2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
54 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 if (!i915_gem_object_is_coherent(obj))
60 return obj->pin_display;
64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
75 remove_mappable_node(struct drm_mm_node *node)
77 drm_mm_remove_node(node);
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 if (!i915_reset_in_progress(error))
110 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111 * userspace. If it takes that long something really bad is going on and
112 * we should simply try to bail out and fail as gracefully as possible.
114 ret = wait_event_interruptible_timeout(error->reset_queue,
115 !i915_reset_in_progress(error),
118 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 } else if (ret < 0) {
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 struct drm_i915_private *dev_priv = to_i915(dev);
132 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 ret = mutex_lock_interruptible(&dev->struct_mutex);
144 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145 struct drm_file *file)
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct i915_ggtt *ggtt = &dev_priv->ggtt;
149 struct drm_i915_gem_get_aperture *args = data;
150 struct i915_vma *vma;
154 mutex_lock(&dev->struct_mutex);
155 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 if (i915_vma_is_pinned(vma))
157 pinned += vma->node.size;
158 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 if (i915_vma_is_pinned(vma))
160 pinned += vma->node.size;
161 mutex_unlock(&dev->struct_mutex);
163 args->aper_size = ggtt->base.total;
164 args->aper_available_size = args->aper_size - pinned;
169 static struct sg_table *
170 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 struct address_space *mapping = obj->base.filp->f_mapping;
173 drm_dma_handle_t *phys;
175 struct scatterlist *sg;
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return ERR_PTR(-EINVAL);
182 /* Always aligning to the object size, allows a single allocation
183 * to handle all possible callers, and given typical object sizes,
184 * the alignment of the buddy allocation will naturally match.
186 phys = drm_pci_alloc(obj->base.dev,
188 roundup_pow_of_two(obj->base.size));
190 return ERR_PTR(-ENOMEM);
193 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 page = shmem_read_mapping_page(mapping, i);
203 src = kmap_atomic(page);
204 memcpy(vaddr, src, PAGE_SIZE);
205 drm_clflush_virt_range(vaddr, PAGE_SIZE);
212 i915_gem_chipset_flush(to_i915(obj->base.dev));
214 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 st = ERR_PTR(-ENOMEM);
220 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
222 st = ERR_PTR(-ENOMEM);
228 sg->length = obj->base.size;
230 sg_dma_address(sg) = phys->busaddr;
231 sg_dma_len(sg) = obj->base.size;
233 obj->phys_handle = phys;
237 drm_pci_free(obj->base.dev, phys);
242 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243 struct sg_table *pages,
246 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
248 if (obj->mm.madv == I915_MADV_DONTNEED)
249 obj->mm.dirty = false;
252 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253 !i915_gem_object_is_coherent(obj))
254 drm_clflush_sg(pages);
256 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
257 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
261 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
262 struct sg_table *pages)
264 __i915_gem_object_release_shmem(obj, pages, false);
267 struct address_space *mapping = obj->base.filp->f_mapping;
268 char *vaddr = obj->phys_handle->vaddr;
271 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
275 page = shmem_read_mapping_page(mapping, i);
279 dst = kmap_atomic(page);
280 drm_clflush_virt_range(vaddr, PAGE_SIZE);
281 memcpy(dst, vaddr, PAGE_SIZE);
284 set_page_dirty(page);
285 if (obj->mm.madv == I915_MADV_WILLNEED)
286 mark_page_accessed(page);
290 obj->mm.dirty = false;
293 sg_free_table(pages);
296 drm_pci_free(obj->base.dev, obj->phys_handle);
300 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
302 i915_gem_object_unpin_pages(obj);
305 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
306 .get_pages = i915_gem_object_get_pages_phys,
307 .put_pages = i915_gem_object_put_pages_phys,
308 .release = i915_gem_object_release_phys,
311 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
313 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
315 struct i915_vma *vma;
316 LIST_HEAD(still_in_list);
319 lockdep_assert_held(&obj->base.dev->struct_mutex);
321 /* Closed vma are removed from the obj->vma_list - but they may
322 * still have an active binding on the object. To remove those we
323 * must wait for all rendering to complete to the object (as unbinding
324 * must anyway), and retire the requests.
326 ret = i915_gem_object_wait(obj,
327 I915_WAIT_INTERRUPTIBLE |
330 MAX_SCHEDULE_TIMEOUT,
335 i915_gem_retire_requests(to_i915(obj->base.dev));
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
345 list_splice(&still_in_list, &obj->vma_list);
351 i915_gem_object_wait_fence(struct dma_fence *fence,
354 struct intel_rps_client *rps)
356 struct drm_i915_gem_request *rq;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
388 if (INTEL_GEN(rq->i915) >= 6)
389 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
394 timeout = i915_wait_request(rq, flags, timeout);
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
400 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401 /* The GPU is now idle and this client has stalled.
402 * Since no other client has submitted a request in the
403 * meantime, assume that this client is the only one
404 * supplying work to the GPU but is unable to keep that
405 * work supplied because it is waiting. Since the GPU is
406 * then never kept fully busy, RPS autoclocking will
407 * keep the clocks relatively low, causing further delays.
408 * Compensate by giving the synchronous client credit for
409 * a waitboost next time.
411 spin_lock(&rq->i915->rps.client_lock);
412 list_del_init(&rps->link);
413 spin_unlock(&rq->i915->rps.client_lock);
420 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 struct intel_rps_client *rps)
425 unsigned int seq = __read_seqcount_begin(&resv->seq);
426 struct dma_fence *excl;
427 bool prune_fences = false;
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
446 dma_fence_put(shared[i]);
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
453 prune_fences = count && timeout >= 0;
455 excl = reservation_object_get_excl_rcu(resv);
458 if (excl && timeout >= 0) {
459 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460 prune_fences = timeout >= 0;
465 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
466 reservation_object_lock(resv, NULL);
467 if (!__read_seqcount_retry(&resv->seq, seq))
468 reservation_object_add_excl_fence(resv, NULL);
469 reservation_object_unlock(resv);
475 static void __fence_set_priority(struct dma_fence *fence, int prio)
477 struct drm_i915_gem_request *rq;
478 struct intel_engine_cs *engine;
480 if (!dma_fence_is_i915(fence))
483 rq = to_request(fence);
485 if (!engine->schedule)
488 engine->schedule(rq, prio);
491 static void fence_set_priority(struct dma_fence *fence, int prio)
493 /* Recurse once into a fence-array */
494 if (dma_fence_is_array(fence)) {
495 struct dma_fence_array *array = to_dma_fence_array(fence);
498 for (i = 0; i < array->num_fences; i++)
499 __fence_set_priority(array->fences[i], prio);
501 __fence_set_priority(fence, prio);
506 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
510 struct dma_fence *excl;
512 if (flags & I915_WAIT_ALL) {
513 struct dma_fence **shared;
514 unsigned int count, i;
517 ret = reservation_object_get_fences_rcu(obj->resv,
518 &excl, &count, &shared);
522 for (i = 0; i < count; i++) {
523 fence_set_priority(shared[i], prio);
524 dma_fence_put(shared[i]);
529 excl = reservation_object_get_excl_rcu(obj->resv);
533 fence_set_priority(excl, prio);
540 * Waits for rendering to the object to be completed
541 * @obj: i915 gem object
542 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
543 * @timeout: how long to wait
544 * @rps: client (user process) to charge for any waitboosting
547 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 struct intel_rps_client *rps)
553 #if IS_ENABLED(CONFIG_LOCKDEP)
554 GEM_BUG_ON(debug_locks &&
555 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
556 !!(flags & I915_WAIT_LOCKED));
558 GEM_BUG_ON(timeout < 0);
560 timeout = i915_gem_object_wait_reservation(obj->resv,
563 return timeout < 0 ? timeout : 0;
566 static struct intel_rps_client *to_rps_client(struct drm_file *file)
568 struct drm_i915_file_private *fpriv = file->driver_priv;
574 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
579 if (align > obj->base.size)
582 if (obj->ops == &i915_gem_phys_ops)
585 if (obj->mm.madv != I915_MADV_WILLNEED)
588 if (obj->base.filp == NULL)
591 ret = i915_gem_object_unbind(obj);
595 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
599 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 obj->ops = &i915_gem_phys_ops;
602 ret = i915_gem_object_pin_pages(obj);
609 obj->ops = &i915_gem_object_ops;
614 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
615 struct drm_i915_gem_pwrite *args,
616 struct drm_file *file)
618 void *vaddr = obj->phys_handle->vaddr + args->offset;
619 char __user *user_data = u64_to_user_ptr(args->data_ptr);
621 /* We manually control the domain here and pretend that it
622 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
624 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 if (copy_from_user(vaddr, user_data, args->size))
628 drm_clflush_virt_range(vaddr, args->size);
629 i915_gem_chipset_flush(to_i915(obj->base.dev));
631 intel_fb_obj_flush(obj, ORIGIN_CPU);
635 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
637 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 void i915_gem_object_free(struct drm_i915_gem_object *obj)
642 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643 kmem_cache_free(dev_priv->objects, obj);
647 i915_gem_create(struct drm_file *file,
648 struct drm_i915_private *dev_priv,
652 struct drm_i915_gem_object *obj;
656 size = roundup(size, PAGE_SIZE);
660 /* Allocate the new object */
661 obj = i915_gem_object_create(dev_priv, size);
665 ret = drm_gem_handle_create(file, &obj->base, &handle);
666 /* drop reference from allocate - handle holds it now */
667 i915_gem_object_put(obj);
676 i915_gem_dumb_create(struct drm_file *file,
677 struct drm_device *dev,
678 struct drm_mode_create_dumb *args)
680 /* have to work out size/pitch and return them */
681 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682 args->size = args->pitch * args->height;
683 return i915_gem_create(file, to_i915(dev),
684 args->size, &args->handle);
688 * Creates a new mm object and returns a handle to it.
689 * @dev: drm device pointer
690 * @data: ioctl data blob
691 * @file: drm file pointer
694 i915_gem_create_ioctl(struct drm_device *dev, void *data,
695 struct drm_file *file)
697 struct drm_i915_private *dev_priv = to_i915(dev);
698 struct drm_i915_gem_create *args = data;
700 i915_gem_flush_free_objects(dev_priv);
702 return i915_gem_create(file, dev_priv,
703 args->size, &args->handle);
707 __copy_to_user_swizzled(char __user *cpu_vaddr,
708 const char *gpu_vaddr, int gpu_offset,
711 int ret, cpu_offset = 0;
714 int cacheline_end = ALIGN(gpu_offset + 1, 64);
715 int this_length = min(cacheline_end - gpu_offset, length);
716 int swizzled_gpu_offset = gpu_offset ^ 64;
718 ret = __copy_to_user(cpu_vaddr + cpu_offset,
719 gpu_vaddr + swizzled_gpu_offset,
724 cpu_offset += this_length;
725 gpu_offset += this_length;
726 length -= this_length;
733 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
734 const char __user *cpu_vaddr,
737 int ret, cpu_offset = 0;
740 int cacheline_end = ALIGN(gpu_offset + 1, 64);
741 int this_length = min(cacheline_end - gpu_offset, length);
742 int swizzled_gpu_offset = gpu_offset ^ 64;
744 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
745 cpu_vaddr + cpu_offset,
750 cpu_offset += this_length;
751 gpu_offset += this_length;
752 length -= this_length;
759 * Pins the specified object's pages and synchronizes the object with
760 * GPU accesses. Sets needs_clflush to non-zero if the caller should
761 * flush the object from the CPU cache.
763 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764 unsigned int *needs_clflush)
768 lockdep_assert_held(&obj->base.dev->struct_mutex);
771 if (!i915_gem_object_has_struct_page(obj))
774 ret = i915_gem_object_wait(obj,
775 I915_WAIT_INTERRUPTIBLE |
777 MAX_SCHEDULE_TIMEOUT,
782 ret = i915_gem_object_pin_pages(obj);
786 i915_gem_object_flush_gtt_write_domain(obj);
788 /* If we're not in the cpu read domain, set ourself into the gtt
789 * read domain and manually flush cachelines (if required). This
790 * optimizes for the case when the gpu will dirty the data
791 * anyway again before the next pread happens.
793 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794 *needs_clflush = !i915_gem_object_is_coherent(obj);
796 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
797 ret = i915_gem_object_set_to_cpu_domain(obj, false);
804 /* return with the pages pinned */
808 i915_gem_object_unpin_pages(obj);
812 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
813 unsigned int *needs_clflush)
817 lockdep_assert_held(&obj->base.dev->struct_mutex);
820 if (!i915_gem_object_has_struct_page(obj))
823 ret = i915_gem_object_wait(obj,
824 I915_WAIT_INTERRUPTIBLE |
827 MAX_SCHEDULE_TIMEOUT,
832 ret = i915_gem_object_pin_pages(obj);
836 i915_gem_object_flush_gtt_write_domain(obj);
838 /* If we're not in the cpu write domain, set ourself into the
839 * gtt write domain and manually flush cachelines (as required).
840 * This optimizes for the case when the gpu will use the data
841 * right away and we therefore have to clflush anyway.
843 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
844 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
846 /* Same trick applies to invalidate partially written cachelines read
849 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850 *needs_clflush |= !i915_gem_object_is_coherent(obj);
852 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
853 ret = i915_gem_object_set_to_cpu_domain(obj, true);
860 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
861 obj->cache_dirty = true;
863 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
864 obj->mm.dirty = true;
865 /* return with the pages pinned */
869 i915_gem_object_unpin_pages(obj);
874 shmem_clflush_swizzled_range(char *addr, unsigned long length,
877 if (unlikely(swizzled)) {
878 unsigned long start = (unsigned long) addr;
879 unsigned long end = (unsigned long) addr + length;
881 /* For swizzling simply ensure that we always flush both
882 * channels. Lame, but simple and it works. Swizzled
883 * pwrite/pread is far from a hotpath - current userspace
884 * doesn't use it at all. */
885 start = round_down(start, 128);
886 end = round_up(end, 128);
888 drm_clflush_virt_range((void *)start, end - start);
890 drm_clflush_virt_range(addr, length);
895 /* Only difference to the fast-path function is that this can handle bit17
896 * and uses non-atomic copy and kmap functions. */
898 shmem_pread_slow(struct page *page, int offset, int length,
899 char __user *user_data,
900 bool page_do_bit17_swizzling, bool needs_clflush)
907 shmem_clflush_swizzled_range(vaddr + offset, length,
908 page_do_bit17_swizzling);
910 if (page_do_bit17_swizzling)
911 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
913 ret = __copy_to_user(user_data, vaddr + offset, length);
916 return ret ? - EFAULT : 0;
920 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
921 bool page_do_bit17_swizzling, bool needs_clflush)
926 if (!page_do_bit17_swizzling) {
927 char *vaddr = kmap_atomic(page);
930 drm_clflush_virt_range(vaddr + offset, length);
931 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
932 kunmap_atomic(vaddr);
937 return shmem_pread_slow(page, offset, length, user_data,
938 page_do_bit17_swizzling, needs_clflush);
942 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
943 struct drm_i915_gem_pread *args)
945 char __user *user_data;
947 unsigned int obj_do_bit17_swizzling;
948 unsigned int needs_clflush;
949 unsigned int idx, offset;
952 obj_do_bit17_swizzling = 0;
953 if (i915_gem_object_needs_bit17_swizzle(obj))
954 obj_do_bit17_swizzling = BIT(17);
956 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
961 mutex_unlock(&obj->base.dev->struct_mutex);
966 user_data = u64_to_user_ptr(args->data_ptr);
967 offset = offset_in_page(args->offset);
968 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
969 struct page *page = i915_gem_object_get_page(obj, idx);
973 if (offset + length > PAGE_SIZE)
974 length = PAGE_SIZE - offset;
976 ret = shmem_pread(page, offset, length, user_data,
977 page_to_phys(page) & obj_do_bit17_swizzling,
987 i915_gem_obj_finish_shmem_access(obj);
992 gtt_user_read(struct io_mapping *mapping,
993 loff_t base, int offset,
994 char __user *user_data, int length)
997 unsigned long unwritten;
999 /* We can use the cpu mem copy function because this is X86. */
1000 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1001 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1002 io_mapping_unmap_atomic(vaddr);
1004 vaddr = (void __force *)
1005 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1006 unwritten = copy_to_user(user_data, vaddr + offset, length);
1007 io_mapping_unmap(vaddr);
1013 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1014 const struct drm_i915_gem_pread *args)
1016 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1017 struct i915_ggtt *ggtt = &i915->ggtt;
1018 struct drm_mm_node node;
1019 struct i915_vma *vma;
1020 void __user *user_data;
1024 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 intel_runtime_pm_get(i915);
1029 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1030 PIN_MAPPABLE | PIN_NONBLOCK);
1032 node.start = i915_ggtt_offset(vma);
1033 node.allocated = false;
1034 ret = i915_vma_put_fence(vma);
1036 i915_vma_unpin(vma);
1041 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1044 GEM_BUG_ON(!node.allocated);
1047 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 mutex_unlock(&i915->drm.struct_mutex);
1053 user_data = u64_to_user_ptr(args->data_ptr);
1054 remain = args->size;
1055 offset = args->offset;
1057 while (remain > 0) {
1058 /* Operation in this page
1060 * page_base = page offset within aperture
1061 * page_offset = offset within page
1062 * page_length = bytes to copy for this page
1064 u32 page_base = node.start;
1065 unsigned page_offset = offset_in_page(offset);
1066 unsigned page_length = PAGE_SIZE - page_offset;
1067 page_length = remain < page_length ? remain : page_length;
1068 if (node.allocated) {
1070 ggtt->base.insert_page(&ggtt->base,
1071 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072 node.start, I915_CACHE_NONE, 0);
1075 page_base += offset & PAGE_MASK;
1078 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1079 user_data, page_length)) {
1084 remain -= page_length;
1085 user_data += page_length;
1086 offset += page_length;
1089 mutex_lock(&i915->drm.struct_mutex);
1091 if (node.allocated) {
1093 ggtt->base.clear_range(&ggtt->base,
1094 node.start, node.size);
1095 remove_mappable_node(&node);
1097 i915_vma_unpin(vma);
1100 intel_runtime_pm_put(i915);
1101 mutex_unlock(&i915->drm.struct_mutex);
1107 * Reads data from the object referenced by handle.
1108 * @dev: drm device pointer
1109 * @data: ioctl data blob
1110 * @file: drm file pointer
1112 * On error, the contents of *data are undefined.
1115 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116 struct drm_file *file)
1118 struct drm_i915_gem_pread *args = data;
1119 struct drm_i915_gem_object *obj;
1122 if (args->size == 0)
1125 if (!access_ok(VERIFY_WRITE,
1126 u64_to_user_ptr(args->data_ptr),
1130 obj = i915_gem_object_lookup(file, args->handle);
1134 /* Bounds check source. */
1135 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1140 trace_i915_gem_object_pread(obj, args->offset, args->size);
1142 ret = i915_gem_object_wait(obj,
1143 I915_WAIT_INTERRUPTIBLE,
1144 MAX_SCHEDULE_TIMEOUT,
1145 to_rps_client(file));
1149 ret = i915_gem_object_pin_pages(obj);
1153 ret = i915_gem_shmem_pread(obj, args);
1154 if (ret == -EFAULT || ret == -ENODEV)
1155 ret = i915_gem_gtt_pread(obj, args);
1157 i915_gem_object_unpin_pages(obj);
1159 i915_gem_object_put(obj);
1163 /* This is the fast write path which cannot handle
1164 * page faults in the source data
1168 ggtt_write(struct io_mapping *mapping,
1169 loff_t base, int offset,
1170 char __user *user_data, int length)
1173 unsigned long unwritten;
1175 /* We can use the cpu mem copy function because this is X86. */
1176 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1177 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1179 io_mapping_unmap_atomic(vaddr);
1181 vaddr = (void __force *)
1182 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1183 unwritten = copy_from_user(vaddr + offset, user_data, length);
1184 io_mapping_unmap(vaddr);
1191 * This is the fast pwrite path, where we copy the data directly from the
1192 * user into the GTT, uncached.
1193 * @obj: i915 GEM object
1194 * @args: pwrite arguments structure
1197 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1198 const struct drm_i915_gem_pwrite *args)
1200 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201 struct i915_ggtt *ggtt = &i915->ggtt;
1202 struct drm_mm_node node;
1203 struct i915_vma *vma;
1205 void __user *user_data;
1208 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 intel_runtime_pm_get(i915);
1213 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214 PIN_MAPPABLE | PIN_NONBLOCK);
1216 node.start = i915_ggtt_offset(vma);
1217 node.allocated = false;
1218 ret = i915_vma_put_fence(vma);
1220 i915_vma_unpin(vma);
1225 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1228 GEM_BUG_ON(!node.allocated);
1231 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 mutex_unlock(&i915->drm.struct_mutex);
1237 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1239 user_data = u64_to_user_ptr(args->data_ptr);
1240 offset = args->offset;
1241 remain = args->size;
1243 /* Operation in this page
1245 * page_base = page offset within aperture
1246 * page_offset = offset within page
1247 * page_length = bytes to copy for this page
1249 u32 page_base = node.start;
1250 unsigned int page_offset = offset_in_page(offset);
1251 unsigned int page_length = PAGE_SIZE - page_offset;
1252 page_length = remain < page_length ? remain : page_length;
1253 if (node.allocated) {
1254 wmb(); /* flush the write before we modify the GGTT */
1255 ggtt->base.insert_page(&ggtt->base,
1256 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1257 node.start, I915_CACHE_NONE, 0);
1258 wmb(); /* flush modifications to the GGTT (insert_page) */
1260 page_base += offset & PAGE_MASK;
1262 /* If we get a fault while copying data, then (presumably) our
1263 * source page isn't available. Return the error and we'll
1264 * retry in the slow path.
1265 * If the object is non-shmem backed, we retry again with the
1266 * path that handles page fault.
1268 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1269 user_data, page_length)) {
1274 remain -= page_length;
1275 user_data += page_length;
1276 offset += page_length;
1278 intel_fb_obj_flush(obj, ORIGIN_CPU);
1280 mutex_lock(&i915->drm.struct_mutex);
1282 if (node.allocated) {
1284 ggtt->base.clear_range(&ggtt->base,
1285 node.start, node.size);
1286 remove_mappable_node(&node);
1288 i915_vma_unpin(vma);
1291 intel_runtime_pm_put(i915);
1292 mutex_unlock(&i915->drm.struct_mutex);
1297 shmem_pwrite_slow(struct page *page, int offset, int length,
1298 char __user *user_data,
1299 bool page_do_bit17_swizzling,
1300 bool needs_clflush_before,
1301 bool needs_clflush_after)
1307 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308 shmem_clflush_swizzled_range(vaddr + offset, length,
1309 page_do_bit17_swizzling);
1310 if (page_do_bit17_swizzling)
1311 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1314 ret = __copy_from_user(vaddr + offset, user_data, length);
1315 if (needs_clflush_after)
1316 shmem_clflush_swizzled_range(vaddr + offset, length,
1317 page_do_bit17_swizzling);
1320 return ret ? -EFAULT : 0;
1323 /* Per-page copy function for the shmem pwrite fastpath.
1324 * Flushes invalid cachelines before writing to the target if
1325 * needs_clflush_before is set and flushes out any written cachelines after
1326 * writing if needs_clflush is set.
1329 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1330 bool page_do_bit17_swizzling,
1331 bool needs_clflush_before,
1332 bool needs_clflush_after)
1337 if (!page_do_bit17_swizzling) {
1338 char *vaddr = kmap_atomic(page);
1340 if (needs_clflush_before)
1341 drm_clflush_virt_range(vaddr + offset, len);
1342 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1343 if (needs_clflush_after)
1344 drm_clflush_virt_range(vaddr + offset, len);
1346 kunmap_atomic(vaddr);
1351 return shmem_pwrite_slow(page, offset, len, user_data,
1352 page_do_bit17_swizzling,
1353 needs_clflush_before,
1354 needs_clflush_after);
1358 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1359 const struct drm_i915_gem_pwrite *args)
1361 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1362 void __user *user_data;
1364 unsigned int obj_do_bit17_swizzling;
1365 unsigned int partial_cacheline_write;
1366 unsigned int needs_clflush;
1367 unsigned int offset, idx;
1370 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1375 mutex_unlock(&i915->drm.struct_mutex);
1379 obj_do_bit17_swizzling = 0;
1380 if (i915_gem_object_needs_bit17_swizzle(obj))
1381 obj_do_bit17_swizzling = BIT(17);
1383 /* If we don't overwrite a cacheline completely we need to be
1384 * careful to have up-to-date data by first clflushing. Don't
1385 * overcomplicate things and flush the entire patch.
1387 partial_cacheline_write = 0;
1388 if (needs_clflush & CLFLUSH_BEFORE)
1389 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1391 user_data = u64_to_user_ptr(args->data_ptr);
1392 remain = args->size;
1393 offset = offset_in_page(args->offset);
1394 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1395 struct page *page = i915_gem_object_get_page(obj, idx);
1399 if (offset + length > PAGE_SIZE)
1400 length = PAGE_SIZE - offset;
1402 ret = shmem_pwrite(page, offset, length, user_data,
1403 page_to_phys(page) & obj_do_bit17_swizzling,
1404 (offset | length) & partial_cacheline_write,
1405 needs_clflush & CLFLUSH_AFTER);
1410 user_data += length;
1414 intel_fb_obj_flush(obj, ORIGIN_CPU);
1415 i915_gem_obj_finish_shmem_access(obj);
1420 * Writes data to the object referenced by handle.
1422 * @data: ioctl data blob
1425 * On error, the contents of the buffer that were to be modified are undefined.
1428 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429 struct drm_file *file)
1431 struct drm_i915_gem_pwrite *args = data;
1432 struct drm_i915_gem_object *obj;
1435 if (args->size == 0)
1438 if (!access_ok(VERIFY_READ,
1439 u64_to_user_ptr(args->data_ptr),
1443 obj = i915_gem_object_lookup(file, args->handle);
1447 /* Bounds check destination. */
1448 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1453 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1456 if (obj->ops->pwrite)
1457 ret = obj->ops->pwrite(obj, args);
1461 ret = i915_gem_object_wait(obj,
1462 I915_WAIT_INTERRUPTIBLE |
1464 MAX_SCHEDULE_TIMEOUT,
1465 to_rps_client(file));
1469 ret = i915_gem_object_pin_pages(obj);
1474 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1475 * it would end up going through the fenced access, and we'll get
1476 * different detiling behavior between reading and writing.
1477 * pread/pwrite currently are reading and writing from the CPU
1478 * perspective, requiring manual detiling by the client.
1480 if (!i915_gem_object_has_struct_page(obj) ||
1481 cpu_write_needs_clflush(obj))
1482 /* Note that the gtt paths might fail with non-page-backed user
1483 * pointers (e.g. gtt mappings when moving data between
1484 * textures). Fallback to the shmem path in that case.
1486 ret = i915_gem_gtt_pwrite_fast(obj, args);
1488 if (ret == -EFAULT || ret == -ENOSPC) {
1489 if (obj->phys_handle)
1490 ret = i915_gem_phys_pwrite(obj, args, file);
1492 ret = i915_gem_shmem_pwrite(obj, args);
1495 i915_gem_object_unpin_pages(obj);
1497 i915_gem_object_put(obj);
1501 static inline enum fb_op_origin
1502 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1504 return (domain == I915_GEM_DOMAIN_GTT ?
1505 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1508 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1510 struct drm_i915_private *i915;
1511 struct list_head *list;
1512 struct i915_vma *vma;
1514 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1515 if (!i915_vma_is_ggtt(vma))
1518 if (i915_vma_is_active(vma))
1521 if (!drm_mm_node_allocated(&vma->node))
1524 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1527 i915 = to_i915(obj->base.dev);
1528 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1529 list_move_tail(&obj->global_link, list);
1533 * Called when user space prepares to use an object with the CPU, either
1534 * through the mmap ioctl's mapping or a GTT mapping.
1536 * @data: ioctl data blob
1540 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1541 struct drm_file *file)
1543 struct drm_i915_gem_set_domain *args = data;
1544 struct drm_i915_gem_object *obj;
1545 uint32_t read_domains = args->read_domains;
1546 uint32_t write_domain = args->write_domain;
1549 /* Only handle setting domains to types used by the CPU. */
1550 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1553 /* Having something in the write domain implies it's in the read
1554 * domain, and only that read domain. Enforce that in the request.
1556 if (write_domain != 0 && read_domains != write_domain)
1559 obj = i915_gem_object_lookup(file, args->handle);
1563 /* Try to flush the object off the GPU without holding the lock.
1564 * We will repeat the flush holding the lock in the normal manner
1565 * to catch cases where we are gazumped.
1567 err = i915_gem_object_wait(obj,
1568 I915_WAIT_INTERRUPTIBLE |
1569 (write_domain ? I915_WAIT_ALL : 0),
1570 MAX_SCHEDULE_TIMEOUT,
1571 to_rps_client(file));
1575 /* Flush and acquire obj->pages so that we are coherent through
1576 * direct access in memory with previous cached writes through
1577 * shmemfs and that our cache domain tracking remains valid.
1578 * For example, if the obj->filp was moved to swap without us
1579 * being notified and releasing the pages, we would mistakenly
1580 * continue to assume that the obj remained out of the CPU cached
1583 err = i915_gem_object_pin_pages(obj);
1587 err = i915_mutex_lock_interruptible(dev);
1591 if (read_domains & I915_GEM_DOMAIN_GTT)
1592 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1594 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1596 /* And bump the LRU for this access */
1597 i915_gem_object_bump_inactive_ggtt(obj);
1599 mutex_unlock(&dev->struct_mutex);
1601 if (write_domain != 0)
1602 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1605 i915_gem_object_unpin_pages(obj);
1607 i915_gem_object_put(obj);
1612 * Called when user space has done writes to this buffer
1614 * @data: ioctl data blob
1618 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1619 struct drm_file *file)
1621 struct drm_i915_gem_sw_finish *args = data;
1622 struct drm_i915_gem_object *obj;
1624 obj = i915_gem_object_lookup(file, args->handle);
1628 /* Pinned buffers may be scanout, so flush the cache */
1629 i915_gem_object_flush_if_display(obj);
1630 i915_gem_object_put(obj);
1636 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1639 * @data: ioctl data blob
1642 * While the mapping holds a reference on the contents of the object, it doesn't
1643 * imply a ref on the object itself.
1647 * DRM driver writers who look a this function as an example for how to do GEM
1648 * mmap support, please don't implement mmap support like here. The modern way
1649 * to implement DRM mmap support is with an mmap offset ioctl (like
1650 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1651 * That way debug tooling like valgrind will understand what's going on, hiding
1652 * the mmap call in a driver private ioctl will break that. The i915 driver only
1653 * does cpu mmaps this way because we didn't know better.
1656 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1657 struct drm_file *file)
1659 struct drm_i915_gem_mmap *args = data;
1660 struct drm_i915_gem_object *obj;
1663 if (args->flags & ~(I915_MMAP_WC))
1666 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1669 obj = i915_gem_object_lookup(file, args->handle);
1673 /* prime objects have no backing filp to GEM mmap
1676 if (!obj->base.filp) {
1677 i915_gem_object_put(obj);
1681 addr = vm_mmap(obj->base.filp, 0, args->size,
1682 PROT_READ | PROT_WRITE, MAP_SHARED,
1684 if (args->flags & I915_MMAP_WC) {
1685 struct mm_struct *mm = current->mm;
1686 struct vm_area_struct *vma;
1688 if (down_write_killable(&mm->mmap_sem)) {
1689 i915_gem_object_put(obj);
1692 vma = find_vma(mm, addr);
1695 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1698 up_write(&mm->mmap_sem);
1700 /* This may race, but that's ok, it only gets set */
1701 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1703 i915_gem_object_put(obj);
1704 if (IS_ERR((void *)addr))
1707 args->addr_ptr = (uint64_t) addr;
1712 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1714 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1720 * A history of the GTT mmap interface:
1722 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1723 * aligned and suitable for fencing, and still fit into the available
1724 * mappable space left by the pinned display objects. A classic problem
1725 * we called the page-fault-of-doom where we would ping-pong between
1726 * two objects that could not fit inside the GTT and so the memcpy
1727 * would page one object in at the expense of the other between every
1730 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1731 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1732 * object is too large for the available space (or simply too large
1733 * for the mappable aperture!), a view is created instead and faulted
1734 * into userspace. (This view is aligned and sized appropriately for
1739 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1740 * hangs on some architectures, corruption on others. An attempt to service
1741 * a GTT page fault from a snoopable object will generate a SIGBUS.
1743 * * the object must be able to fit into RAM (physical memory, though no
1744 * limited to the mappable aperture).
1749 * * a new GTT page fault will synchronize rendering from the GPU and flush
1750 * all data to system memory. Subsequent access will not be synchronized.
1752 * * all mappings are revoked on runtime device suspend.
1754 * * there are only 8, 16 or 32 fence registers to share between all users
1755 * (older machines require fence register for display and blitter access
1756 * as well). Contention of the fence registers will cause the previous users
1757 * to be unmapped and any new access will generate new page faults.
1759 * * running out of memory while servicing a fault may generate a SIGBUS,
1760 * rather than the expected SIGSEGV.
1762 int i915_gem_mmap_gtt_version(void)
1767 static inline struct i915_ggtt_view
1768 compute_partial_view(struct drm_i915_gem_object *obj,
1769 pgoff_t page_offset,
1772 struct i915_ggtt_view view;
1774 if (i915_gem_object_is_tiled(obj))
1775 chunk = roundup(chunk, tile_row_pages(obj));
1777 view.type = I915_GGTT_VIEW_PARTIAL;
1778 view.partial.offset = rounddown(page_offset, chunk);
1780 min_t(unsigned int, chunk,
1781 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1783 /* If the partial covers the entire object, just create a normal VMA. */
1784 if (chunk >= obj->base.size >> PAGE_SHIFT)
1785 view.type = I915_GGTT_VIEW_NORMAL;
1791 * i915_gem_fault - fault a page into the GTT
1794 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1795 * from userspace. The fault handler takes care of binding the object to
1796 * the GTT (if needed), allocating and programming a fence register (again,
1797 * only if needed based on whether the old reg is still valid or the object
1798 * is tiled) and inserting a new PTE into the faulting process.
1800 * Note that the faulting process may involve evicting existing objects
1801 * from the GTT and/or fence registers to make room. So performance may
1802 * suffer if the GTT working set is large or there are few fence registers
1805 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1806 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1808 int i915_gem_fault(struct vm_fault *vmf)
1810 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1811 struct vm_area_struct *area = vmf->vma;
1812 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1813 struct drm_device *dev = obj->base.dev;
1814 struct drm_i915_private *dev_priv = to_i915(dev);
1815 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1816 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1817 struct i915_vma *vma;
1818 pgoff_t page_offset;
1822 /* We don't use vmf->pgoff since that has the fake offset */
1823 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1825 trace_i915_gem_object_fault(obj, page_offset, true, write);
1827 /* Try to flush the object off the GPU first without holding the lock.
1828 * Upon acquiring the lock, we will perform our sanity checks and then
1829 * repeat the flush holding the lock in the normal manner to catch cases
1830 * where we are gazumped.
1832 ret = i915_gem_object_wait(obj,
1833 I915_WAIT_INTERRUPTIBLE,
1834 MAX_SCHEDULE_TIMEOUT,
1839 ret = i915_gem_object_pin_pages(obj);
1843 intel_runtime_pm_get(dev_priv);
1845 ret = i915_mutex_lock_interruptible(dev);
1849 /* Access to snoopable pages through the GTT is incoherent. */
1850 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1855 /* If the object is smaller than a couple of partial vma, it is
1856 * not worth only creating a single partial vma - we may as well
1857 * clear enough space for the full object.
1859 flags = PIN_MAPPABLE;
1860 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1861 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1863 /* Now pin it into the GTT as needed */
1864 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1866 /* Use a partial view if it is bigger than available space */
1867 struct i915_ggtt_view view =
1868 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1870 /* Userspace is now writing through an untracked VMA, abandon
1871 * all hope that the hardware is able to track future writes.
1873 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1875 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1882 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 ret = i915_vma_get_fence(vma);
1890 /* Mark as being mmapped into userspace for later revocation */
1891 assert_rpm_wakelock_held(dev_priv);
1892 if (list_empty(&obj->userfault_link))
1893 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1895 /* Finally, remap it using the new GTT offset */
1896 ret = remap_io_mapping(area,
1897 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1898 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1899 min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 __i915_vma_unpin(vma);
1905 mutex_unlock(&dev->struct_mutex);
1907 intel_runtime_pm_put(dev_priv);
1908 i915_gem_object_unpin_pages(obj);
1913 * We eat errors when the gpu is terminally wedged to avoid
1914 * userspace unduly crashing (gl has no provisions for mmaps to
1915 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1916 * and so needs to be reported.
1918 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1919 ret = VM_FAULT_SIGBUS;
1924 * EAGAIN means the gpu is hung and we'll wait for the error
1925 * handler to reset everything when re-faulting in
1926 * i915_mutex_lock_interruptible.
1933 * EBUSY is ok: this just means that another thread
1934 * already did the job.
1936 ret = VM_FAULT_NOPAGE;
1943 ret = VM_FAULT_SIGBUS;
1946 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1947 ret = VM_FAULT_SIGBUS;
1954 * i915_gem_release_mmap - remove physical page mappings
1955 * @obj: obj in question
1957 * Preserve the reservation of the mmapping with the DRM core code, but
1958 * relinquish ownership of the pages back to the system.
1960 * It is vital that we remove the page mapping if we have mapped a tiled
1961 * object through the GTT and then lose the fence register due to
1962 * resource pressure. Similarly if the object has been moved out of the
1963 * aperture, than pages mapped into userspace must be revoked. Removing the
1964 * mapping will then trigger a page fault on the next user access, allowing
1965 * fixup by i915_gem_fault().
1968 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1970 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1972 /* Serialisation between user GTT access and our code depends upon
1973 * revoking the CPU's PTE whilst the mutex is held. The next user
1974 * pagefault then has to wait until we release the mutex.
1976 * Note that RPM complicates somewhat by adding an additional
1977 * requirement that operations to the GGTT be made holding the RPM
1980 lockdep_assert_held(&i915->drm.struct_mutex);
1981 intel_runtime_pm_get(i915);
1983 if (list_empty(&obj->userfault_link))
1986 list_del_init(&obj->userfault_link);
1987 drm_vma_node_unmap(&obj->base.vma_node,
1988 obj->base.dev->anon_inode->i_mapping);
1990 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1991 * memory transactions from userspace before we return. The TLB
1992 * flushing implied above by changing the PTE above *should* be
1993 * sufficient, an extra barrier here just provides us with a bit
1994 * of paranoid documentation about our requirement to serialise
1995 * memory writes before touching registers / GSM.
2000 intel_runtime_pm_put(i915);
2003 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2005 struct drm_i915_gem_object *obj, *on;
2009 * Only called during RPM suspend. All users of the userfault_list
2010 * must be holding an RPM wakeref to ensure that this can not
2011 * run concurrently with themselves (and use the struct_mutex for
2012 * protection between themselves).
2015 list_for_each_entry_safe(obj, on,
2016 &dev_priv->mm.userfault_list, userfault_link) {
2017 list_del_init(&obj->userfault_link);
2018 drm_vma_node_unmap(&obj->base.vma_node,
2019 obj->base.dev->anon_inode->i_mapping);
2022 /* The fence will be lost when the device powers down. If any were
2023 * in use by hardware (i.e. they are pinned), we should not be powering
2024 * down! All other fences will be reacquired by the user upon waking.
2026 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2027 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2029 /* Ideally we want to assert that the fence register is not
2030 * live at this point (i.e. that no piece of code will be
2031 * trying to write through fence + GTT, as that both violates
2032 * our tracking of activity and associated locking/barriers,
2033 * but also is illegal given that the hw is powered down).
2035 * Previously we used reg->pin_count as a "liveness" indicator.
2036 * That is not sufficient, and we need a more fine-grained
2037 * tool if we want to have a sanity check here.
2043 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link));
2048 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2050 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2053 err = drm_gem_create_mmap_offset(&obj->base);
2057 /* Attempt to reap some mmap space from dead objects */
2059 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 i915_gem_drain_freed_objects(dev_priv);
2064 err = drm_gem_create_mmap_offset(&obj->base);
2068 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2073 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2075 drm_gem_free_mmap_offset(&obj->base);
2079 i915_gem_mmap_gtt(struct drm_file *file,
2080 struct drm_device *dev,
2084 struct drm_i915_gem_object *obj;
2087 obj = i915_gem_object_lookup(file, handle);
2091 ret = i915_gem_object_create_mmap_offset(obj);
2093 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2095 i915_gem_object_put(obj);
2100 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2102 * @data: GTT mapping ioctl data
2103 * @file: GEM object info
2105 * Simply returns the fake offset to userspace so it can mmap it.
2106 * The mmap call will end up in drm_gem_mmap(), which will set things
2107 * up so we can get faults in the handler above.
2109 * The fault handler will take care of binding the object into the GTT
2110 * (since it may have been evicted to make room for something), allocating
2111 * a fence register, and mapping the appropriate aperture address into
2115 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2116 struct drm_file *file)
2118 struct drm_i915_gem_mmap_gtt *args = data;
2120 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2123 /* Immediately discard the backing storage */
2125 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2127 i915_gem_object_free_mmap_offset(obj);
2129 if (obj->base.filp == NULL)
2132 /* Our goal here is to return as much of the memory as
2133 * is possible back to the system as we are called from OOM.
2134 * To do this we must instruct the shmfs to drop all of its
2135 * backing pages, *now*.
2137 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2138 obj->mm.madv = __I915_MADV_PURGED;
2139 obj->mm.pages = ERR_PTR(-EFAULT);
2142 /* Try to discard unwanted pages */
2143 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2145 struct address_space *mapping;
2147 lockdep_assert_held(&obj->mm.lock);
2148 GEM_BUG_ON(obj->mm.pages);
2150 switch (obj->mm.madv) {
2151 case I915_MADV_DONTNEED:
2152 i915_gem_object_truncate(obj);
2153 case __I915_MADV_PURGED:
2157 if (obj->base.filp == NULL)
2160 mapping = obj->base.filp->f_mapping,
2161 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2166 struct sg_table *pages)
2168 struct sgt_iter sgt_iter;
2171 __i915_gem_object_release_shmem(obj, pages, true);
2173 i915_gem_gtt_finish_pages(obj, pages);
2175 if (i915_gem_object_needs_bit17_swizzle(obj))
2176 i915_gem_object_save_bit_17_swizzle(obj, pages);
2178 for_each_sgt_page(page, sgt_iter, pages) {
2180 set_page_dirty(page);
2182 if (obj->mm.madv == I915_MADV_WILLNEED)
2183 mark_page_accessed(page);
2187 obj->mm.dirty = false;
2189 sg_free_table(pages);
2193 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2195 struct radix_tree_iter iter;
2198 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2199 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2202 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2203 enum i915_mm_subclass subclass)
2205 struct sg_table *pages;
2207 if (i915_gem_object_has_pinned_pages(obj))
2210 GEM_BUG_ON(obj->bind_count);
2211 if (!READ_ONCE(obj->mm.pages))
2214 /* May be called by shrinker from within get_pages() (on another bo) */
2215 mutex_lock_nested(&obj->mm.lock, subclass);
2216 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2219 /* ->put_pages might need to allocate memory for the bit17 swizzle
2220 * array, hence protect them from being reaped by removing them from gtt
2222 pages = fetch_and_zero(&obj->mm.pages);
2225 if (obj->mm.mapping) {
2228 ptr = ptr_mask_bits(obj->mm.mapping);
2229 if (is_vmalloc_addr(ptr))
2232 kunmap(kmap_to_page(ptr));
2234 obj->mm.mapping = NULL;
2237 __i915_gem_object_reset_page_iter(obj);
2240 obj->ops->put_pages(obj, pages);
2243 mutex_unlock(&obj->mm.lock);
2246 static bool i915_sg_trim(struct sg_table *orig_st)
2248 struct sg_table new_st;
2249 struct scatterlist *sg, *new_sg;
2252 if (orig_st->nents == orig_st->orig_nents)
2255 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2258 new_sg = new_st.sgl;
2259 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2260 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2261 /* called before being DMA mapped, no need to copy sg->dma_* */
2262 new_sg = sg_next(new_sg);
2264 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2266 sg_free_table(orig_st);
2272 static struct sg_table *
2273 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2275 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2276 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2278 struct address_space *mapping;
2279 struct sg_table *st;
2280 struct scatterlist *sg;
2281 struct sgt_iter sgt_iter;
2283 unsigned long last_pfn = 0; /* suppress gcc warning */
2284 unsigned int max_segment;
2288 /* Assert that the object is not currently in any GPU domain. As it
2289 * wasn't in the GTT, there shouldn't be any way it could have been in
2292 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2293 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2295 max_segment = swiotlb_max_segment();
2297 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2299 st = kmalloc(sizeof(*st), GFP_KERNEL);
2301 return ERR_PTR(-ENOMEM);
2304 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2306 return ERR_PTR(-ENOMEM);
2309 /* Get the list of pages out of our struct file. They'll be pinned
2310 * at this point until we release them.
2312 * Fail silently without starting the shrinker
2314 mapping = obj->base.filp->f_mapping;
2315 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2316 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2319 for (i = 0; i < page_count; i++) {
2320 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2322 i915_gem_shrink(dev_priv,
2325 I915_SHRINK_UNBOUND |
2326 I915_SHRINK_PURGEABLE);
2327 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2330 /* We've tried hard to allocate the memory by reaping
2331 * our own buffer, now let the real VM do its job and
2332 * go down in flames if truly OOM.
2334 page = shmem_read_mapping_page(mapping, i);
2336 ret = PTR_ERR(page);
2341 sg->length >= max_segment ||
2342 page_to_pfn(page) != last_pfn + 1) {
2346 sg_set_page(sg, page, PAGE_SIZE, 0);
2348 sg->length += PAGE_SIZE;
2350 last_pfn = page_to_pfn(page);
2352 /* Check that the i965g/gm workaround works. */
2353 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2355 if (sg) /* loop terminated early; short sg table */
2358 /* Trim unused sg entries to avoid wasting memory. */
2361 ret = i915_gem_gtt_prepare_pages(obj, st);
2363 /* DMA remapping failed? One possible cause is that
2364 * it could not reserve enough large entries, asking
2365 * for PAGE_SIZE chunks instead may be helpful.
2367 if (max_segment > PAGE_SIZE) {
2368 for_each_sgt_page(page, sgt_iter, st)
2372 max_segment = PAGE_SIZE;
2375 dev_warn(&dev_priv->drm.pdev->dev,
2376 "Failed to DMA remap %lu pages\n",
2382 if (i915_gem_object_needs_bit17_swizzle(obj))
2383 i915_gem_object_do_bit_17_swizzle(obj, st);
2390 for_each_sgt_page(page, sgt_iter, st)
2395 /* shmemfs first checks if there is enough memory to allocate the page
2396 * and reports ENOSPC should there be insufficient, along with the usual
2397 * ENOMEM for a genuine allocation failure.
2399 * We use ENOSPC in our driver to mean that we have run out of aperture
2400 * space and so want to translate the error from shmemfs back to our
2401 * usual understanding of ENOMEM.
2406 return ERR_PTR(ret);
2409 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2410 struct sg_table *pages)
2412 lockdep_assert_held(&obj->mm.lock);
2414 obj->mm.get_page.sg_pos = pages->sgl;
2415 obj->mm.get_page.sg_idx = 0;
2417 obj->mm.pages = pages;
2419 if (i915_gem_object_is_tiled(obj) &&
2420 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2421 GEM_BUG_ON(obj->mm.quirked);
2422 __i915_gem_object_pin_pages(obj);
2423 obj->mm.quirked = true;
2427 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2429 struct sg_table *pages;
2431 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2433 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2434 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2438 pages = obj->ops->get_pages(obj);
2439 if (unlikely(IS_ERR(pages)))
2440 return PTR_ERR(pages);
2442 __i915_gem_object_set_pages(obj, pages);
2446 /* Ensure that the associated pages are gathered from the backing storage
2447 * and pinned into our object. i915_gem_object_pin_pages() may be called
2448 * multiple times before they are released by a single call to
2449 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2450 * either as a result of memory pressure (reaping pages under the shrinker)
2451 * or as the object is itself released.
2453 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2457 err = mutex_lock_interruptible(&obj->mm.lock);
2461 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2462 err = ____i915_gem_object_get_pages(obj);
2466 smp_mb__before_atomic();
2468 atomic_inc(&obj->mm.pages_pin_count);
2471 mutex_unlock(&obj->mm.lock);
2475 /* The 'mapping' part of i915_gem_object_pin_map() below */
2476 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2477 enum i915_map_type type)
2479 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2480 struct sg_table *sgt = obj->mm.pages;
2481 struct sgt_iter sgt_iter;
2483 struct page *stack_pages[32];
2484 struct page **pages = stack_pages;
2485 unsigned long i = 0;
2489 /* A single page can always be kmapped */
2490 if (n_pages == 1 && type == I915_MAP_WB)
2491 return kmap(sg_page(sgt->sgl));
2493 if (n_pages > ARRAY_SIZE(stack_pages)) {
2494 /* Too big for stack -- allocate temporary array instead */
2495 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2500 for_each_sgt_page(page, sgt_iter, sgt)
2503 /* Check that we have the expected number of pages */
2504 GEM_BUG_ON(i != n_pages);
2508 pgprot = PAGE_KERNEL;
2511 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2514 addr = vmap(pages, n_pages, 0, pgprot);
2516 if (pages != stack_pages)
2517 drm_free_large(pages);
2522 /* get, pin, and map the pages of the object into kernel space */
2523 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2524 enum i915_map_type type)
2526 enum i915_map_type has_type;
2531 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2533 ret = mutex_lock_interruptible(&obj->mm.lock);
2535 return ERR_PTR(ret);
2538 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2539 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2540 ret = ____i915_gem_object_get_pages(obj);
2544 smp_mb__before_atomic();
2546 atomic_inc(&obj->mm.pages_pin_count);
2549 GEM_BUG_ON(!obj->mm.pages);
2551 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2552 if (ptr && has_type != type) {
2558 if (is_vmalloc_addr(ptr))
2561 kunmap(kmap_to_page(ptr));
2563 ptr = obj->mm.mapping = NULL;
2567 ptr = i915_gem_object_map(obj, type);
2573 obj->mm.mapping = ptr_pack_bits(ptr, type);
2577 mutex_unlock(&obj->mm.lock);
2581 atomic_dec(&obj->mm.pages_pin_count);
2588 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2589 const struct drm_i915_gem_pwrite *arg)
2591 struct address_space *mapping = obj->base.filp->f_mapping;
2592 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2596 /* Before we instantiate/pin the backing store for our use, we
2597 * can prepopulate the shmemfs filp efficiently using a write into
2598 * the pagecache. We avoid the penalty of instantiating all the
2599 * pages, important if the user is just writing to a few and never
2600 * uses the object on the GPU, and using a direct write into shmemfs
2601 * allows it to avoid the cost of retrieving a page (either swapin
2602 * or clearing-before-use) before it is overwritten.
2604 if (READ_ONCE(obj->mm.pages))
2607 /* Before the pages are instantiated the object is treated as being
2608 * in the CPU domain. The pages will be clflushed as required before
2609 * use, and we can freely write into the pages directly. If userspace
2610 * races pwrite with any other operation; corruption will ensue -
2611 * that is userspace's prerogative!
2615 offset = arg->offset;
2616 pg = offset_in_page(offset);
2619 unsigned int len, unwritten;
2624 len = PAGE_SIZE - pg;
2628 err = pagecache_write_begin(obj->base.filp, mapping,
2635 unwritten = copy_from_user(vaddr + pg, user_data, len);
2638 err = pagecache_write_end(obj->base.filp, mapping,
2639 offset, len, len - unwritten,
2656 static bool ban_context(const struct i915_gem_context *ctx)
2658 return (i915_gem_context_is_bannable(ctx) &&
2659 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2662 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2664 ctx->guilty_count++;
2665 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2666 if (ban_context(ctx))
2667 i915_gem_context_set_banned(ctx);
2669 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2670 ctx->name, ctx->ban_score,
2671 yesno(i915_gem_context_is_banned(ctx)));
2673 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2676 ctx->file_priv->context_bans++;
2677 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2678 ctx->name, ctx->file_priv->context_bans);
2681 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2683 ctx->active_count++;
2686 struct drm_i915_gem_request *
2687 i915_gem_find_active_request(struct intel_engine_cs *engine)
2689 struct drm_i915_gem_request *request, *active = NULL;
2690 unsigned long flags;
2692 /* We are called by the error capture and reset at a random
2693 * point in time. In particular, note that neither is crucially
2694 * ordered with an interrupt. After a hang, the GPU is dead and we
2695 * assume that no more writes can happen (we waited long enough for
2696 * all writes that were in transaction to be flushed) - adding an
2697 * extra delay for a recent interrupt is pointless. Hence, we do
2698 * not need an engine->irq_seqno_barrier() before the seqno reads.
2700 spin_lock_irqsave(&engine->timeline->lock, flags);
2701 list_for_each_entry(request, &engine->timeline->requests, link) {
2702 if (__i915_gem_request_completed(request,
2703 request->global_seqno))
2706 GEM_BUG_ON(request->engine != engine);
2707 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2708 &request->fence.flags));
2713 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2718 static bool engine_stalled(struct intel_engine_cs *engine)
2720 if (!engine->hangcheck.stalled)
2723 /* Check for possible seqno movement after hang declaration */
2724 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2725 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2732 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2734 struct intel_engine_cs *engine;
2735 enum intel_engine_id id;
2738 /* Ensure irq handler finishes, and not run again. */
2739 for_each_engine(engine, dev_priv, id) {
2740 struct drm_i915_gem_request *request;
2742 /* Prevent the signaler thread from updating the request
2743 * state (by calling dma_fence_signal) as we are processing
2744 * the reset. The write from the GPU of the seqno is
2745 * asynchronous and the signaler thread may see a different
2746 * value to us and declare the request complete, even though
2747 * the reset routine have picked that request as the active
2748 * (incomplete) request. This conflict is not handled
2751 kthread_park(engine->breadcrumbs.signaler);
2753 /* Prevent request submission to the hardware until we have
2754 * completed the reset in i915_gem_reset_finish(). If a request
2755 * is completed by one engine, it may then queue a request
2756 * to a second via its engine->irq_tasklet *just* as we are
2757 * calling engine->init_hw() and also writing the ELSP.
2758 * Turning off the engine->irq_tasklet until the reset is over
2759 * prevents the race.
2761 tasklet_kill(&engine->irq_tasklet);
2762 tasklet_disable(&engine->irq_tasklet);
2764 if (engine->irq_seqno_barrier)
2765 engine->irq_seqno_barrier(engine);
2767 if (engine_stalled(engine)) {
2768 request = i915_gem_find_active_request(engine);
2769 if (request && request->fence.error == -EIO)
2770 err = -EIO; /* Previous reset failed! */
2774 i915_gem_revoke_fences(dev_priv);
2779 static void skip_request(struct drm_i915_gem_request *request)
2781 void *vaddr = request->ring->vaddr;
2784 /* As this request likely depends on state from the lost
2785 * context, clear out all the user operations leaving the
2786 * breadcrumb at the end (so we get the fence notifications).
2788 head = request->head;
2789 if (request->postfix < head) {
2790 memset(vaddr + head, 0, request->ring->size - head);
2793 memset(vaddr + head, 0, request->postfix - head);
2795 dma_fence_set_error(&request->fence, -EIO);
2798 static void engine_skip_context(struct drm_i915_gem_request *request)
2800 struct intel_engine_cs *engine = request->engine;
2801 struct i915_gem_context *hung_ctx = request->ctx;
2802 struct intel_timeline *timeline;
2803 unsigned long flags;
2805 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2807 spin_lock_irqsave(&engine->timeline->lock, flags);
2808 spin_lock(&timeline->lock);
2810 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2811 if (request->ctx == hung_ctx)
2812 skip_request(request);
2814 list_for_each_entry(request, &timeline->requests, link)
2815 skip_request(request);
2817 spin_unlock(&timeline->lock);
2818 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2821 /* Returns true if the request was guilty of hang */
2822 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2824 /* Read once and return the resolution */
2825 const bool guilty = engine_stalled(request->engine);
2827 /* The guilty request will get skipped on a hung engine.
2829 * Users of client default contexts do not rely on logical
2830 * state preserved between batches so it is safe to execute
2831 * queued requests following the hang. Non default contexts
2832 * rely on preserved state, so skipping a batch loses the
2833 * evolution of the state and it needs to be considered corrupted.
2834 * Executing more queued batches on top of corrupted state is
2835 * risky. But we take the risk by trying to advance through
2836 * the queued requests in order to make the client behaviour
2837 * more predictable around resets, by not throwing away random
2838 * amount of batches it has prepared for execution. Sophisticated
2839 * clients can use gem_reset_stats_ioctl and dma fence status
2840 * (exported via sync_file info ioctl on explicit fences) to observe
2841 * when it loses the context state and should rebuild accordingly.
2843 * The context ban, and ultimately the client ban, mechanism are safety
2844 * valves if client submission ends up resulting in nothing more than
2849 i915_gem_context_mark_guilty(request->ctx);
2850 skip_request(request);
2852 i915_gem_context_mark_innocent(request->ctx);
2853 dma_fence_set_error(&request->fence, -EAGAIN);
2859 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2861 struct drm_i915_gem_request *request;
2863 request = i915_gem_find_active_request(engine);
2864 if (request && i915_gem_reset_request(request)) {
2865 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2866 engine->name, request->global_seqno);
2868 /* If this context is now banned, skip all pending requests. */
2869 if (i915_gem_context_is_banned(request->ctx))
2870 engine_skip_context(request);
2873 /* Setup the CS to resume from the breadcrumb of the hung request */
2874 engine->reset_hw(engine, request);
2877 void i915_gem_reset(struct drm_i915_private *dev_priv)
2879 struct intel_engine_cs *engine;
2880 enum intel_engine_id id;
2882 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2884 i915_gem_retire_requests(dev_priv);
2886 for_each_engine(engine, dev_priv, id) {
2887 struct i915_gem_context *ctx;
2889 i915_gem_reset_engine(engine);
2890 ctx = fetch_and_zero(&engine->last_retired_context);
2892 engine->context_unpin(engine, ctx);
2895 i915_gem_restore_fences(dev_priv);
2897 if (dev_priv->gt.awake) {
2898 intel_sanitize_gt_powersave(dev_priv);
2899 intel_enable_gt_powersave(dev_priv);
2900 if (INTEL_GEN(dev_priv) >= 6)
2901 gen6_rps_busy(dev_priv);
2905 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2907 struct intel_engine_cs *engine;
2908 enum intel_engine_id id;
2910 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2912 for_each_engine(engine, dev_priv, id) {
2913 tasklet_enable(&engine->irq_tasklet);
2914 kthread_unpark(engine->breadcrumbs.signaler);
2918 static void nop_submit_request(struct drm_i915_gem_request *request)
2920 dma_fence_set_error(&request->fence, -EIO);
2921 i915_gem_request_submit(request);
2922 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2925 static void engine_set_wedged(struct intel_engine_cs *engine)
2927 struct drm_i915_gem_request *request;
2928 unsigned long flags;
2930 /* We need to be sure that no thread is running the old callback as
2931 * we install the nop handler (otherwise we would submit a request
2932 * to hardware that will never complete). In order to prevent this
2933 * race, we wait until the machine is idle before making the swap
2934 * (using stop_machine()).
2936 engine->submit_request = nop_submit_request;
2938 /* Mark all executing requests as skipped */
2939 spin_lock_irqsave(&engine->timeline->lock, flags);
2940 list_for_each_entry(request, &engine->timeline->requests, link)
2941 dma_fence_set_error(&request->fence, -EIO);
2942 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2944 /* Mark all pending requests as complete so that any concurrent
2945 * (lockless) lookup doesn't try and wait upon the request as we
2948 intel_engine_init_global_seqno(engine,
2949 intel_engine_last_submit(engine));
2952 * Clear the execlists queue up before freeing the requests, as those
2953 * are the ones that keep the context and ringbuffer backing objects
2957 if (i915.enable_execlists) {
2958 unsigned long flags;
2960 spin_lock_irqsave(&engine->timeline->lock, flags);
2962 i915_gem_request_put(engine->execlist_port[0].request);
2963 i915_gem_request_put(engine->execlist_port[1].request);
2964 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2965 engine->execlist_queue = RB_ROOT;
2966 engine->execlist_first = NULL;
2968 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2972 static int __i915_gem_set_wedged_BKL(void *data)
2974 struct drm_i915_private *i915 = data;
2975 struct intel_engine_cs *engine;
2976 enum intel_engine_id id;
2978 for_each_engine(engine, i915, id)
2979 engine_set_wedged(engine);
2984 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2986 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2987 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2989 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2991 i915_gem_context_lost(dev_priv);
2992 i915_gem_retire_requests(dev_priv);
2994 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2998 i915_gem_retire_work_handler(struct work_struct *work)
3000 struct drm_i915_private *dev_priv =
3001 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3002 struct drm_device *dev = &dev_priv->drm;
3004 /* Come back later if the device is busy... */
3005 if (mutex_trylock(&dev->struct_mutex)) {
3006 i915_gem_retire_requests(dev_priv);
3007 mutex_unlock(&dev->struct_mutex);
3010 /* Keep the retire handler running until we are finally idle.
3011 * We do not need to do this test under locking as in the worst-case
3012 * we queue the retire worker once too often.
3014 if (READ_ONCE(dev_priv->gt.awake)) {
3015 i915_queue_hangcheck(dev_priv);
3016 queue_delayed_work(dev_priv->wq,
3017 &dev_priv->gt.retire_work,
3018 round_jiffies_up_relative(HZ));
3023 i915_gem_idle_work_handler(struct work_struct *work)
3025 struct drm_i915_private *dev_priv =
3026 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3027 struct drm_device *dev = &dev_priv->drm;
3028 struct intel_engine_cs *engine;
3029 enum intel_engine_id id;
3030 bool rearm_hangcheck;
3032 if (!READ_ONCE(dev_priv->gt.awake))
3036 * Wait for last execlists context complete, but bail out in case a
3037 * new request is submitted.
3039 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3040 intel_engines_are_idle(dev_priv),
3042 if (READ_ONCE(dev_priv->gt.active_requests))
3046 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3048 if (!mutex_trylock(&dev->struct_mutex)) {
3049 /* Currently busy, come back later */
3050 mod_delayed_work(dev_priv->wq,
3051 &dev_priv->gt.idle_work,
3052 msecs_to_jiffies(50));
3057 * New request retired after this work handler started, extend active
3058 * period until next instance of the work.
3060 if (work_pending(work))
3063 if (dev_priv->gt.active_requests)
3066 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3067 DRM_ERROR("Timeout waiting for engines to idle\n");
3069 for_each_engine(engine, dev_priv, id) {
3070 intel_engine_disarm_breadcrumbs(engine);
3071 i915_gem_batch_pool_fini(&engine->batch_pool);
3074 GEM_BUG_ON(!dev_priv->gt.awake);
3075 dev_priv->gt.awake = false;
3076 rearm_hangcheck = false;
3078 if (INTEL_GEN(dev_priv) >= 6)
3079 gen6_rps_idle(dev_priv);
3080 intel_runtime_pm_put(dev_priv);
3082 mutex_unlock(&dev->struct_mutex);
3085 if (rearm_hangcheck) {
3086 GEM_BUG_ON(!dev_priv->gt.awake);
3087 i915_queue_hangcheck(dev_priv);
3091 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3093 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3094 struct drm_i915_file_private *fpriv = file->driver_priv;
3095 struct i915_vma *vma, *vn;
3097 mutex_lock(&obj->base.dev->struct_mutex);
3098 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3099 if (vma->vm->file == fpriv)
3100 i915_vma_close(vma);
3102 if (i915_gem_object_is_active(obj) &&
3103 !i915_gem_object_has_active_reference(obj)) {
3104 i915_gem_object_set_active_reference(obj);
3105 i915_gem_object_get(obj);
3107 mutex_unlock(&obj->base.dev->struct_mutex);
3110 static unsigned long to_wait_timeout(s64 timeout_ns)
3113 return MAX_SCHEDULE_TIMEOUT;
3115 if (timeout_ns == 0)
3118 return nsecs_to_jiffies_timeout(timeout_ns);
3122 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3123 * @dev: drm device pointer
3124 * @data: ioctl data blob
3125 * @file: drm file pointer
3127 * Returns 0 if successful, else an error is returned with the remaining time in
3128 * the timeout parameter.
3129 * -ETIME: object is still busy after timeout
3130 * -ERESTARTSYS: signal interrupted the wait
3131 * -ENONENT: object doesn't exist
3132 * Also possible, but rare:
3133 * -EAGAIN: GPU wedged
3135 * -ENODEV: Internal IRQ fail
3136 * -E?: The add request failed
3138 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3139 * non-zero timeout parameter the wait ioctl will wait for the given number of
3140 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3141 * without holding struct_mutex the object may become re-busied before this
3142 * function completes. A similar but shorter * race condition exists in the busy
3146 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3148 struct drm_i915_gem_wait *args = data;
3149 struct drm_i915_gem_object *obj;
3153 if (args->flags != 0)
3156 obj = i915_gem_object_lookup(file, args->bo_handle);
3160 start = ktime_get();
3162 ret = i915_gem_object_wait(obj,
3163 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3164 to_wait_timeout(args->timeout_ns),
3165 to_rps_client(file));
3167 if (args->timeout_ns > 0) {
3168 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3169 if (args->timeout_ns < 0)
3170 args->timeout_ns = 0;
3173 * Apparently ktime isn't accurate enough and occasionally has a
3174 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3175 * things up to make the test happy. We allow up to 1 jiffy.
3177 * This is a regression from the timespec->ktime conversion.
3179 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3180 args->timeout_ns = 0;
3183 i915_gem_object_put(obj);
3187 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3191 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3192 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3200 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3204 if (flags & I915_WAIT_LOCKED) {
3205 struct i915_gem_timeline *tl;
3207 lockdep_assert_held(&i915->drm.struct_mutex);
3209 list_for_each_entry(tl, &i915->gt.timelines, link) {
3210 ret = wait_for_timeline(tl, flags);
3215 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3223 /** Flushes the GTT write domain for the object if it's dirty. */
3225 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3227 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3229 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3232 /* No actual flushing is required for the GTT write domain. Writes
3233 * to it "immediately" go to main memory as far as we know, so there's
3234 * no chipset flush. It also doesn't land in render cache.
3236 * However, we do have to enforce the order so that all writes through
3237 * the GTT land before any writes to the device, such as updates to
3240 * We also have to wait a bit for the writes to land from the GTT.
3241 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3242 * timing. This issue has only been observed when switching quickly
3243 * between GTT writes and CPU reads from inside the kernel on recent hw,
3244 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3245 * system agents we cannot reproduce this behaviour).
3248 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3249 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3251 intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3253 obj->base.write_domain = 0;
3256 /** Flushes the CPU write domain for the object if it's dirty. */
3258 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3260 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3263 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3264 obj->base.write_domain = 0;
3267 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3269 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3272 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3273 obj->base.write_domain = 0;
3276 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3278 if (!READ_ONCE(obj->pin_display))
3281 mutex_lock(&obj->base.dev->struct_mutex);
3282 __i915_gem_object_flush_for_display(obj);
3283 mutex_unlock(&obj->base.dev->struct_mutex);
3287 * Moves a single object to the GTT read, and possibly write domain.
3288 * @obj: object to act on
3289 * @write: ask for write access or read only
3291 * This function returns when the move is complete, including waiting on
3295 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3299 lockdep_assert_held(&obj->base.dev->struct_mutex);
3301 ret = i915_gem_object_wait(obj,
3302 I915_WAIT_INTERRUPTIBLE |
3304 (write ? I915_WAIT_ALL : 0),
3305 MAX_SCHEDULE_TIMEOUT,
3310 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3313 /* Flush and acquire obj->pages so that we are coherent through
3314 * direct access in memory with previous cached writes through
3315 * shmemfs and that our cache domain tracking remains valid.
3316 * For example, if the obj->filp was moved to swap without us
3317 * being notified and releasing the pages, we would mistakenly
3318 * continue to assume that the obj remained out of the CPU cached
3321 ret = i915_gem_object_pin_pages(obj);
3325 i915_gem_object_flush_cpu_write_domain(obj);
3327 /* Serialise direct access to this object with the barriers for
3328 * coherent writes from the GPU, by effectively invalidating the
3329 * GTT domain upon first access.
3331 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3334 /* It should now be out of any other write domains, and we can update
3335 * the domain values for our changes.
3337 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3338 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3340 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3341 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3342 obj->mm.dirty = true;
3345 i915_gem_object_unpin_pages(obj);
3350 * Changes the cache-level of an object across all VMA.
3351 * @obj: object to act on
3352 * @cache_level: new cache level to set for the object
3354 * After this function returns, the object will be in the new cache-level
3355 * across all GTT and the contents of the backing storage will be coherent,
3356 * with respect to the new cache-level. In order to keep the backing storage
3357 * coherent for all users, we only allow a single cache level to be set
3358 * globally on the object and prevent it from being changed whilst the
3359 * hardware is reading from the object. That is if the object is currently
3360 * on the scanout it will be set to uncached (or equivalent display
3361 * cache coherency) and all non-MOCS GPU access will also be uncached so
3362 * that all direct access to the scanout remains coherent.
3364 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3365 enum i915_cache_level cache_level)
3367 struct i915_vma *vma;
3370 lockdep_assert_held(&obj->base.dev->struct_mutex);
3372 if (obj->cache_level == cache_level)
3375 /* Inspect the list of currently bound VMA and unbind any that would
3376 * be invalid given the new cache-level. This is principally to
3377 * catch the issue of the CS prefetch crossing page boundaries and
3378 * reading an invalid PTE on older architectures.
3381 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3382 if (!drm_mm_node_allocated(&vma->node))
3385 if (i915_vma_is_pinned(vma)) {
3386 DRM_DEBUG("can not change the cache level of pinned objects\n");
3390 if (i915_gem_valid_gtt_space(vma, cache_level))
3393 ret = i915_vma_unbind(vma);
3397 /* As unbinding may affect other elements in the
3398 * obj->vma_list (due to side-effects from retiring
3399 * an active vma), play safe and restart the iterator.
3404 /* We can reuse the existing drm_mm nodes but need to change the
3405 * cache-level on the PTE. We could simply unbind them all and
3406 * rebind with the correct cache-level on next use. However since
3407 * we already have a valid slot, dma mapping, pages etc, we may as
3408 * rewrite the PTE in the belief that doing so tramples upon less
3409 * state and so involves less work.
3411 if (obj->bind_count) {
3412 /* Before we change the PTE, the GPU must not be accessing it.
3413 * If we wait upon the object, we know that all the bound
3414 * VMA are no longer active.
3416 ret = i915_gem_object_wait(obj,
3417 I915_WAIT_INTERRUPTIBLE |
3420 MAX_SCHEDULE_TIMEOUT,
3425 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3426 cache_level != I915_CACHE_NONE) {
3427 /* Access to snoopable pages through the GTT is
3428 * incoherent and on some machines causes a hard
3429 * lockup. Relinquish the CPU mmaping to force
3430 * userspace to refault in the pages and we can
3431 * then double check if the GTT mapping is still
3432 * valid for that pointer access.
3434 i915_gem_release_mmap(obj);
3436 /* As we no longer need a fence for GTT access,
3437 * we can relinquish it now (and so prevent having
3438 * to steal a fence from someone else on the next
3439 * fence request). Note GPU activity would have
3440 * dropped the fence as all snoopable access is
3441 * supposed to be linear.
3443 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3444 ret = i915_vma_put_fence(vma);
3449 /* We either have incoherent backing store and
3450 * so no GTT access or the architecture is fully
3451 * coherent. In such cases, existing GTT mmaps
3452 * ignore the cache bit in the PTE and we can
3453 * rewrite it without confusing the GPU or having
3454 * to force userspace to fault back in its mmaps.
3458 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3459 if (!drm_mm_node_allocated(&vma->node))
3462 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3468 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3469 i915_gem_object_is_coherent(obj))
3470 obj->cache_dirty = true;
3472 list_for_each_entry(vma, &obj->vma_list, obj_link)
3473 vma->node.color = cache_level;
3474 obj->cache_level = cache_level;
3479 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3480 struct drm_file *file)
3482 struct drm_i915_gem_caching *args = data;
3483 struct drm_i915_gem_object *obj;
3487 obj = i915_gem_object_lookup_rcu(file, args->handle);
3493 switch (obj->cache_level) {
3494 case I915_CACHE_LLC:
3495 case I915_CACHE_L3_LLC:
3496 args->caching = I915_CACHING_CACHED;
3500 args->caching = I915_CACHING_DISPLAY;
3504 args->caching = I915_CACHING_NONE;
3512 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3513 struct drm_file *file)
3515 struct drm_i915_private *i915 = to_i915(dev);
3516 struct drm_i915_gem_caching *args = data;
3517 struct drm_i915_gem_object *obj;
3518 enum i915_cache_level level;
3521 switch (args->caching) {
3522 case I915_CACHING_NONE:
3523 level = I915_CACHE_NONE;
3525 case I915_CACHING_CACHED:
3527 * Due to a HW issue on BXT A stepping, GPU stores via a
3528 * snooped mapping may leave stale data in a corresponding CPU
3529 * cacheline, whereas normally such cachelines would get
3532 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3535 level = I915_CACHE_LLC;
3537 case I915_CACHING_DISPLAY:
3538 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3544 obj = i915_gem_object_lookup(file, args->handle);
3548 if (obj->cache_level == level)
3551 ret = i915_gem_object_wait(obj,
3552 I915_WAIT_INTERRUPTIBLE,
3553 MAX_SCHEDULE_TIMEOUT,
3554 to_rps_client(file));
3558 ret = i915_mutex_lock_interruptible(dev);
3562 ret = i915_gem_object_set_cache_level(obj, level);
3563 mutex_unlock(&dev->struct_mutex);
3566 i915_gem_object_put(obj);
3571 * Prepare buffer for display plane (scanout, cursors, etc).
3572 * Can be called from an uninterruptible phase (modesetting) and allows
3573 * any flushes to be pipelined (for pageflips).
3576 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3578 const struct i915_ggtt_view *view)
3580 struct i915_vma *vma;
3583 lockdep_assert_held(&obj->base.dev->struct_mutex);
3585 /* Mark the pin_display early so that we account for the
3586 * display coherency whilst setting up the cache domains.
3590 /* The display engine is not coherent with the LLC cache on gen6. As
3591 * a result, we make sure that the pinning that is about to occur is
3592 * done with uncached PTEs. This is lowest common denominator for all
3595 * However for gen6+, we could do better by using the GFDT bit instead
3596 * of uncaching, which would allow us to flush all the LLC-cached data
3597 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3599 ret = i915_gem_object_set_cache_level(obj,
3600 HAS_WT(to_i915(obj->base.dev)) ?
3601 I915_CACHE_WT : I915_CACHE_NONE);
3604 goto err_unpin_display;
3607 /* As the user may map the buffer once pinned in the display plane
3608 * (e.g. libkms for the bootup splash), we have to ensure that we
3609 * always use map_and_fenceable for all scanout buffers. However,
3610 * it may simply be too big to fit into mappable, in which case
3611 * put it anyway and hope that userspace can cope (but always first
3612 * try to preserve the existing ABI).
3614 vma = ERR_PTR(-ENOSPC);
3615 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3616 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3617 PIN_MAPPABLE | PIN_NONBLOCK);
3619 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3622 /* Valleyview is definitely limited to scanning out the first
3623 * 512MiB. Lets presume this behaviour was inherited from the
3624 * g4x display engine and that all earlier gen are similarly
3625 * limited. Testing suggests that it is a little more
3626 * complicated than this. For example, Cherryview appears quite
3627 * happy to scanout from anywhere within its global aperture.
3630 if (HAS_GMCH_DISPLAY(i915))
3631 flags = PIN_MAPPABLE;
3632 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3635 goto err_unpin_display;
3637 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3639 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3640 __i915_gem_object_flush_for_display(obj);
3641 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3643 /* It should now be out of any other write domains, and we can update
3644 * the domain values for our changes.
3646 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3656 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3658 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3660 if (WARN_ON(vma->obj->pin_display == 0))
3663 if (--vma->obj->pin_display == 0)
3664 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3666 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3667 i915_gem_object_bump_inactive_ggtt(vma->obj);
3669 i915_vma_unpin(vma);
3673 * Moves a single object to the CPU read, and possibly write domain.
3674 * @obj: object to act on
3675 * @write: requesting write or read-only access
3677 * This function returns when the move is complete, including waiting on
3681 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3685 lockdep_assert_held(&obj->base.dev->struct_mutex);
3687 ret = i915_gem_object_wait(obj,
3688 I915_WAIT_INTERRUPTIBLE |
3690 (write ? I915_WAIT_ALL : 0),
3691 MAX_SCHEDULE_TIMEOUT,
3696 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3699 i915_gem_object_flush_gtt_write_domain(obj);
3701 /* Flush the CPU cache if it's still invalid. */
3702 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3703 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3704 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3707 /* It should now be out of any other write domains, and we can update
3708 * the domain values for our changes.
3710 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3712 /* If we're writing through the CPU, then the GPU read domains will
3713 * need to be invalidated at next use.
3716 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3717 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3723 /* Throttle our rendering by waiting until the ring has completed our requests
3724 * emitted over 20 msec ago.
3726 * Note that if we were to use the current jiffies each time around the loop,
3727 * we wouldn't escape the function with any frames outstanding if the time to
3728 * render a frame was over 20ms.
3730 * This should get us reasonable parallelism between CPU and GPU but also
3731 * relatively low latency when blocking on a particular request to finish.
3734 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3736 struct drm_i915_private *dev_priv = to_i915(dev);
3737 struct drm_i915_file_private *file_priv = file->driver_priv;
3738 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3739 struct drm_i915_gem_request *request, *target = NULL;
3742 /* ABI: return -EIO if already wedged */
3743 if (i915_terminally_wedged(&dev_priv->gpu_error))
3746 spin_lock(&file_priv->mm.lock);
3747 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3748 if (time_after_eq(request->emitted_jiffies, recent_enough))
3752 list_del(&target->client_link);
3753 target->file_priv = NULL;
3759 i915_gem_request_get(target);
3760 spin_unlock(&file_priv->mm.lock);
3765 ret = i915_wait_request(target,
3766 I915_WAIT_INTERRUPTIBLE,
3767 MAX_SCHEDULE_TIMEOUT);
3768 i915_gem_request_put(target);
3770 return ret < 0 ? ret : 0;
3774 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3775 const struct i915_ggtt_view *view,
3780 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3781 struct i915_address_space *vm = &dev_priv->ggtt.base;
3782 struct i915_vma *vma;
3785 lockdep_assert_held(&obj->base.dev->struct_mutex);
3787 vma = i915_vma_instance(obj, vm, view);
3788 if (unlikely(IS_ERR(vma)))
3791 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3792 if (flags & PIN_NONBLOCK &&
3793 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3794 return ERR_PTR(-ENOSPC);
3796 if (flags & PIN_MAPPABLE) {
3797 /* If the required space is larger than the available
3798 * aperture, we will not able to find a slot for the
3799 * object and unbinding the object now will be in
3800 * vain. Worse, doing so may cause us to ping-pong
3801 * the object in and out of the Global GTT and
3802 * waste a lot of cycles under the mutex.
3804 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3805 return ERR_PTR(-E2BIG);
3807 /* If NONBLOCK is set the caller is optimistically
3808 * trying to cache the full object within the mappable
3809 * aperture, and *must* have a fallback in place for
3810 * situations where we cannot bind the object. We
3811 * can be a little more lax here and use the fallback
3812 * more often to avoid costly migrations of ourselves
3813 * and other objects within the aperture.
3815 * Half-the-aperture is used as a simple heuristic.
3816 * More interesting would to do search for a free
3817 * block prior to making the commitment to unbind.
3818 * That caters for the self-harm case, and with a
3819 * little more heuristics (e.g. NOFAULT, NOEVICT)
3820 * we could try to minimise harm to others.
3822 if (flags & PIN_NONBLOCK &&
3823 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3824 return ERR_PTR(-ENOSPC);
3827 WARN(i915_vma_is_pinned(vma),
3828 "bo is already pinned in ggtt with incorrect alignment:"
3829 " offset=%08x, req.alignment=%llx,"
3830 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3831 i915_ggtt_offset(vma), alignment,
3832 !!(flags & PIN_MAPPABLE),
3833 i915_vma_is_map_and_fenceable(vma));
3834 ret = i915_vma_unbind(vma);
3836 return ERR_PTR(ret);
3839 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3841 return ERR_PTR(ret);
3846 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3848 /* Note that we could alias engines in the execbuf API, but
3849 * that would be very unwise as it prevents userspace from
3850 * fine control over engine selection. Ahem.
3852 * This should be something like EXEC_MAX_ENGINE instead of
3855 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3856 return 0x10000 << id;
3859 static __always_inline unsigned int __busy_write_id(unsigned int id)
3861 /* The uABI guarantees an active writer is also amongst the read
3862 * engines. This would be true if we accessed the activity tracking
3863 * under the lock, but as we perform the lookup of the object and
3864 * its activity locklessly we can not guarantee that the last_write
3865 * being active implies that we have set the same engine flag from
3866 * last_read - hence we always set both read and write busy for
3869 return id | __busy_read_flag(id);
3872 static __always_inline unsigned int
3873 __busy_set_if_active(const struct dma_fence *fence,
3874 unsigned int (*flag)(unsigned int id))
3876 struct drm_i915_gem_request *rq;
3878 /* We have to check the current hw status of the fence as the uABI
3879 * guarantees forward progress. We could rely on the idle worker
3880 * to eventually flush us, but to minimise latency just ask the
3883 * Note we only report on the status of native fences.
3885 if (!dma_fence_is_i915(fence))
3888 /* opencode to_request() in order to avoid const warnings */
3889 rq = container_of(fence, struct drm_i915_gem_request, fence);
3890 if (i915_gem_request_completed(rq))
3893 return flag(rq->engine->exec_id);
3896 static __always_inline unsigned int
3897 busy_check_reader(const struct dma_fence *fence)
3899 return __busy_set_if_active(fence, __busy_read_flag);
3902 static __always_inline unsigned int
3903 busy_check_writer(const struct dma_fence *fence)
3908 return __busy_set_if_active(fence, __busy_write_id);
3912 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3913 struct drm_file *file)
3915 struct drm_i915_gem_busy *args = data;
3916 struct drm_i915_gem_object *obj;
3917 struct reservation_object_list *list;
3923 obj = i915_gem_object_lookup_rcu(file, args->handle);
3927 /* A discrepancy here is that we do not report the status of
3928 * non-i915 fences, i.e. even though we may report the object as idle,
3929 * a call to set-domain may still stall waiting for foreign rendering.
3930 * This also means that wait-ioctl may report an object as busy,
3931 * where busy-ioctl considers it idle.
3933 * We trade the ability to warn of foreign fences to report on which
3934 * i915 engines are active for the object.
3936 * Alternatively, we can trade that extra information on read/write
3939 * !reservation_object_test_signaled_rcu(obj->resv, true);
3940 * to report the overall busyness. This is what the wait-ioctl does.
3944 seq = raw_read_seqcount(&obj->resv->seq);
3946 /* Translate the exclusive fence to the READ *and* WRITE engine */
3947 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3949 /* Translate shared fences to READ set of engines */
3950 list = rcu_dereference(obj->resv->fence);
3952 unsigned int shared_count = list->shared_count, i;
3954 for (i = 0; i < shared_count; ++i) {
3955 struct dma_fence *fence =
3956 rcu_dereference(list->shared[i]);
3958 args->busy |= busy_check_reader(fence);
3962 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3972 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3973 struct drm_file *file_priv)
3975 return i915_gem_ring_throttle(dev, file_priv);
3979 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3980 struct drm_file *file_priv)
3982 struct drm_i915_private *dev_priv = to_i915(dev);
3983 struct drm_i915_gem_madvise *args = data;
3984 struct drm_i915_gem_object *obj;
3987 switch (args->madv) {
3988 case I915_MADV_DONTNEED:
3989 case I915_MADV_WILLNEED:
3995 obj = i915_gem_object_lookup(file_priv, args->handle);
3999 err = mutex_lock_interruptible(&obj->mm.lock);
4003 if (obj->mm.pages &&
4004 i915_gem_object_is_tiled(obj) &&
4005 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4006 if (obj->mm.madv == I915_MADV_WILLNEED) {
4007 GEM_BUG_ON(!obj->mm.quirked);
4008 __i915_gem_object_unpin_pages(obj);
4009 obj->mm.quirked = false;
4011 if (args->madv == I915_MADV_WILLNEED) {
4012 GEM_BUG_ON(obj->mm.quirked);
4013 __i915_gem_object_pin_pages(obj);
4014 obj->mm.quirked = true;
4018 if (obj->mm.madv != __I915_MADV_PURGED)
4019 obj->mm.madv = args->madv;
4021 /* if the object is no longer attached, discard its backing storage */
4022 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4023 i915_gem_object_truncate(obj);
4025 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4026 mutex_unlock(&obj->mm.lock);
4029 i915_gem_object_put(obj);
4034 frontbuffer_retire(struct i915_gem_active *active,
4035 struct drm_i915_gem_request *request)
4037 struct drm_i915_gem_object *obj =
4038 container_of(active, typeof(*obj), frontbuffer_write);
4040 intel_fb_obj_flush(obj, ORIGIN_CS);
4043 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4044 const struct drm_i915_gem_object_ops *ops)
4046 mutex_init(&obj->mm.lock);
4048 INIT_LIST_HEAD(&obj->global_link);
4049 INIT_LIST_HEAD(&obj->userfault_link);
4050 INIT_LIST_HEAD(&obj->obj_exec_link);
4051 INIT_LIST_HEAD(&obj->vma_list);
4052 INIT_LIST_HEAD(&obj->batch_pool_link);
4056 reservation_object_init(&obj->__builtin_resv);
4057 obj->resv = &obj->__builtin_resv;
4059 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4060 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4062 obj->mm.madv = I915_MADV_WILLNEED;
4063 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4064 mutex_init(&obj->mm.get_page.lock);
4066 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4069 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4070 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4071 I915_GEM_OBJECT_IS_SHRINKABLE,
4073 .get_pages = i915_gem_object_get_pages_gtt,
4074 .put_pages = i915_gem_object_put_pages_gtt,
4076 .pwrite = i915_gem_object_pwrite_gtt,
4079 struct drm_i915_gem_object *
4080 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4082 struct drm_i915_gem_object *obj;
4083 struct address_space *mapping;
4087 /* There is a prevalence of the assumption that we fit the object's
4088 * page count inside a 32bit _signed_ variable. Let's document this and
4089 * catch if we ever need to fix it. In the meantime, if you do spot
4090 * such a local variable, please consider fixing!
4092 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4093 return ERR_PTR(-E2BIG);
4095 if (overflows_type(size, obj->base.size))
4096 return ERR_PTR(-E2BIG);
4098 obj = i915_gem_object_alloc(dev_priv);
4100 return ERR_PTR(-ENOMEM);
4102 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4106 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4107 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4108 /* 965gm cannot relocate objects above 4GiB. */
4109 mask &= ~__GFP_HIGHMEM;
4110 mask |= __GFP_DMA32;
4113 mapping = obj->base.filp->f_mapping;
4114 mapping_set_gfp_mask(mapping, mask);
4116 i915_gem_object_init(obj, &i915_gem_object_ops);
4118 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4119 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4121 if (HAS_LLC(dev_priv)) {
4122 /* On some devices, we can have the GPU use the LLC (the CPU
4123 * cache) for about a 10% performance improvement
4124 * compared to uncached. Graphics requests other than
4125 * display scanout are coherent with the CPU in
4126 * accessing this cache. This means in this mode we
4127 * don't need to clflush on the CPU side, and on the
4128 * GPU side we only need to flush internal caches to
4129 * get data visible to the CPU.
4131 * However, we maintain the display planes as UC, and so
4132 * need to rebind when first used as such.
4134 obj->cache_level = I915_CACHE_LLC;
4136 obj->cache_level = I915_CACHE_NONE;
4138 trace_i915_gem_object_create(obj);
4143 i915_gem_object_free(obj);
4144 return ERR_PTR(ret);
4147 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4149 /* If we are the last user of the backing storage (be it shmemfs
4150 * pages or stolen etc), we know that the pages are going to be
4151 * immediately released. In this case, we can then skip copying
4152 * back the contents from the GPU.
4155 if (obj->mm.madv != I915_MADV_WILLNEED)
4158 if (obj->base.filp == NULL)
4161 /* At first glance, this looks racy, but then again so would be
4162 * userspace racing mmap against close. However, the first external
4163 * reference to the filp can only be obtained through the
4164 * i915_gem_mmap_ioctl() which safeguards us against the user
4165 * acquiring such a reference whilst we are in the middle of
4166 * freeing the object.
4168 return atomic_long_read(&obj->base.filp->f_count) == 1;
4171 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4172 struct llist_node *freed)
4174 struct drm_i915_gem_object *obj, *on;
4176 mutex_lock(&i915->drm.struct_mutex);
4177 intel_runtime_pm_get(i915);
4178 llist_for_each_entry(obj, freed, freed) {
4179 struct i915_vma *vma, *vn;
4181 trace_i915_gem_object_destroy(obj);
4183 GEM_BUG_ON(i915_gem_object_is_active(obj));
4184 list_for_each_entry_safe(vma, vn,
4185 &obj->vma_list, obj_link) {
4186 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4187 GEM_BUG_ON(i915_vma_is_active(vma));
4188 vma->flags &= ~I915_VMA_PIN_MASK;
4189 i915_vma_close(vma);
4191 GEM_BUG_ON(!list_empty(&obj->vma_list));
4192 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4194 list_del(&obj->global_link);
4196 intel_runtime_pm_put(i915);
4197 mutex_unlock(&i915->drm.struct_mutex);
4199 llist_for_each_entry_safe(obj, on, freed, freed) {
4200 GEM_BUG_ON(obj->bind_count);
4201 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4203 if (obj->ops->release)
4204 obj->ops->release(obj);
4206 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4207 atomic_set(&obj->mm.pages_pin_count, 0);
4208 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4209 GEM_BUG_ON(obj->mm.pages);
4211 if (obj->base.import_attach)
4212 drm_prime_gem_destroy(&obj->base, NULL);
4214 reservation_object_fini(&obj->__builtin_resv);
4215 drm_gem_object_release(&obj->base);
4216 i915_gem_info_remove_obj(i915, obj->base.size);
4219 i915_gem_object_free(obj);
4223 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4225 struct llist_node *freed;
4227 freed = llist_del_all(&i915->mm.free_list);
4228 if (unlikely(freed))
4229 __i915_gem_free_objects(i915, freed);
4232 static void __i915_gem_free_work(struct work_struct *work)
4234 struct drm_i915_private *i915 =
4235 container_of(work, struct drm_i915_private, mm.free_work);
4236 struct llist_node *freed;
4238 /* All file-owned VMA should have been released by this point through
4239 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4240 * However, the object may also be bound into the global GTT (e.g.
4241 * older GPUs without per-process support, or for direct access through
4242 * the GTT either for the user or for scanout). Those VMA still need to
4246 while ((freed = llist_del_all(&i915->mm.free_list)))
4247 __i915_gem_free_objects(i915, freed);
4250 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4252 struct drm_i915_gem_object *obj =
4253 container_of(head, typeof(*obj), rcu);
4254 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4256 /* We can't simply use call_rcu() from i915_gem_free_object()
4257 * as we need to block whilst unbinding, and the call_rcu
4258 * task may be called from softirq context. So we take a
4259 * detour through a worker.
4261 if (llist_add(&obj->freed, &i915->mm.free_list))
4262 schedule_work(&i915->mm.free_work);
4265 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4267 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4269 if (obj->mm.quirked)
4270 __i915_gem_object_unpin_pages(obj);
4272 if (discard_backing_storage(obj))
4273 obj->mm.madv = I915_MADV_DONTNEED;
4275 /* Before we free the object, make sure any pure RCU-only
4276 * read-side critical sections are complete, e.g.
4277 * i915_gem_busy_ioctl(). For the corresponding synchronized
4278 * lookup see i915_gem_object_lookup_rcu().
4280 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4283 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4285 lockdep_assert_held(&obj->base.dev->struct_mutex);
4287 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4288 if (i915_gem_object_is_active(obj))
4289 i915_gem_object_set_active_reference(obj);
4291 i915_gem_object_put(obj);
4294 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4296 struct intel_engine_cs *engine;
4297 enum intel_engine_id id;
4299 for_each_engine(engine, dev_priv, id)
4300 GEM_BUG_ON(engine->last_retired_context &&
4301 !i915_gem_context_is_kernel(engine->last_retired_context));
4304 void i915_gem_sanitize(struct drm_i915_private *i915)
4307 * If we inherit context state from the BIOS or earlier occupants
4308 * of the GPU, the GPU may be in an inconsistent state when we
4309 * try to take over. The only way to remove the earlier state
4310 * is by resetting. However, resetting on earlier gen is tricky as
4311 * it may impact the display and we are uncertain about the stability
4312 * of the reset, so we only reset recent machines with logical
4313 * context support (that must be reset to remove any stray contexts).
4315 if (HAS_HW_CONTEXTS(i915)) {
4316 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4317 WARN_ON(reset && reset != -ENODEV);
4321 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4323 struct drm_device *dev = &dev_priv->drm;
4326 intel_runtime_pm_get(dev_priv);
4327 intel_suspend_gt_powersave(dev_priv);
4329 mutex_lock(&dev->struct_mutex);
4331 /* We have to flush all the executing contexts to main memory so
4332 * that they can saved in the hibernation image. To ensure the last
4333 * context image is coherent, we have to switch away from it. That
4334 * leaves the dev_priv->kernel_context still active when
4335 * we actually suspend, and its image in memory may not match the GPU
4336 * state. Fortunately, the kernel_context is disposable and we do
4337 * not rely on its state.
4339 ret = i915_gem_switch_to_kernel_context(dev_priv);
4343 ret = i915_gem_wait_for_idle(dev_priv,
4344 I915_WAIT_INTERRUPTIBLE |
4349 i915_gem_retire_requests(dev_priv);
4350 GEM_BUG_ON(dev_priv->gt.active_requests);
4352 assert_kernel_context_is_current(dev_priv);
4353 i915_gem_context_lost(dev_priv);
4354 mutex_unlock(&dev->struct_mutex);
4356 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4357 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4359 /* As the idle_work is rearming if it detects a race, play safe and
4360 * repeat the flush until it is definitely idle.
4362 while (flush_delayed_work(&dev_priv->gt.idle_work))
4365 i915_gem_drain_freed_objects(dev_priv);
4367 /* Assert that we sucessfully flushed all the work and
4368 * reset the GPU back to its idle, low power state.
4370 WARN_ON(dev_priv->gt.awake);
4371 WARN_ON(!intel_engines_are_idle(dev_priv));
4374 * Neither the BIOS, ourselves or any other kernel
4375 * expects the system to be in execlists mode on startup,
4376 * so we need to reset the GPU back to legacy mode. And the only
4377 * known way to disable logical contexts is through a GPU reset.
4379 * So in order to leave the system in a known default configuration,
4380 * always reset the GPU upon unload and suspend. Afterwards we then
4381 * clean up the GEM state tracking, flushing off the requests and
4382 * leaving the system in a known idle state.
4384 * Note that is of the upmost importance that the GPU is idle and
4385 * all stray writes are flushed *before* we dismantle the backing
4386 * storage for the pinned objects.
4388 * However, since we are uncertain that resetting the GPU on older
4389 * machines is a good idea, we don't - just in case it leaves the
4390 * machine in an unusable condition.
4392 i915_gem_sanitize(dev_priv);
4396 mutex_unlock(&dev->struct_mutex);
4398 intel_runtime_pm_put(dev_priv);
4402 void i915_gem_resume(struct drm_i915_private *dev_priv)
4404 struct drm_device *dev = &dev_priv->drm;
4406 WARN_ON(dev_priv->gt.awake);
4408 mutex_lock(&dev->struct_mutex);
4409 i915_gem_restore_gtt_mappings(dev_priv);
4411 /* As we didn't flush the kernel context before suspend, we cannot
4412 * guarantee that the context image is complete. So let's just reset
4413 * it and start again.
4415 dev_priv->gt.resume(dev_priv);
4417 mutex_unlock(&dev->struct_mutex);
4420 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4422 if (INTEL_GEN(dev_priv) < 5 ||
4423 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4426 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4427 DISP_TILE_SURFACE_SWIZZLING);
4429 if (IS_GEN5(dev_priv))
4432 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4433 if (IS_GEN6(dev_priv))
4434 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4435 else if (IS_GEN7(dev_priv))
4436 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4437 else if (IS_GEN8(dev_priv))
4438 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4443 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4445 I915_WRITE(RING_CTL(base), 0);
4446 I915_WRITE(RING_HEAD(base), 0);
4447 I915_WRITE(RING_TAIL(base), 0);
4448 I915_WRITE(RING_START(base), 0);
4451 static void init_unused_rings(struct drm_i915_private *dev_priv)
4453 if (IS_I830(dev_priv)) {
4454 init_unused_ring(dev_priv, PRB1_BASE);
4455 init_unused_ring(dev_priv, SRB0_BASE);
4456 init_unused_ring(dev_priv, SRB1_BASE);
4457 init_unused_ring(dev_priv, SRB2_BASE);
4458 init_unused_ring(dev_priv, SRB3_BASE);
4459 } else if (IS_GEN2(dev_priv)) {
4460 init_unused_ring(dev_priv, SRB0_BASE);
4461 init_unused_ring(dev_priv, SRB1_BASE);
4462 } else if (IS_GEN3(dev_priv)) {
4463 init_unused_ring(dev_priv, PRB1_BASE);
4464 init_unused_ring(dev_priv, PRB2_BASE);
4468 static int __i915_gem_restart_engines(void *data)
4470 struct drm_i915_private *i915 = data;
4471 struct intel_engine_cs *engine;
4472 enum intel_engine_id id;
4475 for_each_engine(engine, i915, id) {
4476 err = engine->init_hw(engine);
4484 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4488 dev_priv->gt.last_init_time = ktime_get();
4490 /* Double layer security blanket, see i915_gem_init() */
4491 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4493 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4494 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4496 if (IS_HASWELL(dev_priv))
4497 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4498 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4500 if (HAS_PCH_NOP(dev_priv)) {
4501 if (IS_IVYBRIDGE(dev_priv)) {
4502 u32 temp = I915_READ(GEN7_MSG_CTL);
4503 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4504 I915_WRITE(GEN7_MSG_CTL, temp);
4505 } else if (INTEL_GEN(dev_priv) >= 7) {
4506 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4507 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4508 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4512 i915_gem_init_swizzling(dev_priv);
4515 * At least 830 can leave some of the unused rings
4516 * "active" (ie. head != tail) after resume which
4517 * will prevent c3 entry. Makes sure all unused rings
4520 init_unused_rings(dev_priv);
4522 BUG_ON(!dev_priv->kernel_context);
4524 ret = i915_ppgtt_init_hw(dev_priv);
4526 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4530 /* Need to do basic initialisation of all rings first: */
4531 ret = __i915_gem_restart_engines(dev_priv);
4535 intel_mocs_init_l3cc_table(dev_priv);
4537 /* We can't enable contexts until all firmware is loaded */
4538 ret = intel_guc_setup(dev_priv);
4543 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4547 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4549 if (INTEL_INFO(dev_priv)->gen < 6)
4552 /* TODO: make semaphores and Execlists play nicely together */
4553 if (i915.enable_execlists)
4559 #ifdef CONFIG_INTEL_IOMMU
4560 /* Enable semaphores on SNB when IO remapping is off */
4561 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4568 int i915_gem_init(struct drm_i915_private *dev_priv)
4572 mutex_lock(&dev_priv->drm.struct_mutex);
4574 i915_gem_clflush_init(dev_priv);
4576 if (!i915.enable_execlists) {
4577 dev_priv->gt.resume = intel_legacy_submission_resume;
4578 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4580 dev_priv->gt.resume = intel_lr_context_resume;
4581 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4584 /* This is just a security blanket to placate dragons.
4585 * On some systems, we very sporadically observe that the first TLBs
4586 * used by the CS may be stale, despite us poking the TLB reset. If
4587 * we hold the forcewake during initialisation these problems
4588 * just magically go away.
4590 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4592 i915_gem_init_userptr(dev_priv);
4594 ret = i915_gem_init_ggtt(dev_priv);
4598 ret = i915_gem_context_init(dev_priv);
4602 ret = intel_engines_init(dev_priv);
4606 ret = i915_gem_init_hw(dev_priv);
4608 /* Allow engine initialisation to fail by marking the GPU as
4609 * wedged. But we only want to do this where the GPU is angry,
4610 * for all other failure, such as an allocation failure, bail.
4612 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4613 i915_gem_set_wedged(dev_priv);
4618 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4619 mutex_unlock(&dev_priv->drm.struct_mutex);
4624 void i915_gem_init_mmio(struct drm_i915_private *i915)
4626 i915_gem_sanitize(i915);
4630 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4632 struct intel_engine_cs *engine;
4633 enum intel_engine_id id;
4635 for_each_engine(engine, dev_priv, id)
4636 dev_priv->gt.cleanup_engine(engine);
4640 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4644 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4645 !IS_CHERRYVIEW(dev_priv))
4646 dev_priv->num_fence_regs = 32;
4647 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4648 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4649 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4650 dev_priv->num_fence_regs = 16;
4652 dev_priv->num_fence_regs = 8;
4654 if (intel_vgpu_active(dev_priv))
4655 dev_priv->num_fence_regs =
4656 I915_READ(vgtif_reg(avail_rs.fence_num));
4658 /* Initialize fence registers to zero */
4659 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4660 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4662 fence->i915 = dev_priv;
4664 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4666 i915_gem_restore_fences(dev_priv);
4668 i915_gem_detect_bit_6_swizzle(dev_priv);
4672 i915_gem_load_init(struct drm_i915_private *dev_priv)
4676 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4677 if (!dev_priv->objects)
4680 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4681 if (!dev_priv->vmas)
4684 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4685 SLAB_HWCACHE_ALIGN |
4686 SLAB_RECLAIM_ACCOUNT |
4687 SLAB_DESTROY_BY_RCU);
4688 if (!dev_priv->requests)
4691 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4692 SLAB_HWCACHE_ALIGN |
4693 SLAB_RECLAIM_ACCOUNT);
4694 if (!dev_priv->dependencies)
4697 mutex_lock(&dev_priv->drm.struct_mutex);
4698 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4699 err = i915_gem_timeline_init__global(dev_priv);
4700 mutex_unlock(&dev_priv->drm.struct_mutex);
4702 goto err_dependencies;
4704 INIT_LIST_HEAD(&dev_priv->context_list);
4705 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4706 init_llist_head(&dev_priv->mm.free_list);
4707 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4708 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4709 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4710 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4711 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4712 i915_gem_retire_work_handler);
4713 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4714 i915_gem_idle_work_handler);
4715 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4716 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4718 init_waitqueue_head(&dev_priv->pending_flip_queue);
4720 dev_priv->mm.interruptible = true;
4722 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4724 spin_lock_init(&dev_priv->fb_tracking.lock);
4729 kmem_cache_destroy(dev_priv->dependencies);
4731 kmem_cache_destroy(dev_priv->requests);
4733 kmem_cache_destroy(dev_priv->vmas);
4735 kmem_cache_destroy(dev_priv->objects);
4740 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4742 i915_gem_drain_freed_objects(dev_priv);
4743 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4744 WARN_ON(dev_priv->mm.object_count);
4746 mutex_lock(&dev_priv->drm.struct_mutex);
4747 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4748 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4749 mutex_unlock(&dev_priv->drm.struct_mutex);
4751 kmem_cache_destroy(dev_priv->dependencies);
4752 kmem_cache_destroy(dev_priv->requests);
4753 kmem_cache_destroy(dev_priv->vmas);
4754 kmem_cache_destroy(dev_priv->objects);
4756 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4760 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4762 mutex_lock(&dev_priv->drm.struct_mutex);
4763 i915_gem_shrink_all(dev_priv);
4764 mutex_unlock(&dev_priv->drm.struct_mutex);
4769 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4771 struct drm_i915_gem_object *obj;
4772 struct list_head *phases[] = {
4773 &dev_priv->mm.unbound_list,
4774 &dev_priv->mm.bound_list,
4778 /* Called just before we write the hibernation image.
4780 * We need to update the domain tracking to reflect that the CPU
4781 * will be accessing all the pages to create and restore from the
4782 * hibernation, and so upon restoration those pages will be in the
4785 * To make sure the hibernation image contains the latest state,
4786 * we update that state just before writing out the image.
4788 * To try and reduce the hibernation image, we manually shrink
4789 * the objects as well.
4792 mutex_lock(&dev_priv->drm.struct_mutex);
4793 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4795 for (p = phases; *p; p++) {
4796 list_for_each_entry(obj, *p, global_link) {
4797 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4798 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4801 mutex_unlock(&dev_priv->drm.struct_mutex);
4806 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4808 struct drm_i915_file_private *file_priv = file->driver_priv;
4809 struct drm_i915_gem_request *request;
4811 /* Clean up our request list when the client is going away, so that
4812 * later retire_requests won't dereference our soon-to-be-gone
4815 spin_lock(&file_priv->mm.lock);
4816 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4817 request->file_priv = NULL;
4818 spin_unlock(&file_priv->mm.lock);
4820 if (!list_empty(&file_priv->rps.link)) {
4821 spin_lock(&to_i915(dev)->rps.client_lock);
4822 list_del(&file_priv->rps.link);
4823 spin_unlock(&to_i915(dev)->rps.client_lock);
4827 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4829 struct drm_i915_file_private *file_priv;
4834 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4838 file->driver_priv = file_priv;
4839 file_priv->dev_priv = to_i915(dev);
4840 file_priv->file = file;
4841 INIT_LIST_HEAD(&file_priv->rps.link);
4843 spin_lock_init(&file_priv->mm.lock);
4844 INIT_LIST_HEAD(&file_priv->mm.request_list);
4846 file_priv->bsd_engine = -1;
4848 ret = i915_gem_context_open(dev, file);
4856 * i915_gem_track_fb - update frontbuffer tracking
4857 * @old: current GEM buffer for the frontbuffer slots
4858 * @new: new GEM buffer for the frontbuffer slots
4859 * @frontbuffer_bits: bitmask of frontbuffer slots
4861 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4862 * from @old and setting them in @new. Both @old and @new can be NULL.
4864 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4865 struct drm_i915_gem_object *new,
4866 unsigned frontbuffer_bits)
4868 /* Control of individual bits within the mask are guarded by
4869 * the owning plane->mutex, i.e. we can never see concurrent
4870 * manipulation of individual bits. But since the bitfield as a whole
4871 * is updated using RMW, we need to use atomics in order to update
4874 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4875 sizeof(atomic_t) * BITS_PER_BYTE);
4878 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4879 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4883 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4884 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4888 /* Allocate a new GEM object and fill it with the supplied data */
4889 struct drm_i915_gem_object *
4890 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4891 const void *data, size_t size)
4893 struct drm_i915_gem_object *obj;
4894 struct sg_table *sg;
4898 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4902 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4906 ret = i915_gem_object_pin_pages(obj);
4911 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4912 obj->mm.dirty = true; /* Backing store is now out of date */
4913 i915_gem_object_unpin_pages(obj);
4915 if (WARN_ON(bytes != size)) {
4916 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4924 i915_gem_object_put(obj);
4925 return ERR_PTR(ret);
4928 struct scatterlist *
4929 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4931 unsigned int *offset)
4933 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4934 struct scatterlist *sg;
4935 unsigned int idx, count;
4938 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4939 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4941 /* As we iterate forward through the sg, we record each entry in a
4942 * radixtree for quick repeated (backwards) lookups. If we have seen
4943 * this index previously, we will have an entry for it.
4945 * Initial lookup is O(N), but this is amortized to O(1) for
4946 * sequential page access (where each new request is consecutive
4947 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4948 * i.e. O(1) with a large constant!
4950 if (n < READ_ONCE(iter->sg_idx))
4953 mutex_lock(&iter->lock);
4955 /* We prefer to reuse the last sg so that repeated lookup of this
4956 * (or the subsequent) sg are fast - comparing against the last
4957 * sg is faster than going through the radixtree.
4962 count = __sg_page_count(sg);
4964 while (idx + count <= n) {
4965 unsigned long exception, i;
4968 /* If we cannot allocate and insert this entry, or the
4969 * individual pages from this range, cancel updating the
4970 * sg_idx so that on this lookup we are forced to linearly
4971 * scan onwards, but on future lookups we will try the
4972 * insertion again (in which case we need to be careful of
4973 * the error return reporting that we have already inserted
4976 ret = radix_tree_insert(&iter->radix, idx, sg);
4977 if (ret && ret != -EEXIST)
4981 RADIX_TREE_EXCEPTIONAL_ENTRY |
4982 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4983 for (i = 1; i < count; i++) {
4984 ret = radix_tree_insert(&iter->radix, idx + i,
4986 if (ret && ret != -EEXIST)
4991 sg = ____sg_next(sg);
4992 count = __sg_page_count(sg);
4999 mutex_unlock(&iter->lock);
5001 if (unlikely(n < idx)) /* insertion completed by another thread */
5004 /* In case we failed to insert the entry into the radixtree, we need
5005 * to look beyond the current sg.
5007 while (idx + count <= n) {
5009 sg = ____sg_next(sg);
5010 count = __sg_page_count(sg);
5019 sg = radix_tree_lookup(&iter->radix, n);
5022 /* If this index is in the middle of multi-page sg entry,
5023 * the radixtree will contain an exceptional entry that points
5024 * to the start of that range. We will return the pointer to
5025 * the base page and the offset of this page within the
5029 if (unlikely(radix_tree_exception(sg))) {
5030 unsigned long base =
5031 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5033 sg = radix_tree_lookup(&iter->radix, base);
5045 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5047 struct scatterlist *sg;
5048 unsigned int offset;
5050 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5052 sg = i915_gem_object_get_sg(obj, n, &offset);
5053 return nth_page(sg_page(sg), offset);
5056 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5058 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5063 page = i915_gem_object_get_page(obj, n);
5065 set_page_dirty(page);
5071 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5074 struct scatterlist *sg;
5075 unsigned int offset;
5077 sg = i915_gem_object_get_sg(obj, n, &offset);
5078 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5081 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5082 #include "selftests/scatterlist.c"
5083 #include "selftests/mock_gem_device.c"
5084 #include "selftests/huge_gem_object.c"
5085 #include "selftests/i915_gem_object.c"
5086 #include "selftests/i915_gem_coherency.c"