Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55                 return false;
56
57         if (!i915_gem_object_is_coherent(obj))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         if (!i915_reset_in_progress(error))
107                 return 0;
108
109         /*
110          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111          * userspace. If it takes that long something really bad is going on and
112          * we should simply try to bail out and fail as gracefully as possible.
113          */
114         ret = wait_event_interruptible_timeout(error->reset_queue,
115                                                !i915_reset_in_progress(error),
116                                                I915_RESET_TIMEOUT);
117         if (ret == 0) {
118                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
119                 return -EIO;
120         } else if (ret < 0) {
121                 return ret;
122         } else {
123                 return 0;
124         }
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         int ret;
131
132         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133         if (ret)
134                 return ret;
135
136         ret = mutex_lock_interruptible(&dev->struct_mutex);
137         if (ret)
138                 return ret;
139
140         return 0;
141 }
142
143 int
144 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145                             struct drm_file *file)
146 {
147         struct drm_i915_private *dev_priv = to_i915(dev);
148         struct i915_ggtt *ggtt = &dev_priv->ggtt;
149         struct drm_i915_gem_get_aperture *args = data;
150         struct i915_vma *vma;
151         size_t pinned;
152
153         pinned = 0;
154         mutex_lock(&dev->struct_mutex);
155         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156                 if (i915_vma_is_pinned(vma))
157                         pinned += vma->node.size;
158         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159                 if (i915_vma_is_pinned(vma))
160                         pinned += vma->node.size;
161         mutex_unlock(&dev->struct_mutex);
162
163         args->aper_size = ggtt->base.total;
164         args->aper_available_size = args->aper_size - pinned;
165
166         return 0;
167 }
168
169 static struct sg_table *
170 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171 {
172         struct address_space *mapping = obj->base.filp->f_mapping;
173         drm_dma_handle_t *phys;
174         struct sg_table *st;
175         struct scatterlist *sg;
176         char *vaddr;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return ERR_PTR(-EINVAL);
181
182         /* Always aligning to the object size, allows a single allocation
183          * to handle all possible callers, and given typical object sizes,
184          * the alignment of the buddy allocation will naturally match.
185          */
186         phys = drm_pci_alloc(obj->base.dev,
187                              obj->base.size,
188                              roundup_pow_of_two(obj->base.size));
189         if (!phys)
190                 return ERR_PTR(-ENOMEM);
191
192         vaddr = phys->vaddr;
193         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
194                 struct page *page;
195                 char *src;
196
197                 page = shmem_read_mapping_page(mapping, i);
198                 if (IS_ERR(page)) {
199                         st = ERR_CAST(page);
200                         goto err_phys;
201                 }
202
203                 src = kmap_atomic(page);
204                 memcpy(vaddr, src, PAGE_SIZE);
205                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
206                 kunmap_atomic(src);
207
208                 put_page(page);
209                 vaddr += PAGE_SIZE;
210         }
211
212         i915_gem_chipset_flush(to_i915(obj->base.dev));
213
214         st = kmalloc(sizeof(*st), GFP_KERNEL);
215         if (!st) {
216                 st = ERR_PTR(-ENOMEM);
217                 goto err_phys;
218         }
219
220         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
221                 kfree(st);
222                 st = ERR_PTR(-ENOMEM);
223                 goto err_phys;
224         }
225
226         sg = st->sgl;
227         sg->offset = 0;
228         sg->length = obj->base.size;
229
230         sg_dma_address(sg) = phys->busaddr;
231         sg_dma_len(sg) = obj->base.size;
232
233         obj->phys_handle = phys;
234         return st;
235
236 err_phys:
237         drm_pci_free(obj->base.dev, phys);
238         return st;
239 }
240
241 static void
242 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243                                 struct sg_table *pages,
244                                 bool needs_clflush)
245 {
246         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247
248         if (obj->mm.madv == I915_MADV_DONTNEED)
249                 obj->mm.dirty = false;
250
251         if (needs_clflush &&
252             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253             !i915_gem_object_is_coherent(obj))
254                 drm_clflush_sg(pages);
255
256         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
257         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
258 }
259
260 static void
261 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
262                                struct sg_table *pages)
263 {
264         __i915_gem_object_release_shmem(obj, pages, false);
265
266         if (obj->mm.dirty) {
267                 struct address_space *mapping = obj->base.filp->f_mapping;
268                 char *vaddr = obj->phys_handle->vaddr;
269                 int i;
270
271                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272                         struct page *page;
273                         char *dst;
274
275                         page = shmem_read_mapping_page(mapping, i);
276                         if (IS_ERR(page))
277                                 continue;
278
279                         dst = kmap_atomic(page);
280                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
281                         memcpy(dst, vaddr, PAGE_SIZE);
282                         kunmap_atomic(dst);
283
284                         set_page_dirty(page);
285                         if (obj->mm.madv == I915_MADV_WILLNEED)
286                                 mark_page_accessed(page);
287                         put_page(page);
288                         vaddr += PAGE_SIZE;
289                 }
290                 obj->mm.dirty = false;
291         }
292
293         sg_free_table(pages);
294         kfree(pages);
295
296         drm_pci_free(obj->base.dev, obj->phys_handle);
297 }
298
299 static void
300 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
301 {
302         i915_gem_object_unpin_pages(obj);
303 }
304
305 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
306         .get_pages = i915_gem_object_get_pages_phys,
307         .put_pages = i915_gem_object_put_pages_phys,
308         .release = i915_gem_object_release_phys,
309 };
310
311 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
312
313 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 {
315         struct i915_vma *vma;
316         LIST_HEAD(still_in_list);
317         int ret;
318
319         lockdep_assert_held(&obj->base.dev->struct_mutex);
320
321         /* Closed vma are removed from the obj->vma_list - but they may
322          * still have an active binding on the object. To remove those we
323          * must wait for all rendering to complete to the object (as unbinding
324          * must anyway), and retire the requests.
325          */
326         ret = i915_gem_object_wait(obj,
327                                    I915_WAIT_INTERRUPTIBLE |
328                                    I915_WAIT_LOCKED |
329                                    I915_WAIT_ALL,
330                                    MAX_SCHEDULE_TIMEOUT,
331                                    NULL);
332         if (ret)
333                 return ret;
334
335         i915_gem_retire_requests(to_i915(obj->base.dev));
336
337         while ((vma = list_first_entry_or_null(&obj->vma_list,
338                                                struct i915_vma,
339                                                obj_link))) {
340                 list_move_tail(&vma->obj_link, &still_in_list);
341                 ret = i915_vma_unbind(vma);
342                 if (ret)
343                         break;
344         }
345         list_splice(&still_in_list, &obj->vma_list);
346
347         return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352                            unsigned int flags,
353                            long timeout,
354                            struct intel_rps_client *rps)
355 {
356         struct drm_i915_gem_request *rq;
357
358         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361                 return timeout;
362
363         if (!dma_fence_is_i915(fence))
364                 return dma_fence_wait_timeout(fence,
365                                               flags & I915_WAIT_INTERRUPTIBLE,
366                                               timeout);
367
368         rq = to_request(fence);
369         if (i915_gem_request_completed(rq))
370                 goto out;
371
372         /* This client is about to stall waiting for the GPU. In many cases
373          * this is undesirable and limits the throughput of the system, as
374          * many clients cannot continue processing user input/output whilst
375          * blocked. RPS autotuning may take tens of milliseconds to respond
376          * to the GPU load and thus incurs additional latency for the client.
377          * We can circumvent that by promoting the GPU frequency to maximum
378          * before we wait. This makes the GPU throttle up much more quickly
379          * (good for benchmarks and user experience, e.g. window animations),
380          * but at a cost of spending more power processing the workload
381          * (bad for battery). Not all clients even want their results
382          * immediately and for them we should just let the GPU select its own
383          * frequency to maximise efficiency. To prevent a single client from
384          * forcing the clocks too high for the whole system, we only allow
385          * each client to waitboost once in a busy period.
386          */
387         if (rps) {
388                 if (INTEL_GEN(rq->i915) >= 6)
389                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
390                 else
391                         rps = NULL;
392         }
393
394         timeout = i915_wait_request(rq, flags, timeout);
395
396 out:
397         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398                 i915_gem_request_retire_upto(rq);
399
400         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401                 /* The GPU is now idle and this client has stalled.
402                  * Since no other client has submitted a request in the
403                  * meantime, assume that this client is the only one
404                  * supplying work to the GPU but is unable to keep that
405                  * work supplied because it is waiting. Since the GPU is
406                  * then never kept fully busy, RPS autoclocking will
407                  * keep the clocks relatively low, causing further delays.
408                  * Compensate by giving the synchronous client credit for
409                  * a waitboost next time.
410                  */
411                 spin_lock(&rq->i915->rps.client_lock);
412                 list_del_init(&rps->link);
413                 spin_unlock(&rq->i915->rps.client_lock);
414         }
415
416         return timeout;
417 }
418
419 static long
420 i915_gem_object_wait_reservation(struct reservation_object *resv,
421                                  unsigned int flags,
422                                  long timeout,
423                                  struct intel_rps_client *rps)
424 {
425         unsigned int seq = __read_seqcount_begin(&resv->seq);
426         struct dma_fence *excl;
427         bool prune_fences = false;
428
429         if (flags & I915_WAIT_ALL) {
430                 struct dma_fence **shared;
431                 unsigned int count, i;
432                 int ret;
433
434                 ret = reservation_object_get_fences_rcu(resv,
435                                                         &excl, &count, &shared);
436                 if (ret)
437                         return ret;
438
439                 for (i = 0; i < count; i++) {
440                         timeout = i915_gem_object_wait_fence(shared[i],
441                                                              flags, timeout,
442                                                              rps);
443                         if (timeout < 0)
444                                 break;
445
446                         dma_fence_put(shared[i]);
447                 }
448
449                 for (; i < count; i++)
450                         dma_fence_put(shared[i]);
451                 kfree(shared);
452
453                 prune_fences = count && timeout >= 0;
454         } else {
455                 excl = reservation_object_get_excl_rcu(resv);
456         }
457
458         if (excl && timeout >= 0) {
459                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460                 prune_fences = timeout >= 0;
461         }
462
463         dma_fence_put(excl);
464
465         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
466                 reservation_object_lock(resv, NULL);
467                 if (!__read_seqcount_retry(&resv->seq, seq))
468                         reservation_object_add_excl_fence(resv, NULL);
469                 reservation_object_unlock(resv);
470         }
471
472         return timeout;
473 }
474
475 static void __fence_set_priority(struct dma_fence *fence, int prio)
476 {
477         struct drm_i915_gem_request *rq;
478         struct intel_engine_cs *engine;
479
480         if (!dma_fence_is_i915(fence))
481                 return;
482
483         rq = to_request(fence);
484         engine = rq->engine;
485         if (!engine->schedule)
486                 return;
487
488         engine->schedule(rq, prio);
489 }
490
491 static void fence_set_priority(struct dma_fence *fence, int prio)
492 {
493         /* Recurse once into a fence-array */
494         if (dma_fence_is_array(fence)) {
495                 struct dma_fence_array *array = to_dma_fence_array(fence);
496                 int i;
497
498                 for (i = 0; i < array->num_fences; i++)
499                         __fence_set_priority(array->fences[i], prio);
500         } else {
501                 __fence_set_priority(fence, prio);
502         }
503 }
504
505 int
506 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
507                               unsigned int flags,
508                               int prio)
509 {
510         struct dma_fence *excl;
511
512         if (flags & I915_WAIT_ALL) {
513                 struct dma_fence **shared;
514                 unsigned int count, i;
515                 int ret;
516
517                 ret = reservation_object_get_fences_rcu(obj->resv,
518                                                         &excl, &count, &shared);
519                 if (ret)
520                         return ret;
521
522                 for (i = 0; i < count; i++) {
523                         fence_set_priority(shared[i], prio);
524                         dma_fence_put(shared[i]);
525                 }
526
527                 kfree(shared);
528         } else {
529                 excl = reservation_object_get_excl_rcu(obj->resv);
530         }
531
532         if (excl) {
533                 fence_set_priority(excl, prio);
534                 dma_fence_put(excl);
535         }
536         return 0;
537 }
538
539 /**
540  * Waits for rendering to the object to be completed
541  * @obj: i915 gem object
542  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
543  * @timeout: how long to wait
544  * @rps: client (user process) to charge for any waitboosting
545  */
546 int
547 i915_gem_object_wait(struct drm_i915_gem_object *obj,
548                      unsigned int flags,
549                      long timeout,
550                      struct intel_rps_client *rps)
551 {
552         might_sleep();
553 #if IS_ENABLED(CONFIG_LOCKDEP)
554         GEM_BUG_ON(debug_locks &&
555                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
556                    !!(flags & I915_WAIT_LOCKED));
557 #endif
558         GEM_BUG_ON(timeout < 0);
559
560         timeout = i915_gem_object_wait_reservation(obj->resv,
561                                                    flags, timeout,
562                                                    rps);
563         return timeout < 0 ? timeout : 0;
564 }
565
566 static struct intel_rps_client *to_rps_client(struct drm_file *file)
567 {
568         struct drm_i915_file_private *fpriv = file->driver_priv;
569
570         return &fpriv->rps;
571 }
572
573 int
574 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
575                             int align)
576 {
577         int ret;
578
579         if (align > obj->base.size)
580                 return -EINVAL;
581
582         if (obj->ops == &i915_gem_phys_ops)
583                 return 0;
584
585         if (obj->mm.madv != I915_MADV_WILLNEED)
586                 return -EFAULT;
587
588         if (obj->base.filp == NULL)
589                 return -EINVAL;
590
591         ret = i915_gem_object_unbind(obj);
592         if (ret)
593                 return ret;
594
595         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596         if (obj->mm.pages)
597                 return -EBUSY;
598
599         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600         obj->ops = &i915_gem_phys_ops;
601
602         ret = i915_gem_object_pin_pages(obj);
603         if (ret)
604                 goto err_xfer;
605
606         return 0;
607
608 err_xfer:
609         obj->ops = &i915_gem_object_ops;
610         return ret;
611 }
612
613 static int
614 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
615                      struct drm_i915_gem_pwrite *args,
616                      struct drm_file *file)
617 {
618         void *vaddr = obj->phys_handle->vaddr + args->offset;
619         char __user *user_data = u64_to_user_ptr(args->data_ptr);
620
621         /* We manually control the domain here and pretend that it
622          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
623          */
624         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625         if (copy_from_user(vaddr, user_data, args->size))
626                 return -EFAULT;
627
628         drm_clflush_virt_range(vaddr, args->size);
629         i915_gem_chipset_flush(to_i915(obj->base.dev));
630
631         intel_fb_obj_flush(obj, ORIGIN_CPU);
632         return 0;
633 }
634
635 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636 {
637         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 }
639
640 void i915_gem_object_free(struct drm_i915_gem_object *obj)
641 {
642         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643         kmem_cache_free(dev_priv->objects, obj);
644 }
645
646 static int
647 i915_gem_create(struct drm_file *file,
648                 struct drm_i915_private *dev_priv,
649                 uint64_t size,
650                 uint32_t *handle_p)
651 {
652         struct drm_i915_gem_object *obj;
653         int ret;
654         u32 handle;
655
656         size = roundup(size, PAGE_SIZE);
657         if (size == 0)
658                 return -EINVAL;
659
660         /* Allocate the new object */
661         obj = i915_gem_object_create(dev_priv, size);
662         if (IS_ERR(obj))
663                 return PTR_ERR(obj);
664
665         ret = drm_gem_handle_create(file, &obj->base, &handle);
666         /* drop reference from allocate - handle holds it now */
667         i915_gem_object_put(obj);
668         if (ret)
669                 return ret;
670
671         *handle_p = handle;
672         return 0;
673 }
674
675 int
676 i915_gem_dumb_create(struct drm_file *file,
677                      struct drm_device *dev,
678                      struct drm_mode_create_dumb *args)
679 {
680         /* have to work out size/pitch and return them */
681         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682         args->size = args->pitch * args->height;
683         return i915_gem_create(file, to_i915(dev),
684                                args->size, &args->handle);
685 }
686
687 /**
688  * Creates a new mm object and returns a handle to it.
689  * @dev: drm device pointer
690  * @data: ioctl data blob
691  * @file: drm file pointer
692  */
693 int
694 i915_gem_create_ioctl(struct drm_device *dev, void *data,
695                       struct drm_file *file)
696 {
697         struct drm_i915_private *dev_priv = to_i915(dev);
698         struct drm_i915_gem_create *args = data;
699
700         i915_gem_flush_free_objects(dev_priv);
701
702         return i915_gem_create(file, dev_priv,
703                                args->size, &args->handle);
704 }
705
706 static inline int
707 __copy_to_user_swizzled(char __user *cpu_vaddr,
708                         const char *gpu_vaddr, int gpu_offset,
709                         int length)
710 {
711         int ret, cpu_offset = 0;
712
713         while (length > 0) {
714                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
715                 int this_length = min(cacheline_end - gpu_offset, length);
716                 int swizzled_gpu_offset = gpu_offset ^ 64;
717
718                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
719                                      gpu_vaddr + swizzled_gpu_offset,
720                                      this_length);
721                 if (ret)
722                         return ret + length;
723
724                 cpu_offset += this_length;
725                 gpu_offset += this_length;
726                 length -= this_length;
727         }
728
729         return 0;
730 }
731
732 static inline int
733 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
734                           const char __user *cpu_vaddr,
735                           int length)
736 {
737         int ret, cpu_offset = 0;
738
739         while (length > 0) {
740                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
741                 int this_length = min(cacheline_end - gpu_offset, length);
742                 int swizzled_gpu_offset = gpu_offset ^ 64;
743
744                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
745                                        cpu_vaddr + cpu_offset,
746                                        this_length);
747                 if (ret)
748                         return ret + length;
749
750                 cpu_offset += this_length;
751                 gpu_offset += this_length;
752                 length -= this_length;
753         }
754
755         return 0;
756 }
757
758 /*
759  * Pins the specified object's pages and synchronizes the object with
760  * GPU accesses. Sets needs_clflush to non-zero if the caller should
761  * flush the object from the CPU cache.
762  */
763 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764                                     unsigned int *needs_clflush)
765 {
766         int ret;
767
768         lockdep_assert_held(&obj->base.dev->struct_mutex);
769
770         *needs_clflush = 0;
771         if (!i915_gem_object_has_struct_page(obj))
772                 return -ENODEV;
773
774         ret = i915_gem_object_wait(obj,
775                                    I915_WAIT_INTERRUPTIBLE |
776                                    I915_WAIT_LOCKED,
777                                    MAX_SCHEDULE_TIMEOUT,
778                                    NULL);
779         if (ret)
780                 return ret;
781
782         ret = i915_gem_object_pin_pages(obj);
783         if (ret)
784                 return ret;
785
786         i915_gem_object_flush_gtt_write_domain(obj);
787
788         /* If we're not in the cpu read domain, set ourself into the gtt
789          * read domain and manually flush cachelines (if required). This
790          * optimizes for the case when the gpu will dirty the data
791          * anyway again before the next pread happens.
792          */
793         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794                 *needs_clflush = !i915_gem_object_is_coherent(obj);
795
796         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
797                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
798                 if (ret)
799                         goto err_unpin;
800
801                 *needs_clflush = 0;
802         }
803
804         /* return with the pages pinned */
805         return 0;
806
807 err_unpin:
808         i915_gem_object_unpin_pages(obj);
809         return ret;
810 }
811
812 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
813                                      unsigned int *needs_clflush)
814 {
815         int ret;
816
817         lockdep_assert_held(&obj->base.dev->struct_mutex);
818
819         *needs_clflush = 0;
820         if (!i915_gem_object_has_struct_page(obj))
821                 return -ENODEV;
822
823         ret = i915_gem_object_wait(obj,
824                                    I915_WAIT_INTERRUPTIBLE |
825                                    I915_WAIT_LOCKED |
826                                    I915_WAIT_ALL,
827                                    MAX_SCHEDULE_TIMEOUT,
828                                    NULL);
829         if (ret)
830                 return ret;
831
832         ret = i915_gem_object_pin_pages(obj);
833         if (ret)
834                 return ret;
835
836         i915_gem_object_flush_gtt_write_domain(obj);
837
838         /* If we're not in the cpu write domain, set ourself into the
839          * gtt write domain and manually flush cachelines (as required).
840          * This optimizes for the case when the gpu will use the data
841          * right away and we therefore have to clflush anyway.
842          */
843         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
844                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
845
846         /* Same trick applies to invalidate partially written cachelines read
847          * before writing.
848          */
849         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850                 *needs_clflush |= !i915_gem_object_is_coherent(obj);
851
852         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
853                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
854                 if (ret)
855                         goto err_unpin;
856
857                 *needs_clflush = 0;
858         }
859
860         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
861                 obj->cache_dirty = true;
862
863         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
864         obj->mm.dirty = true;
865         /* return with the pages pinned */
866         return 0;
867
868 err_unpin:
869         i915_gem_object_unpin_pages(obj);
870         return ret;
871 }
872
873 static void
874 shmem_clflush_swizzled_range(char *addr, unsigned long length,
875                              bool swizzled)
876 {
877         if (unlikely(swizzled)) {
878                 unsigned long start = (unsigned long) addr;
879                 unsigned long end = (unsigned long) addr + length;
880
881                 /* For swizzling simply ensure that we always flush both
882                  * channels. Lame, but simple and it works. Swizzled
883                  * pwrite/pread is far from a hotpath - current userspace
884                  * doesn't use it at all. */
885                 start = round_down(start, 128);
886                 end = round_up(end, 128);
887
888                 drm_clflush_virt_range((void *)start, end - start);
889         } else {
890                 drm_clflush_virt_range(addr, length);
891         }
892
893 }
894
895 /* Only difference to the fast-path function is that this can handle bit17
896  * and uses non-atomic copy and kmap functions. */
897 static int
898 shmem_pread_slow(struct page *page, int offset, int length,
899                  char __user *user_data,
900                  bool page_do_bit17_swizzling, bool needs_clflush)
901 {
902         char *vaddr;
903         int ret;
904
905         vaddr = kmap(page);
906         if (needs_clflush)
907                 shmem_clflush_swizzled_range(vaddr + offset, length,
908                                              page_do_bit17_swizzling);
909
910         if (page_do_bit17_swizzling)
911                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
912         else
913                 ret = __copy_to_user(user_data, vaddr + offset, length);
914         kunmap(page);
915
916         return ret ? - EFAULT : 0;
917 }
918
919 static int
920 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
921             bool page_do_bit17_swizzling, bool needs_clflush)
922 {
923         int ret;
924
925         ret = -ENODEV;
926         if (!page_do_bit17_swizzling) {
927                 char *vaddr = kmap_atomic(page);
928
929                 if (needs_clflush)
930                         drm_clflush_virt_range(vaddr + offset, length);
931                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
932                 kunmap_atomic(vaddr);
933         }
934         if (ret == 0)
935                 return 0;
936
937         return shmem_pread_slow(page, offset, length, user_data,
938                                 page_do_bit17_swizzling, needs_clflush);
939 }
940
941 static int
942 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
943                      struct drm_i915_gem_pread *args)
944 {
945         char __user *user_data;
946         u64 remain;
947         unsigned int obj_do_bit17_swizzling;
948         unsigned int needs_clflush;
949         unsigned int idx, offset;
950         int ret;
951
952         obj_do_bit17_swizzling = 0;
953         if (i915_gem_object_needs_bit17_swizzle(obj))
954                 obj_do_bit17_swizzling = BIT(17);
955
956         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
957         if (ret)
958                 return ret;
959
960         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
961         mutex_unlock(&obj->base.dev->struct_mutex);
962         if (ret)
963                 return ret;
964
965         remain = args->size;
966         user_data = u64_to_user_ptr(args->data_ptr);
967         offset = offset_in_page(args->offset);
968         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
969                 struct page *page = i915_gem_object_get_page(obj, idx);
970                 int length;
971
972                 length = remain;
973                 if (offset + length > PAGE_SIZE)
974                         length = PAGE_SIZE - offset;
975
976                 ret = shmem_pread(page, offset, length, user_data,
977                                   page_to_phys(page) & obj_do_bit17_swizzling,
978                                   needs_clflush);
979                 if (ret)
980                         break;
981
982                 remain -= length;
983                 user_data += length;
984                 offset = 0;
985         }
986
987         i915_gem_obj_finish_shmem_access(obj);
988         return ret;
989 }
990
991 static inline bool
992 gtt_user_read(struct io_mapping *mapping,
993               loff_t base, int offset,
994               char __user *user_data, int length)
995 {
996         void *vaddr;
997         unsigned long unwritten;
998
999         /* We can use the cpu mem copy function because this is X86. */
1000         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1001         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1002         io_mapping_unmap_atomic(vaddr);
1003         if (unwritten) {
1004                 vaddr = (void __force *)
1005                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1006                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1007                 io_mapping_unmap(vaddr);
1008         }
1009         return unwritten;
1010 }
1011
1012 static int
1013 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1014                    const struct drm_i915_gem_pread *args)
1015 {
1016         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1017         struct i915_ggtt *ggtt = &i915->ggtt;
1018         struct drm_mm_node node;
1019         struct i915_vma *vma;
1020         void __user *user_data;
1021         u64 remain, offset;
1022         int ret;
1023
1024         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1025         if (ret)
1026                 return ret;
1027
1028         intel_runtime_pm_get(i915);
1029         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1030                                        PIN_MAPPABLE | PIN_NONBLOCK);
1031         if (!IS_ERR(vma)) {
1032                 node.start = i915_ggtt_offset(vma);
1033                 node.allocated = false;
1034                 ret = i915_vma_put_fence(vma);
1035                 if (ret) {
1036                         i915_vma_unpin(vma);
1037                         vma = ERR_PTR(ret);
1038                 }
1039         }
1040         if (IS_ERR(vma)) {
1041                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1042                 if (ret)
1043                         goto out_unlock;
1044                 GEM_BUG_ON(!node.allocated);
1045         }
1046
1047         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1048         if (ret)
1049                 goto out_unpin;
1050
1051         mutex_unlock(&i915->drm.struct_mutex);
1052
1053         user_data = u64_to_user_ptr(args->data_ptr);
1054         remain = args->size;
1055         offset = args->offset;
1056
1057         while (remain > 0) {
1058                 /* Operation in this page
1059                  *
1060                  * page_base = page offset within aperture
1061                  * page_offset = offset within page
1062                  * page_length = bytes to copy for this page
1063                  */
1064                 u32 page_base = node.start;
1065                 unsigned page_offset = offset_in_page(offset);
1066                 unsigned page_length = PAGE_SIZE - page_offset;
1067                 page_length = remain < page_length ? remain : page_length;
1068                 if (node.allocated) {
1069                         wmb();
1070                         ggtt->base.insert_page(&ggtt->base,
1071                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072                                                node.start, I915_CACHE_NONE, 0);
1073                         wmb();
1074                 } else {
1075                         page_base += offset & PAGE_MASK;
1076                 }
1077
1078                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1079                                   user_data, page_length)) {
1080                         ret = -EFAULT;
1081                         break;
1082                 }
1083
1084                 remain -= page_length;
1085                 user_data += page_length;
1086                 offset += page_length;
1087         }
1088
1089         mutex_lock(&i915->drm.struct_mutex);
1090 out_unpin:
1091         if (node.allocated) {
1092                 wmb();
1093                 ggtt->base.clear_range(&ggtt->base,
1094                                        node.start, node.size);
1095                 remove_mappable_node(&node);
1096         } else {
1097                 i915_vma_unpin(vma);
1098         }
1099 out_unlock:
1100         intel_runtime_pm_put(i915);
1101         mutex_unlock(&i915->drm.struct_mutex);
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * Reads data from the object referenced by handle.
1108  * @dev: drm device pointer
1109  * @data: ioctl data blob
1110  * @file: drm file pointer
1111  *
1112  * On error, the contents of *data are undefined.
1113  */
1114 int
1115 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116                      struct drm_file *file)
1117 {
1118         struct drm_i915_gem_pread *args = data;
1119         struct drm_i915_gem_object *obj;
1120         int ret;
1121
1122         if (args->size == 0)
1123                 return 0;
1124
1125         if (!access_ok(VERIFY_WRITE,
1126                        u64_to_user_ptr(args->data_ptr),
1127                        args->size))
1128                 return -EFAULT;
1129
1130         obj = i915_gem_object_lookup(file, args->handle);
1131         if (!obj)
1132                 return -ENOENT;
1133
1134         /* Bounds check source.  */
1135         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1136                 ret = -EINVAL;
1137                 goto out;
1138         }
1139
1140         trace_i915_gem_object_pread(obj, args->offset, args->size);
1141
1142         ret = i915_gem_object_wait(obj,
1143                                    I915_WAIT_INTERRUPTIBLE,
1144                                    MAX_SCHEDULE_TIMEOUT,
1145                                    to_rps_client(file));
1146         if (ret)
1147                 goto out;
1148
1149         ret = i915_gem_object_pin_pages(obj);
1150         if (ret)
1151                 goto out;
1152
1153         ret = i915_gem_shmem_pread(obj, args);
1154         if (ret == -EFAULT || ret == -ENODEV)
1155                 ret = i915_gem_gtt_pread(obj, args);
1156
1157         i915_gem_object_unpin_pages(obj);
1158 out:
1159         i915_gem_object_put(obj);
1160         return ret;
1161 }
1162
1163 /* This is the fast write path which cannot handle
1164  * page faults in the source data
1165  */
1166
1167 static inline bool
1168 ggtt_write(struct io_mapping *mapping,
1169            loff_t base, int offset,
1170            char __user *user_data, int length)
1171 {
1172         void *vaddr;
1173         unsigned long unwritten;
1174
1175         /* We can use the cpu mem copy function because this is X86. */
1176         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1177         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178                                                       user_data, length);
1179         io_mapping_unmap_atomic(vaddr);
1180         if (unwritten) {
1181                 vaddr = (void __force *)
1182                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1183                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1184                 io_mapping_unmap(vaddr);
1185         }
1186
1187         return unwritten;
1188 }
1189
1190 /**
1191  * This is the fast pwrite path, where we copy the data directly from the
1192  * user into the GTT, uncached.
1193  * @obj: i915 GEM object
1194  * @args: pwrite arguments structure
1195  */
1196 static int
1197 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1198                          const struct drm_i915_gem_pwrite *args)
1199 {
1200         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201         struct i915_ggtt *ggtt = &i915->ggtt;
1202         struct drm_mm_node node;
1203         struct i915_vma *vma;
1204         u64 remain, offset;
1205         void __user *user_data;
1206         int ret;
1207
1208         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1209         if (ret)
1210                 return ret;
1211
1212         intel_runtime_pm_get(i915);
1213         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214                                        PIN_MAPPABLE | PIN_NONBLOCK);
1215         if (!IS_ERR(vma)) {
1216                 node.start = i915_ggtt_offset(vma);
1217                 node.allocated = false;
1218                 ret = i915_vma_put_fence(vma);
1219                 if (ret) {
1220                         i915_vma_unpin(vma);
1221                         vma = ERR_PTR(ret);
1222                 }
1223         }
1224         if (IS_ERR(vma)) {
1225                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226                 if (ret)
1227                         goto out_unlock;
1228                 GEM_BUG_ON(!node.allocated);
1229         }
1230
1231         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1232         if (ret)
1233                 goto out_unpin;
1234
1235         mutex_unlock(&i915->drm.struct_mutex);
1236
1237         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238
1239         user_data = u64_to_user_ptr(args->data_ptr);
1240         offset = args->offset;
1241         remain = args->size;
1242         while (remain) {
1243                 /* Operation in this page
1244                  *
1245                  * page_base = page offset within aperture
1246                  * page_offset = offset within page
1247                  * page_length = bytes to copy for this page
1248                  */
1249                 u32 page_base = node.start;
1250                 unsigned int page_offset = offset_in_page(offset);
1251                 unsigned int page_length = PAGE_SIZE - page_offset;
1252                 page_length = remain < page_length ? remain : page_length;
1253                 if (node.allocated) {
1254                         wmb(); /* flush the write before we modify the GGTT */
1255                         ggtt->base.insert_page(&ggtt->base,
1256                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1257                                                node.start, I915_CACHE_NONE, 0);
1258                         wmb(); /* flush modifications to the GGTT (insert_page) */
1259                 } else {
1260                         page_base += offset & PAGE_MASK;
1261                 }
1262                 /* If we get a fault while copying data, then (presumably) our
1263                  * source page isn't available.  Return the error and we'll
1264                  * retry in the slow path.
1265                  * If the object is non-shmem backed, we retry again with the
1266                  * path that handles page fault.
1267                  */
1268                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1269                                user_data, page_length)) {
1270                         ret = -EFAULT;
1271                         break;
1272                 }
1273
1274                 remain -= page_length;
1275                 user_data += page_length;
1276                 offset += page_length;
1277         }
1278         intel_fb_obj_flush(obj, ORIGIN_CPU);
1279
1280         mutex_lock(&i915->drm.struct_mutex);
1281 out_unpin:
1282         if (node.allocated) {
1283                 wmb();
1284                 ggtt->base.clear_range(&ggtt->base,
1285                                        node.start, node.size);
1286                 remove_mappable_node(&node);
1287         } else {
1288                 i915_vma_unpin(vma);
1289         }
1290 out_unlock:
1291         intel_runtime_pm_put(i915);
1292         mutex_unlock(&i915->drm.struct_mutex);
1293         return ret;
1294 }
1295
1296 static int
1297 shmem_pwrite_slow(struct page *page, int offset, int length,
1298                   char __user *user_data,
1299                   bool page_do_bit17_swizzling,
1300                   bool needs_clflush_before,
1301                   bool needs_clflush_after)
1302 {
1303         char *vaddr;
1304         int ret;
1305
1306         vaddr = kmap(page);
1307         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308                 shmem_clflush_swizzled_range(vaddr + offset, length,
1309                                              page_do_bit17_swizzling);
1310         if (page_do_bit17_swizzling)
1311                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1312                                                 length);
1313         else
1314                 ret = __copy_from_user(vaddr + offset, user_data, length);
1315         if (needs_clflush_after)
1316                 shmem_clflush_swizzled_range(vaddr + offset, length,
1317                                              page_do_bit17_swizzling);
1318         kunmap(page);
1319
1320         return ret ? -EFAULT : 0;
1321 }
1322
1323 /* Per-page copy function for the shmem pwrite fastpath.
1324  * Flushes invalid cachelines before writing to the target if
1325  * needs_clflush_before is set and flushes out any written cachelines after
1326  * writing if needs_clflush is set.
1327  */
1328 static int
1329 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1330              bool page_do_bit17_swizzling,
1331              bool needs_clflush_before,
1332              bool needs_clflush_after)
1333 {
1334         int ret;
1335
1336         ret = -ENODEV;
1337         if (!page_do_bit17_swizzling) {
1338                 char *vaddr = kmap_atomic(page);
1339
1340                 if (needs_clflush_before)
1341                         drm_clflush_virt_range(vaddr + offset, len);
1342                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1343                 if (needs_clflush_after)
1344                         drm_clflush_virt_range(vaddr + offset, len);
1345
1346                 kunmap_atomic(vaddr);
1347         }
1348         if (ret == 0)
1349                 return ret;
1350
1351         return shmem_pwrite_slow(page, offset, len, user_data,
1352                                  page_do_bit17_swizzling,
1353                                  needs_clflush_before,
1354                                  needs_clflush_after);
1355 }
1356
1357 static int
1358 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1359                       const struct drm_i915_gem_pwrite *args)
1360 {
1361         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1362         void __user *user_data;
1363         u64 remain;
1364         unsigned int obj_do_bit17_swizzling;
1365         unsigned int partial_cacheline_write;
1366         unsigned int needs_clflush;
1367         unsigned int offset, idx;
1368         int ret;
1369
1370         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371         if (ret)
1372                 return ret;
1373
1374         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1375         mutex_unlock(&i915->drm.struct_mutex);
1376         if (ret)
1377                 return ret;
1378
1379         obj_do_bit17_swizzling = 0;
1380         if (i915_gem_object_needs_bit17_swizzle(obj))
1381                 obj_do_bit17_swizzling = BIT(17);
1382
1383         /* If we don't overwrite a cacheline completely we need to be
1384          * careful to have up-to-date data by first clflushing. Don't
1385          * overcomplicate things and flush the entire patch.
1386          */
1387         partial_cacheline_write = 0;
1388         if (needs_clflush & CLFLUSH_BEFORE)
1389                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390
1391         user_data = u64_to_user_ptr(args->data_ptr);
1392         remain = args->size;
1393         offset = offset_in_page(args->offset);
1394         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1395                 struct page *page = i915_gem_object_get_page(obj, idx);
1396                 int length;
1397
1398                 length = remain;
1399                 if (offset + length > PAGE_SIZE)
1400                         length = PAGE_SIZE - offset;
1401
1402                 ret = shmem_pwrite(page, offset, length, user_data,
1403                                    page_to_phys(page) & obj_do_bit17_swizzling,
1404                                    (offset | length) & partial_cacheline_write,
1405                                    needs_clflush & CLFLUSH_AFTER);
1406                 if (ret)
1407                         break;
1408
1409                 remain -= length;
1410                 user_data += length;
1411                 offset = 0;
1412         }
1413
1414         intel_fb_obj_flush(obj, ORIGIN_CPU);
1415         i915_gem_obj_finish_shmem_access(obj);
1416         return ret;
1417 }
1418
1419 /**
1420  * Writes data to the object referenced by handle.
1421  * @dev: drm device
1422  * @data: ioctl data blob
1423  * @file: drm file
1424  *
1425  * On error, the contents of the buffer that were to be modified are undefined.
1426  */
1427 int
1428 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429                       struct drm_file *file)
1430 {
1431         struct drm_i915_gem_pwrite *args = data;
1432         struct drm_i915_gem_object *obj;
1433         int ret;
1434
1435         if (args->size == 0)
1436                 return 0;
1437
1438         if (!access_ok(VERIFY_READ,
1439                        u64_to_user_ptr(args->data_ptr),
1440                        args->size))
1441                 return -EFAULT;
1442
1443         obj = i915_gem_object_lookup(file, args->handle);
1444         if (!obj)
1445                 return -ENOENT;
1446
1447         /* Bounds check destination. */
1448         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1449                 ret = -EINVAL;
1450                 goto err;
1451         }
1452
1453         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1454
1455         ret = -ENODEV;
1456         if (obj->ops->pwrite)
1457                 ret = obj->ops->pwrite(obj, args);
1458         if (ret != -ENODEV)
1459                 goto err;
1460
1461         ret = i915_gem_object_wait(obj,
1462                                    I915_WAIT_INTERRUPTIBLE |
1463                                    I915_WAIT_ALL,
1464                                    MAX_SCHEDULE_TIMEOUT,
1465                                    to_rps_client(file));
1466         if (ret)
1467                 goto err;
1468
1469         ret = i915_gem_object_pin_pages(obj);
1470         if (ret)
1471                 goto err;
1472
1473         ret = -EFAULT;
1474         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1475          * it would end up going through the fenced access, and we'll get
1476          * different detiling behavior between reading and writing.
1477          * pread/pwrite currently are reading and writing from the CPU
1478          * perspective, requiring manual detiling by the client.
1479          */
1480         if (!i915_gem_object_has_struct_page(obj) ||
1481             cpu_write_needs_clflush(obj))
1482                 /* Note that the gtt paths might fail with non-page-backed user
1483                  * pointers (e.g. gtt mappings when moving data between
1484                  * textures). Fallback to the shmem path in that case.
1485                  */
1486                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1487
1488         if (ret == -EFAULT || ret == -ENOSPC) {
1489                 if (obj->phys_handle)
1490                         ret = i915_gem_phys_pwrite(obj, args, file);
1491                 else
1492                         ret = i915_gem_shmem_pwrite(obj, args);
1493         }
1494
1495         i915_gem_object_unpin_pages(obj);
1496 err:
1497         i915_gem_object_put(obj);
1498         return ret;
1499 }
1500
1501 static inline enum fb_op_origin
1502 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1503 {
1504         return (domain == I915_GEM_DOMAIN_GTT ?
1505                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1506 }
1507
1508 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1509 {
1510         struct drm_i915_private *i915;
1511         struct list_head *list;
1512         struct i915_vma *vma;
1513
1514         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1515                 if (!i915_vma_is_ggtt(vma))
1516                         break;
1517
1518                 if (i915_vma_is_active(vma))
1519                         continue;
1520
1521                 if (!drm_mm_node_allocated(&vma->node))
1522                         continue;
1523
1524                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1525         }
1526
1527         i915 = to_i915(obj->base.dev);
1528         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1529         list_move_tail(&obj->global_link, list);
1530 }
1531
1532 /**
1533  * Called when user space prepares to use an object with the CPU, either
1534  * through the mmap ioctl's mapping or a GTT mapping.
1535  * @dev: drm device
1536  * @data: ioctl data blob
1537  * @file: drm file
1538  */
1539 int
1540 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1541                           struct drm_file *file)
1542 {
1543         struct drm_i915_gem_set_domain *args = data;
1544         struct drm_i915_gem_object *obj;
1545         uint32_t read_domains = args->read_domains;
1546         uint32_t write_domain = args->write_domain;
1547         int err;
1548
1549         /* Only handle setting domains to types used by the CPU. */
1550         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1551                 return -EINVAL;
1552
1553         /* Having something in the write domain implies it's in the read
1554          * domain, and only that read domain.  Enforce that in the request.
1555          */
1556         if (write_domain != 0 && read_domains != write_domain)
1557                 return -EINVAL;
1558
1559         obj = i915_gem_object_lookup(file, args->handle);
1560         if (!obj)
1561                 return -ENOENT;
1562
1563         /* Try to flush the object off the GPU without holding the lock.
1564          * We will repeat the flush holding the lock in the normal manner
1565          * to catch cases where we are gazumped.
1566          */
1567         err = i915_gem_object_wait(obj,
1568                                    I915_WAIT_INTERRUPTIBLE |
1569                                    (write_domain ? I915_WAIT_ALL : 0),
1570                                    MAX_SCHEDULE_TIMEOUT,
1571                                    to_rps_client(file));
1572         if (err)
1573                 goto out;
1574
1575         /* Flush and acquire obj->pages so that we are coherent through
1576          * direct access in memory with previous cached writes through
1577          * shmemfs and that our cache domain tracking remains valid.
1578          * For example, if the obj->filp was moved to swap without us
1579          * being notified and releasing the pages, we would mistakenly
1580          * continue to assume that the obj remained out of the CPU cached
1581          * domain.
1582          */
1583         err = i915_gem_object_pin_pages(obj);
1584         if (err)
1585                 goto out;
1586
1587         err = i915_mutex_lock_interruptible(dev);
1588         if (err)
1589                 goto out_unpin;
1590
1591         if (read_domains & I915_GEM_DOMAIN_GTT)
1592                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1593         else
1594                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1595
1596         /* And bump the LRU for this access */
1597         i915_gem_object_bump_inactive_ggtt(obj);
1598
1599         mutex_unlock(&dev->struct_mutex);
1600
1601         if (write_domain != 0)
1602                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1603
1604 out_unpin:
1605         i915_gem_object_unpin_pages(obj);
1606 out:
1607         i915_gem_object_put(obj);
1608         return err;
1609 }
1610
1611 /**
1612  * Called when user space has done writes to this buffer
1613  * @dev: drm device
1614  * @data: ioctl data blob
1615  * @file: drm file
1616  */
1617 int
1618 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1619                          struct drm_file *file)
1620 {
1621         struct drm_i915_gem_sw_finish *args = data;
1622         struct drm_i915_gem_object *obj;
1623
1624         obj = i915_gem_object_lookup(file, args->handle);
1625         if (!obj)
1626                 return -ENOENT;
1627
1628         /* Pinned buffers may be scanout, so flush the cache */
1629         i915_gem_object_flush_if_display(obj);
1630         i915_gem_object_put(obj);
1631
1632         return 0;
1633 }
1634
1635 /**
1636  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1637  *                       it is mapped to.
1638  * @dev: drm device
1639  * @data: ioctl data blob
1640  * @file: drm file
1641  *
1642  * While the mapping holds a reference on the contents of the object, it doesn't
1643  * imply a ref on the object itself.
1644  *
1645  * IMPORTANT:
1646  *
1647  * DRM driver writers who look a this function as an example for how to do GEM
1648  * mmap support, please don't implement mmap support like here. The modern way
1649  * to implement DRM mmap support is with an mmap offset ioctl (like
1650  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1651  * That way debug tooling like valgrind will understand what's going on, hiding
1652  * the mmap call in a driver private ioctl will break that. The i915 driver only
1653  * does cpu mmaps this way because we didn't know better.
1654  */
1655 int
1656 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1657                     struct drm_file *file)
1658 {
1659         struct drm_i915_gem_mmap *args = data;
1660         struct drm_i915_gem_object *obj;
1661         unsigned long addr;
1662
1663         if (args->flags & ~(I915_MMAP_WC))
1664                 return -EINVAL;
1665
1666         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1667                 return -ENODEV;
1668
1669         obj = i915_gem_object_lookup(file, args->handle);
1670         if (!obj)
1671                 return -ENOENT;
1672
1673         /* prime objects have no backing filp to GEM mmap
1674          * pages from.
1675          */
1676         if (!obj->base.filp) {
1677                 i915_gem_object_put(obj);
1678                 return -EINVAL;
1679         }
1680
1681         addr = vm_mmap(obj->base.filp, 0, args->size,
1682                        PROT_READ | PROT_WRITE, MAP_SHARED,
1683                        args->offset);
1684         if (args->flags & I915_MMAP_WC) {
1685                 struct mm_struct *mm = current->mm;
1686                 struct vm_area_struct *vma;
1687
1688                 if (down_write_killable(&mm->mmap_sem)) {
1689                         i915_gem_object_put(obj);
1690                         return -EINTR;
1691                 }
1692                 vma = find_vma(mm, addr);
1693                 if (vma)
1694                         vma->vm_page_prot =
1695                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1696                 else
1697                         addr = -ENOMEM;
1698                 up_write(&mm->mmap_sem);
1699
1700                 /* This may race, but that's ok, it only gets set */
1701                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1702         }
1703         i915_gem_object_put(obj);
1704         if (IS_ERR((void *)addr))
1705                 return addr;
1706
1707         args->addr_ptr = (uint64_t) addr;
1708
1709         return 0;
1710 }
1711
1712 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1713 {
1714         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1715 }
1716
1717 /**
1718  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1719  *
1720  * A history of the GTT mmap interface:
1721  *
1722  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1723  *     aligned and suitable for fencing, and still fit into the available
1724  *     mappable space left by the pinned display objects. A classic problem
1725  *     we called the page-fault-of-doom where we would ping-pong between
1726  *     two objects that could not fit inside the GTT and so the memcpy
1727  *     would page one object in at the expense of the other between every
1728  *     single byte.
1729  *
1730  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1731  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1732  *     object is too large for the available space (or simply too large
1733  *     for the mappable aperture!), a view is created instead and faulted
1734  *     into userspace. (This view is aligned and sized appropriately for
1735  *     fenced access.)
1736  *
1737  * Restrictions:
1738  *
1739  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1740  *    hangs on some architectures, corruption on others. An attempt to service
1741  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1742  *
1743  *  * the object must be able to fit into RAM (physical memory, though no
1744  *    limited to the mappable aperture).
1745  *
1746  *
1747  * Caveats:
1748  *
1749  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1750  *    all data to system memory. Subsequent access will not be synchronized.
1751  *
1752  *  * all mappings are revoked on runtime device suspend.
1753  *
1754  *  * there are only 8, 16 or 32 fence registers to share between all users
1755  *    (older machines require fence register for display and blitter access
1756  *    as well). Contention of the fence registers will cause the previous users
1757  *    to be unmapped and any new access will generate new page faults.
1758  *
1759  *  * running out of memory while servicing a fault may generate a SIGBUS,
1760  *    rather than the expected SIGSEGV.
1761  */
1762 int i915_gem_mmap_gtt_version(void)
1763 {
1764         return 1;
1765 }
1766
1767 static inline struct i915_ggtt_view
1768 compute_partial_view(struct drm_i915_gem_object *obj,
1769                      pgoff_t page_offset,
1770                      unsigned int chunk)
1771 {
1772         struct i915_ggtt_view view;
1773
1774         if (i915_gem_object_is_tiled(obj))
1775                 chunk = roundup(chunk, tile_row_pages(obj));
1776
1777         view.type = I915_GGTT_VIEW_PARTIAL;
1778         view.partial.offset = rounddown(page_offset, chunk);
1779         view.partial.size =
1780                 min_t(unsigned int, chunk,
1781                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1782
1783         /* If the partial covers the entire object, just create a normal VMA. */
1784         if (chunk >= obj->base.size >> PAGE_SHIFT)
1785                 view.type = I915_GGTT_VIEW_NORMAL;
1786
1787         return view;
1788 }
1789
1790 /**
1791  * i915_gem_fault - fault a page into the GTT
1792  * @vmf: fault info
1793  *
1794  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1795  * from userspace.  The fault handler takes care of binding the object to
1796  * the GTT (if needed), allocating and programming a fence register (again,
1797  * only if needed based on whether the old reg is still valid or the object
1798  * is tiled) and inserting a new PTE into the faulting process.
1799  *
1800  * Note that the faulting process may involve evicting existing objects
1801  * from the GTT and/or fence registers to make room.  So performance may
1802  * suffer if the GTT working set is large or there are few fence registers
1803  * left.
1804  *
1805  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1806  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1807  */
1808 int i915_gem_fault(struct vm_fault *vmf)
1809 {
1810 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1811         struct vm_area_struct *area = vmf->vma;
1812         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1813         struct drm_device *dev = obj->base.dev;
1814         struct drm_i915_private *dev_priv = to_i915(dev);
1815         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1816         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1817         struct i915_vma *vma;
1818         pgoff_t page_offset;
1819         unsigned int flags;
1820         int ret;
1821
1822         /* We don't use vmf->pgoff since that has the fake offset */
1823         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1824
1825         trace_i915_gem_object_fault(obj, page_offset, true, write);
1826
1827         /* Try to flush the object off the GPU first without holding the lock.
1828          * Upon acquiring the lock, we will perform our sanity checks and then
1829          * repeat the flush holding the lock in the normal manner to catch cases
1830          * where we are gazumped.
1831          */
1832         ret = i915_gem_object_wait(obj,
1833                                    I915_WAIT_INTERRUPTIBLE,
1834                                    MAX_SCHEDULE_TIMEOUT,
1835                                    NULL);
1836         if (ret)
1837                 goto err;
1838
1839         ret = i915_gem_object_pin_pages(obj);
1840         if (ret)
1841                 goto err;
1842
1843         intel_runtime_pm_get(dev_priv);
1844
1845         ret = i915_mutex_lock_interruptible(dev);
1846         if (ret)
1847                 goto err_rpm;
1848
1849         /* Access to snoopable pages through the GTT is incoherent. */
1850         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1851                 ret = -EFAULT;
1852                 goto err_unlock;
1853         }
1854
1855         /* If the object is smaller than a couple of partial vma, it is
1856          * not worth only creating a single partial vma - we may as well
1857          * clear enough space for the full object.
1858          */
1859         flags = PIN_MAPPABLE;
1860         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1861                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1862
1863         /* Now pin it into the GTT as needed */
1864         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1865         if (IS_ERR(vma)) {
1866                 /* Use a partial view if it is bigger than available space */
1867                 struct i915_ggtt_view view =
1868                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1869
1870                 /* Userspace is now writing through an untracked VMA, abandon
1871                  * all hope that the hardware is able to track future writes.
1872                  */
1873                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1874
1875                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1876         }
1877         if (IS_ERR(vma)) {
1878                 ret = PTR_ERR(vma);
1879                 goto err_unlock;
1880         }
1881
1882         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1883         if (ret)
1884                 goto err_unpin;
1885
1886         ret = i915_vma_get_fence(vma);
1887         if (ret)
1888                 goto err_unpin;
1889
1890         /* Mark as being mmapped into userspace for later revocation */
1891         assert_rpm_wakelock_held(dev_priv);
1892         if (list_empty(&obj->userfault_link))
1893                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1894
1895         /* Finally, remap it using the new GTT offset */
1896         ret = remap_io_mapping(area,
1897                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1898                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1899                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1900                                &ggtt->mappable);
1901
1902 err_unpin:
1903         __i915_vma_unpin(vma);
1904 err_unlock:
1905         mutex_unlock(&dev->struct_mutex);
1906 err_rpm:
1907         intel_runtime_pm_put(dev_priv);
1908         i915_gem_object_unpin_pages(obj);
1909 err:
1910         switch (ret) {
1911         case -EIO:
1912                 /*
1913                  * We eat errors when the gpu is terminally wedged to avoid
1914                  * userspace unduly crashing (gl has no provisions for mmaps to
1915                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1916                  * and so needs to be reported.
1917                  */
1918                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1919                         ret = VM_FAULT_SIGBUS;
1920                         break;
1921                 }
1922         case -EAGAIN:
1923                 /*
1924                  * EAGAIN means the gpu is hung and we'll wait for the error
1925                  * handler to reset everything when re-faulting in
1926                  * i915_mutex_lock_interruptible.
1927                  */
1928         case 0:
1929         case -ERESTARTSYS:
1930         case -EINTR:
1931         case -EBUSY:
1932                 /*
1933                  * EBUSY is ok: this just means that another thread
1934                  * already did the job.
1935                  */
1936                 ret = VM_FAULT_NOPAGE;
1937                 break;
1938         case -ENOMEM:
1939                 ret = VM_FAULT_OOM;
1940                 break;
1941         case -ENOSPC:
1942         case -EFAULT:
1943                 ret = VM_FAULT_SIGBUS;
1944                 break;
1945         default:
1946                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1947                 ret = VM_FAULT_SIGBUS;
1948                 break;
1949         }
1950         return ret;
1951 }
1952
1953 /**
1954  * i915_gem_release_mmap - remove physical page mappings
1955  * @obj: obj in question
1956  *
1957  * Preserve the reservation of the mmapping with the DRM core code, but
1958  * relinquish ownership of the pages back to the system.
1959  *
1960  * It is vital that we remove the page mapping if we have mapped a tiled
1961  * object through the GTT and then lose the fence register due to
1962  * resource pressure. Similarly if the object has been moved out of the
1963  * aperture, than pages mapped into userspace must be revoked. Removing the
1964  * mapping will then trigger a page fault on the next user access, allowing
1965  * fixup by i915_gem_fault().
1966  */
1967 void
1968 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1969 {
1970         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1971
1972         /* Serialisation between user GTT access and our code depends upon
1973          * revoking the CPU's PTE whilst the mutex is held. The next user
1974          * pagefault then has to wait until we release the mutex.
1975          *
1976          * Note that RPM complicates somewhat by adding an additional
1977          * requirement that operations to the GGTT be made holding the RPM
1978          * wakeref.
1979          */
1980         lockdep_assert_held(&i915->drm.struct_mutex);
1981         intel_runtime_pm_get(i915);
1982
1983         if (list_empty(&obj->userfault_link))
1984                 goto out;
1985
1986         list_del_init(&obj->userfault_link);
1987         drm_vma_node_unmap(&obj->base.vma_node,
1988                            obj->base.dev->anon_inode->i_mapping);
1989
1990         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1991          * memory transactions from userspace before we return. The TLB
1992          * flushing implied above by changing the PTE above *should* be
1993          * sufficient, an extra barrier here just provides us with a bit
1994          * of paranoid documentation about our requirement to serialise
1995          * memory writes before touching registers / GSM.
1996          */
1997         wmb();
1998
1999 out:
2000         intel_runtime_pm_put(i915);
2001 }
2002
2003 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2004 {
2005         struct drm_i915_gem_object *obj, *on;
2006         int i;
2007
2008         /*
2009          * Only called during RPM suspend. All users of the userfault_list
2010          * must be holding an RPM wakeref to ensure that this can not
2011          * run concurrently with themselves (and use the struct_mutex for
2012          * protection between themselves).
2013          */
2014
2015         list_for_each_entry_safe(obj, on,
2016                                  &dev_priv->mm.userfault_list, userfault_link) {
2017                 list_del_init(&obj->userfault_link);
2018                 drm_vma_node_unmap(&obj->base.vma_node,
2019                                    obj->base.dev->anon_inode->i_mapping);
2020         }
2021
2022         /* The fence will be lost when the device powers down. If any were
2023          * in use by hardware (i.e. they are pinned), we should not be powering
2024          * down! All other fences will be reacquired by the user upon waking.
2025          */
2026         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2027                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2028
2029                 /* Ideally we want to assert that the fence register is not
2030                  * live at this point (i.e. that no piece of code will be
2031                  * trying to write through fence + GTT, as that both violates
2032                  * our tracking of activity and associated locking/barriers,
2033                  * but also is illegal given that the hw is powered down).
2034                  *
2035                  * Previously we used reg->pin_count as a "liveness" indicator.
2036                  * That is not sufficient, and we need a more fine-grained
2037                  * tool if we want to have a sanity check here.
2038                  */
2039
2040                 if (!reg->vma)
2041                         continue;
2042
2043                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2044                 reg->dirty = true;
2045         }
2046 }
2047
2048 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2049 {
2050         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2051         int err;
2052
2053         err = drm_gem_create_mmap_offset(&obj->base);
2054         if (likely(!err))
2055                 return 0;
2056
2057         /* Attempt to reap some mmap space from dead objects */
2058         do {
2059                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2060                 if (err)
2061                         break;
2062
2063                 i915_gem_drain_freed_objects(dev_priv);
2064                 err = drm_gem_create_mmap_offset(&obj->base);
2065                 if (!err)
2066                         break;
2067
2068         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2069
2070         return err;
2071 }
2072
2073 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2074 {
2075         drm_gem_free_mmap_offset(&obj->base);
2076 }
2077
2078 int
2079 i915_gem_mmap_gtt(struct drm_file *file,
2080                   struct drm_device *dev,
2081                   uint32_t handle,
2082                   uint64_t *offset)
2083 {
2084         struct drm_i915_gem_object *obj;
2085         int ret;
2086
2087         obj = i915_gem_object_lookup(file, handle);
2088         if (!obj)
2089                 return -ENOENT;
2090
2091         ret = i915_gem_object_create_mmap_offset(obj);
2092         if (ret == 0)
2093                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2094
2095         i915_gem_object_put(obj);
2096         return ret;
2097 }
2098
2099 /**
2100  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2101  * @dev: DRM device
2102  * @data: GTT mapping ioctl data
2103  * @file: GEM object info
2104  *
2105  * Simply returns the fake offset to userspace so it can mmap it.
2106  * The mmap call will end up in drm_gem_mmap(), which will set things
2107  * up so we can get faults in the handler above.
2108  *
2109  * The fault handler will take care of binding the object into the GTT
2110  * (since it may have been evicted to make room for something), allocating
2111  * a fence register, and mapping the appropriate aperture address into
2112  * userspace.
2113  */
2114 int
2115 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2116                         struct drm_file *file)
2117 {
2118         struct drm_i915_gem_mmap_gtt *args = data;
2119
2120         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2121 }
2122
2123 /* Immediately discard the backing storage */
2124 static void
2125 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2126 {
2127         i915_gem_object_free_mmap_offset(obj);
2128
2129         if (obj->base.filp == NULL)
2130                 return;
2131
2132         /* Our goal here is to return as much of the memory as
2133          * is possible back to the system as we are called from OOM.
2134          * To do this we must instruct the shmfs to drop all of its
2135          * backing pages, *now*.
2136          */
2137         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2138         obj->mm.madv = __I915_MADV_PURGED;
2139         obj->mm.pages = ERR_PTR(-EFAULT);
2140 }
2141
2142 /* Try to discard unwanted pages */
2143 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2144 {
2145         struct address_space *mapping;
2146
2147         lockdep_assert_held(&obj->mm.lock);
2148         GEM_BUG_ON(obj->mm.pages);
2149
2150         switch (obj->mm.madv) {
2151         case I915_MADV_DONTNEED:
2152                 i915_gem_object_truncate(obj);
2153         case __I915_MADV_PURGED:
2154                 return;
2155         }
2156
2157         if (obj->base.filp == NULL)
2158                 return;
2159
2160         mapping = obj->base.filp->f_mapping,
2161         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2162 }
2163
2164 static void
2165 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2166                               struct sg_table *pages)
2167 {
2168         struct sgt_iter sgt_iter;
2169         struct page *page;
2170
2171         __i915_gem_object_release_shmem(obj, pages, true);
2172
2173         i915_gem_gtt_finish_pages(obj, pages);
2174
2175         if (i915_gem_object_needs_bit17_swizzle(obj))
2176                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2177
2178         for_each_sgt_page(page, sgt_iter, pages) {
2179                 if (obj->mm.dirty)
2180                         set_page_dirty(page);
2181
2182                 if (obj->mm.madv == I915_MADV_WILLNEED)
2183                         mark_page_accessed(page);
2184
2185                 put_page(page);
2186         }
2187         obj->mm.dirty = false;
2188
2189         sg_free_table(pages);
2190         kfree(pages);
2191 }
2192
2193 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2194 {
2195         struct radix_tree_iter iter;
2196         void **slot;
2197
2198         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2199                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2200 }
2201
2202 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2203                                  enum i915_mm_subclass subclass)
2204 {
2205         struct sg_table *pages;
2206
2207         if (i915_gem_object_has_pinned_pages(obj))
2208                 return;
2209
2210         GEM_BUG_ON(obj->bind_count);
2211         if (!READ_ONCE(obj->mm.pages))
2212                 return;
2213
2214         /* May be called by shrinker from within get_pages() (on another bo) */
2215         mutex_lock_nested(&obj->mm.lock, subclass);
2216         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2217                 goto unlock;
2218
2219         /* ->put_pages might need to allocate memory for the bit17 swizzle
2220          * array, hence protect them from being reaped by removing them from gtt
2221          * lists early. */
2222         pages = fetch_and_zero(&obj->mm.pages);
2223         GEM_BUG_ON(!pages);
2224
2225         if (obj->mm.mapping) {
2226                 void *ptr;
2227
2228                 ptr = ptr_mask_bits(obj->mm.mapping);
2229                 if (is_vmalloc_addr(ptr))
2230                         vunmap(ptr);
2231                 else
2232                         kunmap(kmap_to_page(ptr));
2233
2234                 obj->mm.mapping = NULL;
2235         }
2236
2237         __i915_gem_object_reset_page_iter(obj);
2238
2239         if (!IS_ERR(pages))
2240                 obj->ops->put_pages(obj, pages);
2241
2242 unlock:
2243         mutex_unlock(&obj->mm.lock);
2244 }
2245
2246 static bool i915_sg_trim(struct sg_table *orig_st)
2247 {
2248         struct sg_table new_st;
2249         struct scatterlist *sg, *new_sg;
2250         unsigned int i;
2251
2252         if (orig_st->nents == orig_st->orig_nents)
2253                 return false;
2254
2255         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2256                 return false;
2257
2258         new_sg = new_st.sgl;
2259         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2260                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2261                 /* called before being DMA mapped, no need to copy sg->dma_* */
2262                 new_sg = sg_next(new_sg);
2263         }
2264         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2265
2266         sg_free_table(orig_st);
2267
2268         *orig_st = new_st;
2269         return true;
2270 }
2271
2272 static struct sg_table *
2273 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2274 {
2275         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2276         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2277         unsigned long i;
2278         struct address_space *mapping;
2279         struct sg_table *st;
2280         struct scatterlist *sg;
2281         struct sgt_iter sgt_iter;
2282         struct page *page;
2283         unsigned long last_pfn = 0;     /* suppress gcc warning */
2284         unsigned int max_segment;
2285         int ret;
2286         gfp_t gfp;
2287
2288         /* Assert that the object is not currently in any GPU domain. As it
2289          * wasn't in the GTT, there shouldn't be any way it could have been in
2290          * a GPU cache
2291          */
2292         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2293         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2294
2295         max_segment = swiotlb_max_segment();
2296         if (!max_segment)
2297                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2298
2299         st = kmalloc(sizeof(*st), GFP_KERNEL);
2300         if (st == NULL)
2301                 return ERR_PTR(-ENOMEM);
2302
2303 rebuild_st:
2304         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2305                 kfree(st);
2306                 return ERR_PTR(-ENOMEM);
2307         }
2308
2309         /* Get the list of pages out of our struct file.  They'll be pinned
2310          * at this point until we release them.
2311          *
2312          * Fail silently without starting the shrinker
2313          */
2314         mapping = obj->base.filp->f_mapping;
2315         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2316         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2317         sg = st->sgl;
2318         st->nents = 0;
2319         for (i = 0; i < page_count; i++) {
2320                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2321                 if (IS_ERR(page)) {
2322                         i915_gem_shrink(dev_priv,
2323                                         page_count,
2324                                         I915_SHRINK_BOUND |
2325                                         I915_SHRINK_UNBOUND |
2326                                         I915_SHRINK_PURGEABLE);
2327                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2328                 }
2329                 if (IS_ERR(page)) {
2330                         /* We've tried hard to allocate the memory by reaping
2331                          * our own buffer, now let the real VM do its job and
2332                          * go down in flames if truly OOM.
2333                          */
2334                         page = shmem_read_mapping_page(mapping, i);
2335                         if (IS_ERR(page)) {
2336                                 ret = PTR_ERR(page);
2337                                 goto err_sg;
2338                         }
2339                 }
2340                 if (!i ||
2341                     sg->length >= max_segment ||
2342                     page_to_pfn(page) != last_pfn + 1) {
2343                         if (i)
2344                                 sg = sg_next(sg);
2345                         st->nents++;
2346                         sg_set_page(sg, page, PAGE_SIZE, 0);
2347                 } else {
2348                         sg->length += PAGE_SIZE;
2349                 }
2350                 last_pfn = page_to_pfn(page);
2351
2352                 /* Check that the i965g/gm workaround works. */
2353                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2354         }
2355         if (sg) /* loop terminated early; short sg table */
2356                 sg_mark_end(sg);
2357
2358         /* Trim unused sg entries to avoid wasting memory. */
2359         i915_sg_trim(st);
2360
2361         ret = i915_gem_gtt_prepare_pages(obj, st);
2362         if (ret) {
2363                 /* DMA remapping failed? One possible cause is that
2364                  * it could not reserve enough large entries, asking
2365                  * for PAGE_SIZE chunks instead may be helpful.
2366                  */
2367                 if (max_segment > PAGE_SIZE) {
2368                         for_each_sgt_page(page, sgt_iter, st)
2369                                 put_page(page);
2370                         sg_free_table(st);
2371
2372                         max_segment = PAGE_SIZE;
2373                         goto rebuild_st;
2374                 } else {
2375                         dev_warn(&dev_priv->drm.pdev->dev,
2376                                  "Failed to DMA remap %lu pages\n",
2377                                  page_count);
2378                         goto err_pages;
2379                 }
2380         }
2381
2382         if (i915_gem_object_needs_bit17_swizzle(obj))
2383                 i915_gem_object_do_bit_17_swizzle(obj, st);
2384
2385         return st;
2386
2387 err_sg:
2388         sg_mark_end(sg);
2389 err_pages:
2390         for_each_sgt_page(page, sgt_iter, st)
2391                 put_page(page);
2392         sg_free_table(st);
2393         kfree(st);
2394
2395         /* shmemfs first checks if there is enough memory to allocate the page
2396          * and reports ENOSPC should there be insufficient, along with the usual
2397          * ENOMEM for a genuine allocation failure.
2398          *
2399          * We use ENOSPC in our driver to mean that we have run out of aperture
2400          * space and so want to translate the error from shmemfs back to our
2401          * usual understanding of ENOMEM.
2402          */
2403         if (ret == -ENOSPC)
2404                 ret = -ENOMEM;
2405
2406         return ERR_PTR(ret);
2407 }
2408
2409 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2410                                  struct sg_table *pages)
2411 {
2412         lockdep_assert_held(&obj->mm.lock);
2413
2414         obj->mm.get_page.sg_pos = pages->sgl;
2415         obj->mm.get_page.sg_idx = 0;
2416
2417         obj->mm.pages = pages;
2418
2419         if (i915_gem_object_is_tiled(obj) &&
2420             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2421                 GEM_BUG_ON(obj->mm.quirked);
2422                 __i915_gem_object_pin_pages(obj);
2423                 obj->mm.quirked = true;
2424         }
2425 }
2426
2427 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2428 {
2429         struct sg_table *pages;
2430
2431         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2432
2433         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2434                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2435                 return -EFAULT;
2436         }
2437
2438         pages = obj->ops->get_pages(obj);
2439         if (unlikely(IS_ERR(pages)))
2440                 return PTR_ERR(pages);
2441
2442         __i915_gem_object_set_pages(obj, pages);
2443         return 0;
2444 }
2445
2446 /* Ensure that the associated pages are gathered from the backing storage
2447  * and pinned into our object. i915_gem_object_pin_pages() may be called
2448  * multiple times before they are released by a single call to
2449  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2450  * either as a result of memory pressure (reaping pages under the shrinker)
2451  * or as the object is itself released.
2452  */
2453 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2454 {
2455         int err;
2456
2457         err = mutex_lock_interruptible(&obj->mm.lock);
2458         if (err)
2459                 return err;
2460
2461         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2462                 err = ____i915_gem_object_get_pages(obj);
2463                 if (err)
2464                         goto unlock;
2465
2466                 smp_mb__before_atomic();
2467         }
2468         atomic_inc(&obj->mm.pages_pin_count);
2469
2470 unlock:
2471         mutex_unlock(&obj->mm.lock);
2472         return err;
2473 }
2474
2475 /* The 'mapping' part of i915_gem_object_pin_map() below */
2476 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2477                                  enum i915_map_type type)
2478 {
2479         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2480         struct sg_table *sgt = obj->mm.pages;
2481         struct sgt_iter sgt_iter;
2482         struct page *page;
2483         struct page *stack_pages[32];
2484         struct page **pages = stack_pages;
2485         unsigned long i = 0;
2486         pgprot_t pgprot;
2487         void *addr;
2488
2489         /* A single page can always be kmapped */
2490         if (n_pages == 1 && type == I915_MAP_WB)
2491                 return kmap(sg_page(sgt->sgl));
2492
2493         if (n_pages > ARRAY_SIZE(stack_pages)) {
2494                 /* Too big for stack -- allocate temporary array instead */
2495                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2496                 if (!pages)
2497                         return NULL;
2498         }
2499
2500         for_each_sgt_page(page, sgt_iter, sgt)
2501                 pages[i++] = page;
2502
2503         /* Check that we have the expected number of pages */
2504         GEM_BUG_ON(i != n_pages);
2505
2506         switch (type) {
2507         case I915_MAP_WB:
2508                 pgprot = PAGE_KERNEL;
2509                 break;
2510         case I915_MAP_WC:
2511                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2512                 break;
2513         }
2514         addr = vmap(pages, n_pages, 0, pgprot);
2515
2516         if (pages != stack_pages)
2517                 drm_free_large(pages);
2518
2519         return addr;
2520 }
2521
2522 /* get, pin, and map the pages of the object into kernel space */
2523 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2524                               enum i915_map_type type)
2525 {
2526         enum i915_map_type has_type;
2527         bool pinned;
2528         void *ptr;
2529         int ret;
2530
2531         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2532
2533         ret = mutex_lock_interruptible(&obj->mm.lock);
2534         if (ret)
2535                 return ERR_PTR(ret);
2536
2537         pinned = true;
2538         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2539                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2540                         ret = ____i915_gem_object_get_pages(obj);
2541                         if (ret)
2542                                 goto err_unlock;
2543
2544                         smp_mb__before_atomic();
2545                 }
2546                 atomic_inc(&obj->mm.pages_pin_count);
2547                 pinned = false;
2548         }
2549         GEM_BUG_ON(!obj->mm.pages);
2550
2551         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2552         if (ptr && has_type != type) {
2553                 if (pinned) {
2554                         ret = -EBUSY;
2555                         goto err_unpin;
2556                 }
2557
2558                 if (is_vmalloc_addr(ptr))
2559                         vunmap(ptr);
2560                 else
2561                         kunmap(kmap_to_page(ptr));
2562
2563                 ptr = obj->mm.mapping = NULL;
2564         }
2565
2566         if (!ptr) {
2567                 ptr = i915_gem_object_map(obj, type);
2568                 if (!ptr) {
2569                         ret = -ENOMEM;
2570                         goto err_unpin;
2571                 }
2572
2573                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2574         }
2575
2576 out_unlock:
2577         mutex_unlock(&obj->mm.lock);
2578         return ptr;
2579
2580 err_unpin:
2581         atomic_dec(&obj->mm.pages_pin_count);
2582 err_unlock:
2583         ptr = ERR_PTR(ret);
2584         goto out_unlock;
2585 }
2586
2587 static int
2588 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2589                            const struct drm_i915_gem_pwrite *arg)
2590 {
2591         struct address_space *mapping = obj->base.filp->f_mapping;
2592         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2593         u64 remain, offset;
2594         unsigned int pg;
2595
2596         /* Before we instantiate/pin the backing store for our use, we
2597          * can prepopulate the shmemfs filp efficiently using a write into
2598          * the pagecache. We avoid the penalty of instantiating all the
2599          * pages, important if the user is just writing to a few and never
2600          * uses the object on the GPU, and using a direct write into shmemfs
2601          * allows it to avoid the cost of retrieving a page (either swapin
2602          * or clearing-before-use) before it is overwritten.
2603          */
2604         if (READ_ONCE(obj->mm.pages))
2605                 return -ENODEV;
2606
2607         /* Before the pages are instantiated the object is treated as being
2608          * in the CPU domain. The pages will be clflushed as required before
2609          * use, and we can freely write into the pages directly. If userspace
2610          * races pwrite with any other operation; corruption will ensue -
2611          * that is userspace's prerogative!
2612          */
2613
2614         remain = arg->size;
2615         offset = arg->offset;
2616         pg = offset_in_page(offset);
2617
2618         do {
2619                 unsigned int len, unwritten;
2620                 struct page *page;
2621                 void *data, *vaddr;
2622                 int err;
2623
2624                 len = PAGE_SIZE - pg;
2625                 if (len > remain)
2626                         len = remain;
2627
2628                 err = pagecache_write_begin(obj->base.filp, mapping,
2629                                             offset, len, 0,
2630                                             &page, &data);
2631                 if (err < 0)
2632                         return err;
2633
2634                 vaddr = kmap(page);
2635                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2636                 kunmap(page);
2637
2638                 err = pagecache_write_end(obj->base.filp, mapping,
2639                                           offset, len, len - unwritten,
2640                                           page, data);
2641                 if (err < 0)
2642                         return err;
2643
2644                 if (unwritten)
2645                         return -EFAULT;
2646
2647                 remain -= len;
2648                 user_data += len;
2649                 offset += len;
2650                 pg = 0;
2651         } while (remain);
2652
2653         return 0;
2654 }
2655
2656 static bool ban_context(const struct i915_gem_context *ctx)
2657 {
2658         return (i915_gem_context_is_bannable(ctx) &&
2659                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2660 }
2661
2662 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2663 {
2664         ctx->guilty_count++;
2665         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2666         if (ban_context(ctx))
2667                 i915_gem_context_set_banned(ctx);
2668
2669         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2670                          ctx->name, ctx->ban_score,
2671                          yesno(i915_gem_context_is_banned(ctx)));
2672
2673         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2674                 return;
2675
2676         ctx->file_priv->context_bans++;
2677         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2678                          ctx->name, ctx->file_priv->context_bans);
2679 }
2680
2681 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2682 {
2683         ctx->active_count++;
2684 }
2685
2686 struct drm_i915_gem_request *
2687 i915_gem_find_active_request(struct intel_engine_cs *engine)
2688 {
2689         struct drm_i915_gem_request *request, *active = NULL;
2690         unsigned long flags;
2691
2692         /* We are called by the error capture and reset at a random
2693          * point in time. In particular, note that neither is crucially
2694          * ordered with an interrupt. After a hang, the GPU is dead and we
2695          * assume that no more writes can happen (we waited long enough for
2696          * all writes that were in transaction to be flushed) - adding an
2697          * extra delay for a recent interrupt is pointless. Hence, we do
2698          * not need an engine->irq_seqno_barrier() before the seqno reads.
2699          */
2700         spin_lock_irqsave(&engine->timeline->lock, flags);
2701         list_for_each_entry(request, &engine->timeline->requests, link) {
2702                 if (__i915_gem_request_completed(request,
2703                                                  request->global_seqno))
2704                         continue;
2705
2706                 GEM_BUG_ON(request->engine != engine);
2707                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2708                                     &request->fence.flags));
2709
2710                 active = request;
2711                 break;
2712         }
2713         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2714
2715         return active;
2716 }
2717
2718 static bool engine_stalled(struct intel_engine_cs *engine)
2719 {
2720         if (!engine->hangcheck.stalled)
2721                 return false;
2722
2723         /* Check for possible seqno movement after hang declaration */
2724         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2725                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2726                 return false;
2727         }
2728
2729         return true;
2730 }
2731
2732 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2733 {
2734         struct intel_engine_cs *engine;
2735         enum intel_engine_id id;
2736         int err = 0;
2737
2738         /* Ensure irq handler finishes, and not run again. */
2739         for_each_engine(engine, dev_priv, id) {
2740                 struct drm_i915_gem_request *request;
2741
2742                 /* Prevent the signaler thread from updating the request
2743                  * state (by calling dma_fence_signal) as we are processing
2744                  * the reset. The write from the GPU of the seqno is
2745                  * asynchronous and the signaler thread may see a different
2746                  * value to us and declare the request complete, even though
2747                  * the reset routine have picked that request as the active
2748                  * (incomplete) request. This conflict is not handled
2749                  * gracefully!
2750                  */
2751                 kthread_park(engine->breadcrumbs.signaler);
2752
2753                 /* Prevent request submission to the hardware until we have
2754                  * completed the reset in i915_gem_reset_finish(). If a request
2755                  * is completed by one engine, it may then queue a request
2756                  * to a second via its engine->irq_tasklet *just* as we are
2757                  * calling engine->init_hw() and also writing the ELSP.
2758                  * Turning off the engine->irq_tasklet until the reset is over
2759                  * prevents the race.
2760                  */
2761                 tasklet_kill(&engine->irq_tasklet);
2762                 tasklet_disable(&engine->irq_tasklet);
2763
2764                 if (engine->irq_seqno_barrier)
2765                         engine->irq_seqno_barrier(engine);
2766
2767                 if (engine_stalled(engine)) {
2768                         request = i915_gem_find_active_request(engine);
2769                         if (request && request->fence.error == -EIO)
2770                                 err = -EIO; /* Previous reset failed! */
2771                 }
2772         }
2773
2774         i915_gem_revoke_fences(dev_priv);
2775
2776         return err;
2777 }
2778
2779 static void skip_request(struct drm_i915_gem_request *request)
2780 {
2781         void *vaddr = request->ring->vaddr;
2782         u32 head;
2783
2784         /* As this request likely depends on state from the lost
2785          * context, clear out all the user operations leaving the
2786          * breadcrumb at the end (so we get the fence notifications).
2787          */
2788         head = request->head;
2789         if (request->postfix < head) {
2790                 memset(vaddr + head, 0, request->ring->size - head);
2791                 head = 0;
2792         }
2793         memset(vaddr + head, 0, request->postfix - head);
2794
2795         dma_fence_set_error(&request->fence, -EIO);
2796 }
2797
2798 static void engine_skip_context(struct drm_i915_gem_request *request)
2799 {
2800         struct intel_engine_cs *engine = request->engine;
2801         struct i915_gem_context *hung_ctx = request->ctx;
2802         struct intel_timeline *timeline;
2803         unsigned long flags;
2804
2805         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2806
2807         spin_lock_irqsave(&engine->timeline->lock, flags);
2808         spin_lock(&timeline->lock);
2809
2810         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2811                 if (request->ctx == hung_ctx)
2812                         skip_request(request);
2813
2814         list_for_each_entry(request, &timeline->requests, link)
2815                 skip_request(request);
2816
2817         spin_unlock(&timeline->lock);
2818         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2819 }
2820
2821 /* Returns true if the request was guilty of hang */
2822 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2823 {
2824         /* Read once and return the resolution */
2825         const bool guilty = engine_stalled(request->engine);
2826
2827         /* The guilty request will get skipped on a hung engine.
2828          *
2829          * Users of client default contexts do not rely on logical
2830          * state preserved between batches so it is safe to execute
2831          * queued requests following the hang. Non default contexts
2832          * rely on preserved state, so skipping a batch loses the
2833          * evolution of the state and it needs to be considered corrupted.
2834          * Executing more queued batches on top of corrupted state is
2835          * risky. But we take the risk by trying to advance through
2836          * the queued requests in order to make the client behaviour
2837          * more predictable around resets, by not throwing away random
2838          * amount of batches it has prepared for execution. Sophisticated
2839          * clients can use gem_reset_stats_ioctl and dma fence status
2840          * (exported via sync_file info ioctl on explicit fences) to observe
2841          * when it loses the context state and should rebuild accordingly.
2842          *
2843          * The context ban, and ultimately the client ban, mechanism are safety
2844          * valves if client submission ends up resulting in nothing more than
2845          * subsequent hangs.
2846          */
2847
2848         if (guilty) {
2849                 i915_gem_context_mark_guilty(request->ctx);
2850                 skip_request(request);
2851         } else {
2852                 i915_gem_context_mark_innocent(request->ctx);
2853                 dma_fence_set_error(&request->fence, -EAGAIN);
2854         }
2855
2856         return guilty;
2857 }
2858
2859 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2860 {
2861         struct drm_i915_gem_request *request;
2862
2863         request = i915_gem_find_active_request(engine);
2864         if (request && i915_gem_reset_request(request)) {
2865                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2866                                  engine->name, request->global_seqno);
2867
2868                 /* If this context is now banned, skip all pending requests. */
2869                 if (i915_gem_context_is_banned(request->ctx))
2870                         engine_skip_context(request);
2871         }
2872
2873         /* Setup the CS to resume from the breadcrumb of the hung request */
2874         engine->reset_hw(engine, request);
2875 }
2876
2877 void i915_gem_reset(struct drm_i915_private *dev_priv)
2878 {
2879         struct intel_engine_cs *engine;
2880         enum intel_engine_id id;
2881
2882         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2883
2884         i915_gem_retire_requests(dev_priv);
2885
2886         for_each_engine(engine, dev_priv, id) {
2887                 struct i915_gem_context *ctx;
2888
2889                 i915_gem_reset_engine(engine);
2890                 ctx = fetch_and_zero(&engine->last_retired_context);
2891                 if (ctx)
2892                         engine->context_unpin(engine, ctx);
2893         }
2894
2895         i915_gem_restore_fences(dev_priv);
2896
2897         if (dev_priv->gt.awake) {
2898                 intel_sanitize_gt_powersave(dev_priv);
2899                 intel_enable_gt_powersave(dev_priv);
2900                 if (INTEL_GEN(dev_priv) >= 6)
2901                         gen6_rps_busy(dev_priv);
2902         }
2903 }
2904
2905 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2906 {
2907         struct intel_engine_cs *engine;
2908         enum intel_engine_id id;
2909
2910         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2911
2912         for_each_engine(engine, dev_priv, id) {
2913                 tasklet_enable(&engine->irq_tasklet);
2914                 kthread_unpark(engine->breadcrumbs.signaler);
2915         }
2916 }
2917
2918 static void nop_submit_request(struct drm_i915_gem_request *request)
2919 {
2920         dma_fence_set_error(&request->fence, -EIO);
2921         i915_gem_request_submit(request);
2922         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2923 }
2924
2925 static void engine_set_wedged(struct intel_engine_cs *engine)
2926 {
2927         struct drm_i915_gem_request *request;
2928         unsigned long flags;
2929
2930         /* We need to be sure that no thread is running the old callback as
2931          * we install the nop handler (otherwise we would submit a request
2932          * to hardware that will never complete). In order to prevent this
2933          * race, we wait until the machine is idle before making the swap
2934          * (using stop_machine()).
2935          */
2936         engine->submit_request = nop_submit_request;
2937
2938         /* Mark all executing requests as skipped */
2939         spin_lock_irqsave(&engine->timeline->lock, flags);
2940         list_for_each_entry(request, &engine->timeline->requests, link)
2941                 dma_fence_set_error(&request->fence, -EIO);
2942         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2943
2944         /* Mark all pending requests as complete so that any concurrent
2945          * (lockless) lookup doesn't try and wait upon the request as we
2946          * reset it.
2947          */
2948         intel_engine_init_global_seqno(engine,
2949                                        intel_engine_last_submit(engine));
2950
2951         /*
2952          * Clear the execlists queue up before freeing the requests, as those
2953          * are the ones that keep the context and ringbuffer backing objects
2954          * pinned in place.
2955          */
2956
2957         if (i915.enable_execlists) {
2958                 unsigned long flags;
2959
2960                 spin_lock_irqsave(&engine->timeline->lock, flags);
2961
2962                 i915_gem_request_put(engine->execlist_port[0].request);
2963                 i915_gem_request_put(engine->execlist_port[1].request);
2964                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2965                 engine->execlist_queue = RB_ROOT;
2966                 engine->execlist_first = NULL;
2967
2968                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2969         }
2970 }
2971
2972 static int __i915_gem_set_wedged_BKL(void *data)
2973 {
2974         struct drm_i915_private *i915 = data;
2975         struct intel_engine_cs *engine;
2976         enum intel_engine_id id;
2977
2978         for_each_engine(engine, i915, id)
2979                 engine_set_wedged(engine);
2980
2981         return 0;
2982 }
2983
2984 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2985 {
2986         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2987         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2988
2989         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2990
2991         i915_gem_context_lost(dev_priv);
2992         i915_gem_retire_requests(dev_priv);
2993
2994         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2995 }
2996
2997 static void
2998 i915_gem_retire_work_handler(struct work_struct *work)
2999 {
3000         struct drm_i915_private *dev_priv =
3001                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3002         struct drm_device *dev = &dev_priv->drm;
3003
3004         /* Come back later if the device is busy... */
3005         if (mutex_trylock(&dev->struct_mutex)) {
3006                 i915_gem_retire_requests(dev_priv);
3007                 mutex_unlock(&dev->struct_mutex);
3008         }
3009
3010         /* Keep the retire handler running until we are finally idle.
3011          * We do not need to do this test under locking as in the worst-case
3012          * we queue the retire worker once too often.
3013          */
3014         if (READ_ONCE(dev_priv->gt.awake)) {
3015                 i915_queue_hangcheck(dev_priv);
3016                 queue_delayed_work(dev_priv->wq,
3017                                    &dev_priv->gt.retire_work,
3018                                    round_jiffies_up_relative(HZ));
3019         }
3020 }
3021
3022 static void
3023 i915_gem_idle_work_handler(struct work_struct *work)
3024 {
3025         struct drm_i915_private *dev_priv =
3026                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3027         struct drm_device *dev = &dev_priv->drm;
3028         struct intel_engine_cs *engine;
3029         enum intel_engine_id id;
3030         bool rearm_hangcheck;
3031
3032         if (!READ_ONCE(dev_priv->gt.awake))
3033                 return;
3034
3035         /*
3036          * Wait for last execlists context complete, but bail out in case a
3037          * new request is submitted.
3038          */
3039         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3040                  intel_engines_are_idle(dev_priv),
3041                  10);
3042         if (READ_ONCE(dev_priv->gt.active_requests))
3043                 return;
3044
3045         rearm_hangcheck =
3046                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3047
3048         if (!mutex_trylock(&dev->struct_mutex)) {
3049                 /* Currently busy, come back later */
3050                 mod_delayed_work(dev_priv->wq,
3051                                  &dev_priv->gt.idle_work,
3052                                  msecs_to_jiffies(50));
3053                 goto out_rearm;
3054         }
3055
3056         /*
3057          * New request retired after this work handler started, extend active
3058          * period until next instance of the work.
3059          */
3060         if (work_pending(work))
3061                 goto out_unlock;
3062
3063         if (dev_priv->gt.active_requests)
3064                 goto out_unlock;
3065
3066         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3067                 DRM_ERROR("Timeout waiting for engines to idle\n");
3068
3069         for_each_engine(engine, dev_priv, id) {
3070                 intel_engine_disarm_breadcrumbs(engine);
3071                 i915_gem_batch_pool_fini(&engine->batch_pool);
3072         }
3073
3074         GEM_BUG_ON(!dev_priv->gt.awake);
3075         dev_priv->gt.awake = false;
3076         rearm_hangcheck = false;
3077
3078         if (INTEL_GEN(dev_priv) >= 6)
3079                 gen6_rps_idle(dev_priv);
3080         intel_runtime_pm_put(dev_priv);
3081 out_unlock:
3082         mutex_unlock(&dev->struct_mutex);
3083
3084 out_rearm:
3085         if (rearm_hangcheck) {
3086                 GEM_BUG_ON(!dev_priv->gt.awake);
3087                 i915_queue_hangcheck(dev_priv);
3088         }
3089 }
3090
3091 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3092 {
3093         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3094         struct drm_i915_file_private *fpriv = file->driver_priv;
3095         struct i915_vma *vma, *vn;
3096
3097         mutex_lock(&obj->base.dev->struct_mutex);
3098         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3099                 if (vma->vm->file == fpriv)
3100                         i915_vma_close(vma);
3101
3102         if (i915_gem_object_is_active(obj) &&
3103             !i915_gem_object_has_active_reference(obj)) {
3104                 i915_gem_object_set_active_reference(obj);
3105                 i915_gem_object_get(obj);
3106         }
3107         mutex_unlock(&obj->base.dev->struct_mutex);
3108 }
3109
3110 static unsigned long to_wait_timeout(s64 timeout_ns)
3111 {
3112         if (timeout_ns < 0)
3113                 return MAX_SCHEDULE_TIMEOUT;
3114
3115         if (timeout_ns == 0)
3116                 return 0;
3117
3118         return nsecs_to_jiffies_timeout(timeout_ns);
3119 }
3120
3121 /**
3122  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3123  * @dev: drm device pointer
3124  * @data: ioctl data blob
3125  * @file: drm file pointer
3126  *
3127  * Returns 0 if successful, else an error is returned with the remaining time in
3128  * the timeout parameter.
3129  *  -ETIME: object is still busy after timeout
3130  *  -ERESTARTSYS: signal interrupted the wait
3131  *  -ENONENT: object doesn't exist
3132  * Also possible, but rare:
3133  *  -EAGAIN: GPU wedged
3134  *  -ENOMEM: damn
3135  *  -ENODEV: Internal IRQ fail
3136  *  -E?: The add request failed
3137  *
3138  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3139  * non-zero timeout parameter the wait ioctl will wait for the given number of
3140  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3141  * without holding struct_mutex the object may become re-busied before this
3142  * function completes. A similar but shorter * race condition exists in the busy
3143  * ioctl
3144  */
3145 int
3146 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3147 {
3148         struct drm_i915_gem_wait *args = data;
3149         struct drm_i915_gem_object *obj;
3150         ktime_t start;
3151         long ret;
3152
3153         if (args->flags != 0)
3154                 return -EINVAL;
3155
3156         obj = i915_gem_object_lookup(file, args->bo_handle);
3157         if (!obj)
3158                 return -ENOENT;
3159
3160         start = ktime_get();
3161
3162         ret = i915_gem_object_wait(obj,
3163                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3164                                    to_wait_timeout(args->timeout_ns),
3165                                    to_rps_client(file));
3166
3167         if (args->timeout_ns > 0) {
3168                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3169                 if (args->timeout_ns < 0)
3170                         args->timeout_ns = 0;
3171
3172                 /*
3173                  * Apparently ktime isn't accurate enough and occasionally has a
3174                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3175                  * things up to make the test happy. We allow up to 1 jiffy.
3176                  *
3177                  * This is a regression from the timespec->ktime conversion.
3178                  */
3179                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3180                         args->timeout_ns = 0;
3181         }
3182
3183         i915_gem_object_put(obj);
3184         return ret;
3185 }
3186
3187 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3188 {
3189         int ret, i;
3190
3191         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3192                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3193                 if (ret)
3194                         return ret;
3195         }
3196
3197         return 0;
3198 }
3199
3200 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3201 {
3202         int ret;
3203
3204         if (flags & I915_WAIT_LOCKED) {
3205                 struct i915_gem_timeline *tl;
3206
3207                 lockdep_assert_held(&i915->drm.struct_mutex);
3208
3209                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3210                         ret = wait_for_timeline(tl, flags);
3211                         if (ret)
3212                                 return ret;
3213                 }
3214         } else {
3215                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3216                 if (ret)
3217                         return ret;
3218         }
3219
3220         return 0;
3221 }
3222
3223 /** Flushes the GTT write domain for the object if it's dirty. */
3224 static void
3225 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3226 {
3227         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3228
3229         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3230                 return;
3231
3232         /* No actual flushing is required for the GTT write domain.  Writes
3233          * to it "immediately" go to main memory as far as we know, so there's
3234          * no chipset flush.  It also doesn't land in render cache.
3235          *
3236          * However, we do have to enforce the order so that all writes through
3237          * the GTT land before any writes to the device, such as updates to
3238          * the GATT itself.
3239          *
3240          * We also have to wait a bit for the writes to land from the GTT.
3241          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3242          * timing. This issue has only been observed when switching quickly
3243          * between GTT writes and CPU reads from inside the kernel on recent hw,
3244          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3245          * system agents we cannot reproduce this behaviour).
3246          */
3247         wmb();
3248         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3249                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3250
3251         intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3252
3253         obj->base.write_domain = 0;
3254 }
3255
3256 /** Flushes the CPU write domain for the object if it's dirty. */
3257 static void
3258 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3259 {
3260         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3261                 return;
3262
3263         i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3264         obj->base.write_domain = 0;
3265 }
3266
3267 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3268 {
3269         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3270                 return;
3271
3272         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3273         obj->base.write_domain = 0;
3274 }
3275
3276 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3277 {
3278         if (!READ_ONCE(obj->pin_display))
3279                 return;
3280
3281         mutex_lock(&obj->base.dev->struct_mutex);
3282         __i915_gem_object_flush_for_display(obj);
3283         mutex_unlock(&obj->base.dev->struct_mutex);
3284 }
3285
3286 /**
3287  * Moves a single object to the GTT read, and possibly write domain.
3288  * @obj: object to act on
3289  * @write: ask for write access or read only
3290  *
3291  * This function returns when the move is complete, including waiting on
3292  * flushes to occur.
3293  */
3294 int
3295 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3296 {
3297         int ret;
3298
3299         lockdep_assert_held(&obj->base.dev->struct_mutex);
3300
3301         ret = i915_gem_object_wait(obj,
3302                                    I915_WAIT_INTERRUPTIBLE |
3303                                    I915_WAIT_LOCKED |
3304                                    (write ? I915_WAIT_ALL : 0),
3305                                    MAX_SCHEDULE_TIMEOUT,
3306                                    NULL);
3307         if (ret)
3308                 return ret;
3309
3310         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3311                 return 0;
3312
3313         /* Flush and acquire obj->pages so that we are coherent through
3314          * direct access in memory with previous cached writes through
3315          * shmemfs and that our cache domain tracking remains valid.
3316          * For example, if the obj->filp was moved to swap without us
3317          * being notified and releasing the pages, we would mistakenly
3318          * continue to assume that the obj remained out of the CPU cached
3319          * domain.
3320          */
3321         ret = i915_gem_object_pin_pages(obj);
3322         if (ret)
3323                 return ret;
3324
3325         i915_gem_object_flush_cpu_write_domain(obj);
3326
3327         /* Serialise direct access to this object with the barriers for
3328          * coherent writes from the GPU, by effectively invalidating the
3329          * GTT domain upon first access.
3330          */
3331         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3332                 mb();
3333
3334         /* It should now be out of any other write domains, and we can update
3335          * the domain values for our changes.
3336          */
3337         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3338         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3339         if (write) {
3340                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3341                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3342                 obj->mm.dirty = true;
3343         }
3344
3345         i915_gem_object_unpin_pages(obj);
3346         return 0;
3347 }
3348
3349 /**
3350  * Changes the cache-level of an object across all VMA.
3351  * @obj: object to act on
3352  * @cache_level: new cache level to set for the object
3353  *
3354  * After this function returns, the object will be in the new cache-level
3355  * across all GTT and the contents of the backing storage will be coherent,
3356  * with respect to the new cache-level. In order to keep the backing storage
3357  * coherent for all users, we only allow a single cache level to be set
3358  * globally on the object and prevent it from being changed whilst the
3359  * hardware is reading from the object. That is if the object is currently
3360  * on the scanout it will be set to uncached (or equivalent display
3361  * cache coherency) and all non-MOCS GPU access will also be uncached so
3362  * that all direct access to the scanout remains coherent.
3363  */
3364 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3365                                     enum i915_cache_level cache_level)
3366 {
3367         struct i915_vma *vma;
3368         int ret;
3369
3370         lockdep_assert_held(&obj->base.dev->struct_mutex);
3371
3372         if (obj->cache_level == cache_level)
3373                 return 0;
3374
3375         /* Inspect the list of currently bound VMA and unbind any that would
3376          * be invalid given the new cache-level. This is principally to
3377          * catch the issue of the CS prefetch crossing page boundaries and
3378          * reading an invalid PTE on older architectures.
3379          */
3380 restart:
3381         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3382                 if (!drm_mm_node_allocated(&vma->node))
3383                         continue;
3384
3385                 if (i915_vma_is_pinned(vma)) {
3386                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3387                         return -EBUSY;
3388                 }
3389
3390                 if (i915_gem_valid_gtt_space(vma, cache_level))
3391                         continue;
3392
3393                 ret = i915_vma_unbind(vma);
3394                 if (ret)
3395                         return ret;
3396
3397                 /* As unbinding may affect other elements in the
3398                  * obj->vma_list (due to side-effects from retiring
3399                  * an active vma), play safe and restart the iterator.
3400                  */
3401                 goto restart;
3402         }
3403
3404         /* We can reuse the existing drm_mm nodes but need to change the
3405          * cache-level on the PTE. We could simply unbind them all and
3406          * rebind with the correct cache-level on next use. However since
3407          * we already have a valid slot, dma mapping, pages etc, we may as
3408          * rewrite the PTE in the belief that doing so tramples upon less
3409          * state and so involves less work.
3410          */
3411         if (obj->bind_count) {
3412                 /* Before we change the PTE, the GPU must not be accessing it.
3413                  * If we wait upon the object, we know that all the bound
3414                  * VMA are no longer active.
3415                  */
3416                 ret = i915_gem_object_wait(obj,
3417                                            I915_WAIT_INTERRUPTIBLE |
3418                                            I915_WAIT_LOCKED |
3419                                            I915_WAIT_ALL,
3420                                            MAX_SCHEDULE_TIMEOUT,
3421                                            NULL);
3422                 if (ret)
3423                         return ret;
3424
3425                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3426                     cache_level != I915_CACHE_NONE) {
3427                         /* Access to snoopable pages through the GTT is
3428                          * incoherent and on some machines causes a hard
3429                          * lockup. Relinquish the CPU mmaping to force
3430                          * userspace to refault in the pages and we can
3431                          * then double check if the GTT mapping is still
3432                          * valid for that pointer access.
3433                          */
3434                         i915_gem_release_mmap(obj);
3435
3436                         /* As we no longer need a fence for GTT access,
3437                          * we can relinquish it now (and so prevent having
3438                          * to steal a fence from someone else on the next
3439                          * fence request). Note GPU activity would have
3440                          * dropped the fence as all snoopable access is
3441                          * supposed to be linear.
3442                          */
3443                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3444                                 ret = i915_vma_put_fence(vma);
3445                                 if (ret)
3446                                         return ret;
3447                         }
3448                 } else {
3449                         /* We either have incoherent backing store and
3450                          * so no GTT access or the architecture is fully
3451                          * coherent. In such cases, existing GTT mmaps
3452                          * ignore the cache bit in the PTE and we can
3453                          * rewrite it without confusing the GPU or having
3454                          * to force userspace to fault back in its mmaps.
3455                          */
3456                 }
3457
3458                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3459                         if (!drm_mm_node_allocated(&vma->node))
3460                                 continue;
3461
3462                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3463                         if (ret)
3464                                 return ret;
3465                 }
3466         }
3467
3468         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3469             i915_gem_object_is_coherent(obj))
3470                 obj->cache_dirty = true;
3471
3472         list_for_each_entry(vma, &obj->vma_list, obj_link)
3473                 vma->node.color = cache_level;
3474         obj->cache_level = cache_level;
3475
3476         return 0;
3477 }
3478
3479 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3480                                struct drm_file *file)
3481 {
3482         struct drm_i915_gem_caching *args = data;
3483         struct drm_i915_gem_object *obj;
3484         int err = 0;
3485
3486         rcu_read_lock();
3487         obj = i915_gem_object_lookup_rcu(file, args->handle);
3488         if (!obj) {
3489                 err = -ENOENT;
3490                 goto out;
3491         }
3492
3493         switch (obj->cache_level) {
3494         case I915_CACHE_LLC:
3495         case I915_CACHE_L3_LLC:
3496                 args->caching = I915_CACHING_CACHED;
3497                 break;
3498
3499         case I915_CACHE_WT:
3500                 args->caching = I915_CACHING_DISPLAY;
3501                 break;
3502
3503         default:
3504                 args->caching = I915_CACHING_NONE;
3505                 break;
3506         }
3507 out:
3508         rcu_read_unlock();
3509         return err;
3510 }
3511
3512 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3513                                struct drm_file *file)
3514 {
3515         struct drm_i915_private *i915 = to_i915(dev);
3516         struct drm_i915_gem_caching *args = data;
3517         struct drm_i915_gem_object *obj;
3518         enum i915_cache_level level;
3519         int ret = 0;
3520
3521         switch (args->caching) {
3522         case I915_CACHING_NONE:
3523                 level = I915_CACHE_NONE;
3524                 break;
3525         case I915_CACHING_CACHED:
3526                 /*
3527                  * Due to a HW issue on BXT A stepping, GPU stores via a
3528                  * snooped mapping may leave stale data in a corresponding CPU
3529                  * cacheline, whereas normally such cachelines would get
3530                  * invalidated.
3531                  */
3532                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3533                         return -ENODEV;
3534
3535                 level = I915_CACHE_LLC;
3536                 break;
3537         case I915_CACHING_DISPLAY:
3538                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3539                 break;
3540         default:
3541                 return -EINVAL;
3542         }
3543
3544         obj = i915_gem_object_lookup(file, args->handle);
3545         if (!obj)
3546                 return -ENOENT;
3547
3548         if (obj->cache_level == level)
3549                 goto out;
3550
3551         ret = i915_gem_object_wait(obj,
3552                                    I915_WAIT_INTERRUPTIBLE,
3553                                    MAX_SCHEDULE_TIMEOUT,
3554                                    to_rps_client(file));
3555         if (ret)
3556                 goto out;
3557
3558         ret = i915_mutex_lock_interruptible(dev);
3559         if (ret)
3560                 goto out;
3561
3562         ret = i915_gem_object_set_cache_level(obj, level);
3563         mutex_unlock(&dev->struct_mutex);
3564
3565 out:
3566         i915_gem_object_put(obj);
3567         return ret;
3568 }
3569
3570 /*
3571  * Prepare buffer for display plane (scanout, cursors, etc).
3572  * Can be called from an uninterruptible phase (modesetting) and allows
3573  * any flushes to be pipelined (for pageflips).
3574  */
3575 struct i915_vma *
3576 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3577                                      u32 alignment,
3578                                      const struct i915_ggtt_view *view)
3579 {
3580         struct i915_vma *vma;
3581         int ret;
3582
3583         lockdep_assert_held(&obj->base.dev->struct_mutex);
3584
3585         /* Mark the pin_display early so that we account for the
3586          * display coherency whilst setting up the cache domains.
3587          */
3588         obj->pin_display++;
3589
3590         /* The display engine is not coherent with the LLC cache on gen6.  As
3591          * a result, we make sure that the pinning that is about to occur is
3592          * done with uncached PTEs. This is lowest common denominator for all
3593          * chipsets.
3594          *
3595          * However for gen6+, we could do better by using the GFDT bit instead
3596          * of uncaching, which would allow us to flush all the LLC-cached data
3597          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3598          */
3599         ret = i915_gem_object_set_cache_level(obj,
3600                                               HAS_WT(to_i915(obj->base.dev)) ?
3601                                               I915_CACHE_WT : I915_CACHE_NONE);
3602         if (ret) {
3603                 vma = ERR_PTR(ret);
3604                 goto err_unpin_display;
3605         }
3606
3607         /* As the user may map the buffer once pinned in the display plane
3608          * (e.g. libkms for the bootup splash), we have to ensure that we
3609          * always use map_and_fenceable for all scanout buffers. However,
3610          * it may simply be too big to fit into mappable, in which case
3611          * put it anyway and hope that userspace can cope (but always first
3612          * try to preserve the existing ABI).
3613          */
3614         vma = ERR_PTR(-ENOSPC);
3615         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3616                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3617                                                PIN_MAPPABLE | PIN_NONBLOCK);
3618         if (IS_ERR(vma)) {
3619                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3620                 unsigned int flags;
3621
3622                 /* Valleyview is definitely limited to scanning out the first
3623                  * 512MiB. Lets presume this behaviour was inherited from the
3624                  * g4x display engine and that all earlier gen are similarly
3625                  * limited. Testing suggests that it is a little more
3626                  * complicated than this. For example, Cherryview appears quite
3627                  * happy to scanout from anywhere within its global aperture.
3628                  */
3629                 flags = 0;
3630                 if (HAS_GMCH_DISPLAY(i915))
3631                         flags = PIN_MAPPABLE;
3632                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3633         }
3634         if (IS_ERR(vma))
3635                 goto err_unpin_display;
3636
3637         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3638
3639         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3640         __i915_gem_object_flush_for_display(obj);
3641         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3642
3643         /* It should now be out of any other write domains, and we can update
3644          * the domain values for our changes.
3645          */
3646         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3647
3648         return vma;
3649
3650 err_unpin_display:
3651         obj->pin_display--;
3652         return vma;
3653 }
3654
3655 void
3656 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3657 {
3658         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3659
3660         if (WARN_ON(vma->obj->pin_display == 0))
3661                 return;
3662
3663         if (--vma->obj->pin_display == 0)
3664                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3665
3666         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3667         i915_gem_object_bump_inactive_ggtt(vma->obj);
3668
3669         i915_vma_unpin(vma);
3670 }
3671
3672 /**
3673  * Moves a single object to the CPU read, and possibly write domain.
3674  * @obj: object to act on
3675  * @write: requesting write or read-only access
3676  *
3677  * This function returns when the move is complete, including waiting on
3678  * flushes to occur.
3679  */
3680 int
3681 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3682 {
3683         int ret;
3684
3685         lockdep_assert_held(&obj->base.dev->struct_mutex);
3686
3687         ret = i915_gem_object_wait(obj,
3688                                    I915_WAIT_INTERRUPTIBLE |
3689                                    I915_WAIT_LOCKED |
3690                                    (write ? I915_WAIT_ALL : 0),
3691                                    MAX_SCHEDULE_TIMEOUT,
3692                                    NULL);
3693         if (ret)
3694                 return ret;
3695
3696         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3697                 return 0;
3698
3699         i915_gem_object_flush_gtt_write_domain(obj);
3700
3701         /* Flush the CPU cache if it's still invalid. */
3702         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3703                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3704                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3705         }
3706
3707         /* It should now be out of any other write domains, and we can update
3708          * the domain values for our changes.
3709          */
3710         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3711
3712         /* If we're writing through the CPU, then the GPU read domains will
3713          * need to be invalidated at next use.
3714          */
3715         if (write) {
3716                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3717                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718         }
3719
3720         return 0;
3721 }
3722
3723 /* Throttle our rendering by waiting until the ring has completed our requests
3724  * emitted over 20 msec ago.
3725  *
3726  * Note that if we were to use the current jiffies each time around the loop,
3727  * we wouldn't escape the function with any frames outstanding if the time to
3728  * render a frame was over 20ms.
3729  *
3730  * This should get us reasonable parallelism between CPU and GPU but also
3731  * relatively low latency when blocking on a particular request to finish.
3732  */
3733 static int
3734 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3735 {
3736         struct drm_i915_private *dev_priv = to_i915(dev);
3737         struct drm_i915_file_private *file_priv = file->driver_priv;
3738         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3739         struct drm_i915_gem_request *request, *target = NULL;
3740         long ret;
3741
3742         /* ABI: return -EIO if already wedged */
3743         if (i915_terminally_wedged(&dev_priv->gpu_error))
3744                 return -EIO;
3745
3746         spin_lock(&file_priv->mm.lock);
3747         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3748                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3749                         break;
3750
3751                 if (target) {
3752                         list_del(&target->client_link);
3753                         target->file_priv = NULL;
3754                 }
3755
3756                 target = request;
3757         }
3758         if (target)
3759                 i915_gem_request_get(target);
3760         spin_unlock(&file_priv->mm.lock);
3761
3762         if (target == NULL)
3763                 return 0;
3764
3765         ret = i915_wait_request(target,
3766                                 I915_WAIT_INTERRUPTIBLE,
3767                                 MAX_SCHEDULE_TIMEOUT);
3768         i915_gem_request_put(target);
3769
3770         return ret < 0 ? ret : 0;
3771 }
3772
3773 struct i915_vma *
3774 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3775                          const struct i915_ggtt_view *view,
3776                          u64 size,
3777                          u64 alignment,
3778                          u64 flags)
3779 {
3780         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3781         struct i915_address_space *vm = &dev_priv->ggtt.base;
3782         struct i915_vma *vma;
3783         int ret;
3784
3785         lockdep_assert_held(&obj->base.dev->struct_mutex);
3786
3787         vma = i915_vma_instance(obj, vm, view);
3788         if (unlikely(IS_ERR(vma)))
3789                 return vma;
3790
3791         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3792                 if (flags & PIN_NONBLOCK &&
3793                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3794                         return ERR_PTR(-ENOSPC);
3795
3796                 if (flags & PIN_MAPPABLE) {
3797                         /* If the required space is larger than the available
3798                          * aperture, we will not able to find a slot for the
3799                          * object and unbinding the object now will be in
3800                          * vain. Worse, doing so may cause us to ping-pong
3801                          * the object in and out of the Global GTT and
3802                          * waste a lot of cycles under the mutex.
3803                          */
3804                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3805                                 return ERR_PTR(-E2BIG);
3806
3807                         /* If NONBLOCK is set the caller is optimistically
3808                          * trying to cache the full object within the mappable
3809                          * aperture, and *must* have a fallback in place for
3810                          * situations where we cannot bind the object. We
3811                          * can be a little more lax here and use the fallback
3812                          * more often to avoid costly migrations of ourselves
3813                          * and other objects within the aperture.
3814                          *
3815                          * Half-the-aperture is used as a simple heuristic.
3816                          * More interesting would to do search for a free
3817                          * block prior to making the commitment to unbind.
3818                          * That caters for the self-harm case, and with a
3819                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3820                          * we could try to minimise harm to others.
3821                          */
3822                         if (flags & PIN_NONBLOCK &&
3823                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3824                                 return ERR_PTR(-ENOSPC);
3825                 }
3826
3827                 WARN(i915_vma_is_pinned(vma),
3828                      "bo is already pinned in ggtt with incorrect alignment:"
3829                      " offset=%08x, req.alignment=%llx,"
3830                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3831                      i915_ggtt_offset(vma), alignment,
3832                      !!(flags & PIN_MAPPABLE),
3833                      i915_vma_is_map_and_fenceable(vma));
3834                 ret = i915_vma_unbind(vma);
3835                 if (ret)
3836                         return ERR_PTR(ret);
3837         }
3838
3839         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3840         if (ret)
3841                 return ERR_PTR(ret);
3842
3843         return vma;
3844 }
3845
3846 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3847 {
3848         /* Note that we could alias engines in the execbuf API, but
3849          * that would be very unwise as it prevents userspace from
3850          * fine control over engine selection. Ahem.
3851          *
3852          * This should be something like EXEC_MAX_ENGINE instead of
3853          * I915_NUM_ENGINES.
3854          */
3855         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3856         return 0x10000 << id;
3857 }
3858
3859 static __always_inline unsigned int __busy_write_id(unsigned int id)
3860 {
3861         /* The uABI guarantees an active writer is also amongst the read
3862          * engines. This would be true if we accessed the activity tracking
3863          * under the lock, but as we perform the lookup of the object and
3864          * its activity locklessly we can not guarantee that the last_write
3865          * being active implies that we have set the same engine flag from
3866          * last_read - hence we always set both read and write busy for
3867          * last_write.
3868          */
3869         return id | __busy_read_flag(id);
3870 }
3871
3872 static __always_inline unsigned int
3873 __busy_set_if_active(const struct dma_fence *fence,
3874                      unsigned int (*flag)(unsigned int id))
3875 {
3876         struct drm_i915_gem_request *rq;
3877
3878         /* We have to check the current hw status of the fence as the uABI
3879          * guarantees forward progress. We could rely on the idle worker
3880          * to eventually flush us, but to minimise latency just ask the
3881          * hardware.
3882          *
3883          * Note we only report on the status of native fences.
3884          */
3885         if (!dma_fence_is_i915(fence))
3886                 return 0;
3887
3888         /* opencode to_request() in order to avoid const warnings */
3889         rq = container_of(fence, struct drm_i915_gem_request, fence);
3890         if (i915_gem_request_completed(rq))
3891                 return 0;
3892
3893         return flag(rq->engine->exec_id);
3894 }
3895
3896 static __always_inline unsigned int
3897 busy_check_reader(const struct dma_fence *fence)
3898 {
3899         return __busy_set_if_active(fence, __busy_read_flag);
3900 }
3901
3902 static __always_inline unsigned int
3903 busy_check_writer(const struct dma_fence *fence)
3904 {
3905         if (!fence)
3906                 return 0;
3907
3908         return __busy_set_if_active(fence, __busy_write_id);
3909 }
3910
3911 int
3912 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3913                     struct drm_file *file)
3914 {
3915         struct drm_i915_gem_busy *args = data;
3916         struct drm_i915_gem_object *obj;
3917         struct reservation_object_list *list;
3918         unsigned int seq;
3919         int err;
3920
3921         err = -ENOENT;
3922         rcu_read_lock();
3923         obj = i915_gem_object_lookup_rcu(file, args->handle);
3924         if (!obj)
3925                 goto out;
3926
3927         /* A discrepancy here is that we do not report the status of
3928          * non-i915 fences, i.e. even though we may report the object as idle,
3929          * a call to set-domain may still stall waiting for foreign rendering.
3930          * This also means that wait-ioctl may report an object as busy,
3931          * where busy-ioctl considers it idle.
3932          *
3933          * We trade the ability to warn of foreign fences to report on which
3934          * i915 engines are active for the object.
3935          *
3936          * Alternatively, we can trade that extra information on read/write
3937          * activity with
3938          *      args->busy =
3939          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3940          * to report the overall busyness. This is what the wait-ioctl does.
3941          *
3942          */
3943 retry:
3944         seq = raw_read_seqcount(&obj->resv->seq);
3945
3946         /* Translate the exclusive fence to the READ *and* WRITE engine */
3947         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3948
3949         /* Translate shared fences to READ set of engines */
3950         list = rcu_dereference(obj->resv->fence);
3951         if (list) {
3952                 unsigned int shared_count = list->shared_count, i;
3953
3954                 for (i = 0; i < shared_count; ++i) {
3955                         struct dma_fence *fence =
3956                                 rcu_dereference(list->shared[i]);
3957
3958                         args->busy |= busy_check_reader(fence);
3959                 }
3960         }
3961
3962         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3963                 goto retry;
3964
3965         err = 0;
3966 out:
3967         rcu_read_unlock();
3968         return err;
3969 }
3970
3971 int
3972 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3973                         struct drm_file *file_priv)
3974 {
3975         return i915_gem_ring_throttle(dev, file_priv);
3976 }
3977
3978 int
3979 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3980                        struct drm_file *file_priv)
3981 {
3982         struct drm_i915_private *dev_priv = to_i915(dev);
3983         struct drm_i915_gem_madvise *args = data;
3984         struct drm_i915_gem_object *obj;
3985         int err;
3986
3987         switch (args->madv) {
3988         case I915_MADV_DONTNEED:
3989         case I915_MADV_WILLNEED:
3990             break;
3991         default:
3992             return -EINVAL;
3993         }
3994
3995         obj = i915_gem_object_lookup(file_priv, args->handle);
3996         if (!obj)
3997                 return -ENOENT;
3998
3999         err = mutex_lock_interruptible(&obj->mm.lock);
4000         if (err)
4001                 goto out;
4002
4003         if (obj->mm.pages &&
4004             i915_gem_object_is_tiled(obj) &&
4005             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4006                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4007                         GEM_BUG_ON(!obj->mm.quirked);
4008                         __i915_gem_object_unpin_pages(obj);
4009                         obj->mm.quirked = false;
4010                 }
4011                 if (args->madv == I915_MADV_WILLNEED) {
4012                         GEM_BUG_ON(obj->mm.quirked);
4013                         __i915_gem_object_pin_pages(obj);
4014                         obj->mm.quirked = true;
4015                 }
4016         }
4017
4018         if (obj->mm.madv != __I915_MADV_PURGED)
4019                 obj->mm.madv = args->madv;
4020
4021         /* if the object is no longer attached, discard its backing storage */
4022         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4023                 i915_gem_object_truncate(obj);
4024
4025         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4026         mutex_unlock(&obj->mm.lock);
4027
4028 out:
4029         i915_gem_object_put(obj);
4030         return err;
4031 }
4032
4033 static void
4034 frontbuffer_retire(struct i915_gem_active *active,
4035                    struct drm_i915_gem_request *request)
4036 {
4037         struct drm_i915_gem_object *obj =
4038                 container_of(active, typeof(*obj), frontbuffer_write);
4039
4040         intel_fb_obj_flush(obj, ORIGIN_CS);
4041 }
4042
4043 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4044                           const struct drm_i915_gem_object_ops *ops)
4045 {
4046         mutex_init(&obj->mm.lock);
4047
4048         INIT_LIST_HEAD(&obj->global_link);
4049         INIT_LIST_HEAD(&obj->userfault_link);
4050         INIT_LIST_HEAD(&obj->obj_exec_link);
4051         INIT_LIST_HEAD(&obj->vma_list);
4052         INIT_LIST_HEAD(&obj->batch_pool_link);
4053
4054         obj->ops = ops;
4055
4056         reservation_object_init(&obj->__builtin_resv);
4057         obj->resv = &obj->__builtin_resv;
4058
4059         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4060         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4061
4062         obj->mm.madv = I915_MADV_WILLNEED;
4063         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4064         mutex_init(&obj->mm.get_page.lock);
4065
4066         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4067 }
4068
4069 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4070         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4071                  I915_GEM_OBJECT_IS_SHRINKABLE,
4072
4073         .get_pages = i915_gem_object_get_pages_gtt,
4074         .put_pages = i915_gem_object_put_pages_gtt,
4075
4076         .pwrite = i915_gem_object_pwrite_gtt,
4077 };
4078
4079 struct drm_i915_gem_object *
4080 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4081 {
4082         struct drm_i915_gem_object *obj;
4083         struct address_space *mapping;
4084         gfp_t mask;
4085         int ret;
4086
4087         /* There is a prevalence of the assumption that we fit the object's
4088          * page count inside a 32bit _signed_ variable. Let's document this and
4089          * catch if we ever need to fix it. In the meantime, if you do spot
4090          * such a local variable, please consider fixing!
4091          */
4092         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4093                 return ERR_PTR(-E2BIG);
4094
4095         if (overflows_type(size, obj->base.size))
4096                 return ERR_PTR(-E2BIG);
4097
4098         obj = i915_gem_object_alloc(dev_priv);
4099         if (obj == NULL)
4100                 return ERR_PTR(-ENOMEM);
4101
4102         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4103         if (ret)
4104                 goto fail;
4105
4106         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4107         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4108                 /* 965gm cannot relocate objects above 4GiB. */
4109                 mask &= ~__GFP_HIGHMEM;
4110                 mask |= __GFP_DMA32;
4111         }
4112
4113         mapping = obj->base.filp->f_mapping;
4114         mapping_set_gfp_mask(mapping, mask);
4115
4116         i915_gem_object_init(obj, &i915_gem_object_ops);
4117
4118         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4119         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4120
4121         if (HAS_LLC(dev_priv)) {
4122                 /* On some devices, we can have the GPU use the LLC (the CPU
4123                  * cache) for about a 10% performance improvement
4124                  * compared to uncached.  Graphics requests other than
4125                  * display scanout are coherent with the CPU in
4126                  * accessing this cache.  This means in this mode we
4127                  * don't need to clflush on the CPU side, and on the
4128                  * GPU side we only need to flush internal caches to
4129                  * get data visible to the CPU.
4130                  *
4131                  * However, we maintain the display planes as UC, and so
4132                  * need to rebind when first used as such.
4133                  */
4134                 obj->cache_level = I915_CACHE_LLC;
4135         } else
4136                 obj->cache_level = I915_CACHE_NONE;
4137
4138         trace_i915_gem_object_create(obj);
4139
4140         return obj;
4141
4142 fail:
4143         i915_gem_object_free(obj);
4144         return ERR_PTR(ret);
4145 }
4146
4147 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4148 {
4149         /* If we are the last user of the backing storage (be it shmemfs
4150          * pages or stolen etc), we know that the pages are going to be
4151          * immediately released. In this case, we can then skip copying
4152          * back the contents from the GPU.
4153          */
4154
4155         if (obj->mm.madv != I915_MADV_WILLNEED)
4156                 return false;
4157
4158         if (obj->base.filp == NULL)
4159                 return true;
4160
4161         /* At first glance, this looks racy, but then again so would be
4162          * userspace racing mmap against close. However, the first external
4163          * reference to the filp can only be obtained through the
4164          * i915_gem_mmap_ioctl() which safeguards us against the user
4165          * acquiring such a reference whilst we are in the middle of
4166          * freeing the object.
4167          */
4168         return atomic_long_read(&obj->base.filp->f_count) == 1;
4169 }
4170
4171 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4172                                     struct llist_node *freed)
4173 {
4174         struct drm_i915_gem_object *obj, *on;
4175
4176         mutex_lock(&i915->drm.struct_mutex);
4177         intel_runtime_pm_get(i915);
4178         llist_for_each_entry(obj, freed, freed) {
4179                 struct i915_vma *vma, *vn;
4180
4181                 trace_i915_gem_object_destroy(obj);
4182
4183                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4184                 list_for_each_entry_safe(vma, vn,
4185                                          &obj->vma_list, obj_link) {
4186                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4187                         GEM_BUG_ON(i915_vma_is_active(vma));
4188                         vma->flags &= ~I915_VMA_PIN_MASK;
4189                         i915_vma_close(vma);
4190                 }
4191                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4192                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4193
4194                 list_del(&obj->global_link);
4195         }
4196         intel_runtime_pm_put(i915);
4197         mutex_unlock(&i915->drm.struct_mutex);
4198
4199         llist_for_each_entry_safe(obj, on, freed, freed) {
4200                 GEM_BUG_ON(obj->bind_count);
4201                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4202
4203                 if (obj->ops->release)
4204                         obj->ops->release(obj);
4205
4206                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4207                         atomic_set(&obj->mm.pages_pin_count, 0);
4208                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4209                 GEM_BUG_ON(obj->mm.pages);
4210
4211                 if (obj->base.import_attach)
4212                         drm_prime_gem_destroy(&obj->base, NULL);
4213
4214                 reservation_object_fini(&obj->__builtin_resv);
4215                 drm_gem_object_release(&obj->base);
4216                 i915_gem_info_remove_obj(i915, obj->base.size);
4217
4218                 kfree(obj->bit_17);
4219                 i915_gem_object_free(obj);
4220         }
4221 }
4222
4223 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4224 {
4225         struct llist_node *freed;
4226
4227         freed = llist_del_all(&i915->mm.free_list);
4228         if (unlikely(freed))
4229                 __i915_gem_free_objects(i915, freed);
4230 }
4231
4232 static void __i915_gem_free_work(struct work_struct *work)
4233 {
4234         struct drm_i915_private *i915 =
4235                 container_of(work, struct drm_i915_private, mm.free_work);
4236         struct llist_node *freed;
4237
4238         /* All file-owned VMA should have been released by this point through
4239          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4240          * However, the object may also be bound into the global GTT (e.g.
4241          * older GPUs without per-process support, or for direct access through
4242          * the GTT either for the user or for scanout). Those VMA still need to
4243          * unbound now.
4244          */
4245
4246         while ((freed = llist_del_all(&i915->mm.free_list)))
4247                 __i915_gem_free_objects(i915, freed);
4248 }
4249
4250 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4251 {
4252         struct drm_i915_gem_object *obj =
4253                 container_of(head, typeof(*obj), rcu);
4254         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4255
4256         /* We can't simply use call_rcu() from i915_gem_free_object()
4257          * as we need to block whilst unbinding, and the call_rcu
4258          * task may be called from softirq context. So we take a
4259          * detour through a worker.
4260          */
4261         if (llist_add(&obj->freed, &i915->mm.free_list))
4262                 schedule_work(&i915->mm.free_work);
4263 }
4264
4265 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4266 {
4267         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4268
4269         if (obj->mm.quirked)
4270                 __i915_gem_object_unpin_pages(obj);
4271
4272         if (discard_backing_storage(obj))
4273                 obj->mm.madv = I915_MADV_DONTNEED;
4274
4275         /* Before we free the object, make sure any pure RCU-only
4276          * read-side critical sections are complete, e.g.
4277          * i915_gem_busy_ioctl(). For the corresponding synchronized
4278          * lookup see i915_gem_object_lookup_rcu().
4279          */
4280         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4281 }
4282
4283 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4284 {
4285         lockdep_assert_held(&obj->base.dev->struct_mutex);
4286
4287         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4288         if (i915_gem_object_is_active(obj))
4289                 i915_gem_object_set_active_reference(obj);
4290         else
4291                 i915_gem_object_put(obj);
4292 }
4293
4294 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4295 {
4296         struct intel_engine_cs *engine;
4297         enum intel_engine_id id;
4298
4299         for_each_engine(engine, dev_priv, id)
4300                 GEM_BUG_ON(engine->last_retired_context &&
4301                            !i915_gem_context_is_kernel(engine->last_retired_context));
4302 }
4303
4304 void i915_gem_sanitize(struct drm_i915_private *i915)
4305 {
4306         /*
4307          * If we inherit context state from the BIOS or earlier occupants
4308          * of the GPU, the GPU may be in an inconsistent state when we
4309          * try to take over. The only way to remove the earlier state
4310          * is by resetting. However, resetting on earlier gen is tricky as
4311          * it may impact the display and we are uncertain about the stability
4312          * of the reset, so we only reset recent machines with logical
4313          * context support (that must be reset to remove any stray contexts).
4314          */
4315         if (HAS_HW_CONTEXTS(i915)) {
4316                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4317                 WARN_ON(reset && reset != -ENODEV);
4318         }
4319 }
4320
4321 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4322 {
4323         struct drm_device *dev = &dev_priv->drm;
4324         int ret;
4325
4326         intel_runtime_pm_get(dev_priv);
4327         intel_suspend_gt_powersave(dev_priv);
4328
4329         mutex_lock(&dev->struct_mutex);
4330
4331         /* We have to flush all the executing contexts to main memory so
4332          * that they can saved in the hibernation image. To ensure the last
4333          * context image is coherent, we have to switch away from it. That
4334          * leaves the dev_priv->kernel_context still active when
4335          * we actually suspend, and its image in memory may not match the GPU
4336          * state. Fortunately, the kernel_context is disposable and we do
4337          * not rely on its state.
4338          */
4339         ret = i915_gem_switch_to_kernel_context(dev_priv);
4340         if (ret)
4341                 goto err_unlock;
4342
4343         ret = i915_gem_wait_for_idle(dev_priv,
4344                                      I915_WAIT_INTERRUPTIBLE |
4345                                      I915_WAIT_LOCKED);
4346         if (ret)
4347                 goto err_unlock;
4348
4349         i915_gem_retire_requests(dev_priv);
4350         GEM_BUG_ON(dev_priv->gt.active_requests);
4351
4352         assert_kernel_context_is_current(dev_priv);
4353         i915_gem_context_lost(dev_priv);
4354         mutex_unlock(&dev->struct_mutex);
4355
4356         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4357         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4358
4359         /* As the idle_work is rearming if it detects a race, play safe and
4360          * repeat the flush until it is definitely idle.
4361          */
4362         while (flush_delayed_work(&dev_priv->gt.idle_work))
4363                 ;
4364
4365         i915_gem_drain_freed_objects(dev_priv);
4366
4367         /* Assert that we sucessfully flushed all the work and
4368          * reset the GPU back to its idle, low power state.
4369          */
4370         WARN_ON(dev_priv->gt.awake);
4371         WARN_ON(!intel_engines_are_idle(dev_priv));
4372
4373         /*
4374          * Neither the BIOS, ourselves or any other kernel
4375          * expects the system to be in execlists mode on startup,
4376          * so we need to reset the GPU back to legacy mode. And the only
4377          * known way to disable logical contexts is through a GPU reset.
4378          *
4379          * So in order to leave the system in a known default configuration,
4380          * always reset the GPU upon unload and suspend. Afterwards we then
4381          * clean up the GEM state tracking, flushing off the requests and
4382          * leaving the system in a known idle state.
4383          *
4384          * Note that is of the upmost importance that the GPU is idle and
4385          * all stray writes are flushed *before* we dismantle the backing
4386          * storage for the pinned objects.
4387          *
4388          * However, since we are uncertain that resetting the GPU on older
4389          * machines is a good idea, we don't - just in case it leaves the
4390          * machine in an unusable condition.
4391          */
4392         i915_gem_sanitize(dev_priv);
4393         goto out_rpm_put;
4394
4395 err_unlock:
4396         mutex_unlock(&dev->struct_mutex);
4397 out_rpm_put:
4398         intel_runtime_pm_put(dev_priv);
4399         return ret;
4400 }
4401
4402 void i915_gem_resume(struct drm_i915_private *dev_priv)
4403 {
4404         struct drm_device *dev = &dev_priv->drm;
4405
4406         WARN_ON(dev_priv->gt.awake);
4407
4408         mutex_lock(&dev->struct_mutex);
4409         i915_gem_restore_gtt_mappings(dev_priv);
4410
4411         /* As we didn't flush the kernel context before suspend, we cannot
4412          * guarantee that the context image is complete. So let's just reset
4413          * it and start again.
4414          */
4415         dev_priv->gt.resume(dev_priv);
4416
4417         mutex_unlock(&dev->struct_mutex);
4418 }
4419
4420 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4421 {
4422         if (INTEL_GEN(dev_priv) < 5 ||
4423             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4424                 return;
4425
4426         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4427                                  DISP_TILE_SURFACE_SWIZZLING);
4428
4429         if (IS_GEN5(dev_priv))
4430                 return;
4431
4432         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4433         if (IS_GEN6(dev_priv))
4434                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4435         else if (IS_GEN7(dev_priv))
4436                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4437         else if (IS_GEN8(dev_priv))
4438                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4439         else
4440                 BUG();
4441 }
4442
4443 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4444 {
4445         I915_WRITE(RING_CTL(base), 0);
4446         I915_WRITE(RING_HEAD(base), 0);
4447         I915_WRITE(RING_TAIL(base), 0);
4448         I915_WRITE(RING_START(base), 0);
4449 }
4450
4451 static void init_unused_rings(struct drm_i915_private *dev_priv)
4452 {
4453         if (IS_I830(dev_priv)) {
4454                 init_unused_ring(dev_priv, PRB1_BASE);
4455                 init_unused_ring(dev_priv, SRB0_BASE);
4456                 init_unused_ring(dev_priv, SRB1_BASE);
4457                 init_unused_ring(dev_priv, SRB2_BASE);
4458                 init_unused_ring(dev_priv, SRB3_BASE);
4459         } else if (IS_GEN2(dev_priv)) {
4460                 init_unused_ring(dev_priv, SRB0_BASE);
4461                 init_unused_ring(dev_priv, SRB1_BASE);
4462         } else if (IS_GEN3(dev_priv)) {
4463                 init_unused_ring(dev_priv, PRB1_BASE);
4464                 init_unused_ring(dev_priv, PRB2_BASE);
4465         }
4466 }
4467
4468 static int __i915_gem_restart_engines(void *data)
4469 {
4470         struct drm_i915_private *i915 = data;
4471         struct intel_engine_cs *engine;
4472         enum intel_engine_id id;
4473         int err;
4474
4475         for_each_engine(engine, i915, id) {
4476                 err = engine->init_hw(engine);
4477                 if (err)
4478                         return err;
4479         }
4480
4481         return 0;
4482 }
4483
4484 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4485 {
4486         int ret;
4487
4488         dev_priv->gt.last_init_time = ktime_get();
4489
4490         /* Double layer security blanket, see i915_gem_init() */
4491         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4492
4493         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4494                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4495
4496         if (IS_HASWELL(dev_priv))
4497                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4498                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4499
4500         if (HAS_PCH_NOP(dev_priv)) {
4501                 if (IS_IVYBRIDGE(dev_priv)) {
4502                         u32 temp = I915_READ(GEN7_MSG_CTL);
4503                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4504                         I915_WRITE(GEN7_MSG_CTL, temp);
4505                 } else if (INTEL_GEN(dev_priv) >= 7) {
4506                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4507                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4508                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4509                 }
4510         }
4511
4512         i915_gem_init_swizzling(dev_priv);
4513
4514         /*
4515          * At least 830 can leave some of the unused rings
4516          * "active" (ie. head != tail) after resume which
4517          * will prevent c3 entry. Makes sure all unused rings
4518          * are totally idle.
4519          */
4520         init_unused_rings(dev_priv);
4521
4522         BUG_ON(!dev_priv->kernel_context);
4523
4524         ret = i915_ppgtt_init_hw(dev_priv);
4525         if (ret) {
4526                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4527                 goto out;
4528         }
4529
4530         /* Need to do basic initialisation of all rings first: */
4531         ret = __i915_gem_restart_engines(dev_priv);
4532         if (ret)
4533                 goto out;
4534
4535         intel_mocs_init_l3cc_table(dev_priv);
4536
4537         /* We can't enable contexts until all firmware is loaded */
4538         ret = intel_guc_setup(dev_priv);
4539         if (ret)
4540                 goto out;
4541
4542 out:
4543         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4544         return ret;
4545 }
4546
4547 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4548 {
4549         if (INTEL_INFO(dev_priv)->gen < 6)
4550                 return false;
4551
4552         /* TODO: make semaphores and Execlists play nicely together */
4553         if (i915.enable_execlists)
4554                 return false;
4555
4556         if (value >= 0)
4557                 return value;
4558
4559 #ifdef CONFIG_INTEL_IOMMU
4560         /* Enable semaphores on SNB when IO remapping is off */
4561         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4562                 return false;
4563 #endif
4564
4565         return true;
4566 }
4567
4568 int i915_gem_init(struct drm_i915_private *dev_priv)
4569 {
4570         int ret;
4571
4572         mutex_lock(&dev_priv->drm.struct_mutex);
4573
4574         i915_gem_clflush_init(dev_priv);
4575
4576         if (!i915.enable_execlists) {
4577                 dev_priv->gt.resume = intel_legacy_submission_resume;
4578                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4579         } else {
4580                 dev_priv->gt.resume = intel_lr_context_resume;
4581                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4582         }
4583
4584         /* This is just a security blanket to placate dragons.
4585          * On some systems, we very sporadically observe that the first TLBs
4586          * used by the CS may be stale, despite us poking the TLB reset. If
4587          * we hold the forcewake during initialisation these problems
4588          * just magically go away.
4589          */
4590         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4591
4592         i915_gem_init_userptr(dev_priv);
4593
4594         ret = i915_gem_init_ggtt(dev_priv);
4595         if (ret)
4596                 goto out_unlock;
4597
4598         ret = i915_gem_context_init(dev_priv);
4599         if (ret)
4600                 goto out_unlock;
4601
4602         ret = intel_engines_init(dev_priv);
4603         if (ret)
4604                 goto out_unlock;
4605
4606         ret = i915_gem_init_hw(dev_priv);
4607         if (ret == -EIO) {
4608                 /* Allow engine initialisation to fail by marking the GPU as
4609                  * wedged. But we only want to do this where the GPU is angry,
4610                  * for all other failure, such as an allocation failure, bail.
4611                  */
4612                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4613                 i915_gem_set_wedged(dev_priv);
4614                 ret = 0;
4615         }
4616
4617 out_unlock:
4618         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4619         mutex_unlock(&dev_priv->drm.struct_mutex);
4620
4621         return ret;
4622 }
4623
4624 void i915_gem_init_mmio(struct drm_i915_private *i915)
4625 {
4626         i915_gem_sanitize(i915);
4627 }
4628
4629 void
4630 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4631 {
4632         struct intel_engine_cs *engine;
4633         enum intel_engine_id id;
4634
4635         for_each_engine(engine, dev_priv, id)
4636                 dev_priv->gt.cleanup_engine(engine);
4637 }
4638
4639 void
4640 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4641 {
4642         int i;
4643
4644         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4645             !IS_CHERRYVIEW(dev_priv))
4646                 dev_priv->num_fence_regs = 32;
4647         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4648                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4649                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4650                 dev_priv->num_fence_regs = 16;
4651         else
4652                 dev_priv->num_fence_regs = 8;
4653
4654         if (intel_vgpu_active(dev_priv))
4655                 dev_priv->num_fence_regs =
4656                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4657
4658         /* Initialize fence registers to zero */
4659         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4660                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4661
4662                 fence->i915 = dev_priv;
4663                 fence->id = i;
4664                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4665         }
4666         i915_gem_restore_fences(dev_priv);
4667
4668         i915_gem_detect_bit_6_swizzle(dev_priv);
4669 }
4670
4671 int
4672 i915_gem_load_init(struct drm_i915_private *dev_priv)
4673 {
4674         int err = -ENOMEM;
4675
4676         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4677         if (!dev_priv->objects)
4678                 goto err_out;
4679
4680         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4681         if (!dev_priv->vmas)
4682                 goto err_objects;
4683
4684         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4685                                         SLAB_HWCACHE_ALIGN |
4686                                         SLAB_RECLAIM_ACCOUNT |
4687                                         SLAB_DESTROY_BY_RCU);
4688         if (!dev_priv->requests)
4689                 goto err_vmas;
4690
4691         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4692                                             SLAB_HWCACHE_ALIGN |
4693                                             SLAB_RECLAIM_ACCOUNT);
4694         if (!dev_priv->dependencies)
4695                 goto err_requests;
4696
4697         mutex_lock(&dev_priv->drm.struct_mutex);
4698         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4699         err = i915_gem_timeline_init__global(dev_priv);
4700         mutex_unlock(&dev_priv->drm.struct_mutex);
4701         if (err)
4702                 goto err_dependencies;
4703
4704         INIT_LIST_HEAD(&dev_priv->context_list);
4705         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4706         init_llist_head(&dev_priv->mm.free_list);
4707         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4708         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4709         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4710         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4711         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4712                           i915_gem_retire_work_handler);
4713         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4714                           i915_gem_idle_work_handler);
4715         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4716         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4717
4718         init_waitqueue_head(&dev_priv->pending_flip_queue);
4719
4720         dev_priv->mm.interruptible = true;
4721
4722         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4723
4724         spin_lock_init(&dev_priv->fb_tracking.lock);
4725
4726         return 0;
4727
4728 err_dependencies:
4729         kmem_cache_destroy(dev_priv->dependencies);
4730 err_requests:
4731         kmem_cache_destroy(dev_priv->requests);
4732 err_vmas:
4733         kmem_cache_destroy(dev_priv->vmas);
4734 err_objects:
4735         kmem_cache_destroy(dev_priv->objects);
4736 err_out:
4737         return err;
4738 }
4739
4740 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4741 {
4742         i915_gem_drain_freed_objects(dev_priv);
4743         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4744         WARN_ON(dev_priv->mm.object_count);
4745
4746         mutex_lock(&dev_priv->drm.struct_mutex);
4747         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4748         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4749         mutex_unlock(&dev_priv->drm.struct_mutex);
4750
4751         kmem_cache_destroy(dev_priv->dependencies);
4752         kmem_cache_destroy(dev_priv->requests);
4753         kmem_cache_destroy(dev_priv->vmas);
4754         kmem_cache_destroy(dev_priv->objects);
4755
4756         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4757         rcu_barrier();
4758 }
4759
4760 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4761 {
4762         mutex_lock(&dev_priv->drm.struct_mutex);
4763         i915_gem_shrink_all(dev_priv);
4764         mutex_unlock(&dev_priv->drm.struct_mutex);
4765
4766         return 0;
4767 }
4768
4769 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4770 {
4771         struct drm_i915_gem_object *obj;
4772         struct list_head *phases[] = {
4773                 &dev_priv->mm.unbound_list,
4774                 &dev_priv->mm.bound_list,
4775                 NULL
4776         }, **p;
4777
4778         /* Called just before we write the hibernation image.
4779          *
4780          * We need to update the domain tracking to reflect that the CPU
4781          * will be accessing all the pages to create and restore from the
4782          * hibernation, and so upon restoration those pages will be in the
4783          * CPU domain.
4784          *
4785          * To make sure the hibernation image contains the latest state,
4786          * we update that state just before writing out the image.
4787          *
4788          * To try and reduce the hibernation image, we manually shrink
4789          * the objects as well.
4790          */
4791
4792         mutex_lock(&dev_priv->drm.struct_mutex);
4793         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4794
4795         for (p = phases; *p; p++) {
4796                 list_for_each_entry(obj, *p, global_link) {
4797                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4798                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4799                 }
4800         }
4801         mutex_unlock(&dev_priv->drm.struct_mutex);
4802
4803         return 0;
4804 }
4805
4806 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4807 {
4808         struct drm_i915_file_private *file_priv = file->driver_priv;
4809         struct drm_i915_gem_request *request;
4810
4811         /* Clean up our request list when the client is going away, so that
4812          * later retire_requests won't dereference our soon-to-be-gone
4813          * file_priv.
4814          */
4815         spin_lock(&file_priv->mm.lock);
4816         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4817                 request->file_priv = NULL;
4818         spin_unlock(&file_priv->mm.lock);
4819
4820         if (!list_empty(&file_priv->rps.link)) {
4821                 spin_lock(&to_i915(dev)->rps.client_lock);
4822                 list_del(&file_priv->rps.link);
4823                 spin_unlock(&to_i915(dev)->rps.client_lock);
4824         }
4825 }
4826
4827 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4828 {
4829         struct drm_i915_file_private *file_priv;
4830         int ret;
4831
4832         DRM_DEBUG("\n");
4833
4834         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4835         if (!file_priv)
4836                 return -ENOMEM;
4837
4838         file->driver_priv = file_priv;
4839         file_priv->dev_priv = to_i915(dev);
4840         file_priv->file = file;
4841         INIT_LIST_HEAD(&file_priv->rps.link);
4842
4843         spin_lock_init(&file_priv->mm.lock);
4844         INIT_LIST_HEAD(&file_priv->mm.request_list);
4845
4846         file_priv->bsd_engine = -1;
4847
4848         ret = i915_gem_context_open(dev, file);
4849         if (ret)
4850                 kfree(file_priv);
4851
4852         return ret;
4853 }
4854
4855 /**
4856  * i915_gem_track_fb - update frontbuffer tracking
4857  * @old: current GEM buffer for the frontbuffer slots
4858  * @new: new GEM buffer for the frontbuffer slots
4859  * @frontbuffer_bits: bitmask of frontbuffer slots
4860  *
4861  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4862  * from @old and setting them in @new. Both @old and @new can be NULL.
4863  */
4864 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4865                        struct drm_i915_gem_object *new,
4866                        unsigned frontbuffer_bits)
4867 {
4868         /* Control of individual bits within the mask are guarded by
4869          * the owning plane->mutex, i.e. we can never see concurrent
4870          * manipulation of individual bits. But since the bitfield as a whole
4871          * is updated using RMW, we need to use atomics in order to update
4872          * the bits.
4873          */
4874         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4875                      sizeof(atomic_t) * BITS_PER_BYTE);
4876
4877         if (old) {
4878                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4879                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4880         }
4881
4882         if (new) {
4883                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4884                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4885         }
4886 }
4887
4888 /* Allocate a new GEM object and fill it with the supplied data */
4889 struct drm_i915_gem_object *
4890 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4891                                  const void *data, size_t size)
4892 {
4893         struct drm_i915_gem_object *obj;
4894         struct sg_table *sg;
4895         size_t bytes;
4896         int ret;
4897
4898         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4899         if (IS_ERR(obj))
4900                 return obj;
4901
4902         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4903         if (ret)
4904                 goto fail;
4905
4906         ret = i915_gem_object_pin_pages(obj);
4907         if (ret)
4908                 goto fail;
4909
4910         sg = obj->mm.pages;
4911         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4912         obj->mm.dirty = true; /* Backing store is now out of date */
4913         i915_gem_object_unpin_pages(obj);
4914
4915         if (WARN_ON(bytes != size)) {
4916                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4917                 ret = -EFAULT;
4918                 goto fail;
4919         }
4920
4921         return obj;
4922
4923 fail:
4924         i915_gem_object_put(obj);
4925         return ERR_PTR(ret);
4926 }
4927
4928 struct scatterlist *
4929 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4930                        unsigned int n,
4931                        unsigned int *offset)
4932 {
4933         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4934         struct scatterlist *sg;
4935         unsigned int idx, count;
4936
4937         might_sleep();
4938         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4939         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4940
4941         /* As we iterate forward through the sg, we record each entry in a
4942          * radixtree for quick repeated (backwards) lookups. If we have seen
4943          * this index previously, we will have an entry for it.
4944          *
4945          * Initial lookup is O(N), but this is amortized to O(1) for
4946          * sequential page access (where each new request is consecutive
4947          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4948          * i.e. O(1) with a large constant!
4949          */
4950         if (n < READ_ONCE(iter->sg_idx))
4951                 goto lookup;
4952
4953         mutex_lock(&iter->lock);
4954
4955         /* We prefer to reuse the last sg so that repeated lookup of this
4956          * (or the subsequent) sg are fast - comparing against the last
4957          * sg is faster than going through the radixtree.
4958          */
4959
4960         sg = iter->sg_pos;
4961         idx = iter->sg_idx;
4962         count = __sg_page_count(sg);
4963
4964         while (idx + count <= n) {
4965                 unsigned long exception, i;
4966                 int ret;
4967
4968                 /* If we cannot allocate and insert this entry, or the
4969                  * individual pages from this range, cancel updating the
4970                  * sg_idx so that on this lookup we are forced to linearly
4971                  * scan onwards, but on future lookups we will try the
4972                  * insertion again (in which case we need to be careful of
4973                  * the error return reporting that we have already inserted
4974                  * this index).
4975                  */
4976                 ret = radix_tree_insert(&iter->radix, idx, sg);
4977                 if (ret && ret != -EEXIST)
4978                         goto scan;
4979
4980                 exception =
4981                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4982                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4983                 for (i = 1; i < count; i++) {
4984                         ret = radix_tree_insert(&iter->radix, idx + i,
4985                                                 (void *)exception);
4986                         if (ret && ret != -EEXIST)
4987                                 goto scan;
4988                 }
4989
4990                 idx += count;
4991                 sg = ____sg_next(sg);
4992                 count = __sg_page_count(sg);
4993         }
4994
4995 scan:
4996         iter->sg_pos = sg;
4997         iter->sg_idx = idx;
4998
4999         mutex_unlock(&iter->lock);
5000
5001         if (unlikely(n < idx)) /* insertion completed by another thread */
5002                 goto lookup;
5003
5004         /* In case we failed to insert the entry into the radixtree, we need
5005          * to look beyond the current sg.
5006          */
5007         while (idx + count <= n) {
5008                 idx += count;
5009                 sg = ____sg_next(sg);
5010                 count = __sg_page_count(sg);
5011         }
5012
5013         *offset = n - idx;
5014         return sg;
5015
5016 lookup:
5017         rcu_read_lock();
5018
5019         sg = radix_tree_lookup(&iter->radix, n);
5020         GEM_BUG_ON(!sg);
5021
5022         /* If this index is in the middle of multi-page sg entry,
5023          * the radixtree will contain an exceptional entry that points
5024          * to the start of that range. We will return the pointer to
5025          * the base page and the offset of this page within the
5026          * sg entry's range.
5027          */
5028         *offset = 0;
5029         if (unlikely(radix_tree_exception(sg))) {
5030                 unsigned long base =
5031                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5032
5033                 sg = radix_tree_lookup(&iter->radix, base);
5034                 GEM_BUG_ON(!sg);
5035
5036                 *offset = n - base;
5037         }
5038
5039         rcu_read_unlock();
5040
5041         return sg;
5042 }
5043
5044 struct page *
5045 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5046 {
5047         struct scatterlist *sg;
5048         unsigned int offset;
5049
5050         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5051
5052         sg = i915_gem_object_get_sg(obj, n, &offset);
5053         return nth_page(sg_page(sg), offset);
5054 }
5055
5056 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5057 struct page *
5058 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5059                                unsigned int n)
5060 {
5061         struct page *page;
5062
5063         page = i915_gem_object_get_page(obj, n);
5064         if (!obj->mm.dirty)
5065                 set_page_dirty(page);
5066
5067         return page;
5068 }
5069
5070 dma_addr_t
5071 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5072                                 unsigned long n)
5073 {
5074         struct scatterlist *sg;
5075         unsigned int offset;
5076
5077         sg = i915_gem_object_get_sg(obj, n, &offset);
5078         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5079 }
5080
5081 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5082 #include "selftests/scatterlist.c"
5083 #include "selftests/mock_gem_device.c"
5084 #include "selftests/huge_gem_object.c"
5085 #include "selftests/i915_gem_object.c"
5086 #include "selftests/i915_gem_coherency.c"
5087 #endif