page) */
1441                 } else {
1442                         page_base += offset & PAGE_MASK;
1443                 }
1444                 /* If we get a fault while copying data, then (presumably) our
1445                  * source page isn't available.  Return the error and we'll
1446                  * retry in the slow path.
1447                  * If the object is non-shmem backed, we retry again with the
1448                  * path that handles page fault.
1449                  */
1450                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1451                                user_data, page_length)) {
1452                         ret = -EFAULT;
1453                         break;
1454                 }
1455
1456                 remain -= page_length;
1457                 user_data += page_length;
1458                 offset += page_length;
1459         }
1460         intel_fb_obj_flush(obj, ORIGIN_CPU);
1461
1462         mutex_lock(&i915->drm.struct_mutex);
1463 out_unpin:
1464         if (node.allocated) {
1465                 wmb();
1466                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1467                 remove_mappable_node(&node);
1468         } else {
1469                 i915_vma_unpin(vma);
1470         }
1471 out_rpm:
1472         intel_runtime_pm_put(i915);
1473 out_unlock:
1474         mutex_unlock(&i915->drm.struct_mutex);
1475         return ret;
1476 }
1477
1478 static int
1479 shmem_pwrite_slow(struct page *page, int offset, int length,
1480                   char __user *user_data,
1481                   bool page_do_bit17_swizzling,
1482                   bool needs_clflush_before,
1483                   bool needs_clflush_after)
1484 {
1485         char *vaddr;
1486         int ret;
1487
1488         vaddr = kmap(page);
1489         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1490                 shmem_clflush_swizzled_range(vaddr + offset, length,
1491                                              page_do_bit17_swizzling);
1492         if (page_do_bit17_swizzling)
1493                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1494                                                 length);
1495         else
1496                 ret = __copy_from_user(vaddr + offset, user_data, length);
1497         if (needs_clflush_after)
1498                 shmem_clflush_swizzled_range(vaddr + offset, length,
1499                                              page_do_bit17_swizzling);
1500         kunmap(page);
1501
1502         return ret ? -EFAULT : 0;
1503 }
1504
1505 /* Per-page copy function for the shmem pwrite fastpath.
1506  * Flushes invalid cachelines before writing to the target if
1507  * needs_clflush_before is set and flushes out any written cachelines after
1508  * writing if needs_clflush is set.
1509  */
1510 static int
1511 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1512              bool page_do_bit17_swizzling,
1513              bool needs_clflush_before,
1514              bool needs_clflush_after)
1515 {
1516         int ret;
1517
1518         ret = -ENODEV;
1519         if (!page_do_bit17_swizzling) {
1520                 char *vaddr = kmap_atomic(page);
1521
1522                 if (needs_clflush_before)
1523                         drm_clflush_virt_range(vaddr + offset, len);
1524                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1525                 if (needs_clflush_after)
1526                         drm_clflush_virt_range(vaddr + offset, len);
1527
1528                 kunmap_atomic(vaddr);
1529         }
1530         if (ret == 0)
1531                 return ret;
1532
1533         return shmem_pwrite_slow(page, offset, len, user_data,
1534                                  page_do_bit17_swizzling,
1535                                  needs_clflush_before,
1536                                  needs_clflush_after);
1537 }
1538
1539 static int
1540 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1541                       const struct drm_i915_gem_pwrite *args)
1542 {
1543         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1544         void __user *user_data;
1545         u64 remain;
1546         unsigned int obj_do_bit17_swizzling;
1547         unsigned int partial_cacheline_write;
1548         unsigned int needs_clflush;
1549         unsigned int offset, idx;
1550         int ret;
1551
1552         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1553         if (ret)
1554                 return ret;
1555
1556         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1557         mutex_unlock(&i915->drm.struct_mutex);
1558         if (ret)
1559                 return ret;
1560
1561         obj_do_bit17_swizzling = 0;
1562         if (i915_gem_object_needs_bit17_swizzle(obj))
1563                 obj_do_bit17_swizzling = BIT(17);
1564
1565         /* If we don't overwrite a cacheline completely we need to be
1566          * careful to have up-to-date data by first clflushing. Don't
1567          * overcomplicate things and flush the entire patch.
1568          */
1569         partial_cacheline_write = 0;
1570         if (needs_clflush & CLFLUSH_BEFORE)
1571                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1572
1573         user_data = u64_to_user_ptr(args->data_ptr);
1574         remain = args->size;
1575         offset = offset_in_page(args->offset);
1576         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1577                 struct page *page = i915_gem_object_get_page(obj, idx);
1578                 int length;
1579
1580                 length = remain;
1581                 if (offset + length > PAGE_SIZE)
1582                         length = PAGE_SIZE - offset;
1583
1584                 ret = shmem_pwrite(page, offset, length, user_data,
1585                                    page_to_phys(page) & obj_do_bit17_swizzling,
1586                                    (offset | length) & partial_cacheline_write,
1587                                    needs_clflush & CLFLUSH_AFTER);
1588                 if (ret)
1589                         break;
1590
1591                 remain -= length;
1592                 user_data += length;
1593                 offset = 0;
1594         }
1595
1596         intel_fb_obj_flush(obj, ORIGIN_CPU);
1597         i915_gem_obj_finish_shmem_access(obj);
1598         return ret;
1599 }
1600
1601 /**
1602  * Writes data to the object referenced by handle.
1603  * @dev: drm device
1604  * @data: ioctl data blob
1605  * @file: drm file
1606  *
1607  * On error, the contents of the buffer that were to be modified are undefined.
1608  */
1609 int
1610 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1611                       struct drm_file *file)
1612 {
1613         struct drm_i915_gem_pwrite *args = data;
1614         struct drm_i915_gem_object *obj;
1615         int ret;
1616
1617         if (args->size == 0)
1618                 return 0;
1619
1620         if (!access_ok(VERIFY_READ,
1621                        u64_to_user_ptr(args->data_ptr),
1622                        args->size))
1623                 return -EFAULT;
1624
1625         obj = i915_gem_object_lookup(file, args->handle);
1626         if (!obj)
1627                 return -ENOENT;
1628
1629         /* Bounds check destination. */
1630         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1631                 ret = -EINVAL;
1632                 goto err;
1633         }
1634
1635         /* Writes not allowed into this read-only object */
1636         if (i915_gem_object_is_readonly(obj)) {
1637                 ret = -EINVAL;
1638                 goto err;
1639         }
1640
1641         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1642
1643         ret = -ENODEV;
1644         if (obj->ops->pwrite)
1645                 ret = obj->ops->pwrite(obj, args);
1646         if (ret != -ENODEV)
1647                 goto err;
1648
1649         ret = i915_gem_object_wait(obj,
1650                                    I915_WAIT_INTERRUPTIBLE |
1651                                    I915_WAIT_ALL,
1652                                    MAX_SCHEDULE_TIMEOUT,
1653                                    to_rps_client(file));
1654         if (ret)
1655                 goto err;
1656
1657         ret = i915_gem_object_pin_pages(obj);
1658         if (ret)
1659                 goto err;
1660
1661         ret = -EFAULT;
1662         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1663          * it would end up going through the fenced access, and we'll get
1664          * different detiling behavior between reading and writing.
1665          * pread/pwrite currently are reading and writing from the CPU
1666          * perspective, requiring manual detiling by the client.
1667          */
1668         if (!i915_gem_object_has_struct_page(obj) ||
1669             cpu_write_needs_clflush(obj))
1670                 /* Note that the gtt paths might fail with non-page-backed user
1671                  * pointers (e.g. gtt mappings when moving data between
1672                  * textures). Fallback to the shmem path in that case.
1673                  */
1674                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1675
1676         if (ret == -EFAULT || ret == -ENOSPC) {
1677                 if (obj->phys_handle)
1678                         ret = i915_gem_phys_pwrite(obj, args, file);
1679                 else
1680                         ret = i915_gem_shmem_pwrite(obj, args);
1681         }
1682
1683         i915_gem_object_unpin_pages(obj);
1684 err:
1685         i915_gem_object_put(obj);
1686         return ret;
1687 }
1688
1689 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1690 {
1691         struct drm_i915_private *i915;
1692         struct list_head *list;
1693         struct i915_vma *vma;
1694
1695         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1696
1697         for_each_ggtt_vma(vma, obj) {
1698                 if (i915_vma_is_active(vma))
1699                         continue;
1700
1701                 if (!drm_mm_node_allocated(&vma->node))
1702                         continue;
1703
1704                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1705         }
1706
1707         i915 = to_i915(obj->base.dev);
1708         spin_lock(&i915->mm.obj_lock);
1709         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1710         list_move_tail(&obj->mm.link, list);
1711         spin_unlock(&i915->mm.obj_lock);
1712 }
1713
1714 /**
1715  * Called when user space prepares to use an object with the CPU, either
1716  * through the mmap ioctl's mapping or a GTT mapping.
1717  * @dev: drm device
1718  * @data: ioctl data blob
1719  * @file: drm file
1720  */
1721 int
1722 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1723                           struct drm_file *file)
1724 {
1725         struct drm_i915_gem_set_domain *args = data;
1726         struct drm_i915_gem_object *obj;
1727         uint32_t read_domains = args->read_domains;
1728         uint32_t write_domain = args->write_domain;
1729         int err;
1730
1731         /* Only handle setting domains to types used by the CPU. */
1732         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1733                 return -EINVAL;
1734
1735         /* Having something in the write domain implies it's in the read
1736          * domain, and only that read domain.  Enforce that in the request.
1737          */
1738         if (write_domain != 0 && read_domains != write_domain)
1739                 return -EINVAL;
1740
1741         obj = i915_gem_object_lookup(file, args->handle);
1742         if (!obj)
1743                 return -ENOENT;
1744
1745         /* Try to flush the object off the GPU without holding the lock.
1746          * We will repeat the flush holding the lock in the normal manner
1747          * to catch cases where we are gazumped.
1748          */
1749         err = i915_gem_object_wait(obj,
1750                                    I915_WAIT_INTERRUPTIBLE |
1751                                    (write_domain ? I915_WAIT_ALL : 0),
1752                                    MAX_SCHEDULE_TIMEOUT,
1753                                    to_rps_client(file));
1754         if (err)
1755                 goto out;
1756
1757         /*
1758          * Proxy objects do not control access to the backing storage, ergo
1759          * they cannot be used as a means to manipulate the cache domain
1760          * tracking for that backing storage. The proxy object is always
1761          * considered to be outside of any cache domain.
1762          */
1763         if (i915_gem_object_is_proxy(obj)) {
1764                 err = -ENXIO;
1765                 goto out;
1766         }
1767
1768         /*
1769          * Flush and acquire obj->pages so that we are coherent through
1770          * direct access in memory with previous cached writes through
1771          * shmemfs and that our cache domain tracking remains valid.
1772          * For example, if the obj->filp was moved to swap without us
1773          * being notified and releasing the pages, we would mistakenly
1774          * continue to assume that the obj remained out of the CPU cached
1775          * domain.
1776          */
1777         err = i915_gem_object_pin_pages(obj);
1778         if (err)
1779                 goto out;
1780
1781         err = i915_mutex_lock_interruptible(dev);
1782         if (err)
1783                 goto out_unpin;
1784
1785         if (read_domains & I915_GEM_DOMAIN_WC)
1786                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1787         else if (read_domains & I915_GEM_DOMAIN_GTT)
1788                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1789         else
1790                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1791
1792         /* And bump the LRU for this access */
1793         i915_gem_object_bump_inactive_ggtt(obj);
1794
1795         mutex_unlock(&dev->struct_mutex);
1796
1797         if (write_domain != 0)
1798                 intel_fb_obj_invalidate(obj,
1799                                         fb_write_origin(obj, write_domain));
1800
1801 out_unpin:
1802         i915_gem_object_unpin_pages(obj);
1803 out:
1804         i915_gem_object_put(obj);
1805         return err;
1806 }
1807
1808 /**
1809  * Called when user space has done writes to this buffer
1810  * @dev: drm device
1811  * @data: ioctl data blob
1812  * @file: drm file
1813  */
1814 int
1815 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1816                          struct drm_file *file)
1817 {
1818         struct drm_i915_gem_sw_finish *args = data;
1819         struct drm_i915_gem_object *obj;
1820
1821         obj = i915_gem_object_lookup(file, args->handle);
1822         if (!obj)
1823                 return -ENOENT;
1824
1825         /*
1826          * Proxy objects are barred from CPU access, so there is no
1827          * need to ban sw_finish as it is a nop.
1828          */
1829
1830         /* Pinned buffers may be scanout, so flush the cache */
1831         i915_gem_object_flush_if_display(obj);
1832         i915_gem_object_put(obj);
1833
1834         return 0;
1835 }
1836
1837 /**
1838  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1839  *                       it is mapped to.
1840  * @dev: drm device
1841  * @data: ioctl data blob
1842  * @file: drm file
1843  *
1844  * While the mapping holds a reference on the contents of the object, it doesn't
1845  * imply a ref on the object itself.
1846  *
1847  * IMPORTANT:
1848  *
1849  * DRM driver writers who look a this function as an example for how to do GEM
1850  * mmap support, please don't implement mmap support like here. The modern way
1851  * to implement DRM mmap support is with an mmap offset ioctl (like
1852  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1853  * That way debug tooling like valgrind will understand what's going on, hiding
1854  * the mmap call in a driver private ioctl will break that. The i915 driver only
1855  * does cpu mmaps this way because we didn't know better.
1856  */
1857 int
1858 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1859                     struct drm_file *file)
1860 {
1861         struct drm_i915_gem_mmap *args = data;
1862         struct drm_i915_gem_object *obj;
1863         unsigned long addr;
1864
1865         if (args->flags & ~(I915_MMAP_WC))
1866                 return -EINVAL;
1867
1868         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1869                 return -ENODEV;
1870
1871         obj = i915_gem_object_lookup(file, args->handle);
1872         if (!obj)
1873                 return -ENOENT;
1874
1875         /* prime objects have no backing filp to GEM mmap
1876          * pages from.
1877          */
1878         if (!obj->base.filp) {
1879                 i915_gem_object_put(obj);
1880                 return -ENXIO;
1881         }
1882
1883         addr = vm_mmap(obj->base.filp, 0, args->size,
1884                        PROT_READ | PROT_WRITE, MAP_SHARED,
1885                        args->offset);
1886         if (args->flags & I915_MMAP_WC) {
1887                 struct mm_struct *mm = current->mm;
1888                 struct vm_area_struct *vma;
1889
1890                 if (down_write_killable(&mm->mmap_sem)) {
1891                         i915_gem_object_put(obj);
1892                         return -EINTR;
1893                 }
1894                 vma = find_vma(mm, addr);
1895                 if (vma)
1896                         vma->vm_page_prot =
1897                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1898                 else
1899                         addr = -ENOMEM;
1900                 up_write(&mm->mmap_sem);
1901
1902                 /* This may race, but that's ok, it only gets set */
1903                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1904         }
1905         i915_gem_object_put(obj);
1906         if (IS_ERR((void *)addr))
1907                 return addr;
1908
1909         args->addr_ptr = (uint64_t) addr;
1910
1911         return 0;
1912 }
1913
1914 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1915 {
1916         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1917 }
1918
1919 /**
1920  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1921  *
1922  * A history of the GTT mmap interface:
1923  *
1924  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1925  *     aligned and suitable for fencing, and still fit into the available
1926  *     mappable space left by the pinned display objects. A classic problem
1927  *     we called the page-fault-of-doom where we would ping-pong between
1928  *     two objects that could not fit inside the GTT and so the memcpy
1929  *     would page one object in at the expense of the other between every
1930  *     single byte.
1931  *
1932  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1933  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1934  *     object is too large for the available space (or simply too large
1935  *     for the mappable aperture!), a view is created instead and faulted
1936  *     into userspace. (This view is aligned and sized appropriately for
1937  *     fenced access.)
1938  *
1939  * 2 - Recognise WC as a separate cache domain so that we can flush the
1940  *     delayed writes via GTT before performing direct access via WC.
1941  *
1942  * Restrictions:
1943  *
1944  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1945  *    hangs on some architectures, corruption on others. An attempt to service
1946  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1947  *
1948  *  * the object must be able to fit into RAM (physical memory, though no
1949  *    limited to the mappable aperture).
1950  *
1951  *
1952  * Caveats:
1953  *
1954  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1955  *    all data to system memory. Subsequent access will not be synchronized.
1956  *
1957  *  * all mappings are revoked on runtime device suspend.
1958  *
1959  *  * there are only 8, 16 or 32 fence registers to share between all users
1960  *    (older machines require fence register for display and blitter access
1961  *    as well). Contention of the fence registers will cause the previous users
1962  *    to be unmapped and any new access will generate new page faults.
1963  *
1964  *  * running out of memory while servicing a fault may generate a SIGBUS,
1965  *    rather than the expected SIGSEGV.
1966  */
1967 int i915_gem_mmap_gtt_version(void)
1968 {
1969         return 2;
1970 }
1971
1972 static inline struct i915_ggtt_view
1973 compute_partial_view(const struct drm_i915_gem_object *obj,
1974                      pgoff_t page_offset,
1975                      unsigned int chunk)
1976 {
1977         struct i915_ggtt_view view;
1978
1979         if (i915_gem_object_is_tiled(obj))
1980                 chunk = roundup(chunk, tile_row_pages(obj));
1981
1982         view.type = I915_GGTT_VIEW_PARTIAL;
1983         view.partial.offset = rounddown(page_offset, chunk);
1984         view.partial.size =
1985                 min_t(unsigned int, chunk,
1986                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1987
1988         /* If the partial covers the entire object, just create a normal VMA. */
1989         if (chunk >= obj->base.size >> PAGE_SHIFT)
1990                 view.type = I915_GGTT_VIEW_NORMAL;
1991
1992         return view;
1993 }
1994
1995 /**
1996  * i915_gem_fault - fault a page into the GTT
1997  * @vmf: fault info
1998  *
1999  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2000  * from userspace.  The fault handler takes care of binding the object to
2001  * the GTT (if needed), allocating and programming a fence register (again,
2002  * only if needed based on whether the old reg is still valid or the object
2003  * is tiled) and inserting a new PTE into the faulting process.
2004  *
2005  * Note that the faulting process may involve evicting existing objects
2006  * from the GTT and/or fence registers to make room.  So performance may
2007  * suffer if the GTT working set is large or there are few fence registers
2008  * left.
2009  *
2010  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2011  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2012  */
2013 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2014 {
2015 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2016         struct vm_area_struct *area = vmf->vma;
2017         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2018         struct drm_device *dev = obj->base.dev;
2019         struct drm_i915_private *dev_priv = to_i915(dev);
2020         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2021         bool write = area->vm_flags & VM_WRITE;
2022         struct i915_vma *vma;
2023         pgoff_t page_offset;
2024         int ret;
2025
2026         /* Sanity check that we allow writing into this object */
2027         if (i915_gem_object_is_readonly(obj) && write)
2028                 return VM_FAULT_SIGBUS;
2029
2030         /* We don't use vmf->pgoff since that has the fake offset */
2031         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2032
2033         trace_i915_gem_object_fault(obj, page_offset, true, write);
2034
2035         /* Try to flush the object off the GPU first without holding the lock.
2036          * Upon acquiring the lock, we will perform our sanity checks and then
2037          * repeat the flush holding the lock in the normal manner to catch cases
2038          * where we are gazumped.
2039          */
2040         ret = i915_gem_object_wait(obj,
2041                                    I915_WAIT_INTERRUPTIBLE,
2042                                    MAX_SCHEDULE_TIMEOUT,
2043                                    NULL);
2044         if (ret)
2045                 goto err;
2046
2047         ret = i915_gem_object_pin_pages(obj);
2048         if (ret)
2049                 goto err;
2050
2051         intel_runtime_pm_get(dev_priv);
2052
2053         ret = i915_mutex_lock_interruptible(dev);
2054         if (ret)
2055                 goto err_rpm;
2056
2057         /* Access to snoopable pages through the GTT is incoherent. */
2058         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2059                 ret = -EFAULT;
2060                 goto err_unlock;
2061         }
2062
2063
2064         /* Now pin it into the GTT as needed */
2065         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2066                                        PIN_MAPPABLE |
2067                                        PIN_NONBLOCK |
2068                                        PIN_NONFAULT);
2069         if (IS_ERR(vma)) {
2070                 /* Use a partial view if it is bigger than available space */
2071                 struct i915_ggtt_view view =
2072                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2073                 unsigned int flags;
2074
2075                 flags = PIN_MAPPABLE;
2076                 if (view.type == I915_GGTT_VIEW_NORMAL)
2077                         flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2078
2079                 /*
2080                  * Userspace is now writing through an untracked VMA, abandon
2081                  * all hope that the hardware is able to track future writes.
2082                  */
2083                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2084
2085                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2086                 if (IS_ERR(vma) && !view.type) {
2087                         flags = PIN_MAPPABLE;
2088                         view.type = I915_GGTT_VIEW_PARTIAL;
2089                         vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2090                 }
2091         }
2092         if (IS_ERR(vma)) {
2093                 ret = PTR_ERR(vma);
2094                 goto err_unlock;
2095         }
2096
2097         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2098         if (ret)
2099                 goto err_unpin;
2100
2101         ret = i915_vma_pin_fence(vma);
2102         if (ret)
2103                 goto err_unpin;
2104
2105         /* Finally, remap it using the new GTT offset */
2106         ret = remap_io_mapping(area,
2107                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2108                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2109                                min_t(u64, vma->size, area->vm_end - area->vm_start),
2110                                &ggtt->iomap);
2111         if (ret)
2112                 goto err_fence;
2113
2114         /* Mark as being mmapped into userspace for later revocation */
2115         assert_rpm_wakelock_held(dev_priv);
2116         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2117                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2118         GEM_BUG_ON(!obj->userfault_count);
2119
2120         i915_vma_set_ggtt_write(vma);
2121
2122 err_fence:
2123         i915_vma_unpin_fence(vma);
2124 err_unpin:
2125         __i915_vma_unpin(vma);
2126 err_unlock:
2127         mutex_unlock(&dev->struct_mutex);
2128 err_rpm:
2129         intel_runtime_pm_put(dev_priv);
2130         i915_gem_object_unpin_pages(obj);
2131 err:
2132         switch (ret) {
2133         case -EIO:
2134                 /*
2135                  * We eat errors when the gpu is terminally wedged to avoid
2136                  * userspace unduly crashing (gl has no provisions for mmaps to
2137                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2138                  * and so needs to be reported.
2139                  */
2140                 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2141                         return VM_FAULT_SIGBUS;
2142                 /* else: fall through */
2143         case -EAGAIN:
2144                 /*
2145                  * EAGAIN means the gpu is hung and we'll wait for the error
2146                  * handler to reset everything when re-faulting in
2147                  * i915_mutex_lock_interruptible.
2148                  */
2149         case 0:
2150         case -ERESTARTSYS:
2151         case -EINTR:
2152         case -EBUSY:
2153                 /*
2154                  * EBUSY is ok: this just means that another thread
2155                  * already did the job.
2156                  */
2157                 return VM_FAULT_NOPAGE;
2158         case -ENOMEM:
2159                 return VM_FAULT_OOM;
2160         case -ENOSPC:
2161         case -EFAULT:
2162                 return VM_FAULT_SIGBUS;
2163         default:
2164                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2165                 return VM_FAULT_SIGBUS;
2166         }
2167 }
2168
2169 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2170 {
2171         struct i915_vma *vma;
2172
2173         GEM_BUG_ON(!obj->userfault_count);
2174
2175         obj->userfault_count = 0;
2176         list_del(&obj->userfault_link);
2177         drm_vma_node_unmap(&obj->base.vma_node,
2178                            obj->base.dev->anon_inode->i_mapping);
2179
2180         for_each_ggtt_vma(vma, obj)
2181                 i915_vma_unset_userfault(vma);
2182 }
2183
2184 /**
2185  * i915_gem_release_mmap - remove physical page mappings
2186  * @obj: obj in question
2187  *
2188  * Preserve the reservation of the mmapping with the DRM core code, but
2189  * relinquish ownership of the pages back to the system.
2190  *
2191  * It is vital that we remove the page mapping if we have mapped a tiled
2192  * object through the GTT and then lose the fence register due to
2193  * resource pressure. Similarly if the object has been moved out of the
2194  * aperture, than pages mapped into userspace must be revoked. Removing the
2195  * mapping will then trigger a page fault on the next user access, allowing
2196  * fixup by i915_gem_fault().
2197  */
2198 void
2199 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2200 {
2201         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2202
2203         /* Serialisation between user GTT access and our code depends upon
2204          * revoking the CPU's PTE whilst the mutex is held. The next user
2205          * pagefault then has to wait until we release the mutex.
2206          *
2207          * Note that RPM complicates somewhat by adding an additional
2208          * requirement that operations to the GGTT be made holding the RPM
2209          * wakeref.
2210          */
2211         lockdep_assert_held(&i915->drm.struct_mutex);
2212         intel_runtime_pm_get(i915);
2213
2214         if (!obj->userfault_count)
2215                 goto out;
2216
2217         __i915_gem_object_release_mmap(obj);
2218
2219         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2220          * memory transactions from userspace before we return. The TLB
2221          * flushing implied above by changing the PTE above *should* be
2222          * sufficient, an extra barrier here just provides us with a bit
2223          * of paranoid documentation about our requirement to serialise
2224          * memory writes before touching registers / GSM.
2225          */
2226         wmb();
2227
2228 out:
2229         intel_runtime_pm_put(i915);
2230 }
2231
2232 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2233 {
2234         struct drm_i915_gem_object *obj, *on;
2235         int i;
2236
2237         /*
2238          * Only called during RPM suspend. All users of the userfault_list
2239          * must be holding an RPM wakeref to ensure that this can not
2240          * run concurrently with themselves (and use the struct_mutex for
2241          * protection between themselves).
2242          */
2243
2244         list_for_each_entry_safe(obj, on,
2245                                  &dev_priv->mm.userfault_list, userfault_link)
2246                 __i915_gem_object_release_mmap(obj);
2247
2248         /* The fence will be lost when the device powers down. If any were
2249          * in use by hardware (i.e. they are pinned), we should not be powering
2250          * down! All other fences will be reacquired by the user upon waking.
2251          */
2252         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2253                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2254
2255                 /* Ideally we want to assert that the fence register is not
2256                  * live at this point (i.e. that no piece of code will be
2257                  * trying to write through fence + GTT, as that both violates
2258                  * our tracking of activity and associated locking/barriers,
2259                  * but also is illegal given that the hw is powered down).
2260                  *
2261                  * Previously we used reg->pin_count as a "liveness" indicator.
2262                  * That is not sufficient, and we need a more fine-grained
2263                  * tool if we want to have a sanity check here.
2264                  */
2265
2266                 if (!reg->vma)
2267                         continue;
2268
2269                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2270                 reg->dirty = true;
2271         }
2272 }
2273
2274 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275 {
2276         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277         int err;
2278
2279         err = drm_gem_create_mmap_offset(&obj->base);
2280         if (likely(!err))
2281                 return 0;
2282
2283         /* Attempt to reap some mmap space from dead objects */
2284         do {
2285                 err = i915_gem_wait_for_idle(dev_priv,
2286                                              I915_WAIT_INTERRUPTIBLE,
2287                                              MAX_SCHEDULE_TIMEOUT);
2288                 if (err)
2289                         break;
2290
2291                 i915_gem_drain_freed_objects(dev_priv);
2292                 err = drm_gem_create_mmap_offset(&obj->base);
2293                 if (!err)
2294                         break;
2295
2296         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2297
2298         return err;
2299 }
2300
2301 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2302 {
2303         drm_gem_free_mmap_offset(&obj->base);
2304 }
2305
2306 int
2307 i915_gem_mmap_gtt(struct drm_file *file,
2308                   struct drm_device *dev,
2309                   uint32_t handle,
2310                   uint64_t *offset)
2311 {
2312         struct drm_i915_gem_object *obj;
2313         int ret;
2314
2315         obj = i915_gem_object_lookup(file, handle);
2316         if (!obj)
2317                 return -ENOENT;
2318
2319         ret = i915_gem_object_create_mmap_offset(obj);
2320         if (ret == 0)
2321                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2322
2323         i915_gem_object_put(obj);
2324         return ret;
2325 }
2326
2327 /**
2328  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2329  * @dev: DRM device
2330  * @data: GTT mapping ioctl data
2331  * @file: GEM object info
2332  *
2333  * Simply returns the fake offset to userspace so it can mmap it.
2334  * The mmap call will end up in drm_gem_mmap(), which will set things
2335  * up so we can get faults in the handler above.
2336  *
2337  * The fault handler will take care of binding the object into the GTT
2338  * (since it may have been evicted to make room for something), allocating
2339  * a fence register, and mapping the appropriate aperture address into
2340  * userspace.
2341  */
2342 int
2343 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2344                         struct drm_file *file)
2345 {
2346         struct drm_i915_gem_mmap_gtt *args = data;
2347
2348         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2349 }
2350
2351 /* Immediately discard the backing storage */
2352 static void
2353 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2354 {
2355         i915_gem_object_free_mmap_offset(obj);
2356
2357         if (obj->base.filp == NULL)
2358                 return;
2359
2360         /* Our goal here is to return as much of the memory as
2361          * is possible back to the system as we are called from OOM.
2362          * To do this we must instruct the shmfs to drop all of its
2363          * backing pages, *now*.
2364          */
2365         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2366         obj->mm.madv = __I915_MADV_PURGED;
2367         obj->mm.pages = ERR_PTR(-EFAULT);
2368 }
2369
2370 /* Try to discard unwanted pages */
2371 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2372 {
2373         struct address_space *mapping;
2374
2375         lockdep_assert_held(&obj->mm.lock);
2376         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2377
2378         switch (obj->mm.madv) {
2379         case I915_MADV_DONTNEED:
2380                 i915_gem_object_truncate(obj);
2381         case __I915_MADV_PURGED:
2382                 return;
2383         }
2384
2385         if (obj->base.filp == NULL)
2386                 return;
2387
2388         mapping = obj->base.filp->f_mapping,
2389         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2390 }
2391
2392 static void
2393 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2394                               struct sg_table *pages)
2395 {
2396         struct sgt_iter sgt_iter;
2397         struct page *page;
2398
2399         __i915_gem_object_release_shmem(obj, pages, true);
2400
2401         i915_gem_gtt_finish_pages(obj, pages);
2402
2403         if (i915_gem_object_needs_bit17_swizzle(obj))
2404                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2405
2406         for_each_sgt_page(page, sgt_iter, pages) {
2407                 if (obj->mm.dirty)
2408                         set_page_dirty(page);
2409
2410                 if (obj->mm.madv == I915_MADV_WILLNEED)
2411                         mark_page_accessed(page);
2412
2413                 put_page(page);
2414         }
2415         obj->mm.dirty = false;
2416
2417         sg_free_table(pages);
2418         kfree(pages);
2419 }
2420
2421 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2422 {
2423         struct radix_tree_iter iter;
2424         void __rcu **slot;
2425
2426         rcu_read_lock();
2427         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2428                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2429         rcu_read_unlock();
2430 }
2431
2432 static struct sg_table *
2433 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2434 {
2435         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2436         struct sg_table *pages;
2437
2438         pages = fetch_and_zero(&obj->mm.pages);
2439         if (!pages)
2440                 return NULL;
2441
2442         spin_lock(&i915->mm.obj_lock);
2443         list_del(&obj->mm.link);
2444         spin_unlock(&i915->mm.obj_lock);
2445
2446         if (obj->mm.mapping) {
2447                 void *ptr;
2448
2449                 ptr = page_mask_bits(obj->mm.mapping);
2450                 if (is_vmalloc_addr(ptr))
2451                         vunmap(ptr);
2452                 else
2453                         kunmap(kmap_to_page(ptr));
2454
2455                 obj->mm.mapping = NULL;
2456         }
2457
2458         __i915_gem_object_reset_page_iter(obj);
2459         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2460
2461         return pages;
2462 }
2463
2464 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2465                                  enum i915_mm_subclass subclass)
2466 {
2467         struct sg_table *pages;
2468
2469         if (i915_gem_object_has_pinned_pages(obj))
2470                 return;
2471
2472         GEM_BUG_ON(obj->bind_count);
2473         if (!i915_gem_object_has_pages(obj))
2474                 return;
2475
2476         /* May be called by shrinker from within get_pages() (on another bo) */
2477         mutex_lock_nested(&obj->mm.lock, subclass);
2478         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2479                 goto unlock;
2480
2481         /*
2482          * ->put_pages might need to allocate memory for the bit17 swizzle
2483          * array, hence protect them from being reaped by removing them from gtt
2484          * lists early.
2485          */
2486         pages = __i915_gem_object_unset_pages(obj);
2487         if (!IS_ERR(pages))
2488                 obj->ops->put_pages(obj, pages);
2489
2490 unlock:
2491         mutex_unlock(&obj->mm.lock);
2492 }
2493
2494 static bool i915_sg_trim(struct sg_table *orig_st)
2495 {
2496         struct sg_table new_st;
2497         struct scatterlist *sg, *new_sg;
2498         unsigned int i;
2499
2500         if (orig_st->nents == orig_st->orig_nents)
2501                 return false;
2502
2503         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2504                 return false;
2505
2506         new_sg = new_st.sgl;
2507         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2508                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2509                 sg_dma_address(new_sg) = sg_dma_address(sg);
2510                 sg_dma_len(new_sg) = sg_dma_len(sg);
2511
2512                 new_sg = sg_next(new_sg);
2513         }
2514         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2515
2516         sg_free_table(orig_st);
2517
2518         *orig_st = new_st;
2519         return true;
2520 }
2521
2522 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2523 {
2524         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2525         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2526         unsigned long i;
2527         struct address_space *mapping;
2528         struct sg_table *st;
2529         struct scatterlist *sg;
2530         struct sgt_iter sgt_iter;
2531         struct page *page;
2532         unsigned long last_pfn = 0;     /* suppress gcc warning */
2533         unsigned int max_segment = i915_sg_segment_size();
2534         unsigned int sg_page_sizes;
2535         gfp_t noreclaim;
2536         int ret;
2537
2538         /*
2539          * Assert that the object is not currently in any GPU domain. As it
2540          * wasn't in the GTT, there shouldn't be any way it could have been in
2541          * a GPU cache
2542          */
2543         GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2544         GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2545
2546         /*
2547          * If there's no chance of allocating enough pages for the whole
2548          * object, bail early.
2549          */
2550         if (page_count > totalram_pages)
2551                 return -ENOMEM;
2552
2553         st = kmalloc(sizeof(*st), GFP_KERNEL);
2554         if (st == NULL)
2555                 return -ENOMEM;
2556
2557 rebuild_st:
2558         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2559                 kfree(st);
2560                 return -ENOMEM;
2561         }
2562
2563         /*
2564          * Get the list of pages out of our struct file.  They'll be pinned
2565          * at this point until we release them.
2566          *
2567          * Fail silently without starting the shrinker
2568          */
2569         mapping = obj->base.filp->f_mapping;
2570         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2571         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2572
2573         sg = st->sgl;
2574         st->nents = 0;
2575         sg_page_sizes = 0;
2576         for (i = 0; i < page_count; i++) {
2577                 const unsigned int shrink[] = {
2578                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2579                         0,
2580                 }, *s = shrink;
2581                 gfp_t gfp = noreclaim;
2582
2583                 do {
2584                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2585                         if (likely(!IS_ERR(page)))
2586                                 break;
2587
2588                         if (!*s) {
2589                                 ret = PTR_ERR(page);
2590                                 goto err_sg;
2591                         }
2592
2593                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2594                         cond_resched();
2595
2596                         /*
2597                          * We've tried hard to allocate the memory by reaping
2598                          * our own buffer, now let the real VM do its job and
2599                          * go down in flames if truly OOM.
2600                          *
2601                          * However, since graphics tend to be disposable,
2602                          * defer the oom here by reporting the ENOMEM back
2603                          * to userspace.
2604                          */
2605                         if (!*s) {
2606                                 /* reclaim and warn, but no oom */
2607                                 gfp = mapping_gfp_mask(mapping);
2608
2609                                 /*
2610                                  * Our bo are always dirty and so we require
2611                                  * kswapd to reclaim our pages (direct reclaim
2612                                  * does not effectively begin pageout of our
2613                                  * buffers on its own). However, direct reclaim
2614                                  * only waits for kswapd when under allocation
2615                                  * congestion. So as a result __GFP_RECLAIM is
2616                                  * unreliable and fails to actually reclaim our
2617                                  * dirty pages -- unless you try over and over
2618                                  * again with !__GFP_NORETRY. However, we still
2619                                  * want to fail this allocation rather than
2620                                  * trigger the out-of-memory killer and for
2621                                  * this we want __GFP_RETRY_MAYFAIL.
2622                                  */
2623                                 gfp |= __GFP_RETRY_MAYFAIL;
2624                         }
2625                 } while (1);
2626
2627                 if (!i ||
2628                     sg->length >= max_segment ||
2629                     page_to_pfn(page) != last_pfn + 1) {
2630                         if (i) {
2631                                 sg_page_sizes |= sg->length;
2632                                 sg = sg_next(sg);
2633                         }
2634                         st->nents++;
2635                         sg_set_page(sg, page, PAGE_SIZE, 0);
2636                 } else {
2637                         sg->length += PAGE_SIZE;
2638                 }
2639                 last_pfn = page_to_pfn(page);
2640
2641                 /* Check that the i965g/gm workaround works. */
2642                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2643         }
2644         if (sg) { /* loop terminated early; short sg table */
2645                 sg_page_sizes |= sg->length;
2646                 sg_mark_end(sg);
2647         }
2648
2649         /* Trim unused sg entries to avoid wasting memory. */
2650         i915_sg_trim(st);
2651
2652         ret = i915_gem_gtt_prepare_pages(obj, st);
2653         if (ret) {
2654                 /*
2655                  * DMA remapping failed? One possible cause is that
2656                  * it could not reserve enough large entries, asking
2657                  * for PAGE_SIZE chunks instead may be helpful.
2658                  */
2659                 if (max_segment > PAGE_SIZE) {
2660                         for_each_sgt_page(page, sgt_iter, st)
2661                                 put_page(page);
2662                         sg_free_table(st);
2663
2664                         max_segment = PAGE_SIZE;
2665                         goto rebuild_st;
2666                 } else {
2667                         dev_warn(&dev_priv->drm.pdev->dev,
2668                                  "Failed to DMA remap %lu pages\n",
2669                                  page_count);
2670                         goto err_pages;
2671                 }
2672         }
2673
2674         if (i915_gem_object_needs_bit17_swizzle(obj))
2675                 i915_gem_object_do_bit_17_swizzle(obj, st);
2676
2677         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2678
2679         return 0;
2680
2681 err_sg:
2682         sg_mark_end(sg);
2683 err_pages:
2684         for_each_sgt_page(page, sgt_iter, st)
2685                 put_page(page);
2686         sg_free_table(st);
2687         kfree(st);
2688
2689         /*
2690          * shmemfs first checks if there is enough memory to allocate the page
2691          * and reports ENOSPC should there be insufficient, along with the usual
2692          * ENOMEM for a genuine allocation failure.
2693          *
2694          * We use ENOSPC in our driver to mean that we have run out of aperture
2695          * space and so want to translate the error from shmemfs back to our
2696          * usual understanding of ENOMEM.
2697          */
2698         if (ret == -ENOSPC)
2699                 ret = -ENOMEM;
2700
2701         return ret;
2702 }
2703
2704 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2705                                  struct sg_table *pages,
2706                                  unsigned int sg_page_sizes)
2707 {
2708         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2709         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2710         int i;
2711
2712         lockdep_assert_held(&obj->mm.lock);
2713
2714         obj->mm.get_page.sg_pos = pages->sgl;
2715         obj->mm.get_page.sg_idx = 0;
2716
2717         obj->mm.pages = pages;
2718
2719         if (i915_gem_object_is_tiled(obj) &&
2720             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2721                 GEM_BUG_ON(obj->mm.quirked);
2722                 __i915_gem_object_pin_pages(obj);
2723                 obj->mm.quirked = true;
2724         }
2725
2726         GEM_BUG_ON(!sg_page_sizes);
2727         obj->mm.page_sizes.phys = sg_page_sizes;
2728
2729         /*
2730          * Calculate the supported page-sizes which fit into the given
2731          * sg_page_sizes. This will give us the page-sizes which we may be able
2732          * to use opportunistically when later inserting into the GTT. For
2733          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2734          * 64K or 4K pages, although in practice this will depend on a number of
2735          * other factors.
2736          */
2737         obj->mm.page_sizes.sg = 0;
2738         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2739                 if (obj->mm.page_sizes.phys & ~0u << i)
2740                         obj->mm.page_sizes.sg |= BIT(i);
2741         }
2742         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2743
2744         spin_lock(&i915->mm.obj_lock);
2745         list_add(&obj->mm.link, &i915->mm.unbound_list);
2746         spin_unlock(&i915->mm.obj_lock);
2747 }
2748
2749 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2750 {
2751         int err;
2752
2753         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2754                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2755                 return -EFAULT;
2756         }
2757
2758         err = obj->ops->get_pages(obj);
2759         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2760
2761         return err;
2762 }
2763
2764 /* Ensure that the associated pages are gathered from the backing storage
2765  * and pinned into our object. i915_gem_object_pin_pages() may be called
2766  * multiple times before they are released by a single call to
2767  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2768  * either as a result of memory pressure (reaping pages under the shrinker)
2769  * or as the object is itself released.
2770  */
2771 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2772 {
2773         int err;
2774
2775         err = mutex_lock_interruptible(&obj->mm.lock);
2776         if (err)
2777                 return err;
2778
2779         if (unlikely(!i915_gem_object_has_pages(obj))) {
2780                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2781
2782                 err = ____i915_gem_object_get_pages(obj);
2783                 if (err)
2784                         goto unlock;
2785
2786                 smp_mb__before_atomic();
2787         }
2788         atomic_inc(&obj->mm.pages_pin_count);
2789
2790 unlock:
2791         mutex_unlock(&obj->mm.lock);
2792         return err;
2793 }
2794
2795 /* The 'mapping' part of i915_gem_object_pin_map() below */
2796 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2797                                  enum i915_map_type type)
2798 {
2799         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2800         struct sg_table *sgt = obj->mm.pages;
2801         struct sgt_iter sgt_iter;
2802         struct page *page;
2803         struct page *stack_pages[32];
2804         struct page **pages = stack_pages;
2805         unsigned long i = 0;
2806         pgprot_t pgprot;
2807         void *addr;
2808
2809         /* A single page can always be kmapped */
2810         if (n_pages == 1 && type == I915_MAP_WB)
2811                 return kmap(sg_page(sgt->sgl));
2812
2813         if (n_pages > ARRAY_SIZE(stack_pages)) {
2814                 /* Too big for stack -- allocate temporary array instead */
2815                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2816                 if (!pages)
2817                         return NULL;
2818         }
2819
2820         for_each_sgt_page(page, sgt_iter, sgt)
2821                 pages[i++] = page;
2822
2823         /* Check that we have the expected number of pages */
2824         GEM_BUG_ON(i != n_pages);
2825
2826         switch (type) {
2827         default:
2828                 MISSING_CASE(type);
2829                 /* fallthrough to use PAGE_KERNEL anyway */
2830         case I915_MAP_WB:
2831                 pgprot = PAGE_KERNEL;
2832                 break;
2833         case I915_MAP_WC:
2834                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2835                 break;
2836         }
2837         addr = vmap(pages, n_pages, 0, pgprot);
2838
2839         if (pages != stack_pages)
2840                 kvfree(pages);
2841
2842         return addr;
2843 }
2844
2845 /* get, pin, and map the pages of the object into kernel space */
2846 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2847                               enum i915_map_type type)
2848 {
2849         enum i915_map_type has_type;
2850         bool pinned;
2851         void *ptr;
2852         int ret;
2853
2854         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2855                 return ERR_PTR(-ENXIO);
2856
2857         ret = mutex_lock_interruptible(&obj->mm.lock);
2858         if (ret)
2859                 return ERR_PTR(ret);
2860
2861         pinned = !(type & I915_MAP_OVERRIDE);
2862         type &= ~I915_MAP_OVERRIDE;
2863
2864         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2865                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2866                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2867
2868                         ret = ____i915_gem_object_get_pages(obj);
2869                         if (ret)
2870                                 goto err_unlock;
2871
2872                         smp_mb__before_atomic();
2873                 }
2874                 atomic_inc(&obj->mm.pages_pin_count);
2875                 pinned = false;
2876         }
2877         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2878
2879         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2880         if (ptr && has_type != type) {
2881                 if (pinned) {
2882                         ret = -EBUSY;
2883                         goto err_unpin;
2884                 }
2885
2886                 if (is_vmalloc_addr(ptr))
2887                         vunmap(ptr);
2888                 else
2889                         kunmap(kmap_to_page(ptr));
2890
2891                 ptr = obj->mm.mapping = NULL;
2892         }
2893
2894         if (!ptr) {
2895                 ptr = i915_gem_object_map(obj, type);
2896                 if (!ptr) {
2897                         ret = -ENOMEM;
2898                         goto err_unpin;
2899                 }
2900
2901                 obj->mm.mapping = page_pack_bits(ptr, type);
2902         }
2903
2904 out_unlock:
2905         mutex_unlock(&obj->mm.lock);
2906         return ptr;
2907
2908 err_unpin:
2909         atomic_dec(&obj->mm.pages_pin_count);
2910 err_unlock:
2911         ptr = ERR_PTR(ret);
2912         goto out_unlock;
2913 }
2914
2915 static int
2916 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2917                            const struct drm_i915_gem_pwrite *arg)
2918 {
2919         struct address_space *mapping = obj->base.filp->f_mapping;
2920         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2921         u64 remain, offset;
2922         unsigned int pg;
2923
2924         /* Before we instantiate/pin the backing store for our use, we
2925          * can prepopulate the shmemfs filp efficiently using a write into
2926          * the pagecache. We avoid the penalty of instantiating all the
2927          * pages, important if the user is just writing to a few and never
2928          * uses the object on the GPU, and using a direct write into shmemfs
2929          * allows it to avoid the cost of retrieving a page (either swapin
2930          * or clearing-before-use) before it is overwritten.
2931          */
2932         if (i915_gem_object_has_pages(obj))
2933                 return -ENODEV;
2934
2935         if (obj->mm.madv != I915_MADV_WILLNEED)
2936                 return -EFAULT;
2937
2938         /* Before the pages are instantiated the object is treated as being
2939          * in the CPU domain. The pages will be clflushed as required before
2940          * use, and we can freely write into the pages directly. If userspace
2941          * races pwrite with any other operation; corruption will ensue -
2942          * that is userspace's prerogative!
2943          */
2944
2945         remain = arg->size;
2946         offset = arg->offset;
2947         pg = offset_in_page(offset);
2948
2949         do {
2950                 unsigned int len, unwritten;
2951                 struct page *page;
2952                 void *data, *vaddr;
2953                 int err;
2954
2955                 len = PAGE_SIZE - pg;
2956                 if (len > remain)
2957                         len = remain;
2958
2959                 err = pagecache_write_begin(obj->base.filp, mapping,
2960                                             offset, len, 0,
2961                                             &page, &data);
2962                 if (err < 0)
2963                         return err;
2964
2965                 vaddr = kmap(page);
2966                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2967                 kunmap(page);
2968
2969                 err = pagecache_write_end(obj->base.filp, mapping,
2970                                           offset, len, len - unwritten,
2971                                           page, data);
2972                 if (err < 0)
2973                         return err;
2974
2975                 if (unwritten)
2976                         return -EFAULT;
2977
2978                 remain -= len;
2979                 user_data += len;
2980                 offset += len;
2981                 pg = 0;
2982         } while (remain);
2983
2984         return 0;
2985 }
2986
2987 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2988                                         const struct i915_gem_context *ctx)
2989 {
2990         unsigned int score;
2991         unsigned long prev_hang;
2992
2993         if (i915_gem_context_is_banned(ctx))
2994                 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2995         else
2996                 score = 0;
2997
2998         prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2999         if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3000                 score += I915_CLIENT_SCORE_HANG_FAST;
3001
3002         if (score) {
3003                 atomic_add(score, &file_priv->ban_score);
3004
3005                 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3006                                  ctx->name, score,
3007                                  atomic_read(&file_priv->ban_score));
3008         }
3009 }
3010
3011 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3012 {
3013         unsigned int score;
3014         bool banned, bannable;
3015
3016         atomic_inc(&ctx->guilty_count);
3017
3018         bannable = i915_gem_context_is_bannable(ctx);
3019         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3020         banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3021
3022         /* Cool contexts don't accumulate client ban score */
3023         if (!bannable)
3024                 return;
3025
3026         if (banned) {
3027                 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3028                                  ctx->name, atomic_read(&ctx->guilty_count),
3029                                  score);
3030                 i915_gem_context_set_banned(ctx);
3031         }
3032
3033         if (!IS_ERR_OR_NULL(ctx->file_priv))
3034                 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3035 }
3036
3037 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3038 {
3039         atomic_inc(&ctx->active_count);
3040 }
3041
3042 struct i915_request *
3043 i915_gem_find_active_request(struct intel_engine_cs *engine)
3044 {
3045         struct i915_request *request, *active = NULL;
3046         unsigned long flags;
3047
3048         /*
3049          * We are called by the error capture, reset and to dump engine
3050          * state at random points in time. In particular, note that neither is
3051          * crucially ordered with an interrupt. After a hang, the GPU is dead
3052          * and we assume that no more writes can happen (we waited long enough
3053          * for all writes that were in transaction to be flushed) - adding an
3054          * extra delay for a recent interrupt is pointless. Hence, we do
3055          * not need an engine->irq_seqno_barrier() before the seqno reads.
3056          * At all other times, we must assume the GPU is still running, but
3057          * we only care about the snapshot of this moment.
3058          */
3059         spin_lock_irqsave(&engine->timeline.lock, flags);
3060         list_for_each_entry(request, &engine->timeline.requests, link) {
3061                 if (__i915_request_completed(request, request->global_seqno))
3062                         continue;
3063
3064                 active = request;
3065                 break;
3066         }
3067         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3068
3069         return active;
3070 }
3071
3072 /*
3073  * Ensure irq handler finishes, and not run again.
3074  * Also return the active request so that we only search for it once.
3075  */
3076 struct i915_request *
3077 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3078 {
3079         struct i915_request *request;
3080
3081         /*
3082          * During the reset sequence, we must prevent the engine from
3083          * entering RC6. As the context state is undefined until we restart
3084          * the engine, if it does enter RC6 during the reset, the state
3085          * written to the powercontext is undefined and so we may lose
3086          * GPU state upon resume, i.e. fail to restart after a reset.
3087          */
3088         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3089
3090         request = engine->reset.prepare(engine);
3091         if (request && request->fence.error == -EIO)
3092                 request = ERR_PTR(-EIO); /* Previous reset failed! */
3093
3094         return request;
3095 }
3096
3097 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3098 {
3099         struct intel_engine_cs *engine;
3100         struct i915_request *request;
3101         enum intel_engine_id id;
3102         int err = 0;
3103
3104         for_each_engine(engine, dev_priv, id) {
3105                 request = i915_gem_reset_prepare_engine(engine);
3106                 if (IS_ERR(request)) {
3107                         err = PTR_ERR(request);
3108                         continue;
3109                 }
3110
3111                 engine->hangcheck.active_request = request;
3112         }
3113
3114         i915_gem_revoke_fences(dev_priv);
3115         intel_uc_sanitize(dev_priv);
3116
3117         return err;
3118 }
3119
3120 static void engine_skip_context(struct i915_request *request)
3121 {
3122         struct intel_engine_cs *engine = request->engine;
3123         struct i915_gem_context *hung_ctx = request->gem_context;
3124         struct i915_timeline *timeline = request->timeline;
3125         unsigned long flags;
3126
3127         GEM_BUG_ON(timeline == &engine->timeline);
3128
3129         spin_lock_irqsave(&engine->timeline.lock, flags);
3130         spin_lock(&timeline->lock);
3131
3132         list_for_each_entry_continue(request, &engine->timeline.requests, link)
3133                 if (request->gem_context == hung_ctx)
3134                         i915_request_skip(request, -EIO);
3135
3136         list_for_each_entry(request, &timeline->requests, link)
3137                 i915_request_skip(request, -EIO);
3138
3139         spin_unlock(&timeline->lock);
3140         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3141 }
3142
3143 /* Returns the request if it was guilty of the hang */
3144 static struct i915_request *
3145 i915_gem_reset_request(struct intel_engine_cs *engine,
3146                        struct i915_request *request,
3147                        bool stalled)
3148 {
3149         /* The guilty request will get skipped on a hung engine.
3150          *
3151          * Users of client default contexts do not rely on logical
3152          * state preserved between batches so it is safe to execute
3153          * queued requests following the hang. Non default contexts
3154          * rely on preserved state, so skipping a batch loses the
3155          * evolution of the state and it needs to be considered corrupted.
3156          * Executing more queued batches on top of corrupted state is
3157          * risky. But we take the risk by trying to advance through
3158          * the queued requests in order to make the client behaviour
3159          * more predictable around resets, by not throwing away random
3160          * amount of batches it has prepared for execution. Sophisticated
3161          * clients can use gem_reset_stats_ioctl and dma fence status
3162          * (exported via sync_file info ioctl on explicit fences) to observe
3163          * when it loses the context state and should rebuild accordingly.
3164          *
3165          * The context ban, and ultimately the client ban, mechanism are safety
3166          * valves if client submission ends up resulting in nothing more than
3167          * subsequent hangs.
3168          */
3169
3170         if (i915_request_completed(request)) {
3171                 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3172                           engine->name, request->global_seqno,
3173                           request->fence.context, request->fence.seqno,
3174                           intel_engine_get_seqno(engine));
3175                 stalled = false;
3176         }
3177
3178         if (stalled) {
3179                 i915_gem_context_mark_guilty(request->gem_context);
3180                 i915_request_skip(request, -EIO);
3181
3182                 /* If this context is now banned, skip all pending requests. */
3183                 if (i915_gem_context_is_banned(request->gem_context))
3184                         engine_skip_context(request);
3185         } else {
3186                 /*
3187                  * Since this is not the hung engine, it may have advanced
3188                  * since the hang declaration. Double check by refinding
3189                  * the active request at the time of the reset.
3190                  */
3191                 request = i915_gem_find_active_request(engine);
3192                 if (request) {
3193                         unsigned long flags;
3194
3195                         i915_gem_context_mark_innocent(request->gem_context);
3196                         dma_fence_set_error(&request->fence, -EAGAIN);
3197
3198                         /* Rewind the engine to replay the incomplete rq */
3199                         spin_lock_irqsave(&engine->timeline.lock, flags);
3200                         request = list_prev_entry(request, link);
3201                         if (&request->link == &engine->timeline.requests)
3202                                 request = NULL;
3203                         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3204                 }
3205         }
3206
3207         return request;
3208 }
3209
3210 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3211                            struct i915_request *request,
3212                            bool stalled)
3213 {
3214         /*
3215          * Make sure this write is visible before we re-enable the interrupt
3216          * handlers on another CPU, as tasklet_enable() resolves to just
3217          * a compiler barrier which is insufficient for our purpose here.
3218          */
3219         smp_store_mb(engine->irq_posted, 0);
3220
3221         if (request)
3222                 request = i915_gem_reset_request(engine, request, stalled);
3223
3224         /* Setup the CS to resume from the breadcrumb of the hung request */
3225         engine->reset.reset(engine, request);
3226 }
3227
3228 void i915_gem_reset(struct drm_i915_private *dev_priv,
3229                     unsigned int stalled_mask)
3230 {
3231         struct intel_engine_cs *engine;
3232         enum intel_engine_id id;
3233
3234         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3235
3236         i915_retire_requests(dev_priv);
3237
3238         for_each_engine(engine, dev_priv, id) {
3239                 struct intel_context *ce;
3240
3241                 i915_gem_reset_engine(engine,
3242                                       engine->hangcheck.active_request,
3243                                       stalled_mask & ENGINE_MASK(id));
3244                 ce = fetch_and_zero(&engine->last_retired_context);
3245                 if (ce)
3246                         intel_context_unpin(ce);
3247
3248                 /*
3249                  * Ostensibily, we always want a context loaded for powersaving,
3250                  * so if the engine is idle after the reset, send a request
3251                  * to load our scratch kernel_context.
3252                  *
3253                  * More mysteriously, if we leave the engine idle after a reset,
3254                  * the next userspace batch may hang, with what appears to be
3255                  * an incoherent read by the CS (presumably stale TLB). An
3256                  * empty request appears sufficient to paper over the glitch.
3257                  */
3258                 if (intel_engine_is_idle(engine)) {
3259                         struct i915_request *rq;
3260
3261                         rq = i915_request_alloc(engine,
3262                                                 dev_priv->kernel_context);
3263                         if (!IS_ERR(rq))
3264                                 i915_request_add(rq);
3265                 }
3266         }
3267
3268         i915_gem_restore_fences(dev_priv);
3269 }
3270
3271 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3272 {
3273         engine->reset.finish(engine);
3274
3275         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3276 }
3277
3278 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3279 {
3280         struct intel_engine_cs *engine;
3281         enum intel_engine_id id;
3282
3283         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3284
3285         for_each_engine(engine, dev_priv, id) {
3286                 engine->hangcheck.active_request = NULL;
3287                 i915_gem_reset_finish_engine(engine);
3288         }
3289 }
3290
3291 static void nop_submit_request(struct i915_request *request)
3292 {
3293         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3294                   request->engine->name,
3295                   request->fence.context, request->fence.seqno);
3296         dma_fence_set_error(&request->fence, -EIO);
3297
3298         i915_request_submit(request);
3299 }
3300
3301 static void nop_complete_submit_request(struct i915_request *request)
3302 {
3303         unsigned long flags;
3304
3305         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3306                   request->engine->name,
3307                   request->fence.context, request->fence.seqno);
3308         dma_fence_set_error(&request->fence, -EIO);
3309
3310         spin_lock_irqsave(&request->engine->timeline.lock, flags);
3311         __i915_request_submit(request);
3312         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3313         spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3314 }
3315
3316 void i915_gem_set_wedged(struct drm_i915_private *i915)
3317 {
3318         struct intel_engine_cs *engine;
3319         enum intel_engine_id id;
3320
3321         GEM_TRACE("start\n");
3322
3323         if (GEM_SHOW_DEBUG()) {
3324                 struct drm_printer p = drm_debug_printer(__func__);
3325
3326                 for_each_engine(engine, i915, id)
3327                         intel_engine_dump(engine, &p, "%s\n", engine->name);
3328         }
3329
3330         if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3331                 goto out;
3332
3333         /*
3334          * First, stop submission to hw, but do not yet complete requests by
3335          * rolling the global seqno forward (since this would complete requests
3336          * for which we haven't set the fence error to EIO yet).
3337          */
3338         for_each_engine(engine, i915, id) {
3339                 i915_gem_reset_prepare_engine(engine);
3340
3341                 engine->submit_request = nop_submit_request;
3342                 engine->schedule = NULL;
3343         }
3344         i915->caps.scheduler = 0;
3345
3346         /* Even if the GPU reset fails, it should still stop the engines */
3347         if (INTEL_GEN(i915) >= 5)
3348                 intel_gpu_reset(i915, ALL_ENGINES);
3349
3350         /*
3351          * Make sure no one is running the old callback before we proceed with
3352          * cancelling requests and resetting the completion tracking. Otherwise
3353          * we might submit a request to the hardware which never completes.
3354          */
3355         synchronize_rcu();
3356
3357         for_each_engine(engine, i915, id) {
3358                 /* Mark all executing requests as skipped */
3359                 engine->cancel_requests(engine);
3360
3361                 /*
3362                  * Only once we've force-cancelled all in-flight requests can we
3363                  * start to complete all requests.
3364                  */
3365                 engine->submit_request = nop_complete_submit_request;
3366         }
3367
3368         /*
3369          * Make sure no request can slip through without getting completed by
3370          * either this call here to intel_engine_init_global_seqno, or the one
3371          * in nop_complete_submit_request.
3372          */
3373         synchronize_rcu();
3374
3375         for_each_engine(engine, i915, id) {
3376                 unsigned long flags;
3377
3378                 /*
3379                  * Mark all pending requests as complete so that any concurrent
3380                  * (lockless) lookup doesn't try and wait upon the request as we
3381                  * reset it.
3382                  */
3383                 spin_lock_irqsave(&engine->timeline.lock, flags);
3384                 intel_engine_init_global_seqno(engine,
3385                                                intel_engine_last_submit(engine));
3386                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3387
3388                 i915_gem_reset_finish_engine(engine);
3389         }
3390
3391 out:
3392         GEM_TRACE("end\n");
3393
3394         wake_up_all(&i915->gpu_error.reset_queue);
3395 }
3396
3397 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3398 {
3399         struct i915_timeline *tl;
3400
3401         lockdep_assert_held(&i915->drm.struct_mutex);
3402         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3403                 return true;
3404
3405         GEM_TRACE("start\n");
3406
3407         /*
3408          * Before unwedging, make sure that all pending operations
3409          * are flushed and errored out - we may have requests waiting upon
3410          * third party fences. We marked all inflight requests as EIO, and
3411          * every execbuf since returned EIO, for consistency we want all
3412          * the currently pending requests to also be marked as EIO, which
3413          * is done inside our nop_submit_request - and so we must wait.
3414          *
3415          * No more can be submitted until we reset the wedged bit.
3416          */
3417         list_for_each_entry(tl, &i915->gt.timelines, link) {
3418                 struct i915_request *rq;
3419
3420                 rq = i915_gem_active_peek(&tl->last_request,
3421                                           &i915->drm.struct_mutex);
3422                 if (!rq)
3423                         continue;
3424
3425                 /*
3426                  * We can't use our normal waiter as we want to
3427                  * avoid recursively trying to handle the current
3428                  * reset. The basic dma_fence_default_wait() installs
3429                  * a callback for dma_fence_signal(), which is
3430                  * triggered by our nop handler (indirectly, the
3431                  * callback enables the signaler thread which is
3432                  * woken by the nop_submit_request() advancing the seqno
3433                  * and when the seqno passes the fence, the signaler
3434                  * then signals the fence waking us up).
3435                  */
3436                 if (dma_fence_default_wait(&rq->fence, true,
3437                                            MAX_SCHEDULE_TIMEOUT) < 0)
3438                         return false;
3439         }
3440         i915_retire_requests(i915);
3441         GEM_BUG_ON(i915->gt.active_requests);
3442
3443         if (!intel_gpu_reset(i915, ALL_ENGINES))
3444                 intel_engines_sanitize(i915);
3445
3446         /*
3447          * Undo nop_submit_request. We prevent all new i915 requests from
3448          * being queued (by disallowing execbuf whilst wedged) so having
3449          * waited for all active requests above, we know the system is idle
3450          * and do not have to worry about a thread being inside
3451          * engine->submit_request() as we swap over. So unlike installing
3452          * the nop_submit_request on reset, we can do this from normal
3453          * context and do not require stop_machine().
3454          */
3455         intel_engines_reset_default_submission(i915);
3456         i915_gem_contexts_lost(i915);
3457
3458         GEM_TRACE("end\n");
3459
3460         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3461         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3462
3463         return true;
3464 }
3465
3466 static void
3467 i915_gem_retire_work_handler(struct work_struct *work)
3468 {
3469         struct drm_i915_private *dev_priv =
3470                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3471         struct drm_device *dev = &dev_priv->drm;
3472
3473         /* Come back later if the device is busy... */
3474         if (mutex_trylock(&dev->struct_mutex)) {
3475                 i915_retire_requests(dev_priv);
3476                 mutex_unlock(&dev->struct_mutex);
3477         }
3478
3479         /*
3480          * Keep the retire handler running until we are finally idle.
3481          * We do not need to do this test under locking as in the worst-case
3482          * we queue the retire worker once too often.
3483          */
3484         if (READ_ONCE(dev_priv->gt.awake))
3485                 queue_delayed_work(dev_priv->wq,
3486                                    &dev_priv->gt.retire_work,
3487                                    round_jiffies_up_relative(HZ));
3488 }
3489
3490 static void shrink_caches(struct drm_i915_private *i915)
3491 {
3492         /*
3493          * kmem_cache_shrink() discards empty slabs and reorders partially
3494          * filled slabs to prioritise allocating from the mostly full slabs,
3495          * with the aim of reducing fragmentation.
3496          */
3497         kmem_cache_shrink(i915->priorities);
3498         kmem_cache_shrink(i915->dependencies);
3499         kmem_cache_shrink(i915->requests);
3500         kmem_cache_shrink(i915->luts);
3501         kmem_cache_shrink(i915->vmas);
3502         kmem_cache_shrink(i915->objects);
3503 }
3504
3505 struct sleep_rcu_work {
3506         union {
3507                 struct rcu_head rcu;
3508                 struct work_struct work;
3509         };
3510         struct drm_i915_private *i915;
3511         unsigned int epoch;
3512 };
3513
3514 static inline bool
3515 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3516 {
3517         /*
3518          * There is a small chance that the epoch wrapped since we started
3519          * sleeping. If we assume that epoch is at least a u32, then it will
3520          * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3521          */
3522         return epoch == READ_ONCE(i915->gt.epoch);
3523 }
3524
3525 static void __sleep_work(struct work_struct *work)
3526 {
3527         struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3528         struct drm_i915_private *i915 = s->i915;
3529         unsigned int epoch = s->epoch;
3530
3531         kfree(s);
3532         if (same_epoch(i915, epoch))
3533                 shrink_caches(i915);
3534 }
3535
3536 static void __sleep_rcu(struct rcu_head *rcu)
3537 {
3538         struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3539         struct drm_i915_private *i915 = s->i915;
3540
3541         if (same_epoch(i915, s->epoch)) {
3542                 INIT_WORK(&s->work, __sleep_work);
3543                 queue_work(i915->wq, &s->work);
3544         } else {
3545                 kfree(s);
3546         }
3547 }
3548
3549 static inline bool
3550 new_requests_since_last_retire(const struct drm_i915_private *i915)
3551 {
3552         return (READ_ONCE(i915->gt.active_requests) ||
3553                 work_pending(&i915->gt.idle_work.work));
3554 }
3555
3556 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3557 {
3558         struct intel_engine_cs *engine;
3559         enum intel_engine_id id;
3560
3561         if (i915_terminally_wedged(&i915->gpu_error))
3562                 return;
3563
3564         GEM_BUG_ON(i915->gt.active_requests);
3565         for_each_engine(engine, i915, id) {
3566                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3567                 GEM_BUG_ON(engine->last_retired_context !=
3568                            to_intel_context(i915->kernel_context, engine));
3569         }
3570 }
3571
3572 static void
3573 i915_gem_idle_work_handler(struct work_struct *work)
3574 {
3575         struct drm_i915_private *dev_priv =
3576                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3577         unsigned int epoch = I915_EPOCH_INVALID;
3578         bool rearm_hangcheck;
3579
3580         if (!READ_ONCE(dev_priv->gt.awake))
3581                 return;
3582
3583         if (READ_ONCE(dev_priv->gt.active_requests))
3584                 return;
3585
3586         /*
3587          * Flush out the last user context, leaving only the pinned
3588          * kernel context resident. When we are idling on the kernel_context,
3589          * no more new requests (with a context switch) are emitted and we
3590          * can finally rest. A consequence is that the idle work handler is
3591          * always called at least twice before idling (and if the system is
3592          * idle that implies a round trip through the retire worker).
3593          */
3594         mutex_lock(&dev_priv->drm.struct_mutex);
3595         i915_gem_switch_to_kernel_context(dev_priv);
3596         mutex_unlock(&dev_priv->drm.struct_mutex);
3597
3598         GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3599                   READ_ONCE(dev_priv->gt.active_requests));
3600
3601         /*
3602          * Wait for last execlists context complete, but bail out in case a
3603          * new request is submitted. As we don't trust the hardware, we
3604          * continue on if the wait times out. This is necessary to allow
3605          * the machine to suspend even if the hardware dies, and we will
3606          * try to recover in resume (after depriving the hardware of power,
3607          * it may be in a better mmod).
3608          */
3609         __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3610                    intel_engines_are_idle(dev_priv),
3611                    I915_IDLE_ENGINES_TIMEOUT * 1000,
3612                    10, 500);
3613
3614         rearm_hangcheck =
3615                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3616
3617         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3618                 /* Currently busy, come back later */
3619                 mod_delayed_work(dev_priv->wq,
3620                                  &dev_priv->gt.idle_work,
3621                                  msecs_to_jiffies(50));
3622                 goto out_rearm;
3623         }
3624
3625         /*
3626          * New request retired after this work handler started, extend active
3627          * period until next instance of the work.
3628          */
3629         if (new_requests_since_last_retire(dev_priv))
3630                 goto out_unlock;
3631
3632         epoch = __i915_gem_park(dev_priv);
3633
3634         assert_kernel_context_is_current(dev_priv);
3635
3636         rearm_hangcheck = false;
3637 out_unlock:
3638         mutex_unlock(&dev_priv->drm.struct_mutex);
3639
3640 out_rearm:
3641         if (rearm_hangcheck) {
3642                 GEM_BUG_ON(!dev_priv->gt.awake);
3643                 i915_queue_hangcheck(dev_priv);
3644         }
3645
3646         /*
3647          * When we are idle, it is an opportune time to reap our caches.
3648          * However, we have many objects that utilise RCU and the ordered
3649          * i915->wq that this work is executing on. To try and flush any
3650          * pending frees now we are idle, we first wait for an RCU grace
3651          * period, and then queue a task (that will run last on the wq) to
3652          * shrink and re-optimize the caches.
3653          */
3654         if (same_epoch(dev_priv, epoch)) {
3655                 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3656                 if (s) {
3657                         s->i915 = dev_priv;
3658                         s->epoch = epoch;
3659                         call_rcu(&s->rcu, __sleep_rcu);
3660                 }
3661         }
3662 }
3663
3664 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3665 {
3666         struct drm_i915_private *i915 = to_i915(gem->dev);
3667         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3668         struct drm_i915_file_private *fpriv = file->driver_priv;
3669         struct i915_lut_handle *lut, *ln;
3670
3671         mutex_lock(&i915->drm.struct_mutex);
3672
3673         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3674                 struct i915_gem_context *ctx = lut->ctx;
3675                 struct i915_vma *vma;
3676
3677                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3678                 if (ctx->file_priv != fpriv)
3679                         continue;
3680
3681                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3682                 GEM_BUG_ON(vma->obj != obj);
3683
3684                 /* We allow the process to have multiple handles to the same
3685                  * vma, in the same fd namespace, by virtue of flink/open.
3686                  */
3687                 GEM_BUG_ON(!vma->open_count);
3688                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3689                         i915_vma_close(vma);
3690
3691                 list_del(&lut->obj_link);
3692                 list_del(&lut->ctx_link);
3693
3694                 kmem_cache_free(i915->luts, lut);
3695                 __i915_gem_object_release_unless_active(obj);
3696         }
3697
3698         mutex_unlock(&i915->drm.struct_mutex);
3699 }
3700
3701 static unsigned long to_wait_timeout(s64 timeout_ns)
3702 {
3703         if (timeout_ns < 0)
3704                 return MAX_SCHEDULE_TIMEOUT;
3705
3706         if (timeout_ns == 0)
3707                 return 0;
3708
3709         return nsecs_to_jiffies_timeout(timeout_ns);
3710 }
3711
3712 /**
3713  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3714  * @dev: drm device pointer
3715  * @data: ioctl data blob
3716  * @file: drm file pointer
3717  *
3718  * Returns 0 if successful, else an error is returned with the remaining time in
3719  * the timeout parameter.
3720  *  -ETIME: object is still busy after timeout
3721  *  -ERESTARTSYS: signal interrupted the wait
3722  *  -ENONENT: object doesn't exist
3723  * Also possible, but rare:
3724  *  -EAGAIN: incomplete, restart syscall
3725  *  -ENOMEM: damn
3726  *  -ENODEV: Internal IRQ fail
3727  *  -E?: The add request failed
3728  *
3729  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3730  * non-zero timeout parameter the wait ioctl will wait for the given number of
3731  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3732  * without holding struct_mutex the object may become re-busied before this
3733  * function completes. A similar but shorter * race condition exists in the busy
3734  * ioctl
3735  */
3736 int
3737 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3738 {
3739         struct drm_i915_gem_wait *args = data;
3740         struct drm_i915_gem_object *obj;
3741         ktime_t start;
3742         long ret;
3743
3744         if (args->flags != 0)
3745                 return -EINVAL;
3746
3747         obj = i915_gem_object_lookup(file, args->bo_handle);
3748         if (!obj)
3749                 return -ENOENT;
3750
3751         start = ktime_get();
3752
3753         ret = i915_gem_object_wait(obj,
3754                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3755                                    to_wait_timeout(args->timeout_ns),
3756                                    to_rps_client(file));
3757
3758         if (args->timeout_ns > 0) {
3759                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3760                 if (args->timeout_ns < 0)
3761                         args->timeout_ns = 0;
3762
3763                 /*
3764                  * Apparently ktime isn't accurate enough and occasionally has a
3765                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3766                  * things up to make the test happy. We allow up to 1 jiffy.
3767                  *
3768                  * This is a regression from the timespec->ktime conversion.
3769                  */
3770                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3771                         args->timeout_ns = 0;
3772
3773                 /* Asked to wait beyond the jiffie/scheduler precision? */
3774                 if (ret == -ETIME && args->timeout_ns)
3775                         ret = -EAGAIN;
3776         }
3777
3778         i915_gem_object_put(obj);
3779         return ret;
3780 }
3781
3782 static long wait_for_timeline(struct i915_timeline *tl,
3783                               unsigned int flags, long timeout)
3784 {
3785         struct i915_request *rq;
3786
3787         rq = i915_gem_active_get_unlocked(&tl->last_request);
3788         if (!rq)
3789                 return timeout;
3790
3791         /*
3792          * "Race-to-idle".
3793          *
3794          * Switching to the kernel context is often used a synchronous
3795          * step prior to idling, e.g. in suspend for flushing all
3796          * current operations to memory before sleeping. These we
3797          * want to complete as quickly as possible to avoid prolonged
3798          * stalls, so allow the gpu to boost to maximum clocks.
3799          */
3800         if (flags & I915_WAIT_FOR_IDLE_BOOST)
3801                 gen6_rps_boost(rq, NULL);
3802
3803         timeout = i915_request_wait(rq, flags, timeout);
3804         i915_request_put(rq);
3805
3806         return timeout;
3807 }
3808
3809 static int wait_for_engines(struct drm_i915_private *i915)
3810 {
3811         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3812                 dev_err(i915->drm.dev,
3813                         "Failed to idle engines, declaring wedged!\n");
3814                 GEM_TRACE_DUMP();
3815                 i915_gem_set_wedged(i915);
3816                 return -EIO;
3817         }
3818
3819         return 0;
3820 }
3821
3822 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3823                            unsigned int flags, long timeout)
3824 {
3825         GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3826                   flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3827                   timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3828
3829         /* If the device is asleep, we have no requests outstanding */
3830         if (!READ_ONCE(i915->gt.awake))
3831                 return 0;
3832
3833         if (flags & I915_WAIT_LOCKED) {
3834                 struct i915_timeline *tl;
3835                 int err;
3836
3837                 lockdep_assert_held(&i915->drm.struct_mutex);
3838
3839                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3840                         timeout = wait_for_timeline(tl, flags, timeout);
3841                         if (timeout < 0)
3842                                 return timeout;
3843                 }
3844                 if (GEM_SHOW_DEBUG() && !timeout) {
3845                         /* Presume that timeout was non-zero to begin with! */
3846                         dev_warn(&i915->drm.pdev->dev,
3847                                  "Missed idle-completion interrupt!\n");
3848                         GEM_TRACE_DUMP();
3849                 }
3850
3851                 err = wait_for_engines(i915);
3852                 if (err)
3853                         return err;
3854
3855                 i915_retire_requests(i915);
3856                 GEM_BUG_ON(i915->gt.active_requests);
3857         } else {
3858                 struct intel_engine_cs *engine;
3859                 enum intel_engine_id id;
3860
3861                 for_each_engine(engine, i915, id) {
3862                         struct i915_timeline *tl = &engine->timeline;
3863
3864                         timeout = wait_for_timeline(tl, flags, timeout);
3865                         if (timeout < 0)
3866                                 return timeout;
3867                 }
3868         }
3869
3870         return 0;
3871 }
3872
3873 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3874 {
3875         /*
3876          * We manually flush the CPU domain so that we can override and
3877          * force the flush for the display, and perform it asyncrhonously.
3878          */
3879         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3880         if (obj->cache_dirty)
3881                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3882         obj->write_domain = 0;
3883 }
3884
3885 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3886 {
3887         if (!READ_ONCE(obj->pin_global))
3888                 return;
3889
3890         mutex_lock(&obj->base.dev->struct_mutex);
3891         __i915_gem_object_flush_for_display(obj);
3892         mutex_unlock(&obj->base.dev->struct_mutex);
3893 }
3894
3895 /**
3896  * Moves a single object to the WC read, and possibly write domain.
3897  * @obj: object to act on
3898  * @write: ask for write access or read only
3899  *
3900  * This function returns when the move is complete, including waiting on
3901  * flushes to occur.
3902  */
3903 int
3904 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3905 {
3906         int ret;
3907
3908         lockdep_assert_held(&obj->base.dev->struct_mutex);
3909
3910         ret = i915_gem_object_wait(obj,
3911                                    I915_WAIT_INTERRUPTIBLE |
3912                                    I915_WAIT_LOCKED |
3913                                    (write ? I915_WAIT_ALL : 0),
3914                                    MAX_SCHEDULE_TIMEOUT,
3915                                    NULL);
3916         if (ret)
3917                 return ret;
3918
3919         if (obj->write_domain == I915_GEM_DOMAIN_WC)
3920                 return 0;
3921
3922         /* Flush and acquire obj->pages so that we are coherent through
3923          * direct access in memory with previous cached writes through
3924          * shmemfs and that our cache domain tracking remains valid.
3925          * For example, if the obj->filp was moved to swap without us
3926          * being notified and releasing the pages, we would mistakenly
3927          * continue to assume that the obj remained out of the CPU cached
3928          * domain.
3929          */
3930         ret = i915_gem_object_pin_pages(obj);
3931         if (ret)
3932                 return ret;
3933
3934         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3935
3936         /* Serialise direct access to this object with the barriers for
3937          * coherent writes from the GPU, by effectively invalidating the
3938          * WC domain upon first access.
3939          */
3940         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3941                 mb();
3942
3943         /* It should now be out of any other write domains, and we can update
3944          * the domain values for our changes.
3945          */
3946         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3947         obj->read_domains |= I915_GEM_DOMAIN_WC;
3948         if (write) {
3949                 obj->read_domains = I915_GEM_DOMAIN_WC;
3950                 obj->write_domain = I915_GEM_DOMAIN_WC;
3951                 obj->mm.dirty = true;
3952         }
3953
3954         i915_gem_object_unpin_pages(obj);
3955         return 0;
3956 }
3957
3958 /**
3959  * Moves a single object to the GTT read, and possibly write domain.
3960  * @obj: object to act on
3961  * @write: ask for write access or read only
3962  *
3963  * This function returns when the move is complete, including waiting on
3964  * flushes to occur.
3965  */
3966 int
3967 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3968 {
3969         int ret;
3970
3971         lockdep_assert_held(&obj->base.dev->struct_mutex);
3972
3973         ret = i915_gem_object_wait(obj,
3974                                    I915_WAIT_INTERRUPTIBLE |
3975                                    I915_WAIT_LOCKED |
3976                                    (write ? I915_WAIT_ALL : 0),
3977                                    MAX_SCHEDULE_TIMEOUT,
3978                                    NULL);
3979         if (ret)
3980                 return ret;
3981
3982         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3983                 return 0;
3984
3985         /* Flush and acquire obj->pages so that we are coherent through
3986          * direct access in memory with previous cached writes through
3987          * shmemfs and that our cache domain tracking remains valid.
3988          * For example, if the obj->filp was moved to swap without us
3989          * being notified and releasing the pages, we would mistakenly
3990          * continue to assume that the obj remained out of the CPU cached
3991          * domain.
3992          */
3993         ret = i915_gem_object_pin_pages(obj);
3994         if (ret)
3995                 return ret;
3996
3997         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3998
3999         /* Serialise direct access to this object with the barriers for
4000          * coherent writes from the GPU, by effectively invalidating the
4001          * GTT domain upon first access.
4002          */
4003         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
4004                 mb();
4005
4006         /* It should now be out of any other write domains, and we can update
4007          * the domain values for our changes.
4008          */
4009         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4010         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4011         if (write) {
4012                 obj->read_domains = I915_GEM_DOMAIN_GTT;
4013                 obj->write_domain = I915_GEM_DOMAIN_GTT;
4014                 obj->mm.dirty = true;
4015         }
4016
4017         i915_gem_object_unpin_pages(obj);
4018         return 0;
4019 }
4020
4021 /**
4022  * Changes the cache-level of an object across all VMA.
4023  * @obj: object to act on
4024  * @cache_level: new cache level to set for the object
4025  *
4026  * After this function returns, the object will be in the new cache-level
4027  * across all GTT and the contents of the backing storage will be coherent,
4028  * with respect to the new cache-level. In order to keep the backing storage
4029  * coherent for all users, we only allow a single cache level to be set
4030  * globally on the object and prevent it from being changed whilst the
4031  * hardware is reading from the object. That is if the object is currently
4032  * on the scanout it will be set to uncached (or equivalent display
4033  * cache coherency) and all non-MOCS GPU access will also be uncached so
4034  * that all direct access to the scanout remains coherent.
4035  */
4036 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4037                                     enum i915_cache_level cache_level)
4038 {
4039         struct i915_vma *vma;
4040         int ret;
4041
4042         lockdep_assert_held(&obj->base.dev->struct_mutex);
4043
4044         if (obj->cache_level == cache_level)
4045                 return 0;
4046
4047         /* Inspect the list of currently bound VMA and unbind any that would
4048          * be invalid given the new cache-level. This is principally to
4049          * catch the issue of the CS prefetch crossing page boundaries and
4050          * reading an invalid PTE on older architectures.
4051          */
4052 restart:
4053         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4054                 if (!drm_mm_node_allocated(&vma->node))
4055                         continue;
4056
4057                 if (i915_vma_is_pinned(vma)) {
4058                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4059                         return -EBUSY;
4060                 }
4061
4062                 if (!i915_vma_is_closed(vma) &&
4063                     i915_gem_valid_gtt_space(vma, cache_level))
4064                         continue;
4065
4066                 ret = i915_vma_unbind(vma);
4067                 if (ret)
4068                         return ret;
4069
4070                 /* As unbinding may affect other elements in the
4071                  * obj->vma_list (due to side-effects from retiring
4072                  * an active vma), play safe and restart the iterator.
4073                  */
4074                 goto restart;
4075         }
4076
4077         /* We can reuse the existing drm_mm nodes but need to change the
4078          * cache-level on the PTE. We could simply unbind them all and
4079          * rebind with the correct cache-level on next use. However since
4080          * we already have a valid slot, dma mapping, pages etc, we may as
4081          * rewrite the PTE in the belief that doing so tramples upon less
4082          * state and so involves less work.
4083          */
4084         if (obj->bind_count) {
4085                 /* Before we change the PTE, the GPU must not be accessing it.
4086                  * If we wait upon the object, we know that all the bound
4087                  * VMA are no longer active.
4088                  */
4089                 ret = i915_gem_object_wait(obj,
4090                                            I915_WAIT_INTERRUPTIBLE |
4091                                            I915_WAIT_LOCKED |
4092                                            I915_WAIT_ALL,
4093                                            MAX_SCHEDULE_TIMEOUT,
4094                                            NULL);
4095                 if (ret)
4096                         return ret;
4097
4098                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4099                     cache_level != I915_CACHE_NONE) {
4100                         /* Access to snoopable pages through the GTT is
4101                          * incoherent and on some machines causes a hard
4102                          * lockup. Relinquish the CPU mmaping to force
4103                          * userspace to refault in the pages and we can
4104                          * then double check if the GTT mapping is still
4105                          * valid for that pointer access.
4106                          */
4107                         i915_gem_release_mmap(obj);
4108
4109                         /* As we no longer need a fence for GTT access,
4110                          * we can relinquish it now (and so prevent having
4111                          * to steal a fence from someone else on the next
4112                          * fence request). Note GPU activity would have
4113                          * dropped the fence as all snoopable access is
4114                          * supposed to be linear.
4115                          */
4116                         for_each_ggtt_vma(vma, obj) {
4117                                 ret = i915_vma_put_fence(vma);
4118                                 if (ret)
4119                                         return ret;
4120                         }
4121                 } else {
4122                         /* We either have incoherent backing store and
4123                          * so no GTT access or the architecture is fully
4124                          * coherent. In such cases, existing GTT mmaps
4125                          * ignore the cache bit in the PTE and we can
4126                          * rewrite it without confusing the GPU or having
4127                          * to force userspace to fault back in its mmaps.
4128                          */
4129                 }
4130
4131                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4132                         if (!drm_mm_node_allocated(&vma->node))
4133                                 continue;
4134
4135                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4136                         if (ret)
4137                                 return ret;
4138                 }
4139         }
4140
4141         list_for_each_entry(vma, &obj->vma_list, obj_link)
4142                 vma->node.color = cache_level;
4143         i915_gem_object_set_cache_coherency(obj, cache_level);
4144         obj->cache_dirty = true; /* Always invalidate stale cachelines */
4145
4146         return 0;
4147 }
4148
4149 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4150                                struct drm_file *file)
4151 {
4152         struct drm_i915_gem_caching *args = data;
4153         struct drm_i915_gem_object *obj;
4154         int err = 0;
4155
4156         rcu_read_lock();
4157         obj = i915_gem_object_lookup_rcu(file, args->handle);
4158         if (!obj) {
4159                 err = -ENOENT;
4160                 goto out;
4161         }
4162
4163         switch (obj->cache_level) {
4164         case I915_CACHE_LLC:
4165         case I915_CACHE_L3_LLC:
4166                 args->caching = I915_CACHING_CACHED;
4167                 break;
4168
4169         case I915_CACHE_WT:
4170                 args->caching = I915_CACHING_DISPLAY;
4171                 break;
4172
4173         default:
4174                 args->caching = I915_CACHING_NONE;
4175                 break;
4176         }
4177 out:
4178         rcu_read_unlock();
4179         return err;
4180 }
4181
4182 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4183                                struct drm_file *file)
4184 {
4185         struct drm_i915_private *i915 = to_i915(dev);
4186         struct drm_i915_gem_caching *args = data;
4187         struct drm_i915_gem_object *obj;
4188         enum i915_cache_level level;
4189         int ret = 0;
4190
4191         switch (args->caching) {
4192         case I915_CACHING_NONE:
4193                 level = I915_CACHE_NONE;
4194                 break;
4195         case I915_CACHING_CACHED:
4196                 /*
4197                  * Due to a HW issue on BXT A stepping, GPU stores via a
4198                  * snooped mapping may leave stale data in a corresponding CPU
4199                  * cacheline, whereas normally such cachelines would get
4200                  * invalidated.
4201                  */
4202                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4203                         return -ENODEV;
4204
4205                 level = I915_CACHE_LLC;
4206                 break;
4207         case I915_CACHING_DISPLAY:
4208                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4209                 break;
4210         default:
4211                 return -EINVAL;
4212         }
4213
4214         obj = i915_gem_object_lookup(file, args->handle);
4215         if (!obj)
4216                 return -ENOENT;
4217
4218         /*
4219          * The caching mode of proxy object is handled by its generator, and
4220          * not allowed to be changed by userspace.
4221          */
4222         if (i915_gem_object_is_proxy(obj)) {
4223                 ret = -ENXIO;
4224                 goto out;
4225         }
4226
4227         if (obj->cache_level == level)
4228                 goto out;
4229
4230         ret = i915_gem_object_wait(obj,
4231                                    I915_WAIT_INTERRUPTIBLE,
4232                                    MAX_SCHEDULE_TIMEOUT,
4233                                    to_rps_client(file));
4234         if (ret)
4235                 goto out;
4236
4237         ret = i915_mutex_lock_interruptible(dev);
4238         if (ret)
4239                 goto out;
4240
4241         ret = i915_gem_object_set_cache_level(obj, level);
4242         mutex_unlock(&dev->struct_mutex);
4243
4244 out:
4245         i915_gem_object_put(obj);
4246         return ret;
4247 }
4248
4249 /*
4250  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4251  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4252  * (for pageflips). We only flush the caches while preparing the buffer for
4253  * display, the callers are responsible for frontbuffer flush.
4254  */
4255 struct i915_vma *
4256 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4257                                      u32 alignment,
4258                                      const struct i915_ggtt_view *view,
4259                                      unsigned int flags)
4260 {
4261         struct i915_vma *vma;
4262         int ret;
4263
4264         lockdep_assert_held(&obj->base.dev->struct_mutex);
4265
4266         /* Mark the global pin early so that we account for the
4267          * display coherency whilst setting up the cache domains.
4268          */
4269         obj->pin_global++;
4270
4271         /* The display engine is not coherent with the LLC cache on gen6.  As
4272          * a result, we make sure that the pinning that is about to occur is
4273          * done with uncached PTEs. This is lowest common denominator for all
4274          * chipsets.
4275          *
4276          * However for gen6+, we could do better by using the GFDT bit instead
4277          * of uncaching, which would allow us to flush all the LLC-cached data
4278          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4279          */
4280         ret = i915_gem_object_set_cache_level(obj,
4281                                               HAS_WT(to_i915(obj->base.dev)) ?
4282                                               I915_CACHE_WT : I915_CACHE_NONE);
4283         if (ret) {
4284                 vma = ERR_PTR(ret);
4285                 goto err_unpin_global;
4286         }
4287
4288         /* As the user may map the buffer once pinned in the display plane
4289          * (e.g. libkms for the bootup splash), we have to ensure that we
4290          * always use map_and_fenceable for all scanout buffers. However,
4291          * it may simply be too big to fit into mappable, in which case
4292          * put it anyway and hope that userspace can cope (but always first
4293          * try to preserve the existing ABI).
4294          */
4295         vma = ERR_PTR(-ENOSPC);
4296         if ((flags & PIN_MAPPABLE) == 0 &&
4297             (!view || view->type == I915_GGTT_VIEW_NORMAL))
4298                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4299                                                flags |
4300                                                PIN_MAPPABLE |
4301                                                PIN_NONBLOCK);
4302         if (IS_ERR(vma))
4303                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4304         if (IS_ERR(vma))
4305                 goto err_unpin_global;
4306
4307         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4308
4309         __i915_gem_object_flush_for_display(obj);
4310
4311         /* It should now be out of any other write domains, and we can update
4312          * the domain values for our changes.
4313          */
4314         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4315
4316         return vma;
4317
4318 err_unpin_global:
4319         obj->pin_global--;
4320         return vma;
4321 }
4322
4323 void
4324 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4325 {
4326         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4327
4328         if (WARN_ON(vma->obj->pin_global == 0))
4329                 return;
4330
4331         if (--vma->obj->pin_global == 0)
4332                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4333
4334         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4335         i915_gem_object_bump_inactive_ggtt(vma->obj);
4336
4337         i915_vma_unpin(vma);
4338 }
4339
4340 /**
4341  * Moves a single object to the CPU read, and possibly write domain.
4342  * @obj: object to act on
4343  * @write: requesting write or read-only access
4344  *
4345  * This function returns when the move is complete, including waiting on
4346  * flushes to occur.
4347  */
4348 int
4349 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4350 {
4351         int ret;
4352
4353         lockdep_assert_held(&obj->base.dev->struct_mutex);
4354
4355         ret = i915_gem_object_wait(obj,
4356                                    I915_WAIT_INTERRUPTIBLE |
4357                                    I915_WAIT_LOCKED |
4358                                    (write ? I915_WAIT_ALL : 0),
4359                                    MAX_SCHEDULE_TIMEOUT,
4360                                    NULL);
4361         if (ret)
4362                 return ret;
4363
4364         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4365
4366         /* Flush the CPU cache if it's still invalid. */
4367         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4368                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4369                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4370         }
4371
4372         /* It should now be out of any other write domains, and we can update
4373          * the domain values for our changes.
4374          */
4375         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4376
4377         /* If we're writing through the CPU, then the GPU read domains will
4378          * need to be invalidated at next use.
4379          */
4380         if (write)
4381                 __start_cpu_write(obj);
4382
4383         return 0;
4384 }
4385
4386 /* Throttle our rendering by waiting until the ring has completed our requests
4387  * emitted over 20 msec ago.
4388  *
4389  * Note that if we were to use the current jiffies each time around the loop,
4390  * we wouldn't escape the function with any frames outstanding if the time to
4391  * render a frame was over 20ms.
4392  *
4393  * This should get us reasonable parallelism between CPU and GPU but also
4394  * relatively low latency when blocking on a particular request to finish.
4395  */
4396 static int
4397 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4398 {
4399         struct drm_i915_private *dev_priv = to_i915(dev);
4400         struct drm_i915_file_private *file_priv = file->driver_priv;
4401         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4402         struct i915_request *request, *target = NULL;
4403         long ret;
4404
4405         /* ABI: return -EIO if already wedged */
4406         if (i915_terminally_wedged(&dev_priv->gpu_error))
4407                 return -EIO;
4408
4409         spin_lock(&file_priv->mm.lock);
4410         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4411                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4412                         break;
4413
4414                 if (target) {
4415                         list_del(&target->client_link);
4416                         target->file_priv = NULL;
4417                 }
4418
4419                 target = request;
4420         }
4421         if (target)
4422                 i915_request_get(target);
4423         spin_unlock(&file_priv->mm.lock);
4424
4425         if (target == NULL)
4426                 return 0;
4427
4428         ret = i915_request_wait(target,
4429                                 I915_WAIT_INTERRUPTIBLE,
4430                                 MAX_SCHEDULE_TIMEOUT);
4431         i915_request_put(target);
4432
4433         return ret < 0 ? ret : 0;
4434 }
4435
4436 struct i915_vma *
4437 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4438                          const struct i915_ggtt_view *view,
4439                          u64 size,
4440                          u64 alignment,
4441                          u64 flags)
4442 {
4443         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4444         struct i915_address_space *vm = &dev_priv->ggtt.vm;
4445         struct i915_vma *vma;
4446         int ret;
4447
4448         lockdep_assert_held(&obj->base.dev->struct_mutex);
4449
4450         if (flags & PIN_MAPPABLE &&
4451             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4452                 /* If the required space is larger than the available
4453                  * aperture, we will not able to find a slot for the
4454                  * object and unbinding the object now will be in
4455                  * vain. Worse, doing so may cause us to ping-pong
4456                  * the object in and out of the Global GTT and
4457                  * waste a lot of cycles under the mutex.
4458                  */
4459                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4460                         return ERR_PTR(-E2BIG);
4461
4462                 /* If NONBLOCK is set the caller is optimistically
4463                  * trying to cache the full object within the mappable
4464                  * aperture, and *must* have a fallback in place for
4465                  * situations where we cannot bind the object. We
4466                  * can be a little more lax here and use the fallback
4467                  * more often to avoid costly migrations of ourselves
4468                  * and other objects within the aperture.
4469                  *
4470                  * Half-the-aperture is used as a simple heuristic.
4471                  * More interesting would to do search for a free
4472                  * block prior to making the commitment to unbind.
4473                  * That caters for the self-harm case, and with a
4474                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4475                  * we could try to minimise harm to others.
4476                  */
4477                 if (flags & PIN_NONBLOCK &&
4478                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4479                         return ERR_PTR(-ENOSPC);
4480         }
4481
4482         vma = i915_vma_instance(obj, vm, view);
4483         if (unlikely(IS_ERR(vma)))
4484                 return vma;
4485
4486         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4487                 if (flags & PIN_NONBLOCK) {
4488                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4489                                 return ERR_PTR(-ENOSPC);
4490
4491                         if (flags & PIN_MAPPABLE &&
4492                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4493                                 return ERR_PTR(-ENOSPC);
4494                 }
4495
4496                 WARN(i915_vma_is_pinned(vma),
4497                      "bo is already pinned in ggtt with incorrect alignment:"
4498                      " offset=%08x, req.alignment=%llx,"
4499                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4500                      i915_ggtt_offset(vma), alignment,
4501                      !!(flags & PIN_MAPPABLE),
4502                      i915_vma_is_map_and_fenceable(vma));
4503                 ret = i915_vma_unbind(vma);
4504                 if (ret)
4505                         return ERR_PTR(ret);
4506         }
4507
4508         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4509         if (ret)
4510                 return ERR_PTR(ret);
4511
4512         return vma;
4513 }
4514
4515 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4516 {
4517         /* Note that we could alias engines in the execbuf API, but
4518          * that would be very unwise as it prevents userspace from
4519          * fine control over engine selection. Ahem.
4520          *
4521          * This should be something like EXEC_MAX_ENGINE instead of
4522          * I915_NUM_ENGINES.
4523          */
4524         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4525         return 0x10000 << id;
4526 }
4527
4528 static __always_inline unsigned int __busy_write_id(unsigned int id)
4529 {
4530         /* The uABI guarantees an active writer is also amongst the read
4531          * engines. This would be true if we accessed the activity tracking
4532          * under the lock, but as we perform the lookup of the object and
4533          * its activity locklessly we can not guarantee that the last_write
4534          * being active implies that we have set the same engine flag from
4535          * last_read - hence we always set both read and write busy for
4536          * last_write.
4537          */
4538         return id | __busy_read_flag(id);
4539 }
4540
4541 static __always_inline unsigned int
4542 __busy_set_if_active(const struct dma_fence *fence,
4543                      unsigned int (*flag)(unsigned int id))
4544 {
4545         struct i915_request *rq;
4546
4547         /* We have to check the current hw status of the fence as the uABI
4548          * guarantees forward progress. We could rely on the idle worker
4549          * to eventually flush us, but to minimise latency just ask the
4550          * hardware.
4551          *
4552          * Note we only report on the status of native fences.
4553          */
4554         if (!dma_fence_is_i915(fence))
4555                 return 0;
4556
4557         /* opencode to_request() in order to avoid const warnings */
4558         rq = container_of(fence, struct i915_request, fence);
4559         if (i915_request_completed(rq))
4560                 return 0;
4561
4562         return flag(rq->engine->uabi_id);
4563 }
4564
4565 static __always_inline unsigned int
4566 busy_check_reader(const struct dma_fence *fence)
4567 {
4568         return __busy_set_if_active(fence, __busy_read_flag);
4569 }
4570
4571 static __always_inline unsigned int
4572 busy_check_writer(const struct dma_fence *fence)
4573 {
4574         if (!fence)
4575                 return 0;
4576
4577         return __busy_set_if_active(fence, __busy_write_id);
4578 }
4579
4580 int
4581 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4582                     struct drm_file *file)
4583 {
4584         struct drm_i915_gem_busy *args = data;
4585         struct drm_i915_gem_object *obj;
4586         struct reservation_object_list *list;
4587         unsigned int seq;
4588         int err;
4589
4590         err = -ENOENT;
4591         rcu_read_lock();
4592         obj = i915_gem_object_lookup_rcu(file, args->handle);
4593         if (!obj)
4594                 goto out;
4595
4596         /* A discrepancy here is that we do not report the status of
4597          * non-i915 fences, i.e. even though we may report the object as idle,
4598          * a call to set-domain may still stall waiting for foreign rendering.
4599          * This also means that wait-ioctl may report an object as busy,
4600          * where busy-ioctl considers it idle.
4601          *
4602          * We trade the ability to warn of foreign fences to report on which
4603          * i915 engines are active for the object.
4604          *
4605          * Alternatively, we can trade that extra information on read/write
4606          * activity with
4607          *      args->busy =
4608          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4609          * to report the overall busyness. This is what the wait-ioctl does.
4610          *
4611          */
4612 retry:
4613         seq = raw_read_seqcount(&obj->resv->seq);
4614
4615         /* Translate the exclusive fence to the READ *and* WRITE engine */
4616         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4617
4618         /* Translate shared fences to READ set of engines */
4619         list = rcu_dereference(obj->resv->fence);
4620         if (list) {
4621                 unsigned int shared_count = list->shared_count, i;
4622
4623                 for (i = 0; i < shared_count; ++i) {
4624                         struct dma_fence *fence =
4625                                 rcu_dereference(list->shared[i]);
4626
4627                         args->busy |= busy_check_reader(fence);
4628                 }
4629         }
4630
4631         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4632                 goto retry;
4633
4634         err = 0;
4635 out:
4636         rcu_read_unlock();
4637         return err;
4638 }
4639
4640 int
4641 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4642                         struct drm_file *file_priv)
4643 {
4644         return i915_gem_ring_throttle(dev, file_priv);
4645 }
4646
4647 int
4648 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4649                        struct drm_file *file_priv)
4650 {
4651         struct drm_i915_private *dev_priv = to_i915(dev);
4652         struct drm_i915_gem_madvise *args = data;
4653         struct drm_i915_gem_object *obj;
4654         int err;
4655
4656         switch (args->madv) {
4657         case I915_MADV_DONTNEED:
4658         case I915_MADV_WILLNEED:
4659             break;
4660         default:
4661             return -EINVAL;
4662         }
4663
4664         obj = i915_gem_object_lookup(file_priv, args->handle);
4665         if (!obj)
4666                 return -ENOENT;
4667
4668         err = mutex_lock_interruptible(&obj->mm.lock);
4669         if (err)
4670                 goto out;
4671
4672         if (i915_gem_object_has_pages(obj) &&
4673             i915_gem_object_is_tiled(obj) &&
4674             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4675                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4676                         GEM_BUG_ON(!obj->mm.quirked);
4677                         __i915_gem_object_unpin_pages(obj);
4678                         obj->mm.quirked = false;
4679                 }
4680                 if (args->madv == I915_MADV_WILLNEED) {
4681                         GEM_BUG_ON(obj->mm.quirked);
4682                         __i915_gem_object_pin_pages(obj);
4683                         obj->mm.quirked = true;
4684                 }
4685         }
4686
4687         if (obj->mm.madv != __I915_MADV_PURGED)
4688                 obj->mm.madv = args->madv;
4689
4690         /* if the object is no longer attached, discard its backing storage */
4691         if (obj->mm.madv == I915_MADV_DONTNEED &&
4692             !i915_gem_object_has_pages(obj))
4693                 i915_gem_object_truncate(obj);
4694
4695         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4696         mutex_unlock(&obj->mm.lock);
4697
4698 out:
4699         i915_gem_object_put(obj);
4700         return err;
4701 }
4702
4703 static void
4704 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4705 {
4706         struct drm_i915_gem_object *obj =
4707                 container_of(active, typeof(*obj), frontbuffer_write);
4708
4709         intel_fb_obj_flush(obj, ORIGIN_CS);
4710 }
4711
4712 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4713                           const struct drm_i915_gem_object_ops *ops)
4714 {
4715         mutex_init(&obj->mm.lock);
4716
4717         INIT_LIST_HEAD(&obj->vma_list);
4718         INIT_LIST_HEAD(&obj->lut_list);
4719         INIT_LIST_HEAD(&obj->batch_pool_link);
4720
4721         obj->ops = ops;
4722
4723         reservation_object_init(&obj->__builtin_resv);
4724         obj->resv = &obj->__builtin_resv;
4725
4726         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4727         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4728
4729         obj->mm.madv = I915_MADV_WILLNEED;
4730         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4731         mutex_init(&obj->mm.get_page.lock);
4732
4733         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4734 }
4735
4736 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4737         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4738                  I915_GEM_OBJECT_IS_SHRINKABLE,
4739
4740         .get_pages = i915_gem_object_get_pages_gtt,
4741         .put_pages = i915_gem_object_put_pages_gtt,
4742
4743         .pwrite = i915_gem_object_pwrite_gtt,
4744 };
4745
4746 static int i915_gem_object_create_shmem(struct drm_device *dev,
4747                                         struct drm_gem_object *obj,
4748                                         size_t size)
4749 {
4750         struct drm_i915_private *i915 = to_i915(dev);
4751         unsigned long flags = VM_NORESERVE;
4752         struct file *filp;
4753
4754         drm_gem_private_object_init(dev, obj, size);
4755
4756         if (i915->mm.gemfs)
4757                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4758                                                  flags);
4759         else
4760                 filp = shmem_file_setup("i915", size, flags);
4761
4762         if (IS_ERR(filp))
4763                 return PTR_ERR(filp);
4764
4765         obj->filp = filp;
4766
4767         return 0;
4768 }
4769
4770 struct drm_i915_gem_object *
4771 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4772 {
4773         struct drm_i915_gem_object *obj;
4774         struct address_space *mapping;
4775         unsigned int cache_level;
4776         gfp_t mask;
4777         int ret;
4778
4779         /* There is a prevalence of the assumption that we fit the object's
4780          * page count inside a 32bit _signed_ variable. Let's document this and
4781          * catch if we ever need to fix it. In the meantime, if you do spot
4782          * such a local variable, please consider fixing!
4783          */
4784         if (size >> PAGE_SHIFT > INT_MAX)
4785                 return ERR_PTR(-E2BIG);
4786
4787         if (overflows_type(size, obj->base.size))
4788                 return ERR_PTR(-E2BIG);
4789
4790         obj = i915_gem_object_alloc(dev_priv);
4791         if (obj == NULL)
4792                 return ERR_PTR(-ENOMEM);
4793
4794         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4795         if (ret)
4796                 goto fail;
4797
4798         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4799         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4800                 /* 965gm cannot relocate objects above 4GiB. */
4801                 mask &= ~__GFP_HIGHMEM;
4802                 mask |= __GFP_DMA32;
4803         }
4804
4805         mapping = obj->base.filp->f_mapping;
4806         mapping_set_gfp_mask(mapping, mask);
4807         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4808
4809         i915_gem_object_init(obj, &i915_gem_object_ops);
4810
4811         obj->write_domain = I915_GEM_DOMAIN_CPU;
4812         obj->read_domains = I915_GEM_DOMAIN_CPU;
4813
4814         if (HAS_LLC(dev_priv))
4815                 /* On some devices, we can have the GPU use the LLC (the CPU
4816                  * cache) for about a 10% performance improvement
4817                  * compared to uncached.  Graphics requests other than
4818                  * display scanout are coherent with the CPU in
4819                  * accessing this cache.  This means in this mode we
4820                  * don't need to clflush on the CPU side, and on the
4821                  * GPU side we only need to flush internal caches to
4822                  * get data visible to the CPU.
4823                  *
4824                  * However, we maintain the display planes as UC, and so
4825                  * need to rebind when first used as such.
4826                  */
4827                 cache_level = I915_CACHE_LLC;
4828         else
4829                 cache_level = I915_CACHE_NONE;
4830
4831         i915_gem_object_set_cache_coherency(obj, cache_level);
4832
4833         trace_i915_gem_object_create(obj);
4834
4835         return obj;
4836
4837 fail:
4838         i915_gem_object_free(obj);
4839         return ERR_PTR(ret);
4840 }
4841
4842 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4843 {
4844         /* If we are the last user of the backing storage (be it shmemfs
4845          * pages or stolen etc), we know that the pages are going to be
4846          * immediately released. In this case, we can then skip copying
4847          * back the contents from the GPU.
4848          */
4849
4850         if (obj->mm.madv != I915_MADV_WILLNEED)
4851                 return false;
4852
4853         if (obj->base.filp == NULL)
4854                 return true;
4855
4856         /* At first glance, this looks racy, but then again so would be
4857          * userspace racing mmap against close. However, the first external
4858          * reference to the filp can only be obtained through the
4859          * i915_gem_mmap_ioctl() which safeguards us against the user
4860          * acquiring such a reference whilst we are in the middle of
4861          * freeing the object.
4862          */
4863         return atomic_long_read(&obj->base.filp->f_count) == 1;
4864 }
4865
4866 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4867                                     struct llist_node *freed)
4868 {
4869         struct drm_i915_gem_object *obj, *on;
4870
4871         intel_runtime_pm_get(i915);
4872         llist_for_each_entry_safe(obj, on, freed, freed) {
4873                 struct i915_vma *vma, *vn;
4874
4875                 trace_i915_gem_object_destroy(obj);
4876
4877                 mutex_lock(&i915->drm.struct_mutex);
4878
4879                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4880                 list_for_each_entry_safe(vma, vn,
4881                                          &obj->vma_list, obj_link) {
4882                         GEM_BUG_ON(i915_vma_is_active(vma));
4883                         vma->flags &= ~I915_VMA_PIN_MASK;
4884                         i915_vma_destroy(vma);
4885                 }
4886                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4887                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4888
4889                 /* This serializes freeing with the shrinker. Since the free
4890                  * is delayed, first by RCU then by the workqueue, we want the
4891                  * shrinker to be able to free pages of unreferenced objects,
4892                  * or else we may oom whilst there are plenty of deferred
4893                  * freed objects.
4894                  */
4895                 if (i915_gem_object_has_pages(obj)) {
4896                         spin_lock(&i915->mm.obj_lock);
4897                         list_del_init(&obj->mm.link);
4898                         spin_unlock(&i915->mm.obj_lock);
4899                 }
4900
4901                 mutex_unlock(&i915->drm.struct_mutex);
4902
4903                 GEM_BUG_ON(obj->bind_count);
4904                 GEM_BUG_ON(obj->userfault_count);
4905                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4906                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4907
4908                 if (obj->ops->release)
4909                         obj->ops->release(obj);
4910
4911                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4912                         atomic_set(&obj->mm.pages_pin_count, 0);
4913                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4914                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4915
4916                 if (obj->base.import_attach)
4917                         drm_prime_gem_destroy(&obj->base, NULL);
4918
4919                 reservation_object_fini(&obj->__builtin_resv);
4920                 drm_gem_object_release(&obj->base);
4921                 i915_gem_info_remove_obj(i915, obj->base.size);
4922
4923                 kfree(obj->bit_17);
4924                 i915_gem_object_free(obj);
4925
4926                 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4927                 atomic_dec(&i915->mm.free_count);
4928
4929                 if (on)
4930                         cond_resched();
4931         }
4932         intel_runtime_pm_put(i915);
4933 }
4934
4935 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4936 {
4937         struct llist_node *freed;
4938
4939         /* Free the oldest, most stale object to keep the free_list short */
4940         freed = NULL;
4941         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4942                 /* Only one consumer of llist_del_first() allowed */
4943                 spin_lock(&i915->mm.free_lock);
4944                 freed = llist_del_first(&i915->mm.free_list);
4945                 spin_unlock(&i915->mm.free_lock);
4946         }
4947         if (unlikely(freed)) {
4948                 freed->next = NULL;
4949                 __i915_gem_free_objects(i915, freed);
4950         }
4951 }
4952
4953 static void __i915_gem_free_work(struct work_struct *work)
4954 {
4955         struct drm_i915_private *i915 =
4956                 container_of(work, struct drm_i915_private, mm.free_work);
4957         struct llist_node *freed;
4958
4959         /*
4960          * All file-owned VMA should have been released by this point through
4961          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4962          * However, the object may also be bound into the global GTT (e.g.
4963          * older GPUs without per-process support, or for direct access through
4964          * the GTT either for the user or for scanout). Those VMA still need to
4965          * unbound now.
4966          */
4967
4968         spin_lock(&i915->mm.free_lock);
4969         while ((freed = llist_del_all(&i915->mm.free_list))) {
4970                 spin_unlock(&i915->mm.free_lock);
4971
4972                 __i915_gem_free_objects(i915, freed);
4973                 if (need_resched())
4974                         return;
4975
4976                 spin_lock(&i915->mm.free_lock);
4977         }
4978         spin_unlock(&i915->mm.free_lock);
4979 }
4980
4981 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4982 {
4983         struct drm_i915_gem_object *obj =
4984                 container_of(head, typeof(*obj), rcu);
4985         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4986
4987         /*
4988          * Since we require blocking on struct_mutex to unbind the freed
4989          * object from the GPU before releasing resources back to the
4990          * system, we can not do that directly from the RCU callback (which may
4991          * be a softirq context), but must instead then defer that work onto a
4992          * kthread. We use the RCU callback rather than move the freed object
4993          * directly onto the work queue so that we can mix between using the
4994          * worker and performing frees directly from subsequent allocations for
4995          * crude but effective memory throttling.
4996          */
4997         if (llist_add(&obj->freed, &i915->mm.free_list))
4998                 queue_work(i915->wq, &i915->mm.free_work);
4999 }
5000
5001 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5002 {
5003         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5004
5005         if (obj->mm.quirked)
5006                 __i915_gem_object_unpin_pages(obj);
5007
5008         if (discard_backing_storage(obj))
5009                 obj->mm.madv = I915_MADV_DONTNEED;
5010
5011         /*
5012          * Before we free the object, make sure any pure RCU-only
5013          * read-side critical sections are complete, e.g.
5014          * i915_gem_busy_ioctl(). For the corresponding synchronized
5015          * lookup see i915_gem_object_lookup_rcu().
5016          */
5017         atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5018         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5019 }
5020
5021 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5022 {
5023         lockdep_assert_held(&obj->base.dev->struct_mutex);
5024
5025         if (!i915_gem_object_has_active_reference(obj) &&
5026             i915_gem_object_is_active(obj))
5027                 i915_gem_object_set_active_reference(obj);
5028         else
5029                 i915_gem_object_put(obj);
5030 }
5031
5032 void i915_gem_sanitize(struct drm_i915_private *i915)
5033 {
5034         int err;
5035
5036         GEM_TRACE("\n");
5037
5038         mutex_lock(&i915->drm.struct_mutex);
5039
5040         intel_runtime_pm_get(i915);
5041         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5042
5043         /*
5044          * As we have just resumed the machine and woken the device up from
5045          * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5046          * back to defaults, recovering from whatever wedged state we left it
5047          * in and so worth trying to use the device once more.
5048          */
5049         if (i915_terminally_wedged(&i915->gpu_error))
5050                 i915_gem_unset_wedged(i915);
5051
5052         /*
5053          * If we inherit context state from the BIOS or earlier occupants
5054          * of the GPU, the GPU may be in an inconsistent state when we
5055          * try to take over. The only way to remove the earlier state
5056          * is by resetting. However, resetting on earlier gen is tricky as
5057          * it may impact the display and we are uncertain about the stability
5058          * of the reset, so this could be applied to even earlier gen.
5059          */
5060         err = -ENODEV;
5061         if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5062                 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5063         if (!err)
5064                 intel_engines_sanitize(i915);
5065
5066         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5067         intel_runtime_pm_put(i915);
5068
5069         i915_gem_contexts_lost(i915);
5070         mutex_unlock(&i915->drm.struct_mutex);
5071 }
5072
5073 int i915_gem_suspend(struct drm_i915_private *i915)
5074 {
5075         int ret;
5076
5077         GEM_TRACE("\n");
5078
5079         intel_runtime_pm_get(i915);
5080         intel_suspend_gt_powersave(i915);
5081
5082         mutex_lock(&i915->drm.struct_mutex);
5083
5084         /*
5085          * We have to flush all the executing contexts to main memory so
5086          * that they can saved in the hibernation image. To ensure the last
5087          * context image is coherent, we have to switch away from it. That
5088          * leaves the i915->kernel_context still active when
5089          * we actually suspend, and its image in memory may not match the GPU
5090          * state. Fortunately, the kernel_context is disposable and we do
5091          * not rely on its state.
5092          */
5093         if (!i915_terminally_wedged(&i915->gpu_error)) {
5094                 ret = i915_gem_switch_to_kernel_context(i915);
5095                 if (ret)
5096                         goto err_unlock;
5097
5098                 ret = i915_gem_wait_for_idle(i915,
5099                                              I915_WAIT_INTERRUPTIBLE |
5100                                              I915_WAIT_LOCKED |
5101                                              I915_WAIT_FOR_IDLE_BOOST,
5102                                              MAX_SCHEDULE_TIMEOUT);
5103                 if (ret && ret != -EIO)
5104                         goto err_unlock;
5105
5106                 assert_kernel_context_is_current(i915);
5107         }
5108         i915_retire_requests(i915); /* ensure we flush after wedging */
5109
5110         mutex_unlock(&i915->drm.struct_mutex);
5111
5112         intel_uc_suspend(i915);
5113
5114         cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5115         cancel_delayed_work_sync(&i915->gt.retire_work);
5116
5117         /*
5118          * As the idle_work is rearming if it detects a race, play safe and
5119          * repeat the flush until it is definitely idle.
5120          */
5121         drain_delayed_work(&i915->gt.idle_work);
5122
5123         /*
5124          * Assert that we successfully flushed all the work and
5125          * reset the GPU back to its idle, low power state.
5126          */
5127         WARN_ON(i915->gt.awake);
5128         if (WARN_ON(!intel_engines_are_idle(i915)))
5129                 i915_gem_set_wedged(i915); /* no hope, discard everything */
5130
5131         intel_runtime_pm_put(i915);
5132         return 0;
5133
5134 err_unlock:
5135         mutex_unlock(&i915->drm.struct_mutex);
5136         intel_runtime_pm_put(i915);
5137         return ret;
5138 }
5139
5140 void i915_gem_suspend_late(struct drm_i915_private *i915)
5141 {
5142         struct drm_i915_gem_object *obj;
5143         struct list_head *phases[] = {
5144                 &i915->mm.unbound_list,
5145                 &i915->mm.bound_list,
5146                 NULL
5147         }, **phase;
5148
5149         /*
5150          * Neither the BIOS, ourselves or any other kernel
5151          * expects the system to be in execlists mode on startup,
5152          * so we need to reset the GPU back to legacy mode. And the only
5153          * known way to disable logical contexts is through a GPU reset.
5154          *
5155          * So in order to leave the system in a known default configuration,
5156          * always reset the GPU upon unload and suspend. Afterwards we then
5157          * clean up the GEM state tracking, flushing off the requests and
5158          * leaving the system in a known idle state.
5159          *
5160          * Note that is of the upmost importance that the GPU is idle and
5161          * all stray writes are flushed *before* we dismantle the backing
5162          * storage for the pinned objects.
5163          *
5164          * However, since we are uncertain that resetting the GPU on older
5165          * machines is a good idea, we don't - just in case it leaves the
5166          * machine in an unusable condition.
5167          */
5168
5169         mutex_lock(&i915->drm.struct_mutex);
5170         for (phase = phases; *phase; phase++) {
5171                 list_for_each_entry(obj, *phase, mm.link)
5172                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5173         }
5174         mutex_unlock(&i915->drm.struct_mutex);
5175
5176         intel_uc_sanitize(i915);
5177         i915_gem_sanitize(i915);
5178 }
5179
5180 void i915_gem_resume(struct drm_i915_private *i915)
5181 {
5182         GEM_TRACE("\n");
5183
5184         WARN_ON(i915->gt.awake);
5185
5186         mutex_lock(&i915->drm.struct_mutex);
5187         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5188
5189         i915_gem_restore_gtt_mappings(i915);
5190         i915_gem_restore_fences(i915);
5191
5192         /*
5193          * As we didn't flush the kernel context before suspend, we cannot
5194          * guarantee that the context image is complete. So let's just reset
5195          * it and start again.
5196          */
5197         i915->gt.resume(i915);
5198
5199         if (i915_gem_init_hw(i915))
5200                 goto err_wedged;
5201
5202         intel_uc_resume(i915);
5203
5204         /* Always reload a context for powersaving. */
5205         if (i915_gem_switch_to_kernel_context(i915))
5206                 goto err_wedged;
5207
5208 out_unlock:
5209         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5210         mutex_unlock(&i915->drm.struct_mutex);
5211         return;
5212
5213 err_wedged:
5214         if (!i915_terminally_wedged(&i915->gpu_error)) {
5215                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5216                 i915_gem_set_wedged(i915);
5217         }
5218         goto out_unlock;
5219 }
5220
5221 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5222 {
5223         if (INTEL_GEN(dev_priv) < 5 ||
5224             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5225                 return;
5226
5227         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5228                                  DISP_TILE_SURFACE_SWIZZLING);
5229
5230         if (IS_GEN5(dev_priv))
5231                 return;
5232
5233         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5234         if (IS_GEN6(dev_priv))
5235                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5236         else if (IS_GEN7(dev_priv))
5237                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5238         else if (IS_GEN8(dev_priv))
5239                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5240         else
5241                 BUG();
5242 }
5243
5244 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5245 {
5246         I915_WRITE(RING_CTL(base), 0);
5247         I915_WRITE(RING_HEAD(base), 0);
5248         I915_WRITE(RING_TAIL(base), 0);
5249         I915_WRITE(RING_START(base), 0);
5250 }
5251
5252 static void init_unused_rings(struct drm_i915_private *dev_priv)
5253 {
5254         if (IS_I830(dev_priv)) {
5255                 init_unused_ring(dev_priv, PRB1_BASE);
5256                 init_unused_ring(dev_priv, SRB0_BASE);
5257                 init_unused_ring(dev_priv, SRB1_BASE);
5258                 init_unused_ring(dev_priv, SRB2_BASE);
5259                 init_unused_ring(dev_priv, SRB3_BASE);
5260         } else if (IS_GEN2(dev_priv)) {
5261                 init_unused_ring(dev_priv, SRB0_BASE);
5262                 init_unused_ring(dev_priv, SRB1_BASE);
5263         } else if (IS_GEN3(dev_priv)) {
5264                 init_unused_ring(dev_priv, PRB1_BASE);
5265                 init_unused_ring(dev_priv, PRB2_BASE);
5266         }
5267 }
5268
5269 static int __i915_gem_restart_engines(void *data)
5270 {
5271         struct drm_i915_private *i915 = data;
5272         struct intel_engine_cs *engine;
5273         enum intel_engine_id id;
5274         int err;
5275
5276         for_each_engine(engine, i915, id) {
5277                 err = engine->init_hw(engine);
5278                 if (err) {
5279                         DRM_ERROR("Failed to restart %s (%d)\n",
5280                                   engine->name, err);
5281                         return err;
5282                 }
5283         }
5284
5285         return 0;
5286 }
5287
5288 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5289 {
5290         int ret;
5291
5292         dev_priv->gt.last_init_time = ktime_get();
5293
5294         /* Double layer security blanket, see i915_gem_init() */
5295         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5296
5297         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5298                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5299
5300         if (IS_HASWELL(dev_priv))
5301                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5302                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5303
5304         if (HAS_PCH_NOP(dev_priv)) {
5305                 if (IS_IVYBRIDGE(dev_priv)) {
5306                         u32 temp = I915_READ(GEN7_MSG_CTL);
5307                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5308                         I915_WRITE(GEN7_MSG_CTL, temp);
5309                 } else if (INTEL_GEN(dev_priv) >= 7) {
5310                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5311                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5312                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5313                 }
5314         }
5315
5316         intel_gt_workarounds_apply(dev_priv);
5317
5318         i915_gem_init_swizzling(dev_priv);
5319
5320         /*
5321          * At least 830 can leave some of the unused rings
5322          * "active" (ie. head != tail) after resume which
5323          * will prevent c3 entry. Makes sure all unused rings
5324          * are totally idle.
5325          */
5326         init_unused_rings(dev_priv);
5327
5328         BUG_ON(!dev_priv->kernel_context);
5329         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5330                 ret = -EIO;
5331                 goto out;
5332         }
5333
5334         ret = i915_ppgtt_init_hw(dev_priv);
5335         if (ret) {
5336                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5337                 goto out;
5338         }
5339
5340         ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5341         if (ret) {
5342                 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5343                 goto out;
5344         }
5345
5346         /* We can't enable contexts until all firmware is loaded */
5347         ret = intel_uc_init_hw(dev_priv);
5348         if (ret) {
5349                 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5350                 goto out;
5351         }
5352
5353         intel_mocs_init_l3cc_table(dev_priv);
5354
5355         /* Only when the HW is re-initialised, can we replay the requests */
5356         ret = __i915_gem_restart_engines(dev_priv);
5357         if (ret)
5358                 goto cleanup_uc;
5359
5360         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5361
5362         return 0;
5363
5364 cleanup_uc:
5365         intel_uc_fini_hw(dev_priv);
5366 out:
5367         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5368
5369         return ret;
5370 }
5371
5372 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5373 {
5374         struct i915_gem_context *ctx;
5375         struct intel_engine_cs *engine;
5376         enum intel_engine_id id;
5377         int err;
5378
5379         /*
5380          * As we reset the gpu during very early sanitisation, the current
5381          * register state on the GPU should reflect its defaults values.
5382          * We load a context onto the hw (with restore-inhibit), then switch
5383          * over to a second context to save that default register state. We
5384          * can then prime every new context with that state so they all start
5385          * from the same default HW values.
5386          */
5387
5388         ctx = i915_gem_context_create_kernel(i915, 0);
5389         if (IS_ERR(ctx))
5390                 return PTR_ERR(ctx);
5391
5392         for_each_engine(engine, i915, id) {
5393                 struct i915_request *rq;
5394
5395                 rq = i915_request_alloc(engine, ctx);
5396                 if (IS_ERR(rq)) {
5397                         err = PTR_ERR(rq);
5398                         goto out_ctx;
5399                 }
5400
5401                 err = 0;
5402                 if (engine->init_context)
5403                         err = engine->init_context(rq);
5404
5405                 i915_request_add(rq);
5406                 if (err)
5407                         goto err_active;
5408         }
5409
5410         err = i915_gem_switch_to_kernel_context(i915);
5411         if (err)
5412                 goto err_active;
5413
5414         if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5415                 i915_gem_set_wedged(i915);
5416                 err = -EIO; /* Caller will declare us wedged */
5417                 goto err_active;
5418         }
5419
5420         assert_kernel_context_is_current(i915);
5421
5422         /*
5423          * Immediately park the GPU so that we enable powersaving and
5424          * treat it as idle. The next time we issue a request, we will
5425          * unpark and start using the engine->pinned_default_state, otherwise
5426          * it is in limbo and an early reset may fail.
5427          */
5428         __i915_gem_park(i915);
5429
5430         for_each_engine(engine, i915, id) {
5431                 struct i915_vma *state;
5432                 void *vaddr;
5433
5434                 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5435
5436                 state = to_intel_context(ctx, engine)->state;
5437                 if (!state)
5438                         continue;
5439
5440                 /*
5441                  * As we will hold a reference to the logical state, it will
5442                  * not be torn down with the context, and importantly the
5443                  * object will hold onto its vma (making it possible for a
5444                  * stray GTT write to corrupt our defaults). Unmap the vma
5445                  * from the GTT to prevent such accidents and reclaim the
5446                  * space.
5447                  */
5448                 err = i915_vma_unbind(state);
5449                 if (err)
5450                         goto err_active;
5451
5452                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5453                 if (err)
5454                         goto err_active;
5455
5456                 engine->default_state = i915_gem_object_get(state->obj);
5457
5458                 /* Check we can acquire the image of the context state */
5459                 vaddr = i915_gem_object_pin_map(engine->default_state,
5460                                                 I915_MAP_FORCE_WB);
5461                 if (IS_ERR(vaddr)) {
5462                         err = PTR_ERR(vaddr);
5463                         goto err_active;
5464                 }
5465
5466                 i915_gem_object_unpin_map(engine->default_state);
5467         }
5468
5469         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5470                 unsigned int found = intel_engines_has_context_isolation(i915);
5471
5472                 /*
5473                  * Make sure that classes with multiple engine instances all
5474                  * share the same basic configuration.
5475                  */
5476                 for_each_engine(engine, i915, id) {
5477                         unsigned int bit = BIT(engine->uabi_class);
5478                         unsigned int expected = engine->default_state ? bit : 0;
5479
5480                         if ((found & bit) != expected) {
5481                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5482                                           engine->uabi_class, engine->name);
5483                         }
5484                 }
5485         }
5486
5487 out_ctx:
5488         i915_gem_context_set_closed(ctx);
5489         i915_gem_context_put(ctx);
5490         return err;
5491
5492 err_active:
5493         /*
5494          * If we have to abandon now, we expect the engines to be idle
5495          * and ready to be torn-down. First try to flush any remaining
5496          * request, ensure we are pointing at the kernel context and
5497          * then remove it.
5498          */
5499         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5500                 goto out_ctx;
5501
5502         if (WARN_ON(i915_gem_wait_for_idle(i915,
5503                                            I915_WAIT_LOCKED,
5504                                            MAX_SCHEDULE_TIMEOUT)))
5505                 goto out_ctx;
5506
5507         i915_gem_contexts_lost(i915);
5508         goto out_ctx;
5509 }
5510
5511 int i915_gem_init(struct drm_i915_private *dev_priv)
5512 {
5513         int ret;
5514
5515         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5516         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5517                 mkwrite_device_info(dev_priv)->page_sizes =
5518                         I915_GTT_PAGE_SIZE_4K;
5519
5520         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5521
5522         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5523                 dev_priv->gt.resume = intel_lr_context_resume;
5524                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5525         } else {
5526                 dev_priv->gt.resume = intel_legacy_submission_resume;
5527                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5528         }
5529
5530         ret = i915_gem_init_userptr(dev_priv);
5531         if (ret)
5532                 return ret;
5533
5534         ret = intel_uc_init_misc(dev_priv);
5535         if (ret)
5536                 return ret;
5537
5538         ret = intel_wopcm_init(&dev_priv->wopcm);
5539         if (ret)
5540                 goto err_uc_misc;
5541
5542         /* This is just a security blanket to placate dragons.
5543          * On some systems, we very sporadically observe that the first TLBs
5544          * used by the CS may be stale, despite us poking the TLB reset. If
5545          * we hold the forcewake during initialisation these problems
5546          * just magically go away.
5547          */
5548         mutex_lock(&dev_priv->drm.struct_mutex);
5549         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5550
5551         ret = i915_gem_init_ggtt(dev_priv);
5552         if (ret) {
5553                 GEM_BUG_ON(ret == -EIO);
5554                 goto err_unlock;
5555         }
5556
5557         ret = i915_gem_contexts_init(dev_priv);
5558         if (ret) {
5559                 GEM_BUG_ON(ret == -EIO);
5560                 goto err_ggtt;
5561         }
5562
5563         ret = intel_engines_init(dev_priv);
5564         if (ret) {
5565                 GEM_BUG_ON(ret == -EIO);
5566                 goto err_context;
5567         }
5568
5569         intel_init_gt_powersave(dev_priv);
5570
5571         ret = intel_uc_init(dev_priv);
5572         if (ret)
5573                 goto err_pm;
5574
5575         ret = i915_gem_init_hw(dev_priv);
5576         if (ret)
5577                 goto err_uc_init;
5578
5579         /*
5580          * Despite its name intel_init_clock_gating applies both display
5581          * clock gating workarounds; GT mmio workarounds and the occasional
5582          * GT power context workaround. Worse, sometimes it includes a context
5583          * register workaround which we need to apply before we record the
5584          * default HW state for all contexts.
5585          *
5586          * FIXME: break up the workarounds and apply them at the right time!
5587          */
5588         intel_init_clock_gating(dev_priv);
5589
5590         ret = __intel_engines_record_defaults(dev_priv);
5591         if (ret)
5592                 goto err_init_hw;
5593
5594         if (i915_inject_load_failure()) {
5595                 ret = -ENODEV;
5596                 goto err_init_hw;
5597         }
5598
5599         if (i915_inject_load_failure()) {
5600                 ret = -EIO;
5601                 goto err_init_hw;
5602         }
5603
5604         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5605         mutex_unlock(&dev_priv->drm.struct_mutex);
5606
5607         return 0;
5608
5609         /*
5610          * Unwinding is complicated by that we want to handle -EIO to mean
5611          * disable GPU submission but keep KMS alive. We want to mark the
5612          * HW as irrevisibly wedged, but keep enough state around that the
5613          * driver doesn't explode during runtime.
5614          */
5615 err_init_hw:
5616         mutex_unlock(&dev_priv->drm.struct_mutex);
5617
5618         WARN_ON(i915_gem_suspend(dev_priv));
5619         i915_gem_suspend_late(dev_priv);
5620
5621         i915_gem_drain_workqueue(dev_priv);
5622
5623         mutex_lock(&dev_priv->drm.struct_mutex);
5624         intel_uc_fini_hw(dev_priv);
5625 err_uc_init:
5626         intel_uc_fini(dev_priv);
5627 err_pm:
5628         if (ret != -EIO) {
5629                 intel_cleanup_gt_powersave(dev_priv);
5630                 i915_gem_cleanup_engines(dev_priv);
5631         }
5632 err_context:
5633         if (ret != -EIO)
5634                 i915_gem_contexts_fini(dev_priv);
5635 err_ggtt:
5636 err_unlock:
5637         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5638         mutex_unlock(&dev_priv->drm.struct_mutex);
5639
5640 err_uc_misc:
5641         intel_uc_fini_misc(dev_priv);
5642
5643         if (ret != -EIO)
5644                 i915_gem_cleanup_userptr(dev_priv);
5645
5646         if (ret == -EIO) {
5647                 mutex_lock(&dev_priv->drm.struct_mutex);
5648
5649                 /*
5650                  * Allow engine initialisation to fail by marking the GPU as
5651                  * wedged. But we only want to do this where the GPU is angry,
5652                  * for all other failure, such as an allocation failure, bail.
5653                  */
5654                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5655                         i915_load_error(dev_priv,
5656                                         "Failed to initialize GPU, declaring it wedged!\n");
5657                         i915_gem_set_wedged(dev_priv);
5658                 }
5659
5660                 /* Minimal basic recovery for KMS */
5661                 ret = i915_ggtt_enable_hw(dev_priv);
5662                 i915_gem_restore_gtt_mappings(dev_priv);
5663                 i915_gem_restore_fences(dev_priv);
5664                 intel_init_clock_gating(dev_priv);
5665
5666                 mutex_unlock(&dev_priv->drm.struct_mutex);
5667         }
5668
5669         i915_gem_drain_freed_objects(dev_priv);
5670         return ret;
5671 }
5672
5673 void i915_gem_fini(struct drm_i915_private *dev_priv)
5674 {
5675         i915_gem_suspend_late(dev_priv);
5676         intel_disable_gt_powersave(dev_priv);
5677
5678         /* Flush any outstanding unpin_work. */
5679         i915_gem_drain_workqueue(dev_priv);
5680
5681         mutex_lock(&dev_priv->drm.struct_mutex);
5682         intel_uc_fini_hw(dev_priv);
5683         intel_uc_fini(dev_priv);
5684         i915_gem_cleanup_engines(dev_priv);
5685         i915_gem_contexts_fini(dev_priv);
5686         mutex_unlock(&dev_priv->drm.struct_mutex);
5687
5688         intel_cleanup_gt_powersave(dev_priv);
5689
5690         intel_uc_fini_misc(dev_priv);
5691         i915_gem_cleanup_userptr(dev_priv);
5692
5693         i915_gem_drain_freed_objects(dev_priv);
5694
5695         WARN_ON(!list_empty(&dev_priv->contexts.list));
5696 }
5697
5698 void i915_gem_init_mmio(struct drm_i915_private *i915)
5699 {
5700         i915_gem_sanitize(i915);
5701 }
5702
5703 void
5704 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5705 {
5706         struct intel_engine_cs *engine;
5707         enum intel_engine_id id;
5708
5709         for_each_engine(engine, dev_priv, id)
5710                 dev_priv->gt.cleanup_engine(engine);
5711 }
5712
5713 void
5714 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5715 {
5716         int i;
5717
5718         if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5719             !IS_CHERRYVIEW(dev_priv))
5720                 dev_priv->num_fence_regs = 32;
5721         else if (INTEL_GEN(dev_priv) >= 4 ||
5722                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5723                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5724                 dev_priv->num_fence_regs = 16;
5725         else
5726                 dev_priv->num_fence_regs = 8;
5727
5728         if (intel_vgpu_active(dev_priv))
5729                 dev_priv->num_fence_regs =
5730                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5731
5732         /* Initialize fence registers to zero */
5733         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5734                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5735
5736                 fence->i915 = dev_priv;
5737                 fence->id = i;
5738                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5739         }
5740         i915_gem_restore_fences(dev_priv);
5741
5742         i915_gem_detect_bit_6_swizzle(dev_priv);
5743 }
5744
5745 static void i915_gem_init__mm(struct drm_i915_private *i915)
5746 {
5747         spin_lock_init(&i915->mm.object_stat_lock);
5748         spin_lock_init(&i915->mm.obj_lock);
5749         spin_lock_init(&i915->mm.free_lock);
5750
5751         init_llist_head(&i915->mm.free_list);
5752
5753         INIT_LIST_HEAD(&i915->mm.unbound_list);
5754         INIT_LIST_HEAD(&i915->mm.bound_list);
5755         INIT_LIST_HEAD(&i915->mm.fence_list);
5756         INIT_LIST_HEAD(&i915->mm.userfault_list);
5757
5758         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5759 }
5760
5761 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5762 {
5763         int err = -ENOMEM;
5764
5765         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5766         if (!dev_priv->objects)
5767                 goto err_out;
5768
5769         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5770         if (!dev_priv->vmas)
5771                 goto err_objects;
5772
5773         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5774         if (!dev_priv->luts)
5775                 goto err_vmas;
5776
5777         dev_priv->requests = KMEM_CACHE(i915_request,
5778                                         SLAB_HWCACHE_ALIGN |
5779                                         SLAB_RECLAIM_ACCOUNT |
5780                                         SLAB_TYPESAFE_BY_RCU);
5781         if (!dev_priv->requests)
5782                 goto err_luts;
5783
5784         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5785                                             SLAB_HWCACHE_ALIGN |
5786                                             SLAB_RECLAIM_ACCOUNT);
5787         if (!dev_priv->dependencies)
5788                 goto err_requests;
5789
5790         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5791         if (!dev_priv->priorities)
5792                 goto err_dependencies;
5793
5794         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5795         INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5796         INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5797
5798         i915_gem_init__mm(dev_priv);
5799
5800         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5801                           i915_gem_retire_work_handler);
5802         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5803                           i915_gem_idle_work_handler);
5804         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5805         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5806
5807         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5808
5809         spin_lock_init(&dev_priv->fb_tracking.lock);
5810
5811         err = i915_gemfs_init(dev_priv);
5812         if (err)
5813                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5814
5815         return 0;
5816
5817 err_dependencies:
5818         kmem_cache_destroy(dev_priv->dependencies);
5819 err_requests:
5820         kmem_cache_destroy(dev_priv->requests);
5821 err_luts:
5822         kmem_cache_destroy(dev_priv->luts);
5823 err_vmas:
5824         kmem_cache_destroy(dev_priv->vmas);
5825 err_objects:
5826         kmem_cache_destroy(dev_priv->objects);
5827 err_out:
5828         return err;
5829 }
5830
5831 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5832 {
5833         i915_gem_drain_freed_objects(dev_priv);
5834         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5835         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5836         WARN_ON(dev_priv->mm.object_count);
5837         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5838
5839         kmem_cache_destroy(dev_priv->priorities);
5840         kmem_cache_destroy(dev_priv->dependencies);
5841         kmem_cache_destroy(dev_priv->requests);
5842         kmem_cache_destroy(dev_priv->luts);
5843         kmem_cache_destroy(dev_priv->vmas);
5844         kmem_cache_destroy(dev_priv->objects);
5845
5846         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5847         rcu_barrier();
5848
5849         i915_gemfs_fini(dev_priv);
5850 }
5851
5852 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5853 {
5854         /* Discard all purgeable objects, let userspace recover those as
5855          * required after resuming.
5856          */
5857         i915_gem_shrink_all(dev_priv);
5858
5859         return 0;
5860 }
5861
5862 int i915_gem_freeze_late(struct drm_i915_private *i915)
5863 {
5864         struct drm_i915_gem_object *obj;
5865         struct list_head *phases[] = {
5866                 &i915->mm.unbound_list,
5867                 &i915->mm.bound_list,
5868                 NULL
5869         }, **phase;
5870
5871         /*
5872          * Called just before we write the hibernation image.
5873          *
5874          * We need to update the domain tracking to reflect that the CPU
5875          * will be accessing all the pages to create and restore from the
5876          * hibernation, and so upon restoration those pages will be in the
5877          * CPU domain.
5878          *
5879          * To make sure the hibernation image contains the latest state,
5880          * we update that state just before writing out the image.
5881          *
5882          * To try and reduce the hibernation image, we manually shrink
5883          * the objects as well, see i915_gem_freeze()
5884          */
5885
5886         i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5887         i915_gem_drain_freed_objects(i915);
5888
5889         mutex_lock(&i915->drm.struct_mutex);
5890         for (phase = phases; *phase; phase++) {
5891                 list_for_each_entry(obj, *phase, mm.link)
5892                         WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5893         }
5894         mutex_unlock(&i915->drm.struct_mutex);
5895
5896         return 0;
5897 }
5898
5899 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5900 {
5901         struct drm_i915_file_private *file_priv = file->driver_priv;
5902         struct i915_request *request;
5903
5904         /* Clean up our request list when the client is going away, so that
5905          * later retire_requests won't dereference our soon-to-be-gone
5906          * file_priv.
5907          */
5908         spin_lock(&file_priv->mm.lock);
5909         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5910                 request->file_priv = NULL;
5911         spin_unlock(&file_priv->mm.lock);
5912 }
5913
5914 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5915 {
5916         struct drm_i915_file_private *file_priv;
5917         int ret;
5918
5919         DRM_DEBUG("\n");
5920
5921         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5922         if (!file_priv)
5923                 return -ENOMEM;
5924
5925         file->driver_priv = file_priv;
5926         file_priv->dev_priv = i915;
5927         file_priv->file = file;
5928
5929         spin_lock_init(&file_priv->mm.lock);
5930         INIT_LIST_HEAD(&file_priv->mm.request_list);
5931
5932         file_priv->bsd_engine = -1;
5933         file_priv->hang_timestamp = jiffies;
5934
5935         ret = i915_gem_context_open(i915, file);
5936         if (ret)
5937                 kfree(file_priv);
5938
5939         return ret;
5940 }
5941
5942 /**
5943  * i915_gem_track_fb - update frontbuffer tracking
5944  * @old: current GEM buffer for the frontbuffer slots
5945  * @new: new GEM buffer for the frontbuffer slots
5946  * @frontbuffer_bits: bitmask of frontbuffer slots
5947  *
5948  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5949  * from @old and setting them in @new. Both @old and @new can be NULL.
5950  */
5951 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5952                        struct drm_i915_gem_object *new,
5953                        unsigned frontbuffer_bits)
5954 {
5955         /* Control of individual bits within the mask are guarded by
5956          * the owning plane->mutex, i.e. we can never see concurrent
5957          * manipulation of individual bits. But since the bitfield as a whole
5958          * is updated using RMW, we need to use atomics in order to update
5959          * the bits.
5960          */
5961         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5962                      sizeof(atomic_t) * BITS_PER_BYTE);
5963
5964         if (old) {
5965                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5966                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5967         }
5968
5969         if (new) {
5970                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5971                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5972         }
5973 }
5974
5975 /* Allocate a new GEM object and fill it with the supplied data */
5976 struct drm_i915_gem_object *
5977 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5978                                  const void *data, size_t size)
5979 {
5980         struct drm_i915_gem_object *obj;
5981         struct file *file;
5982         size_t offset;
5983         int err;
5984
5985         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5986         if (IS_ERR(obj))
5987                 return obj;
5988
5989         GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5990
5991         file = obj->base.filp;
5992         offset = 0;
5993         do {
5994                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5995                 struct page *page;
5996                 void *pgdata, *vaddr;
5997
5998                 err = pagecache_write_begin(file, file->f_mapping,
5999                                             offset, len, 0,
6000                                             &page, &pgdata);
6001                 if (err < 0)
6002                         goto fail;
6003
6004                 vaddr = kmap(page);
6005                 memcpy(vaddr, data, len);
6006                 kunmap(page);
6007
6008                 err = pagecache_write_end(file, file->f_mapping,
6009                                           offset, len, len,
6010                                           page, pgdata);
6011                 if (err < 0)
6012                         goto fail;
6013
6014                 size -= len;
6015                 data += len;
6016                 offset += len;
6017         } while (size);
6018
6019         return obj;
6020
6021 fail:
6022         i915_gem_object_put(obj);
6023         return ERR_PTR(err);
6024 }
6025
6026 struct scatterlist *
6027 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6028                        unsigned int n,
6029                        unsigned int *offset)
6030 {
6031         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6032         struct scatterlist *sg;
6033         unsigned int idx, count;
6034
6035         might_sleep();
6036         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6037         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6038
6039         /* As we iterate forward through the sg, we record each entry in a
6040          * radixtree for quick repeated (backwards) lookups. If we have seen
6041          * this index previously, we will have an entry for it.
6042          *
6043          * Initial lookup is O(N), but this is amortized to O(1) for
6044          * sequential page access (where each new request is consecutive
6045          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6046          * i.e. O(1) with a large constant!
6047          */
6048         if (n < READ_ONCE(iter->sg_idx))
6049                 goto lookup;
6050
6051         mutex_lock(&iter->lock);
6052
6053         /* We prefer to reuse the last sg so that repeated lookup of this
6054          * (or the subsequent) sg are fast - comparing against the last
6055          * sg is faster than going through the radixtree.
6056          */
6057
6058         sg = iter->sg_pos;
6059         idx = iter->sg_idx;
6060         count = __sg_page_count(sg);
6061
6062         while (idx + count <= n) {
6063                 unsigned long exception, i;
6064                 int ret;
6065
6066                 /* If we cannot allocate and insert this entry, or the
6067                  * individual pages from this range, cancel updating the
6068                  * sg_idx so that on this lookup we are forced to linearly
6069                  * scan onwards, but on future lookups we will try the
6070                  * insertion again (in which case we need to be careful of
6071                  * the error return reporting that we have already inserted
6072                  * this index).
6073                  */
6074                 ret = radix_tree_insert(&iter->radix, idx, sg);
6075                 if (ret && ret != -EEXIST)
6076                         goto scan;
6077
6078                 exception =
6079                         RADIX_TREE_EXCEPTIONAL_ENTRY |
6080                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6081                 for (i = 1; i < count; i++) {
6082                         ret = radix_tree_insert(&iter->radix, idx + i,
6083                                                 (void *)exception);
6084                         if (ret && ret != -EEXIST)
6085                                 goto scan;
6086                 }
6087
6088                 idx += count;
6089                 sg = ____sg_next(sg);
6090                 count = __sg_page_count(sg);
6091         }
6092
6093 scan:
6094         iter->sg_pos = sg;
6095         iter->sg_idx = idx;
6096
6097         mutex_unlock(&iter->lock);
6098
6099         if (unlikely(n < idx)) /* insertion completed by another thread */
6100                 goto lookup;
6101
6102         /* In case we failed to insert the entry into the radixtree, we need
6103          * to look beyond the current sg.
6104          */
6105         while (idx + count <= n) {
6106                 idx += count;
6107                 sg = ____sg_next(sg);
6108                 count = __sg_page_count(sg);
6109         }
6110
6111         *offset = n - idx;
6112         return sg;
6113
6114 lookup:
6115         rcu_read_lock();
6116
6117         sg = radix_tree_lookup(&iter->radix, n);
6118         GEM_BUG_ON(!sg);
6119
6120         /* If this index is in the middle of multi-page sg entry,
6121          * the radixtree will contain an exceptional entry that points
6122          * to the start of that range. We will return the pointer to
6123          * the base page and the offset of this page within the
6124          * sg entry's range.
6125          */
6126         *offset = 0;
6127         if (unlikely(radix_tree_exception(sg))) {
6128                 unsigned long base =
6129                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6130
6131                 sg = radix_tree_lookup(&iter->radix, base);
6132                 GEM_BUG_ON(!sg);
6133
6134                 *offset = n - base;
6135         }
6136
6137         rcu_read_unlock();
6138
6139         return sg;
6140 }
6141
6142 struct page *
6143 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6144 {
6145         struct scatterlist *sg;
6146         unsigned int offset;
6147
6148         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6149
6150         sg = i915_gem_object_get_sg(obj, n, &offset);
6151         return nth_page(sg_page(sg), offset);
6152 }
6153
6154 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6155 struct page *
6156 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6157                                unsigned int n)
6158 {
6159         struct page *page;
6160
6161         page = i915_gem_object_get_page(obj, n);
6162         if (!obj->mm.dirty)
6163                 set_page_dirty(page);
6164
6165         return page;
6166 }
6167
6168 dma_addr_t
6169 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6170                                 unsigned long n)
6171 {
6172         struct scatterlist *sg;
6173         unsigned int offset;
6174
6175         sg = i915_gem_object_get_sg(obj, n, &offset);
6176         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6177 }
6178
6179 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6180 {
6181         struct sg_table *pages;
6182         int err;
6183
6184         if (align > obj->base.size)
6185                 return -EINVAL;
6186
6187         if (obj->ops == &i915_gem_phys_ops)
6188                 return 0;
6189
6190         if (obj->ops != &i915_gem_object_ops)
6191                 return -EINVAL;
6192
6193         err = i915_gem_object_unbind(obj);
6194         if (err)
6195                 return err;
6196
6197         mutex_lock(&obj->mm.lock);
6198
6199         if (obj->mm.madv != I915_MADV_WILLNEED) {
6200                 err = -EFAULT;
6201                 goto err_unlock;
6202         }
6203
6204         if (obj->mm.quirked) {
6205                 err = -EFAULT;
6206                 goto err_unlock;
6207         }
6208
6209         if (obj->mm.mapping) {
6210                 err = -EBUSY;
6211                 goto err_unlock;
6212         }
6213
6214         pages = __i915_gem_object_unset_pages(obj);
6215
6216         obj->ops = &i915_gem_phys_ops;
6217
6218         err = ____i915_gem_object_get_pages(obj);
6219         if (err)
6220                 goto err_xfer;
6221
6222         /* Perma-pin (until release) the physical set of pages */
6223         __i915_gem_object_pin_pages(obj);
6224
6225         if (!IS_ERR_OR_NULL(pages))
6226                 i915_gem_object_ops.put_pages(obj, pages);
6227         mutex_unlock(&obj->mm.lock);
6228         return 0;
6229
6230 err_xfer:
6231         obj->ops = &i915_gem_object_ops;
6232         if (!IS_ERR_OR_NULL(pages)) {
6233                 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6234
6235                 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6236         }
6237 err_unlock:
6238         mutex_unlock(&obj->mm.lock);
6239         return err;
6240 }
6241
6242 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6243 #include "selftests/scatterlist.c"
6244 #include "selftests/mock_gem_device.c"
6245 #include "selftests/huge_gem_object.c"
6246 #include "selftests/huge_pages.c"
6247 #include "selftests/i915_gem_object.c"
6248 #include "selftests/i915_gem_coherency.c"
6249 #include "selftests/i915_gem.c"
6250 #endif