Merge tag 'drm-intel-next-2016-10-24' of git://anongit.freedesktop.org/drm-intel...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   u64 size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      u64 size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_pages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size);
923                 i915_gem_object_unpin_pages(obj);
924                 remove_mappable_node(&node);
925         } else {
926                 i915_vma_unpin(vma);
927         }
928 out:
929         return ret;
930 }
931
932 static int
933 i915_gem_shmem_pread(struct drm_device *dev,
934                      struct drm_i915_gem_object *obj,
935                      struct drm_i915_gem_pread *args,
936                      struct drm_file *file)
937 {
938         char __user *user_data;
939         ssize_t remain;
940         loff_t offset;
941         int shmem_page_offset, page_length, ret = 0;
942         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943         int prefaulted = 0;
944         int needs_clflush = 0;
945         struct sg_page_iter sg_iter;
946
947         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948         if (ret)
949                 return ret;
950
951         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952         user_data = u64_to_user_ptr(args->data_ptr);
953         offset = args->offset;
954         remain = args->size;
955
956         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957                          offset >> PAGE_SHIFT) {
958                 struct page *page = sg_page_iter_page(&sg_iter);
959
960                 if (remain <= 0)
961                         break;
962
963                 /* Operation in this page
964                  *
965                  * shmem_page_offset = offset within page in shmem file
966                  * page_length = bytes to copy for this page
967                  */
968                 shmem_page_offset = offset_in_page(offset);
969                 page_length = remain;
970                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971                         page_length = PAGE_SIZE - shmem_page_offset;
972
973                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974                         (page_to_phys(page) & (1 << 17)) != 0;
975
976                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977                                        user_data, page_do_bit17_swizzling,
978                                        needs_clflush);
979                 if (ret == 0)
980                         goto next_page;
981
982                 mutex_unlock(&dev->struct_mutex);
983
984                 if (likely(!i915.prefault_disable) && !prefaulted) {
985                         ret = fault_in_pages_writeable(user_data, remain);
986                         /* Userspace is tricking us, but we've already clobbered
987                          * its pages with the prefault and promised to write the
988                          * data up to the first fault. Hence ignore any errors
989                          * and just continue. */
990                         (void)ret;
991                         prefaulted = 1;
992                 }
993
994                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995                                        user_data, page_do_bit17_swizzling,
996                                        needs_clflush);
997
998                 mutex_lock(&dev->struct_mutex);
999
1000                 if (ret)
1001                         goto out;
1002
1003 next_page:
1004                 remain -= page_length;
1005                 user_data += page_length;
1006                 offset += page_length;
1007         }
1008
1009 out:
1010         i915_gem_obj_finish_shmem_access(obj);
1011
1012         return ret;
1013 }
1014
1015 /**
1016  * Reads data from the object referenced by handle.
1017  * @dev: drm device pointer
1018  * @data: ioctl data blob
1019  * @file: drm file pointer
1020  *
1021  * On error, the contents of *data are undefined.
1022  */
1023 int
1024 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025                      struct drm_file *file)
1026 {
1027         struct drm_i915_gem_pread *args = data;
1028         struct drm_i915_gem_object *obj;
1029         int ret = 0;
1030
1031         if (args->size == 0)
1032                 return 0;
1033
1034         if (!access_ok(VERIFY_WRITE,
1035                        u64_to_user_ptr(args->data_ptr),
1036                        args->size))
1037                 return -EFAULT;
1038
1039         obj = i915_gem_object_lookup(file, args->handle);
1040         if (!obj)
1041                 return -ENOENT;
1042
1043         /* Bounds check source.  */
1044         if (args->offset > obj->base.size ||
1045             args->size > obj->base.size - args->offset) {
1046                 ret = -EINVAL;
1047                 goto err;
1048         }
1049
1050         trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
1052         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053         if (ret)
1054                 goto err;
1055
1056         ret = i915_mutex_lock_interruptible(dev);
1057         if (ret)
1058                 goto err;
1059
1060         ret = i915_gem_shmem_pread(dev, obj, args, file);
1061
1062         /* pread for non shmem backed objects */
1063         if (ret == -EFAULT || ret == -ENODEV) {
1064                 intel_runtime_pm_get(to_i915(dev));
1065                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066                                         args->offset, args->data_ptr);
1067                 intel_runtime_pm_put(to_i915(dev));
1068         }
1069
1070         i915_gem_object_put(obj);
1071         mutex_unlock(&dev->struct_mutex);
1072
1073         return ret;
1074
1075 err:
1076         i915_gem_object_put_unlocked(obj);
1077         return ret;
1078 }
1079
1080 /* This is the fast write path which cannot handle
1081  * page faults in the source data
1082  */
1083
1084 static inline int
1085 fast_user_write(struct io_mapping *mapping,
1086                 loff_t page_base, int page_offset,
1087                 char __user *user_data,
1088                 int length)
1089 {
1090         void __iomem *vaddr_atomic;
1091         void *vaddr;
1092         unsigned long unwritten;
1093
1094         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095         /* We can use the cpu mem copy function because this is X86. */
1096         vaddr = (void __force*)vaddr_atomic + page_offset;
1097         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098                                                       user_data, length);
1099         io_mapping_unmap_atomic(vaddr_atomic);
1100         return unwritten;
1101 }
1102
1103 /**
1104  * This is the fast pwrite path, where we copy the data directly from the
1105  * user into the GTT, uncached.
1106  * @i915: i915 device private data
1107  * @obj: i915 gem object
1108  * @args: pwrite arguments structure
1109  * @file: drm file pointer
1110  */
1111 static int
1112 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113                          struct drm_i915_gem_object *obj,
1114                          struct drm_i915_gem_pwrite *args,
1115                          struct drm_file *file)
1116 {
1117         struct i915_ggtt *ggtt = &i915->ggtt;
1118         struct drm_device *dev = obj->base.dev;
1119         struct i915_vma *vma;
1120         struct drm_mm_node node;
1121         uint64_t remain, offset;
1122         char __user *user_data;
1123         int ret;
1124         bool hit_slow_path = false;
1125
1126         if (i915_gem_object_is_tiled(obj))
1127                 return -EFAULT;
1128
1129         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130                                        PIN_MAPPABLE | PIN_NONBLOCK);
1131         if (!IS_ERR(vma)) {
1132                 node.start = i915_ggtt_offset(vma);
1133                 node.allocated = false;
1134                 ret = i915_vma_put_fence(vma);
1135                 if (ret) {
1136                         i915_vma_unpin(vma);
1137                         vma = ERR_PTR(ret);
1138                 }
1139         }
1140         if (IS_ERR(vma)) {
1141                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142                 if (ret)
1143                         goto out;
1144
1145                 ret = i915_gem_object_get_pages(obj);
1146                 if (ret) {
1147                         remove_mappable_node(&node);
1148                         goto out;
1149                 }
1150
1151                 i915_gem_object_pin_pages(obj);
1152         }
1153
1154         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155         if (ret)
1156                 goto out_unpin;
1157
1158         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159         obj->dirty = true;
1160
1161         user_data = u64_to_user_ptr(args->data_ptr);
1162         offset = args->offset;
1163         remain = args->size;
1164         while (remain) {
1165                 /* Operation in this page
1166                  *
1167                  * page_base = page offset within aperture
1168                  * page_offset = offset within page
1169                  * page_length = bytes to copy for this page
1170                  */
1171                 u32 page_base = node.start;
1172                 unsigned page_offset = offset_in_page(offset);
1173                 unsigned page_length = PAGE_SIZE - page_offset;
1174                 page_length = remain < page_length ? remain : page_length;
1175                 if (node.allocated) {
1176                         wmb(); /* flush the write before we modify the GGTT */
1177                         ggtt->base.insert_page(&ggtt->base,
1178                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179                                                node.start, I915_CACHE_NONE, 0);
1180                         wmb(); /* flush modifications to the GGTT (insert_page) */
1181                 } else {
1182                         page_base += offset & PAGE_MASK;
1183                 }
1184                 /* If we get a fault while copying data, then (presumably) our
1185                  * source page isn't available.  Return the error and we'll
1186                  * retry in the slow path.
1187                  * If the object is non-shmem backed, we retry again with the
1188                  * path that handles page fault.
1189                  */
1190                 if (fast_user_write(&ggtt->mappable, page_base,
1191                                     page_offset, user_data, page_length)) {
1192                         hit_slow_path = true;
1193                         mutex_unlock(&dev->struct_mutex);
1194                         if (slow_user_access(&ggtt->mappable,
1195                                              page_base,
1196                                              page_offset, user_data,
1197                                              page_length, true)) {
1198                                 ret = -EFAULT;
1199                                 mutex_lock(&dev->struct_mutex);
1200                                 goto out_flush;
1201                         }
1202
1203                         mutex_lock(&dev->struct_mutex);
1204                 }
1205
1206                 remain -= page_length;
1207                 user_data += page_length;
1208                 offset += page_length;
1209         }
1210
1211 out_flush:
1212         if (hit_slow_path) {
1213                 if (ret == 0 &&
1214                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215                         /* The user has modified the object whilst we tried
1216                          * reading from it, and we now have no idea what domain
1217                          * the pages should be in. As we have just been touching
1218                          * them directly, flush everything back to the GTT
1219                          * domain.
1220                          */
1221                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222                 }
1223         }
1224
1225         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1226 out_unpin:
1227         if (node.allocated) {
1228                 wmb();
1229                 ggtt->base.clear_range(&ggtt->base,
1230                                        node.start, node.size);
1231                 i915_gem_object_unpin_pages(obj);
1232                 remove_mappable_node(&node);
1233         } else {
1234                 i915_vma_unpin(vma);
1235         }
1236 out:
1237         return ret;
1238 }
1239
1240 /* Per-page copy function for the shmem pwrite fastpath.
1241  * Flushes invalid cachelines before writing to the target if
1242  * needs_clflush_before is set and flushes out any written cachelines after
1243  * writing if needs_clflush is set. */
1244 static int
1245 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1246                   char __user *user_data,
1247                   bool page_do_bit17_swizzling,
1248                   bool needs_clflush_before,
1249                   bool needs_clflush_after)
1250 {
1251         char *vaddr;
1252         int ret;
1253
1254         if (unlikely(page_do_bit17_swizzling))
1255                 return -EINVAL;
1256
1257         vaddr = kmap_atomic(page);
1258         if (needs_clflush_before)
1259                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1260                                        page_length);
1261         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1262                                         user_data, page_length);
1263         if (needs_clflush_after)
1264                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1265                                        page_length);
1266         kunmap_atomic(vaddr);
1267
1268         return ret ? -EFAULT : 0;
1269 }
1270
1271 /* Only difference to the fast-path function is that this can handle bit17
1272  * and uses non-atomic copy and kmap functions. */
1273 static int
1274 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1275                   char __user *user_data,
1276                   bool page_do_bit17_swizzling,
1277                   bool needs_clflush_before,
1278                   bool needs_clflush_after)
1279 {
1280         char *vaddr;
1281         int ret;
1282
1283         vaddr = kmap(page);
1284         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1285                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1286                                              page_length,
1287                                              page_do_bit17_swizzling);
1288         if (page_do_bit17_swizzling)
1289                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1290                                                 user_data,
1291                                                 page_length);
1292         else
1293                 ret = __copy_from_user(vaddr + shmem_page_offset,
1294                                        user_data,
1295                                        page_length);
1296         if (needs_clflush_after)
1297                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1298                                              page_length,
1299                                              page_do_bit17_swizzling);
1300         kunmap(page);
1301
1302         return ret ? -EFAULT : 0;
1303 }
1304
1305 static int
1306 i915_gem_shmem_pwrite(struct drm_device *dev,
1307                       struct drm_i915_gem_object *obj,
1308                       struct drm_i915_gem_pwrite *args,
1309                       struct drm_file *file)
1310 {
1311         ssize_t remain;
1312         loff_t offset;
1313         char __user *user_data;
1314         int shmem_page_offset, page_length, ret = 0;
1315         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1316         int hit_slowpath = 0;
1317         unsigned int needs_clflush;
1318         struct sg_page_iter sg_iter;
1319
1320         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1321         if (ret)
1322                 return ret;
1323
1324         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1325         user_data = u64_to_user_ptr(args->data_ptr);
1326         offset = args->offset;
1327         remain = args->size;
1328
1329         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1330                          offset >> PAGE_SHIFT) {
1331                 struct page *page = sg_page_iter_page(&sg_iter);
1332                 int partial_cacheline_write;
1333
1334                 if (remain <= 0)
1335                         break;
1336
1337                 /* Operation in this page
1338                  *
1339                  * shmem_page_offset = offset within page in shmem file
1340                  * page_length = bytes to copy for this page
1341                  */
1342                 shmem_page_offset = offset_in_page(offset);
1343
1344                 page_length = remain;
1345                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1346                         page_length = PAGE_SIZE - shmem_page_offset;
1347
1348                 /* If we don't overwrite a cacheline completely we need to be
1349                  * careful to have up-to-date data by first clflushing. Don't
1350                  * overcomplicate things and flush the entire patch. */
1351                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1352                         ((shmem_page_offset | page_length)
1353                                 & (boot_cpu_data.x86_clflush_size - 1));
1354
1355                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1356                         (page_to_phys(page) & (1 << 17)) != 0;
1357
1358                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1359                                         user_data, page_do_bit17_swizzling,
1360                                         partial_cacheline_write,
1361                                         needs_clflush & CLFLUSH_AFTER);
1362                 if (ret == 0)
1363                         goto next_page;
1364
1365                 hit_slowpath = 1;
1366                 mutex_unlock(&dev->struct_mutex);
1367                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1368                                         user_data, page_do_bit17_swizzling,
1369                                         partial_cacheline_write,
1370                                         needs_clflush & CLFLUSH_AFTER);
1371
1372                 mutex_lock(&dev->struct_mutex);
1373
1374                 if (ret)
1375                         goto out;
1376
1377 next_page:
1378                 remain -= page_length;
1379                 user_data += page_length;
1380                 offset += page_length;
1381         }
1382
1383 out:
1384         i915_gem_obj_finish_shmem_access(obj);
1385
1386         if (hit_slowpath) {
1387                 /*
1388                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1389                  * cachelines in-line while writing and the object moved
1390                  * out of the cpu write domain while we've dropped the lock.
1391                  */
1392                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1393                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1394                         if (i915_gem_clflush_object(obj, obj->pin_display))
1395                                 needs_clflush |= CLFLUSH_AFTER;
1396                 }
1397         }
1398
1399         if (needs_clflush & CLFLUSH_AFTER)
1400                 i915_gem_chipset_flush(to_i915(dev));
1401
1402         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1403         return ret;
1404 }
1405
1406 /**
1407  * Writes data to the object referenced by handle.
1408  * @dev: drm device
1409  * @data: ioctl data blob
1410  * @file: drm file
1411  *
1412  * On error, the contents of the buffer that were to be modified are undefined.
1413  */
1414 int
1415 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1416                       struct drm_file *file)
1417 {
1418         struct drm_i915_private *dev_priv = to_i915(dev);
1419         struct drm_i915_gem_pwrite *args = data;
1420         struct drm_i915_gem_object *obj;
1421         int ret;
1422
1423         if (args->size == 0)
1424                 return 0;
1425
1426         if (!access_ok(VERIFY_READ,
1427                        u64_to_user_ptr(args->data_ptr),
1428                        args->size))
1429                 return -EFAULT;
1430
1431         if (likely(!i915.prefault_disable)) {
1432                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1433                                                    args->size);
1434                 if (ret)
1435                         return -EFAULT;
1436         }
1437
1438         obj = i915_gem_object_lookup(file, args->handle);
1439         if (!obj)
1440                 return -ENOENT;
1441
1442         /* Bounds check destination. */
1443         if (args->offset > obj->base.size ||
1444             args->size > obj->base.size - args->offset) {
1445                 ret = -EINVAL;
1446                 goto err;
1447         }
1448
1449         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1450
1451         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1452         if (ret)
1453                 goto err;
1454
1455         intel_runtime_pm_get(dev_priv);
1456
1457         ret = i915_mutex_lock_interruptible(dev);
1458         if (ret)
1459                 goto err_rpm;
1460
1461         ret = -EFAULT;
1462         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1463          * it would end up going through the fenced access, and we'll get
1464          * different detiling behavior between reading and writing.
1465          * pread/pwrite currently are reading and writing from the CPU
1466          * perspective, requiring manual detiling by the client.
1467          */
1468         if (!i915_gem_object_has_struct_page(obj) ||
1469             cpu_write_needs_clflush(obj)) {
1470                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1471                 /* Note that the gtt paths might fail with non-page-backed user
1472                  * pointers (e.g. gtt mappings when moving data between
1473                  * textures). Fallback to the shmem path in that case. */
1474         }
1475
1476         if (ret == -EFAULT || ret == -ENOSPC) {
1477                 if (obj->phys_handle)
1478                         ret = i915_gem_phys_pwrite(obj, args, file);
1479                 else
1480                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1481         }
1482
1483         i915_gem_object_put(obj);
1484         mutex_unlock(&dev->struct_mutex);
1485         intel_runtime_pm_put(dev_priv);
1486
1487         return ret;
1488
1489 err_rpm:
1490         intel_runtime_pm_put(dev_priv);
1491 err:
1492         i915_gem_object_put_unlocked(obj);
1493         return ret;
1494 }
1495
1496 static inline enum fb_op_origin
1497 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1498 {
1499         return (domain == I915_GEM_DOMAIN_GTT ?
1500                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1501 }
1502
1503 /**
1504  * Called when user space prepares to use an object with the CPU, either
1505  * through the mmap ioctl's mapping or a GTT mapping.
1506  * @dev: drm device
1507  * @data: ioctl data blob
1508  * @file: drm file
1509  */
1510 int
1511 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1512                           struct drm_file *file)
1513 {
1514         struct drm_i915_gem_set_domain *args = data;
1515         struct drm_i915_gem_object *obj;
1516         uint32_t read_domains = args->read_domains;
1517         uint32_t write_domain = args->write_domain;
1518         int ret;
1519
1520         /* Only handle setting domains to types used by the CPU. */
1521         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1522                 return -EINVAL;
1523
1524         /* Having something in the write domain implies it's in the read
1525          * domain, and only that read domain.  Enforce that in the request.
1526          */
1527         if (write_domain != 0 && read_domains != write_domain)
1528                 return -EINVAL;
1529
1530         obj = i915_gem_object_lookup(file, args->handle);
1531         if (!obj)
1532                 return -ENOENT;
1533
1534         /* Try to flush the object off the GPU without holding the lock.
1535          * We will repeat the flush holding the lock in the normal manner
1536          * to catch cases where we are gazumped.
1537          */
1538         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1539         if (ret)
1540                 goto err;
1541
1542         ret = i915_mutex_lock_interruptible(dev);
1543         if (ret)
1544                 goto err;
1545
1546         if (read_domains & I915_GEM_DOMAIN_GTT)
1547                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1548         else
1549                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1550
1551         if (write_domain != 0)
1552                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1553
1554         i915_gem_object_put(obj);
1555         mutex_unlock(&dev->struct_mutex);
1556         return ret;
1557
1558 err:
1559         i915_gem_object_put_unlocked(obj);
1560         return ret;
1561 }
1562
1563 /**
1564  * Called when user space has done writes to this buffer
1565  * @dev: drm device
1566  * @data: ioctl data blob
1567  * @file: drm file
1568  */
1569 int
1570 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1571                          struct drm_file *file)
1572 {
1573         struct drm_i915_gem_sw_finish *args = data;
1574         struct drm_i915_gem_object *obj;
1575         int err = 0;
1576
1577         obj = i915_gem_object_lookup(file, args->handle);
1578         if (!obj)
1579                 return -ENOENT;
1580
1581         /* Pinned buffers may be scanout, so flush the cache */
1582         if (READ_ONCE(obj->pin_display)) {
1583                 err = i915_mutex_lock_interruptible(dev);
1584                 if (!err) {
1585                         i915_gem_object_flush_cpu_write_domain(obj);
1586                         mutex_unlock(&dev->struct_mutex);
1587                 }
1588         }
1589
1590         i915_gem_object_put_unlocked(obj);
1591         return err;
1592 }
1593
1594 /**
1595  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1596  *                       it is mapped to.
1597  * @dev: drm device
1598  * @data: ioctl data blob
1599  * @file: drm file
1600  *
1601  * While the mapping holds a reference on the contents of the object, it doesn't
1602  * imply a ref on the object itself.
1603  *
1604  * IMPORTANT:
1605  *
1606  * DRM driver writers who look a this function as an example for how to do GEM
1607  * mmap support, please don't implement mmap support like here. The modern way
1608  * to implement DRM mmap support is with an mmap offset ioctl (like
1609  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1610  * That way debug tooling like valgrind will understand what's going on, hiding
1611  * the mmap call in a driver private ioctl will break that. The i915 driver only
1612  * does cpu mmaps this way because we didn't know better.
1613  */
1614 int
1615 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1616                     struct drm_file *file)
1617 {
1618         struct drm_i915_gem_mmap *args = data;
1619         struct drm_i915_gem_object *obj;
1620         unsigned long addr;
1621
1622         if (args->flags & ~(I915_MMAP_WC))
1623                 return -EINVAL;
1624
1625         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1626                 return -ENODEV;
1627
1628         obj = i915_gem_object_lookup(file, args->handle);
1629         if (!obj)
1630                 return -ENOENT;
1631
1632         /* prime objects have no backing filp to GEM mmap
1633          * pages from.
1634          */
1635         if (!obj->base.filp) {
1636                 i915_gem_object_put_unlocked(obj);
1637                 return -EINVAL;
1638         }
1639
1640         addr = vm_mmap(obj->base.filp, 0, args->size,
1641                        PROT_READ | PROT_WRITE, MAP_SHARED,
1642                        args->offset);
1643         if (args->flags & I915_MMAP_WC) {
1644                 struct mm_struct *mm = current->mm;
1645                 struct vm_area_struct *vma;
1646
1647                 if (down_write_killable(&mm->mmap_sem)) {
1648                         i915_gem_object_put_unlocked(obj);
1649                         return -EINTR;
1650                 }
1651                 vma = find_vma(mm, addr);
1652                 if (vma)
1653                         vma->vm_page_prot =
1654                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1655                 else
1656                         addr = -ENOMEM;
1657                 up_write(&mm->mmap_sem);
1658
1659                 /* This may race, but that's ok, it only gets set */
1660                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1661         }
1662         i915_gem_object_put_unlocked(obj);
1663         if (IS_ERR((void *)addr))
1664                 return addr;
1665
1666         args->addr_ptr = (uint64_t) addr;
1667
1668         return 0;
1669 }
1670
1671 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1672 {
1673         u64 size;
1674
1675         size = i915_gem_object_get_stride(obj);
1676         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1677
1678         return size >> PAGE_SHIFT;
1679 }
1680
1681 /**
1682  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1683  *
1684  * A history of the GTT mmap interface:
1685  *
1686  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1687  *     aligned and suitable for fencing, and still fit into the available
1688  *     mappable space left by the pinned display objects. A classic problem
1689  *     we called the page-fault-of-doom where we would ping-pong between
1690  *     two objects that could not fit inside the GTT and so the memcpy
1691  *     would page one object in at the expense of the other between every
1692  *     single byte.
1693  *
1694  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1695  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1696  *     object is too large for the available space (or simply too large
1697  *     for the mappable aperture!), a view is created instead and faulted
1698  *     into userspace. (This view is aligned and sized appropriately for
1699  *     fenced access.)
1700  *
1701  * Restrictions:
1702  *
1703  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1704  *    hangs on some architectures, corruption on others. An attempt to service
1705  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1706  *
1707  *  * the object must be able to fit into RAM (physical memory, though no
1708  *    limited to the mappable aperture).
1709  *
1710  *
1711  * Caveats:
1712  *
1713  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1714  *    all data to system memory. Subsequent access will not be synchronized.
1715  *
1716  *  * all mappings are revoked on runtime device suspend.
1717  *
1718  *  * there are only 8, 16 or 32 fence registers to share between all users
1719  *    (older machines require fence register for display and blitter access
1720  *    as well). Contention of the fence registers will cause the previous users
1721  *    to be unmapped and any new access will generate new page faults.
1722  *
1723  *  * running out of memory while servicing a fault may generate a SIGBUS,
1724  *    rather than the expected SIGSEGV.
1725  */
1726 int i915_gem_mmap_gtt_version(void)
1727 {
1728         return 1;
1729 }
1730
1731 /**
1732  * i915_gem_fault - fault a page into the GTT
1733  * @area: CPU VMA in question
1734  * @vmf: fault info
1735  *
1736  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1737  * from userspace.  The fault handler takes care of binding the object to
1738  * the GTT (if needed), allocating and programming a fence register (again,
1739  * only if needed based on whether the old reg is still valid or the object
1740  * is tiled) and inserting a new PTE into the faulting process.
1741  *
1742  * Note that the faulting process may involve evicting existing objects
1743  * from the GTT and/or fence registers to make room.  So performance may
1744  * suffer if the GTT working set is large or there are few fence registers
1745  * left.
1746  *
1747  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1748  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1749  */
1750 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1751 {
1752 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1753         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1754         struct drm_device *dev = obj->base.dev;
1755         struct drm_i915_private *dev_priv = to_i915(dev);
1756         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1757         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1758         struct i915_vma *vma;
1759         pgoff_t page_offset;
1760         unsigned int flags;
1761         int ret;
1762
1763         /* We don't use vmf->pgoff since that has the fake offset */
1764         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1765                 PAGE_SHIFT;
1766
1767         trace_i915_gem_object_fault(obj, page_offset, true, write);
1768
1769         /* Try to flush the object off the GPU first without holding the lock.
1770          * Upon acquiring the lock, we will perform our sanity checks and then
1771          * repeat the flush holding the lock in the normal manner to catch cases
1772          * where we are gazumped.
1773          */
1774         ret = __unsafe_wait_rendering(obj, NULL, !write);
1775         if (ret)
1776                 goto err;
1777
1778         intel_runtime_pm_get(dev_priv);
1779
1780         ret = i915_mutex_lock_interruptible(dev);
1781         if (ret)
1782                 goto err_rpm;
1783
1784         /* Access to snoopable pages through the GTT is incoherent. */
1785         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1786                 ret = -EFAULT;
1787                 goto err_unlock;
1788         }
1789
1790         /* If the object is smaller than a couple of partial vma, it is
1791          * not worth only creating a single partial vma - we may as well
1792          * clear enough space for the full object.
1793          */
1794         flags = PIN_MAPPABLE;
1795         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1796                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1797
1798         /* Now pin it into the GTT as needed */
1799         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1800         if (IS_ERR(vma)) {
1801                 struct i915_ggtt_view view;
1802                 unsigned int chunk_size;
1803
1804                 /* Use a partial view if it is bigger than available space */
1805                 chunk_size = MIN_CHUNK_PAGES;
1806                 if (i915_gem_object_is_tiled(obj))
1807                         chunk_size = max(chunk_size, tile_row_pages(obj));
1808
1809                 memset(&view, 0, sizeof(view));
1810                 view.type = I915_GGTT_VIEW_PARTIAL;
1811                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812                 view.params.partial.size =
1813                         min_t(unsigned int, chunk_size,
1814                               vma_pages(area) - view.params.partial.offset);
1815
1816                 /* If the partial covers the entire object, just create a
1817                  * normal VMA.
1818                  */
1819                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1820                         view.type = I915_GGTT_VIEW_NORMAL;
1821
1822                 /* Userspace is now writing through an untracked VMA, abandon
1823                  * all hope that the hardware is able to track future writes.
1824                  */
1825                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1826
1827                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1828         }
1829         if (IS_ERR(vma)) {
1830                 ret = PTR_ERR(vma);
1831                 goto err_unlock;
1832         }
1833
1834         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1835         if (ret)
1836                 goto err_unpin;
1837
1838         ret = i915_vma_get_fence(vma);
1839         if (ret)
1840                 goto err_unpin;
1841
1842         /* Finally, remap it using the new GTT offset */
1843         ret = remap_io_mapping(area,
1844                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1845                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1846                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1847                                &ggtt->mappable);
1848         if (ret)
1849                 goto err_unpin;
1850
1851         obj->fault_mappable = true;
1852 err_unpin:
1853         __i915_vma_unpin(vma);
1854 err_unlock:
1855         mutex_unlock(&dev->struct_mutex);
1856 err_rpm:
1857         intel_runtime_pm_put(dev_priv);
1858 err:
1859         switch (ret) {
1860         case -EIO:
1861                 /*
1862                  * We eat errors when the gpu is terminally wedged to avoid
1863                  * userspace unduly crashing (gl has no provisions for mmaps to
1864                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1865                  * and so needs to be reported.
1866                  */
1867                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1868                         ret = VM_FAULT_SIGBUS;
1869                         break;
1870                 }
1871         case -EAGAIN:
1872                 /*
1873                  * EAGAIN means the gpu is hung and we'll wait for the error
1874                  * handler to reset everything when re-faulting in
1875                  * i915_mutex_lock_interruptible.
1876                  */
1877         case 0:
1878         case -ERESTARTSYS:
1879         case -EINTR:
1880         case -EBUSY:
1881                 /*
1882                  * EBUSY is ok: this just means that another thread
1883                  * already did the job.
1884                  */
1885                 ret = VM_FAULT_NOPAGE;
1886                 break;
1887         case -ENOMEM:
1888                 ret = VM_FAULT_OOM;
1889                 break;
1890         case -ENOSPC:
1891         case -EFAULT:
1892                 ret = VM_FAULT_SIGBUS;
1893                 break;
1894         default:
1895                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1896                 ret = VM_FAULT_SIGBUS;
1897                 break;
1898         }
1899         return ret;
1900 }
1901
1902 /**
1903  * i915_gem_release_mmap - remove physical page mappings
1904  * @obj: obj in question
1905  *
1906  * Preserve the reservation of the mmapping with the DRM core code, but
1907  * relinquish ownership of the pages back to the system.
1908  *
1909  * It is vital that we remove the page mapping if we have mapped a tiled
1910  * object through the GTT and then lose the fence register due to
1911  * resource pressure. Similarly if the object has been moved out of the
1912  * aperture, than pages mapped into userspace must be revoked. Removing the
1913  * mapping will then trigger a page fault on the next user access, allowing
1914  * fixup by i915_gem_fault().
1915  */
1916 void
1917 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1918 {
1919         /* Serialisation between user GTT access and our code depends upon
1920          * revoking the CPU's PTE whilst the mutex is held. The next user
1921          * pagefault then has to wait until we release the mutex.
1922          */
1923         lockdep_assert_held(&obj->base.dev->struct_mutex);
1924
1925         if (!obj->fault_mappable)
1926                 return;
1927
1928         drm_vma_node_unmap(&obj->base.vma_node,
1929                            obj->base.dev->anon_inode->i_mapping);
1930
1931         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1932          * memory transactions from userspace before we return. The TLB
1933          * flushing implied above by changing the PTE above *should* be
1934          * sufficient, an extra barrier here just provides us with a bit
1935          * of paranoid documentation about our requirement to serialise
1936          * memory writes before touching registers / GSM.
1937          */
1938         wmb();
1939
1940         obj->fault_mappable = false;
1941 }
1942
1943 void
1944 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1945 {
1946         struct drm_i915_gem_object *obj;
1947
1948         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1949                 i915_gem_release_mmap(obj);
1950 }
1951
1952 /**
1953  * i915_gem_get_ggtt_size - return required global GTT size for an object
1954  * @dev_priv: i915 device
1955  * @size: object size
1956  * @tiling_mode: tiling mode
1957  *
1958  * Return the required global GTT size for an object, taking into account
1959  * potential fence register mapping.
1960  */
1961 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1962                            u64 size, int tiling_mode)
1963 {
1964         u64 ggtt_size;
1965
1966         GEM_BUG_ON(size == 0);
1967
1968         if (INTEL_GEN(dev_priv) >= 4 ||
1969             tiling_mode == I915_TILING_NONE)
1970                 return size;
1971
1972         /* Previous chips need a power-of-two fence region when tiling */
1973         if (IS_GEN3(dev_priv))
1974                 ggtt_size = 1024*1024;
1975         else
1976                 ggtt_size = 512*1024;
1977
1978         while (ggtt_size < size)
1979                 ggtt_size <<= 1;
1980
1981         return ggtt_size;
1982 }
1983
1984 /**
1985  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1986  * @dev_priv: i915 device
1987  * @size: object size
1988  * @tiling_mode: tiling mode
1989  * @fenced: is fenced alignment required or not
1990  *
1991  * Return the required global GTT alignment for an object, taking into account
1992  * potential fence register mapping.
1993  */
1994 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1995                                 int tiling_mode, bool fenced)
1996 {
1997         GEM_BUG_ON(size == 0);
1998
1999         /*
2000          * Minimum alignment is 4k (GTT page size), but might be greater
2001          * if a fence register is needed for the object.
2002          */
2003         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2004             tiling_mode == I915_TILING_NONE)
2005                 return 4096;
2006
2007         /*
2008          * Previous chips need to be aligned to the size of the smallest
2009          * fence register that can contain the object.
2010          */
2011         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2012 }
2013
2014 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2015 {
2016         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2017         int err;
2018
2019         err = drm_gem_create_mmap_offset(&obj->base);
2020         if (!err)
2021                 return 0;
2022
2023         /* We can idle the GPU locklessly to flush stale objects, but in order
2024          * to claim that space for ourselves, we need to take the big
2025          * struct_mutex to free the requests+objects and allocate our slot.
2026          */
2027         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2028         if (err)
2029                 return err;
2030
2031         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2032         if (!err) {
2033                 i915_gem_retire_requests(dev_priv);
2034                 err = drm_gem_create_mmap_offset(&obj->base);
2035                 mutex_unlock(&dev_priv->drm.struct_mutex);
2036         }
2037
2038         return err;
2039 }
2040
2041 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2042 {
2043         drm_gem_free_mmap_offset(&obj->base);
2044 }
2045
2046 int
2047 i915_gem_mmap_gtt(struct drm_file *file,
2048                   struct drm_device *dev,
2049                   uint32_t handle,
2050                   uint64_t *offset)
2051 {
2052         struct drm_i915_gem_object *obj;
2053         int ret;
2054
2055         obj = i915_gem_object_lookup(file, handle);
2056         if (!obj)
2057                 return -ENOENT;
2058
2059         ret = i915_gem_object_create_mmap_offset(obj);
2060         if (ret == 0)
2061                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2062
2063         i915_gem_object_put_unlocked(obj);
2064         return ret;
2065 }
2066
2067 /**
2068  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2069  * @dev: DRM device
2070  * @data: GTT mapping ioctl data
2071  * @file: GEM object info
2072  *
2073  * Simply returns the fake offset to userspace so it can mmap it.
2074  * The mmap call will end up in drm_gem_mmap(), which will set things
2075  * up so we can get faults in the handler above.
2076  *
2077  * The fault handler will take care of binding the object into the GTT
2078  * (since it may have been evicted to make room for something), allocating
2079  * a fence register, and mapping the appropriate aperture address into
2080  * userspace.
2081  */
2082 int
2083 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2084                         struct drm_file *file)
2085 {
2086         struct drm_i915_gem_mmap_gtt *args = data;
2087
2088         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2089 }
2090
2091 /* Immediately discard the backing storage */
2092 static void
2093 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2094 {
2095         i915_gem_object_free_mmap_offset(obj);
2096
2097         if (obj->base.filp == NULL)
2098                 return;
2099
2100         /* Our goal here is to return as much of the memory as
2101          * is possible back to the system as we are called from OOM.
2102          * To do this we must instruct the shmfs to drop all of its
2103          * backing pages, *now*.
2104          */
2105         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2106         obj->madv = __I915_MADV_PURGED;
2107 }
2108
2109 /* Try to discard unwanted pages */
2110 static void
2111 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2112 {
2113         struct address_space *mapping;
2114
2115         switch (obj->madv) {
2116         case I915_MADV_DONTNEED:
2117                 i915_gem_object_truncate(obj);
2118         case __I915_MADV_PURGED:
2119                 return;
2120         }
2121
2122         if (obj->base.filp == NULL)
2123                 return;
2124
2125         mapping = obj->base.filp->f_mapping,
2126         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2127 }
2128
2129 static void
2130 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2131 {
2132         struct sgt_iter sgt_iter;
2133         struct page *page;
2134         int ret;
2135
2136         BUG_ON(obj->madv == __I915_MADV_PURGED);
2137
2138         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2139         if (WARN_ON(ret)) {
2140                 /* In the event of a disaster, abandon all caches and
2141                  * hope for the best.
2142                  */
2143                 i915_gem_clflush_object(obj, true);
2144                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2145         }
2146
2147         i915_gem_gtt_finish_object(obj);
2148
2149         if (i915_gem_object_needs_bit17_swizzle(obj))
2150                 i915_gem_object_save_bit_17_swizzle(obj);
2151
2152         if (obj->madv == I915_MADV_DONTNEED)
2153                 obj->dirty = 0;
2154
2155         for_each_sgt_page(page, sgt_iter, obj->pages) {
2156                 if (obj->dirty)
2157                         set_page_dirty(page);
2158
2159                 if (obj->madv == I915_MADV_WILLNEED)
2160                         mark_page_accessed(page);
2161
2162                 put_page(page);
2163         }
2164         obj->dirty = 0;
2165
2166         sg_free_table(obj->pages);
2167         kfree(obj->pages);
2168 }
2169
2170 int
2171 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2172 {
2173         const struct drm_i915_gem_object_ops *ops = obj->ops;
2174
2175         if (obj->pages == NULL)
2176                 return 0;
2177
2178         if (obj->pages_pin_count)
2179                 return -EBUSY;
2180
2181         GEM_BUG_ON(obj->bind_count);
2182
2183         /* ->put_pages might need to allocate memory for the bit17 swizzle
2184          * array, hence protect them from being reaped by removing them from gtt
2185          * lists early. */
2186         list_del(&obj->global_list);
2187
2188         if (obj->mapping) {
2189                 void *ptr;
2190
2191                 ptr = ptr_mask_bits(obj->mapping);
2192                 if (is_vmalloc_addr(ptr))
2193                         vunmap(ptr);
2194                 else
2195                         kunmap(kmap_to_page(ptr));
2196
2197                 obj->mapping = NULL;
2198         }
2199
2200         ops->put_pages(obj);
2201         obj->pages = NULL;
2202
2203         i915_gem_object_invalidate(obj);
2204
2205         return 0;
2206 }
2207
2208 static unsigned int swiotlb_max_size(void)
2209 {
2210 #if IS_ENABLED(CONFIG_SWIOTLB)
2211         return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2212 #else
2213         return 0;
2214 #endif
2215 }
2216
2217 static int
2218 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2219 {
2220         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2221         int page_count, i;
2222         struct address_space *mapping;
2223         struct sg_table *st;
2224         struct scatterlist *sg;
2225         struct sgt_iter sgt_iter;
2226         struct page *page;
2227         unsigned long last_pfn = 0;     /* suppress gcc warning */
2228         unsigned int max_segment;
2229         int ret;
2230         gfp_t gfp;
2231
2232         /* Assert that the object is not currently in any GPU domain. As it
2233          * wasn't in the GTT, there shouldn't be any way it could have been in
2234          * a GPU cache
2235          */
2236         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2237         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2238
2239         max_segment = swiotlb_max_size();
2240         if (!max_segment)
2241                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2242
2243         st = kmalloc(sizeof(*st), GFP_KERNEL);
2244         if (st == NULL)
2245                 return -ENOMEM;
2246
2247         page_count = obj->base.size / PAGE_SIZE;
2248         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2249                 kfree(st);
2250                 return -ENOMEM;
2251         }
2252
2253         /* Get the list of pages out of our struct file.  They'll be pinned
2254          * at this point until we release them.
2255          *
2256          * Fail silently without starting the shrinker
2257          */
2258         mapping = obj->base.filp->f_mapping;
2259         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2260         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2261         sg = st->sgl;
2262         st->nents = 0;
2263         for (i = 0; i < page_count; i++) {
2264                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2265                 if (IS_ERR(page)) {
2266                         i915_gem_shrink(dev_priv,
2267                                         page_count,
2268                                         I915_SHRINK_BOUND |
2269                                         I915_SHRINK_UNBOUND |
2270                                         I915_SHRINK_PURGEABLE);
2271                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2272                 }
2273                 if (IS_ERR(page)) {
2274                         /* We've tried hard to allocate the memory by reaping
2275                          * our own buffer, now let the real VM do its job and
2276                          * go down in flames if truly OOM.
2277                          */
2278                         page = shmem_read_mapping_page(mapping, i);
2279                         if (IS_ERR(page)) {
2280                                 ret = PTR_ERR(page);
2281                                 goto err_pages;
2282                         }
2283                 }
2284                 if (!i ||
2285                     sg->length >= max_segment ||
2286                     page_to_pfn(page) != last_pfn + 1) {
2287                         if (i)
2288                                 sg = sg_next(sg);
2289                         st->nents++;
2290                         sg_set_page(sg, page, PAGE_SIZE, 0);
2291                 } else {
2292                         sg->length += PAGE_SIZE;
2293                 }
2294                 last_pfn = page_to_pfn(page);
2295
2296                 /* Check that the i965g/gm workaround works. */
2297                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2298         }
2299         if (sg) /* loop terminated early; short sg table */
2300                 sg_mark_end(sg);
2301         obj->pages = st;
2302
2303         ret = i915_gem_gtt_prepare_object(obj);
2304         if (ret)
2305                 goto err_pages;
2306
2307         if (i915_gem_object_needs_bit17_swizzle(obj))
2308                 i915_gem_object_do_bit_17_swizzle(obj);
2309
2310         if (i915_gem_object_is_tiled(obj) &&
2311             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2312                 i915_gem_object_pin_pages(obj);
2313
2314         return 0;
2315
2316 err_pages:
2317         sg_mark_end(sg);
2318         for_each_sgt_page(page, sgt_iter, st)
2319                 put_page(page);
2320         sg_free_table(st);
2321         kfree(st);
2322
2323         /* shmemfs first checks if there is enough memory to allocate the page
2324          * and reports ENOSPC should there be insufficient, along with the usual
2325          * ENOMEM for a genuine allocation failure.
2326          *
2327          * We use ENOSPC in our driver to mean that we have run out of aperture
2328          * space and so want to translate the error from shmemfs back to our
2329          * usual understanding of ENOMEM.
2330          */
2331         if (ret == -ENOSPC)
2332                 ret = -ENOMEM;
2333
2334         return ret;
2335 }
2336
2337 /* Ensure that the associated pages are gathered from the backing storage
2338  * and pinned into our object. i915_gem_object_get_pages() may be called
2339  * multiple times before they are released by a single call to
2340  * i915_gem_object_put_pages() - once the pages are no longer referenced
2341  * either as a result of memory pressure (reaping pages under the shrinker)
2342  * or as the object is itself released.
2343  */
2344 int
2345 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2346 {
2347         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2348         const struct drm_i915_gem_object_ops *ops = obj->ops;
2349         int ret;
2350
2351         if (obj->pages)
2352                 return 0;
2353
2354         if (obj->madv != I915_MADV_WILLNEED) {
2355                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2356                 return -EFAULT;
2357         }
2358
2359         BUG_ON(obj->pages_pin_count);
2360
2361         ret = ops->get_pages(obj);
2362         if (ret)
2363                 return ret;
2364
2365         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2366
2367         obj->get_page.sg = obj->pages->sgl;
2368         obj->get_page.last = 0;
2369
2370         return 0;
2371 }
2372
2373 /* The 'mapping' part of i915_gem_object_pin_map() below */
2374 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2375                                  enum i915_map_type type)
2376 {
2377         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2378         struct sg_table *sgt = obj->pages;
2379         struct sgt_iter sgt_iter;
2380         struct page *page;
2381         struct page *stack_pages[32];
2382         struct page **pages = stack_pages;
2383         unsigned long i = 0;
2384         pgprot_t pgprot;
2385         void *addr;
2386
2387         /* A single page can always be kmapped */
2388         if (n_pages == 1 && type == I915_MAP_WB)
2389                 return kmap(sg_page(sgt->sgl));
2390
2391         if (n_pages > ARRAY_SIZE(stack_pages)) {
2392                 /* Too big for stack -- allocate temporary array instead */
2393                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2394                 if (!pages)
2395                         return NULL;
2396         }
2397
2398         for_each_sgt_page(page, sgt_iter, sgt)
2399                 pages[i++] = page;
2400
2401         /* Check that we have the expected number of pages */
2402         GEM_BUG_ON(i != n_pages);
2403
2404         switch (type) {
2405         case I915_MAP_WB:
2406                 pgprot = PAGE_KERNEL;
2407                 break;
2408         case I915_MAP_WC:
2409                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2410                 break;
2411         }
2412         addr = vmap(pages, n_pages, 0, pgprot);
2413
2414         if (pages != stack_pages)
2415                 drm_free_large(pages);
2416
2417         return addr;
2418 }
2419
2420 /* get, pin, and map the pages of the object into kernel space */
2421 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2422                               enum i915_map_type type)
2423 {
2424         enum i915_map_type has_type;
2425         bool pinned;
2426         void *ptr;
2427         int ret;
2428
2429         lockdep_assert_held(&obj->base.dev->struct_mutex);
2430         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2431
2432         ret = i915_gem_object_get_pages(obj);
2433         if (ret)
2434                 return ERR_PTR(ret);
2435
2436         i915_gem_object_pin_pages(obj);
2437         pinned = obj->pages_pin_count > 1;
2438
2439         ptr = ptr_unpack_bits(obj->mapping, has_type);
2440         if (ptr && has_type != type) {
2441                 if (pinned) {
2442                         ret = -EBUSY;
2443                         goto err;
2444                 }
2445
2446                 if (is_vmalloc_addr(ptr))
2447                         vunmap(ptr);
2448                 else
2449                         kunmap(kmap_to_page(ptr));
2450
2451                 ptr = obj->mapping = NULL;
2452         }
2453
2454         if (!ptr) {
2455                 ptr = i915_gem_object_map(obj, type);
2456                 if (!ptr) {
2457                         ret = -ENOMEM;
2458                         goto err;
2459                 }
2460
2461                 obj->mapping = ptr_pack_bits(ptr, type);
2462         }
2463
2464         return ptr;
2465
2466 err:
2467         i915_gem_object_unpin_pages(obj);
2468         return ERR_PTR(ret);
2469 }
2470
2471 static void
2472 i915_gem_object_retire__write(struct i915_gem_active *active,
2473                               struct drm_i915_gem_request *request)
2474 {
2475         struct drm_i915_gem_object *obj =
2476                 container_of(active, struct drm_i915_gem_object, last_write);
2477
2478         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2479 }
2480
2481 static void
2482 i915_gem_object_retire__read(struct i915_gem_active *active,
2483                              struct drm_i915_gem_request *request)
2484 {
2485         int idx = request->engine->id;
2486         struct drm_i915_gem_object *obj =
2487                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2488
2489         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2490
2491         i915_gem_object_clear_active(obj, idx);
2492         if (i915_gem_object_is_active(obj))
2493                 return;
2494
2495         /* Bump our place on the bound list to keep it roughly in LRU order
2496          * so that we don't steal from recently used but inactive objects
2497          * (unless we are forced to ofc!)
2498          */
2499         if (obj->bind_count)
2500                 list_move_tail(&obj->global_list,
2501                                &request->i915->mm.bound_list);
2502
2503         i915_gem_object_put(obj);
2504 }
2505
2506 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2507 {
2508         unsigned long elapsed;
2509
2510         if (ctx->hang_stats.banned)
2511                 return true;
2512
2513         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2514         if (ctx->hang_stats.ban_period_seconds &&
2515             elapsed <= ctx->hang_stats.ban_period_seconds) {
2516                 DRM_DEBUG("context hanging too fast, banning!\n");
2517                 return true;
2518         }
2519
2520         return false;
2521 }
2522
2523 static void i915_set_reset_status(struct i915_gem_context *ctx,
2524                                   const bool guilty)
2525 {
2526         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2527
2528         if (guilty) {
2529                 hs->banned = i915_context_is_banned(ctx);
2530                 hs->batch_active++;
2531                 hs->guilty_ts = get_seconds();
2532         } else {
2533                 hs->batch_pending++;
2534         }
2535 }
2536
2537 struct drm_i915_gem_request *
2538 i915_gem_find_active_request(struct intel_engine_cs *engine)
2539 {
2540         struct drm_i915_gem_request *request;
2541
2542         /* We are called by the error capture and reset at a random
2543          * point in time. In particular, note that neither is crucially
2544          * ordered with an interrupt. After a hang, the GPU is dead and we
2545          * assume that no more writes can happen (we waited long enough for
2546          * all writes that were in transaction to be flushed) - adding an
2547          * extra delay for a recent interrupt is pointless. Hence, we do
2548          * not need an engine->irq_seqno_barrier() before the seqno reads.
2549          */
2550         list_for_each_entry(request, &engine->request_list, link) {
2551                 if (i915_gem_request_completed(request))
2552                         continue;
2553
2554                 if (!i915_sw_fence_done(&request->submit))
2555                         break;
2556
2557                 return request;
2558         }
2559
2560         return NULL;
2561 }
2562
2563 static void reset_request(struct drm_i915_gem_request *request)
2564 {
2565         void *vaddr = request->ring->vaddr;
2566         u32 head;
2567
2568         /* As this request likely depends on state from the lost
2569          * context, clear out all the user operations leaving the
2570          * breadcrumb at the end (so we get the fence notifications).
2571          */
2572         head = request->head;
2573         if (request->postfix < head) {
2574                 memset(vaddr + head, 0, request->ring->size - head);
2575                 head = 0;
2576         }
2577         memset(vaddr + head, 0, request->postfix - head);
2578 }
2579
2580 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2581 {
2582         struct drm_i915_gem_request *request;
2583         struct i915_gem_context *incomplete_ctx;
2584         bool ring_hung;
2585
2586         if (engine->irq_seqno_barrier)
2587                 engine->irq_seqno_barrier(engine);
2588
2589         request = i915_gem_find_active_request(engine);
2590         if (!request)
2591                 return;
2592
2593         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2594         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2595                 ring_hung = false;
2596
2597         i915_set_reset_status(request->ctx, ring_hung);
2598         if (!ring_hung)
2599                 return;
2600
2601         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2602                          engine->name, request->fence.seqno);
2603
2604         /* Setup the CS to resume from the breadcrumb of the hung request */
2605         engine->reset_hw(engine, request);
2606
2607         /* Users of the default context do not rely on logical state
2608          * preserved between batches. They have to emit full state on
2609          * every batch and so it is safe to execute queued requests following
2610          * the hang.
2611          *
2612          * Other contexts preserve state, now corrupt. We want to skip all
2613          * queued requests that reference the corrupt context.
2614          */
2615         incomplete_ctx = request->ctx;
2616         if (i915_gem_context_is_default(incomplete_ctx))
2617                 return;
2618
2619         list_for_each_entry_continue(request, &engine->request_list, link)
2620                 if (request->ctx == incomplete_ctx)
2621                         reset_request(request);
2622 }
2623
2624 void i915_gem_reset(struct drm_i915_private *dev_priv)
2625 {
2626         struct intel_engine_cs *engine;
2627         enum intel_engine_id id;
2628
2629         i915_gem_retire_requests(dev_priv);
2630
2631         for_each_engine(engine, dev_priv, id)
2632                 i915_gem_reset_engine(engine);
2633
2634         i915_gem_restore_fences(&dev_priv->drm);
2635
2636         if (dev_priv->gt.awake) {
2637                 intel_sanitize_gt_powersave(dev_priv);
2638                 intel_enable_gt_powersave(dev_priv);
2639                 if (INTEL_GEN(dev_priv) >= 6)
2640                         gen6_rps_busy(dev_priv);
2641         }
2642 }
2643
2644 static void nop_submit_request(struct drm_i915_gem_request *request)
2645 {
2646 }
2647
2648 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2649 {
2650         engine->submit_request = nop_submit_request;
2651
2652         /* Mark all pending requests as complete so that any concurrent
2653          * (lockless) lookup doesn't try and wait upon the request as we
2654          * reset it.
2655          */
2656         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2657
2658         /*
2659          * Clear the execlists queue up before freeing the requests, as those
2660          * are the ones that keep the context and ringbuffer backing objects
2661          * pinned in place.
2662          */
2663
2664         if (i915.enable_execlists) {
2665                 spin_lock(&engine->execlist_lock);
2666                 INIT_LIST_HEAD(&engine->execlist_queue);
2667                 i915_gem_request_put(engine->execlist_port[0].request);
2668                 i915_gem_request_put(engine->execlist_port[1].request);
2669                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2670                 spin_unlock(&engine->execlist_lock);
2671         }
2672
2673         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2674 }
2675
2676 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2677 {
2678         struct intel_engine_cs *engine;
2679         enum intel_engine_id id;
2680
2681         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2682         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2683
2684         i915_gem_context_lost(dev_priv);
2685         for_each_engine(engine, dev_priv, id)
2686                 i915_gem_cleanup_engine(engine);
2687         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2688
2689         i915_gem_retire_requests(dev_priv);
2690 }
2691
2692 static void
2693 i915_gem_retire_work_handler(struct work_struct *work)
2694 {
2695         struct drm_i915_private *dev_priv =
2696                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2697         struct drm_device *dev = &dev_priv->drm;
2698
2699         /* Come back later if the device is busy... */
2700         if (mutex_trylock(&dev->struct_mutex)) {
2701                 i915_gem_retire_requests(dev_priv);
2702                 mutex_unlock(&dev->struct_mutex);
2703         }
2704
2705         /* Keep the retire handler running until we are finally idle.
2706          * We do not need to do this test under locking as in the worst-case
2707          * we queue the retire worker once too often.
2708          */
2709         if (READ_ONCE(dev_priv->gt.awake)) {
2710                 i915_queue_hangcheck(dev_priv);
2711                 queue_delayed_work(dev_priv->wq,
2712                                    &dev_priv->gt.retire_work,
2713                                    round_jiffies_up_relative(HZ));
2714         }
2715 }
2716
2717 static void
2718 i915_gem_idle_work_handler(struct work_struct *work)
2719 {
2720         struct drm_i915_private *dev_priv =
2721                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2722         struct drm_device *dev = &dev_priv->drm;
2723         struct intel_engine_cs *engine;
2724         enum intel_engine_id id;
2725         bool rearm_hangcheck;
2726
2727         if (!READ_ONCE(dev_priv->gt.awake))
2728                 return;
2729
2730         if (READ_ONCE(dev_priv->gt.active_engines))
2731                 return;
2732
2733         rearm_hangcheck =
2734                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2735
2736         if (!mutex_trylock(&dev->struct_mutex)) {
2737                 /* Currently busy, come back later */
2738                 mod_delayed_work(dev_priv->wq,
2739                                  &dev_priv->gt.idle_work,
2740                                  msecs_to_jiffies(50));
2741                 goto out_rearm;
2742         }
2743
2744         if (dev_priv->gt.active_engines)
2745                 goto out_unlock;
2746
2747         for_each_engine(engine, dev_priv, id)
2748                 i915_gem_batch_pool_fini(&engine->batch_pool);
2749
2750         GEM_BUG_ON(!dev_priv->gt.awake);
2751         dev_priv->gt.awake = false;
2752         rearm_hangcheck = false;
2753
2754         if (INTEL_GEN(dev_priv) >= 6)
2755                 gen6_rps_idle(dev_priv);
2756         intel_runtime_pm_put(dev_priv);
2757 out_unlock:
2758         mutex_unlock(&dev->struct_mutex);
2759
2760 out_rearm:
2761         if (rearm_hangcheck) {
2762                 GEM_BUG_ON(!dev_priv->gt.awake);
2763                 i915_queue_hangcheck(dev_priv);
2764         }
2765 }
2766
2767 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2768 {
2769         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2770         struct drm_i915_file_private *fpriv = file->driver_priv;
2771         struct i915_vma *vma, *vn;
2772
2773         mutex_lock(&obj->base.dev->struct_mutex);
2774         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2775                 if (vma->vm->file == fpriv)
2776                         i915_vma_close(vma);
2777         mutex_unlock(&obj->base.dev->struct_mutex);
2778 }
2779
2780 /**
2781  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2782  * @dev: drm device pointer
2783  * @data: ioctl data blob
2784  * @file: drm file pointer
2785  *
2786  * Returns 0 if successful, else an error is returned with the remaining time in
2787  * the timeout parameter.
2788  *  -ETIME: object is still busy after timeout
2789  *  -ERESTARTSYS: signal interrupted the wait
2790  *  -ENONENT: object doesn't exist
2791  * Also possible, but rare:
2792  *  -EAGAIN: GPU wedged
2793  *  -ENOMEM: damn
2794  *  -ENODEV: Internal IRQ fail
2795  *  -E?: The add request failed
2796  *
2797  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2798  * non-zero timeout parameter the wait ioctl will wait for the given number of
2799  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2800  * without holding struct_mutex the object may become re-busied before this
2801  * function completes. A similar but shorter * race condition exists in the busy
2802  * ioctl
2803  */
2804 int
2805 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2806 {
2807         struct drm_i915_gem_wait *args = data;
2808         struct intel_rps_client *rps = to_rps_client(file);
2809         struct drm_i915_gem_object *obj;
2810         unsigned long active;
2811         int idx, ret = 0;
2812
2813         if (args->flags != 0)
2814                 return -EINVAL;
2815
2816         obj = i915_gem_object_lookup(file, args->bo_handle);
2817         if (!obj)
2818                 return -ENOENT;
2819
2820         active = __I915_BO_ACTIVE(obj);
2821         for_each_active(active, idx) {
2822                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2823                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2824                                                     I915_WAIT_INTERRUPTIBLE,
2825                                                     timeout, rps);
2826                 if (ret)
2827                         break;
2828         }
2829
2830         i915_gem_object_put_unlocked(obj);
2831         return ret;
2832 }
2833
2834 static void __i915_vma_iounmap(struct i915_vma *vma)
2835 {
2836         GEM_BUG_ON(i915_vma_is_pinned(vma));
2837
2838         if (vma->iomap == NULL)
2839                 return;
2840
2841         io_mapping_unmap(vma->iomap);
2842         vma->iomap = NULL;
2843 }
2844
2845 int i915_vma_unbind(struct i915_vma *vma)
2846 {
2847         struct drm_i915_gem_object *obj = vma->obj;
2848         unsigned long active;
2849         int ret;
2850
2851         /* First wait upon any activity as retiring the request may
2852          * have side-effects such as unpinning or even unbinding this vma.
2853          */
2854         active = i915_vma_get_active(vma);
2855         if (active) {
2856                 int idx;
2857
2858                 /* When a closed VMA is retired, it is unbound - eek.
2859                  * In order to prevent it from being recursively closed,
2860                  * take a pin on the vma so that the second unbind is
2861                  * aborted.
2862                  */
2863                 __i915_vma_pin(vma);
2864
2865                 for_each_active(active, idx) {
2866                         ret = i915_gem_active_retire(&vma->last_read[idx],
2867                                                    &vma->vm->dev->struct_mutex);
2868                         if (ret)
2869                                 break;
2870                 }
2871
2872                 __i915_vma_unpin(vma);
2873                 if (ret)
2874                         return ret;
2875
2876                 GEM_BUG_ON(i915_vma_is_active(vma));
2877         }
2878
2879         if (i915_vma_is_pinned(vma))
2880                 return -EBUSY;
2881
2882         if (!drm_mm_node_allocated(&vma->node))
2883                 goto destroy;
2884
2885         GEM_BUG_ON(obj->bind_count == 0);
2886         GEM_BUG_ON(!obj->pages);
2887
2888         if (i915_vma_is_map_and_fenceable(vma)) {
2889                 /* release the fence reg _after_ flushing */
2890                 ret = i915_vma_put_fence(vma);
2891                 if (ret)
2892                         return ret;
2893
2894                 /* Force a pagefault for domain tracking on next user access */
2895                 i915_gem_release_mmap(obj);
2896
2897                 __i915_vma_iounmap(vma);
2898                 vma->flags &= ~I915_VMA_CAN_FENCE;
2899         }
2900
2901         if (likely(!vma->vm->closed)) {
2902                 trace_i915_vma_unbind(vma);
2903                 vma->vm->unbind_vma(vma);
2904         }
2905         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2906
2907         drm_mm_remove_node(&vma->node);
2908         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2909
2910         if (vma->pages != obj->pages) {
2911                 GEM_BUG_ON(!vma->pages);
2912                 sg_free_table(vma->pages);
2913                 kfree(vma->pages);
2914         }
2915         vma->pages = NULL;
2916
2917         /* Since the unbound list is global, only move to that list if
2918          * no more VMAs exist. */
2919         if (--obj->bind_count == 0)
2920                 list_move_tail(&obj->global_list,
2921                                &to_i915(obj->base.dev)->mm.unbound_list);
2922
2923         /* And finally now the object is completely decoupled from this vma,
2924          * we can drop its hold on the backing storage and allow it to be
2925          * reaped by the shrinker.
2926          */
2927         i915_gem_object_unpin_pages(obj);
2928
2929 destroy:
2930         if (unlikely(i915_vma_is_closed(vma)))
2931                 i915_vma_destroy(vma);
2932
2933         return 0;
2934 }
2935
2936 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2937                            unsigned int flags)
2938 {
2939         struct intel_engine_cs *engine;
2940         enum intel_engine_id id;
2941         int ret;
2942
2943         for_each_engine(engine, dev_priv, id) {
2944                 if (engine->last_context == NULL)
2945                         continue;
2946
2947                 ret = intel_engine_idle(engine, flags);
2948                 if (ret)
2949                         return ret;
2950         }
2951
2952         return 0;
2953 }
2954
2955 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2956                                      unsigned long cache_level)
2957 {
2958         struct drm_mm_node *gtt_space = &vma->node;
2959         struct drm_mm_node *other;
2960
2961         /*
2962          * On some machines we have to be careful when putting differing types
2963          * of snoopable memory together to avoid the prefetcher crossing memory
2964          * domains and dying. During vm initialisation, we decide whether or not
2965          * these constraints apply and set the drm_mm.color_adjust
2966          * appropriately.
2967          */
2968         if (vma->vm->mm.color_adjust == NULL)
2969                 return true;
2970
2971         if (!drm_mm_node_allocated(gtt_space))
2972                 return true;
2973
2974         if (list_empty(&gtt_space->node_list))
2975                 return true;
2976
2977         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2978         if (other->allocated && !other->hole_follows && other->color != cache_level)
2979                 return false;
2980
2981         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2982         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2983                 return false;
2984
2985         return true;
2986 }
2987
2988 /**
2989  * i915_vma_insert - finds a slot for the vma in its address space
2990  * @vma: the vma
2991  * @size: requested size in bytes (can be larger than the VMA)
2992  * @alignment: required alignment
2993  * @flags: mask of PIN_* flags to use
2994  *
2995  * First we try to allocate some free space that meets the requirements for
2996  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2997  * preferrably the oldest idle entry to make room for the new VMA.
2998  *
2999  * Returns:
3000  * 0 on success, negative error code otherwise.
3001  */
3002 static int
3003 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3004 {
3005         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3006         struct drm_i915_gem_object *obj = vma->obj;
3007         u64 start, end;
3008         int ret;
3009
3010         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3011         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3012
3013         size = max(size, vma->size);
3014         if (flags & PIN_MAPPABLE)
3015                 size = i915_gem_get_ggtt_size(dev_priv, size,
3016                                               i915_gem_object_get_tiling(obj));
3017
3018         alignment = max(max(alignment, vma->display_alignment),
3019                         i915_gem_get_ggtt_alignment(dev_priv, size,
3020                                                     i915_gem_object_get_tiling(obj),
3021                                                     flags & PIN_MAPPABLE));
3022
3023         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3024
3025         end = vma->vm->total;
3026         if (flags & PIN_MAPPABLE)
3027                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3028         if (flags & PIN_ZONE_4G)
3029                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3030
3031         /* If binding the object/GGTT view requires more space than the entire
3032          * aperture has, reject it early before evicting everything in a vain
3033          * attempt to find space.
3034          */
3035         if (size > end) {
3036                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3037                           size, obj->base.size,
3038                           flags & PIN_MAPPABLE ? "mappable" : "total",
3039                           end);
3040                 return -E2BIG;
3041         }
3042
3043         ret = i915_gem_object_get_pages(obj);
3044         if (ret)
3045                 return ret;
3046
3047         i915_gem_object_pin_pages(obj);
3048
3049         if (flags & PIN_OFFSET_FIXED) {
3050                 u64 offset = flags & PIN_OFFSET_MASK;
3051                 if (offset & (alignment - 1) || offset > end - size) {
3052                         ret = -EINVAL;
3053                         goto err_unpin;
3054                 }
3055
3056                 vma->node.start = offset;
3057                 vma->node.size = size;
3058                 vma->node.color = obj->cache_level;
3059                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3060                 if (ret) {
3061                         ret = i915_gem_evict_for_vma(vma);
3062                         if (ret == 0)
3063                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3064                         if (ret)
3065                                 goto err_unpin;
3066                 }
3067         } else {
3068                 u32 search_flag, alloc_flag;
3069
3070                 if (flags & PIN_HIGH) {
3071                         search_flag = DRM_MM_SEARCH_BELOW;
3072                         alloc_flag = DRM_MM_CREATE_TOP;
3073                 } else {
3074                         search_flag = DRM_MM_SEARCH_DEFAULT;
3075                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3076                 }
3077
3078                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3079                  * so we know that we always have a minimum alignment of 4096.
3080                  * The drm_mm range manager is optimised to return results
3081                  * with zero alignment, so where possible use the optimal
3082                  * path.
3083                  */
3084                 if (alignment <= 4096)
3085                         alignment = 0;
3086
3087 search_free:
3088                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3089                                                           &vma->node,
3090                                                           size, alignment,
3091                                                           obj->cache_level,
3092                                                           start, end,
3093                                                           search_flag,
3094                                                           alloc_flag);
3095                 if (ret) {
3096                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3097                                                        obj->cache_level,
3098                                                        start, end,
3099                                                        flags);
3100                         if (ret == 0)
3101                                 goto search_free;
3102
3103                         goto err_unpin;
3104                 }
3105
3106                 GEM_BUG_ON(vma->node.start < start);
3107                 GEM_BUG_ON(vma->node.start + vma->node.size > end);
3108         }
3109         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3110
3111         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3112         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3113         obj->bind_count++;
3114
3115         return 0;
3116
3117 err_unpin:
3118         i915_gem_object_unpin_pages(obj);
3119         return ret;
3120 }
3121
3122 bool
3123 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3124                         bool force)
3125 {
3126         /* If we don't have a page list set up, then we're not pinned
3127          * to GPU, and we can ignore the cache flush because it'll happen
3128          * again at bind time.
3129          */
3130         if (obj->pages == NULL)
3131                 return false;
3132
3133         /*
3134          * Stolen memory is always coherent with the GPU as it is explicitly
3135          * marked as wc by the system, or the system is cache-coherent.
3136          */
3137         if (obj->stolen || obj->phys_handle)
3138                 return false;
3139
3140         /* If the GPU is snooping the contents of the CPU cache,
3141          * we do not need to manually clear the CPU cache lines.  However,
3142          * the caches are only snooped when the render cache is
3143          * flushed/invalidated.  As we always have to emit invalidations
3144          * and flushes when moving into and out of the RENDER domain, correct
3145          * snooping behaviour occurs naturally as the result of our domain
3146          * tracking.
3147          */
3148         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3149                 obj->cache_dirty = true;
3150                 return false;
3151         }
3152
3153         trace_i915_gem_object_clflush(obj);
3154         drm_clflush_sg(obj->pages);
3155         obj->cache_dirty = false;
3156
3157         return true;
3158 }
3159
3160 /** Flushes the GTT write domain for the object if it's dirty. */
3161 static void
3162 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3163 {
3164         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3165
3166         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3167                 return;
3168
3169         /* No actual flushing is required for the GTT write domain.  Writes
3170          * to it "immediately" go to main memory as far as we know, so there's
3171          * no chipset flush.  It also doesn't land in render cache.
3172          *
3173          * However, we do have to enforce the order so that all writes through
3174          * the GTT land before any writes to the device, such as updates to
3175          * the GATT itself.
3176          *
3177          * We also have to wait a bit for the writes to land from the GTT.
3178          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3179          * timing. This issue has only been observed when switching quickly
3180          * between GTT writes and CPU reads from inside the kernel on recent hw,
3181          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3182          * system agents we cannot reproduce this behaviour).
3183          */
3184         wmb();
3185         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3186                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3187
3188         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3189
3190         obj->base.write_domain = 0;
3191         trace_i915_gem_object_change_domain(obj,
3192                                             obj->base.read_domains,
3193                                             I915_GEM_DOMAIN_GTT);
3194 }
3195
3196 /** Flushes the CPU write domain for the object if it's dirty. */
3197 static void
3198 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3199 {
3200         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3201                 return;
3202
3203         if (i915_gem_clflush_object(obj, obj->pin_display))
3204                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3205
3206         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3207
3208         obj->base.write_domain = 0;
3209         trace_i915_gem_object_change_domain(obj,
3210                                             obj->base.read_domains,
3211                                             I915_GEM_DOMAIN_CPU);
3212 }
3213
3214 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3215 {
3216         struct i915_vma *vma;
3217
3218         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3219                 if (!i915_vma_is_ggtt(vma))
3220                         continue;
3221
3222                 if (i915_vma_is_active(vma))
3223                         continue;
3224
3225                 if (!drm_mm_node_allocated(&vma->node))
3226                         continue;
3227
3228                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3229         }
3230 }
3231
3232 /**
3233  * Moves a single object to the GTT read, and possibly write domain.
3234  * @obj: object to act on
3235  * @write: ask for write access or read only
3236  *
3237  * This function returns when the move is complete, including waiting on
3238  * flushes to occur.
3239  */
3240 int
3241 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3242 {
3243         uint32_t old_write_domain, old_read_domains;
3244         int ret;
3245
3246         ret = i915_gem_object_wait_rendering(obj, !write);
3247         if (ret)
3248                 return ret;
3249
3250         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3251                 return 0;
3252
3253         /* Flush and acquire obj->pages so that we are coherent through
3254          * direct access in memory with previous cached writes through
3255          * shmemfs and that our cache domain tracking remains valid.
3256          * For example, if the obj->filp was moved to swap without us
3257          * being notified and releasing the pages, we would mistakenly
3258          * continue to assume that the obj remained out of the CPU cached
3259          * domain.
3260          */
3261         ret = i915_gem_object_get_pages(obj);
3262         if (ret)
3263                 return ret;
3264
3265         i915_gem_object_flush_cpu_write_domain(obj);
3266
3267         /* Serialise direct access to this object with the barriers for
3268          * coherent writes from the GPU, by effectively invalidating the
3269          * GTT domain upon first access.
3270          */
3271         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3272                 mb();
3273
3274         old_write_domain = obj->base.write_domain;
3275         old_read_domains = obj->base.read_domains;
3276
3277         /* It should now be out of any other write domains, and we can update
3278          * the domain values for our changes.
3279          */
3280         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3281         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3282         if (write) {
3283                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3284                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3285                 obj->dirty = 1;
3286         }
3287
3288         trace_i915_gem_object_change_domain(obj,
3289                                             old_read_domains,
3290                                             old_write_domain);
3291
3292         /* And bump the LRU for this access */
3293         i915_gem_object_bump_inactive_ggtt(obj);
3294
3295         return 0;
3296 }
3297
3298 /**
3299  * Changes the cache-level of an object across all VMA.
3300  * @obj: object to act on
3301  * @cache_level: new cache level to set for the object
3302  *
3303  * After this function returns, the object will be in the new cache-level
3304  * across all GTT and the contents of the backing storage will be coherent,
3305  * with respect to the new cache-level. In order to keep the backing storage
3306  * coherent for all users, we only allow a single cache level to be set
3307  * globally on the object and prevent it from being changed whilst the
3308  * hardware is reading from the object. That is if the object is currently
3309  * on the scanout it will be set to uncached (or equivalent display
3310  * cache coherency) and all non-MOCS GPU access will also be uncached so
3311  * that all direct access to the scanout remains coherent.
3312  */
3313 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3314                                     enum i915_cache_level cache_level)
3315 {
3316         struct i915_vma *vma;
3317         int ret = 0;
3318
3319         if (obj->cache_level == cache_level)
3320                 goto out;
3321
3322         /* Inspect the list of currently bound VMA and unbind any that would
3323          * be invalid given the new cache-level. This is principally to
3324          * catch the issue of the CS prefetch crossing page boundaries and
3325          * reading an invalid PTE on older architectures.
3326          */
3327 restart:
3328         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329                 if (!drm_mm_node_allocated(&vma->node))
3330                         continue;
3331
3332                 if (i915_vma_is_pinned(vma)) {
3333                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3334                         return -EBUSY;
3335                 }
3336
3337                 if (i915_gem_valid_gtt_space(vma, cache_level))
3338                         continue;
3339
3340                 ret = i915_vma_unbind(vma);
3341                 if (ret)
3342                         return ret;
3343
3344                 /* As unbinding may affect other elements in the
3345                  * obj->vma_list (due to side-effects from retiring
3346                  * an active vma), play safe and restart the iterator.
3347                  */
3348                 goto restart;
3349         }
3350
3351         /* We can reuse the existing drm_mm nodes but need to change the
3352          * cache-level on the PTE. We could simply unbind them all and
3353          * rebind with the correct cache-level on next use. However since
3354          * we already have a valid slot, dma mapping, pages etc, we may as
3355          * rewrite the PTE in the belief that doing so tramples upon less
3356          * state and so involves less work.
3357          */
3358         if (obj->bind_count) {
3359                 /* Before we change the PTE, the GPU must not be accessing it.
3360                  * If we wait upon the object, we know that all the bound
3361                  * VMA are no longer active.
3362                  */
3363                 ret = i915_gem_object_wait_rendering(obj, false);
3364                 if (ret)
3365                         return ret;
3366
3367                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3368                         /* Access to snoopable pages through the GTT is
3369                          * incoherent and on some machines causes a hard
3370                          * lockup. Relinquish the CPU mmaping to force
3371                          * userspace to refault in the pages and we can
3372                          * then double check if the GTT mapping is still
3373                          * valid for that pointer access.
3374                          */
3375                         i915_gem_release_mmap(obj);
3376
3377                         /* As we no longer need a fence for GTT access,
3378                          * we can relinquish it now (and so prevent having
3379                          * to steal a fence from someone else on the next
3380                          * fence request). Note GPU activity would have
3381                          * dropped the fence as all snoopable access is
3382                          * supposed to be linear.
3383                          */
3384                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3385                                 ret = i915_vma_put_fence(vma);
3386                                 if (ret)
3387                                         return ret;
3388                         }
3389                 } else {
3390                         /* We either have incoherent backing store and
3391                          * so no GTT access or the architecture is fully
3392                          * coherent. In such cases, existing GTT mmaps
3393                          * ignore the cache bit in the PTE and we can
3394                          * rewrite it without confusing the GPU or having
3395                          * to force userspace to fault back in its mmaps.
3396                          */
3397                 }
3398
3399                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3400                         if (!drm_mm_node_allocated(&vma->node))
3401                                 continue;
3402
3403                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3404                         if (ret)
3405                                 return ret;
3406                 }
3407         }
3408
3409         list_for_each_entry(vma, &obj->vma_list, obj_link)
3410                 vma->node.color = cache_level;
3411         obj->cache_level = cache_level;
3412
3413 out:
3414         /* Flush the dirty CPU caches to the backing storage so that the
3415          * object is now coherent at its new cache level (with respect
3416          * to the access domain).
3417          */
3418         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3419                 if (i915_gem_clflush_object(obj, true))
3420                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3421         }
3422
3423         return 0;
3424 }
3425
3426 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3427                                struct drm_file *file)
3428 {
3429         struct drm_i915_gem_caching *args = data;
3430         struct drm_i915_gem_object *obj;
3431
3432         obj = i915_gem_object_lookup(file, args->handle);
3433         if (!obj)
3434                 return -ENOENT;
3435
3436         switch (obj->cache_level) {
3437         case I915_CACHE_LLC:
3438         case I915_CACHE_L3_LLC:
3439                 args->caching = I915_CACHING_CACHED;
3440                 break;
3441
3442         case I915_CACHE_WT:
3443                 args->caching = I915_CACHING_DISPLAY;
3444                 break;
3445
3446         default:
3447                 args->caching = I915_CACHING_NONE;
3448                 break;
3449         }
3450
3451         i915_gem_object_put_unlocked(obj);
3452         return 0;
3453 }
3454
3455 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3456                                struct drm_file *file)
3457 {
3458         struct drm_i915_private *dev_priv = to_i915(dev);
3459         struct drm_i915_gem_caching *args = data;
3460         struct drm_i915_gem_object *obj;
3461         enum i915_cache_level level;
3462         int ret;
3463
3464         switch (args->caching) {
3465         case I915_CACHING_NONE:
3466                 level = I915_CACHE_NONE;
3467                 break;
3468         case I915_CACHING_CACHED:
3469                 /*
3470                  * Due to a HW issue on BXT A stepping, GPU stores via a
3471                  * snooped mapping may leave stale data in a corresponding CPU
3472                  * cacheline, whereas normally such cachelines would get
3473                  * invalidated.
3474                  */
3475                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3476                         return -ENODEV;
3477
3478                 level = I915_CACHE_LLC;
3479                 break;
3480         case I915_CACHING_DISPLAY:
3481                 level = HAS_WT(dev_priv) ? I915_CACHE_WT : I915_CACHE_NONE;
3482                 break;
3483         default:
3484                 return -EINVAL;
3485         }
3486
3487         intel_runtime_pm_get(dev_priv);
3488
3489         ret = i915_mutex_lock_interruptible(dev);
3490         if (ret)
3491                 goto rpm_put;
3492
3493         obj = i915_gem_object_lookup(file, args->handle);
3494         if (!obj) {
3495                 ret = -ENOENT;
3496                 goto unlock;
3497         }
3498
3499         ret = i915_gem_object_set_cache_level(obj, level);
3500
3501         i915_gem_object_put(obj);
3502 unlock:
3503         mutex_unlock(&dev->struct_mutex);
3504 rpm_put:
3505         intel_runtime_pm_put(dev_priv);
3506
3507         return ret;
3508 }
3509
3510 /*
3511  * Prepare buffer for display plane (scanout, cursors, etc).
3512  * Can be called from an uninterruptible phase (modesetting) and allows
3513  * any flushes to be pipelined (for pageflips).
3514  */
3515 struct i915_vma *
3516 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3517                                      u32 alignment,
3518                                      const struct i915_ggtt_view *view)
3519 {
3520         struct i915_vma *vma;
3521         u32 old_read_domains, old_write_domain;
3522         int ret;
3523
3524         /* Mark the pin_display early so that we account for the
3525          * display coherency whilst setting up the cache domains.
3526          */
3527         obj->pin_display++;
3528
3529         /* The display engine is not coherent with the LLC cache on gen6.  As
3530          * a result, we make sure that the pinning that is about to occur is
3531          * done with uncached PTEs. This is lowest common denominator for all
3532          * chipsets.
3533          *
3534          * However for gen6+, we could do better by using the GFDT bit instead
3535          * of uncaching, which would allow us to flush all the LLC-cached data
3536          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3537          */
3538         ret = i915_gem_object_set_cache_level(obj,
3539                                               HAS_WT(to_i915(obj->base.dev)) ?
3540                                               I915_CACHE_WT : I915_CACHE_NONE);
3541         if (ret) {
3542                 vma = ERR_PTR(ret);
3543                 goto err_unpin_display;
3544         }
3545
3546         /* As the user may map the buffer once pinned in the display plane
3547          * (e.g. libkms for the bootup splash), we have to ensure that we
3548          * always use map_and_fenceable for all scanout buffers. However,
3549          * it may simply be too big to fit into mappable, in which case
3550          * put it anyway and hope that userspace can cope (but always first
3551          * try to preserve the existing ABI).
3552          */
3553         vma = ERR_PTR(-ENOSPC);
3554         if (view->type == I915_GGTT_VIEW_NORMAL)
3555                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3556                                                PIN_MAPPABLE | PIN_NONBLOCK);
3557         if (IS_ERR(vma))
3558                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
3559         if (IS_ERR(vma))
3560                 goto err_unpin_display;
3561
3562         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3563
3564         WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3565
3566         i915_gem_object_flush_cpu_write_domain(obj);
3567
3568         old_write_domain = obj->base.write_domain;
3569         old_read_domains = obj->base.read_domains;
3570
3571         /* It should now be out of any other write domains, and we can update
3572          * the domain values for our changes.
3573          */
3574         obj->base.write_domain = 0;
3575         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3576
3577         trace_i915_gem_object_change_domain(obj,
3578                                             old_read_domains,
3579                                             old_write_domain);
3580
3581         return vma;
3582
3583 err_unpin_display:
3584         obj->pin_display--;
3585         return vma;
3586 }
3587
3588 void
3589 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3590 {
3591         if (WARN_ON(vma->obj->pin_display == 0))
3592                 return;
3593
3594         if (--vma->obj->pin_display == 0)
3595                 vma->display_alignment = 0;
3596
3597         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3598         if (!i915_vma_is_active(vma))
3599                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3600
3601         i915_vma_unpin(vma);
3602         WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3603 }
3604
3605 /**
3606  * Moves a single object to the CPU read, and possibly write domain.
3607  * @obj: object to act on
3608  * @write: requesting write or read-only access
3609  *
3610  * This function returns when the move is complete, including waiting on
3611  * flushes to occur.
3612  */
3613 int
3614 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3615 {
3616         uint32_t old_write_domain, old_read_domains;
3617         int ret;
3618
3619         ret = i915_gem_object_wait_rendering(obj, !write);
3620         if (ret)
3621                 return ret;
3622
3623         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3624                 return 0;
3625
3626         i915_gem_object_flush_gtt_write_domain(obj);
3627
3628         old_write_domain = obj->base.write_domain;
3629         old_read_domains = obj->base.read_domains;
3630
3631         /* Flush the CPU cache if it's still invalid. */
3632         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3633                 i915_gem_clflush_object(obj, false);
3634
3635                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3636         }
3637
3638         /* It should now be out of any other write domains, and we can update
3639          * the domain values for our changes.
3640          */
3641         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3642
3643         /* If we're writing through the CPU, then the GPU read domains will
3644          * need to be invalidated at next use.
3645          */
3646         if (write) {
3647                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3648                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3649         }
3650
3651         trace_i915_gem_object_change_domain(obj,
3652                                             old_read_domains,
3653                                             old_write_domain);
3654
3655         return 0;
3656 }
3657
3658 /* Throttle our rendering by waiting until the ring has completed our requests
3659  * emitted over 20 msec ago.
3660  *
3661  * Note that if we were to use the current jiffies each time around the loop,
3662  * we wouldn't escape the function with any frames outstanding if the time to
3663  * render a frame was over 20ms.
3664  *
3665  * This should get us reasonable parallelism between CPU and GPU but also
3666  * relatively low latency when blocking on a particular request to finish.
3667  */
3668 static int
3669 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3670 {
3671         struct drm_i915_private *dev_priv = to_i915(dev);
3672         struct drm_i915_file_private *file_priv = file->driver_priv;
3673         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3674         struct drm_i915_gem_request *request, *target = NULL;
3675         int ret;
3676
3677         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3678         if (ret)
3679                 return ret;
3680
3681         /* ABI: return -EIO if already wedged */
3682         if (i915_terminally_wedged(&dev_priv->gpu_error))
3683                 return -EIO;
3684
3685         spin_lock(&file_priv->mm.lock);
3686         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3687                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3688                         break;
3689
3690                 /*
3691                  * Note that the request might not have been submitted yet.
3692                  * In which case emitted_jiffies will be zero.
3693                  */
3694                 if (!request->emitted_jiffies)
3695                         continue;
3696
3697                 target = request;
3698         }
3699         if (target)
3700                 i915_gem_request_get(target);
3701         spin_unlock(&file_priv->mm.lock);
3702
3703         if (target == NULL)
3704                 return 0;
3705
3706         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3707         i915_gem_request_put(target);
3708
3709         return ret;
3710 }
3711
3712 static bool
3713 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3714 {
3715         if (!drm_mm_node_allocated(&vma->node))
3716                 return false;
3717
3718         if (vma->node.size < size)
3719                 return true;
3720
3721         if (alignment && vma->node.start & (alignment - 1))
3722                 return true;
3723
3724         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3725                 return true;
3726
3727         if (flags & PIN_OFFSET_BIAS &&
3728             vma->node.start < (flags & PIN_OFFSET_MASK))
3729                 return true;
3730
3731         if (flags & PIN_OFFSET_FIXED &&
3732             vma->node.start != (flags & PIN_OFFSET_MASK))
3733                 return true;
3734
3735         return false;
3736 }
3737
3738 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3739 {
3740         struct drm_i915_gem_object *obj = vma->obj;
3741         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3742         bool mappable, fenceable;
3743         u32 fence_size, fence_alignment;
3744
3745         fence_size = i915_gem_get_ggtt_size(dev_priv,
3746                                             vma->size,
3747                                             i915_gem_object_get_tiling(obj));
3748         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3749                                                       vma->size,
3750                                                       i915_gem_object_get_tiling(obj),
3751                                                       true);
3752
3753         fenceable = (vma->node.size == fence_size &&
3754                      (vma->node.start & (fence_alignment - 1)) == 0);
3755
3756         mappable = (vma->node.start + fence_size <=
3757                     dev_priv->ggtt.mappable_end);
3758
3759         if (mappable && fenceable)
3760                 vma->flags |= I915_VMA_CAN_FENCE;
3761         else
3762                 vma->flags &= ~I915_VMA_CAN_FENCE;
3763 }
3764
3765 int __i915_vma_do_pin(struct i915_vma *vma,
3766                       u64 size, u64 alignment, u64 flags)
3767 {
3768         unsigned int bound = vma->flags;
3769         int ret;
3770
3771         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3772         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3773
3774         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3775                 ret = -EBUSY;
3776                 goto err;
3777         }
3778
3779         if ((bound & I915_VMA_BIND_MASK) == 0) {
3780                 ret = i915_vma_insert(vma, size, alignment, flags);
3781                 if (ret)
3782                         goto err;
3783         }
3784
3785         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3786         if (ret)
3787                 goto err;
3788
3789         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3790                 __i915_vma_set_map_and_fenceable(vma);
3791
3792         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3793         return 0;
3794
3795 err:
3796         __i915_vma_unpin(vma);
3797         return ret;
3798 }
3799
3800 struct i915_vma *
3801 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3802                          const struct i915_ggtt_view *view,
3803                          u64 size,
3804                          u64 alignment,
3805                          u64 flags)
3806 {
3807         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3808         struct i915_address_space *vm = &dev_priv->ggtt.base;
3809         struct i915_vma *vma;
3810         int ret;
3811
3812         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3813         if (IS_ERR(vma))
3814                 return vma;
3815
3816         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3817                 if (flags & PIN_NONBLOCK &&
3818                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3819                         return ERR_PTR(-ENOSPC);
3820
3821                 if (flags & PIN_MAPPABLE) {
3822                         u32 fence_size;
3823
3824                         fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3825                                                             i915_gem_object_get_tiling(obj));
3826                         /* If the required space is larger than the available
3827                          * aperture, we will not able to find a slot for the
3828                          * object and unbinding the object now will be in
3829                          * vain. Worse, doing so may cause us to ping-pong
3830                          * the object in and out of the Global GTT and
3831                          * waste a lot of cycles under the mutex.
3832                          */
3833                         if (fence_size > dev_priv->ggtt.mappable_end)
3834                                 return ERR_PTR(-E2BIG);
3835
3836                         /* If NONBLOCK is set the caller is optimistically
3837                          * trying to cache the full object within the mappable
3838                          * aperture, and *must* have a fallback in place for
3839                          * situations where we cannot bind the object. We
3840                          * can be a little more lax here and use the fallback
3841                          * more often to avoid costly migrations of ourselves
3842                          * and other objects within the aperture.
3843                          *
3844                          * Half-the-aperture is used as a simple heuristic.
3845                          * More interesting would to do search for a free
3846                          * block prior to making the commitment to unbind.
3847                          * That caters for the self-harm case, and with a
3848                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3849                          * we could try to minimise harm to others.
3850                          */
3851                         if (flags & PIN_NONBLOCK &&
3852                             fence_size > dev_priv->ggtt.mappable_end / 2)
3853                                 return ERR_PTR(-ENOSPC);
3854                 }
3855
3856                 WARN(i915_vma_is_pinned(vma),
3857                      "bo is already pinned in ggtt with incorrect alignment:"
3858                      " offset=%08x, req.alignment=%llx,"
3859                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3860                      i915_ggtt_offset(vma), alignment,
3861                      !!(flags & PIN_MAPPABLE),
3862                      i915_vma_is_map_and_fenceable(vma));
3863                 ret = i915_vma_unbind(vma);
3864                 if (ret)
3865                         return ERR_PTR(ret);
3866         }
3867
3868         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3869         if (ret)
3870                 return ERR_PTR(ret);
3871
3872         return vma;
3873 }
3874
3875 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3876 {
3877         /* Note that we could alias engines in the execbuf API, but
3878          * that would be very unwise as it prevents userspace from
3879          * fine control over engine selection. Ahem.
3880          *
3881          * This should be something like EXEC_MAX_ENGINE instead of
3882          * I915_NUM_ENGINES.
3883          */
3884         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3885         return 0x10000 << id;
3886 }
3887
3888 static __always_inline unsigned int __busy_write_id(unsigned int id)
3889 {
3890         /* The uABI guarantees an active writer is also amongst the read
3891          * engines. This would be true if we accessed the activity tracking
3892          * under the lock, but as we perform the lookup of the object and
3893          * its activity locklessly we can not guarantee that the last_write
3894          * being active implies that we have set the same engine flag from
3895          * last_read - hence we always set both read and write busy for
3896          * last_write.
3897          */
3898         return id | __busy_read_flag(id);
3899 }
3900
3901 static __always_inline unsigned int
3902 __busy_set_if_active(const struct i915_gem_active *active,
3903                      unsigned int (*flag)(unsigned int id))
3904 {
3905         struct drm_i915_gem_request *request;
3906
3907         request = rcu_dereference(active->request);
3908         if (!request || i915_gem_request_completed(request))
3909                 return 0;
3910
3911         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3912          * discussion of how to handle the race correctly, but for reporting
3913          * the busy state we err on the side of potentially reporting the
3914          * wrong engine as being busy (but we guarantee that the result
3915          * is at least self-consistent).
3916          *
3917          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3918          * whilst we are inspecting it, even under the RCU read lock as we are.
3919          * This means that there is a small window for the engine and/or the
3920          * seqno to have been overwritten. The seqno will always be in the
3921          * future compared to the intended, and so we know that if that
3922          * seqno is idle (on whatever engine) our request is idle and the
3923          * return 0 above is correct.
3924          *
3925          * The issue is that if the engine is switched, it is just as likely
3926          * to report that it is busy (but since the switch happened, we know
3927          * the request should be idle). So there is a small chance that a busy
3928          * result is actually the wrong engine.
3929          *
3930          * So why don't we care?
3931          *
3932          * For starters, the busy ioctl is a heuristic that is by definition
3933          * racy. Even with perfect serialisation in the driver, the hardware
3934          * state is constantly advancing - the state we report to the user
3935          * is stale.
3936          *
3937          * The critical information for the busy-ioctl is whether the object
3938          * is idle as userspace relies on that to detect whether its next
3939          * access will stall, or if it has missed submitting commands to
3940          * the hardware allowing the GPU to stall. We never generate a
3941          * false-positive for idleness, thus busy-ioctl is reliable at the
3942          * most fundamental level, and we maintain the guarantee that a
3943          * busy object left to itself will eventually become idle (and stay
3944          * idle!).
3945          *
3946          * We allow ourselves the leeway of potentially misreporting the busy
3947          * state because that is an optimisation heuristic that is constantly
3948          * in flux. Being quickly able to detect the busy/idle state is much
3949          * more important than accurate logging of exactly which engines were
3950          * busy.
3951          *
3952          * For accuracy in reporting the engine, we could use
3953          *
3954          *      result = 0;
3955          *      request = __i915_gem_active_get_rcu(active);
3956          *      if (request) {
3957          *              if (!i915_gem_request_completed(request))
3958          *                      result = flag(request->engine->exec_id);
3959          *              i915_gem_request_put(request);
3960          *      }
3961          *
3962          * but that still remains susceptible to both hardware and userspace
3963          * races. So we accept making the result of that race slightly worse,
3964          * given the rarity of the race and its low impact on the result.
3965          */
3966         return flag(READ_ONCE(request->engine->exec_id));
3967 }
3968
3969 static __always_inline unsigned int
3970 busy_check_reader(const struct i915_gem_active *active)
3971 {
3972         return __busy_set_if_active(active, __busy_read_flag);
3973 }
3974
3975 static __always_inline unsigned int
3976 busy_check_writer(const struct i915_gem_active *active)
3977 {
3978         return __busy_set_if_active(active, __busy_write_id);
3979 }
3980
3981 int
3982 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3983                     struct drm_file *file)
3984 {
3985         struct drm_i915_gem_busy *args = data;
3986         struct drm_i915_gem_object *obj;
3987         unsigned long active;
3988
3989         obj = i915_gem_object_lookup(file, args->handle);
3990         if (!obj)
3991                 return -ENOENT;
3992
3993         args->busy = 0;
3994         active = __I915_BO_ACTIVE(obj);
3995         if (active) {
3996                 int idx;
3997
3998                 /* Yes, the lookups are intentionally racy.
3999                  *
4000                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4001                  * to regard the value as stale and as our ABI guarantees
4002                  * forward progress, we confirm the status of each active
4003                  * request with the hardware.
4004                  *
4005                  * Even though we guard the pointer lookup by RCU, that only
4006                  * guarantees that the pointer and its contents remain
4007                  * dereferencable and does *not* mean that the request we
4008                  * have is the same as the one being tracked by the object.
4009                  *
4010                  * Consider that we lookup the request just as it is being
4011                  * retired and freed. We take a local copy of the pointer,
4012                  * but before we add its engine into the busy set, the other
4013                  * thread reallocates it and assigns it to a task on another
4014                  * engine with a fresh and incomplete seqno. Guarding against
4015                  * that requires careful serialisation and reference counting,
4016                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4017                  * instead we expect that if the result is busy, which engines
4018                  * are busy is not completely reliable - we only guarantee
4019                  * that the object was busy.
4020                  */
4021                 rcu_read_lock();
4022
4023                 for_each_active(active, idx)
4024                         args->busy |= busy_check_reader(&obj->last_read[idx]);
4025
4026                 /* For ABI sanity, we only care that the write engine is in
4027                  * the set of read engines. This should be ensured by the
4028                  * ordering of setting last_read/last_write in
4029                  * i915_vma_move_to_active(), and then in reverse in retire.
4030                  * However, for good measure, we always report the last_write
4031                  * request as a busy read as well as being a busy write.
4032                  *
4033                  * We don't care that the set of active read/write engines
4034                  * may change during construction of the result, as it is
4035                  * equally liable to change before userspace can inspect
4036                  * the result.
4037                  */
4038                 args->busy |= busy_check_writer(&obj->last_write);
4039
4040                 rcu_read_unlock();
4041         }
4042
4043         i915_gem_object_put_unlocked(obj);
4044         return 0;
4045 }
4046
4047 int
4048 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4049                         struct drm_file *file_priv)
4050 {
4051         return i915_gem_ring_throttle(dev, file_priv);
4052 }
4053
4054 int
4055 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4056                        struct drm_file *file_priv)
4057 {
4058         struct drm_i915_private *dev_priv = to_i915(dev);
4059         struct drm_i915_gem_madvise *args = data;
4060         struct drm_i915_gem_object *obj;
4061         int ret;
4062
4063         switch (args->madv) {
4064         case I915_MADV_DONTNEED:
4065         case I915_MADV_WILLNEED:
4066             break;
4067         default:
4068             return -EINVAL;
4069         }
4070
4071         ret = i915_mutex_lock_interruptible(dev);
4072         if (ret)
4073                 return ret;
4074
4075         obj = i915_gem_object_lookup(file_priv, args->handle);
4076         if (!obj) {
4077                 ret = -ENOENT;
4078                 goto unlock;
4079         }
4080
4081         if (obj->pages &&
4082             i915_gem_object_is_tiled(obj) &&
4083             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4084                 if (obj->madv == I915_MADV_WILLNEED)
4085                         i915_gem_object_unpin_pages(obj);
4086                 if (args->madv == I915_MADV_WILLNEED)
4087                         i915_gem_object_pin_pages(obj);
4088         }
4089
4090         if (obj->madv != __I915_MADV_PURGED)
4091                 obj->madv = args->madv;
4092
4093         /* if the object is no longer attached, discard its backing storage */
4094         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4095                 i915_gem_object_truncate(obj);
4096
4097         args->retained = obj->madv != __I915_MADV_PURGED;
4098
4099         i915_gem_object_put(obj);
4100 unlock:
4101         mutex_unlock(&dev->struct_mutex);
4102         return ret;
4103 }
4104
4105 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4106                           const struct drm_i915_gem_object_ops *ops)
4107 {
4108         int i;
4109
4110         INIT_LIST_HEAD(&obj->global_list);
4111         for (i = 0; i < I915_NUM_ENGINES; i++)
4112                 init_request_active(&obj->last_read[i],
4113                                     i915_gem_object_retire__read);
4114         init_request_active(&obj->last_write,
4115                             i915_gem_object_retire__write);
4116         INIT_LIST_HEAD(&obj->obj_exec_link);
4117         INIT_LIST_HEAD(&obj->vma_list);
4118         INIT_LIST_HEAD(&obj->batch_pool_link);
4119
4120         obj->ops = ops;
4121
4122         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4123         obj->madv = I915_MADV_WILLNEED;
4124
4125         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4126 }
4127
4128 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4129         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4130         .get_pages = i915_gem_object_get_pages_gtt,
4131         .put_pages = i915_gem_object_put_pages_gtt,
4132 };
4133
4134 /* Note we don't consider signbits :| */
4135 #define overflows_type(x, T) \
4136         (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4137
4138 struct drm_i915_gem_object *
4139 i915_gem_object_create(struct drm_device *dev, u64 size)
4140 {
4141         struct drm_i915_gem_object *obj;
4142         struct address_space *mapping;
4143         gfp_t mask;
4144         int ret;
4145
4146         /* There is a prevalence of the assumption that we fit the object's
4147          * page count inside a 32bit _signed_ variable. Let's document this and
4148          * catch if we ever need to fix it. In the meantime, if you do spot
4149          * such a local variable, please consider fixing!
4150          */
4151         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4152                 return ERR_PTR(-E2BIG);
4153
4154         if (overflows_type(size, obj->base.size))
4155                 return ERR_PTR(-E2BIG);
4156
4157         obj = i915_gem_object_alloc(dev);
4158         if (obj == NULL)
4159                 return ERR_PTR(-ENOMEM);
4160
4161         ret = drm_gem_object_init(dev, &obj->base, size);
4162         if (ret)
4163                 goto fail;
4164
4165         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4166         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4167                 /* 965gm cannot relocate objects above 4GiB. */
4168                 mask &= ~__GFP_HIGHMEM;
4169                 mask |= __GFP_DMA32;
4170         }
4171
4172         mapping = obj->base.filp->f_mapping;
4173         mapping_set_gfp_mask(mapping, mask);
4174
4175         i915_gem_object_init(obj, &i915_gem_object_ops);
4176
4177         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4178         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4179
4180         if (HAS_LLC(dev)) {
4181                 /* On some devices, we can have the GPU use the LLC (the CPU
4182                  * cache) for about a 10% performance improvement
4183                  * compared to uncached.  Graphics requests other than
4184                  * display scanout are coherent with the CPU in
4185                  * accessing this cache.  This means in this mode we
4186                  * don't need to clflush on the CPU side, and on the
4187                  * GPU side we only need to flush internal caches to
4188                  * get data visible to the CPU.
4189                  *
4190                  * However, we maintain the display planes as UC, and so
4191                  * need to rebind when first used as such.
4192                  */
4193                 obj->cache_level = I915_CACHE_LLC;
4194         } else
4195                 obj->cache_level = I915_CACHE_NONE;
4196
4197         trace_i915_gem_object_create(obj);
4198
4199         return obj;
4200
4201 fail:
4202         i915_gem_object_free(obj);
4203
4204         return ERR_PTR(ret);
4205 }
4206
4207 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4208 {
4209         /* If we are the last user of the backing storage (be it shmemfs
4210          * pages or stolen etc), we know that the pages are going to be
4211          * immediately released. In this case, we can then skip copying
4212          * back the contents from the GPU.
4213          */
4214
4215         if (obj->madv != I915_MADV_WILLNEED)
4216                 return false;
4217
4218         if (obj->base.filp == NULL)
4219                 return true;
4220
4221         /* At first glance, this looks racy, but then again so would be
4222          * userspace racing mmap against close. However, the first external
4223          * reference to the filp can only be obtained through the
4224          * i915_gem_mmap_ioctl() which safeguards us against the user
4225          * acquiring such a reference whilst we are in the middle of
4226          * freeing the object.
4227          */
4228         return atomic_long_read(&obj->base.filp->f_count) == 1;
4229 }
4230
4231 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4232 {
4233         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4234         struct drm_device *dev = obj->base.dev;
4235         struct drm_i915_private *dev_priv = to_i915(dev);
4236         struct i915_vma *vma, *next;
4237
4238         intel_runtime_pm_get(dev_priv);
4239
4240         trace_i915_gem_object_destroy(obj);
4241
4242         /* All file-owned VMA should have been released by this point through
4243          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4244          * However, the object may also be bound into the global GTT (e.g.
4245          * older GPUs without per-process support, or for direct access through
4246          * the GTT either for the user or for scanout). Those VMA still need to
4247          * unbound now.
4248          */
4249         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4250                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4251                 GEM_BUG_ON(i915_vma_is_active(vma));
4252                 vma->flags &= ~I915_VMA_PIN_MASK;
4253                 i915_vma_close(vma);
4254         }
4255         GEM_BUG_ON(obj->bind_count);
4256
4257         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4258          * before progressing. */
4259         if (obj->stolen)
4260                 i915_gem_object_unpin_pages(obj);
4261
4262         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4263
4264         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4265             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4266             i915_gem_object_is_tiled(obj))
4267                 i915_gem_object_unpin_pages(obj);
4268
4269         if (WARN_ON(obj->pages_pin_count))
4270                 obj->pages_pin_count = 0;
4271         if (discard_backing_storage(obj))
4272                 obj->madv = I915_MADV_DONTNEED;
4273         i915_gem_object_put_pages(obj);
4274
4275         BUG_ON(obj->pages);
4276
4277         if (obj->base.import_attach)
4278                 drm_prime_gem_destroy(&obj->base, NULL);
4279
4280         if (obj->ops->release)
4281                 obj->ops->release(obj);
4282
4283         drm_gem_object_release(&obj->base);
4284         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4285
4286         kfree(obj->bit_17);
4287         i915_gem_object_free(obj);
4288
4289         intel_runtime_pm_put(dev_priv);
4290 }
4291
4292 int i915_gem_suspend(struct drm_device *dev)
4293 {
4294         struct drm_i915_private *dev_priv = to_i915(dev);
4295         int ret;
4296
4297         intel_suspend_gt_powersave(dev_priv);
4298
4299         mutex_lock(&dev->struct_mutex);
4300
4301         /* We have to flush all the executing contexts to main memory so
4302          * that they can saved in the hibernation image. To ensure the last
4303          * context image is coherent, we have to switch away from it. That
4304          * leaves the dev_priv->kernel_context still active when
4305          * we actually suspend, and its image in memory may not match the GPU
4306          * state. Fortunately, the kernel_context is disposable and we do
4307          * not rely on its state.
4308          */
4309         ret = i915_gem_switch_to_kernel_context(dev_priv);
4310         if (ret)
4311                 goto err;
4312
4313         ret = i915_gem_wait_for_idle(dev_priv,
4314                                      I915_WAIT_INTERRUPTIBLE |
4315                                      I915_WAIT_LOCKED);
4316         if (ret)
4317                 goto err;
4318
4319         i915_gem_retire_requests(dev_priv);
4320
4321         i915_gem_context_lost(dev_priv);
4322         mutex_unlock(&dev->struct_mutex);
4323
4324         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4325         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4326         flush_delayed_work(&dev_priv->gt.idle_work);
4327
4328         /* Assert that we sucessfully flushed all the work and
4329          * reset the GPU back to its idle, low power state.
4330          */
4331         WARN_ON(dev_priv->gt.awake);
4332
4333         /*
4334          * Neither the BIOS, ourselves or any other kernel
4335          * expects the system to be in execlists mode on startup,
4336          * so we need to reset the GPU back to legacy mode. And the only
4337          * known way to disable logical contexts is through a GPU reset.
4338          *
4339          * So in order to leave the system in a known default configuration,
4340          * always reset the GPU upon unload and suspend. Afterwards we then
4341          * clean up the GEM state tracking, flushing off the requests and
4342          * leaving the system in a known idle state.
4343          *
4344          * Note that is of the upmost importance that the GPU is idle and
4345          * all stray writes are flushed *before* we dismantle the backing
4346          * storage for the pinned objects.
4347          *
4348          * However, since we are uncertain that resetting the GPU on older
4349          * machines is a good idea, we don't - just in case it leaves the
4350          * machine in an unusable condition.
4351          */
4352         if (HAS_HW_CONTEXTS(dev)) {
4353                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4354                 WARN_ON(reset && reset != -ENODEV);
4355         }
4356
4357         return 0;
4358
4359 err:
4360         mutex_unlock(&dev->struct_mutex);
4361         return ret;
4362 }
4363
4364 void i915_gem_resume(struct drm_device *dev)
4365 {
4366         struct drm_i915_private *dev_priv = to_i915(dev);
4367
4368         mutex_lock(&dev->struct_mutex);
4369         i915_gem_restore_gtt_mappings(dev);
4370
4371         /* As we didn't flush the kernel context before suspend, we cannot
4372          * guarantee that the context image is complete. So let's just reset
4373          * it and start again.
4374          */
4375         dev_priv->gt.resume(dev_priv);
4376
4377         mutex_unlock(&dev->struct_mutex);
4378 }
4379
4380 void i915_gem_init_swizzling(struct drm_device *dev)
4381 {
4382         struct drm_i915_private *dev_priv = to_i915(dev);
4383
4384         if (INTEL_INFO(dev)->gen < 5 ||
4385             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4386                 return;
4387
4388         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4389                                  DISP_TILE_SURFACE_SWIZZLING);
4390
4391         if (IS_GEN5(dev_priv))
4392                 return;
4393
4394         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4395         if (IS_GEN6(dev_priv))
4396                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4397         else if (IS_GEN7(dev_priv))
4398                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4399         else if (IS_GEN8(dev_priv))
4400                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4401         else
4402                 BUG();
4403 }
4404
4405 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4406 {
4407         I915_WRITE(RING_CTL(base), 0);
4408         I915_WRITE(RING_HEAD(base), 0);
4409         I915_WRITE(RING_TAIL(base), 0);
4410         I915_WRITE(RING_START(base), 0);
4411 }
4412
4413 static void init_unused_rings(struct drm_i915_private *dev_priv)
4414 {
4415         if (IS_I830(dev_priv)) {
4416                 init_unused_ring(dev_priv, PRB1_BASE);
4417                 init_unused_ring(dev_priv, SRB0_BASE);
4418                 init_unused_ring(dev_priv, SRB1_BASE);
4419                 init_unused_ring(dev_priv, SRB2_BASE);
4420                 init_unused_ring(dev_priv, SRB3_BASE);
4421         } else if (IS_GEN2(dev_priv)) {
4422                 init_unused_ring(dev_priv, SRB0_BASE);
4423                 init_unused_ring(dev_priv, SRB1_BASE);
4424         } else if (IS_GEN3(dev_priv)) {
4425                 init_unused_ring(dev_priv, PRB1_BASE);
4426                 init_unused_ring(dev_priv, PRB2_BASE);
4427         }
4428 }
4429
4430 int
4431 i915_gem_init_hw(struct drm_device *dev)
4432 {
4433         struct drm_i915_private *dev_priv = to_i915(dev);
4434         struct intel_engine_cs *engine;
4435         enum intel_engine_id id;
4436         int ret;
4437
4438         /* Double layer security blanket, see i915_gem_init() */
4439         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4440
4441         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4442                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4443
4444         if (IS_HASWELL(dev_priv))
4445                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4446                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4447
4448         if (HAS_PCH_NOP(dev_priv)) {
4449                 if (IS_IVYBRIDGE(dev_priv)) {
4450                         u32 temp = I915_READ(GEN7_MSG_CTL);
4451                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4452                         I915_WRITE(GEN7_MSG_CTL, temp);
4453                 } else if (INTEL_INFO(dev)->gen >= 7) {
4454                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4455                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4456                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4457                 }
4458         }
4459
4460         i915_gem_init_swizzling(dev);
4461
4462         /*
4463          * At least 830 can leave some of the unused rings
4464          * "active" (ie. head != tail) after resume which
4465          * will prevent c3 entry. Makes sure all unused rings
4466          * are totally idle.
4467          */
4468         init_unused_rings(dev_priv);
4469
4470         BUG_ON(!dev_priv->kernel_context);
4471
4472         ret = i915_ppgtt_init_hw(dev);
4473         if (ret) {
4474                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4475                 goto out;
4476         }
4477
4478         /* Need to do basic initialisation of all rings first: */
4479         for_each_engine(engine, dev_priv, id) {
4480                 ret = engine->init_hw(engine);
4481                 if (ret)
4482                         goto out;
4483         }
4484
4485         intel_mocs_init_l3cc_table(dev);
4486
4487         /* We can't enable contexts until all firmware is loaded */
4488         ret = intel_guc_setup(dev);
4489         if (ret)
4490                 goto out;
4491
4492 out:
4493         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4494         return ret;
4495 }
4496
4497 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4498 {
4499         if (INTEL_INFO(dev_priv)->gen < 6)
4500                 return false;
4501
4502         /* TODO: make semaphores and Execlists play nicely together */
4503         if (i915.enable_execlists)
4504                 return false;
4505
4506         if (value >= 0)
4507                 return value;
4508
4509 #ifdef CONFIG_INTEL_IOMMU
4510         /* Enable semaphores on SNB when IO remapping is off */
4511         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4512                 return false;
4513 #endif
4514
4515         return true;
4516 }
4517
4518 int i915_gem_init(struct drm_device *dev)
4519 {
4520         struct drm_i915_private *dev_priv = to_i915(dev);
4521         int ret;
4522
4523         mutex_lock(&dev->struct_mutex);
4524
4525         if (!i915.enable_execlists) {
4526                 dev_priv->gt.resume = intel_legacy_submission_resume;
4527                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4528         } else {
4529                 dev_priv->gt.resume = intel_lr_context_resume;
4530                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4531         }
4532
4533         /* This is just a security blanket to placate dragons.
4534          * On some systems, we very sporadically observe that the first TLBs
4535          * used by the CS may be stale, despite us poking the TLB reset. If
4536          * we hold the forcewake during initialisation these problems
4537          * just magically go away.
4538          */
4539         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4540
4541         i915_gem_init_userptr(dev_priv);
4542
4543         ret = i915_gem_init_ggtt(dev_priv);
4544         if (ret)
4545                 goto out_unlock;
4546
4547         ret = i915_gem_context_init(dev);
4548         if (ret)
4549                 goto out_unlock;
4550
4551         ret = intel_engines_init(dev);
4552         if (ret)
4553                 goto out_unlock;
4554
4555         ret = i915_gem_init_hw(dev);
4556         if (ret == -EIO) {
4557                 /* Allow engine initialisation to fail by marking the GPU as
4558                  * wedged. But we only want to do this where the GPU is angry,
4559                  * for all other failure, such as an allocation failure, bail.
4560                  */
4561                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4562                 i915_gem_set_wedged(dev_priv);
4563                 ret = 0;
4564         }
4565
4566 out_unlock:
4567         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4568         mutex_unlock(&dev->struct_mutex);
4569
4570         return ret;
4571 }
4572
4573 void
4574 i915_gem_cleanup_engines(struct drm_device *dev)
4575 {
4576         struct drm_i915_private *dev_priv = to_i915(dev);
4577         struct intel_engine_cs *engine;
4578         enum intel_engine_id id;
4579
4580         for_each_engine(engine, dev_priv, id)
4581                 dev_priv->gt.cleanup_engine(engine);
4582 }
4583
4584 void
4585 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4586 {
4587         struct drm_device *dev = &dev_priv->drm;
4588         int i;
4589
4590         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4591             !IS_CHERRYVIEW(dev_priv))
4592                 dev_priv->num_fence_regs = 32;
4593         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4594                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4595                 dev_priv->num_fence_regs = 16;
4596         else
4597                 dev_priv->num_fence_regs = 8;
4598
4599         if (intel_vgpu_active(dev_priv))
4600                 dev_priv->num_fence_regs =
4601                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4602
4603         /* Initialize fence registers to zero */
4604         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4605                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4606
4607                 fence->i915 = dev_priv;
4608                 fence->id = i;
4609                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4610         }
4611         i915_gem_restore_fences(dev);
4612
4613         i915_gem_detect_bit_6_swizzle(dev);
4614 }
4615
4616 void
4617 i915_gem_load_init(struct drm_device *dev)
4618 {
4619         struct drm_i915_private *dev_priv = to_i915(dev);
4620
4621         dev_priv->objects =
4622                 kmem_cache_create("i915_gem_object",
4623                                   sizeof(struct drm_i915_gem_object), 0,
4624                                   SLAB_HWCACHE_ALIGN,
4625                                   NULL);
4626         dev_priv->vmas =
4627                 kmem_cache_create("i915_gem_vma",
4628                                   sizeof(struct i915_vma), 0,
4629                                   SLAB_HWCACHE_ALIGN,
4630                                   NULL);
4631         dev_priv->requests =
4632                 kmem_cache_create("i915_gem_request",
4633                                   sizeof(struct drm_i915_gem_request), 0,
4634                                   SLAB_HWCACHE_ALIGN |
4635                                   SLAB_RECLAIM_ACCOUNT |
4636                                   SLAB_DESTROY_BY_RCU,
4637                                   NULL);
4638
4639         INIT_LIST_HEAD(&dev_priv->context_list);
4640         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4641         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4642         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4643         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4644                           i915_gem_retire_work_handler);
4645         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4646                           i915_gem_idle_work_handler);
4647         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4648         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4649
4650         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4651
4652         init_waitqueue_head(&dev_priv->pending_flip_queue);
4653
4654         dev_priv->mm.interruptible = true;
4655
4656         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4657
4658         spin_lock_init(&dev_priv->fb_tracking.lock);
4659 }
4660
4661 void i915_gem_load_cleanup(struct drm_device *dev)
4662 {
4663         struct drm_i915_private *dev_priv = to_i915(dev);
4664
4665         kmem_cache_destroy(dev_priv->requests);
4666         kmem_cache_destroy(dev_priv->vmas);
4667         kmem_cache_destroy(dev_priv->objects);
4668
4669         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4670         rcu_barrier();
4671 }
4672
4673 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4674 {
4675         intel_runtime_pm_get(dev_priv);
4676
4677         mutex_lock(&dev_priv->drm.struct_mutex);
4678         i915_gem_shrink_all(dev_priv);
4679         mutex_unlock(&dev_priv->drm.struct_mutex);
4680
4681         intel_runtime_pm_put(dev_priv);
4682
4683         return 0;
4684 }
4685
4686 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4687 {
4688         struct drm_i915_gem_object *obj;
4689         struct list_head *phases[] = {
4690                 &dev_priv->mm.unbound_list,
4691                 &dev_priv->mm.bound_list,
4692                 NULL
4693         }, **p;
4694
4695         /* Called just before we write the hibernation image.
4696          *
4697          * We need to update the domain tracking to reflect that the CPU
4698          * will be accessing all the pages to create and restore from the
4699          * hibernation, and so upon restoration those pages will be in the
4700          * CPU domain.
4701          *
4702          * To make sure the hibernation image contains the latest state,
4703          * we update that state just before writing out the image.
4704          *
4705          * To try and reduce the hibernation image, we manually shrink
4706          * the objects as well.
4707          */
4708
4709         mutex_lock(&dev_priv->drm.struct_mutex);
4710         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4711
4712         for (p = phases; *p; p++) {
4713                 list_for_each_entry(obj, *p, global_list) {
4714                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4715                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4716                 }
4717         }
4718         mutex_unlock(&dev_priv->drm.struct_mutex);
4719
4720         return 0;
4721 }
4722
4723 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4724 {
4725         struct drm_i915_file_private *file_priv = file->driver_priv;
4726         struct drm_i915_gem_request *request;
4727
4728         /* Clean up our request list when the client is going away, so that
4729          * later retire_requests won't dereference our soon-to-be-gone
4730          * file_priv.
4731          */
4732         spin_lock(&file_priv->mm.lock);
4733         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4734                 request->file_priv = NULL;
4735         spin_unlock(&file_priv->mm.lock);
4736
4737         if (!list_empty(&file_priv->rps.link)) {
4738                 spin_lock(&to_i915(dev)->rps.client_lock);
4739                 list_del(&file_priv->rps.link);
4740                 spin_unlock(&to_i915(dev)->rps.client_lock);
4741         }
4742 }
4743
4744 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4745 {
4746         struct drm_i915_file_private *file_priv;
4747         int ret;
4748
4749         DRM_DEBUG_DRIVER("\n");
4750
4751         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4752         if (!file_priv)
4753                 return -ENOMEM;
4754
4755         file->driver_priv = file_priv;
4756         file_priv->dev_priv = to_i915(dev);
4757         file_priv->file = file;
4758         INIT_LIST_HEAD(&file_priv->rps.link);
4759
4760         spin_lock_init(&file_priv->mm.lock);
4761         INIT_LIST_HEAD(&file_priv->mm.request_list);
4762
4763         file_priv->bsd_engine = -1;
4764
4765         ret = i915_gem_context_open(dev, file);
4766         if (ret)
4767                 kfree(file_priv);
4768
4769         return ret;
4770 }
4771
4772 /**
4773  * i915_gem_track_fb - update frontbuffer tracking
4774  * @old: current GEM buffer for the frontbuffer slots
4775  * @new: new GEM buffer for the frontbuffer slots
4776  * @frontbuffer_bits: bitmask of frontbuffer slots
4777  *
4778  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4779  * from @old and setting them in @new. Both @old and @new can be NULL.
4780  */
4781 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4782                        struct drm_i915_gem_object *new,
4783                        unsigned frontbuffer_bits)
4784 {
4785         /* Control of individual bits within the mask are guarded by
4786          * the owning plane->mutex, i.e. we can never see concurrent
4787          * manipulation of individual bits. But since the bitfield as a whole
4788          * is updated using RMW, we need to use atomics in order to update
4789          * the bits.
4790          */
4791         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4792                      sizeof(atomic_t) * BITS_PER_BYTE);
4793
4794         if (old) {
4795                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4796                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4797         }
4798
4799         if (new) {
4800                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4801                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4802         }
4803 }
4804
4805 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4806 struct page *
4807 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4808 {
4809         struct page *page;
4810
4811         /* Only default objects have per-page dirty tracking */
4812         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4813                 return NULL;
4814
4815         page = i915_gem_object_get_page(obj, n);
4816         set_page_dirty(page);
4817         return page;
4818 }
4819
4820 /* Allocate a new GEM object and fill it with the supplied data */
4821 struct drm_i915_gem_object *
4822 i915_gem_object_create_from_data(struct drm_device *dev,
4823                                  const void *data, size_t size)
4824 {
4825         struct drm_i915_gem_object *obj;
4826         struct sg_table *sg;
4827         size_t bytes;
4828         int ret;
4829
4830         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4831         if (IS_ERR(obj))
4832                 return obj;
4833
4834         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4835         if (ret)
4836                 goto fail;
4837
4838         ret = i915_gem_object_get_pages(obj);
4839         if (ret)
4840                 goto fail;
4841
4842         i915_gem_object_pin_pages(obj);
4843         sg = obj->pages;
4844         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4845         obj->dirty = 1;         /* Backing store is now out of date */
4846         i915_gem_object_unpin_pages(obj);
4847
4848         if (WARN_ON(bytes != size)) {
4849                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4850                 ret = -EFAULT;
4851                 goto fail;
4852         }
4853
4854         return obj;
4855
4856 fail:
4857         i915_gem_object_put(obj);
4858         return ERR_PTR(ret);
4859 }