drm/i915: Initialize obj->pages before use by i915_gem_object_do_bit17_swizzle()
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable,
45                                                     bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65         if (obj->tiling_mode)
66                 i915_gem_release_mmap(obj);
67
68         /* As we do not have an associated fence register, we will force
69          * a tiling change if we ever need to acquire one.
70          */
71         obj->fence_dirty = false;
72         obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77                                   size_t size)
78 {
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84                                      size_t size)
85 {
86         dev_priv->mm.object_count--;
87         dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93         struct drm_i915_private *dev_priv = dev->dev_private;
94         struct completion *x = &dev_priv->error_completion;
95         unsigned long flags;
96         int ret;
97
98         if (!atomic_read(&dev_priv->mm.wedged))
99                 return 0;
100
101         /*
102          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103          * userspace. If it takes that long something really bad is going on and
104          * we should simply try to bail out and fail as gracefully as possible.
105          */
106         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113
114         if (atomic_read(&dev_priv->mm.wedged)) {
115                 /* GPU is hung, bump the completion count to account for
116                  * the token we just consumed so that we never hit zero and
117                  * end up waiting upon a subsequent completion event that
118                  * will never happen.
119                  */
120                 spin_lock_irqsave(&x->wait.lock, flags);
121                 x->done++;
122                 spin_unlock_irqrestore(&x->wait.lock, flags);
123         }
124         return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         int ret;
130
131         ret = i915_gem_wait_for_error(dev);
132         if (ret)
133                 return ret;
134
135         ret = mutex_lock_interruptible(&dev->struct_mutex);
136         if (ret)
137                 return ret;
138
139         WARN_ON(i915_verify_lists(dev));
140         return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146         return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151                     struct drm_file *file)
152 {
153         struct drm_i915_gem_init *args = data;
154
155         if (drm_core_check_feature(dev, DRIVER_MODESET))
156                 return -ENODEV;
157
158         if (args->gtt_start >= args->gtt_end ||
159             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160                 return -EINVAL;
161
162         /* GEM with user mode setting was never supported on ilk and later. */
163         if (INTEL_INFO(dev)->gen >= 5)
164                 return -ENODEV;
165
166         mutex_lock(&dev->struct_mutex);
167         i915_gem_init_global_gtt(dev, args->gtt_start,
168                                  args->gtt_end, args->gtt_end);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186                 if (obj->pin_count)
187                         pinned += obj->gtt_space->size;
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->mm.gtt_total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198                 struct drm_device *dev,
199                 uint64_t size,
200                 uint32_t *handle_p)
201 {
202         struct drm_i915_gem_object *obj;
203         int ret;
204         u32 handle;
205
206         size = roundup(size, PAGE_SIZE);
207         if (size == 0)
208                 return -EINVAL;
209
210         /* Allocate the new object */
211         obj = i915_gem_alloc_object(dev, size);
212         if (obj == NULL)
213                 return -ENOMEM;
214
215         ret = drm_gem_handle_create(file, &obj->base, &handle);
216         if (ret) {
217                 drm_gem_object_release(&obj->base);
218                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219                 kfree(obj);
220                 return ret;
221         }
222
223         /* drop reference from allocate - handle holds it now */
224         drm_gem_object_unreference(&obj->base);
225         trace_i915_gem_object_create(obj);
226
227         *handle_p = handle;
228         return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233                      struct drm_device *dev,
234                      struct drm_mode_create_dumb *args)
235 {
236         /* have to work out size/pitch and return them */
237         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238         args->size = args->pitch * args->height;
239         return i915_gem_create(file, dev,
240                                args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244                           struct drm_device *dev,
245                           uint32_t handle)
246 {
247         return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251  * Creates a new mm object and returns a handle to it.
252  */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255                       struct drm_file *file)
256 {
257         struct drm_i915_gem_create *args = data;
258
259         return i915_gem_create(file, dev,
260                                args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268                 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273                         const char *gpu_vaddr, int gpu_offset,
274                         int length)
275 {
276         int ret, cpu_offset = 0;
277
278         while (length > 0) {
279                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280                 int this_length = min(cacheline_end - gpu_offset, length);
281                 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284                                      gpu_vaddr + swizzled_gpu_offset,
285                                      this_length);
286                 if (ret)
287                         return ret + length;
288
289                 cpu_offset += this_length;
290                 gpu_offset += this_length;
291                 length -= this_length;
292         }
293
294         return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299                           const char __user *cpu_vaddr,
300                           int length)
301 {
302         int ret, cpu_offset = 0;
303
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310                                        cpu_vaddr + cpu_offset,
311                                        this_length);
312                 if (ret)
313                         return ret + length;
314
315                 cpu_offset += this_length;
316                 gpu_offset += this_length;
317                 length -= this_length;
318         }
319
320         return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324  * Flushes invalid cachelines before reading the target if
325  * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328                  char __user *user_data,
329                  bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331         char *vaddr;
332         int ret;
333
334         if (unlikely(page_do_bit17_swizzling))
335                 return -EINVAL;
336
337         vaddr = kmap_atomic(page);
338         if (needs_clflush)
339                 drm_clflush_virt_range(vaddr + shmem_page_offset,
340                                        page_length);
341         ret = __copy_to_user_inatomic(user_data,
342                                       vaddr + shmem_page_offset,
343                                       page_length);
344         kunmap_atomic(vaddr);
345
346         return ret ? -EFAULT : 0;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351                              bool swizzled)
352 {
353         if (unlikely(swizzled)) {
354                 unsigned long start = (unsigned long) addr;
355                 unsigned long end = (unsigned long) addr + length;
356
357                 /* For swizzling simply ensure that we always flush both
358                  * channels. Lame, but simple and it works. Swizzled
359                  * pwrite/pread is far from a hotpath - current userspace
360                  * doesn't use it at all. */
361                 start = round_down(start, 128);
362                 end = round_up(end, 128);
363
364                 drm_clflush_virt_range((void *)start, end - start);
365         } else {
366                 drm_clflush_virt_range(addr, length);
367         }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372  * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         vaddr = kmap(page);
382         if (needs_clflush)
383                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384                                              page_length,
385                                              page_do_bit17_swizzling);
386
387         if (page_do_bit17_swizzling)
388                 ret = __copy_to_user_swizzled(user_data,
389                                               vaddr, shmem_page_offset,
390                                               page_length);
391         else
392                 ret = __copy_to_user(user_data,
393                                      vaddr + shmem_page_offset,
394                                      page_length);
395         kunmap(page);
396
397         return ret ? - EFAULT : 0;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402                      struct drm_i915_gem_object *obj,
403                      struct drm_i915_gem_pread *args,
404                      struct drm_file *file)
405 {
406         char __user *user_data;
407         ssize_t remain;
408         loff_t offset;
409         int shmem_page_offset, page_length, ret = 0;
410         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411         int hit_slowpath = 0;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct scatterlist *sg;
415         int i;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         ret = i915_gem_object_get_pages(obj);
437         if (ret)
438                 return ret;
439
440         i915_gem_object_pin_pages(obj);
441
442         offset = args->offset;
443
444         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445                 struct page *page;
446
447                 if (i < offset >> PAGE_SHIFT)
448                         continue;
449
450                 if (remain <= 0)
451                         break;
452
453                 /* Operation in this page
454                  *
455                  * shmem_page_offset = offset within page in shmem file
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset_in_page(offset);
459                 page_length = remain;
460                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461                         page_length = PAGE_SIZE - shmem_page_offset;
462
463                 page = sg_page(sg);
464                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465                         (page_to_phys(page) & (1 << 17)) != 0;
466
467                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468                                        user_data, page_do_bit17_swizzling,
469                                        needs_clflush);
470                 if (ret == 0)
471                         goto next_page;
472
473                 hit_slowpath = 1;
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (!prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         if (hit_slowpath) {
507                 /* Fixup: Kill any reinstated backing storage pages */
508                 if (obj->madv == __I915_MADV_PURGED)
509                         i915_gem_object_truncate(obj);
510         }
511
512         return ret;
513 }
514
515 /**
516  * Reads data from the object referenced by handle.
517  *
518  * On error, the contents of *data are undefined.
519  */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522                      struct drm_file *file)
523 {
524         struct drm_i915_gem_pread *args = data;
525         struct drm_i915_gem_object *obj;
526         int ret = 0;
527
528         if (args->size == 0)
529                 return 0;
530
531         if (!access_ok(VERIFY_WRITE,
532                        (char __user *)(uintptr_t)args->data_ptr,
533                        args->size))
534                 return -EFAULT;
535
536         ret = i915_mutex_lock_interruptible(dev);
537         if (ret)
538                 return ret;
539
540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541         if (&obj->base == NULL) {
542                 ret = -ENOENT;
543                 goto unlock;
544         }
545
546         /* Bounds check source.  */
547         if (args->offset > obj->base.size ||
548             args->size > obj->base.size - args->offset) {
549                 ret = -EINVAL;
550                 goto out;
551         }
552
553         /* prime objects have no backing filp to GEM pread/pwrite
554          * pages from.
555          */
556         if (!obj->base.filp) {
557                 ret = -EINVAL;
558                 goto out;
559         }
560
561         trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563         ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566         drm_gem_object_unreference(&obj->base);
567 unlock:
568         mutex_unlock(&dev->struct_mutex);
569         return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573  * page faults in the source data
574  */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578                 loff_t page_base, int page_offset,
579                 char __user *user_data,
580                 int length)
581 {
582         void __iomem *vaddr_atomic;
583         void *vaddr;
584         unsigned long unwritten;
585
586         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587         /* We can use the cpu mem copy function because this is X86. */
588         vaddr = (void __force*)vaddr_atomic + page_offset;
589         unwritten = __copy_from_user_inatomic_nocache(vaddr,
590                                                       user_data, length);
591         io_mapping_unmap_atomic(vaddr_atomic);
592         return unwritten;
593 }
594
595 /**
596  * This is the fast pwrite path, where we copy the data directly from the
597  * user into the GTT, uncached.
598  */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601                          struct drm_i915_gem_object *obj,
602                          struct drm_i915_gem_pwrite *args,
603                          struct drm_file *file)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         ssize_t remain;
607         loff_t offset, page_base;
608         char __user *user_data;
609         int page_offset, page_length, ret;
610
611         ret = i915_gem_object_pin(obj, 0, true, true);
612         if (ret)
613                 goto out;
614
615         ret = i915_gem_object_set_to_gtt_domain(obj, true);
616         if (ret)
617                 goto out_unpin;
618
619         ret = i915_gem_object_put_fence(obj);
620         if (ret)
621                 goto out_unpin;
622
623         user_data = (char __user *) (uintptr_t) args->data_ptr;
624         remain = args->size;
625
626         offset = obj->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = offset & PAGE_MASK;
636                 page_offset = offset_in_page(offset);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 /* If we get a fault while copying data, then (presumably) our
642                  * source page isn't available.  Return the error and we'll
643                  * retry in the slow path.
644                  */
645                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
646                                     page_offset, user_data, page_length)) {
647                         ret = -EFAULT;
648                         goto out_unpin;
649                 }
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 out_unpin:
657         i915_gem_object_unpin(obj);
658 out:
659         return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663  * Flushes invalid cachelines before writing to the target if
664  * needs_clflush_before is set and flushes out any written cachelines after
665  * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668                   char __user *user_data,
669                   bool page_do_bit17_swizzling,
670                   bool needs_clflush_before,
671                   bool needs_clflush_after)
672 {
673         char *vaddr;
674         int ret;
675
676         if (unlikely(page_do_bit17_swizzling))
677                 return -EINVAL;
678
679         vaddr = kmap_atomic(page);
680         if (needs_clflush_before)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684                                                 user_data,
685                                                 page_length);
686         if (needs_clflush_after)
687                 drm_clflush_virt_range(vaddr + shmem_page_offset,
688                                        page_length);
689         kunmap_atomic(vaddr);
690
691         return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695  * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698                   char __user *user_data,
699                   bool page_do_bit17_swizzling,
700                   bool needs_clflush_before,
701                   bool needs_clflush_after)
702 {
703         char *vaddr;
704         int ret;
705
706         vaddr = kmap(page);
707         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709                                              page_length,
710                                              page_do_bit17_swizzling);
711         if (page_do_bit17_swizzling)
712                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713                                                 user_data,
714                                                 page_length);
715         else
716                 ret = __copy_from_user(vaddr + shmem_page_offset,
717                                        user_data,
718                                        page_length);
719         if (needs_clflush_after)
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         kunmap(page);
724
725         return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730                       struct drm_i915_gem_object *obj,
731                       struct drm_i915_gem_pwrite *args,
732                       struct drm_file *file)
733 {
734         ssize_t remain;
735         loff_t offset;
736         char __user *user_data;
737         int shmem_page_offset, page_length, ret = 0;
738         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739         int hit_slowpath = 0;
740         int needs_clflush_after = 0;
741         int needs_clflush_before = 0;
742         int i;
743         struct scatterlist *sg;
744
745         user_data = (char __user *) (uintptr_t) args->data_ptr;
746         remain = args->size;
747
748         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749
750         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751                 /* If we're not in the cpu write domain, set ourself into the gtt
752                  * write domain and manually flush cachelines (if required). This
753                  * optimizes for the case when the gpu will use the data
754                  * right away and we therefore have to clflush anyway. */
755                 if (obj->cache_level == I915_CACHE_NONE)
756                         needs_clflush_after = 1;
757                 if (obj->gtt_space) {
758                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
759                         if (ret)
760                                 return ret;
761                 }
762         }
763         /* Same trick applies for invalidate partially written cachelines before
764          * writing.  */
765         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766             && obj->cache_level == I915_CACHE_NONE)
767                 needs_clflush_before = 1;
768
769         ret = i915_gem_object_get_pages(obj);
770         if (ret)
771                 return ret;
772
773         i915_gem_object_pin_pages(obj);
774
775         offset = args->offset;
776         obj->dirty = 1;
777
778         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779                 struct page *page;
780                 int partial_cacheline_write;
781
782                 if (i < offset >> PAGE_SHIFT)
783                         continue;
784
785                 if (remain <= 0)
786                         break;
787
788                 /* Operation in this page
789                  *
790                  * shmem_page_offset = offset within page in shmem file
791                  * page_length = bytes to copy for this page
792                  */
793                 shmem_page_offset = offset_in_page(offset);
794
795                 page_length = remain;
796                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - shmem_page_offset;
798
799                 /* If we don't overwrite a cacheline completely we need to be
800                  * careful to have up-to-date data by first clflushing. Don't
801                  * overcomplicate things and flush the entire patch. */
802                 partial_cacheline_write = needs_clflush_before &&
803                         ((shmem_page_offset | page_length)
804                                 & (boot_cpu_data.x86_clflush_size - 1));
805
806                 page = sg_page(sg);
807                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808                         (page_to_phys(page) & (1 << 17)) != 0;
809
810                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811                                         user_data, page_do_bit17_swizzling,
812                                         partial_cacheline_write,
813                                         needs_clflush_after);
814                 if (ret == 0)
815                         goto next_page;
816
817                 hit_slowpath = 1;
818                 mutex_unlock(&dev->struct_mutex);
819                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820                                         user_data, page_do_bit17_swizzling,
821                                         partial_cacheline_write,
822                                         needs_clflush_after);
823
824                 mutex_lock(&dev->struct_mutex);
825
826 next_page:
827                 set_page_dirty(page);
828                 mark_page_accessed(page);
829
830                 if (ret)
831                         goto out;
832
833                 remain -= page_length;
834                 user_data += page_length;
835                 offset += page_length;
836         }
837
838 out:
839         i915_gem_object_unpin_pages(obj);
840
841         if (hit_slowpath) {
842                 /* Fixup: Kill any reinstated backing storage pages */
843                 if (obj->madv == __I915_MADV_PURGED)
844                         i915_gem_object_truncate(obj);
845                 /* and flush dirty cachelines in case the object isn't in the cpu write
846                  * domain anymore. */
847                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848                         i915_gem_clflush_object(obj);
849                         intel_gtt_chipset_flush();
850                 }
851         }
852
853         if (needs_clflush_after)
854                 intel_gtt_chipset_flush();
855
856         return ret;
857 }
858
859 /**
860  * Writes data to the object referenced by handle.
861  *
862  * On error, the contents of the buffer that were to be modified are undefined.
863  */
864 int
865 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866                       struct drm_file *file)
867 {
868         struct drm_i915_gem_pwrite *args = data;
869         struct drm_i915_gem_object *obj;
870         int ret;
871
872         if (args->size == 0)
873                 return 0;
874
875         if (!access_ok(VERIFY_READ,
876                        (char __user *)(uintptr_t)args->data_ptr,
877                        args->size))
878                 return -EFAULT;
879
880         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881                                            args->size);
882         if (ret)
883                 return -EFAULT;
884
885         ret = i915_mutex_lock_interruptible(dev);
886         if (ret)
887                 return ret;
888
889         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890         if (&obj->base == NULL) {
891                 ret = -ENOENT;
892                 goto unlock;
893         }
894
895         /* Bounds check destination. */
896         if (args->offset > obj->base.size ||
897             args->size > obj->base.size - args->offset) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         /* prime objects have no backing filp to GEM pread/pwrite
903          * pages from.
904          */
905         if (!obj->base.filp) {
906                 ret = -EINVAL;
907                 goto out;
908         }
909
910         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
912         ret = -EFAULT;
913         /* We can only do the GTT pwrite on untiled buffers, as otherwise
914          * it would end up going through the fenced access, and we'll get
915          * different detiling behavior between reading and writing.
916          * pread/pwrite currently are reading and writing from the CPU
917          * perspective, requiring manual detiling by the client.
918          */
919         if (obj->phys_obj) {
920                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
921                 goto out;
922         }
923
924         if (obj->cache_level == I915_CACHE_NONE &&
925             obj->tiling_mode == I915_TILING_NONE &&
926             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928                 /* Note that the gtt paths might fail with non-page-backed user
929                  * pointers (e.g. gtt mappings when moving data between
930                  * textures). Fallback to the shmem path in that case. */
931         }
932
933         if (ret == -EFAULT || ret == -ENOSPC)
934                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937         drm_gem_object_unreference(&obj->base);
938 unlock:
939         mutex_unlock(&dev->struct_mutex);
940         return ret;
941 }
942
943 int
944 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945                      bool interruptible)
946 {
947         if (atomic_read(&dev_priv->mm.wedged)) {
948                 struct completion *x = &dev_priv->error_completion;
949                 bool recovery_complete;
950                 unsigned long flags;
951
952                 /* Give the error handler a chance to run. */
953                 spin_lock_irqsave(&x->wait.lock, flags);
954                 recovery_complete = x->done > 0;
955                 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957                 /* Non-interruptible callers can't handle -EAGAIN, hence return
958                  * -EIO unconditionally for these. */
959                 if (!interruptible)
960                         return -EIO;
961
962                 /* Recovery complete, but still wedged means reset failure. */
963                 if (recovery_complete)
964                         return -EIO;
965
966                 return -EAGAIN;
967         }
968
969         return 0;
970 }
971
972 /*
973  * Compare seqno against outstanding lazy request. Emit a request if they are
974  * equal.
975  */
976 static int
977 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978 {
979         int ret;
980
981         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983         ret = 0;
984         if (seqno == ring->outstanding_lazy_request)
985                 ret = i915_add_request(ring, NULL, NULL);
986
987         return ret;
988 }
989
990 /**
991  * __wait_seqno - wait until execution of seqno has finished
992  * @ring: the ring expected to report seqno
993  * @seqno: duh!
994  * @interruptible: do an interruptible wait (normally yes)
995  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996  *
997  * Returns 0 if the seqno was found within the alloted time. Else returns the
998  * errno with remaining time filled in timeout argument.
999  */
1000 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001                         bool interruptible, struct timespec *timeout)
1002 {
1003         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004         struct timespec before, now, wait_time={1,0};
1005         unsigned long timeout_jiffies;
1006         long end;
1007         bool wait_forever = true;
1008         int ret;
1009
1010         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011                 return 0;
1012
1013         trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015         if (timeout != NULL) {
1016                 wait_time = *timeout;
1017                 wait_forever = false;
1018         }
1019
1020         timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022         if (WARN_ON(!ring->irq_get(ring)))
1023                 return -ENODEV;
1024
1025         /* Record current time in case interrupted by signal, or wedged * */
1026         getrawmonotonic(&before);
1027
1028 #define EXIT_COND \
1029         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030         atomic_read(&dev_priv->mm.wedged))
1031         do {
1032                 if (interruptible)
1033                         end = wait_event_interruptible_timeout(ring->irq_queue,
1034                                                                EXIT_COND,
1035                                                                timeout_jiffies);
1036                 else
1037                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038                                                  timeout_jiffies);
1039
1040                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041                 if (ret)
1042                         end = ret;
1043         } while (end == 0 && wait_forever);
1044
1045         getrawmonotonic(&now);
1046
1047         ring->irq_put(ring);
1048         trace_i915_gem_request_wait_end(ring, seqno);
1049 #undef EXIT_COND
1050
1051         if (timeout) {
1052                 struct timespec sleep_time = timespec_sub(now, before);
1053                 *timeout = timespec_sub(*timeout, sleep_time);
1054         }
1055
1056         switch (end) {
1057         case -EIO:
1058         case -EAGAIN: /* Wedged */
1059         case -ERESTARTSYS: /* Signal */
1060                 return (int)end;
1061         case 0: /* Timeout */
1062                 if (timeout)
1063                         set_normalized_timespec(timeout, 0, 0);
1064                 return -ETIME;
1065         default: /* Completed */
1066                 WARN_ON(end < 0); /* We're not aware of other errors */
1067                 return 0;
1068         }
1069 }
1070
1071 /**
1072  * Waits for a sequence number to be signaled, and cleans up the
1073  * request and object lists appropriately for that event.
1074  */
1075 int
1076 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077 {
1078         struct drm_device *dev = ring->dev;
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         bool interruptible = dev_priv->mm.interruptible;
1081         int ret;
1082
1083         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084         BUG_ON(seqno == 0);
1085
1086         ret = i915_gem_check_wedge(dev_priv, interruptible);
1087         if (ret)
1088                 return ret;
1089
1090         ret = i915_gem_check_olr(ring, seqno);
1091         if (ret)
1092                 return ret;
1093
1094         return __wait_seqno(ring, seqno, interruptible, NULL);
1095 }
1096
1097 /**
1098  * Ensures that all rendering to the object has completed and the object is
1099  * safe to unbind from the GTT or access from the CPU.
1100  */
1101 static __must_check int
1102 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103                                bool readonly)
1104 {
1105         struct intel_ring_buffer *ring = obj->ring;
1106         u32 seqno;
1107         int ret;
1108
1109         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110         if (seqno == 0)
1111                 return 0;
1112
1113         ret = i915_wait_seqno(ring, seqno);
1114         if (ret)
1115                 return ret;
1116
1117         i915_gem_retire_requests_ring(ring);
1118
1119         /* Manually manage the write flush as we may have not yet
1120          * retired the buffer.
1121          */
1122         if (obj->last_write_seqno &&
1123             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124                 obj->last_write_seqno = 0;
1125                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126         }
1127
1128         return 0;
1129 }
1130
1131 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1132  * as the object state may change during this call.
1133  */
1134 static __must_check int
1135 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136                                             bool readonly)
1137 {
1138         struct drm_device *dev = obj->base.dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         struct intel_ring_buffer *ring = obj->ring;
1141         u32 seqno;
1142         int ret;
1143
1144         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145         BUG_ON(!dev_priv->mm.interruptible);
1146
1147         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148         if (seqno == 0)
1149                 return 0;
1150
1151         ret = i915_gem_check_wedge(dev_priv, true);
1152         if (ret)
1153                 return ret;
1154
1155         ret = i915_gem_check_olr(ring, seqno);
1156         if (ret)
1157                 return ret;
1158
1159         mutex_unlock(&dev->struct_mutex);
1160         ret = __wait_seqno(ring, seqno, true, NULL);
1161         mutex_lock(&dev->struct_mutex);
1162
1163         i915_gem_retire_requests_ring(ring);
1164
1165         /* Manually manage the write flush as we may have not yet
1166          * retired the buffer.
1167          */
1168         if (obj->last_write_seqno &&
1169             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170                 obj->last_write_seqno = 0;
1171                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172         }
1173
1174         return ret;
1175 }
1176
1177 /**
1178  * Called when user space prepares to use an object with the CPU, either
1179  * through the mmap ioctl's mapping or a GTT mapping.
1180  */
1181 int
1182 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183                           struct drm_file *file)
1184 {
1185         struct drm_i915_gem_set_domain *args = data;
1186         struct drm_i915_gem_object *obj;
1187         uint32_t read_domains = args->read_domains;
1188         uint32_t write_domain = args->write_domain;
1189         int ret;
1190
1191         /* Only handle setting domains to types used by the CPU. */
1192         if (write_domain & I915_GEM_GPU_DOMAINS)
1193                 return -EINVAL;
1194
1195         if (read_domains & I915_GEM_GPU_DOMAINS)
1196                 return -EINVAL;
1197
1198         /* Having something in the write domain implies it's in the read
1199          * domain, and only that read domain.  Enforce that in the request.
1200          */
1201         if (write_domain != 0 && read_domains != write_domain)
1202                 return -EINVAL;
1203
1204         ret = i915_mutex_lock_interruptible(dev);
1205         if (ret)
1206                 return ret;
1207
1208         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209         if (&obj->base == NULL) {
1210                 ret = -ENOENT;
1211                 goto unlock;
1212         }
1213
1214         /* Try to flush the object off the GPU without holding the lock.
1215          * We will repeat the flush holding the lock in the normal manner
1216          * to catch cases where we are gazumped.
1217          */
1218         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219         if (ret)
1220                 goto unref;
1221
1222         if (read_domains & I915_GEM_DOMAIN_GTT) {
1223                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224
1225                 /* Silently promote "you're not bound, there was nothing to do"
1226                  * to success, since the client was just asking us to
1227                  * make sure everything was done.
1228                  */
1229                 if (ret == -EINVAL)
1230                         ret = 0;
1231         } else {
1232                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233         }
1234
1235 unref:
1236         drm_gem_object_unreference(&obj->base);
1237 unlock:
1238         mutex_unlock(&dev->struct_mutex);
1239         return ret;
1240 }
1241
1242 /**
1243  * Called when user space has done writes to this buffer
1244  */
1245 int
1246 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247                          struct drm_file *file)
1248 {
1249         struct drm_i915_gem_sw_finish *args = data;
1250         struct drm_i915_gem_object *obj;
1251         int ret = 0;
1252
1253         ret = i915_mutex_lock_interruptible(dev);
1254         if (ret)
1255                 return ret;
1256
1257         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258         if (&obj->base == NULL) {
1259                 ret = -ENOENT;
1260                 goto unlock;
1261         }
1262
1263         /* Pinned buffers may be scanout, so flush the cache */
1264         if (obj->pin_count)
1265                 i915_gem_object_flush_cpu_write_domain(obj);
1266
1267         drm_gem_object_unreference(&obj->base);
1268 unlock:
1269         mutex_unlock(&dev->struct_mutex);
1270         return ret;
1271 }
1272
1273 /**
1274  * Maps the contents of an object, returning the address it is mapped
1275  * into.
1276  *
1277  * While the mapping holds a reference on the contents of the object, it doesn't
1278  * imply a ref on the object itself.
1279  */
1280 int
1281 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282                     struct drm_file *file)
1283 {
1284         struct drm_i915_gem_mmap *args = data;
1285         struct drm_gem_object *obj;
1286         unsigned long addr;
1287
1288         obj = drm_gem_object_lookup(dev, file, args->handle);
1289         if (obj == NULL)
1290                 return -ENOENT;
1291
1292         /* prime objects have no backing filp to GEM mmap
1293          * pages from.
1294          */
1295         if (!obj->filp) {
1296                 drm_gem_object_unreference_unlocked(obj);
1297                 return -EINVAL;
1298         }
1299
1300         addr = vm_mmap(obj->filp, 0, args->size,
1301                        PROT_READ | PROT_WRITE, MAP_SHARED,
1302                        args->offset);
1303         drm_gem_object_unreference_unlocked(obj);
1304         if (IS_ERR((void *)addr))
1305                 return addr;
1306
1307         args->addr_ptr = (uint64_t) addr;
1308
1309         return 0;
1310 }
1311
1312 /**
1313  * i915_gem_fault - fault a page into the GTT
1314  * vma: VMA in question
1315  * vmf: fault info
1316  *
1317  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318  * from userspace.  The fault handler takes care of binding the object to
1319  * the GTT (if needed), allocating and programming a fence register (again,
1320  * only if needed based on whether the old reg is still valid or the object
1321  * is tiled) and inserting a new PTE into the faulting process.
1322  *
1323  * Note that the faulting process may involve evicting existing objects
1324  * from the GTT and/or fence registers to make room.  So performance may
1325  * suffer if the GTT working set is large or there are few fence registers
1326  * left.
1327  */
1328 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329 {
1330         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331         struct drm_device *dev = obj->base.dev;
1332         drm_i915_private_t *dev_priv = dev->dev_private;
1333         pgoff_t page_offset;
1334         unsigned long pfn;
1335         int ret = 0;
1336         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337
1338         /* We don't use vmf->pgoff since that has the fake offset */
1339         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340                 PAGE_SHIFT;
1341
1342         ret = i915_mutex_lock_interruptible(dev);
1343         if (ret)
1344                 goto out;
1345
1346         trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
1348         /* Now bind it into the GTT if needed */
1349         if (!obj->map_and_fenceable) {
1350                 ret = i915_gem_object_unbind(obj);
1351                 if (ret)
1352                         goto unlock;
1353         }
1354         if (!obj->gtt_space) {
1355                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356                 if (ret)
1357                         goto unlock;
1358
1359                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360                 if (ret)
1361                         goto unlock;
1362         }
1363
1364         if (!obj->has_global_gtt_mapping)
1365                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
1367         ret = i915_gem_object_get_fence(obj);
1368         if (ret)
1369                 goto unlock;
1370
1371         if (i915_gem_object_is_inactive(obj))
1372                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373
1374         obj->fault_mappable = true;
1375
1376         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377                 page_offset;
1378
1379         /* Finally, remap it using the new GTT offset */
1380         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unlock:
1382         mutex_unlock(&dev->struct_mutex);
1383 out:
1384         switch (ret) {
1385         case -EIO:
1386                 /* If this -EIO is due to a gpu hang, give the reset code a
1387                  * chance to clean up the mess. Otherwise return the proper
1388                  * SIGBUS. */
1389                 if (!atomic_read(&dev_priv->mm.wedged))
1390                         return VM_FAULT_SIGBUS;
1391         case -EAGAIN:
1392                 /* Give the error handler a chance to run and move the
1393                  * objects off the GPU active list. Next time we service the
1394                  * fault, we should be able to transition the page into the
1395                  * GTT without touching the GPU (and so avoid further
1396                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397                  * with coherency, just lost writes.
1398                  */
1399                 set_need_resched();
1400         case 0:
1401         case -ERESTARTSYS:
1402         case -EINTR:
1403         case -EBUSY:
1404                 /*
1405                  * EBUSY is ok: this just means that another thread
1406                  * already did the job.
1407                  */
1408                 return VM_FAULT_NOPAGE;
1409         case -ENOMEM:
1410                 return VM_FAULT_OOM;
1411         case -ENOSPC:
1412                 return VM_FAULT_SIGBUS;
1413         default:
1414                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1415                 return VM_FAULT_SIGBUS;
1416         }
1417 }
1418
1419 /**
1420  * i915_gem_release_mmap - remove physical page mappings
1421  * @obj: obj in question
1422  *
1423  * Preserve the reservation of the mmapping with the DRM core code, but
1424  * relinquish ownership of the pages back to the system.
1425  *
1426  * It is vital that we remove the page mapping if we have mapped a tiled
1427  * object through the GTT and then lose the fence register due to
1428  * resource pressure. Similarly if the object has been moved out of the
1429  * aperture, than pages mapped into userspace must be revoked. Removing the
1430  * mapping will then trigger a page fault on the next user access, allowing
1431  * fixup by i915_gem_fault().
1432  */
1433 void
1434 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1435 {
1436         if (!obj->fault_mappable)
1437                 return;
1438
1439         if (obj->base.dev->dev_mapping)
1440                 unmap_mapping_range(obj->base.dev->dev_mapping,
1441                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1442                                     obj->base.size, 1);
1443
1444         obj->fault_mappable = false;
1445 }
1446
1447 static uint32_t
1448 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1449 {
1450         uint32_t gtt_size;
1451
1452         if (INTEL_INFO(dev)->gen >= 4 ||
1453             tiling_mode == I915_TILING_NONE)
1454                 return size;
1455
1456         /* Previous chips need a power-of-two fence region when tiling */
1457         if (INTEL_INFO(dev)->gen == 3)
1458                 gtt_size = 1024*1024;
1459         else
1460                 gtt_size = 512*1024;
1461
1462         while (gtt_size < size)
1463                 gtt_size <<= 1;
1464
1465         return gtt_size;
1466 }
1467
1468 /**
1469  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1470  * @obj: object to check
1471  *
1472  * Return the required GTT alignment for an object, taking into account
1473  * potential fence register mapping.
1474  */
1475 static uint32_t
1476 i915_gem_get_gtt_alignment(struct drm_device *dev,
1477                            uint32_t size,
1478                            int tiling_mode)
1479 {
1480         /*
1481          * Minimum alignment is 4k (GTT page size), but might be greater
1482          * if a fence register is needed for the object.
1483          */
1484         if (INTEL_INFO(dev)->gen >= 4 ||
1485             tiling_mode == I915_TILING_NONE)
1486                 return 4096;
1487
1488         /*
1489          * Previous chips need to be aligned to the size of the smallest
1490          * fence register that can contain the object.
1491          */
1492         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1493 }
1494
1495 /**
1496  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1497  *                                       unfenced object
1498  * @dev: the device
1499  * @size: size of the object
1500  * @tiling_mode: tiling mode of the object
1501  *
1502  * Return the required GTT alignment for an object, only taking into account
1503  * unfenced tiled surface requirements.
1504  */
1505 uint32_t
1506 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1507                                     uint32_t size,
1508                                     int tiling_mode)
1509 {
1510         /*
1511          * Minimum alignment is 4k (GTT page size) for sane hw.
1512          */
1513         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1514             tiling_mode == I915_TILING_NONE)
1515                 return 4096;
1516
1517         /* Previous hardware however needs to be aligned to a power-of-two
1518          * tile height. The simplest method for determining this is to reuse
1519          * the power-of-tile object size.
1520          */
1521         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1522 }
1523
1524 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1525 {
1526         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1527         int ret;
1528
1529         if (obj->base.map_list.map)
1530                 return 0;
1531
1532         ret = drm_gem_create_mmap_offset(&obj->base);
1533         if (ret != -ENOSPC)
1534                 return ret;
1535
1536         /* Badly fragmented mmap space? The only way we can recover
1537          * space is by destroying unwanted objects. We can't randomly release
1538          * mmap_offsets as userspace expects them to be persistent for the
1539          * lifetime of the objects. The closest we can is to release the
1540          * offsets on purgeable objects by truncating it and marking it purged,
1541          * which prevents userspace from ever using that object again.
1542          */
1543         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1544         ret = drm_gem_create_mmap_offset(&obj->base);
1545         if (ret != -ENOSPC)
1546                 return ret;
1547
1548         i915_gem_shrink_all(dev_priv);
1549         return drm_gem_create_mmap_offset(&obj->base);
1550 }
1551
1552 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1553 {
1554         if (!obj->base.map_list.map)
1555                 return;
1556
1557         drm_gem_free_mmap_offset(&obj->base);
1558 }
1559
1560 int
1561 i915_gem_mmap_gtt(struct drm_file *file,
1562                   struct drm_device *dev,
1563                   uint32_t handle,
1564                   uint64_t *offset)
1565 {
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         struct drm_i915_gem_object *obj;
1568         int ret;
1569
1570         ret = i915_mutex_lock_interruptible(dev);
1571         if (ret)
1572                 return ret;
1573
1574         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1575         if (&obj->base == NULL) {
1576                 ret = -ENOENT;
1577                 goto unlock;
1578         }
1579
1580         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1581                 ret = -E2BIG;
1582                 goto out;
1583         }
1584
1585         if (obj->madv != I915_MADV_WILLNEED) {
1586                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1587                 ret = -EINVAL;
1588                 goto out;
1589         }
1590
1591         ret = i915_gem_object_create_mmap_offset(obj);
1592         if (ret)
1593                 goto out;
1594
1595         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1596
1597 out:
1598         drm_gem_object_unreference(&obj->base);
1599 unlock:
1600         mutex_unlock(&dev->struct_mutex);
1601         return ret;
1602 }
1603
1604 /**
1605  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1606  * @dev: DRM device
1607  * @data: GTT mapping ioctl data
1608  * @file: GEM object info
1609  *
1610  * Simply returns the fake offset to userspace so it can mmap it.
1611  * The mmap call will end up in drm_gem_mmap(), which will set things
1612  * up so we can get faults in the handler above.
1613  *
1614  * The fault handler will take care of binding the object into the GTT
1615  * (since it may have been evicted to make room for something), allocating
1616  * a fence register, and mapping the appropriate aperture address into
1617  * userspace.
1618  */
1619 int
1620 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1621                         struct drm_file *file)
1622 {
1623         struct drm_i915_gem_mmap_gtt *args = data;
1624
1625         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1626 }
1627
1628 /* Immediately discard the backing storage */
1629 static void
1630 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1631 {
1632         struct inode *inode;
1633
1634         i915_gem_object_free_mmap_offset(obj);
1635
1636         if (obj->base.filp == NULL)
1637                 return;
1638
1639         /* Our goal here is to return as much of the memory as
1640          * is possible back to the system as we are called from OOM.
1641          * To do this we must instruct the shmfs to drop all of its
1642          * backing pages, *now*.
1643          */
1644         inode = obj->base.filp->f_path.dentry->d_inode;
1645         shmem_truncate_range(inode, 0, (loff_t)-1);
1646
1647         obj->madv = __I915_MADV_PURGED;
1648 }
1649
1650 static inline int
1651 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1652 {
1653         return obj->madv == I915_MADV_DONTNEED;
1654 }
1655
1656 static void
1657 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1658 {
1659         int page_count = obj->base.size / PAGE_SIZE;
1660         struct scatterlist *sg;
1661         int ret, i;
1662
1663         BUG_ON(obj->madv == __I915_MADV_PURGED);
1664
1665         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1666         if (ret) {
1667                 /* In the event of a disaster, abandon all caches and
1668                  * hope for the best.
1669                  */
1670                 WARN_ON(ret != -EIO);
1671                 i915_gem_clflush_object(obj);
1672                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1673         }
1674
1675         if (i915_gem_object_needs_bit17_swizzle(obj))
1676                 i915_gem_object_save_bit_17_swizzle(obj);
1677
1678         if (obj->madv == I915_MADV_DONTNEED)
1679                 obj->dirty = 0;
1680
1681         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1682                 struct page *page = sg_page(sg);
1683
1684                 if (obj->dirty)
1685                         set_page_dirty(page);
1686
1687                 if (obj->madv == I915_MADV_WILLNEED)
1688                         mark_page_accessed(page);
1689
1690                 page_cache_release(page);
1691         }
1692         obj->dirty = 0;
1693
1694         sg_free_table(obj->pages);
1695         kfree(obj->pages);
1696 }
1697
1698 static int
1699 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1700 {
1701         const struct drm_i915_gem_object_ops *ops = obj->ops;
1702
1703         if (obj->pages == NULL)
1704                 return 0;
1705
1706         BUG_ON(obj->gtt_space);
1707
1708         if (obj->pages_pin_count)
1709                 return -EBUSY;
1710
1711         ops->put_pages(obj);
1712         obj->pages = NULL;
1713
1714         list_del(&obj->gtt_list);
1715         if (i915_gem_object_is_purgeable(obj))
1716                 i915_gem_object_truncate(obj);
1717
1718         return 0;
1719 }
1720
1721 static long
1722 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1723 {
1724         struct drm_i915_gem_object *obj, *next;
1725         long count = 0;
1726
1727         list_for_each_entry_safe(obj, next,
1728                                  &dev_priv->mm.unbound_list,
1729                                  gtt_list) {
1730                 if (i915_gem_object_is_purgeable(obj) &&
1731                     i915_gem_object_put_pages(obj) == 0) {
1732                         count += obj->base.size >> PAGE_SHIFT;
1733                         if (count >= target)
1734                                 return count;
1735                 }
1736         }
1737
1738         list_for_each_entry_safe(obj, next,
1739                                  &dev_priv->mm.inactive_list,
1740                                  mm_list) {
1741                 if (i915_gem_object_is_purgeable(obj) &&
1742                     i915_gem_object_unbind(obj) == 0 &&
1743                     i915_gem_object_put_pages(obj) == 0) {
1744                         count += obj->base.size >> PAGE_SHIFT;
1745                         if (count >= target)
1746                                 return count;
1747                 }
1748         }
1749
1750         return count;
1751 }
1752
1753 static void
1754 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1755 {
1756         struct drm_i915_gem_object *obj, *next;
1757
1758         i915_gem_evict_everything(dev_priv->dev);
1759
1760         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1761                 i915_gem_object_put_pages(obj);
1762 }
1763
1764 static int
1765 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1766 {
1767         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1768         int page_count, i;
1769         struct address_space *mapping;
1770         struct sg_table *st;
1771         struct scatterlist *sg;
1772         struct page *page;
1773         gfp_t gfp;
1774
1775         /* Assert that the object is not currently in any GPU domain. As it
1776          * wasn't in the GTT, there shouldn't be any way it could have been in
1777          * a GPU cache
1778          */
1779         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
1782         st = kmalloc(sizeof(*st), GFP_KERNEL);
1783         if (st == NULL)
1784                 return -ENOMEM;
1785
1786         page_count = obj->base.size / PAGE_SIZE;
1787         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788                 sg_free_table(st);
1789                 kfree(st);
1790                 return -ENOMEM;
1791         }
1792
1793         /* Get the list of pages out of our struct file.  They'll be pinned
1794          * at this point until we release them.
1795          *
1796          * Fail silently without starting the shrinker
1797          */
1798         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1799         gfp = mapping_gfp_mask(mapping);
1800         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1801         gfp &= ~(__GFP_IO | __GFP_WAIT);
1802         for_each_sg(st->sgl, sg, page_count, i) {
1803                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804                 if (IS_ERR(page)) {
1805                         i915_gem_purge(dev_priv, page_count);
1806                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1807                 }
1808                 if (IS_ERR(page)) {
1809                         /* We've tried hard to allocate the memory by reaping
1810                          * our own buffer, now let the real VM do its job and
1811                          * go down in flames if truly OOM.
1812                          */
1813                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1814                         gfp |= __GFP_IO | __GFP_WAIT;
1815
1816                         i915_gem_shrink_all(dev_priv);
1817                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1818                         if (IS_ERR(page))
1819                                 goto err_pages;
1820
1821                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1822                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1823                 }
1824
1825                 sg_set_page(sg, page, PAGE_SIZE, 0);
1826         }
1827
1828         obj->pages = st;
1829
1830         if (i915_gem_object_needs_bit17_swizzle(obj))
1831                 i915_gem_object_do_bit_17_swizzle(obj);
1832
1833         return 0;
1834
1835 err_pages:
1836         for_each_sg(st->sgl, sg, i, page_count)
1837                 page_cache_release(sg_page(sg));
1838         sg_free_table(st);
1839         kfree(st);
1840         return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844  * and pinned into our object. i915_gem_object_get_pages() may be called
1845  * multiple times before they are released by a single call to
1846  * i915_gem_object_put_pages() - once the pages are no longer referenced
1847  * either as a result of memory pressure (reaping pages under the shrinker)
1848  * or as the object is itself released.
1849  */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854         const struct drm_i915_gem_object_ops *ops = obj->ops;
1855         int ret;
1856
1857         if (obj->pages)
1858                 return 0;
1859
1860         BUG_ON(obj->pages_pin_count);
1861
1862         ret = ops->get_pages(obj);
1863         if (ret)
1864                 return ret;
1865
1866         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1867         return 0;
1868 }
1869
1870 void
1871 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1872                                struct intel_ring_buffer *ring,
1873                                u32 seqno)
1874 {
1875         struct drm_device *dev = obj->base.dev;
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878         BUG_ON(ring == NULL);
1879         obj->ring = ring;
1880
1881         /* Add a reference if we're newly entering the active list. */
1882         if (!obj->active) {
1883                 drm_gem_object_reference(&obj->base);
1884                 obj->active = 1;
1885         }
1886
1887         /* Move from whatever list we were on to the tail of execution. */
1888         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1889         list_move_tail(&obj->ring_list, &ring->active_list);
1890
1891         obj->last_read_seqno = seqno;
1892
1893         if (obj->fenced_gpu_access) {
1894                 obj->last_fenced_seqno = seqno;
1895
1896                 /* Bump MRU to take account of the delayed flush */
1897                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1898                         struct drm_i915_fence_reg *reg;
1899
1900                         reg = &dev_priv->fence_regs[obj->fence_reg];
1901                         list_move_tail(&reg->lru_list,
1902                                        &dev_priv->mm.fence_list);
1903                 }
1904         }
1905 }
1906
1907 static void
1908 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1909 {
1910         struct drm_device *dev = obj->base.dev;
1911         struct drm_i915_private *dev_priv = dev->dev_private;
1912
1913         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1914         BUG_ON(!obj->active);
1915
1916         if (obj->pin_count) /* are we a framebuffer? */
1917                 intel_mark_fb_idle(obj);
1918
1919         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1920
1921         list_del_init(&obj->ring_list);
1922         obj->ring = NULL;
1923
1924         obj->last_read_seqno = 0;
1925         obj->last_write_seqno = 0;
1926         obj->base.write_domain = 0;
1927
1928         obj->last_fenced_seqno = 0;
1929         obj->fenced_gpu_access = false;
1930
1931         obj->active = 0;
1932         drm_gem_object_unreference(&obj->base);
1933
1934         WARN_ON(i915_verify_lists(dev));
1935 }
1936
1937 static u32
1938 i915_gem_get_seqno(struct drm_device *dev)
1939 {
1940         drm_i915_private_t *dev_priv = dev->dev_private;
1941         u32 seqno = dev_priv->next_seqno;
1942
1943         /* reserve 0 for non-seqno */
1944         if (++dev_priv->next_seqno == 0)
1945                 dev_priv->next_seqno = 1;
1946
1947         return seqno;
1948 }
1949
1950 u32
1951 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1952 {
1953         if (ring->outstanding_lazy_request == 0)
1954                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1955
1956         return ring->outstanding_lazy_request;
1957 }
1958
1959 int
1960 i915_add_request(struct intel_ring_buffer *ring,
1961                  struct drm_file *file,
1962                  u32 *out_seqno)
1963 {
1964         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1965         struct drm_i915_gem_request *request;
1966         u32 request_ring_position;
1967         u32 seqno;
1968         int was_empty;
1969         int ret;
1970
1971         /*
1972          * Emit any outstanding flushes - execbuf can fail to emit the flush
1973          * after having emitted the batchbuffer command. Hence we need to fix
1974          * things up similar to emitting the lazy request. The difference here
1975          * is that the flush _must_ happen before the next request, no matter
1976          * what.
1977          */
1978         ret = intel_ring_flush_all_caches(ring);
1979         if (ret)
1980                 return ret;
1981
1982         request = kmalloc(sizeof(*request), GFP_KERNEL);
1983         if (request == NULL)
1984                 return -ENOMEM;
1985
1986         seqno = i915_gem_next_request_seqno(ring);
1987
1988         /* Record the position of the start of the request so that
1989          * should we detect the updated seqno part-way through the
1990          * GPU processing the request, we never over-estimate the
1991          * position of the head.
1992          */
1993         request_ring_position = intel_ring_get_tail(ring);
1994
1995         ret = ring->add_request(ring, &seqno);
1996         if (ret) {
1997                 kfree(request);
1998                 return ret;
1999         }
2000
2001         trace_i915_gem_request_add(ring, seqno);
2002
2003         request->seqno = seqno;
2004         request->ring = ring;
2005         request->tail = request_ring_position;
2006         request->emitted_jiffies = jiffies;
2007         was_empty = list_empty(&ring->request_list);
2008         list_add_tail(&request->list, &ring->request_list);
2009         request->file_priv = NULL;
2010
2011         if (file) {
2012                 struct drm_i915_file_private *file_priv = file->driver_priv;
2013
2014                 spin_lock(&file_priv->mm.lock);
2015                 request->file_priv = file_priv;
2016                 list_add_tail(&request->client_list,
2017                               &file_priv->mm.request_list);
2018                 spin_unlock(&file_priv->mm.lock);
2019         }
2020
2021         ring->outstanding_lazy_request = 0;
2022
2023         if (!dev_priv->mm.suspended) {
2024                 if (i915_enable_hangcheck) {
2025                         mod_timer(&dev_priv->hangcheck_timer,
2026                                   jiffies +
2027                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2028                 }
2029                 if (was_empty) {
2030                         queue_delayed_work(dev_priv->wq,
2031                                            &dev_priv->mm.retire_work, HZ);
2032                         intel_mark_busy(dev_priv->dev);
2033                 }
2034         }
2035
2036         if (out_seqno)
2037                 *out_seqno = seqno;
2038         return 0;
2039 }
2040
2041 static inline void
2042 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2043 {
2044         struct drm_i915_file_private *file_priv = request->file_priv;
2045
2046         if (!file_priv)
2047                 return;
2048
2049         spin_lock(&file_priv->mm.lock);
2050         if (request->file_priv) {
2051                 list_del(&request->client_list);
2052                 request->file_priv = NULL;
2053         }
2054         spin_unlock(&file_priv->mm.lock);
2055 }
2056
2057 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2058                                       struct intel_ring_buffer *ring)
2059 {
2060         while (!list_empty(&ring->request_list)) {
2061                 struct drm_i915_gem_request *request;
2062
2063                 request = list_first_entry(&ring->request_list,
2064                                            struct drm_i915_gem_request,
2065                                            list);
2066
2067                 list_del(&request->list);
2068                 i915_gem_request_remove_from_client(request);
2069                 kfree(request);
2070         }
2071
2072         while (!list_empty(&ring->active_list)) {
2073                 struct drm_i915_gem_object *obj;
2074
2075                 obj = list_first_entry(&ring->active_list,
2076                                        struct drm_i915_gem_object,
2077                                        ring_list);
2078
2079                 i915_gem_object_move_to_inactive(obj);
2080         }
2081 }
2082
2083 static void i915_gem_reset_fences(struct drm_device *dev)
2084 {
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         int i;
2087
2088         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2089                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2090
2091                 i915_gem_write_fence(dev, i, NULL);
2092
2093                 if (reg->obj)
2094                         i915_gem_object_fence_lost(reg->obj);
2095
2096                 reg->pin_count = 0;
2097                 reg->obj = NULL;
2098                 INIT_LIST_HEAD(&reg->lru_list);
2099         }
2100
2101         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2102 }
2103
2104 void i915_gem_reset(struct drm_device *dev)
2105 {
2106         struct drm_i915_private *dev_priv = dev->dev_private;
2107         struct drm_i915_gem_object *obj;
2108         struct intel_ring_buffer *ring;
2109         int i;
2110
2111         for_each_ring(ring, dev_priv, i)
2112                 i915_gem_reset_ring_lists(dev_priv, ring);
2113
2114         /* Move everything out of the GPU domains to ensure we do any
2115          * necessary invalidation upon reuse.
2116          */
2117         list_for_each_entry(obj,
2118                             &dev_priv->mm.inactive_list,
2119                             mm_list)
2120         {
2121                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2122         }
2123
2124         /* The fence registers are invalidated so clear them out */
2125         i915_gem_reset_fences(dev);
2126 }
2127
2128 /**
2129  * This function clears the request list as sequence numbers are passed.
2130  */
2131 void
2132 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2133 {
2134         uint32_t seqno;
2135         int i;
2136
2137         if (list_empty(&ring->request_list))
2138                 return;
2139
2140         WARN_ON(i915_verify_lists(ring->dev));
2141
2142         seqno = ring->get_seqno(ring, true);
2143
2144         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2145                 if (seqno >= ring->sync_seqno[i])
2146                         ring->sync_seqno[i] = 0;
2147
2148         while (!list_empty(&ring->request_list)) {
2149                 struct drm_i915_gem_request *request;
2150
2151                 request = list_first_entry(&ring->request_list,
2152                                            struct drm_i915_gem_request,
2153                                            list);
2154
2155                 if (!i915_seqno_passed(seqno, request->seqno))
2156                         break;
2157
2158                 trace_i915_gem_request_retire(ring, request->seqno);
2159                 /* We know the GPU must have read the request to have
2160                  * sent us the seqno + interrupt, so use the position
2161                  * of tail of the request to update the last known position
2162                  * of the GPU head.
2163                  */
2164                 ring->last_retired_head = request->tail;
2165
2166                 list_del(&request->list);
2167                 i915_gem_request_remove_from_client(request);
2168                 kfree(request);
2169         }
2170
2171         /* Move any buffers on the active list that are no longer referenced
2172          * by the ringbuffer to the flushing/inactive lists as appropriate.
2173          */
2174         while (!list_empty(&ring->active_list)) {
2175                 struct drm_i915_gem_object *obj;
2176
2177                 obj = list_first_entry(&ring->active_list,
2178                                       struct drm_i915_gem_object,
2179                                       ring_list);
2180
2181                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2182                         break;
2183
2184                 i915_gem_object_move_to_inactive(obj);
2185         }
2186
2187         if (unlikely(ring->trace_irq_seqno &&
2188                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2189                 ring->irq_put(ring);
2190                 ring->trace_irq_seqno = 0;
2191         }
2192
2193         WARN_ON(i915_verify_lists(ring->dev));
2194 }
2195
2196 void
2197 i915_gem_retire_requests(struct drm_device *dev)
2198 {
2199         drm_i915_private_t *dev_priv = dev->dev_private;
2200         struct intel_ring_buffer *ring;
2201         int i;
2202
2203         for_each_ring(ring, dev_priv, i)
2204                 i915_gem_retire_requests_ring(ring);
2205 }
2206
2207 static void
2208 i915_gem_retire_work_handler(struct work_struct *work)
2209 {
2210         drm_i915_private_t *dev_priv;
2211         struct drm_device *dev;
2212         struct intel_ring_buffer *ring;
2213         bool idle;
2214         int i;
2215
2216         dev_priv = container_of(work, drm_i915_private_t,
2217                                 mm.retire_work.work);
2218         dev = dev_priv->dev;
2219
2220         /* Come back later if the device is busy... */
2221         if (!mutex_trylock(&dev->struct_mutex)) {
2222                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2223                 return;
2224         }
2225
2226         i915_gem_retire_requests(dev);
2227
2228         /* Send a periodic flush down the ring so we don't hold onto GEM
2229          * objects indefinitely.
2230          */
2231         idle = true;
2232         for_each_ring(ring, dev_priv, i) {
2233                 if (ring->gpu_caches_dirty)
2234                         i915_add_request(ring, NULL, NULL);
2235
2236                 idle &= list_empty(&ring->request_list);
2237         }
2238
2239         if (!dev_priv->mm.suspended && !idle)
2240                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2241         if (idle)
2242                 intel_mark_idle(dev);
2243
2244         mutex_unlock(&dev->struct_mutex);
2245 }
2246
2247 /**
2248  * Ensures that an object will eventually get non-busy by flushing any required
2249  * write domains, emitting any outstanding lazy request and retiring and
2250  * completed requests.
2251  */
2252 static int
2253 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2254 {
2255         int ret;
2256
2257         if (obj->active) {
2258                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2259                 if (ret)
2260                         return ret;
2261
2262                 i915_gem_retire_requests_ring(obj->ring);
2263         }
2264
2265         return 0;
2266 }
2267
2268 /**
2269  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2270  * @DRM_IOCTL_ARGS: standard ioctl arguments
2271  *
2272  * Returns 0 if successful, else an error is returned with the remaining time in
2273  * the timeout parameter.
2274  *  -ETIME: object is still busy after timeout
2275  *  -ERESTARTSYS: signal interrupted the wait
2276  *  -ENONENT: object doesn't exist
2277  * Also possible, but rare:
2278  *  -EAGAIN: GPU wedged
2279  *  -ENOMEM: damn
2280  *  -ENODEV: Internal IRQ fail
2281  *  -E?: The add request failed
2282  *
2283  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2284  * non-zero timeout parameter the wait ioctl will wait for the given number of
2285  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2286  * without holding struct_mutex the object may become re-busied before this
2287  * function completes. A similar but shorter * race condition exists in the busy
2288  * ioctl
2289  */
2290 int
2291 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2292 {
2293         struct drm_i915_gem_wait *args = data;
2294         struct drm_i915_gem_object *obj;
2295         struct intel_ring_buffer *ring = NULL;
2296         struct timespec timeout_stack, *timeout = NULL;
2297         u32 seqno = 0;
2298         int ret = 0;
2299
2300         if (args->timeout_ns >= 0) {
2301                 timeout_stack = ns_to_timespec(args->timeout_ns);
2302                 timeout = &timeout_stack;
2303         }
2304
2305         ret = i915_mutex_lock_interruptible(dev);
2306         if (ret)
2307                 return ret;
2308
2309         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2310         if (&obj->base == NULL) {
2311                 mutex_unlock(&dev->struct_mutex);
2312                 return -ENOENT;
2313         }
2314
2315         /* Need to make sure the object gets inactive eventually. */
2316         ret = i915_gem_object_flush_active(obj);
2317         if (ret)
2318                 goto out;
2319
2320         if (obj->active) {
2321                 seqno = obj->last_read_seqno;
2322                 ring = obj->ring;
2323         }
2324
2325         if (seqno == 0)
2326                  goto out;
2327
2328         /* Do this after OLR check to make sure we make forward progress polling
2329          * on this IOCTL with a 0 timeout (like busy ioctl)
2330          */
2331         if (!args->timeout_ns) {
2332                 ret = -ETIME;
2333                 goto out;
2334         }
2335
2336         drm_gem_object_unreference(&obj->base);
2337         mutex_unlock(&dev->struct_mutex);
2338
2339         ret = __wait_seqno(ring, seqno, true, timeout);
2340         if (timeout) {
2341                 WARN_ON(!timespec_valid(timeout));
2342                 args->timeout_ns = timespec_to_ns(timeout);
2343         }
2344         return ret;
2345
2346 out:
2347         drm_gem_object_unreference(&obj->base);
2348         mutex_unlock(&dev->struct_mutex);
2349         return ret;
2350 }
2351
2352 /**
2353  * i915_gem_object_sync - sync an object to a ring.
2354  *
2355  * @obj: object which may be in use on another ring.
2356  * @to: ring we wish to use the object on. May be NULL.
2357  *
2358  * This code is meant to abstract object synchronization with the GPU.
2359  * Calling with NULL implies synchronizing the object with the CPU
2360  * rather than a particular GPU ring.
2361  *
2362  * Returns 0 if successful, else propagates up the lower layer error.
2363  */
2364 int
2365 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2366                      struct intel_ring_buffer *to)
2367 {
2368         struct intel_ring_buffer *from = obj->ring;
2369         u32 seqno;
2370         int ret, idx;
2371
2372         if (from == NULL || to == from)
2373                 return 0;
2374
2375         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2376                 return i915_gem_object_wait_rendering(obj, false);
2377
2378         idx = intel_ring_sync_index(from, to);
2379
2380         seqno = obj->last_read_seqno;
2381         if (seqno <= from->sync_seqno[idx])
2382                 return 0;
2383
2384         ret = i915_gem_check_olr(obj->ring, seqno);
2385         if (ret)
2386                 return ret;
2387
2388         ret = to->sync_to(to, from, seqno);
2389         if (!ret)
2390                 from->sync_seqno[idx] = seqno;
2391
2392         return ret;
2393 }
2394
2395 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2396 {
2397         u32 old_write_domain, old_read_domains;
2398
2399         /* Act a barrier for all accesses through the GTT */
2400         mb();
2401
2402         /* Force a pagefault for domain tracking on next user access */
2403         i915_gem_release_mmap(obj);
2404
2405         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2406                 return;
2407
2408         old_read_domains = obj->base.read_domains;
2409         old_write_domain = obj->base.write_domain;
2410
2411         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2412         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2413
2414         trace_i915_gem_object_change_domain(obj,
2415                                             old_read_domains,
2416                                             old_write_domain);
2417 }
2418
2419 /**
2420  * Unbinds an object from the GTT aperture.
2421  */
2422 int
2423 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2424 {
2425         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2426         int ret = 0;
2427
2428         if (obj->gtt_space == NULL)
2429                 return 0;
2430
2431         if (obj->pin_count)
2432                 return -EBUSY;
2433
2434         BUG_ON(obj->pages == NULL);
2435
2436         ret = i915_gem_object_finish_gpu(obj);
2437         if (ret)
2438                 return ret;
2439         /* Continue on if we fail due to EIO, the GPU is hung so we
2440          * should be safe and we need to cleanup or else we might
2441          * cause memory corruption through use-after-free.
2442          */
2443
2444         i915_gem_object_finish_gtt(obj);
2445
2446         /* release the fence reg _after_ flushing */
2447         ret = i915_gem_object_put_fence(obj);
2448         if (ret)
2449                 return ret;
2450
2451         trace_i915_gem_object_unbind(obj);
2452
2453         if (obj->has_global_gtt_mapping)
2454                 i915_gem_gtt_unbind_object(obj);
2455         if (obj->has_aliasing_ppgtt_mapping) {
2456                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2457                 obj->has_aliasing_ppgtt_mapping = 0;
2458         }
2459         i915_gem_gtt_finish_object(obj);
2460
2461         list_del(&obj->mm_list);
2462         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2463         /* Avoid an unnecessary call to unbind on rebind. */
2464         obj->map_and_fenceable = true;
2465
2466         drm_mm_put_block(obj->gtt_space);
2467         obj->gtt_space = NULL;
2468         obj->gtt_offset = 0;
2469
2470         return 0;
2471 }
2472
2473 static int i915_ring_idle(struct intel_ring_buffer *ring)
2474 {
2475         if (list_empty(&ring->active_list))
2476                 return 0;
2477
2478         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2479 }
2480
2481 int i915_gpu_idle(struct drm_device *dev)
2482 {
2483         drm_i915_private_t *dev_priv = dev->dev_private;
2484         struct intel_ring_buffer *ring;
2485         int ret, i;
2486
2487         /* Flush everything onto the inactive list. */
2488         for_each_ring(ring, dev_priv, i) {
2489                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2490                 if (ret)
2491                         return ret;
2492
2493                 ret = i915_ring_idle(ring);
2494                 if (ret)
2495                         return ret;
2496         }
2497
2498         return 0;
2499 }
2500
2501 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2502                                         struct drm_i915_gem_object *obj)
2503 {
2504         drm_i915_private_t *dev_priv = dev->dev_private;
2505         uint64_t val;
2506
2507         if (obj) {
2508                 u32 size = obj->gtt_space->size;
2509
2510                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2511                                  0xfffff000) << 32;
2512                 val |= obj->gtt_offset & 0xfffff000;
2513                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2514                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2515
2516                 if (obj->tiling_mode == I915_TILING_Y)
2517                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2518                 val |= I965_FENCE_REG_VALID;
2519         } else
2520                 val = 0;
2521
2522         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2523         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2524 }
2525
2526 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2527                                  struct drm_i915_gem_object *obj)
2528 {
2529         drm_i915_private_t *dev_priv = dev->dev_private;
2530         uint64_t val;
2531
2532         if (obj) {
2533                 u32 size = obj->gtt_space->size;
2534
2535                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2536                                  0xfffff000) << 32;
2537                 val |= obj->gtt_offset & 0xfffff000;
2538                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2539                 if (obj->tiling_mode == I915_TILING_Y)
2540                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2541                 val |= I965_FENCE_REG_VALID;
2542         } else
2543                 val = 0;
2544
2545         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2546         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2547 }
2548
2549 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2550                                  struct drm_i915_gem_object *obj)
2551 {
2552         drm_i915_private_t *dev_priv = dev->dev_private;
2553         u32 val;
2554
2555         if (obj) {
2556                 u32 size = obj->gtt_space->size;
2557                 int pitch_val;
2558                 int tile_width;
2559
2560                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2561                      (size & -size) != size ||
2562                      (obj->gtt_offset & (size - 1)),
2563                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2564                      obj->gtt_offset, obj->map_and_fenceable, size);
2565
2566                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2567                         tile_width = 128;
2568                 else
2569                         tile_width = 512;
2570
2571                 /* Note: pitch better be a power of two tile widths */
2572                 pitch_val = obj->stride / tile_width;
2573                 pitch_val = ffs(pitch_val) - 1;
2574
2575                 val = obj->gtt_offset;
2576                 if (obj->tiling_mode == I915_TILING_Y)
2577                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2578                 val |= I915_FENCE_SIZE_BITS(size);
2579                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2580                 val |= I830_FENCE_REG_VALID;
2581         } else
2582                 val = 0;
2583
2584         if (reg < 8)
2585                 reg = FENCE_REG_830_0 + reg * 4;
2586         else
2587                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2588
2589         I915_WRITE(reg, val);
2590         POSTING_READ(reg);
2591 }
2592
2593 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2594                                 struct drm_i915_gem_object *obj)
2595 {
2596         drm_i915_private_t *dev_priv = dev->dev_private;
2597         uint32_t val;
2598
2599         if (obj) {
2600                 u32 size = obj->gtt_space->size;
2601                 uint32_t pitch_val;
2602
2603                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2604                      (size & -size) != size ||
2605                      (obj->gtt_offset & (size - 1)),
2606                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2607                      obj->gtt_offset, size);
2608
2609                 pitch_val = obj->stride / 128;
2610                 pitch_val = ffs(pitch_val) - 1;
2611
2612                 val = obj->gtt_offset;
2613                 if (obj->tiling_mode == I915_TILING_Y)
2614                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2615                 val |= I830_FENCE_SIZE_BITS(size);
2616                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2617                 val |= I830_FENCE_REG_VALID;
2618         } else
2619                 val = 0;
2620
2621         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2622         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2623 }
2624
2625 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2626                                  struct drm_i915_gem_object *obj)
2627 {
2628         switch (INTEL_INFO(dev)->gen) {
2629         case 7:
2630         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2631         case 5:
2632         case 4: i965_write_fence_reg(dev, reg, obj); break;
2633         case 3: i915_write_fence_reg(dev, reg, obj); break;
2634         case 2: i830_write_fence_reg(dev, reg, obj); break;
2635         default: break;
2636         }
2637 }
2638
2639 static inline int fence_number(struct drm_i915_private *dev_priv,
2640                                struct drm_i915_fence_reg *fence)
2641 {
2642         return fence - dev_priv->fence_regs;
2643 }
2644
2645 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2646                                          struct drm_i915_fence_reg *fence,
2647                                          bool enable)
2648 {
2649         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2650         int reg = fence_number(dev_priv, fence);
2651
2652         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2653
2654         if (enable) {
2655                 obj->fence_reg = reg;
2656                 fence->obj = obj;
2657                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2658         } else {
2659                 obj->fence_reg = I915_FENCE_REG_NONE;
2660                 fence->obj = NULL;
2661                 list_del_init(&fence->lru_list);
2662         }
2663 }
2664
2665 static int
2666 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2667 {
2668         if (obj->last_fenced_seqno) {
2669                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2670                 if (ret)
2671                         return ret;
2672
2673                 obj->last_fenced_seqno = 0;
2674         }
2675
2676         /* Ensure that all CPU reads are completed before installing a fence
2677          * and all writes before removing the fence.
2678          */
2679         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2680                 mb();
2681
2682         obj->fenced_gpu_access = false;
2683         return 0;
2684 }
2685
2686 int
2687 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2688 {
2689         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2690         int ret;
2691
2692         ret = i915_gem_object_flush_fence(obj);
2693         if (ret)
2694                 return ret;
2695
2696         if (obj->fence_reg == I915_FENCE_REG_NONE)
2697                 return 0;
2698
2699         i915_gem_object_update_fence(obj,
2700                                      &dev_priv->fence_regs[obj->fence_reg],
2701                                      false);
2702         i915_gem_object_fence_lost(obj);
2703
2704         return 0;
2705 }
2706
2707 static struct drm_i915_fence_reg *
2708 i915_find_fence_reg(struct drm_device *dev)
2709 {
2710         struct drm_i915_private *dev_priv = dev->dev_private;
2711         struct drm_i915_fence_reg *reg, *avail;
2712         int i;
2713
2714         /* First try to find a free reg */
2715         avail = NULL;
2716         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2717                 reg = &dev_priv->fence_regs[i];
2718                 if (!reg->obj)
2719                         return reg;
2720
2721                 if (!reg->pin_count)
2722                         avail = reg;
2723         }
2724
2725         if (avail == NULL)
2726                 return NULL;
2727
2728         /* None available, try to steal one or wait for a user to finish */
2729         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2730                 if (reg->pin_count)
2731                         continue;
2732
2733                 return reg;
2734         }
2735
2736         return NULL;
2737 }
2738
2739 /**
2740  * i915_gem_object_get_fence - set up fencing for an object
2741  * @obj: object to map through a fence reg
2742  *
2743  * When mapping objects through the GTT, userspace wants to be able to write
2744  * to them without having to worry about swizzling if the object is tiled.
2745  * This function walks the fence regs looking for a free one for @obj,
2746  * stealing one if it can't find any.
2747  *
2748  * It then sets up the reg based on the object's properties: address, pitch
2749  * and tiling format.
2750  *
2751  * For an untiled surface, this removes any existing fence.
2752  */
2753 int
2754 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2755 {
2756         struct drm_device *dev = obj->base.dev;
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         bool enable = obj->tiling_mode != I915_TILING_NONE;
2759         struct drm_i915_fence_reg *reg;
2760         int ret;
2761
2762         /* Have we updated the tiling parameters upon the object and so
2763          * will need to serialise the write to the associated fence register?
2764          */
2765         if (obj->fence_dirty) {
2766                 ret = i915_gem_object_flush_fence(obj);
2767                 if (ret)
2768                         return ret;
2769         }
2770
2771         /* Just update our place in the LRU if our fence is getting reused. */
2772         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2773                 reg = &dev_priv->fence_regs[obj->fence_reg];
2774                 if (!obj->fence_dirty) {
2775                         list_move_tail(&reg->lru_list,
2776                                        &dev_priv->mm.fence_list);
2777                         return 0;
2778                 }
2779         } else if (enable) {
2780                 reg = i915_find_fence_reg(dev);
2781                 if (reg == NULL)
2782                         return -EDEADLK;
2783
2784                 if (reg->obj) {
2785                         struct drm_i915_gem_object *old = reg->obj;
2786
2787                         ret = i915_gem_object_flush_fence(old);
2788                         if (ret)
2789                                 return ret;
2790
2791                         i915_gem_object_fence_lost(old);
2792                 }
2793         } else
2794                 return 0;
2795
2796         i915_gem_object_update_fence(obj, reg, enable);
2797         obj->fence_dirty = false;
2798
2799         return 0;
2800 }
2801
2802 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2803                                      struct drm_mm_node *gtt_space,
2804                                      unsigned long cache_level)
2805 {
2806         struct drm_mm_node *other;
2807
2808         /* On non-LLC machines we have to be careful when putting differing
2809          * types of snoopable memory together to avoid the prefetcher
2810          * crossing memory domains and dieing.
2811          */
2812         if (HAS_LLC(dev))
2813                 return true;
2814
2815         if (gtt_space == NULL)
2816                 return true;
2817
2818         if (list_empty(&gtt_space->node_list))
2819                 return true;
2820
2821         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2822         if (other->allocated && !other->hole_follows && other->color != cache_level)
2823                 return false;
2824
2825         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2826         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2827                 return false;
2828
2829         return true;
2830 }
2831
2832 static void i915_gem_verify_gtt(struct drm_device *dev)
2833 {
2834 #if WATCH_GTT
2835         struct drm_i915_private *dev_priv = dev->dev_private;
2836         struct drm_i915_gem_object *obj;
2837         int err = 0;
2838
2839         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2840                 if (obj->gtt_space == NULL) {
2841                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2842                         err++;
2843                         continue;
2844                 }
2845
2846                 if (obj->cache_level != obj->gtt_space->color) {
2847                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2848                                obj->gtt_space->start,
2849                                obj->gtt_space->start + obj->gtt_space->size,
2850                                obj->cache_level,
2851                                obj->gtt_space->color);
2852                         err++;
2853                         continue;
2854                 }
2855
2856                 if (!i915_gem_valid_gtt_space(dev,
2857                                               obj->gtt_space,
2858                                               obj->cache_level)) {
2859                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2860                                obj->gtt_space->start,
2861                                obj->gtt_space->start + obj->gtt_space->size,
2862                                obj->cache_level);
2863                         err++;
2864                         continue;
2865                 }
2866         }
2867
2868         WARN_ON(err);
2869 #endif
2870 }
2871
2872 /**
2873  * Finds free space in the GTT aperture and binds the object there.
2874  */
2875 static int
2876 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2877                             unsigned alignment,
2878                             bool map_and_fenceable,
2879                             bool nonblocking)
2880 {
2881         struct drm_device *dev = obj->base.dev;
2882         drm_i915_private_t *dev_priv = dev->dev_private;
2883         struct drm_mm_node *free_space;
2884         u32 size, fence_size, fence_alignment, unfenced_alignment;
2885         bool mappable, fenceable;
2886         int ret;
2887
2888         if (obj->madv != I915_MADV_WILLNEED) {
2889                 DRM_ERROR("Attempting to bind a purgeable object\n");
2890                 return -EINVAL;
2891         }
2892
2893         fence_size = i915_gem_get_gtt_size(dev,
2894                                            obj->base.size,
2895                                            obj->tiling_mode);
2896         fence_alignment = i915_gem_get_gtt_alignment(dev,
2897                                                      obj->base.size,
2898                                                      obj->tiling_mode);
2899         unfenced_alignment =
2900                 i915_gem_get_unfenced_gtt_alignment(dev,
2901                                                     obj->base.size,
2902                                                     obj->tiling_mode);
2903
2904         if (alignment == 0)
2905                 alignment = map_and_fenceable ? fence_alignment :
2906                                                 unfenced_alignment;
2907         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2908                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2909                 return -EINVAL;
2910         }
2911
2912         size = map_and_fenceable ? fence_size : obj->base.size;
2913
2914         /* If the object is bigger than the entire aperture, reject it early
2915          * before evicting everything in a vain attempt to find space.
2916          */
2917         if (obj->base.size >
2918             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2919                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2920                 return -E2BIG;
2921         }
2922
2923         ret = i915_gem_object_get_pages(obj);
2924         if (ret)
2925                 return ret;
2926
2927  search_free:
2928         if (map_and_fenceable)
2929                 free_space =
2930                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2931                                                           size, alignment, obj->cache_level,
2932                                                           0, dev_priv->mm.gtt_mappable_end,
2933                                                           false);
2934         else
2935                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2936                                                       size, alignment, obj->cache_level,
2937                                                       false);
2938
2939         if (free_space != NULL) {
2940                 if (map_and_fenceable)
2941                         obj->gtt_space =
2942                                 drm_mm_get_block_range_generic(free_space,
2943                                                                size, alignment, obj->cache_level,
2944                                                                0, dev_priv->mm.gtt_mappable_end,
2945                                                                false);
2946                 else
2947                         obj->gtt_space =
2948                                 drm_mm_get_block_generic(free_space,
2949                                                          size, alignment, obj->cache_level,
2950                                                          false);
2951         }
2952         if (obj->gtt_space == NULL) {
2953                 ret = i915_gem_evict_something(dev, size, alignment,
2954                                                obj->cache_level,
2955                                                map_and_fenceable,
2956                                                nonblocking);
2957                 if (ret)
2958                         return ret;
2959
2960                 goto search_free;
2961         }
2962         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2963                                               obj->gtt_space,
2964                                               obj->cache_level))) {
2965                 drm_mm_put_block(obj->gtt_space);
2966                 obj->gtt_space = NULL;
2967                 return -EINVAL;
2968         }
2969
2970
2971         ret = i915_gem_gtt_prepare_object(obj);
2972         if (ret) {
2973                 drm_mm_put_block(obj->gtt_space);
2974                 obj->gtt_space = NULL;
2975                 return ret;
2976         }
2977
2978         if (!dev_priv->mm.aliasing_ppgtt)
2979                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2980
2981         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2982         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2983
2984         obj->gtt_offset = obj->gtt_space->start;
2985
2986         fenceable =
2987                 obj->gtt_space->size == fence_size &&
2988                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2989
2990         mappable =
2991                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2992
2993         obj->map_and_fenceable = mappable && fenceable;
2994
2995         trace_i915_gem_object_bind(obj, map_and_fenceable);
2996         i915_gem_verify_gtt(dev);
2997         return 0;
2998 }
2999
3000 void
3001 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3002 {
3003         /* If we don't have a page list set up, then we're not pinned
3004          * to GPU, and we can ignore the cache flush because it'll happen
3005          * again at bind time.
3006          */
3007         if (obj->pages == NULL)
3008                 return;
3009
3010         /* If the GPU is snooping the contents of the CPU cache,
3011          * we do not need to manually clear the CPU cache lines.  However,
3012          * the caches are only snooped when the render cache is
3013          * flushed/invalidated.  As we always have to emit invalidations
3014          * and flushes when moving into and out of the RENDER domain, correct
3015          * snooping behaviour occurs naturally as the result of our domain
3016          * tracking.
3017          */
3018         if (obj->cache_level != I915_CACHE_NONE)
3019                 return;
3020
3021         trace_i915_gem_object_clflush(obj);
3022
3023         drm_clflush_sg(obj->pages);
3024 }
3025
3026 /** Flushes the GTT write domain for the object if it's dirty. */
3027 static void
3028 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3029 {
3030         uint32_t old_write_domain;
3031
3032         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3033                 return;
3034
3035         /* No actual flushing is required for the GTT write domain.  Writes
3036          * to it immediately go to main memory as far as we know, so there's
3037          * no chipset flush.  It also doesn't land in render cache.
3038          *
3039          * However, we do have to enforce the order so that all writes through
3040          * the GTT land before any writes to the device, such as updates to
3041          * the GATT itself.
3042          */
3043         wmb();
3044
3045         old_write_domain = obj->base.write_domain;
3046         obj->base.write_domain = 0;
3047
3048         trace_i915_gem_object_change_domain(obj,
3049                                             obj->base.read_domains,
3050                                             old_write_domain);
3051 }
3052
3053 /** Flushes the CPU write domain for the object if it's dirty. */
3054 static void
3055 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3056 {
3057         uint32_t old_write_domain;
3058
3059         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3060                 return;
3061
3062         i915_gem_clflush_object(obj);
3063         intel_gtt_chipset_flush();
3064         old_write_domain = obj->base.write_domain;
3065         obj->base.write_domain = 0;
3066
3067         trace_i915_gem_object_change_domain(obj,
3068                                             obj->base.read_domains,
3069                                             old_write_domain);
3070 }
3071
3072 /**
3073  * Moves a single object to the GTT read, and possibly write domain.
3074  *
3075  * This function returns when the move is complete, including waiting on
3076  * flushes to occur.
3077  */
3078 int
3079 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3080 {
3081         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3082         uint32_t old_write_domain, old_read_domains;
3083         int ret;
3084
3085         /* Not valid to be called on unbound objects. */
3086         if (obj->gtt_space == NULL)
3087                 return -EINVAL;
3088
3089         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3090                 return 0;
3091
3092         ret = i915_gem_object_wait_rendering(obj, !write);
3093         if (ret)
3094                 return ret;
3095
3096         i915_gem_object_flush_cpu_write_domain(obj);
3097
3098         old_write_domain = obj->base.write_domain;
3099         old_read_domains = obj->base.read_domains;
3100
3101         /* It should now be out of any other write domains, and we can update
3102          * the domain values for our changes.
3103          */
3104         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3105         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3106         if (write) {
3107                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3108                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3109                 obj->dirty = 1;
3110         }
3111
3112         trace_i915_gem_object_change_domain(obj,
3113                                             old_read_domains,
3114                                             old_write_domain);
3115
3116         /* And bump the LRU for this access */
3117         if (i915_gem_object_is_inactive(obj))
3118                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3119
3120         return 0;
3121 }
3122
3123 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3124                                     enum i915_cache_level cache_level)
3125 {
3126         struct drm_device *dev = obj->base.dev;
3127         drm_i915_private_t *dev_priv = dev->dev_private;
3128         int ret;
3129
3130         if (obj->cache_level == cache_level)
3131                 return 0;
3132
3133         if (obj->pin_count) {
3134                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3135                 return -EBUSY;
3136         }
3137
3138         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3139                 ret = i915_gem_object_unbind(obj);
3140                 if (ret)
3141                         return ret;
3142         }
3143
3144         if (obj->gtt_space) {
3145                 ret = i915_gem_object_finish_gpu(obj);
3146                 if (ret)
3147                         return ret;
3148
3149                 i915_gem_object_finish_gtt(obj);
3150
3151                 /* Before SandyBridge, you could not use tiling or fence
3152                  * registers with snooped memory, so relinquish any fences
3153                  * currently pointing to our region in the aperture.
3154                  */
3155                 if (INTEL_INFO(dev)->gen < 6) {
3156                         ret = i915_gem_object_put_fence(obj);
3157                         if (ret)
3158                                 return ret;
3159                 }
3160
3161                 if (obj->has_global_gtt_mapping)
3162                         i915_gem_gtt_bind_object(obj, cache_level);
3163                 if (obj->has_aliasing_ppgtt_mapping)
3164                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3165                                                obj, cache_level);
3166
3167                 obj->gtt_space->color = cache_level;
3168         }
3169
3170         if (cache_level == I915_CACHE_NONE) {
3171                 u32 old_read_domains, old_write_domain;
3172
3173                 /* If we're coming from LLC cached, then we haven't
3174                  * actually been tracking whether the data is in the
3175                  * CPU cache or not, since we only allow one bit set
3176                  * in obj->write_domain and have been skipping the clflushes.
3177                  * Just set it to the CPU cache for now.
3178                  */
3179                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3180                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3181
3182                 old_read_domains = obj->base.read_domains;
3183                 old_write_domain = obj->base.write_domain;
3184
3185                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3186                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3187
3188                 trace_i915_gem_object_change_domain(obj,
3189                                                     old_read_domains,
3190                                                     old_write_domain);
3191         }
3192
3193         obj->cache_level = cache_level;
3194         i915_gem_verify_gtt(dev);
3195         return 0;
3196 }
3197
3198 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3199                                struct drm_file *file)
3200 {
3201         struct drm_i915_gem_caching *args = data;
3202         struct drm_i915_gem_object *obj;
3203         int ret;
3204
3205         ret = i915_mutex_lock_interruptible(dev);
3206         if (ret)
3207                 return ret;
3208
3209         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3210         if (&obj->base == NULL) {
3211                 ret = -ENOENT;
3212                 goto unlock;
3213         }
3214
3215         args->caching = obj->cache_level != I915_CACHE_NONE;
3216
3217         drm_gem_object_unreference(&obj->base);
3218 unlock:
3219         mutex_unlock(&dev->struct_mutex);
3220         return ret;
3221 }
3222
3223 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3224                                struct drm_file *file)
3225 {
3226         struct drm_i915_gem_caching *args = data;
3227         struct drm_i915_gem_object *obj;
3228         enum i915_cache_level level;
3229         int ret;
3230
3231         switch (args->caching) {
3232         case I915_CACHING_NONE:
3233                 level = I915_CACHE_NONE;
3234                 break;
3235         case I915_CACHING_CACHED:
3236                 level = I915_CACHE_LLC;
3237                 break;
3238         default:
3239                 return -EINVAL;
3240         }
3241
3242         ret = i915_mutex_lock_interruptible(dev);
3243         if (ret)
3244                 return ret;
3245
3246         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3247         if (&obj->base == NULL) {
3248                 ret = -ENOENT;
3249                 goto unlock;
3250         }
3251
3252         ret = i915_gem_object_set_cache_level(obj, level);
3253
3254         drm_gem_object_unreference(&obj->base);
3255 unlock:
3256         mutex_unlock(&dev->struct_mutex);
3257         return ret;
3258 }
3259
3260 /*
3261  * Prepare buffer for display plane (scanout, cursors, etc).
3262  * Can be called from an uninterruptible phase (modesetting) and allows
3263  * any flushes to be pipelined (for pageflips).
3264  */
3265 int
3266 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3267                                      u32 alignment,
3268                                      struct intel_ring_buffer *pipelined)
3269 {
3270         u32 old_read_domains, old_write_domain;
3271         int ret;
3272
3273         if (pipelined != obj->ring) {
3274                 ret = i915_gem_object_sync(obj, pipelined);
3275                 if (ret)
3276                         return ret;
3277         }
3278
3279         /* The display engine is not coherent with the LLC cache on gen6.  As
3280          * a result, we make sure that the pinning that is about to occur is
3281          * done with uncached PTEs. This is lowest common denominator for all
3282          * chipsets.
3283          *
3284          * However for gen6+, we could do better by using the GFDT bit instead
3285          * of uncaching, which would allow us to flush all the LLC-cached data
3286          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3287          */
3288         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3289         if (ret)
3290                 return ret;
3291
3292         /* As the user may map the buffer once pinned in the display plane
3293          * (e.g. libkms for the bootup splash), we have to ensure that we
3294          * always use map_and_fenceable for all scanout buffers.
3295          */
3296         ret = i915_gem_object_pin(obj, alignment, true, false);
3297         if (ret)
3298                 return ret;
3299
3300         i915_gem_object_flush_cpu_write_domain(obj);
3301
3302         old_write_domain = obj->base.write_domain;
3303         old_read_domains = obj->base.read_domains;
3304
3305         /* It should now be out of any other write domains, and we can update
3306          * the domain values for our changes.
3307          */
3308         obj->base.write_domain = 0;
3309         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3310
3311         trace_i915_gem_object_change_domain(obj,
3312                                             old_read_domains,
3313                                             old_write_domain);
3314
3315         return 0;
3316 }
3317
3318 int
3319 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3320 {
3321         int ret;
3322
3323         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3324                 return 0;
3325
3326         ret = i915_gem_object_wait_rendering(obj, false);
3327         if (ret)
3328                 return ret;
3329
3330         /* Ensure that we invalidate the GPU's caches and TLBs. */
3331         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3332         return 0;
3333 }
3334
3335 /**
3336  * Moves a single object to the CPU read, and possibly write domain.
3337  *
3338  * This function returns when the move is complete, including waiting on
3339  * flushes to occur.
3340  */
3341 int
3342 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3343 {
3344         uint32_t old_write_domain, old_read_domains;
3345         int ret;
3346
3347         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3348                 return 0;
3349
3350         ret = i915_gem_object_wait_rendering(obj, !write);
3351         if (ret)
3352                 return ret;
3353
3354         i915_gem_object_flush_gtt_write_domain(obj);
3355
3356         old_write_domain = obj->base.write_domain;
3357         old_read_domains = obj->base.read_domains;
3358
3359         /* Flush the CPU cache if it's still invalid. */
3360         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3361                 i915_gem_clflush_object(obj);
3362
3363                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3364         }
3365
3366         /* It should now be out of any other write domains, and we can update
3367          * the domain values for our changes.
3368          */
3369         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3370
3371         /* If we're writing through the CPU, then the GPU read domains will
3372          * need to be invalidated at next use.
3373          */
3374         if (write) {
3375                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3376                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3377         }
3378
3379         trace_i915_gem_object_change_domain(obj,
3380                                             old_read_domains,
3381                                             old_write_domain);
3382
3383         return 0;
3384 }
3385
3386 /* Throttle our rendering by waiting until the ring has completed our requests
3387  * emitted over 20 msec ago.
3388  *
3389  * Note that if we were to use the current jiffies each time around the loop,
3390  * we wouldn't escape the function with any frames outstanding if the time to
3391  * render a frame was over 20ms.
3392  *
3393  * This should get us reasonable parallelism between CPU and GPU but also
3394  * relatively low latency when blocking on a particular request to finish.
3395  */
3396 static int
3397 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3398 {
3399         struct drm_i915_private *dev_priv = dev->dev_private;
3400         struct drm_i915_file_private *file_priv = file->driver_priv;
3401         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3402         struct drm_i915_gem_request *request;
3403         struct intel_ring_buffer *ring = NULL;
3404         u32 seqno = 0;
3405         int ret;
3406
3407         if (atomic_read(&dev_priv->mm.wedged))
3408                 return -EIO;
3409
3410         spin_lock(&file_priv->mm.lock);
3411         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3412                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3413                         break;
3414
3415                 ring = request->ring;
3416                 seqno = request->seqno;
3417         }
3418         spin_unlock(&file_priv->mm.lock);
3419
3420         if (seqno == 0)
3421                 return 0;
3422
3423         ret = __wait_seqno(ring, seqno, true, NULL);
3424         if (ret == 0)
3425                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3426
3427         return ret;
3428 }
3429
3430 int
3431 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3432                     uint32_t alignment,
3433                     bool map_and_fenceable,
3434                     bool nonblocking)
3435 {
3436         int ret;
3437
3438         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3439                 return -EBUSY;
3440
3441         if (obj->gtt_space != NULL) {
3442                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3443                     (map_and_fenceable && !obj->map_and_fenceable)) {
3444                         WARN(obj->pin_count,
3445                              "bo is already pinned with incorrect alignment:"
3446                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3447                              " obj->map_and_fenceable=%d\n",
3448                              obj->gtt_offset, alignment,
3449                              map_and_fenceable,
3450                              obj->map_and_fenceable);
3451                         ret = i915_gem_object_unbind(obj);
3452                         if (ret)
3453                                 return ret;
3454                 }
3455         }
3456
3457         if (obj->gtt_space == NULL) {
3458                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3459                                                   map_and_fenceable,
3460                                                   nonblocking);
3461                 if (ret)
3462                         return ret;
3463         }
3464
3465         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3466                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3467
3468         obj->pin_count++;
3469         obj->pin_mappable |= map_and_fenceable;
3470
3471         return 0;
3472 }
3473
3474 void
3475 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3476 {
3477         BUG_ON(obj->pin_count == 0);
3478         BUG_ON(obj->gtt_space == NULL);
3479
3480         if (--obj->pin_count == 0)
3481                 obj->pin_mappable = false;
3482 }
3483
3484 int
3485 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3486                    struct drm_file *file)
3487 {
3488         struct drm_i915_gem_pin *args = data;
3489         struct drm_i915_gem_object *obj;
3490         int ret;
3491
3492         ret = i915_mutex_lock_interruptible(dev);
3493         if (ret)
3494                 return ret;
3495
3496         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3497         if (&obj->base == NULL) {
3498                 ret = -ENOENT;
3499                 goto unlock;
3500         }
3501
3502         if (obj->madv != I915_MADV_WILLNEED) {
3503                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3504                 ret = -EINVAL;
3505                 goto out;
3506         }
3507
3508         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3509                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3510                           args->handle);
3511                 ret = -EINVAL;
3512                 goto out;
3513         }
3514
3515         obj->user_pin_count++;
3516         obj->pin_filp = file;
3517         if (obj->user_pin_count == 1) {
3518                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3519                 if (ret)
3520                         goto out;
3521         }
3522
3523         /* XXX - flush the CPU caches for pinned objects
3524          * as the X server doesn't manage domains yet
3525          */
3526         i915_gem_object_flush_cpu_write_domain(obj);
3527         args->offset = obj->gtt_offset;
3528 out:
3529         drm_gem_object_unreference(&obj->base);
3530 unlock:
3531         mutex_unlock(&dev->struct_mutex);
3532         return ret;
3533 }
3534
3535 int
3536 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3537                      struct drm_file *file)
3538 {
3539         struct drm_i915_gem_pin *args = data;
3540         struct drm_i915_gem_object *obj;
3541         int ret;
3542
3543         ret = i915_mutex_lock_interruptible(dev);
3544         if (ret)
3545                 return ret;
3546
3547         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3548         if (&obj->base == NULL) {
3549                 ret = -ENOENT;
3550                 goto unlock;
3551         }
3552
3553         if (obj->pin_filp != file) {
3554                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3555                           args->handle);
3556                 ret = -EINVAL;
3557                 goto out;
3558         }
3559         obj->user_pin_count--;
3560         if (obj->user_pin_count == 0) {
3561                 obj->pin_filp = NULL;
3562                 i915_gem_object_unpin(obj);
3563         }
3564
3565 out:
3566         drm_gem_object_unreference(&obj->base);
3567 unlock:
3568         mutex_unlock(&dev->struct_mutex);
3569         return ret;
3570 }
3571
3572 int
3573 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3574                     struct drm_file *file)
3575 {
3576         struct drm_i915_gem_busy *args = data;
3577         struct drm_i915_gem_object *obj;
3578         int ret;
3579
3580         ret = i915_mutex_lock_interruptible(dev);
3581         if (ret)
3582                 return ret;
3583
3584         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3585         if (&obj->base == NULL) {
3586                 ret = -ENOENT;
3587                 goto unlock;
3588         }
3589
3590         /* Count all active objects as busy, even if they are currently not used
3591          * by the gpu. Users of this interface expect objects to eventually
3592          * become non-busy without any further actions, therefore emit any
3593          * necessary flushes here.
3594          */
3595         ret = i915_gem_object_flush_active(obj);
3596
3597         args->busy = obj->active;
3598         if (obj->ring) {
3599                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3600                 args->busy |= intel_ring_flag(obj->ring) << 16;
3601         }
3602
3603         drm_gem_object_unreference(&obj->base);
3604 unlock:
3605         mutex_unlock(&dev->struct_mutex);
3606         return ret;
3607 }
3608
3609 int
3610 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3611                         struct drm_file *file_priv)
3612 {
3613         return i915_gem_ring_throttle(dev, file_priv);
3614 }
3615
3616 int
3617 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3618                        struct drm_file *file_priv)
3619 {
3620         struct drm_i915_gem_madvise *args = data;
3621         struct drm_i915_gem_object *obj;
3622         int ret;
3623
3624         switch (args->madv) {
3625         case I915_MADV_DONTNEED:
3626         case I915_MADV_WILLNEED:
3627             break;
3628         default:
3629             return -EINVAL;
3630         }
3631
3632         ret = i915_mutex_lock_interruptible(dev);
3633         if (ret)
3634                 return ret;
3635
3636         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3637         if (&obj->base == NULL) {
3638                 ret = -ENOENT;
3639                 goto unlock;
3640         }
3641
3642         if (obj->pin_count) {
3643                 ret = -EINVAL;
3644                 goto out;
3645         }
3646
3647         if (obj->madv != __I915_MADV_PURGED)
3648                 obj->madv = args->madv;
3649
3650         /* if the object is no longer attached, discard its backing storage */
3651         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3652                 i915_gem_object_truncate(obj);
3653
3654         args->retained = obj->madv != __I915_MADV_PURGED;
3655
3656 out:
3657         drm_gem_object_unreference(&obj->base);
3658 unlock:
3659         mutex_unlock(&dev->struct_mutex);
3660         return ret;
3661 }
3662
3663 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3664                           const struct drm_i915_gem_object_ops *ops)
3665 {
3666         INIT_LIST_HEAD(&obj->mm_list);
3667         INIT_LIST_HEAD(&obj->gtt_list);
3668         INIT_LIST_HEAD(&obj->ring_list);
3669         INIT_LIST_HEAD(&obj->exec_list);
3670
3671         obj->ops = ops;
3672
3673         obj->fence_reg = I915_FENCE_REG_NONE;
3674         obj->madv = I915_MADV_WILLNEED;
3675         /* Avoid an unnecessary call to unbind on the first bind. */
3676         obj->map_and_fenceable = true;
3677
3678         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3679 }
3680
3681 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3682         .get_pages = i915_gem_object_get_pages_gtt,
3683         .put_pages = i915_gem_object_put_pages_gtt,
3684 };
3685
3686 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3687                                                   size_t size)
3688 {
3689         struct drm_i915_gem_object *obj;
3690         struct address_space *mapping;
3691         u32 mask;
3692
3693         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3694         if (obj == NULL)
3695                 return NULL;
3696
3697         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3698                 kfree(obj);
3699                 return NULL;
3700         }
3701
3702         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3703         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3704                 /* 965gm cannot relocate objects above 4GiB. */
3705                 mask &= ~__GFP_HIGHMEM;
3706                 mask |= __GFP_DMA32;
3707         }
3708
3709         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3710         mapping_set_gfp_mask(mapping, mask);
3711
3712         i915_gem_object_init(obj, &i915_gem_object_ops);
3713
3714         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3715         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3716
3717         if (HAS_LLC(dev)) {
3718                 /* On some devices, we can have the GPU use the LLC (the CPU
3719                  * cache) for about a 10% performance improvement
3720                  * compared to uncached.  Graphics requests other than
3721                  * display scanout are coherent with the CPU in
3722                  * accessing this cache.  This means in this mode we
3723                  * don't need to clflush on the CPU side, and on the
3724                  * GPU side we only need to flush internal caches to
3725                  * get data visible to the CPU.
3726                  *
3727                  * However, we maintain the display planes as UC, and so
3728                  * need to rebind when first used as such.
3729                  */
3730                 obj->cache_level = I915_CACHE_LLC;
3731         } else
3732                 obj->cache_level = I915_CACHE_NONE;
3733
3734         return obj;
3735 }
3736
3737 int i915_gem_init_object(struct drm_gem_object *obj)
3738 {
3739         BUG();
3740
3741         return 0;
3742 }
3743
3744 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3745 {
3746         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3747         struct drm_device *dev = obj->base.dev;
3748         drm_i915_private_t *dev_priv = dev->dev_private;
3749
3750         trace_i915_gem_object_destroy(obj);
3751
3752         if (obj->phys_obj)
3753                 i915_gem_detach_phys_object(dev, obj);
3754
3755         obj->pin_count = 0;
3756         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3757                 bool was_interruptible;
3758
3759                 was_interruptible = dev_priv->mm.interruptible;
3760                 dev_priv->mm.interruptible = false;
3761
3762                 WARN_ON(i915_gem_object_unbind(obj));
3763
3764                 dev_priv->mm.interruptible = was_interruptible;
3765         }
3766
3767         obj->pages_pin_count = 0;
3768         i915_gem_object_put_pages(obj);
3769         i915_gem_object_free_mmap_offset(obj);
3770
3771         BUG_ON(obj->pages);
3772
3773         if (obj->base.import_attach)
3774                 drm_prime_gem_destroy(&obj->base, NULL);
3775
3776         drm_gem_object_release(&obj->base);
3777         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3778
3779         kfree(obj->bit_17);
3780         kfree(obj);
3781 }
3782
3783 int
3784 i915_gem_idle(struct drm_device *dev)
3785 {
3786         drm_i915_private_t *dev_priv = dev->dev_private;
3787         int ret;
3788
3789         mutex_lock(&dev->struct_mutex);
3790
3791         if (dev_priv->mm.suspended) {
3792                 mutex_unlock(&dev->struct_mutex);
3793                 return 0;
3794         }
3795
3796         ret = i915_gpu_idle(dev);
3797         if (ret) {
3798                 mutex_unlock(&dev->struct_mutex);
3799                 return ret;
3800         }
3801         i915_gem_retire_requests(dev);
3802
3803         /* Under UMS, be paranoid and evict. */
3804         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3805                 i915_gem_evict_everything(dev);
3806
3807         i915_gem_reset_fences(dev);
3808
3809         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3810          * We need to replace this with a semaphore, or something.
3811          * And not confound mm.suspended!
3812          */
3813         dev_priv->mm.suspended = 1;
3814         del_timer_sync(&dev_priv->hangcheck_timer);
3815
3816         i915_kernel_lost_context(dev);
3817         i915_gem_cleanup_ringbuffer(dev);
3818
3819         mutex_unlock(&dev->struct_mutex);
3820
3821         /* Cancel the retire work handler, which should be idle now. */
3822         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3823
3824         return 0;
3825 }
3826
3827 void i915_gem_l3_remap(struct drm_device *dev)
3828 {
3829         drm_i915_private_t *dev_priv = dev->dev_private;
3830         u32 misccpctl;
3831         int i;
3832
3833         if (!IS_IVYBRIDGE(dev))
3834                 return;
3835
3836         if (!dev_priv->mm.l3_remap_info)
3837                 return;
3838
3839         misccpctl = I915_READ(GEN7_MISCCPCTL);
3840         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3841         POSTING_READ(GEN7_MISCCPCTL);
3842
3843         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3844                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3845                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3846                         DRM_DEBUG("0x%x was already programmed to %x\n",
3847                                   GEN7_L3LOG_BASE + i, remap);
3848                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3849                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3850                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3851         }
3852
3853         /* Make sure all the writes land before disabling dop clock gating */
3854         POSTING_READ(GEN7_L3LOG_BASE);
3855
3856         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3857 }
3858
3859 void i915_gem_init_swizzling(struct drm_device *dev)
3860 {
3861         drm_i915_private_t *dev_priv = dev->dev_private;
3862
3863         if (INTEL_INFO(dev)->gen < 5 ||
3864             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3865                 return;
3866
3867         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3868                                  DISP_TILE_SURFACE_SWIZZLING);
3869
3870         if (IS_GEN5(dev))
3871                 return;
3872
3873         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3874         if (IS_GEN6(dev))
3875                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3876         else
3877                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3878 }
3879
3880 void i915_gem_init_ppgtt(struct drm_device *dev)
3881 {
3882         drm_i915_private_t *dev_priv = dev->dev_private;
3883         uint32_t pd_offset;
3884         struct intel_ring_buffer *ring;
3885         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3886         uint32_t __iomem *pd_addr;
3887         uint32_t pd_entry;
3888         int i;
3889
3890         if (!dev_priv->mm.aliasing_ppgtt)
3891                 return;
3892
3893
3894         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3895         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3896                 dma_addr_t pt_addr;
3897
3898                 if (dev_priv->mm.gtt->needs_dmar)
3899                         pt_addr = ppgtt->pt_dma_addr[i];
3900                 else
3901                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3902
3903                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3904                 pd_entry |= GEN6_PDE_VALID;
3905
3906                 writel(pd_entry, pd_addr + i);
3907         }
3908         readl(pd_addr);
3909
3910         pd_offset = ppgtt->pd_offset;
3911         pd_offset /= 64; /* in cachelines, */
3912         pd_offset <<= 16;
3913
3914         if (INTEL_INFO(dev)->gen == 6) {
3915                 uint32_t ecochk, gab_ctl, ecobits;
3916
3917                 ecobits = I915_READ(GAC_ECO_BITS); 
3918                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3919
3920                 gab_ctl = I915_READ(GAB_CTL);
3921                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3922
3923                 ecochk = I915_READ(GAM_ECOCHK);
3924                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3925                                        ECOCHK_PPGTT_CACHE64B);
3926                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3927         } else if (INTEL_INFO(dev)->gen >= 7) {
3928                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3929                 /* GFX_MODE is per-ring on gen7+ */
3930         }
3931
3932         for_each_ring(ring, dev_priv, i) {
3933                 if (INTEL_INFO(dev)->gen >= 7)
3934                         I915_WRITE(RING_MODE_GEN7(ring),
3935                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3936
3937                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3938                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3939         }
3940 }
3941
3942 static bool
3943 intel_enable_blt(struct drm_device *dev)
3944 {
3945         if (!HAS_BLT(dev))
3946                 return false;
3947
3948         /* The blitter was dysfunctional on early prototypes */
3949         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3950                 DRM_INFO("BLT not supported on this pre-production hardware;"
3951                          " graphics performance will be degraded.\n");
3952                 return false;
3953         }
3954
3955         return true;
3956 }
3957
3958 int
3959 i915_gem_init_hw(struct drm_device *dev)
3960 {
3961         drm_i915_private_t *dev_priv = dev->dev_private;
3962         int ret;
3963
3964         if (!intel_enable_gtt())
3965                 return -EIO;
3966
3967         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3968                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3969
3970         i915_gem_l3_remap(dev);
3971
3972         i915_gem_init_swizzling(dev);
3973
3974         ret = intel_init_render_ring_buffer(dev);
3975         if (ret)
3976                 return ret;
3977
3978         if (HAS_BSD(dev)) {
3979                 ret = intel_init_bsd_ring_buffer(dev);
3980                 if (ret)
3981                         goto cleanup_render_ring;
3982         }
3983
3984         if (intel_enable_blt(dev)) {
3985                 ret = intel_init_blt_ring_buffer(dev);
3986                 if (ret)
3987                         goto cleanup_bsd_ring;
3988         }
3989
3990         dev_priv->next_seqno = 1;
3991
3992         /*
3993          * XXX: There was some w/a described somewhere suggesting loading
3994          * contexts before PPGTT.
3995          */
3996         i915_gem_context_init(dev);
3997         i915_gem_init_ppgtt(dev);
3998
3999         return 0;
4000
4001 cleanup_bsd_ring:
4002         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4003 cleanup_render_ring:
4004         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4005         return ret;
4006 }
4007
4008 static bool
4009 intel_enable_ppgtt(struct drm_device *dev)
4010 {
4011         if (i915_enable_ppgtt >= 0)
4012                 return i915_enable_ppgtt;
4013
4014 #ifdef CONFIG_INTEL_IOMMU
4015         /* Disable ppgtt on SNB if VT-d is on. */
4016         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4017                 return false;
4018 #endif
4019
4020         return true;
4021 }
4022
4023 int i915_gem_init(struct drm_device *dev)
4024 {
4025         struct drm_i915_private *dev_priv = dev->dev_private;
4026         unsigned long gtt_size, mappable_size;
4027         int ret;
4028
4029         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4030         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4031
4032         mutex_lock(&dev->struct_mutex);
4033         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4034                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4035                  * aperture accordingly when using aliasing ppgtt. */
4036                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4037
4038                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4039
4040                 ret = i915_gem_init_aliasing_ppgtt(dev);
4041                 if (ret) {
4042                         mutex_unlock(&dev->struct_mutex);
4043                         return ret;
4044                 }
4045         } else {
4046                 /* Let GEM Manage all of the aperture.
4047                  *
4048                  * However, leave one page at the end still bound to the scratch
4049                  * page.  There are a number of places where the hardware
4050                  * apparently prefetches past the end of the object, and we've
4051                  * seen multiple hangs with the GPU head pointer stuck in a
4052                  * batchbuffer bound at the last page of the aperture.  One page
4053                  * should be enough to keep any prefetching inside of the
4054                  * aperture.
4055                  */
4056                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4057                                          gtt_size);
4058         }
4059
4060         ret = i915_gem_init_hw(dev);
4061         mutex_unlock(&dev->struct_mutex);
4062         if (ret) {
4063                 i915_gem_cleanup_aliasing_ppgtt(dev);
4064                 return ret;
4065         }
4066
4067         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4068         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4069                 dev_priv->dri1.allow_batchbuffer = 1;
4070         return 0;
4071 }
4072
4073 void
4074 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4075 {
4076         drm_i915_private_t *dev_priv = dev->dev_private;
4077         struct intel_ring_buffer *ring;
4078         int i;
4079
4080         for_each_ring(ring, dev_priv, i)
4081                 intel_cleanup_ring_buffer(ring);
4082 }
4083
4084 int
4085 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4086                        struct drm_file *file_priv)
4087 {
4088         drm_i915_private_t *dev_priv = dev->dev_private;
4089         int ret;
4090
4091         if (drm_core_check_feature(dev, DRIVER_MODESET))
4092                 return 0;
4093
4094         if (atomic_read(&dev_priv->mm.wedged)) {
4095                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4096                 atomic_set(&dev_priv->mm.wedged, 0);
4097         }
4098
4099         mutex_lock(&dev->struct_mutex);
4100         dev_priv->mm.suspended = 0;
4101
4102         ret = i915_gem_init_hw(dev);
4103         if (ret != 0) {
4104                 mutex_unlock(&dev->struct_mutex);
4105                 return ret;
4106         }
4107
4108         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4109         mutex_unlock(&dev->struct_mutex);
4110
4111         ret = drm_irq_install(dev);
4112         if (ret)
4113                 goto cleanup_ringbuffer;
4114
4115         return 0;
4116
4117 cleanup_ringbuffer:
4118         mutex_lock(&dev->struct_mutex);
4119         i915_gem_cleanup_ringbuffer(dev);
4120         dev_priv->mm.suspended = 1;
4121         mutex_unlock(&dev->struct_mutex);
4122
4123         return ret;
4124 }
4125
4126 int
4127 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4128                        struct drm_file *file_priv)
4129 {
4130         if (drm_core_check_feature(dev, DRIVER_MODESET))
4131                 return 0;
4132
4133         drm_irq_uninstall(dev);
4134         return i915_gem_idle(dev);
4135 }
4136
4137 void
4138 i915_gem_lastclose(struct drm_device *dev)
4139 {
4140         int ret;
4141
4142         if (drm_core_check_feature(dev, DRIVER_MODESET))
4143                 return;
4144
4145         ret = i915_gem_idle(dev);
4146         if (ret)
4147                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4148 }
4149
4150 static void
4151 init_ring_lists(struct intel_ring_buffer *ring)
4152 {
4153         INIT_LIST_HEAD(&ring->active_list);
4154         INIT_LIST_HEAD(&ring->request_list);
4155 }
4156
4157 void
4158 i915_gem_load(struct drm_device *dev)
4159 {
4160         int i;
4161         drm_i915_private_t *dev_priv = dev->dev_private;
4162
4163         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4165         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4166         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4167         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4168         for (i = 0; i < I915_NUM_RINGS; i++)
4169                 init_ring_lists(&dev_priv->ring[i]);
4170         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4171                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4172         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4173                           i915_gem_retire_work_handler);
4174         init_completion(&dev_priv->error_completion);
4175
4176         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4177         if (IS_GEN3(dev)) {
4178                 I915_WRITE(MI_ARB_STATE,
4179                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4180         }
4181
4182         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4183
4184         /* Old X drivers will take 0-2 for front, back, depth buffers */
4185         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4186                 dev_priv->fence_reg_start = 3;
4187
4188         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4189                 dev_priv->num_fence_regs = 16;
4190         else
4191                 dev_priv->num_fence_regs = 8;
4192
4193         /* Initialize fence registers to zero */
4194         i915_gem_reset_fences(dev);
4195
4196         i915_gem_detect_bit_6_swizzle(dev);
4197         init_waitqueue_head(&dev_priv->pending_flip_queue);
4198
4199         dev_priv->mm.interruptible = true;
4200
4201         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4202         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4203         register_shrinker(&dev_priv->mm.inactive_shrinker);
4204 }
4205
4206 /*
4207  * Create a physically contiguous memory object for this object
4208  * e.g. for cursor + overlay regs
4209  */
4210 static int i915_gem_init_phys_object(struct drm_device *dev,
4211                                      int id, int size, int align)
4212 {
4213         drm_i915_private_t *dev_priv = dev->dev_private;
4214         struct drm_i915_gem_phys_object *phys_obj;
4215         int ret;
4216
4217         if (dev_priv->mm.phys_objs[id - 1] || !size)
4218                 return 0;
4219
4220         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4221         if (!phys_obj)
4222                 return -ENOMEM;
4223
4224         phys_obj->id = id;
4225
4226         phys_obj->handle = drm_pci_alloc(dev, size, align);
4227         if (!phys_obj->handle) {
4228                 ret = -ENOMEM;
4229                 goto kfree_obj;
4230         }
4231 #ifdef CONFIG_X86
4232         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4233 #endif
4234
4235         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4236
4237         return 0;
4238 kfree_obj:
4239         kfree(phys_obj);
4240         return ret;
4241 }
4242
4243 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4244 {
4245         drm_i915_private_t *dev_priv = dev->dev_private;
4246         struct drm_i915_gem_phys_object *phys_obj;
4247
4248         if (!dev_priv->mm.phys_objs[id - 1])
4249                 return;
4250
4251         phys_obj = dev_priv->mm.phys_objs[id - 1];
4252         if (phys_obj->cur_obj) {
4253                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4254         }
4255
4256 #ifdef CONFIG_X86
4257         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4258 #endif
4259         drm_pci_free(dev, phys_obj->handle);
4260         kfree(phys_obj);
4261         dev_priv->mm.phys_objs[id - 1] = NULL;
4262 }
4263
4264 void i915_gem_free_all_phys_object(struct drm_device *dev)
4265 {
4266         int i;
4267
4268         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4269                 i915_gem_free_phys_object(dev, i);
4270 }
4271
4272 void i915_gem_detach_phys_object(struct drm_device *dev,
4273                                  struct drm_i915_gem_object *obj)
4274 {
4275         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4276         char *vaddr;
4277         int i;
4278         int page_count;
4279
4280         if (!obj->phys_obj)
4281                 return;
4282         vaddr = obj->phys_obj->handle->vaddr;
4283
4284         page_count = obj->base.size / PAGE_SIZE;
4285         for (i = 0; i < page_count; i++) {
4286                 struct page *page = shmem_read_mapping_page(mapping, i);
4287                 if (!IS_ERR(page)) {
4288                         char *dst = kmap_atomic(page);
4289                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4290                         kunmap_atomic(dst);
4291
4292                         drm_clflush_pages(&page, 1);
4293
4294                         set_page_dirty(page);
4295                         mark_page_accessed(page);
4296                         page_cache_release(page);
4297                 }
4298         }
4299         intel_gtt_chipset_flush();
4300
4301         obj->phys_obj->cur_obj = NULL;
4302         obj->phys_obj = NULL;
4303 }
4304
4305 int
4306 i915_gem_attach_phys_object(struct drm_device *dev,
4307                             struct drm_i915_gem_object *obj,
4308                             int id,
4309                             int align)
4310 {
4311         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4312         drm_i915_private_t *dev_priv = dev->dev_private;
4313         int ret = 0;
4314         int page_count;
4315         int i;
4316
4317         if (id > I915_MAX_PHYS_OBJECT)
4318                 return -EINVAL;
4319
4320         if (obj->phys_obj) {
4321                 if (obj->phys_obj->id == id)
4322                         return 0;
4323                 i915_gem_detach_phys_object(dev, obj);
4324         }
4325
4326         /* create a new object */
4327         if (!dev_priv->mm.phys_objs[id - 1]) {
4328                 ret = i915_gem_init_phys_object(dev, id,
4329                                                 obj->base.size, align);
4330                 if (ret) {
4331                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4332                                   id, obj->base.size);
4333                         return ret;
4334                 }
4335         }
4336
4337         /* bind to the object */
4338         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4339         obj->phys_obj->cur_obj = obj;
4340
4341         page_count = obj->base.size / PAGE_SIZE;
4342
4343         for (i = 0; i < page_count; i++) {
4344                 struct page *page;
4345                 char *dst, *src;
4346
4347                 page = shmem_read_mapping_page(mapping, i);
4348                 if (IS_ERR(page))
4349                         return PTR_ERR(page);
4350
4351                 src = kmap_atomic(page);
4352                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4353                 memcpy(dst, src, PAGE_SIZE);
4354                 kunmap_atomic(src);
4355
4356                 mark_page_accessed(page);
4357                 page_cache_release(page);
4358         }
4359
4360         return 0;
4361 }
4362
4363 static int
4364 i915_gem_phys_pwrite(struct drm_device *dev,
4365                      struct drm_i915_gem_object *obj,
4366                      struct drm_i915_gem_pwrite *args,
4367                      struct drm_file *file_priv)
4368 {
4369         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4370         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4371
4372         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4373                 unsigned long unwritten;
4374
4375                 /* The physical object once assigned is fixed for the lifetime
4376                  * of the obj, so we can safely drop the lock and continue
4377                  * to access vaddr.
4378                  */
4379                 mutex_unlock(&dev->struct_mutex);
4380                 unwritten = copy_from_user(vaddr, user_data, args->size);
4381                 mutex_lock(&dev->struct_mutex);
4382                 if (unwritten)
4383                         return -EFAULT;
4384         }
4385
4386         intel_gtt_chipset_flush();
4387         return 0;
4388 }
4389
4390 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4391 {
4392         struct drm_i915_file_private *file_priv = file->driver_priv;
4393
4394         /* Clean up our request list when the client is going away, so that
4395          * later retire_requests won't dereference our soon-to-be-gone
4396          * file_priv.
4397          */
4398         spin_lock(&file_priv->mm.lock);
4399         while (!list_empty(&file_priv->mm.request_list)) {
4400                 struct drm_i915_gem_request *request;
4401
4402                 request = list_first_entry(&file_priv->mm.request_list,
4403                                            struct drm_i915_gem_request,
4404                                            client_list);
4405                 list_del(&request->client_list);
4406                 request->file_priv = NULL;
4407         }
4408         spin_unlock(&file_priv->mm.lock);
4409 }
4410
4411 static int
4412 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4413 {
4414         struct drm_i915_private *dev_priv =
4415                 container_of(shrinker,
4416                              struct drm_i915_private,
4417                              mm.inactive_shrinker);
4418         struct drm_device *dev = dev_priv->dev;
4419         struct drm_i915_gem_object *obj;
4420         int nr_to_scan = sc->nr_to_scan;
4421         int cnt;
4422
4423         if (!mutex_trylock(&dev->struct_mutex))
4424                 return 0;
4425
4426         if (nr_to_scan) {
4427                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4428                 if (nr_to_scan > 0)
4429                         i915_gem_shrink_all(dev_priv);
4430         }
4431
4432         cnt = 0;
4433         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4434                 if (obj->pages_pin_count == 0)
4435                         cnt += obj->base.size >> PAGE_SHIFT;
4436         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4437                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4438                         cnt += obj->base.size >> PAGE_SHIFT;
4439
4440         mutex_unlock(&dev->struct_mutex);
4441         return cnt;
4442 }