drm/i915: handle walking compact dma scatter lists
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95         if (EXIT_COND)
96                 return 0;
97
98         /* GPU is already declared terminally dead, give up. */
99         if (i915_terminally_wedged(error))
100                 return -EIO;
101
102         /*
103          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104          * userspace. If it takes that long something really bad is going on and
105          * we should simply try to bail out and fail as gracefully as possible.
106          */
107         ret = wait_event_interruptible_timeout(error->reset_queue,
108                                                EXIT_COND,
109                                                10*HZ);
110         if (ret == 0) {
111                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112                 return -EIO;
113         } else if (ret < 0) {
114                 return ret;
115         }
116 #undef EXIT_COND
117
118         return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123         struct drm_i915_private *dev_priv = dev->dev_private;
124         int ret;
125
126         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127         if (ret)
128                 return ret;
129
130         ret = mutex_lock_interruptible(&dev->struct_mutex);
131         if (ret)
132                 return ret;
133
134         WARN_ON(i915_verify_lists(dev));
135         return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141         return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146                     struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         struct drm_i915_gem_init *args = data;
150
151         if (drm_core_check_feature(dev, DRIVER_MODESET))
152                 return -ENODEV;
153
154         if (args->gtt_start >= args->gtt_end ||
155             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156                 return -EINVAL;
157
158         /* GEM with user mode setting was never supported on ilk and later. */
159         if (INTEL_INFO(dev)->gen >= 5)
160                 return -ENODEV;
161
162         mutex_lock(&dev->struct_mutex);
163         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164                                   args->gtt_end);
165         dev_priv->gtt.mappable_end = args->gtt_end;
166         mutex_unlock(&dev->struct_mutex);
167
168         return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173                             struct drm_file *file)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         struct drm_i915_gem_get_aperture *args = data;
177         struct drm_i915_gem_object *obj;
178         size_t pinned;
179
180         pinned = 0;
181         mutex_lock(&dev->struct_mutex);
182         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183                 if (obj->pin_count)
184                         pinned += obj->gtt_space->size;
185         mutex_unlock(&dev->struct_mutex);
186
187         args->aper_size = dev_priv->gtt.total;
188         args->aper_available_size = args->aper_size - pinned;
189
190         return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202         kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207                 struct drm_device *dev,
208                 uint64_t size,
209                 uint32_t *handle_p)
210 {
211         struct drm_i915_gem_object *obj;
212         int ret;
213         u32 handle;
214
215         size = roundup(size, PAGE_SIZE);
216         if (size == 0)
217                 return -EINVAL;
218
219         /* Allocate the new object */
220         obj = i915_gem_alloc_object(dev, size);
221         if (obj == NULL)
222                 return -ENOMEM;
223
224         ret = drm_gem_handle_create(file, &obj->base, &handle);
225         if (ret) {
226                 drm_gem_object_release(&obj->base);
227                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228                 i915_gem_object_free(obj);
229                 return ret;
230         }
231
232         /* drop reference from allocate - handle holds it now */
233         drm_gem_object_unreference(&obj->base);
234         trace_i915_gem_object_create(obj);
235
236         *handle_p = handle;
237         return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242                      struct drm_device *dev,
243                      struct drm_mode_create_dumb *args)
244 {
245         /* have to work out size/pitch and return them */
246         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247         args->size = args->pitch * args->height;
248         return i915_gem_create(file, dev,
249                                args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253                           struct drm_device *dev,
254                           uint32_t handle)
255 {
256         return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260  * Creates a new mm object and returns a handle to it.
261  */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264                       struct drm_file *file)
265 {
266         struct drm_i915_gem_create *args = data;
267
268         return i915_gem_create(file, dev,
269                                args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274                         const char *gpu_vaddr, int gpu_offset,
275                         int length)
276 {
277         int ret, cpu_offset = 0;
278
279         while (length > 0) {
280                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281                 int this_length = min(cacheline_end - gpu_offset, length);
282                 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285                                      gpu_vaddr + swizzled_gpu_offset,
286                                      this_length);
287                 if (ret)
288                         return ret + length;
289
290                 cpu_offset += this_length;
291                 gpu_offset += this_length;
292                 length -= this_length;
293         }
294
295         return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300                           const char __user *cpu_vaddr,
301                           int length)
302 {
303         int ret, cpu_offset = 0;
304
305         while (length > 0) {
306                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307                 int this_length = min(cacheline_end - gpu_offset, length);
308                 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311                                        cpu_vaddr + cpu_offset,
312                                        this_length);
313                 if (ret)
314                         return ret + length;
315
316                 cpu_offset += this_length;
317                 gpu_offset += this_length;
318                 length -= this_length;
319         }
320
321         return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325  * Flushes invalid cachelines before reading the target if
326  * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329                  char __user *user_data,
330                  bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332         char *vaddr;
333         int ret;
334
335         if (unlikely(page_do_bit17_swizzling))
336                 return -EINVAL;
337
338         vaddr = kmap_atomic(page);
339         if (needs_clflush)
340                 drm_clflush_virt_range(vaddr + shmem_page_offset,
341                                        page_length);
342         ret = __copy_to_user_inatomic(user_data,
343                                       vaddr + shmem_page_offset,
344                                       page_length);
345         kunmap_atomic(vaddr);
346
347         return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352                              bool swizzled)
353 {
354         if (unlikely(swizzled)) {
355                 unsigned long start = (unsigned long) addr;
356                 unsigned long end = (unsigned long) addr + length;
357
358                 /* For swizzling simply ensure that we always flush both
359                  * channels. Lame, but simple and it works. Swizzled
360                  * pwrite/pread is far from a hotpath - current userspace
361                  * doesn't use it at all. */
362                 start = round_down(start, 128);
363                 end = round_up(end, 128);
364
365                 drm_clflush_virt_range((void *)start, end - start);
366         } else {
367                 drm_clflush_virt_range(addr, length);
368         }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373  * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376                  char __user *user_data,
377                  bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379         char *vaddr;
380         int ret;
381
382         vaddr = kmap(page);
383         if (needs_clflush)
384                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385                                              page_length,
386                                              page_do_bit17_swizzling);
387
388         if (page_do_bit17_swizzling)
389                 ret = __copy_to_user_swizzled(user_data,
390                                               vaddr, shmem_page_offset,
391                                               page_length);
392         else
393                 ret = __copy_to_user(user_data,
394                                      vaddr + shmem_page_offset,
395                                      page_length);
396         kunmap(page);
397
398         return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403                      struct drm_i915_gem_object *obj,
404                      struct drm_i915_gem_pread *args,
405                      struct drm_file *file)
406 {
407         char __user *user_data;
408         ssize_t remain;
409         loff_t offset;
410         int shmem_page_offset, page_length, ret = 0;
411         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct sg_page_iter sg_iter;
415
416         user_data = to_user_ptr(args->data_ptr);
417         remain = args->size;
418
419         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422                 /* If we're not in the cpu read domain, set ourself into the gtt
423                  * read domain and manually flush cachelines (if required). This
424                  * optimizes for the case when the gpu will dirty the data
425                  * anyway again before the next pread happens. */
426                 if (obj->cache_level == I915_CACHE_NONE)
427                         needs_clflush = 1;
428                 if (obj->gtt_space) {
429                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
430                         if (ret)
431                                 return ret;
432                 }
433         }
434
435         ret = i915_gem_object_get_pages(obj);
436         if (ret)
437                 return ret;
438
439         i915_gem_object_pin_pages(obj);
440
441         offset = args->offset;
442
443         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
444                          offset >> PAGE_SHIFT) {
445                 struct page *page = sg_iter.page;
446
447                 if (remain <= 0)
448                         break;
449
450                 /* Operation in this page
451                  *
452                  * shmem_page_offset = offset within page in shmem file
453                  * page_length = bytes to copy for this page
454                  */
455                 shmem_page_offset = offset_in_page(offset);
456                 page_length = remain;
457                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
458                         page_length = PAGE_SIZE - shmem_page_offset;
459
460                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
461                         (page_to_phys(page) & (1 << 17)) != 0;
462
463                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
464                                        user_data, page_do_bit17_swizzling,
465                                        needs_clflush);
466                 if (ret == 0)
467                         goto next_page;
468
469                 mutex_unlock(&dev->struct_mutex);
470
471                 if (!prefaulted) {
472                         ret = fault_in_multipages_writeable(user_data, remain);
473                         /* Userspace is tricking us, but we've already clobbered
474                          * its pages with the prefault and promised to write the
475                          * data up to the first fault. Hence ignore any errors
476                          * and just continue. */
477                         (void)ret;
478                         prefaulted = 1;
479                 }
480
481                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482                                        user_data, page_do_bit17_swizzling,
483                                        needs_clflush);
484
485                 mutex_lock(&dev->struct_mutex);
486
487 next_page:
488                 mark_page_accessed(page);
489
490                 if (ret)
491                         goto out;
492
493                 remain -= page_length;
494                 user_data += page_length;
495                 offset += page_length;
496         }
497
498 out:
499         i915_gem_object_unpin_pages(obj);
500
501         return ret;
502 }
503
504 /**
505  * Reads data from the object referenced by handle.
506  *
507  * On error, the contents of *data are undefined.
508  */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511                      struct drm_file *file)
512 {
513         struct drm_i915_gem_pread *args = data;
514         struct drm_i915_gem_object *obj;
515         int ret = 0;
516
517         if (args->size == 0)
518                 return 0;
519
520         if (!access_ok(VERIFY_WRITE,
521                        to_user_ptr(args->data_ptr),
522                        args->size))
523                 return -EFAULT;
524
525         ret = i915_mutex_lock_interruptible(dev);
526         if (ret)
527                 return ret;
528
529         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530         if (&obj->base == NULL) {
531                 ret = -ENOENT;
532                 goto unlock;
533         }
534
535         /* Bounds check source.  */
536         if (args->offset > obj->base.size ||
537             args->size > obj->base.size - args->offset) {
538                 ret = -EINVAL;
539                 goto out;
540         }
541
542         /* prime objects have no backing filp to GEM pread/pwrite
543          * pages from.
544          */
545         if (!obj->base.filp) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552         ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555         drm_gem_object_unreference(&obj->base);
556 unlock:
557         mutex_unlock(&dev->struct_mutex);
558         return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562  * page faults in the source data
563  */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567                 loff_t page_base, int page_offset,
568                 char __user *user_data,
569                 int length)
570 {
571         void __iomem *vaddr_atomic;
572         void *vaddr;
573         unsigned long unwritten;
574
575         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576         /* We can use the cpu mem copy function because this is X86. */
577         vaddr = (void __force*)vaddr_atomic + page_offset;
578         unwritten = __copy_from_user_inatomic_nocache(vaddr,
579                                                       user_data, length);
580         io_mapping_unmap_atomic(vaddr_atomic);
581         return unwritten;
582 }
583
584 /**
585  * This is the fast pwrite path, where we copy the data directly from the
586  * user into the GTT, uncached.
587  */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590                          struct drm_i915_gem_object *obj,
591                          struct drm_i915_gem_pwrite *args,
592                          struct drm_file *file)
593 {
594         drm_i915_private_t *dev_priv = dev->dev_private;
595         ssize_t remain;
596         loff_t offset, page_base;
597         char __user *user_data;
598         int page_offset, page_length, ret;
599
600         ret = i915_gem_object_pin(obj, 0, true, true);
601         if (ret)
602                 goto out;
603
604         ret = i915_gem_object_set_to_gtt_domain(obj, true);
605         if (ret)
606                 goto out_unpin;
607
608         ret = i915_gem_object_put_fence(obj);
609         if (ret)
610                 goto out_unpin;
611
612         user_data = to_user_ptr(args->data_ptr);
613         remain = args->size;
614
615         offset = obj->gtt_offset + args->offset;
616
617         while (remain > 0) {
618                 /* Operation in this page
619                  *
620                  * page_base = page offset within aperture
621                  * page_offset = offset within page
622                  * page_length = bytes to copy for this page
623                  */
624                 page_base = offset & PAGE_MASK;
625                 page_offset = offset_in_page(offset);
626                 page_length = remain;
627                 if ((page_offset + remain) > PAGE_SIZE)
628                         page_length = PAGE_SIZE - page_offset;
629
630                 /* If we get a fault while copying data, then (presumably) our
631                  * source page isn't available.  Return the error and we'll
632                  * retry in the slow path.
633                  */
634                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
635                                     page_offset, user_data, page_length)) {
636                         ret = -EFAULT;
637                         goto out_unpin;
638                 }
639
640                 remain -= page_length;
641                 user_data += page_length;
642                 offset += page_length;
643         }
644
645 out_unpin:
646         i915_gem_object_unpin(obj);
647 out:
648         return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652  * Flushes invalid cachelines before writing to the target if
653  * needs_clflush_before is set and flushes out any written cachelines after
654  * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657                   char __user *user_data,
658                   bool page_do_bit17_swizzling,
659                   bool needs_clflush_before,
660                   bool needs_clflush_after)
661 {
662         char *vaddr;
663         int ret;
664
665         if (unlikely(page_do_bit17_swizzling))
666                 return -EINVAL;
667
668         vaddr = kmap_atomic(page);
669         if (needs_clflush_before)
670                 drm_clflush_virt_range(vaddr + shmem_page_offset,
671                                        page_length);
672         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673                                                 user_data,
674                                                 page_length);
675         if (needs_clflush_after)
676                 drm_clflush_virt_range(vaddr + shmem_page_offset,
677                                        page_length);
678         kunmap_atomic(vaddr);
679
680         return ret ? -EFAULT : 0;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684  * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687                   char __user *user_data,
688                   bool page_do_bit17_swizzling,
689                   bool needs_clflush_before,
690                   bool needs_clflush_after)
691 {
692         char *vaddr;
693         int ret;
694
695         vaddr = kmap(page);
696         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698                                              page_length,
699                                              page_do_bit17_swizzling);
700         if (page_do_bit17_swizzling)
701                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702                                                 user_data,
703                                                 page_length);
704         else
705                 ret = __copy_from_user(vaddr + shmem_page_offset,
706                                        user_data,
707                                        page_length);
708         if (needs_clflush_after)
709                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710                                              page_length,
711                                              page_do_bit17_swizzling);
712         kunmap(page);
713
714         return ret ? -EFAULT : 0;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719                       struct drm_i915_gem_object *obj,
720                       struct drm_i915_gem_pwrite *args,
721                       struct drm_file *file)
722 {
723         ssize_t remain;
724         loff_t offset;
725         char __user *user_data;
726         int shmem_page_offset, page_length, ret = 0;
727         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
728         int hit_slowpath = 0;
729         int needs_clflush_after = 0;
730         int needs_clflush_before = 0;
731         struct sg_page_iter sg_iter;
732
733         user_data = to_user_ptr(args->data_ptr);
734         remain = args->size;
735
736         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
737
738         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
739                 /* If we're not in the cpu write domain, set ourself into the gtt
740                  * write domain and manually flush cachelines (if required). This
741                  * optimizes for the case when the gpu will use the data
742                  * right away and we therefore have to clflush anyway. */
743                 if (obj->cache_level == I915_CACHE_NONE)
744                         needs_clflush_after = 1;
745                 if (obj->gtt_space) {
746                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
747                         if (ret)
748                                 return ret;
749                 }
750         }
751         /* Same trick applies for invalidate partially written cachelines before
752          * writing.  */
753         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
754             && obj->cache_level == I915_CACHE_NONE)
755                 needs_clflush_before = 1;
756
757         ret = i915_gem_object_get_pages(obj);
758         if (ret)
759                 return ret;
760
761         i915_gem_object_pin_pages(obj);
762
763         offset = args->offset;
764         obj->dirty = 1;
765
766         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
767                          offset >> PAGE_SHIFT) {
768                 struct page *page = sg_iter.page;
769                 int partial_cacheline_write;
770
771                 if (remain <= 0)
772                         break;
773
774                 /* Operation in this page
775                  *
776                  * shmem_page_offset = offset within page in shmem file
777                  * page_length = bytes to copy for this page
778                  */
779                 shmem_page_offset = offset_in_page(offset);
780
781                 page_length = remain;
782                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
783                         page_length = PAGE_SIZE - shmem_page_offset;
784
785                 /* If we don't overwrite a cacheline completely we need to be
786                  * careful to have up-to-date data by first clflushing. Don't
787                  * overcomplicate things and flush the entire patch. */
788                 partial_cacheline_write = needs_clflush_before &&
789                         ((shmem_page_offset | page_length)
790                                 & (boot_cpu_data.x86_clflush_size - 1));
791
792                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
793                         (page_to_phys(page) & (1 << 17)) != 0;
794
795                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
796                                         user_data, page_do_bit17_swizzling,
797                                         partial_cacheline_write,
798                                         needs_clflush_after);
799                 if (ret == 0)
800                         goto next_page;
801
802                 hit_slowpath = 1;
803                 mutex_unlock(&dev->struct_mutex);
804                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
805                                         user_data, page_do_bit17_swizzling,
806                                         partial_cacheline_write,
807                                         needs_clflush_after);
808
809                 mutex_lock(&dev->struct_mutex);
810
811 next_page:
812                 set_page_dirty(page);
813                 mark_page_accessed(page);
814
815                 if (ret)
816                         goto out;
817
818                 remain -= page_length;
819                 user_data += page_length;
820                 offset += page_length;
821         }
822
823 out:
824         i915_gem_object_unpin_pages(obj);
825
826         if (hit_slowpath) {
827                 /*
828                  * Fixup: Flush cpu caches in case we didn't flush the dirty
829                  * cachelines in-line while writing and the object moved
830                  * out of the cpu write domain while we've dropped the lock.
831                  */
832                 if (!needs_clflush_after &&
833                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
834                         i915_gem_clflush_object(obj);
835                         i915_gem_chipset_flush(dev);
836                 }
837         }
838
839         if (needs_clflush_after)
840                 i915_gem_chipset_flush(dev);
841
842         return ret;
843 }
844
845 /**
846  * Writes data to the object referenced by handle.
847  *
848  * On error, the contents of the buffer that were to be modified are undefined.
849  */
850 int
851 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
852                       struct drm_file *file)
853 {
854         struct drm_i915_gem_pwrite *args = data;
855         struct drm_i915_gem_object *obj;
856         int ret;
857
858         if (args->size == 0)
859                 return 0;
860
861         if (!access_ok(VERIFY_READ,
862                        to_user_ptr(args->data_ptr),
863                        args->size))
864                 return -EFAULT;
865
866         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
867                                            args->size);
868         if (ret)
869                 return -EFAULT;
870
871         ret = i915_mutex_lock_interruptible(dev);
872         if (ret)
873                 return ret;
874
875         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
876         if (&obj->base == NULL) {
877                 ret = -ENOENT;
878                 goto unlock;
879         }
880
881         /* Bounds check destination. */
882         if (args->offset > obj->base.size ||
883             args->size > obj->base.size - args->offset) {
884                 ret = -EINVAL;
885                 goto out;
886         }
887
888         /* prime objects have no backing filp to GEM pread/pwrite
889          * pages from.
890          */
891         if (!obj->base.filp) {
892                 ret = -EINVAL;
893                 goto out;
894         }
895
896         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
897
898         ret = -EFAULT;
899         /* We can only do the GTT pwrite on untiled buffers, as otherwise
900          * it would end up going through the fenced access, and we'll get
901          * different detiling behavior between reading and writing.
902          * pread/pwrite currently are reading and writing from the CPU
903          * perspective, requiring manual detiling by the client.
904          */
905         if (obj->phys_obj) {
906                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
907                 goto out;
908         }
909
910         if (obj->cache_level == I915_CACHE_NONE &&
911             obj->tiling_mode == I915_TILING_NONE &&
912             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
914                 /* Note that the gtt paths might fail with non-page-backed user
915                  * pointers (e.g. gtt mappings when moving data between
916                  * textures). Fallback to the shmem path in that case. */
917         }
918
919         if (ret == -EFAULT || ret == -ENOSPC)
920                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
921
922 out:
923         drm_gem_object_unreference(&obj->base);
924 unlock:
925         mutex_unlock(&dev->struct_mutex);
926         return ret;
927 }
928
929 int
930 i915_gem_check_wedge(struct i915_gpu_error *error,
931                      bool interruptible)
932 {
933         if (i915_reset_in_progress(error)) {
934                 /* Non-interruptible callers can't handle -EAGAIN, hence return
935                  * -EIO unconditionally for these. */
936                 if (!interruptible)
937                         return -EIO;
938
939                 /* Recovery complete, but the reset failed ... */
940                 if (i915_terminally_wedged(error))
941                         return -EIO;
942
943                 return -EAGAIN;
944         }
945
946         return 0;
947 }
948
949 /*
950  * Compare seqno against outstanding lazy request. Emit a request if they are
951  * equal.
952  */
953 static int
954 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
955 {
956         int ret;
957
958         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959
960         ret = 0;
961         if (seqno == ring->outstanding_lazy_request)
962                 ret = i915_add_request(ring, NULL, NULL);
963
964         return ret;
965 }
966
967 /**
968  * __wait_seqno - wait until execution of seqno has finished
969  * @ring: the ring expected to report seqno
970  * @seqno: duh!
971  * @reset_counter: reset sequence associated with the given seqno
972  * @interruptible: do an interruptible wait (normally yes)
973  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
974  *
975  * Note: It is of utmost importance that the passed in seqno and reset_counter
976  * values have been read by the caller in an smp safe manner. Where read-side
977  * locks are involved, it is sufficient to read the reset_counter before
978  * unlocking the lock that protects the seqno. For lockless tricks, the
979  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
980  * inserted.
981  *
982  * Returns 0 if the seqno was found within the alloted time. Else returns the
983  * errno with remaining time filled in timeout argument.
984  */
985 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986                         unsigned reset_counter,
987                         bool interruptible, struct timespec *timeout)
988 {
989         drm_i915_private_t *dev_priv = ring->dev->dev_private;
990         struct timespec before, now, wait_time={1,0};
991         unsigned long timeout_jiffies;
992         long end;
993         bool wait_forever = true;
994         int ret;
995
996         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
997                 return 0;
998
999         trace_i915_gem_request_wait_begin(ring, seqno);
1000
1001         if (timeout != NULL) {
1002                 wait_time = *timeout;
1003                 wait_forever = false;
1004         }
1005
1006         timeout_jiffies = timespec_to_jiffies(&wait_time);
1007
1008         if (WARN_ON(!ring->irq_get(ring)))
1009                 return -ENODEV;
1010
1011         /* Record current time in case interrupted by signal, or wedged * */
1012         getrawmonotonic(&before);
1013
1014 #define EXIT_COND \
1015         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1016          i915_reset_in_progress(&dev_priv->gpu_error) || \
1017          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1018         do {
1019                 if (interruptible)
1020                         end = wait_event_interruptible_timeout(ring->irq_queue,
1021                                                                EXIT_COND,
1022                                                                timeout_jiffies);
1023                 else
1024                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1025                                                  timeout_jiffies);
1026
1027                 /* We need to check whether any gpu reset happened in between
1028                  * the caller grabbing the seqno and now ... */
1029                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030                         end = -EAGAIN;
1031
1032                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1033                  * gone. */
1034                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1035                 if (ret)
1036                         end = ret;
1037         } while (end == 0 && wait_forever);
1038
1039         getrawmonotonic(&now);
1040
1041         ring->irq_put(ring);
1042         trace_i915_gem_request_wait_end(ring, seqno);
1043 #undef EXIT_COND
1044
1045         if (timeout) {
1046                 struct timespec sleep_time = timespec_sub(now, before);
1047                 *timeout = timespec_sub(*timeout, sleep_time);
1048         }
1049
1050         switch (end) {
1051         case -EIO:
1052         case -EAGAIN: /* Wedged */
1053         case -ERESTARTSYS: /* Signal */
1054                 return (int)end;
1055         case 0: /* Timeout */
1056                 if (timeout)
1057                         set_normalized_timespec(timeout, 0, 0);
1058                 return -ETIME;
1059         default: /* Completed */
1060                 WARN_ON(end < 0); /* We're not aware of other errors */
1061                 return 0;
1062         }
1063 }
1064
1065 /**
1066  * Waits for a sequence number to be signaled, and cleans up the
1067  * request and object lists appropriately for that event.
1068  */
1069 int
1070 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1071 {
1072         struct drm_device *dev = ring->dev;
1073         struct drm_i915_private *dev_priv = dev->dev_private;
1074         bool interruptible = dev_priv->mm.interruptible;
1075         int ret;
1076
1077         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1078         BUG_ON(seqno == 0);
1079
1080         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1081         if (ret)
1082                 return ret;
1083
1084         ret = i915_gem_check_olr(ring, seqno);
1085         if (ret)
1086                 return ret;
1087
1088         return __wait_seqno(ring, seqno,
1089                             atomic_read(&dev_priv->gpu_error.reset_counter),
1090                             interruptible, NULL);
1091 }
1092
1093 /**
1094  * Ensures that all rendering to the object has completed and the object is
1095  * safe to unbind from the GTT or access from the CPU.
1096  */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099                                bool readonly)
1100 {
1101         struct intel_ring_buffer *ring = obj->ring;
1102         u32 seqno;
1103         int ret;
1104
1105         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106         if (seqno == 0)
1107                 return 0;
1108
1109         ret = i915_wait_seqno(ring, seqno);
1110         if (ret)
1111                 return ret;
1112
1113         i915_gem_retire_requests_ring(ring);
1114
1115         /* Manually manage the write flush as we may have not yet
1116          * retired the buffer.
1117          */
1118         if (obj->last_write_seqno &&
1119             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120                 obj->last_write_seqno = 0;
1121                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122         }
1123
1124         return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128  * as the object state may change during this call.
1129  */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132                                             bool readonly)
1133 {
1134         struct drm_device *dev = obj->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         struct intel_ring_buffer *ring = obj->ring;
1137         unsigned reset_counter;
1138         u32 seqno;
1139         int ret;
1140
1141         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1142         BUG_ON(!dev_priv->mm.interruptible);
1143
1144         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1145         if (seqno == 0)
1146                 return 0;
1147
1148         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1149         if (ret)
1150                 return ret;
1151
1152         ret = i915_gem_check_olr(ring, seqno);
1153         if (ret)
1154                 return ret;
1155
1156         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1157         mutex_unlock(&dev->struct_mutex);
1158         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1159         mutex_lock(&dev->struct_mutex);
1160
1161         i915_gem_retire_requests_ring(ring);
1162
1163         /* Manually manage the write flush as we may have not yet
1164          * retired the buffer.
1165          */
1166         if (obj->last_write_seqno &&
1167             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1168                 obj->last_write_seqno = 0;
1169                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1170         }
1171
1172         return ret;
1173 }
1174
1175 /**
1176  * Called when user space prepares to use an object with the CPU, either
1177  * through the mmap ioctl's mapping or a GTT mapping.
1178  */
1179 int
1180 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1181                           struct drm_file *file)
1182 {
1183         struct drm_i915_gem_set_domain *args = data;
1184         struct drm_i915_gem_object *obj;
1185         uint32_t read_domains = args->read_domains;
1186         uint32_t write_domain = args->write_domain;
1187         int ret;
1188
1189         /* Only handle setting domains to types used by the CPU. */
1190         if (write_domain & I915_GEM_GPU_DOMAINS)
1191                 return -EINVAL;
1192
1193         if (read_domains & I915_GEM_GPU_DOMAINS)
1194                 return -EINVAL;
1195
1196         /* Having something in the write domain implies it's in the read
1197          * domain, and only that read domain.  Enforce that in the request.
1198          */
1199         if (write_domain != 0 && read_domains != write_domain)
1200                 return -EINVAL;
1201
1202         ret = i915_mutex_lock_interruptible(dev);
1203         if (ret)
1204                 return ret;
1205
1206         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1207         if (&obj->base == NULL) {
1208                 ret = -ENOENT;
1209                 goto unlock;
1210         }
1211
1212         /* Try to flush the object off the GPU without holding the lock.
1213          * We will repeat the flush holding the lock in the normal manner
1214          * to catch cases where we are gazumped.
1215          */
1216         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1217         if (ret)
1218                 goto unref;
1219
1220         if (read_domains & I915_GEM_DOMAIN_GTT) {
1221                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1222
1223                 /* Silently promote "you're not bound, there was nothing to do"
1224                  * to success, since the client was just asking us to
1225                  * make sure everything was done.
1226                  */
1227                 if (ret == -EINVAL)
1228                         ret = 0;
1229         } else {
1230                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1231         }
1232
1233 unref:
1234         drm_gem_object_unreference(&obj->base);
1235 unlock:
1236         mutex_unlock(&dev->struct_mutex);
1237         return ret;
1238 }
1239
1240 /**
1241  * Called when user space has done writes to this buffer
1242  */
1243 int
1244 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1245                          struct drm_file *file)
1246 {
1247         struct drm_i915_gem_sw_finish *args = data;
1248         struct drm_i915_gem_object *obj;
1249         int ret = 0;
1250
1251         ret = i915_mutex_lock_interruptible(dev);
1252         if (ret)
1253                 return ret;
1254
1255         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1256         if (&obj->base == NULL) {
1257                 ret = -ENOENT;
1258                 goto unlock;
1259         }
1260
1261         /* Pinned buffers may be scanout, so flush the cache */
1262         if (obj->pin_count)
1263                 i915_gem_object_flush_cpu_write_domain(obj);
1264
1265         drm_gem_object_unreference(&obj->base);
1266 unlock:
1267         mutex_unlock(&dev->struct_mutex);
1268         return ret;
1269 }
1270
1271 /**
1272  * Maps the contents of an object, returning the address it is mapped
1273  * into.
1274  *
1275  * While the mapping holds a reference on the contents of the object, it doesn't
1276  * imply a ref on the object itself.
1277  */
1278 int
1279 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1280                     struct drm_file *file)
1281 {
1282         struct drm_i915_gem_mmap *args = data;
1283         struct drm_gem_object *obj;
1284         unsigned long addr;
1285
1286         obj = drm_gem_object_lookup(dev, file, args->handle);
1287         if (obj == NULL)
1288                 return -ENOENT;
1289
1290         /* prime objects have no backing filp to GEM mmap
1291          * pages from.
1292          */
1293         if (!obj->filp) {
1294                 drm_gem_object_unreference_unlocked(obj);
1295                 return -EINVAL;
1296         }
1297
1298         addr = vm_mmap(obj->filp, 0, args->size,
1299                        PROT_READ | PROT_WRITE, MAP_SHARED,
1300                        args->offset);
1301         drm_gem_object_unreference_unlocked(obj);
1302         if (IS_ERR((void *)addr))
1303                 return addr;
1304
1305         args->addr_ptr = (uint64_t) addr;
1306
1307         return 0;
1308 }
1309
1310 /**
1311  * i915_gem_fault - fault a page into the GTT
1312  * vma: VMA in question
1313  * vmf: fault info
1314  *
1315  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1316  * from userspace.  The fault handler takes care of binding the object to
1317  * the GTT (if needed), allocating and programming a fence register (again,
1318  * only if needed based on whether the old reg is still valid or the object
1319  * is tiled) and inserting a new PTE into the faulting process.
1320  *
1321  * Note that the faulting process may involve evicting existing objects
1322  * from the GTT and/or fence registers to make room.  So performance may
1323  * suffer if the GTT working set is large or there are few fence registers
1324  * left.
1325  */
1326 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327 {
1328         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1329         struct drm_device *dev = obj->base.dev;
1330         drm_i915_private_t *dev_priv = dev->dev_private;
1331         pgoff_t page_offset;
1332         unsigned long pfn;
1333         int ret = 0;
1334         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1335
1336         /* We don't use vmf->pgoff since that has the fake offset */
1337         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1338                 PAGE_SHIFT;
1339
1340         ret = i915_mutex_lock_interruptible(dev);
1341         if (ret)
1342                 goto out;
1343
1344         trace_i915_gem_object_fault(obj, page_offset, true, write);
1345
1346         /* Access to snoopable pages through the GTT is incoherent. */
1347         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1348                 ret = -EINVAL;
1349                 goto unlock;
1350         }
1351
1352         /* Now bind it into the GTT if needed */
1353         ret = i915_gem_object_pin(obj, 0, true, false);
1354         if (ret)
1355                 goto unlock;
1356
1357         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358         if (ret)
1359                 goto unpin;
1360
1361         ret = i915_gem_object_get_fence(obj);
1362         if (ret)
1363                 goto unpin;
1364
1365         obj->fault_mappable = true;
1366
1367         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1368                 page_offset;
1369
1370         /* Finally, remap it using the new GTT offset */
1371         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1372 unpin:
1373         i915_gem_object_unpin(obj);
1374 unlock:
1375         mutex_unlock(&dev->struct_mutex);
1376 out:
1377         switch (ret) {
1378         case -EIO:
1379                 /* If this -EIO is due to a gpu hang, give the reset code a
1380                  * chance to clean up the mess. Otherwise return the proper
1381                  * SIGBUS. */
1382                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1383                         return VM_FAULT_SIGBUS;
1384         case -EAGAIN:
1385                 /* Give the error handler a chance to run and move the
1386                  * objects off the GPU active list. Next time we service the
1387                  * fault, we should be able to transition the page into the
1388                  * GTT without touching the GPU (and so avoid further
1389                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390                  * with coherency, just lost writes.
1391                  */
1392                 set_need_resched();
1393         case 0:
1394         case -ERESTARTSYS:
1395         case -EINTR:
1396         case -EBUSY:
1397                 /*
1398                  * EBUSY is ok: this just means that another thread
1399                  * already did the job.
1400                  */
1401                 return VM_FAULT_NOPAGE;
1402         case -ENOMEM:
1403                 return VM_FAULT_OOM;
1404         case -ENOSPC:
1405                 return VM_FAULT_SIGBUS;
1406         default:
1407                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1408                 return VM_FAULT_SIGBUS;
1409         }
1410 }
1411
1412 /**
1413  * i915_gem_release_mmap - remove physical page mappings
1414  * @obj: obj in question
1415  *
1416  * Preserve the reservation of the mmapping with the DRM core code, but
1417  * relinquish ownership of the pages back to the system.
1418  *
1419  * It is vital that we remove the page mapping if we have mapped a tiled
1420  * object through the GTT and then lose the fence register due to
1421  * resource pressure. Similarly if the object has been moved out of the
1422  * aperture, than pages mapped into userspace must be revoked. Removing the
1423  * mapping will then trigger a page fault on the next user access, allowing
1424  * fixup by i915_gem_fault().
1425  */
1426 void
1427 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1428 {
1429         if (!obj->fault_mappable)
1430                 return;
1431
1432         if (obj->base.dev->dev_mapping)
1433                 unmap_mapping_range(obj->base.dev->dev_mapping,
1434                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435                                     obj->base.size, 1);
1436
1437         obj->fault_mappable = false;
1438 }
1439
1440 uint32_t
1441 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1442 {
1443         uint32_t gtt_size;
1444
1445         if (INTEL_INFO(dev)->gen >= 4 ||
1446             tiling_mode == I915_TILING_NONE)
1447                 return size;
1448
1449         /* Previous chips need a power-of-two fence region when tiling */
1450         if (INTEL_INFO(dev)->gen == 3)
1451                 gtt_size = 1024*1024;
1452         else
1453                 gtt_size = 512*1024;
1454
1455         while (gtt_size < size)
1456                 gtt_size <<= 1;
1457
1458         return gtt_size;
1459 }
1460
1461 /**
1462  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463  * @obj: object to check
1464  *
1465  * Return the required GTT alignment for an object, taking into account
1466  * potential fence register mapping.
1467  */
1468 uint32_t
1469 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1470                            int tiling_mode, bool fenced)
1471 {
1472         /*
1473          * Minimum alignment is 4k (GTT page size), but might be greater
1474          * if a fence register is needed for the object.
1475          */
1476         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1477             tiling_mode == I915_TILING_NONE)
1478                 return 4096;
1479
1480         /*
1481          * Previous chips need to be aligned to the size of the smallest
1482          * fence register that can contain the object.
1483          */
1484         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1488 {
1489         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1490         int ret;
1491
1492         if (obj->base.map_list.map)
1493                 return 0;
1494
1495         dev_priv->mm.shrinker_no_lock_stealing = true;
1496
1497         ret = drm_gem_create_mmap_offset(&obj->base);
1498         if (ret != -ENOSPC)
1499                 goto out;
1500
1501         /* Badly fragmented mmap space? The only way we can recover
1502          * space is by destroying unwanted objects. We can't randomly release
1503          * mmap_offsets as userspace expects them to be persistent for the
1504          * lifetime of the objects. The closest we can is to release the
1505          * offsets on purgeable objects by truncating it and marking it purged,
1506          * which prevents userspace from ever using that object again.
1507          */
1508         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1509         ret = drm_gem_create_mmap_offset(&obj->base);
1510         if (ret != -ENOSPC)
1511                 goto out;
1512
1513         i915_gem_shrink_all(dev_priv);
1514         ret = drm_gem_create_mmap_offset(&obj->base);
1515 out:
1516         dev_priv->mm.shrinker_no_lock_stealing = false;
1517
1518         return ret;
1519 }
1520
1521 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523         if (!obj->base.map_list.map)
1524                 return;
1525
1526         drm_gem_free_mmap_offset(&obj->base);
1527 }
1528
1529 int
1530 i915_gem_mmap_gtt(struct drm_file *file,
1531                   struct drm_device *dev,
1532                   uint32_t handle,
1533                   uint64_t *offset)
1534 {
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         struct drm_i915_gem_object *obj;
1537         int ret;
1538
1539         ret = i915_mutex_lock_interruptible(dev);
1540         if (ret)
1541                 return ret;
1542
1543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1544         if (&obj->base == NULL) {
1545                 ret = -ENOENT;
1546                 goto unlock;
1547         }
1548
1549         if (obj->base.size > dev_priv->gtt.mappable_end) {
1550                 ret = -E2BIG;
1551                 goto out;
1552         }
1553
1554         if (obj->madv != I915_MADV_WILLNEED) {
1555                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1556                 ret = -EINVAL;
1557                 goto out;
1558         }
1559
1560         ret = i915_gem_object_create_mmap_offset(obj);
1561         if (ret)
1562                 goto out;
1563
1564         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1565
1566 out:
1567         drm_gem_object_unreference(&obj->base);
1568 unlock:
1569         mutex_unlock(&dev->struct_mutex);
1570         return ret;
1571 }
1572
1573 /**
1574  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575  * @dev: DRM device
1576  * @data: GTT mapping ioctl data
1577  * @file: GEM object info
1578  *
1579  * Simply returns the fake offset to userspace so it can mmap it.
1580  * The mmap call will end up in drm_gem_mmap(), which will set things
1581  * up so we can get faults in the handler above.
1582  *
1583  * The fault handler will take care of binding the object into the GTT
1584  * (since it may have been evicted to make room for something), allocating
1585  * a fence register, and mapping the appropriate aperture address into
1586  * userspace.
1587  */
1588 int
1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590                         struct drm_file *file)
1591 {
1592         struct drm_i915_gem_mmap_gtt *args = data;
1593
1594         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1600 {
1601         struct inode *inode;
1602
1603         i915_gem_object_free_mmap_offset(obj);
1604
1605         if (obj->base.filp == NULL)
1606                 return;
1607
1608         /* Our goal here is to return as much of the memory as
1609          * is possible back to the system as we are called from OOM.
1610          * To do this we must instruct the shmfs to drop all of its
1611          * backing pages, *now*.
1612          */
1613         inode = file_inode(obj->base.filp);
1614         shmem_truncate_range(inode, 0, (loff_t)-1);
1615
1616         obj->madv = __I915_MADV_PURGED;
1617 }
1618
1619 static inline int
1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621 {
1622         return obj->madv == I915_MADV_DONTNEED;
1623 }
1624
1625 static void
1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1627 {
1628         int page_count = obj->base.size / PAGE_SIZE;
1629         struct scatterlist *sg;
1630         int ret, i;
1631
1632         BUG_ON(obj->madv == __I915_MADV_PURGED);
1633
1634         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635         if (ret) {
1636                 /* In the event of a disaster, abandon all caches and
1637                  * hope for the best.
1638                  */
1639                 WARN_ON(ret != -EIO);
1640                 i915_gem_clflush_object(obj);
1641                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642         }
1643
1644         if (i915_gem_object_needs_bit17_swizzle(obj))
1645                 i915_gem_object_save_bit_17_swizzle(obj);
1646
1647         if (obj->madv == I915_MADV_DONTNEED)
1648                 obj->dirty = 0;
1649
1650         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1651                 struct page *page = sg_page(sg);
1652
1653                 if (obj->dirty)
1654                         set_page_dirty(page);
1655
1656                 if (obj->madv == I915_MADV_WILLNEED)
1657                         mark_page_accessed(page);
1658
1659                 page_cache_release(page);
1660         }
1661         obj->dirty = 0;
1662
1663         sg_free_table(obj->pages);
1664         kfree(obj->pages);
1665 }
1666
1667 int
1668 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669 {
1670         const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
1672         if (obj->pages == NULL)
1673                 return 0;
1674
1675         BUG_ON(obj->gtt_space);
1676
1677         if (obj->pages_pin_count)
1678                 return -EBUSY;
1679
1680         /* ->put_pages might need to allocate memory for the bit17 swizzle
1681          * array, hence protect them from being reaped by removing them from gtt
1682          * lists early. */
1683         list_del(&obj->gtt_list);
1684
1685         ops->put_pages(obj);
1686         obj->pages = NULL;
1687
1688         if (i915_gem_object_is_purgeable(obj))
1689                 i915_gem_object_truncate(obj);
1690
1691         return 0;
1692 }
1693
1694 static long
1695 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696                   bool purgeable_only)
1697 {
1698         struct drm_i915_gem_object *obj, *next;
1699         long count = 0;
1700
1701         list_for_each_entry_safe(obj, next,
1702                                  &dev_priv->mm.unbound_list,
1703                                  gtt_list) {
1704                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1705                     i915_gem_object_put_pages(obj) == 0) {
1706                         count += obj->base.size >> PAGE_SHIFT;
1707                         if (count >= target)
1708                                 return count;
1709                 }
1710         }
1711
1712         list_for_each_entry_safe(obj, next,
1713                                  &dev_priv->mm.inactive_list,
1714                                  mm_list) {
1715                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1716                     i915_gem_object_unbind(obj) == 0 &&
1717                     i915_gem_object_put_pages(obj) == 0) {
1718                         count += obj->base.size >> PAGE_SHIFT;
1719                         if (count >= target)
1720                                 return count;
1721                 }
1722         }
1723
1724         return count;
1725 }
1726
1727 static long
1728 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1729 {
1730         return __i915_gem_shrink(dev_priv, target, true);
1731 }
1732
1733 static void
1734 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1735 {
1736         struct drm_i915_gem_object *obj, *next;
1737
1738         i915_gem_evict_everything(dev_priv->dev);
1739
1740         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1741                 i915_gem_object_put_pages(obj);
1742 }
1743
1744 static int
1745 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1746 {
1747         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1748         int page_count, i;
1749         struct address_space *mapping;
1750         struct sg_table *st;
1751         struct scatterlist *sg;
1752         struct page *page;
1753         gfp_t gfp;
1754
1755         /* Assert that the object is not currently in any GPU domain. As it
1756          * wasn't in the GTT, there shouldn't be any way it could have been in
1757          * a GPU cache
1758          */
1759         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1760         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1761
1762         st = kmalloc(sizeof(*st), GFP_KERNEL);
1763         if (st == NULL)
1764                 return -ENOMEM;
1765
1766         page_count = obj->base.size / PAGE_SIZE;
1767         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1768                 sg_free_table(st);
1769                 kfree(st);
1770                 return -ENOMEM;
1771         }
1772
1773         /* Get the list of pages out of our struct file.  They'll be pinned
1774          * at this point until we release them.
1775          *
1776          * Fail silently without starting the shrinker
1777          */
1778         mapping = file_inode(obj->base.filp)->i_mapping;
1779         gfp = mapping_gfp_mask(mapping);
1780         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1781         gfp &= ~(__GFP_IO | __GFP_WAIT);
1782         for_each_sg(st->sgl, sg, page_count, i) {
1783                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784                 if (IS_ERR(page)) {
1785                         i915_gem_purge(dev_priv, page_count);
1786                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787                 }
1788                 if (IS_ERR(page)) {
1789                         /* We've tried hard to allocate the memory by reaping
1790                          * our own buffer, now let the real VM do its job and
1791                          * go down in flames if truly OOM.
1792                          */
1793                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794                         gfp |= __GFP_IO | __GFP_WAIT;
1795
1796                         i915_gem_shrink_all(dev_priv);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                         if (IS_ERR(page))
1799                                 goto err_pages;
1800
1801                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1803                 }
1804
1805                 sg_set_page(sg, page, PAGE_SIZE, 0);
1806         }
1807
1808         obj->pages = st;
1809
1810         if (i915_gem_object_needs_bit17_swizzle(obj))
1811                 i915_gem_object_do_bit_17_swizzle(obj);
1812
1813         return 0;
1814
1815 err_pages:
1816         for_each_sg(st->sgl, sg, i, page_count)
1817                 page_cache_release(sg_page(sg));
1818         sg_free_table(st);
1819         kfree(st);
1820         return PTR_ERR(page);
1821 }
1822
1823 /* Ensure that the associated pages are gathered from the backing storage
1824  * and pinned into our object. i915_gem_object_get_pages() may be called
1825  * multiple times before they are released by a single call to
1826  * i915_gem_object_put_pages() - once the pages are no longer referenced
1827  * either as a result of memory pressure (reaping pages under the shrinker)
1828  * or as the object is itself released.
1829  */
1830 int
1831 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1832 {
1833         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1834         const struct drm_i915_gem_object_ops *ops = obj->ops;
1835         int ret;
1836
1837         if (obj->pages)
1838                 return 0;
1839
1840         if (obj->madv != I915_MADV_WILLNEED) {
1841                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1842                 return -EINVAL;
1843         }
1844
1845         BUG_ON(obj->pages_pin_count);
1846
1847         ret = ops->get_pages(obj);
1848         if (ret)
1849                 return ret;
1850
1851         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1852         return 0;
1853 }
1854
1855 void
1856 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1857                                struct intel_ring_buffer *ring)
1858 {
1859         struct drm_device *dev = obj->base.dev;
1860         struct drm_i915_private *dev_priv = dev->dev_private;
1861         u32 seqno = intel_ring_get_seqno(ring);
1862
1863         BUG_ON(ring == NULL);
1864         obj->ring = ring;
1865
1866         /* Add a reference if we're newly entering the active list. */
1867         if (!obj->active) {
1868                 drm_gem_object_reference(&obj->base);
1869                 obj->active = 1;
1870         }
1871
1872         /* Move from whatever list we were on to the tail of execution. */
1873         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1874         list_move_tail(&obj->ring_list, &ring->active_list);
1875
1876         obj->last_read_seqno = seqno;
1877
1878         if (obj->fenced_gpu_access) {
1879                 obj->last_fenced_seqno = seqno;
1880
1881                 /* Bump MRU to take account of the delayed flush */
1882                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1883                         struct drm_i915_fence_reg *reg;
1884
1885                         reg = &dev_priv->fence_regs[obj->fence_reg];
1886                         list_move_tail(&reg->lru_list,
1887                                        &dev_priv->mm.fence_list);
1888                 }
1889         }
1890 }
1891
1892 static void
1893 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1894 {
1895         struct drm_device *dev = obj->base.dev;
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897
1898         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1899         BUG_ON(!obj->active);
1900
1901         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1902
1903         list_del_init(&obj->ring_list);
1904         obj->ring = NULL;
1905
1906         obj->last_read_seqno = 0;
1907         obj->last_write_seqno = 0;
1908         obj->base.write_domain = 0;
1909
1910         obj->last_fenced_seqno = 0;
1911         obj->fenced_gpu_access = false;
1912
1913         obj->active = 0;
1914         drm_gem_object_unreference(&obj->base);
1915
1916         WARN_ON(i915_verify_lists(dev));
1917 }
1918
1919 static int
1920 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1921 {
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_ring_buffer *ring;
1924         int ret, i, j;
1925
1926         /* Carefully retire all requests without writing to the rings */
1927         for_each_ring(ring, dev_priv, i) {
1928                 ret = intel_ring_idle(ring);
1929                 if (ret)
1930                         return ret;
1931         }
1932         i915_gem_retire_requests(dev);
1933
1934         /* Finally reset hw state */
1935         for_each_ring(ring, dev_priv, i) {
1936                 intel_ring_init_seqno(ring, seqno);
1937
1938                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1939                         ring->sync_seqno[j] = 0;
1940         }
1941
1942         return 0;
1943 }
1944
1945 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1946 {
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         int ret;
1949
1950         if (seqno == 0)
1951                 return -EINVAL;
1952
1953         /* HWS page needs to be set less than what we
1954          * will inject to ring
1955          */
1956         ret = i915_gem_init_seqno(dev, seqno - 1);
1957         if (ret)
1958                 return ret;
1959
1960         /* Carefully set the last_seqno value so that wrap
1961          * detection still works
1962          */
1963         dev_priv->next_seqno = seqno;
1964         dev_priv->last_seqno = seqno - 1;
1965         if (dev_priv->last_seqno == 0)
1966                 dev_priv->last_seqno--;
1967
1968         return 0;
1969 }
1970
1971 int
1972 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975
1976         /* reserve 0 for non-seqno */
1977         if (dev_priv->next_seqno == 0) {
1978                 int ret = i915_gem_init_seqno(dev, 0);
1979                 if (ret)
1980                         return ret;
1981
1982                 dev_priv->next_seqno = 1;
1983         }
1984
1985         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1986         return 0;
1987 }
1988
1989 int
1990 i915_add_request(struct intel_ring_buffer *ring,
1991                  struct drm_file *file,
1992                  u32 *out_seqno)
1993 {
1994         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1995         struct drm_i915_gem_request *request;
1996         u32 request_ring_position;
1997         int was_empty;
1998         int ret;
1999
2000         /*
2001          * Emit any outstanding flushes - execbuf can fail to emit the flush
2002          * after having emitted the batchbuffer command. Hence we need to fix
2003          * things up similar to emitting the lazy request. The difference here
2004          * is that the flush _must_ happen before the next request, no matter
2005          * what.
2006          */
2007         ret = intel_ring_flush_all_caches(ring);
2008         if (ret)
2009                 return ret;
2010
2011         request = kmalloc(sizeof(*request), GFP_KERNEL);
2012         if (request == NULL)
2013                 return -ENOMEM;
2014
2015
2016         /* Record the position of the start of the request so that
2017          * should we detect the updated seqno part-way through the
2018          * GPU processing the request, we never over-estimate the
2019          * position of the head.
2020          */
2021         request_ring_position = intel_ring_get_tail(ring);
2022
2023         ret = ring->add_request(ring);
2024         if (ret) {
2025                 kfree(request);
2026                 return ret;
2027         }
2028
2029         request->seqno = intel_ring_get_seqno(ring);
2030         request->ring = ring;
2031         request->tail = request_ring_position;
2032         request->emitted_jiffies = jiffies;
2033         was_empty = list_empty(&ring->request_list);
2034         list_add_tail(&request->list, &ring->request_list);
2035         request->file_priv = NULL;
2036
2037         if (file) {
2038                 struct drm_i915_file_private *file_priv = file->driver_priv;
2039
2040                 spin_lock(&file_priv->mm.lock);
2041                 request->file_priv = file_priv;
2042                 list_add_tail(&request->client_list,
2043                               &file_priv->mm.request_list);
2044                 spin_unlock(&file_priv->mm.lock);
2045         }
2046
2047         trace_i915_gem_request_add(ring, request->seqno);
2048         ring->outstanding_lazy_request = 0;
2049
2050         if (!dev_priv->mm.suspended) {
2051                 if (i915_enable_hangcheck) {
2052                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2053                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2054                 }
2055                 if (was_empty) {
2056                         queue_delayed_work(dev_priv->wq,
2057                                            &dev_priv->mm.retire_work,
2058                                            round_jiffies_up_relative(HZ));
2059                         intel_mark_busy(dev_priv->dev);
2060                 }
2061         }
2062
2063         if (out_seqno)
2064                 *out_seqno = request->seqno;
2065         return 0;
2066 }
2067
2068 static inline void
2069 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2070 {
2071         struct drm_i915_file_private *file_priv = request->file_priv;
2072
2073         if (!file_priv)
2074                 return;
2075
2076         spin_lock(&file_priv->mm.lock);
2077         if (request->file_priv) {
2078                 list_del(&request->client_list);
2079                 request->file_priv = NULL;
2080         }
2081         spin_unlock(&file_priv->mm.lock);
2082 }
2083
2084 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2085                                       struct intel_ring_buffer *ring)
2086 {
2087         while (!list_empty(&ring->request_list)) {
2088                 struct drm_i915_gem_request *request;
2089
2090                 request = list_first_entry(&ring->request_list,
2091                                            struct drm_i915_gem_request,
2092                                            list);
2093
2094                 list_del(&request->list);
2095                 i915_gem_request_remove_from_client(request);
2096                 kfree(request);
2097         }
2098
2099         while (!list_empty(&ring->active_list)) {
2100                 struct drm_i915_gem_object *obj;
2101
2102                 obj = list_first_entry(&ring->active_list,
2103                                        struct drm_i915_gem_object,
2104                                        ring_list);
2105
2106                 i915_gem_object_move_to_inactive(obj);
2107         }
2108 }
2109
2110 static void i915_gem_reset_fences(struct drm_device *dev)
2111 {
2112         struct drm_i915_private *dev_priv = dev->dev_private;
2113         int i;
2114
2115         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2116                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2117
2118                 i915_gem_write_fence(dev, i, NULL);
2119
2120                 if (reg->obj)
2121                         i915_gem_object_fence_lost(reg->obj);
2122
2123                 reg->pin_count = 0;
2124                 reg->obj = NULL;
2125                 INIT_LIST_HEAD(&reg->lru_list);
2126         }
2127
2128         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2129 }
2130
2131 void i915_gem_reset(struct drm_device *dev)
2132 {
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         struct drm_i915_gem_object *obj;
2135         struct intel_ring_buffer *ring;
2136         int i;
2137
2138         for_each_ring(ring, dev_priv, i)
2139                 i915_gem_reset_ring_lists(dev_priv, ring);
2140
2141         /* Move everything out of the GPU domains to ensure we do any
2142          * necessary invalidation upon reuse.
2143          */
2144         list_for_each_entry(obj,
2145                             &dev_priv->mm.inactive_list,
2146                             mm_list)
2147         {
2148                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2149         }
2150
2151         /* The fence registers are invalidated so clear them out */
2152         i915_gem_reset_fences(dev);
2153 }
2154
2155 /**
2156  * This function clears the request list as sequence numbers are passed.
2157  */
2158 void
2159 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2160 {
2161         uint32_t seqno;
2162
2163         if (list_empty(&ring->request_list))
2164                 return;
2165
2166         WARN_ON(i915_verify_lists(ring->dev));
2167
2168         seqno = ring->get_seqno(ring, true);
2169
2170         while (!list_empty(&ring->request_list)) {
2171                 struct drm_i915_gem_request *request;
2172
2173                 request = list_first_entry(&ring->request_list,
2174                                            struct drm_i915_gem_request,
2175                                            list);
2176
2177                 if (!i915_seqno_passed(seqno, request->seqno))
2178                         break;
2179
2180                 trace_i915_gem_request_retire(ring, request->seqno);
2181                 /* We know the GPU must have read the request to have
2182                  * sent us the seqno + interrupt, so use the position
2183                  * of tail of the request to update the last known position
2184                  * of the GPU head.
2185                  */
2186                 ring->last_retired_head = request->tail;
2187
2188                 list_del(&request->list);
2189                 i915_gem_request_remove_from_client(request);
2190                 kfree(request);
2191         }
2192
2193         /* Move any buffers on the active list that are no longer referenced
2194          * by the ringbuffer to the flushing/inactive lists as appropriate.
2195          */
2196         while (!list_empty(&ring->active_list)) {
2197                 struct drm_i915_gem_object *obj;
2198
2199                 obj = list_first_entry(&ring->active_list,
2200                                       struct drm_i915_gem_object,
2201                                       ring_list);
2202
2203                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2204                         break;
2205
2206                 i915_gem_object_move_to_inactive(obj);
2207         }
2208
2209         if (unlikely(ring->trace_irq_seqno &&
2210                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2211                 ring->irq_put(ring);
2212                 ring->trace_irq_seqno = 0;
2213         }
2214
2215         WARN_ON(i915_verify_lists(ring->dev));
2216 }
2217
2218 void
2219 i915_gem_retire_requests(struct drm_device *dev)
2220 {
2221         drm_i915_private_t *dev_priv = dev->dev_private;
2222         struct intel_ring_buffer *ring;
2223         int i;
2224
2225         for_each_ring(ring, dev_priv, i)
2226                 i915_gem_retire_requests_ring(ring);
2227 }
2228
2229 static void
2230 i915_gem_retire_work_handler(struct work_struct *work)
2231 {
2232         drm_i915_private_t *dev_priv;
2233         struct drm_device *dev;
2234         struct intel_ring_buffer *ring;
2235         bool idle;
2236         int i;
2237
2238         dev_priv = container_of(work, drm_i915_private_t,
2239                                 mm.retire_work.work);
2240         dev = dev_priv->dev;
2241
2242         /* Come back later if the device is busy... */
2243         if (!mutex_trylock(&dev->struct_mutex)) {
2244                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2245                                    round_jiffies_up_relative(HZ));
2246                 return;
2247         }
2248
2249         i915_gem_retire_requests(dev);
2250
2251         /* Send a periodic flush down the ring so we don't hold onto GEM
2252          * objects indefinitely.
2253          */
2254         idle = true;
2255         for_each_ring(ring, dev_priv, i) {
2256                 if (ring->gpu_caches_dirty)
2257                         i915_add_request(ring, NULL, NULL);
2258
2259                 idle &= list_empty(&ring->request_list);
2260         }
2261
2262         if (!dev_priv->mm.suspended && !idle)
2263                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2264                                    round_jiffies_up_relative(HZ));
2265         if (idle)
2266                 intel_mark_idle(dev);
2267
2268         mutex_unlock(&dev->struct_mutex);
2269 }
2270
2271 /**
2272  * Ensures that an object will eventually get non-busy by flushing any required
2273  * write domains, emitting any outstanding lazy request and retiring and
2274  * completed requests.
2275  */
2276 static int
2277 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2278 {
2279         int ret;
2280
2281         if (obj->active) {
2282                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2283                 if (ret)
2284                         return ret;
2285
2286                 i915_gem_retire_requests_ring(obj->ring);
2287         }
2288
2289         return 0;
2290 }
2291
2292 /**
2293  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2294  * @DRM_IOCTL_ARGS: standard ioctl arguments
2295  *
2296  * Returns 0 if successful, else an error is returned with the remaining time in
2297  * the timeout parameter.
2298  *  -ETIME: object is still busy after timeout
2299  *  -ERESTARTSYS: signal interrupted the wait
2300  *  -ENONENT: object doesn't exist
2301  * Also possible, but rare:
2302  *  -EAGAIN: GPU wedged
2303  *  -ENOMEM: damn
2304  *  -ENODEV: Internal IRQ fail
2305  *  -E?: The add request failed
2306  *
2307  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2308  * non-zero timeout parameter the wait ioctl will wait for the given number of
2309  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2310  * without holding struct_mutex the object may become re-busied before this
2311  * function completes. A similar but shorter * race condition exists in the busy
2312  * ioctl
2313  */
2314 int
2315 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2316 {
2317         drm_i915_private_t *dev_priv = dev->dev_private;
2318         struct drm_i915_gem_wait *args = data;
2319         struct drm_i915_gem_object *obj;
2320         struct intel_ring_buffer *ring = NULL;
2321         struct timespec timeout_stack, *timeout = NULL;
2322         unsigned reset_counter;
2323         u32 seqno = 0;
2324         int ret = 0;
2325
2326         if (args->timeout_ns >= 0) {
2327                 timeout_stack = ns_to_timespec(args->timeout_ns);
2328                 timeout = &timeout_stack;
2329         }
2330
2331         ret = i915_mutex_lock_interruptible(dev);
2332         if (ret)
2333                 return ret;
2334
2335         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2336         if (&obj->base == NULL) {
2337                 mutex_unlock(&dev->struct_mutex);
2338                 return -ENOENT;
2339         }
2340
2341         /* Need to make sure the object gets inactive eventually. */
2342         ret = i915_gem_object_flush_active(obj);
2343         if (ret)
2344                 goto out;
2345
2346         if (obj->active) {
2347                 seqno = obj->last_read_seqno;
2348                 ring = obj->ring;
2349         }
2350
2351         if (seqno == 0)
2352                  goto out;
2353
2354         /* Do this after OLR check to make sure we make forward progress polling
2355          * on this IOCTL with a 0 timeout (like busy ioctl)
2356          */
2357         if (!args->timeout_ns) {
2358                 ret = -ETIME;
2359                 goto out;
2360         }
2361
2362         drm_gem_object_unreference(&obj->base);
2363         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2364         mutex_unlock(&dev->struct_mutex);
2365
2366         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2367         if (timeout) {
2368                 WARN_ON(!timespec_valid(timeout));
2369                 args->timeout_ns = timespec_to_ns(timeout);
2370         }
2371         return ret;
2372
2373 out:
2374         drm_gem_object_unreference(&obj->base);
2375         mutex_unlock(&dev->struct_mutex);
2376         return ret;
2377 }
2378
2379 /**
2380  * i915_gem_object_sync - sync an object to a ring.
2381  *
2382  * @obj: object which may be in use on another ring.
2383  * @to: ring we wish to use the object on. May be NULL.
2384  *
2385  * This code is meant to abstract object synchronization with the GPU.
2386  * Calling with NULL implies synchronizing the object with the CPU
2387  * rather than a particular GPU ring.
2388  *
2389  * Returns 0 if successful, else propagates up the lower layer error.
2390  */
2391 int
2392 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2393                      struct intel_ring_buffer *to)
2394 {
2395         struct intel_ring_buffer *from = obj->ring;
2396         u32 seqno;
2397         int ret, idx;
2398
2399         if (from == NULL || to == from)
2400                 return 0;
2401
2402         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2403                 return i915_gem_object_wait_rendering(obj, false);
2404
2405         idx = intel_ring_sync_index(from, to);
2406
2407         seqno = obj->last_read_seqno;
2408         if (seqno <= from->sync_seqno[idx])
2409                 return 0;
2410
2411         ret = i915_gem_check_olr(obj->ring, seqno);
2412         if (ret)
2413                 return ret;
2414
2415         ret = to->sync_to(to, from, seqno);
2416         if (!ret)
2417                 /* We use last_read_seqno because sync_to()
2418                  * might have just caused seqno wrap under
2419                  * the radar.
2420                  */
2421                 from->sync_seqno[idx] = obj->last_read_seqno;
2422
2423         return ret;
2424 }
2425
2426 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2427 {
2428         u32 old_write_domain, old_read_domains;
2429
2430         /* Force a pagefault for domain tracking on next user access */
2431         i915_gem_release_mmap(obj);
2432
2433         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2434                 return;
2435
2436         /* Wait for any direct GTT access to complete */
2437         mb();
2438
2439         old_read_domains = obj->base.read_domains;
2440         old_write_domain = obj->base.write_domain;
2441
2442         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2443         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2444
2445         trace_i915_gem_object_change_domain(obj,
2446                                             old_read_domains,
2447                                             old_write_domain);
2448 }
2449
2450 /**
2451  * Unbinds an object from the GTT aperture.
2452  */
2453 int
2454 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2455 {
2456         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2457         int ret;
2458
2459         if (obj->gtt_space == NULL)
2460                 return 0;
2461
2462         if (obj->pin_count)
2463                 return -EBUSY;
2464
2465         BUG_ON(obj->pages == NULL);
2466
2467         ret = i915_gem_object_finish_gpu(obj);
2468         if (ret)
2469                 return ret;
2470         /* Continue on if we fail due to EIO, the GPU is hung so we
2471          * should be safe and we need to cleanup or else we might
2472          * cause memory corruption through use-after-free.
2473          */
2474
2475         i915_gem_object_finish_gtt(obj);
2476
2477         /* release the fence reg _after_ flushing */
2478         ret = i915_gem_object_put_fence(obj);
2479         if (ret)
2480                 return ret;
2481
2482         trace_i915_gem_object_unbind(obj);
2483
2484         if (obj->has_global_gtt_mapping)
2485                 i915_gem_gtt_unbind_object(obj);
2486         if (obj->has_aliasing_ppgtt_mapping) {
2487                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2488                 obj->has_aliasing_ppgtt_mapping = 0;
2489         }
2490         i915_gem_gtt_finish_object(obj);
2491
2492         list_del(&obj->mm_list);
2493         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2494         /* Avoid an unnecessary call to unbind on rebind. */
2495         obj->map_and_fenceable = true;
2496
2497         drm_mm_put_block(obj->gtt_space);
2498         obj->gtt_space = NULL;
2499         obj->gtt_offset = 0;
2500
2501         return 0;
2502 }
2503
2504 int i915_gpu_idle(struct drm_device *dev)
2505 {
2506         drm_i915_private_t *dev_priv = dev->dev_private;
2507         struct intel_ring_buffer *ring;
2508         int ret, i;
2509
2510         /* Flush everything onto the inactive list. */
2511         for_each_ring(ring, dev_priv, i) {
2512                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2513                 if (ret)
2514                         return ret;
2515
2516                 ret = intel_ring_idle(ring);
2517                 if (ret)
2518                         return ret;
2519         }
2520
2521         return 0;
2522 }
2523
2524 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2525                                  struct drm_i915_gem_object *obj)
2526 {
2527         drm_i915_private_t *dev_priv = dev->dev_private;
2528         int fence_reg;
2529         int fence_pitch_shift;
2530         uint64_t val;
2531
2532         if (INTEL_INFO(dev)->gen >= 6) {
2533                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2534                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2535         } else {
2536                 fence_reg = FENCE_REG_965_0;
2537                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2538         }
2539
2540         if (obj) {
2541                 u32 size = obj->gtt_space->size;
2542
2543                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2544                                  0xfffff000) << 32;
2545                 val |= obj->gtt_offset & 0xfffff000;
2546                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2547                 if (obj->tiling_mode == I915_TILING_Y)
2548                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2549                 val |= I965_FENCE_REG_VALID;
2550         } else
2551                 val = 0;
2552
2553         fence_reg += reg * 8;
2554         I915_WRITE64(fence_reg, val);
2555         POSTING_READ(fence_reg);
2556 }
2557
2558 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2559                                  struct drm_i915_gem_object *obj)
2560 {
2561         drm_i915_private_t *dev_priv = dev->dev_private;
2562         u32 val;
2563
2564         if (obj) {
2565                 u32 size = obj->gtt_space->size;
2566                 int pitch_val;
2567                 int tile_width;
2568
2569                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2570                      (size & -size) != size ||
2571                      (obj->gtt_offset & (size - 1)),
2572                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2573                      obj->gtt_offset, obj->map_and_fenceable, size);
2574
2575                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2576                         tile_width = 128;
2577                 else
2578                         tile_width = 512;
2579
2580                 /* Note: pitch better be a power of two tile widths */
2581                 pitch_val = obj->stride / tile_width;
2582                 pitch_val = ffs(pitch_val) - 1;
2583
2584                 val = obj->gtt_offset;
2585                 if (obj->tiling_mode == I915_TILING_Y)
2586                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2587                 val |= I915_FENCE_SIZE_BITS(size);
2588                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2589                 val |= I830_FENCE_REG_VALID;
2590         } else
2591                 val = 0;
2592
2593         if (reg < 8)
2594                 reg = FENCE_REG_830_0 + reg * 4;
2595         else
2596                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2597
2598         I915_WRITE(reg, val);
2599         POSTING_READ(reg);
2600 }
2601
2602 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2603                                 struct drm_i915_gem_object *obj)
2604 {
2605         drm_i915_private_t *dev_priv = dev->dev_private;
2606         uint32_t val;
2607
2608         if (obj) {
2609                 u32 size = obj->gtt_space->size;
2610                 uint32_t pitch_val;
2611
2612                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2613                      (size & -size) != size ||
2614                      (obj->gtt_offset & (size - 1)),
2615                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2616                      obj->gtt_offset, size);
2617
2618                 pitch_val = obj->stride / 128;
2619                 pitch_val = ffs(pitch_val) - 1;
2620
2621                 val = obj->gtt_offset;
2622                 if (obj->tiling_mode == I915_TILING_Y)
2623                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2624                 val |= I830_FENCE_SIZE_BITS(size);
2625                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2626                 val |= I830_FENCE_REG_VALID;
2627         } else
2628                 val = 0;
2629
2630         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2631         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2632 }
2633
2634 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2635 {
2636         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2637 }
2638
2639 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2640                                  struct drm_i915_gem_object *obj)
2641 {
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643
2644         /* Ensure that all CPU reads are completed before installing a fence
2645          * and all writes before removing the fence.
2646          */
2647         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2648                 mb();
2649
2650         switch (INTEL_INFO(dev)->gen) {
2651         case 7:
2652         case 6:
2653         case 5:
2654         case 4: i965_write_fence_reg(dev, reg, obj); break;
2655         case 3: i915_write_fence_reg(dev, reg, obj); break;
2656         case 2: i830_write_fence_reg(dev, reg, obj); break;
2657         default: BUG();
2658         }
2659
2660         /* And similarly be paranoid that no direct access to this region
2661          * is reordered to before the fence is installed.
2662          */
2663         if (i915_gem_object_needs_mb(obj))
2664                 mb();
2665 }
2666
2667 static inline int fence_number(struct drm_i915_private *dev_priv,
2668                                struct drm_i915_fence_reg *fence)
2669 {
2670         return fence - dev_priv->fence_regs;
2671 }
2672
2673 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2674                                          struct drm_i915_fence_reg *fence,
2675                                          bool enable)
2676 {
2677         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2678         int reg = fence_number(dev_priv, fence);
2679
2680         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2681
2682         if (enable) {
2683                 obj->fence_reg = reg;
2684                 fence->obj = obj;
2685                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2686         } else {
2687                 obj->fence_reg = I915_FENCE_REG_NONE;
2688                 fence->obj = NULL;
2689                 list_del_init(&fence->lru_list);
2690         }
2691 }
2692
2693 static int
2694 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2695 {
2696         if (obj->last_fenced_seqno) {
2697                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2698                 if (ret)
2699                         return ret;
2700
2701                 obj->last_fenced_seqno = 0;
2702         }
2703
2704         obj->fenced_gpu_access = false;
2705         return 0;
2706 }
2707
2708 int
2709 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2710 {
2711         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2712         int ret;
2713
2714         ret = i915_gem_object_wait_fence(obj);
2715         if (ret)
2716                 return ret;
2717
2718         if (obj->fence_reg == I915_FENCE_REG_NONE)
2719                 return 0;
2720
2721         i915_gem_object_update_fence(obj,
2722                                      &dev_priv->fence_regs[obj->fence_reg],
2723                                      false);
2724         i915_gem_object_fence_lost(obj);
2725
2726         return 0;
2727 }
2728
2729 static struct drm_i915_fence_reg *
2730 i915_find_fence_reg(struct drm_device *dev)
2731 {
2732         struct drm_i915_private *dev_priv = dev->dev_private;
2733         struct drm_i915_fence_reg *reg, *avail;
2734         int i;
2735
2736         /* First try to find a free reg */
2737         avail = NULL;
2738         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2739                 reg = &dev_priv->fence_regs[i];
2740                 if (!reg->obj)
2741                         return reg;
2742
2743                 if (!reg->pin_count)
2744                         avail = reg;
2745         }
2746
2747         if (avail == NULL)
2748                 return NULL;
2749
2750         /* None available, try to steal one or wait for a user to finish */
2751         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2752                 if (reg->pin_count)
2753                         continue;
2754
2755                 return reg;
2756         }
2757
2758         return NULL;
2759 }
2760
2761 /**
2762  * i915_gem_object_get_fence - set up fencing for an object
2763  * @obj: object to map through a fence reg
2764  *
2765  * When mapping objects through the GTT, userspace wants to be able to write
2766  * to them without having to worry about swizzling if the object is tiled.
2767  * This function walks the fence regs looking for a free one for @obj,
2768  * stealing one if it can't find any.
2769  *
2770  * It then sets up the reg based on the object's properties: address, pitch
2771  * and tiling format.
2772  *
2773  * For an untiled surface, this removes any existing fence.
2774  */
2775 int
2776 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2777 {
2778         struct drm_device *dev = obj->base.dev;
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         bool enable = obj->tiling_mode != I915_TILING_NONE;
2781         struct drm_i915_fence_reg *reg;
2782         int ret;
2783
2784         /* Have we updated the tiling parameters upon the object and so
2785          * will need to serialise the write to the associated fence register?
2786          */
2787         if (obj->fence_dirty) {
2788                 ret = i915_gem_object_wait_fence(obj);
2789                 if (ret)
2790                         return ret;
2791         }
2792
2793         /* Just update our place in the LRU if our fence is getting reused. */
2794         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2795                 reg = &dev_priv->fence_regs[obj->fence_reg];
2796                 if (!obj->fence_dirty) {
2797                         list_move_tail(&reg->lru_list,
2798                                        &dev_priv->mm.fence_list);
2799                         return 0;
2800                 }
2801         } else if (enable) {
2802                 reg = i915_find_fence_reg(dev);
2803                 if (reg == NULL)
2804                         return -EDEADLK;
2805
2806                 if (reg->obj) {
2807                         struct drm_i915_gem_object *old = reg->obj;
2808
2809                         ret = i915_gem_object_wait_fence(old);
2810                         if (ret)
2811                                 return ret;
2812
2813                         i915_gem_object_fence_lost(old);
2814                 }
2815         } else
2816                 return 0;
2817
2818         i915_gem_object_update_fence(obj, reg, enable);
2819         obj->fence_dirty = false;
2820
2821         return 0;
2822 }
2823
2824 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2825                                      struct drm_mm_node *gtt_space,
2826                                      unsigned long cache_level)
2827 {
2828         struct drm_mm_node *other;
2829
2830         /* On non-LLC machines we have to be careful when putting differing
2831          * types of snoopable memory together to avoid the prefetcher
2832          * crossing memory domains and dying.
2833          */
2834         if (HAS_LLC(dev))
2835                 return true;
2836
2837         if (gtt_space == NULL)
2838                 return true;
2839
2840         if (list_empty(&gtt_space->node_list))
2841                 return true;
2842
2843         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2844         if (other->allocated && !other->hole_follows && other->color != cache_level)
2845                 return false;
2846
2847         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2848         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2849                 return false;
2850
2851         return true;
2852 }
2853
2854 static void i915_gem_verify_gtt(struct drm_device *dev)
2855 {
2856 #if WATCH_GTT
2857         struct drm_i915_private *dev_priv = dev->dev_private;
2858         struct drm_i915_gem_object *obj;
2859         int err = 0;
2860
2861         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2862                 if (obj->gtt_space == NULL) {
2863                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2864                         err++;
2865                         continue;
2866                 }
2867
2868                 if (obj->cache_level != obj->gtt_space->color) {
2869                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2870                                obj->gtt_space->start,
2871                                obj->gtt_space->start + obj->gtt_space->size,
2872                                obj->cache_level,
2873                                obj->gtt_space->color);
2874                         err++;
2875                         continue;
2876                 }
2877
2878                 if (!i915_gem_valid_gtt_space(dev,
2879                                               obj->gtt_space,
2880                                               obj->cache_level)) {
2881                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2882                                obj->gtt_space->start,
2883                                obj->gtt_space->start + obj->gtt_space->size,
2884                                obj->cache_level);
2885                         err++;
2886                         continue;
2887                 }
2888         }
2889
2890         WARN_ON(err);
2891 #endif
2892 }
2893
2894 /**
2895  * Finds free space in the GTT aperture and binds the object there.
2896  */
2897 static int
2898 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2899                             unsigned alignment,
2900                             bool map_and_fenceable,
2901                             bool nonblocking)
2902 {
2903         struct drm_device *dev = obj->base.dev;
2904         drm_i915_private_t *dev_priv = dev->dev_private;
2905         struct drm_mm_node *node;
2906         u32 size, fence_size, fence_alignment, unfenced_alignment;
2907         bool mappable, fenceable;
2908         int ret;
2909
2910         fence_size = i915_gem_get_gtt_size(dev,
2911                                            obj->base.size,
2912                                            obj->tiling_mode);
2913         fence_alignment = i915_gem_get_gtt_alignment(dev,
2914                                                      obj->base.size,
2915                                                      obj->tiling_mode, true);
2916         unfenced_alignment =
2917                 i915_gem_get_gtt_alignment(dev,
2918                                                     obj->base.size,
2919                                                     obj->tiling_mode, false);
2920
2921         if (alignment == 0)
2922                 alignment = map_and_fenceable ? fence_alignment :
2923                                                 unfenced_alignment;
2924         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2925                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2926                 return -EINVAL;
2927         }
2928
2929         size = map_and_fenceable ? fence_size : obj->base.size;
2930
2931         /* If the object is bigger than the entire aperture, reject it early
2932          * before evicting everything in a vain attempt to find space.
2933          */
2934         if (obj->base.size >
2935             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2936                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2937                 return -E2BIG;
2938         }
2939
2940         ret = i915_gem_object_get_pages(obj);
2941         if (ret)
2942                 return ret;
2943
2944         i915_gem_object_pin_pages(obj);
2945
2946         node = kzalloc(sizeof(*node), GFP_KERNEL);
2947         if (node == NULL) {
2948                 i915_gem_object_unpin_pages(obj);
2949                 return -ENOMEM;
2950         }
2951
2952  search_free:
2953         if (map_and_fenceable)
2954                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2955                                                           size, alignment, obj->cache_level,
2956                                                           0, dev_priv->gtt.mappable_end);
2957         else
2958                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2959                                                  size, alignment, obj->cache_level);
2960         if (ret) {
2961                 ret = i915_gem_evict_something(dev, size, alignment,
2962                                                obj->cache_level,
2963                                                map_and_fenceable,
2964                                                nonblocking);
2965                 if (ret == 0)
2966                         goto search_free;
2967
2968                 i915_gem_object_unpin_pages(obj);
2969                 kfree(node);
2970                 return ret;
2971         }
2972         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2973                 i915_gem_object_unpin_pages(obj);
2974                 drm_mm_put_block(node);
2975                 return -EINVAL;
2976         }
2977
2978         ret = i915_gem_gtt_prepare_object(obj);
2979         if (ret) {
2980                 i915_gem_object_unpin_pages(obj);
2981                 drm_mm_put_block(node);
2982                 return ret;
2983         }
2984
2985         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2986         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2987
2988         obj->gtt_space = node;
2989         obj->gtt_offset = node->start;
2990
2991         fenceable =
2992                 node->size == fence_size &&
2993                 (node->start & (fence_alignment - 1)) == 0;
2994
2995         mappable =
2996                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2997
2998         obj->map_and_fenceable = mappable && fenceable;
2999
3000         i915_gem_object_unpin_pages(obj);
3001         trace_i915_gem_object_bind(obj, map_and_fenceable);
3002         i915_gem_verify_gtt(dev);
3003         return 0;
3004 }
3005
3006 void
3007 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3008 {
3009         /* If we don't have a page list set up, then we're not pinned
3010          * to GPU, and we can ignore the cache flush because it'll happen
3011          * again at bind time.
3012          */
3013         if (obj->pages == NULL)
3014                 return;
3015
3016         /*
3017          * Stolen memory is always coherent with the GPU as it is explicitly
3018          * marked as wc by the system, or the system is cache-coherent.
3019          */
3020         if (obj->stolen)
3021                 return;
3022
3023         /* If the GPU is snooping the contents of the CPU cache,
3024          * we do not need to manually clear the CPU cache lines.  However,
3025          * the caches are only snooped when the render cache is
3026          * flushed/invalidated.  As we always have to emit invalidations
3027          * and flushes when moving into and out of the RENDER domain, correct
3028          * snooping behaviour occurs naturally as the result of our domain
3029          * tracking.
3030          */
3031         if (obj->cache_level != I915_CACHE_NONE)
3032                 return;
3033
3034         trace_i915_gem_object_clflush(obj);
3035
3036         drm_clflush_sg(obj->pages);
3037 }
3038
3039 /** Flushes the GTT write domain for the object if it's dirty. */
3040 static void
3041 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3042 {
3043         uint32_t old_write_domain;
3044
3045         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3046                 return;
3047
3048         /* No actual flushing is required for the GTT write domain.  Writes
3049          * to it immediately go to main memory as far as we know, so there's
3050          * no chipset flush.  It also doesn't land in render cache.
3051          *
3052          * However, we do have to enforce the order so that all writes through
3053          * the GTT land before any writes to the device, such as updates to
3054          * the GATT itself.
3055          */
3056         wmb();
3057
3058         old_write_domain = obj->base.write_domain;
3059         obj->base.write_domain = 0;
3060
3061         trace_i915_gem_object_change_domain(obj,
3062                                             obj->base.read_domains,
3063                                             old_write_domain);
3064 }
3065
3066 /** Flushes the CPU write domain for the object if it's dirty. */
3067 static void
3068 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3069 {
3070         uint32_t old_write_domain;
3071
3072         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3073                 return;
3074
3075         i915_gem_clflush_object(obj);
3076         i915_gem_chipset_flush(obj->base.dev);
3077         old_write_domain = obj->base.write_domain;
3078         obj->base.write_domain = 0;
3079
3080         trace_i915_gem_object_change_domain(obj,
3081                                             obj->base.read_domains,
3082                                             old_write_domain);
3083 }
3084
3085 /**
3086  * Moves a single object to the GTT read, and possibly write domain.
3087  *
3088  * This function returns when the move is complete, including waiting on
3089  * flushes to occur.
3090  */
3091 int
3092 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3093 {
3094         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3095         uint32_t old_write_domain, old_read_domains;
3096         int ret;
3097
3098         /* Not valid to be called on unbound objects. */
3099         if (obj->gtt_space == NULL)
3100                 return -EINVAL;
3101
3102         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3103                 return 0;
3104
3105         ret = i915_gem_object_wait_rendering(obj, !write);
3106         if (ret)
3107                 return ret;
3108
3109         i915_gem_object_flush_cpu_write_domain(obj);
3110
3111         /* Serialise direct access to this object with the barriers for
3112          * coherent writes from the GPU, by effectively invalidating the
3113          * GTT domain upon first access.
3114          */
3115         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3116                 mb();
3117
3118         old_write_domain = obj->base.write_domain;
3119         old_read_domains = obj->base.read_domains;
3120
3121         /* It should now be out of any other write domains, and we can update
3122          * the domain values for our changes.
3123          */
3124         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3125         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3126         if (write) {
3127                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3128                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3129                 obj->dirty = 1;
3130         }
3131
3132         trace_i915_gem_object_change_domain(obj,
3133                                             old_read_domains,
3134                                             old_write_domain);
3135
3136         /* And bump the LRU for this access */
3137         if (i915_gem_object_is_inactive(obj))
3138                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3139
3140         return 0;
3141 }
3142
3143 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3144                                     enum i915_cache_level cache_level)
3145 {
3146         struct drm_device *dev = obj->base.dev;
3147         drm_i915_private_t *dev_priv = dev->dev_private;
3148         int ret;
3149
3150         if (obj->cache_level == cache_level)
3151                 return 0;
3152
3153         if (obj->pin_count) {
3154                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3155                 return -EBUSY;
3156         }
3157
3158         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3159                 ret = i915_gem_object_unbind(obj);
3160                 if (ret)
3161                         return ret;
3162         }
3163
3164         if (obj->gtt_space) {
3165                 ret = i915_gem_object_finish_gpu(obj);
3166                 if (ret)
3167                         return ret;
3168
3169                 i915_gem_object_finish_gtt(obj);
3170
3171                 /* Before SandyBridge, you could not use tiling or fence
3172                  * registers with snooped memory, so relinquish any fences
3173                  * currently pointing to our region in the aperture.
3174                  */
3175                 if (INTEL_INFO(dev)->gen < 6) {
3176                         ret = i915_gem_object_put_fence(obj);
3177                         if (ret)
3178                                 return ret;
3179                 }
3180
3181                 if (obj->has_global_gtt_mapping)
3182                         i915_gem_gtt_bind_object(obj, cache_level);
3183                 if (obj->has_aliasing_ppgtt_mapping)
3184                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3185                                                obj, cache_level);
3186
3187                 obj->gtt_space->color = cache_level;
3188         }
3189
3190         if (cache_level == I915_CACHE_NONE) {
3191                 u32 old_read_domains, old_write_domain;
3192
3193                 /* If we're coming from LLC cached, then we haven't
3194                  * actually been tracking whether the data is in the
3195                  * CPU cache or not, since we only allow one bit set
3196                  * in obj->write_domain and have been skipping the clflushes.
3197                  * Just set it to the CPU cache for now.
3198                  */
3199                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3200                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3201
3202                 old_read_domains = obj->base.read_domains;
3203                 old_write_domain = obj->base.write_domain;
3204
3205                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3206                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3207
3208                 trace_i915_gem_object_change_domain(obj,
3209                                                     old_read_domains,
3210                                                     old_write_domain);
3211         }
3212
3213         obj->cache_level = cache_level;
3214         i915_gem_verify_gtt(dev);
3215         return 0;
3216 }
3217
3218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3219                                struct drm_file *file)
3220 {
3221         struct drm_i915_gem_caching *args = data;
3222         struct drm_i915_gem_object *obj;
3223         int ret;
3224
3225         ret = i915_mutex_lock_interruptible(dev);
3226         if (ret)
3227                 return ret;
3228
3229         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3230         if (&obj->base == NULL) {
3231                 ret = -ENOENT;
3232                 goto unlock;
3233         }
3234
3235         args->caching = obj->cache_level != I915_CACHE_NONE;
3236
3237         drm_gem_object_unreference(&obj->base);
3238 unlock:
3239         mutex_unlock(&dev->struct_mutex);
3240         return ret;
3241 }
3242
3243 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3244                                struct drm_file *file)
3245 {
3246         struct drm_i915_gem_caching *args = data;
3247         struct drm_i915_gem_object *obj;
3248         enum i915_cache_level level;
3249         int ret;
3250
3251         switch (args->caching) {
3252         case I915_CACHING_NONE:
3253                 level = I915_CACHE_NONE;
3254                 break;
3255         case I915_CACHING_CACHED:
3256                 level = I915_CACHE_LLC;
3257                 break;
3258         default:
3259                 return -EINVAL;
3260         }
3261
3262         ret = i915_mutex_lock_interruptible(dev);
3263         if (ret)
3264                 return ret;
3265
3266         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3267         if (&obj->base == NULL) {
3268                 ret = -ENOENT;
3269                 goto unlock;
3270         }
3271
3272         ret = i915_gem_object_set_cache_level(obj, level);
3273
3274         drm_gem_object_unreference(&obj->base);
3275 unlock:
3276         mutex_unlock(&dev->struct_mutex);
3277         return ret;
3278 }
3279
3280 /*
3281  * Prepare buffer for display plane (scanout, cursors, etc).
3282  * Can be called from an uninterruptible phase (modesetting) and allows
3283  * any flushes to be pipelined (for pageflips).
3284  */
3285 int
3286 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3287                                      u32 alignment,
3288                                      struct intel_ring_buffer *pipelined)
3289 {
3290         u32 old_read_domains, old_write_domain;
3291         int ret;
3292
3293         if (pipelined != obj->ring) {
3294                 ret = i915_gem_object_sync(obj, pipelined);
3295                 if (ret)
3296                         return ret;
3297         }
3298
3299         /* The display engine is not coherent with the LLC cache on gen6.  As
3300          * a result, we make sure that the pinning that is about to occur is
3301          * done with uncached PTEs. This is lowest common denominator for all
3302          * chipsets.
3303          *
3304          * However for gen6+, we could do better by using the GFDT bit instead
3305          * of uncaching, which would allow us to flush all the LLC-cached data
3306          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3307          */
3308         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3309         if (ret)
3310                 return ret;
3311
3312         /* As the user may map the buffer once pinned in the display plane
3313          * (e.g. libkms for the bootup splash), we have to ensure that we
3314          * always use map_and_fenceable for all scanout buffers.
3315          */
3316         ret = i915_gem_object_pin(obj, alignment, true, false);
3317         if (ret)
3318                 return ret;
3319
3320         i915_gem_object_flush_cpu_write_domain(obj);
3321
3322         old_write_domain = obj->base.write_domain;
3323         old_read_domains = obj->base.read_domains;
3324
3325         /* It should now be out of any other write domains, and we can update
3326          * the domain values for our changes.
3327          */
3328         obj->base.write_domain = 0;
3329         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3330
3331         trace_i915_gem_object_change_domain(obj,
3332                                             old_read_domains,
3333                                             old_write_domain);
3334
3335         return 0;
3336 }
3337
3338 int
3339 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3340 {
3341         int ret;
3342
3343         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3344                 return 0;
3345
3346         ret = i915_gem_object_wait_rendering(obj, false);
3347         if (ret)
3348                 return ret;
3349
3350         /* Ensure that we invalidate the GPU's caches and TLBs. */
3351         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3352         return 0;
3353 }
3354
3355 /**
3356  * Moves a single object to the CPU read, and possibly write domain.
3357  *
3358  * This function returns when the move is complete, including waiting on
3359  * flushes to occur.
3360  */
3361 int
3362 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3363 {
3364         uint32_t old_write_domain, old_read_domains;
3365         int ret;
3366
3367         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3368                 return 0;
3369
3370         ret = i915_gem_object_wait_rendering(obj, !write);
3371         if (ret)
3372                 return ret;
3373
3374         i915_gem_object_flush_gtt_write_domain(obj);
3375
3376         old_write_domain = obj->base.write_domain;
3377         old_read_domains = obj->base.read_domains;
3378
3379         /* Flush the CPU cache if it's still invalid. */
3380         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3381                 i915_gem_clflush_object(obj);
3382
3383                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3384         }
3385
3386         /* It should now be out of any other write domains, and we can update
3387          * the domain values for our changes.
3388          */
3389         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3390
3391         /* If we're writing through the CPU, then the GPU read domains will
3392          * need to be invalidated at next use.
3393          */
3394         if (write) {
3395                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3396                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3397         }
3398
3399         trace_i915_gem_object_change_domain(obj,
3400                                             old_read_domains,
3401                                             old_write_domain);
3402
3403         return 0;
3404 }
3405
3406 /* Throttle our rendering by waiting until the ring has completed our requests
3407  * emitted over 20 msec ago.
3408  *
3409  * Note that if we were to use the current jiffies each time around the loop,
3410  * we wouldn't escape the function with any frames outstanding if the time to
3411  * render a frame was over 20ms.
3412  *
3413  * This should get us reasonable parallelism between CPU and GPU but also
3414  * relatively low latency when blocking on a particular request to finish.
3415  */
3416 static int
3417 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3418 {
3419         struct drm_i915_private *dev_priv = dev->dev_private;
3420         struct drm_i915_file_private *file_priv = file->driver_priv;
3421         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3422         struct drm_i915_gem_request *request;
3423         struct intel_ring_buffer *ring = NULL;
3424         unsigned reset_counter;
3425         u32 seqno = 0;
3426         int ret;
3427
3428         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3429         if (ret)
3430                 return ret;
3431
3432         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3433         if (ret)
3434                 return ret;
3435
3436         spin_lock(&file_priv->mm.lock);
3437         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3438                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3439                         break;
3440
3441                 ring = request->ring;
3442                 seqno = request->seqno;
3443         }
3444         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3445         spin_unlock(&file_priv->mm.lock);
3446
3447         if (seqno == 0)
3448                 return 0;
3449
3450         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3451         if (ret == 0)
3452                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3453
3454         return ret;
3455 }
3456
3457 int
3458 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3459                     uint32_t alignment,
3460                     bool map_and_fenceable,
3461                     bool nonblocking)
3462 {
3463         int ret;
3464
3465         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3466                 return -EBUSY;
3467
3468         if (obj->gtt_space != NULL) {
3469                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3470                     (map_and_fenceable && !obj->map_and_fenceable)) {
3471                         WARN(obj->pin_count,
3472                              "bo is already pinned with incorrect alignment:"
3473                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3474                              " obj->map_and_fenceable=%d\n",
3475                              obj->gtt_offset, alignment,
3476                              map_and_fenceable,
3477                              obj->map_and_fenceable);
3478                         ret = i915_gem_object_unbind(obj);
3479                         if (ret)
3480                                 return ret;
3481                 }
3482         }
3483
3484         if (obj->gtt_space == NULL) {
3485                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3486
3487                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3488                                                   map_and_fenceable,
3489                                                   nonblocking);
3490                 if (ret)
3491                         return ret;
3492
3493                 if (!dev_priv->mm.aliasing_ppgtt)
3494                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3495         }
3496
3497         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3498                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3499
3500         obj->pin_count++;
3501         obj->pin_mappable |= map_and_fenceable;
3502
3503         return 0;
3504 }
3505
3506 void
3507 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3508 {
3509         BUG_ON(obj->pin_count == 0);
3510         BUG_ON(obj->gtt_space == NULL);
3511
3512         if (--obj->pin_count == 0)
3513                 obj->pin_mappable = false;
3514 }
3515
3516 int
3517 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3518                    struct drm_file *file)
3519 {
3520         struct drm_i915_gem_pin *args = data;
3521         struct drm_i915_gem_object *obj;
3522         int ret;
3523
3524         ret = i915_mutex_lock_interruptible(dev);
3525         if (ret)
3526                 return ret;
3527
3528         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3529         if (&obj->base == NULL) {
3530                 ret = -ENOENT;
3531                 goto unlock;
3532         }
3533
3534         if (obj->madv != I915_MADV_WILLNEED) {
3535                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3536                 ret = -EINVAL;
3537                 goto out;
3538         }
3539
3540         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3541                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3542                           args->handle);
3543                 ret = -EINVAL;
3544                 goto out;
3545         }
3546
3547         if (obj->user_pin_count == 0) {
3548                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3549                 if (ret)
3550                         goto out;
3551         }
3552
3553         obj->user_pin_count++;
3554         obj->pin_filp = file;
3555
3556         /* XXX - flush the CPU caches for pinned objects
3557          * as the X server doesn't manage domains yet
3558          */
3559         i915_gem_object_flush_cpu_write_domain(obj);
3560         args->offset = obj->gtt_offset;
3561 out:
3562         drm_gem_object_unreference(&obj->base);
3563 unlock:
3564         mutex_unlock(&dev->struct_mutex);
3565         return ret;
3566 }
3567
3568 int
3569 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3570                      struct drm_file *file)
3571 {
3572         struct drm_i915_gem_pin *args = data;
3573         struct drm_i915_gem_object *obj;
3574         int ret;
3575
3576         ret = i915_mutex_lock_interruptible(dev);
3577         if (ret)
3578                 return ret;
3579
3580         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581         if (&obj->base == NULL) {
3582                 ret = -ENOENT;
3583                 goto unlock;
3584         }
3585
3586         if (obj->pin_filp != file) {
3587                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3588                           args->handle);
3589                 ret = -EINVAL;
3590                 goto out;
3591         }
3592         obj->user_pin_count--;
3593         if (obj->user_pin_count == 0) {
3594                 obj->pin_filp = NULL;
3595                 i915_gem_object_unpin(obj);
3596         }
3597
3598 out:
3599         drm_gem_object_unreference(&obj->base);
3600 unlock:
3601         mutex_unlock(&dev->struct_mutex);
3602         return ret;
3603 }
3604
3605 int
3606 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3607                     struct drm_file *file)
3608 {
3609         struct drm_i915_gem_busy *args = data;
3610         struct drm_i915_gem_object *obj;
3611         int ret;
3612
3613         ret = i915_mutex_lock_interruptible(dev);
3614         if (ret)
3615                 return ret;
3616
3617         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3618         if (&obj->base == NULL) {
3619                 ret = -ENOENT;
3620                 goto unlock;
3621         }
3622
3623         /* Count all active objects as busy, even if they are currently not used
3624          * by the gpu. Users of this interface expect objects to eventually
3625          * become non-busy without any further actions, therefore emit any
3626          * necessary flushes here.
3627          */
3628         ret = i915_gem_object_flush_active(obj);
3629
3630         args->busy = obj->active;
3631         if (obj->ring) {
3632                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3633                 args->busy |= intel_ring_flag(obj->ring) << 16;
3634         }
3635
3636         drm_gem_object_unreference(&obj->base);
3637 unlock:
3638         mutex_unlock(&dev->struct_mutex);
3639         return ret;
3640 }
3641
3642 int
3643 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3644                         struct drm_file *file_priv)
3645 {
3646         return i915_gem_ring_throttle(dev, file_priv);
3647 }
3648
3649 int
3650 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3651                        struct drm_file *file_priv)
3652 {
3653         struct drm_i915_gem_madvise *args = data;
3654         struct drm_i915_gem_object *obj;
3655         int ret;
3656
3657         switch (args->madv) {
3658         case I915_MADV_DONTNEED:
3659         case I915_MADV_WILLNEED:
3660             break;
3661         default:
3662             return -EINVAL;
3663         }
3664
3665         ret = i915_mutex_lock_interruptible(dev);
3666         if (ret)
3667                 return ret;
3668
3669         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3670         if (&obj->base == NULL) {
3671                 ret = -ENOENT;
3672                 goto unlock;
3673         }
3674
3675         if (obj->pin_count) {
3676                 ret = -EINVAL;
3677                 goto out;
3678         }
3679
3680         if (obj->madv != __I915_MADV_PURGED)
3681                 obj->madv = args->madv;
3682
3683         /* if the object is no longer attached, discard its backing storage */
3684         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3685                 i915_gem_object_truncate(obj);
3686
3687         args->retained = obj->madv != __I915_MADV_PURGED;
3688
3689 out:
3690         drm_gem_object_unreference(&obj->base);
3691 unlock:
3692         mutex_unlock(&dev->struct_mutex);
3693         return ret;
3694 }
3695
3696 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3697                           const struct drm_i915_gem_object_ops *ops)
3698 {
3699         INIT_LIST_HEAD(&obj->mm_list);
3700         INIT_LIST_HEAD(&obj->gtt_list);
3701         INIT_LIST_HEAD(&obj->ring_list);
3702         INIT_LIST_HEAD(&obj->exec_list);
3703
3704         obj->ops = ops;
3705
3706         obj->fence_reg = I915_FENCE_REG_NONE;
3707         obj->madv = I915_MADV_WILLNEED;
3708         /* Avoid an unnecessary call to unbind on the first bind. */
3709         obj->map_and_fenceable = true;
3710
3711         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3712 }
3713
3714 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3715         .get_pages = i915_gem_object_get_pages_gtt,
3716         .put_pages = i915_gem_object_put_pages_gtt,
3717 };
3718
3719 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3720                                                   size_t size)
3721 {
3722         struct drm_i915_gem_object *obj;
3723         struct address_space *mapping;
3724         gfp_t mask;
3725
3726         obj = i915_gem_object_alloc(dev);
3727         if (obj == NULL)
3728                 return NULL;
3729
3730         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3731                 i915_gem_object_free(obj);
3732                 return NULL;
3733         }
3734
3735         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3736         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3737                 /* 965gm cannot relocate objects above 4GiB. */
3738                 mask &= ~__GFP_HIGHMEM;
3739                 mask |= __GFP_DMA32;
3740         }
3741
3742         mapping = file_inode(obj->base.filp)->i_mapping;
3743         mapping_set_gfp_mask(mapping, mask);
3744
3745         i915_gem_object_init(obj, &i915_gem_object_ops);
3746
3747         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3748         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3749
3750         if (HAS_LLC(dev)) {
3751                 /* On some devices, we can have the GPU use the LLC (the CPU
3752                  * cache) for about a 10% performance improvement
3753                  * compared to uncached.  Graphics requests other than
3754                  * display scanout are coherent with the CPU in
3755                  * accessing this cache.  This means in this mode we
3756                  * don't need to clflush on the CPU side, and on the
3757                  * GPU side we only need to flush internal caches to
3758                  * get data visible to the CPU.
3759                  *
3760                  * However, we maintain the display planes as UC, and so
3761                  * need to rebind when first used as such.
3762                  */
3763                 obj->cache_level = I915_CACHE_LLC;
3764         } else
3765                 obj->cache_level = I915_CACHE_NONE;
3766
3767         return obj;
3768 }
3769
3770 int i915_gem_init_object(struct drm_gem_object *obj)
3771 {
3772         BUG();
3773
3774         return 0;
3775 }
3776
3777 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3778 {
3779         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3780         struct drm_device *dev = obj->base.dev;
3781         drm_i915_private_t *dev_priv = dev->dev_private;
3782
3783         trace_i915_gem_object_destroy(obj);
3784
3785         if (obj->phys_obj)
3786                 i915_gem_detach_phys_object(dev, obj);
3787
3788         obj->pin_count = 0;
3789         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3790                 bool was_interruptible;
3791
3792                 was_interruptible = dev_priv->mm.interruptible;
3793                 dev_priv->mm.interruptible = false;
3794
3795                 WARN_ON(i915_gem_object_unbind(obj));
3796
3797                 dev_priv->mm.interruptible = was_interruptible;
3798         }
3799
3800         obj->pages_pin_count = 0;
3801         i915_gem_object_put_pages(obj);
3802         i915_gem_object_free_mmap_offset(obj);
3803         i915_gem_object_release_stolen(obj);
3804
3805         BUG_ON(obj->pages);
3806
3807         if (obj->base.import_attach)
3808                 drm_prime_gem_destroy(&obj->base, NULL);
3809
3810         drm_gem_object_release(&obj->base);
3811         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3812
3813         kfree(obj->bit_17);
3814         i915_gem_object_free(obj);
3815 }
3816
3817 int
3818 i915_gem_idle(struct drm_device *dev)
3819 {
3820         drm_i915_private_t *dev_priv = dev->dev_private;
3821         int ret;
3822
3823         mutex_lock(&dev->struct_mutex);
3824
3825         if (dev_priv->mm.suspended) {
3826                 mutex_unlock(&dev->struct_mutex);
3827                 return 0;
3828         }
3829
3830         ret = i915_gpu_idle(dev);
3831         if (ret) {
3832                 mutex_unlock(&dev->struct_mutex);
3833                 return ret;
3834         }
3835         i915_gem_retire_requests(dev);
3836
3837         /* Under UMS, be paranoid and evict. */
3838         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3839                 i915_gem_evict_everything(dev);
3840
3841         i915_gem_reset_fences(dev);
3842
3843         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3844          * We need to replace this with a semaphore, or something.
3845          * And not confound mm.suspended!
3846          */
3847         dev_priv->mm.suspended = 1;
3848         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3849
3850         i915_kernel_lost_context(dev);
3851         i915_gem_cleanup_ringbuffer(dev);
3852
3853         mutex_unlock(&dev->struct_mutex);
3854
3855         /* Cancel the retire work handler, which should be idle now. */
3856         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3857
3858         return 0;
3859 }
3860
3861 void i915_gem_l3_remap(struct drm_device *dev)
3862 {
3863         drm_i915_private_t *dev_priv = dev->dev_private;
3864         u32 misccpctl;
3865         int i;
3866
3867         if (!HAS_L3_GPU_CACHE(dev))
3868                 return;
3869
3870         if (!dev_priv->l3_parity.remap_info)
3871                 return;
3872
3873         misccpctl = I915_READ(GEN7_MISCCPCTL);
3874         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3875         POSTING_READ(GEN7_MISCCPCTL);
3876
3877         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3878                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3879                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3880                         DRM_DEBUG("0x%x was already programmed to %x\n",
3881                                   GEN7_L3LOG_BASE + i, remap);
3882                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3883                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3884                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3885         }
3886
3887         /* Make sure all the writes land before disabling dop clock gating */
3888         POSTING_READ(GEN7_L3LOG_BASE);
3889
3890         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3891 }
3892
3893 void i915_gem_init_swizzling(struct drm_device *dev)
3894 {
3895         drm_i915_private_t *dev_priv = dev->dev_private;
3896
3897         if (INTEL_INFO(dev)->gen < 5 ||
3898             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3899                 return;
3900
3901         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3902                                  DISP_TILE_SURFACE_SWIZZLING);
3903
3904         if (IS_GEN5(dev))
3905                 return;
3906
3907         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3908         if (IS_GEN6(dev))
3909                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3910         else if (IS_GEN7(dev))
3911                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3912         else
3913                 BUG();
3914 }
3915
3916 static bool
3917 intel_enable_blt(struct drm_device *dev)
3918 {
3919         if (!HAS_BLT(dev))
3920                 return false;
3921
3922         /* The blitter was dysfunctional on early prototypes */
3923         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3924                 DRM_INFO("BLT not supported on this pre-production hardware;"
3925                          " graphics performance will be degraded.\n");
3926                 return false;
3927         }
3928
3929         return true;
3930 }
3931
3932 static int i915_gem_init_rings(struct drm_device *dev)
3933 {
3934         struct drm_i915_private *dev_priv = dev->dev_private;
3935         int ret;
3936
3937         ret = intel_init_render_ring_buffer(dev);
3938         if (ret)
3939                 return ret;
3940
3941         if (HAS_BSD(dev)) {
3942                 ret = intel_init_bsd_ring_buffer(dev);
3943                 if (ret)
3944                         goto cleanup_render_ring;
3945         }
3946
3947         if (intel_enable_blt(dev)) {
3948                 ret = intel_init_blt_ring_buffer(dev);
3949                 if (ret)
3950                         goto cleanup_bsd_ring;
3951         }
3952
3953         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3954         if (ret)
3955                 goto cleanup_blt_ring;
3956
3957         return 0;
3958
3959 cleanup_blt_ring:
3960         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3961 cleanup_bsd_ring:
3962         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3963 cleanup_render_ring:
3964         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3965
3966         return ret;
3967 }
3968
3969 int
3970 i915_gem_init_hw(struct drm_device *dev)
3971 {
3972         drm_i915_private_t *dev_priv = dev->dev_private;
3973         int ret;
3974
3975         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3976                 return -EIO;
3977
3978         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3979                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3980
3981         i915_gem_l3_remap(dev);
3982
3983         i915_gem_init_swizzling(dev);
3984
3985         ret = i915_gem_init_rings(dev);
3986         if (ret)
3987                 return ret;
3988
3989         /*
3990          * XXX: There was some w/a described somewhere suggesting loading
3991          * contexts before PPGTT.
3992          */
3993         i915_gem_context_init(dev);
3994         i915_gem_init_ppgtt(dev);
3995
3996         return 0;
3997 }
3998
3999 int i915_gem_init(struct drm_device *dev)
4000 {
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         int ret;
4003
4004         mutex_lock(&dev->struct_mutex);
4005
4006         if (IS_VALLEYVIEW(dev)) {
4007                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4008                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4009                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4010                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4011         }
4012
4013         i915_gem_init_global_gtt(dev);
4014
4015         ret = i915_gem_init_hw(dev);
4016         mutex_unlock(&dev->struct_mutex);
4017         if (ret) {
4018                 i915_gem_cleanup_aliasing_ppgtt(dev);
4019                 return ret;
4020         }
4021
4022         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4023         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4024                 dev_priv->dri1.allow_batchbuffer = 1;
4025         return 0;
4026 }
4027
4028 void
4029 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4030 {
4031         drm_i915_private_t *dev_priv = dev->dev_private;
4032         struct intel_ring_buffer *ring;
4033         int i;
4034
4035         for_each_ring(ring, dev_priv, i)
4036                 intel_cleanup_ring_buffer(ring);
4037 }
4038
4039 int
4040 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4041                        struct drm_file *file_priv)
4042 {
4043         drm_i915_private_t *dev_priv = dev->dev_private;
4044         int ret;
4045
4046         if (drm_core_check_feature(dev, DRIVER_MODESET))
4047                 return 0;
4048
4049         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4050                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4051                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4052         }
4053
4054         mutex_lock(&dev->struct_mutex);
4055         dev_priv->mm.suspended = 0;
4056
4057         ret = i915_gem_init_hw(dev);
4058         if (ret != 0) {
4059                 mutex_unlock(&dev->struct_mutex);
4060                 return ret;
4061         }
4062
4063         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4064         mutex_unlock(&dev->struct_mutex);
4065
4066         ret = drm_irq_install(dev);
4067         if (ret)
4068                 goto cleanup_ringbuffer;
4069
4070         return 0;
4071
4072 cleanup_ringbuffer:
4073         mutex_lock(&dev->struct_mutex);
4074         i915_gem_cleanup_ringbuffer(dev);
4075         dev_priv->mm.suspended = 1;
4076         mutex_unlock(&dev->struct_mutex);
4077
4078         return ret;
4079 }
4080
4081 int
4082 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4083                        struct drm_file *file_priv)
4084 {
4085         if (drm_core_check_feature(dev, DRIVER_MODESET))
4086                 return 0;
4087
4088         drm_irq_uninstall(dev);
4089         return i915_gem_idle(dev);
4090 }
4091
4092 void
4093 i915_gem_lastclose(struct drm_device *dev)
4094 {
4095         int ret;
4096
4097         if (drm_core_check_feature(dev, DRIVER_MODESET))
4098                 return;
4099
4100         ret = i915_gem_idle(dev);
4101         if (ret)
4102                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4103 }
4104
4105 static void
4106 init_ring_lists(struct intel_ring_buffer *ring)
4107 {
4108         INIT_LIST_HEAD(&ring->active_list);
4109         INIT_LIST_HEAD(&ring->request_list);
4110 }
4111
4112 void
4113 i915_gem_load(struct drm_device *dev)
4114 {
4115         drm_i915_private_t *dev_priv = dev->dev_private;
4116         int i;
4117
4118         dev_priv->slab =
4119                 kmem_cache_create("i915_gem_object",
4120                                   sizeof(struct drm_i915_gem_object), 0,
4121                                   SLAB_HWCACHE_ALIGN,
4122                                   NULL);
4123
4124         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4125         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4126         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4127         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4128         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4129         for (i = 0; i < I915_NUM_RINGS; i++)
4130                 init_ring_lists(&dev_priv->ring[i]);
4131         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4132                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4133         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4134                           i915_gem_retire_work_handler);
4135         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4136
4137         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4138         if (IS_GEN3(dev)) {
4139                 I915_WRITE(MI_ARB_STATE,
4140                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4141         }
4142
4143         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4144
4145         /* Old X drivers will take 0-2 for front, back, depth buffers */
4146         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4147                 dev_priv->fence_reg_start = 3;
4148
4149         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4150                 dev_priv->num_fence_regs = 16;
4151         else
4152                 dev_priv->num_fence_regs = 8;
4153
4154         /* Initialize fence registers to zero */
4155         i915_gem_reset_fences(dev);
4156
4157         i915_gem_detect_bit_6_swizzle(dev);
4158         init_waitqueue_head(&dev_priv->pending_flip_queue);
4159
4160         dev_priv->mm.interruptible = true;
4161
4162         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4163         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4164         register_shrinker(&dev_priv->mm.inactive_shrinker);
4165 }
4166
4167 /*
4168  * Create a physically contiguous memory object for this object
4169  * e.g. for cursor + overlay regs
4170  */
4171 static int i915_gem_init_phys_object(struct drm_device *dev,
4172                                      int id, int size, int align)
4173 {
4174         drm_i915_private_t *dev_priv = dev->dev_private;
4175         struct drm_i915_gem_phys_object *phys_obj;
4176         int ret;
4177
4178         if (dev_priv->mm.phys_objs[id - 1] || !size)
4179                 return 0;
4180
4181         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4182         if (!phys_obj)
4183                 return -ENOMEM;
4184
4185         phys_obj->id = id;
4186
4187         phys_obj->handle = drm_pci_alloc(dev, size, align);
4188         if (!phys_obj->handle) {
4189                 ret = -ENOMEM;
4190                 goto kfree_obj;
4191         }
4192 #ifdef CONFIG_X86
4193         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4194 #endif
4195
4196         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4197
4198         return 0;
4199 kfree_obj:
4200         kfree(phys_obj);
4201         return ret;
4202 }
4203
4204 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4205 {
4206         drm_i915_private_t *dev_priv = dev->dev_private;
4207         struct drm_i915_gem_phys_object *phys_obj;
4208
4209         if (!dev_priv->mm.phys_objs[id - 1])
4210                 return;
4211
4212         phys_obj = dev_priv->mm.phys_objs[id - 1];
4213         if (phys_obj->cur_obj) {
4214                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4215         }
4216
4217 #ifdef CONFIG_X86
4218         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4219 #endif
4220         drm_pci_free(dev, phys_obj->handle);
4221         kfree(phys_obj);
4222         dev_priv->mm.phys_objs[id - 1] = NULL;
4223 }
4224
4225 void i915_gem_free_all_phys_object(struct drm_device *dev)
4226 {
4227         int i;
4228
4229         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4230                 i915_gem_free_phys_object(dev, i);
4231 }
4232
4233 void i915_gem_detach_phys_object(struct drm_device *dev,
4234                                  struct drm_i915_gem_object *obj)
4235 {
4236         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4237         char *vaddr;
4238         int i;
4239         int page_count;
4240
4241         if (!obj->phys_obj)
4242                 return;
4243         vaddr = obj->phys_obj->handle->vaddr;
4244
4245         page_count = obj->base.size / PAGE_SIZE;
4246         for (i = 0; i < page_count; i++) {
4247                 struct page *page = shmem_read_mapping_page(mapping, i);
4248                 if (!IS_ERR(page)) {
4249                         char *dst = kmap_atomic(page);
4250                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4251                         kunmap_atomic(dst);
4252
4253                         drm_clflush_pages(&page, 1);
4254
4255                         set_page_dirty(page);
4256                         mark_page_accessed(page);
4257                         page_cache_release(page);
4258                 }
4259         }
4260         i915_gem_chipset_flush(dev);
4261
4262         obj->phys_obj->cur_obj = NULL;
4263         obj->phys_obj = NULL;
4264 }
4265
4266 int
4267 i915_gem_attach_phys_object(struct drm_device *dev,
4268                             struct drm_i915_gem_object *obj,
4269                             int id,
4270                             int align)
4271 {
4272         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4273         drm_i915_private_t *dev_priv = dev->dev_private;
4274         int ret = 0;
4275         int page_count;
4276         int i;
4277
4278         if (id > I915_MAX_PHYS_OBJECT)
4279                 return -EINVAL;
4280
4281         if (obj->phys_obj) {
4282                 if (obj->phys_obj->id == id)
4283                         return 0;
4284                 i915_gem_detach_phys_object(dev, obj);
4285         }
4286
4287         /* create a new object */
4288         if (!dev_priv->mm.phys_objs[id - 1]) {
4289                 ret = i915_gem_init_phys_object(dev, id,
4290                                                 obj->base.size, align);
4291                 if (ret) {
4292                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4293                                   id, obj->base.size);
4294                         return ret;
4295                 }
4296         }
4297
4298         /* bind to the object */
4299         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4300         obj->phys_obj->cur_obj = obj;
4301
4302         page_count = obj->base.size / PAGE_SIZE;
4303
4304         for (i = 0; i < page_count; i++) {
4305                 struct page *page;
4306                 char *dst, *src;
4307
4308                 page = shmem_read_mapping_page(mapping, i);
4309                 if (IS_ERR(page))
4310                         return PTR_ERR(page);
4311
4312                 src = kmap_atomic(page);
4313                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4314                 memcpy(dst, src, PAGE_SIZE);
4315                 kunmap_atomic(src);
4316
4317                 mark_page_accessed(page);
4318                 page_cache_release(page);
4319         }
4320
4321         return 0;
4322 }
4323
4324 static int
4325 i915_gem_phys_pwrite(struct drm_device *dev,
4326                      struct drm_i915_gem_object *obj,
4327                      struct drm_i915_gem_pwrite *args,
4328                      struct drm_file *file_priv)
4329 {
4330         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4331         char __user *user_data = to_user_ptr(args->data_ptr);
4332
4333         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4334                 unsigned long unwritten;
4335
4336                 /* The physical object once assigned is fixed for the lifetime
4337                  * of the obj, so we can safely drop the lock and continue
4338                  * to access vaddr.
4339                  */
4340                 mutex_unlock(&dev->struct_mutex);
4341                 unwritten = copy_from_user(vaddr, user_data, args->size);
4342                 mutex_lock(&dev->struct_mutex);
4343                 if (unwritten)
4344                         return -EFAULT;
4345         }
4346
4347         i915_gem_chipset_flush(dev);
4348         return 0;
4349 }
4350
4351 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4352 {
4353         struct drm_i915_file_private *file_priv = file->driver_priv;
4354
4355         /* Clean up our request list when the client is going away, so that
4356          * later retire_requests won't dereference our soon-to-be-gone
4357          * file_priv.
4358          */
4359         spin_lock(&file_priv->mm.lock);
4360         while (!list_empty(&file_priv->mm.request_list)) {
4361                 struct drm_i915_gem_request *request;
4362
4363                 request = list_first_entry(&file_priv->mm.request_list,
4364                                            struct drm_i915_gem_request,
4365                                            client_list);
4366                 list_del(&request->client_list);
4367                 request->file_priv = NULL;
4368         }
4369         spin_unlock(&file_priv->mm.lock);
4370 }
4371
4372 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4373 {
4374         if (!mutex_is_locked(mutex))
4375                 return false;
4376
4377 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4378         return mutex->owner == task;
4379 #else
4380         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4381         return false;
4382 #endif
4383 }
4384
4385 static int
4386 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4387 {
4388         struct drm_i915_private *dev_priv =
4389                 container_of(shrinker,
4390                              struct drm_i915_private,
4391                              mm.inactive_shrinker);
4392         struct drm_device *dev = dev_priv->dev;
4393         struct drm_i915_gem_object *obj;
4394         int nr_to_scan = sc->nr_to_scan;
4395         bool unlock = true;
4396         int cnt;
4397
4398         if (!mutex_trylock(&dev->struct_mutex)) {
4399                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4400                         return 0;
4401
4402                 if (dev_priv->mm.shrinker_no_lock_stealing)
4403                         return 0;
4404
4405                 unlock = false;
4406         }
4407
4408         if (nr_to_scan) {
4409                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4410                 if (nr_to_scan > 0)
4411                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4412                                                         false);
4413                 if (nr_to_scan > 0)
4414                         i915_gem_shrink_all(dev_priv);
4415         }
4416
4417         cnt = 0;
4418         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4419                 if (obj->pages_pin_count == 0)
4420                         cnt += obj->base.size >> PAGE_SHIFT;
4421         list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4422                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4423                         cnt += obj->base.size >> PAGE_SHIFT;
4424
4425         if (unlock)
4426                 mutex_unlock(&dev->struct_mutex);
4427         return cnt;
4428 }