Merge tag 'drm-intel-next-2018-09-06-2' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->cache_dirty)
55                 return false;
56
57         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58                 return true;
59
60         return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142         GEM_TRACE("\n");
143
144         lockdep_assert_held(&i915->drm.struct_mutex);
145         GEM_BUG_ON(i915->gt.active_requests);
146         GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148         if (!i915->gt.awake)
149                 return I915_EPOCH_INVALID;
150
151         GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153         /*
154          * Be paranoid and flush a concurrent interrupt to make sure
155          * we don't reactivate any irq tasklets after parking.
156          *
157          * FIXME: Note that even though we have waited for execlists to be idle,
158          * there may still be an in-flight interrupt even though the CSB
159          * is now empty. synchronize_irq() makes sure that a residual interrupt
160          * is completed before we continue, but it doesn't prevent the HW from
161          * raising a spurious interrupt later. To complete the shield we should
162          * coordinate disabling the CS irq with flushing the interrupts.
163          */
164         synchronize_irq(i915->drm.irq);
165
166         intel_engines_park(i915);
167         i915_timelines_park(i915);
168
169         i915_pmu_gt_parked(i915);
170         i915_vma_parked(i915);
171
172         i915->gt.awake = false;
173
174         if (INTEL_GEN(i915) >= 6)
175                 gen6_rps_idle(i915);
176
177         intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179         intel_runtime_pm_put(i915);
180
181         return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186         GEM_TRACE("\n");
187
188         lockdep_assert_held(&i915->drm.struct_mutex);
189         GEM_BUG_ON(i915->gt.active_requests);
190
191         if (!i915->gt.awake)
192                 return;
193
194         /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195         mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200         GEM_TRACE("\n");
201
202         lockdep_assert_held(&i915->drm.struct_mutex);
203         GEM_BUG_ON(!i915->gt.active_requests);
204
205         if (i915->gt.awake)
206                 return;
207
208         intel_runtime_pm_get_noresume(i915);
209
210         /*
211          * It seems that the DMC likes to transition between the DC states a lot
212          * when there are no connected displays (no active power domains) during
213          * command submission.
214          *
215          * This activity has negative impact on the performance of the chip with
216          * huge latencies observed in the interrupt handler and elsewhere.
217          *
218          * Work around it by grabbing a GT IRQ power domain whilst there is any
219          * GT activity, preventing any DC state transitions.
220          */
221         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223         i915->gt.awake = true;
224         if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225                 i915->gt.epoch = 1;
226
227         intel_enable_gt_powersave(i915);
228         i915_update_gfx_val(i915);
229         if (INTEL_GEN(i915) >= 6)
230                 gen6_rps_busy(i915);
231         i915_pmu_gt_unparked(i915);
232
233         intel_engines_unpark(i915);
234
235         i915_queue_hangcheck(i915);
236
237         queue_delayed_work(i915->wq,
238                            &i915->gt.retire_work,
239                            round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244                             struct drm_file *file)
245 {
246         struct drm_i915_private *dev_priv = to_i915(dev);
247         struct i915_ggtt *ggtt = &dev_priv->ggtt;
248         struct drm_i915_gem_get_aperture *args = data;
249         struct i915_vma *vma;
250         u64 pinned;
251
252         pinned = ggtt->vm.reserved;
253         mutex_lock(&dev->struct_mutex);
254         list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255                 if (i915_vma_is_pinned(vma))
256                         pinned += vma->node.size;
257         list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258                 if (i915_vma_is_pinned(vma))
259                         pinned += vma->node.size;
260         mutex_unlock(&dev->struct_mutex);
261
262         args->aper_size = ggtt->vm.total;
263         args->aper_available_size = args->aper_size - pinned;
264
265         return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270         struct address_space *mapping = obj->base.filp->f_mapping;
271         drm_dma_handle_t *phys;
272         struct sg_table *st;
273         struct scatterlist *sg;
274         char *vaddr;
275         int i;
276         int err;
277
278         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279                 return -EINVAL;
280
281         /* Always aligning to the object size, allows a single allocation
282          * to handle all possible callers, and given typical object sizes,
283          * the alignment of the buddy allocation will naturally match.
284          */
285         phys = drm_pci_alloc(obj->base.dev,
286                              roundup_pow_of_two(obj->base.size),
287                              roundup_pow_of_two(obj->base.size));
288         if (!phys)
289                 return -ENOMEM;
290
291         vaddr = phys->vaddr;
292         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293                 struct page *page;
294                 char *src;
295
296                 page = shmem_read_mapping_page(mapping, i);
297                 if (IS_ERR(page)) {
298                         err = PTR_ERR(page);
299                         goto err_phys;
300                 }
301
302                 src = kmap_atomic(page);
303                 memcpy(vaddr, src, PAGE_SIZE);
304                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305                 kunmap_atomic(src);
306
307                 put_page(page);
308                 vaddr += PAGE_SIZE;
309         }
310
311         i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313         st = kmalloc(sizeof(*st), GFP_KERNEL);
314         if (!st) {
315                 err = -ENOMEM;
316                 goto err_phys;
317         }
318
319         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320                 kfree(st);
321                 err = -ENOMEM;
322                 goto err_phys;
323         }
324
325         sg = st->sgl;
326         sg->offset = 0;
327         sg->length = obj->base.size;
328
329         sg_dma_address(sg) = phys->busaddr;
330         sg_dma_len(sg) = obj->base.size;
331
332         obj->phys_handle = phys;
333
334         __i915_gem_object_set_pages(obj, st, sg->length);
335
336         return 0;
337
338 err_phys:
339         drm_pci_free(obj->base.dev, phys);
340
341         return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346         obj->read_domains = I915_GEM_DOMAIN_CPU;
347         obj->write_domain = I915_GEM_DOMAIN_CPU;
348         if (cpu_write_needs_clflush(obj))
349                 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354                                 struct sg_table *pages,
355                                 bool needs_clflush)
356 {
357         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359         if (obj->mm.madv == I915_MADV_DONTNEED)
360                 obj->mm.dirty = false;
361
362         if (needs_clflush &&
363             (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365                 drm_clflush_sg(pages);
366
367         __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372                                struct sg_table *pages)
373 {
374         __i915_gem_object_release_shmem(obj, pages, false);
375
376         if (obj->mm.dirty) {
377                 struct address_space *mapping = obj->base.filp->f_mapping;
378                 char *vaddr = obj->phys_handle->vaddr;
379                 int i;
380
381                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382                         struct page *page;
383                         char *dst;
384
385                         page = shmem_read_mapping_page(mapping, i);
386                         if (IS_ERR(page))
387                                 continue;
388
389                         dst = kmap_atomic(page);
390                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
391                         memcpy(dst, vaddr, PAGE_SIZE);
392                         kunmap_atomic(dst);
393
394                         set_page_dirty(page);
395                         if (obj->mm.madv == I915_MADV_WILLNEED)
396                                 mark_page_accessed(page);
397                         put_page(page);
398                         vaddr += PAGE_SIZE;
399                 }
400                 obj->mm.dirty = false;
401         }
402
403         sg_free_table(pages);
404         kfree(pages);
405
406         drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412         i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416         .get_pages = i915_gem_object_get_pages_phys,
417         .put_pages = i915_gem_object_put_pages_phys,
418         .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425         struct i915_vma *vma;
426         LIST_HEAD(still_in_list);
427         int ret;
428
429         lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431         /* Closed vma are removed from the obj->vma_list - but they may
432          * still have an active binding on the object. To remove those we
433          * must wait for all rendering to complete to the object (as unbinding
434          * must anyway), and retire the requests.
435          */
436         ret = i915_gem_object_set_to_cpu_domain(obj, false);
437         if (ret)
438                 return ret;
439
440         while ((vma = list_first_entry_or_null(&obj->vma_list,
441                                                struct i915_vma,
442                                                obj_link))) {
443                 list_move_tail(&vma->obj_link, &still_in_list);
444                 ret = i915_vma_unbind(vma);
445                 if (ret)
446                         break;
447         }
448         list_splice(&still_in_list, &obj->vma_list);
449
450         return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455                            unsigned int flags,
456                            long timeout,
457                            struct intel_rps_client *rps_client)
458 {
459         struct i915_request *rq;
460
461         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464                 return timeout;
465
466         if (!dma_fence_is_i915(fence))
467                 return dma_fence_wait_timeout(fence,
468                                               flags & I915_WAIT_INTERRUPTIBLE,
469                                               timeout);
470
471         rq = to_request(fence);
472         if (i915_request_completed(rq))
473                 goto out;
474
475         /*
476          * This client is about to stall waiting for the GPU. In many cases
477          * this is undesirable and limits the throughput of the system, as
478          * many clients cannot continue processing user input/output whilst
479          * blocked. RPS autotuning may take tens of milliseconds to respond
480          * to the GPU load and thus incurs additional latency for the client.
481          * We can circumvent that by promoting the GPU frequency to maximum
482          * before we wait. This makes the GPU throttle up much more quickly
483          * (good for benchmarks and user experience, e.g. window animations),
484          * but at a cost of spending more power processing the workload
485          * (bad for battery). Not all clients even want their results
486          * immediately and for them we should just let the GPU select its own
487          * frequency to maximise efficiency. To prevent a single client from
488          * forcing the clocks too high for the whole system, we only allow
489          * each client to waitboost once in a busy period.
490          */
491         if (rps_client && !i915_request_started(rq)) {
492                 if (INTEL_GEN(rq->i915) >= 6)
493                         gen6_rps_boost(rq, rps_client);
494         }
495
496         timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499         if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500                 i915_request_retire_upto(rq);
501
502         return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507                                  unsigned int flags,
508                                  long timeout,
509                                  struct intel_rps_client *rps_client)
510 {
511         unsigned int seq = __read_seqcount_begin(&resv->seq);
512         struct dma_fence *excl;
513         bool prune_fences = false;
514
515         if (flags & I915_WAIT_ALL) {
516                 struct dma_fence **shared;
517                 unsigned int count, i;
518                 int ret;
519
520                 ret = reservation_object_get_fences_rcu(resv,
521                                                         &excl, &count, &shared);
522                 if (ret)
523                         return ret;
524
525                 for (i = 0; i < count; i++) {
526                         timeout = i915_gem_object_wait_fence(shared[i],
527                                                              flags, timeout,
528                                                              rps_client);
529                         if (timeout < 0)
530                                 break;
531
532                         dma_fence_put(shared[i]);
533                 }
534
535                 for (; i < count; i++)
536                         dma_fence_put(shared[i]);
537                 kfree(shared);
538
539                 /*
540                  * If both shared fences and an exclusive fence exist,
541                  * then by construction the shared fences must be later
542                  * than the exclusive fence. If we successfully wait for
543                  * all the shared fences, we know that the exclusive fence
544                  * must all be signaled. If all the shared fences are
545                  * signaled, we can prune the array and recover the
546                  * floating references on the fences/requests.
547                  */
548                 prune_fences = count && timeout >= 0;
549         } else {
550                 excl = reservation_object_get_excl_rcu(resv);
551         }
552
553         if (excl && timeout >= 0)
554                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555                                                      rps_client);
556
557         dma_fence_put(excl);
558
559         /*
560          * Opportunistically prune the fences iff we know they have *all* been
561          * signaled and that the reservation object has not been changed (i.e.
562          * no new fences have been added).
563          */
564         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565                 if (reservation_object_trylock(resv)) {
566                         if (!__read_seqcount_retry(&resv->seq, seq))
567                                 reservation_object_add_excl_fence(resv, NULL);
568                         reservation_object_unlock(resv);
569                 }
570         }
571
572         return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576                                  const struct i915_sched_attr *attr)
577 {
578         struct i915_request *rq;
579         struct intel_engine_cs *engine;
580
581         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582                 return;
583
584         rq = to_request(fence);
585         engine = rq->engine;
586
587         local_bh_disable();
588         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589         if (engine->schedule)
590                 engine->schedule(rq, attr);
591         rcu_read_unlock();
592         local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596                                const struct i915_sched_attr *attr)
597 {
598         /* Recurse once into a fence-array */
599         if (dma_fence_is_array(fence)) {
600                 struct dma_fence_array *array = to_dma_fence_array(fence);
601                 int i;
602
603                 for (i = 0; i < array->num_fences; i++)
604                         __fence_set_priority(array->fences[i], attr);
605         } else {
606                 __fence_set_priority(fence, attr);
607         }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612                               unsigned int flags,
613                               const struct i915_sched_attr *attr)
614 {
615         struct dma_fence *excl;
616
617         if (flags & I915_WAIT_ALL) {
618                 struct dma_fence **shared;
619                 unsigned int count, i;
620                 int ret;
621
622                 ret = reservation_object_get_fences_rcu(obj->resv,
623                                                         &excl, &count, &shared);
624                 if (ret)
625                         return ret;
626
627                 for (i = 0; i < count; i++) {
628                         fence_set_priority(shared[i], attr);
629                         dma_fence_put(shared[i]);
630                 }
631
632                 kfree(shared);
633         } else {
634                 excl = reservation_object_get_excl_rcu(obj->resv);
635         }
636
637         if (excl) {
638                 fence_set_priority(excl, attr);
639                 dma_fence_put(excl);
640         }
641         return 0;
642 }
643
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653                      unsigned int flags,
654                      long timeout,
655                      struct intel_rps_client *rps_client)
656 {
657         might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659         GEM_BUG_ON(debug_locks &&
660                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661                    !!(flags & I915_WAIT_LOCKED));
662 #endif
663         GEM_BUG_ON(timeout < 0);
664
665         timeout = i915_gem_object_wait_reservation(obj->resv,
666                                                    flags, timeout,
667                                                    rps_client);
668         return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673         struct drm_i915_file_private *fpriv = file->driver_priv;
674
675         return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680                      struct drm_i915_gem_pwrite *args,
681                      struct drm_file *file)
682 {
683         void *vaddr = obj->phys_handle->vaddr + args->offset;
684         char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686         /* We manually control the domain here and pretend that it
687          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688          */
689         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690         if (copy_from_user(vaddr, user_data, args->size))
691                 return -EFAULT;
692
693         drm_clflush_virt_range(vaddr, args->size);
694         i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696         intel_fb_obj_flush(obj, ORIGIN_CPU);
697         return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708         kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713                 struct drm_i915_private *dev_priv,
714                 uint64_t size,
715                 uint32_t *handle_p)
716 {
717         struct drm_i915_gem_object *obj;
718         int ret;
719         u32 handle;
720
721         size = roundup(size, PAGE_SIZE);
722         if (size == 0)
723                 return -EINVAL;
724
725         /* Allocate the new object */
726         obj = i915_gem_object_create(dev_priv, size);
727         if (IS_ERR(obj))
728                 return PTR_ERR(obj);
729
730         ret = drm_gem_handle_create(file, &obj->base, &handle);
731         /* drop reference from allocate - handle holds it now */
732         i915_gem_object_put(obj);
733         if (ret)
734                 return ret;
735
736         *handle_p = handle;
737         return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742                      struct drm_device *dev,
743                      struct drm_mode_create_dumb *args)
744 {
745         /* have to work out size/pitch and return them */
746         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747         args->size = args->pitch * args->height;
748         return i915_gem_create(file, to_i915(dev),
749                                args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754         return !(obj->cache_level == I915_CACHE_NONE ||
755                  obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766                       struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = to_i915(dev);
769         struct drm_i915_gem_create *args = data;
770
771         i915_gem_flush_free_objects(dev_priv);
772
773         return i915_gem_create(file, dev_priv,
774                                args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780         return (domain == I915_GEM_DOMAIN_GTT ?
781                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786         /*
787          * No actual flushing is required for the GTT write domain for reads
788          * from the GTT domain. Writes to it "immediately" go to main memory
789          * as far as we know, so there's no chipset flush. It also doesn't
790          * land in the GPU render cache.
791          *
792          * However, we do have to enforce the order so that all writes through
793          * the GTT land before any writes to the device, such as updates to
794          * the GATT itself.
795          *
796          * We also have to wait a bit for the writes to land from the GTT.
797          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798          * timing. This issue has only been observed when switching quickly
799          * between GTT writes and CPU reads from inside the kernel on recent hw,
800          * and it appears to only affect discrete GTT blocks (i.e. on LLC
801          * system agents we cannot reproduce this behaviour, until Cannonlake
802          * that was!).
803          */
804
805         wmb();
806
807         if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808                 return;
809
810         i915_gem_chipset_flush(dev_priv);
811
812         intel_runtime_pm_get(dev_priv);
813         spin_lock_irq(&dev_priv->uncore.lock);
814
815         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817         spin_unlock_irq(&dev_priv->uncore.lock);
818         intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825         struct i915_vma *vma;
826
827         if (!(obj->write_domain & flush_domains))
828                 return;
829
830         switch (obj->write_domain) {
831         case I915_GEM_DOMAIN_GTT:
832                 i915_gem_flush_ggtt_writes(dev_priv);
833
834                 intel_fb_obj_flush(obj,
835                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837                 for_each_ggtt_vma(vma, obj) {
838                         if (vma->iomap)
839                                 continue;
840
841                         i915_vma_unset_ggtt_write(vma);
842                 }
843                 break;
844
845         case I915_GEM_DOMAIN_WC:
846                 wmb();
847                 break;
848
849         case I915_GEM_DOMAIN_CPU:
850                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851                 break;
852
853         case I915_GEM_DOMAIN_RENDER:
854                 if (gpu_write_needs_clflush(obj))
855                         obj->cache_dirty = true;
856                 break;
857         }
858
859         obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864                         const char *gpu_vaddr, int gpu_offset,
865                         int length)
866 {
867         int ret, cpu_offset = 0;
868
869         while (length > 0) {
870                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871                 int this_length = min(cacheline_end - gpu_offset, length);
872                 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875                                      gpu_vaddr + swizzled_gpu_offset,
876                                      this_length);
877                 if (ret)
878                         return ret + length;
879
880                 cpu_offset += this_length;
881                 gpu_offset += this_length;
882                 length -= this_length;
883         }
884
885         return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890                           const char __user *cpu_vaddr,
891                           int length)
892 {
893         int ret, cpu_offset = 0;
894
895         while (length > 0) {
896                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897                 int this_length = min(cacheline_end - gpu_offset, length);
898                 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901                                        cpu_vaddr + cpu_offset,
902                                        this_length);
903                 if (ret)
904                         return ret + length;
905
906                 cpu_offset += this_length;
907                 gpu_offset += this_length;
908                 length -= this_length;
909         }
910
911         return 0;
912 }
913
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920                                     unsigned int *needs_clflush)
921 {
922         int ret;
923
924         lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926         *needs_clflush = 0;
927         if (!i915_gem_object_has_struct_page(obj))
928                 return -ENODEV;
929
930         ret = i915_gem_object_wait(obj,
931                                    I915_WAIT_INTERRUPTIBLE |
932                                    I915_WAIT_LOCKED,
933                                    MAX_SCHEDULE_TIMEOUT,
934                                    NULL);
935         if (ret)
936                 return ret;
937
938         ret = i915_gem_object_pin_pages(obj);
939         if (ret)
940                 return ret;
941
942         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945                 if (ret)
946                         goto err_unpin;
947                 else
948                         goto out;
949         }
950
951         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953         /* If we're not in the cpu read domain, set ourself into the gtt
954          * read domain and manually flush cachelines (if required). This
955          * optimizes for the case when the gpu will dirty the data
956          * anyway again before the next pread happens.
957          */
958         if (!obj->cache_dirty &&
959             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960                 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963         /* return with the pages pinned */
964         return 0;
965
966 err_unpin:
967         i915_gem_object_unpin_pages(obj);
968         return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972                                      unsigned int *needs_clflush)
973 {
974         int ret;
975
976         lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978         *needs_clflush = 0;
979         if (!i915_gem_object_has_struct_page(obj))
980                 return -ENODEV;
981
982         ret = i915_gem_object_wait(obj,
983                                    I915_WAIT_INTERRUPTIBLE |
984                                    I915_WAIT_LOCKED |
985                                    I915_WAIT_ALL,
986                                    MAX_SCHEDULE_TIMEOUT,
987                                    NULL);
988         if (ret)
989                 return ret;
990
991         ret = i915_gem_object_pin_pages(obj);
992         if (ret)
993                 return ret;
994
995         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998                 if (ret)
999                         goto err_unpin;
1000                 else
1001                         goto out;
1002         }
1003
1004         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006         /* If we're not in the cpu write domain, set ourself into the
1007          * gtt write domain and manually flush cachelines (as required).
1008          * This optimizes for the case when the gpu will use the data
1009          * right away and we therefore have to clflush anyway.
1010          */
1011         if (!obj->cache_dirty) {
1012                 *needs_clflush |= CLFLUSH_AFTER;
1013
1014                 /*
1015                  * Same trick applies to invalidate partially written
1016                  * cachelines read before writing.
1017                  */
1018                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019                         *needs_clflush |= CLFLUSH_BEFORE;
1020         }
1021
1022 out:
1023         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024         obj->mm.dirty = true;
1025         /* return with the pages pinned */
1026         return 0;
1027
1028 err_unpin:
1029         i915_gem_object_unpin_pages(obj);
1030         return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035                              bool swizzled)
1036 {
1037         if (unlikely(swizzled)) {
1038                 unsigned long start = (unsigned long) addr;
1039                 unsigned long end = (unsigned long) addr + length;
1040
1041                 /* For swizzling simply ensure that we always flush both
1042                  * channels. Lame, but simple and it works. Swizzled
1043                  * pwrite/pread is far from a hotpath - current userspace
1044                  * doesn't use it at all. */
1045                 start = round_down(start, 128);
1046                 end = round_up(end, 128);
1047
1048                 drm_clflush_virt_range((void *)start, end - start);
1049         } else {
1050                 drm_clflush_virt_range(addr, length);
1051         }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059                  char __user *user_data,
1060                  bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062         char *vaddr;
1063         int ret;
1064
1065         vaddr = kmap(page);
1066         if (needs_clflush)
1067                 shmem_clflush_swizzled_range(vaddr + offset, length,
1068                                              page_do_bit17_swizzling);
1069
1070         if (page_do_bit17_swizzling)
1071                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072         else
1073                 ret = __copy_to_user(user_data, vaddr + offset, length);
1074         kunmap(page);
1075
1076         return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081             bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083         int ret;
1084
1085         ret = -ENODEV;
1086         if (!page_do_bit17_swizzling) {
1087                 char *vaddr = kmap_atomic(page);
1088
1089                 if (needs_clflush)
1090                         drm_clflush_virt_range(vaddr + offset, length);
1091                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092                 kunmap_atomic(vaddr);
1093         }
1094         if (ret == 0)
1095                 return 0;
1096
1097         return shmem_pread_slow(page, offset, length, user_data,
1098                                 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103                      struct drm_i915_gem_pread *args)
1104 {
1105         char __user *user_data;
1106         u64 remain;
1107         unsigned int obj_do_bit17_swizzling;
1108         unsigned int needs_clflush;
1109         unsigned int idx, offset;
1110         int ret;
1111
1112         obj_do_bit17_swizzling = 0;
1113         if (i915_gem_object_needs_bit17_swizzle(obj))
1114                 obj_do_bit17_swizzling = BIT(17);
1115
1116         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117         if (ret)
1118                 return ret;
1119
1120         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121         mutex_unlock(&obj->base.dev->struct_mutex);
1122         if (ret)
1123                 return ret;
1124
1125         remain = args->size;
1126         user_data = u64_to_user_ptr(args->data_ptr);
1127         offset = offset_in_page(args->offset);
1128         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129                 struct page *page = i915_gem_object_get_page(obj, idx);
1130                 int length;
1131
1132                 length = remain;
1133                 if (offset + length > PAGE_SIZE)
1134                         length = PAGE_SIZE - offset;
1135
1136                 ret = shmem_pread(page, offset, length, user_data,
1137                                   page_to_phys(page) & obj_do_bit17_swizzling,
1138                                   needs_clflush);
1139                 if (ret)
1140                         break;
1141
1142                 remain -= length;
1143                 user_data += length;
1144                 offset = 0;
1145         }
1146
1147         i915_gem_obj_finish_shmem_access(obj);
1148         return ret;
1149 }
1150
1151 static inline bool
1152 gtt_user_read(struct io_mapping *mapping,
1153               loff_t base, int offset,
1154               char __user *user_data, int length)
1155 {
1156         void __iomem *vaddr;
1157         unsigned long unwritten;
1158
1159         /* We can use the cpu mem copy function because this is X86. */
1160         vaddr = io_mapping_map_atomic_wc(mapping, base);
1161         unwritten = __copy_to_user_inatomic(user_data,
1162                                             (void __force *)vaddr + offset,
1163                                             length);
1164         io_mapping_unmap_atomic(vaddr);
1165         if (unwritten) {
1166                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167                 unwritten = copy_to_user(user_data,
1168                                          (void __force *)vaddr + offset,
1169                                          length);
1170                 io_mapping_unmap(vaddr);
1171         }
1172         return unwritten;
1173 }
1174
1175 static int
1176 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1177                    const struct drm_i915_gem_pread *args)
1178 {
1179         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1180         struct i915_ggtt *ggtt = &i915->ggtt;
1181         struct drm_mm_node node;
1182         struct i915_vma *vma;
1183         void __user *user_data;
1184         u64 remain, offset;
1185         int ret;
1186
1187         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1188         if (ret)
1189                 return ret;
1190
1191         intel_runtime_pm_get(i915);
1192         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1193                                        PIN_MAPPABLE |
1194                                        PIN_NONFAULT |
1195                                        PIN_NONBLOCK);
1196         if (!IS_ERR(vma)) {
1197                 node.start = i915_ggtt_offset(vma);
1198                 node.allocated = false;
1199                 ret = i915_vma_put_fence(vma);
1200                 if (ret) {
1201                         i915_vma_unpin(vma);
1202                         vma = ERR_PTR(ret);
1203                 }
1204         }
1205         if (IS_ERR(vma)) {
1206                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1207                 if (ret)
1208                         goto out_unlock;
1209                 GEM_BUG_ON(!node.allocated);
1210         }
1211
1212         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1213         if (ret)
1214                 goto out_unpin;
1215
1216         mutex_unlock(&i915->drm.struct_mutex);
1217
1218         user_data = u64_to_user_ptr(args->data_ptr);
1219         remain = args->size;
1220         offset = args->offset;
1221
1222         while (remain > 0) {
1223                 /* Operation in this page
1224                  *
1225                  * page_base = page offset within aperture
1226                  * page_offset = offset within page
1227                  * page_length = bytes to copy for this page
1228                  */
1229                 u32 page_base = node.start;
1230                 unsigned page_offset = offset_in_page(offset);
1231                 unsigned page_length = PAGE_SIZE - page_offset;
1232                 page_length = remain < page_length ? remain : page_length;
1233                 if (node.allocated) {
1234                         wmb();
1235                         ggtt->vm.insert_page(&ggtt->vm,
1236                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1237                                              node.start, I915_CACHE_NONE, 0);
1238                         wmb();
1239                 } else {
1240                         page_base += offset & PAGE_MASK;
1241                 }
1242
1243                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1244                                   user_data, page_length)) {
1245                         ret = -EFAULT;
1246                         break;
1247                 }
1248
1249                 remain -= page_length;
1250                 user_data += page_length;
1251                 offset += page_length;
1252         }
1253
1254         mutex_lock(&i915->drm.struct_mutex);
1255 out_unpin:
1256         if (node.allocated) {
1257                 wmb();
1258                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1259                 remove_mappable_node(&node);
1260         } else {
1261                 i915_vma_unpin(vma);
1262         }
1263 out_unlock:
1264         intel_runtime_pm_put(i915);
1265         mutex_unlock(&i915->drm.struct_mutex);
1266
1267         return ret;
1268 }
1269
1270 /**
1271  * Reads data from the object referenced by handle.
1272  * @dev: drm device pointer
1273  * @data: ioctl data blob
1274  * @file: drm file pointer
1275  *
1276  * On error, the contents of *data are undefined.
1277  */
1278 int
1279 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1280                      struct drm_file *file)
1281 {
1282         struct drm_i915_gem_pread *args = data;
1283         struct drm_i915_gem_object *obj;
1284         int ret;
1285
1286         if (args->size == 0)
1287                 return 0;
1288
1289         if (!access_ok(VERIFY_WRITE,
1290                        u64_to_user_ptr(args->data_ptr),
1291                        args->size))
1292                 return -EFAULT;
1293
1294         obj = i915_gem_object_lookup(file, args->handle);
1295         if (!obj)
1296                 return -ENOENT;
1297
1298         /* Bounds check source.  */
1299         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1300                 ret = -EINVAL;
1301                 goto out;
1302         }
1303
1304         trace_i915_gem_object_pread(obj, args->offset, args->size);
1305
1306         ret = i915_gem_object_wait(obj,
1307                                    I915_WAIT_INTERRUPTIBLE,
1308                                    MAX_SCHEDULE_TIMEOUT,
1309                                    to_rps_client(file));
1310         if (ret)
1311                 goto out;
1312
1313         ret = i915_gem_object_pin_pages(obj);
1314         if (ret)
1315                 goto out;
1316
1317         ret = i915_gem_shmem_pread(obj, args);
1318         if (ret == -EFAULT || ret == -ENODEV)
1319                 ret = i915_gem_gtt_pread(obj, args);
1320
1321         i915_gem_object_unpin_pages(obj);
1322 out:
1323         i915_gem_object_put(obj);
1324         return ret;
1325 }
1326
1327 /* This is the fast write path which cannot handle
1328  * page faults in the source data
1329  */
1330
1331 static inline bool
1332 ggtt_write(struct io_mapping *mapping,
1333            loff_t base, int offset,
1334            char __user *user_data, int length)
1335 {
1336         void __iomem *vaddr;
1337         unsigned long unwritten;
1338
1339         /* We can use the cpu mem copy function because this is X86. */
1340         vaddr = io_mapping_map_atomic_wc(mapping, base);
1341         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1342                                                       user_data, length);
1343         io_mapping_unmap_atomic(vaddr);
1344         if (unwritten) {
1345                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1346                 unwritten = copy_from_user((void __force *)vaddr + offset,
1347                                            user_data, length);
1348                 io_mapping_unmap(vaddr);
1349         }
1350
1351         return unwritten;
1352 }
1353
1354 /**
1355  * This is the fast pwrite path, where we copy the data directly from the
1356  * user into the GTT, uncached.
1357  * @obj: i915 GEM object
1358  * @args: pwrite arguments structure
1359  */
1360 static int
1361 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1362                          const struct drm_i915_gem_pwrite *args)
1363 {
1364         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365         struct i915_ggtt *ggtt = &i915->ggtt;
1366         struct drm_mm_node node;
1367         struct i915_vma *vma;
1368         u64 remain, offset;
1369         void __user *user_data;
1370         int ret;
1371
1372         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1373         if (ret)
1374                 return ret;
1375
1376         if (i915_gem_object_has_struct_page(obj)) {
1377                 /*
1378                  * Avoid waking the device up if we can fallback, as
1379                  * waking/resuming is very slow (worst-case 10-100 ms
1380                  * depending on PCI sleeps and our own resume time).
1381                  * This easily dwarfs any performance advantage from
1382                  * using the cache bypass of indirect GGTT access.
1383                  */
1384                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1385                         ret = -EFAULT;
1386                         goto out_unlock;
1387                 }
1388         } else {
1389                 /* No backing pages, no fallback, we must force GGTT access */
1390                 intel_runtime_pm_get(i915);
1391         }
1392
1393         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1394                                        PIN_MAPPABLE |
1395                                        PIN_NONFAULT |
1396                                        PIN_NONBLOCK);
1397         if (!IS_ERR(vma)) {
1398                 node.start = i915_ggtt_offset(vma);
1399                 node.allocated = false;
1400                 ret = i915_vma_put_fence(vma);
1401                 if (ret) {
1402                         i915_vma_unpin(vma);
1403                         vma = ERR_PTR(ret);
1404                 }
1405         }
1406         if (IS_ERR(vma)) {
1407                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1408                 if (ret)
1409                         goto out_rpm;
1410                 GEM_BUG_ON(!node.allocated);
1411         }
1412
1413         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1414         if (ret)
1415                 goto out_unpin;
1416
1417         mutex_unlock(&i915->drm.struct_mutex);
1418
1419         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1420
1421         user_data = u64_to_user_ptr(args->data_ptr);
1422         offset = args->offset;
1423         remain = args->size;
1424         while (remain) {
1425                 /* Operation in this page
1426                  *
1427                  * page_base = page offset within aperture
1428                  * page_offset = offset within page
1429                  * page_length = bytes to copy for this page
1430                  */
1431                 u32 page_base = node.start;
1432                 unsigned int page_offset = offset_in_page(offset);
1433                 unsigned int page_length = PAGE_SIZE - page_offset;
1434                 page_length = remain < page_length ? remain : page_length;
1435                 if (node.allocated) {
1436                         wmb(); /* flush the write before we modify the GGTT */
1437                         ggtt->vm.insert_page(&ggtt->vm,
1438                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1439                                              node.start, I915_CACHE_NONE, 0);
1440                         wmb(); /* flush modifications to the GGTT (insert_page) */
1441                 } else {
1442                         page_base += offset & PAGE_MASK;
1443                 }
1444                 /* If we get a fault while copying data, then (presumably) our
1445                  * source page isn't available.  Return the error and we'll
1446                  * retry in the slow path.
1447                  * If the object is non-shmem backed, we retry again with the
1448                  * path that handles page fault.
1449                  */
1450                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1451                                user_data, page_length)) {
1452                         ret = -EFAULT;
1453                         break;
1454                 }
1455
1456                 remain -= page_length;
1457                 user_data += page_length;
1458                 offset += page_length;
1459         }
1460         intel_fb_obj_flush(obj, ORIGIN_CPU);
1461
1462         mutex_lock(&i915->drm.struct_mutex);
1463 out_unpin:
1464         if (node.allocated) {
1465                 wmb();
1466                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1467                 remove_mappable_node(&node);
1468         } else {
1469                 i915_vma_unpin(vma);
1470         }
1471 out_rpm:
1472         intel_runtime_pm_put(i915);
1473 out_unlock:
1474         mutex_unlock(&i915->drm.struct_mutex);
1475         return ret;
1476 }
1477
1478 static int
1479 shmem_pwrite_slow(struct page *page, int offset, int length,
1480                   char __user *user_data,
1481                   bool page_do_bit17_swizzling,
1482                   bool needs_clflush_before,
1483                   bool needs_clflush_after)
1484 {
1485         char *vaddr;
1486         int ret;
1487
1488         vaddr = kmap(page);
1489         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1490                 shmem_clflush_swizzled_range(vaddr + offset, length,
1491                                              page_do_bit17_swizzling);
1492         if (page_do_bit17_swizzling)
1493                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1494                                                 length);
1495         else
1496                 ret = __copy_from_user(vaddr + offset, user_data, length);
1497         if (needs_clflush_after)
1498                 shmem_clflush_swizzled_range(vaddr + offset, length,
1499                                              page_do_bit17_swizzling);
1500         kunmap(page);
1501
1502         return ret ? -EFAULT : 0;
1503 }
1504
1505 /* Per-page copy function for the shmem pwrite fastpath.
1506  * Flushes invalid cachelines before writing to the target if
1507  * needs_clflush_before is set and flushes out any written cachelines after
1508  * writing if needs_clflush is set.
1509  */
1510 static int
1511 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1512              bool page_do_bit17_swizzling,
1513              bool needs_clflush_before,
1514              bool needs_clflush_after)
1515 {
1516         int ret;
1517
1518         ret = -ENODEV;
1519         if (!page_do_bit17_swizzling) {
1520                 char *vaddr = kmap_atomic(page);
1521
1522                 if (needs_clflush_before)
1523                         drm_clflush_virt_range(vaddr + offset, len);
1524                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1525                 if (needs_clflush_after)
1526                         drm_clflush_virt_range(vaddr + offset, len);
1527
1528                 kunmap_atomic(vaddr);
1529         }
1530         if (ret == 0)
1531                 return ret;
1532
1533         return shmem_pwrite_slow(page, offset, len, user_data,
1534                                  page_do_bit17_swizzling,
1535                                  needs_clflush_before,
1536                                  needs_clflush_after);
1537 }
1538
1539 static int
1540 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1541                       const struct drm_i915_gem_pwrite *args)
1542 {
1543         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1544         void __user *user_data;
1545         u64 remain;
1546         unsigned int obj_do_bit17_swizzling;
1547         unsigned int partial_cacheline_write;
1548         unsigned int needs_clflush;
1549         unsigned int offset, idx;
1550         int ret;
1551
1552         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1553         if (ret)
1554                 return ret;
1555
1556         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1557         mutex_unlock(&i915->drm.struct_mutex);
1558         if (ret)
1559                 return ret;
1560
1561         obj_do_bit17_swizzling = 0;
1562         if (i915_gem_object_needs_bit17_swizzle(obj))
1563                 obj_do_bit17_swizzling = BIT(17);
1564
1565         /* If we don't overwrite a cacheline completely we need to be
1566          * careful to have up-to-date data by first clflushing. Don't
1567          * overcomplicate things and flush the entire patch.
1568          */
1569         partial_cacheline_write = 0;
1570         if (needs_clflush & CLFLUSH_BEFORE)
1571                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1572
1573         user_data = u64_to_user_ptr(args->data_ptr);
1574         remain = args->size;
1575         offset = offset_in_page(args->offset);
1576         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1577                 struct page *page = i915_gem_object_get_page(obj, idx);
1578                 int length;
1579
1580                 length = remain;
1581                 if (offset + length > PAGE_SIZE)
1582                         length = PAGE_SIZE - offset;
1583
1584                 ret = shmem_pwrite(page, offset, length, user_data,
1585                                    page_to_phys(page) & obj_do_bit17_swizzling,
1586                                    (offset | length) & partial_cacheline_write,
1587                                    needs_clflush & CLFLUSH_AFTER);
1588                 if (ret)
1589                         break;
1590
1591                 remain -= length;
1592                 user_data += length;
1593                 offset = 0;
1594         }
1595
1596         intel_fb_obj_flush(obj, ORIGIN_CPU);
1597         i915_gem_obj_finish_shmem_access(obj);
1598         return ret;
1599 }
1600
1601 /**
1602  * Writes data to the object referenced by handle.
1603  * @dev: drm device
1604  * @data: ioctl data blob
1605  * @file: drm file
1606  *
1607  * On error, the contents of the buffer that were to be modified are undefined.
1608  */
1609 int
1610 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1611                       struct drm_file *file)
1612 {
1613         struct drm_i915_gem_pwrite *args = data;
1614         struct drm_i915_gem_object *obj;
1615         int ret;
1616
1617         if (args->size == 0)
1618                 return 0;
1619
1620         if (!access_ok(VERIFY_READ,
1621                        u64_to_user_ptr(args->data_ptr),
1622                        args->size))
1623                 return -EFAULT;
1624
1625         obj = i915_gem_object_lookup(file, args->handle);
1626         if (!obj)
1627                 return -ENOENT;
1628
1629         /* Bounds check destination. */
1630         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1631                 ret = -EINVAL;
1632                 goto err;
1633         }
1634
1635         /* Writes not allowed into this read-only object */
1636         if (i915_gem_object_is_readonly(obj)) {
1637                 ret = -EINVAL;
1638                 goto err;
1639         }
1640
1641         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1642
1643         ret = -ENODEV;
1644         if (obj->ops->pwrite)
1645                 ret = obj->ops->pwrite(obj, args);
1646         if (ret != -ENODEV)
1647                 goto err;
1648
1649         ret = i915_gem_object_wait(obj,
1650                                    I915_WAIT_INTERRUPTIBLE |
1651                                    I915_WAIT_ALL,
1652                                    MAX_SCHEDULE_TIMEOUT,
1653                                    to_rps_client(file));
1654         if (ret)
1655                 goto err;
1656
1657         ret = i915_gem_object_pin_pages(obj);
1658         if (ret)
1659                 goto err;
1660
1661         ret = -EFAULT;
1662         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1663          * it would end up going through the fenced access, and we'll get
1664          * different detiling behavior between reading and writing.
1665          * pread/pwrite currently are reading and writing from the CPU
1666          * perspective, requiring manual detiling by the client.
1667          */
1668         if (!i915_gem_object_has_struct_page(obj) ||
1669             cpu_write_needs_clflush(obj))
1670                 /* Note that the gtt paths might fail with non-page-backed user
1671                  * pointers (e.g. gtt mappings when moving data between
1672                  * textures). Fallback to the shmem path in that case.
1673                  */
1674                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1675
1676         if (ret == -EFAULT || ret == -ENOSPC) {
1677                 if (obj->phys_handle)
1678                         ret = i915_gem_phys_pwrite(obj, args, file);
1679                 else
1680                         ret = i915_gem_shmem_pwrite(obj, args);
1681         }
1682
1683         i915_gem_object_unpin_pages(obj);
1684 err:
1685         i915_gem_object_put(obj);
1686         return ret;
1687 }
1688
1689 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1690 {
1691         struct drm_i915_private *i915;
1692         struct list_head *list;
1693         struct i915_vma *vma;
1694
1695         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1696
1697         for_each_ggtt_vma(vma, obj) {
1698                 if (i915_vma_is_active(vma))
1699                         continue;
1700
1701                 if (!drm_mm_node_allocated(&vma->node))
1702                         continue;
1703
1704                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1705         }
1706
1707         i915 = to_i915(obj->base.dev);
1708         spin_lock(&i915->mm.obj_lock);
1709         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1710         list_move_tail(&obj->mm.link, list);
1711         spin_unlock(&i915->mm.obj_lock);
1712 }
1713
1714 /**
1715  * Called when user space prepares to use an object with the CPU, either
1716  * through the mmap ioctl's mapping or a GTT mapping.
1717  * @dev: drm device
1718  * @data: ioctl data blob
1719  * @file: drm file
1720  */
1721 int
1722 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1723                           struct drm_file *file)
1724 {
1725         struct drm_i915_gem_set_domain *args = data;
1726         struct drm_i915_gem_object *obj;
1727         uint32_t read_domains = args->read_domains;
1728         uint32_t write_domain = args->write_domain;
1729         int err;
1730
1731         /* Only handle setting domains to types used by the CPU. */
1732         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1733                 return -EINVAL;
1734
1735         /* Having something in the write domain implies it's in the read
1736          * domain, and only that read domain.  Enforce that in the request.
1737          */
1738         if (write_domain != 0 && read_domains != write_domain)
1739                 return -EINVAL;
1740
1741         obj = i915_gem_object_lookup(file, args->handle);
1742         if (!obj)
1743                 return -ENOENT;
1744
1745         /* Try to flush the object off the GPU without holding the lock.
1746          * We will repeat the flush holding the lock in the normal manner
1747          * to catch cases where we are gazumped.
1748          */
1749         err = i915_gem_object_wait(obj,
1750                                    I915_WAIT_INTERRUPTIBLE |
1751                                    (write_domain ? I915_WAIT_ALL : 0),
1752                                    MAX_SCHEDULE_TIMEOUT,
1753                                    to_rps_client(file));
1754         if (err)
1755                 goto out;
1756
1757         /*
1758          * Proxy objects do not control access to the backing storage, ergo
1759          * they cannot be used as a means to manipulate the cache domain
1760          * tracking for that backing storage. The proxy object is always
1761          * considered to be outside of any cache domain.
1762          */
1763         if (i915_gem_object_is_proxy(obj)) {
1764                 err = -ENXIO;
1765                 goto out;
1766         }
1767
1768         /*
1769          * Flush and acquire obj->pages so that we are coherent through
1770          * direct access in memory with previous cached writes through
1771          * shmemfs and that our cache domain tracking remains valid.
1772          * For example, if the obj->filp was moved to swap without us
1773          * being notified and releasing the pages, we would mistakenly
1774          * continue to assume that the obj remained out of the CPU cached
1775          * domain.
1776          */
1777         err = i915_gem_object_pin_pages(obj);
1778         if (err)
1779                 goto out;
1780
1781         err = i915_mutex_lock_interruptible(dev);
1782         if (err)
1783                 goto out_unpin;
1784
1785         if (read_domains & I915_GEM_DOMAIN_WC)
1786                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1787         else if (read_domains & I915_GEM_DOMAIN_GTT)
1788                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1789         else
1790                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1791
1792         /* And bump the LRU for this access */
1793         i915_gem_object_bump_inactive_ggtt(obj);
1794
1795         mutex_unlock(&dev->struct_mutex);
1796
1797         if (write_domain != 0)
1798                 intel_fb_obj_invalidate(obj,
1799                                         fb_write_origin(obj, write_domain));
1800
1801 out_unpin:
1802         i915_gem_object_unpin_pages(obj);
1803 out:
1804         i915_gem_object_put(obj);
1805         return err;
1806 }
1807
1808 /**
1809  * Called when user space has done writes to this buffer
1810  * @dev: drm device
1811  * @data: ioctl data blob
1812  * @file: drm file
1813  */
1814 int
1815 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1816                          struct drm_file *file)
1817 {
1818         struct drm_i915_gem_sw_finish *args = data;
1819         struct drm_i915_gem_object *obj;
1820
1821         obj = i915_gem_object_lookup(file, args->handle);
1822         if (!obj)
1823                 return -ENOENT;
1824
1825         /*
1826          * Proxy objects are barred from CPU access, so there is no
1827          * need to ban sw_finish as it is a nop.
1828          */
1829
1830         /* Pinned buffers may be scanout, so flush the cache */
1831         i915_gem_object_flush_if_display(obj);
1832         i915_gem_object_put(obj);
1833
1834         return 0;
1835 }
1836
1837 /**
1838  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1839  *                       it is mapped to.
1840  * @dev: drm device
1841  * @data: ioctl data blob
1842  * @file: drm file
1843  *
1844  * While the mapping holds a reference on the contents of the object, it doesn't
1845  * imply a ref on the object itself.
1846  *
1847  * IMPORTANT:
1848  *
1849  * DRM driver writers who look a this function as an example for how to do GEM
1850  * mmap support, please don't implement mmap support like here. The modern way
1851  * to implement DRM mmap support is with an mmap offset ioctl (like
1852  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1853  * That way debug tooling like valgrind will understand what's going on, hiding
1854  * the mmap call in a driver private ioctl will break that. The i915 driver only
1855  * does cpu mmaps this way because we didn't know better.
1856  */
1857 int
1858 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1859                     struct drm_file *file)
1860 {
1861         struct drm_i915_gem_mmap *args = data;
1862         struct drm_i915_gem_object *obj;
1863         unsigned long addr;
1864
1865         if (args->flags & ~(I915_MMAP_WC))
1866                 return -EINVAL;
1867
1868         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1869                 return -ENODEV;
1870
1871         obj = i915_gem_object_lookup(file, args->handle);
1872         if (!obj)
1873                 return -ENOENT;
1874
1875         /* prime objects have no backing filp to GEM mmap
1876          * pages from.
1877          */
1878         if (!obj->base.filp) {
1879                 i915_gem_object_put(obj);
1880                 return -ENXIO;
1881         }
1882
1883         addr = vm_mmap(obj->base.filp, 0, args->size,
1884                        PROT_READ | PROT_WRITE, MAP_SHARED,
1885                        args->offset);
1886         if (args->flags & I915_MMAP_WC) {
1887                 struct mm_struct *mm = current->mm;
1888                 struct vm_area_struct *vma;
1889
1890                 if (down_write_killable(&mm->mmap_sem)) {
1891                         i915_gem_object_put(obj);
1892                         return -EINTR;
1893                 }
1894                 vma = find_vma(mm, addr);
1895                 if (vma)
1896                         vma->vm_page_prot =
1897                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1898                 else
1899                         addr = -ENOMEM;
1900                 up_write(&mm->mmap_sem);
1901
1902                 /* This may race, but that's ok, it only gets set */
1903                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1904         }
1905         i915_gem_object_put(obj);
1906         if (IS_ERR((void *)addr))
1907                 return addr;
1908
1909         args->addr_ptr = (uint64_t) addr;
1910
1911         return 0;
1912 }
1913
1914 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1915 {
1916         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1917 }
1918
1919 /**
1920  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1921  *
1922  * A history of the GTT mmap interface:
1923  *
1924  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1925  *     aligned and suitable for fencing, and still fit into the available
1926  *     mappable space left by the pinned display objects. A classic problem
1927  *     we called the page-fault-of-doom where we would ping-pong between
1928  *     two objects that could not fit inside the GTT and so the memcpy
1929  *     would page one object in at the expense of the other between every
1930  *     single byte.
1931  *
1932  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1933  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1934  *     object is too large for the available space (or simply too large
1935  *     for the mappable aperture!), a view is created instead and faulted
1936  *     into userspace. (This view is aligned and sized appropriately for
1937  *     fenced access.)
1938  *
1939  * 2 - Recognise WC as a separate cache domain so that we can flush the
1940  *     delayed writes via GTT before performing direct access via WC.
1941  *
1942  * Restrictions:
1943  *
1944  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1945  *    hangs on some architectures, corruption on others. An attempt to service
1946  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1947  *
1948  *  * the object must be able to fit into RAM (physical memory, though no
1949  *    limited to the mappable aperture).
1950  *
1951  *
1952  * Caveats:
1953  *
1954  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1955  *    all data to system memory. Subsequent access will not be synchronized.
1956  *
1957  *  * all mappings are revoked on runtime device suspend.
1958  *
1959  *  * there are only 8, 16 or 32 fence registers to share between all users
1960  *    (older machines require fence register for display and blitter access
1961  *    as well). Contention of the fence registers will cause the previous users
1962  *    to be unmapped and any new access will generate new page faults.
1963  *
1964  *  * running out of memory while servicing a fault may generate a SIGBUS,
1965  *    rather than the expected SIGSEGV.
1966  */
1967 int i915_gem_mmap_gtt_version(void)
1968 {
1969         return 2;
1970 }
1971
1972 static inline struct i915_ggtt_view
1973 compute_partial_view(const struct drm_i915_gem_object *obj,
1974                      pgoff_t page_offset,
1975                      unsigned int chunk)
1976 {
1977         struct i915_ggtt_view view;
1978
1979         if (i915_gem_object_is_tiled(obj))
1980                 chunk = roundup(chunk, tile_row_pages(obj));
1981
1982         view.type = I915_GGTT_VIEW_PARTIAL;
1983         view.partial.offset = rounddown(page_offset, chunk);
1984         view.partial.size =
1985                 min_t(unsigned int, chunk,
1986                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1987
1988         /* If the partial covers the entire object, just create a normal VMA. */
1989         if (chunk >= obj->base.size >> PAGE_SHIFT)
1990                 view.type = I915_GGTT_VIEW_NORMAL;
1991
1992         return view;
1993 }
1994
1995 /**
1996  * i915_gem_fault - fault a page into the GTT
1997  * @vmf: fault info
1998  *
1999  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2000  * from userspace.  The fault handler takes care of binding the object to
2001  * the GTT (if needed), allocating and programming a fence register (again,
2002  * only if needed based on whether the old reg is still valid or the object
2003  * is tiled) and inserting a new PTE into the faulting process.
2004  *
2005  * Note that the faulting process may involve evicting existing objects
2006  * from the GTT and/or fence registers to make room.  So performance may
2007  * suffer if the GTT working set is large or there are few fence registers
2008  * left.
2009  *
2010  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2011  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2012  */
2013 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2014 {
2015 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2016         struct vm_area_struct *area = vmf->vma;
2017         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2018         struct drm_device *dev = obj->base.dev;
2019         struct drm_i915_private *dev_priv = to_i915(dev);
2020         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2021         bool write = area->vm_flags & VM_WRITE;
2022         struct i915_vma *vma;
2023         pgoff_t page_offset;
2024         int ret;
2025
2026         /* Sanity check that we allow writing into this object */
2027         if (i915_gem_object_is_readonly(obj) && write)
2028                 return VM_FAULT_SIGBUS;
2029
2030         /* We don't use vmf->pgoff since that has the fake offset */
2031         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2032
2033         trace_i915_gem_object_fault(obj, page_offset, true, write);
2034
2035         /* Try to flush the object off the GPU first without holding the lock.
2036          * Upon acquiring the lock, we will perform our sanity checks and then
2037          * repeat the flush holding the lock in the normal manner to catch cases
2038          * where we are gazumped.
2039          */
2040         ret = i915_gem_object_wait(obj,
2041                                    I915_WAIT_INTERRUPTIBLE,
2042                                    MAX_SCHEDULE_TIMEOUT,
2043                                    NULL);
2044         if (ret)
2045                 goto err;
2046
2047         ret = i915_gem_object_pin_pages(obj);
2048         if (ret)
2049                 goto err;
2050
2051         intel_runtime_pm_get(dev_priv);
2052
2053         ret = i915_mutex_lock_interruptible(dev);
2054         if (ret)
2055                 goto err_rpm;
2056
2057         /* Access to snoopable pages through the GTT is incoherent. */
2058         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2059                 ret = -EFAULT;
2060                 goto err_unlock;
2061         }
2062
2063
2064         /* Now pin it into the GTT as needed */
2065         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2066                                        PIN_MAPPABLE |
2067                                        PIN_NONBLOCK |
2068                                        PIN_NONFAULT);
2069         if (IS_ERR(vma)) {
2070                 /* Use a partial view if it is bigger than available space */
2071                 struct i915_ggtt_view view =
2072                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2073                 unsigned int flags;
2074
2075                 flags = PIN_MAPPABLE;
2076                 if (view.type == I915_GGTT_VIEW_NORMAL)
2077                         flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2078
2079                 /*
2080                  * Userspace is now writing through an untracked VMA, abandon
2081                  * all hope that the hardware is able to track future writes.
2082                  */
2083                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2084
2085                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2086                 if (IS_ERR(vma) && !view.type) {
2087                         flags = PIN_MAPPABLE;
2088                         view.type = I915_GGTT_VIEW_PARTIAL;
2089                         vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2090                 }
2091         }
2092         if (IS_ERR(vma)) {
2093                 ret = PTR_ERR(vma);
2094                 goto err_unlock;
2095         }
2096
2097         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2098         if (ret)
2099                 goto err_unpin;
2100
2101         ret = i915_vma_pin_fence(vma);
2102         if (ret)
2103                 goto err_unpin;
2104
2105         /* Finally, remap it using the new GTT offset */
2106         ret = remap_io_mapping(area,
2107                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2108                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2109                                min_t(u64, vma->size, area->vm_end - area->vm_start),
2110                                &ggtt->iomap);
2111         if (ret)
2112                 goto err_fence;
2113
2114         /* Mark as being mmapped into userspace for later revocation */
2115         assert_rpm_wakelock_held(dev_priv);
2116         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2117                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2118         GEM_BUG_ON(!obj->userfault_count);
2119
2120         i915_vma_set_ggtt_write(vma);
2121
2122 err_fence:
2123         i915_vma_unpin_fence(vma);
2124 err_unpin:
2125         __i915_vma_unpin(vma);
2126 err_unlock:
2127         mutex_unlock(&dev->struct_mutex);
2128 err_rpm:
2129         intel_runtime_pm_put(dev_priv);
2130         i915_gem_object_unpin_pages(obj);
2131 err:
2132         switch (ret) {
2133         case -EIO:
2134                 /*
2135                  * We eat errors when the gpu is terminally wedged to avoid
2136                  * userspace unduly crashing (gl has no provisions for mmaps to
2137                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2138                  * and so needs to be reported.
2139                  */
2140                 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2141                         return VM_FAULT_SIGBUS;
2142                 /* else: fall through */
2143         case -EAGAIN:
2144                 /*
2145                  * EAGAIN means the gpu is hung and we'll wait for the error
2146                  * handler to reset everything when re-faulting in
2147                  * i915_mutex_lock_interruptible.
2148                  */
2149         case 0:
2150         case -ERESTARTSYS:
2151         case -EINTR:
2152         case -EBUSY:
2153                 /*
2154                  * EBUSY is ok: this just means that another thread
2155                  * already did the job.
2156                  */
2157                 return VM_FAULT_NOPAGE;
2158         case -ENOMEM:
2159                 return VM_FAULT_OOM;
2160         case -ENOSPC:
2161         case -EFAULT:
2162                 return VM_FAULT_SIGBUS;
2163         default:
2164                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2165                 return VM_FAULT_SIGBUS;
2166         }
2167 }
2168
2169 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2170 {
2171         struct i915_vma *vma;
2172
2173         GEM_BUG_ON(!obj->userfault_count);
2174
2175         obj->userfault_count = 0;
2176         list_del(&obj->userfault_link);
2177         drm_vma_node_unmap(&obj->base.vma_node,
2178                            obj->base.dev->anon_inode->i_mapping);
2179
2180         for_each_ggtt_vma(vma, obj)
2181                 i915_vma_unset_userfault(vma);
2182 }
2183
2184 /**
2185  * i915_gem_release_mmap - remove physical page mappings
2186  * @obj: obj in question
2187  *
2188  * Preserve the reservation of the mmapping with the DRM core code, but
2189  * relinquish ownership of the pages back to the system.
2190  *
2191  * It is vital that we remove the page mapping if we have mapped a tiled
2192  * object through the GTT and then lose the fence register due to
2193  * resource pressure. Similarly if the object has been moved out of the
2194  * aperture, than pages mapped into userspace must be revoked. Removing the
2195  * mapping will then trigger a page fault on the next user access, allowing
2196  * fixup by i915_gem_fault().
2197  */
2198 void
2199 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2200 {
2201         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2202
2203         /* Serialisation between user GTT access and our code depends upon
2204          * revoking the CPU's PTE whilst the mutex is held. The next user
2205          * pagefault then has to wait until we release the mutex.
2206          *
2207          * Note that RPM complicates somewhat by adding an additional
2208          * requirement that operations to the GGTT be made holding the RPM
2209          * wakeref.
2210          */
2211         lockdep_assert_held(&i915->drm.struct_mutex);
2212         intel_runtime_pm_get(i915);
2213
2214         if (!obj->userfault_count)
2215                 goto out;
2216
2217         __i915_gem_object_release_mmap(obj);
2218
2219         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2220          * memory transactions from userspace before we return. The TLB
2221          * flushing implied above by changing the PTE above *should* be
2222          * sufficient, an extra barrier here just provides us with a bit
2223          * of paranoid documentation about our requirement to serialise
2224          * memory writes before touching registers / GSM.
2225          */
2226         wmb();
2227
2228 out:
2229         intel_runtime_pm_put(i915);
2230 }
2231
2232 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2233 {
2234         struct drm_i915_gem_object *obj, *on;
2235         int i;
2236
2237         /*
2238          * Only called during RPM suspend. All users of the userfault_list
2239          * must be holding an RPM wakeref to ensure that this can not
2240          * run concurrently with themselves (and use the struct_mutex for
2241          * protection between themselves).
2242          */
2243
2244         list_for_each_entry_safe(obj, on,
2245                                  &dev_priv->mm.userfault_list, userfault_link)
2246                 __i915_gem_object_release_mmap(obj);
2247
2248         /* The fence will be lost when the device powers down. If any were
2249          * in use by hardware (i.e. they are pinned), we should not be powering
2250          * down! All other fences will be reacquired by the user upon waking.
2251          */
2252         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2253                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2254
2255                 /* Ideally we want to assert that the fence register is not
2256                  * live at this point (i.e. that no piece of code will be
2257                  * trying to write through fence + GTT, as that both violates
2258                  * our tracking of activity and associated locking/barriers,
2259                  * but also is illegal given that the hw is powered down).
2260                  *
2261                  * Previously we used reg->pin_count as a "liveness" indicator.
2262                  * That is not sufficient, and we need a more fine-grained
2263                  * tool if we want to have a sanity check here.
2264                  */
2265
2266                 if (!reg->vma)
2267                         continue;
2268
2269                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2270                 reg->dirty = true;
2271         }
2272 }
2273
2274 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275 {
2276         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277         int err;
2278
2279         err = drm_gem_create_mmap_offset(&obj->base);
2280         if (likely(!err))
2281                 return 0;
2282
2283         /* Attempt to reap some mmap space from dead objects */
2284         do {
2285                 err = i915_gem_wait_for_idle(dev_priv,
2286                                              I915_WAIT_INTERRUPTIBLE,
2287                                              MAX_SCHEDULE_TIMEOUT);
2288                 if (err)
2289                         break;
2290
2291                 i915_gem_drain_freed_objects(dev_priv);
2292                 err = drm_gem_create_mmap_offset(&obj->base);
2293                 if (!err)
2294                         break;
2295
2296         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2297
2298         return err;
2299 }
2300
2301 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2302 {
2303         drm_gem_free_mmap_offset(&obj->base);
2304 }
2305
2306 int
2307 i915_gem_mmap_gtt(struct drm_file *file,
2308                   struct drm_device *dev,
2309                   uint32_t handle,
2310                   uint64_t *offset)
2311 {
2312         struct drm_i915_gem_object *obj;
2313         int ret;
2314
2315         obj = i915_gem_object_lookup(file, handle);
2316         if (!obj)
2317                 return -ENOENT;
2318
2319         ret = i915_gem_object_create_mmap_offset(obj);
2320         if (ret == 0)
2321                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2322
2323         i915_gem_object_put(obj);
2324         return ret;
2325 }
2326
2327 /**
2328  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2329  * @dev: DRM device
2330  * @data: GTT mapping ioctl data
2331  * @file: GEM object info
2332  *
2333  * Simply returns the fake offset to userspace so it can mmap it.
2334  * The mmap call will end up in drm_gem_mmap(), which will set things
2335  * up so we can get faults in the handler above.
2336  *
2337  * The fault handler will take care of binding the object into the GTT
2338  * (since it may have been evicted to make room for something), allocating
2339  * a fence register, and mapping the appropriate aperture address into
2340  * userspace.
2341  */
2342 int
2343 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2344                         struct drm_file *file)
2345 {
2346         struct drm_i915_gem_mmap_gtt *args = data;
2347
2348         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2349 }
2350
2351 /* Immediately discard the backing storage */
2352 static void
2353 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2354 {
2355         i915_gem_object_free_mmap_offset(obj);
2356
2357         if (obj->base.filp == NULL)
2358                 return;
2359
2360         /* Our goal here is to return as much of the memory as
2361          * is possible back to the system as we are called from OOM.
2362          * To do this we must instruct the shmfs to drop all of its
2363          * backing pages, *now*.
2364          */
2365         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2366         obj->mm.madv = __I915_MADV_PURGED;
2367         obj->mm.pages = ERR_PTR(-EFAULT);
2368 }
2369
2370 /* Try to discard unwanted pages */
2371 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2372 {
2373         struct address_space *mapping;
2374
2375         lockdep_assert_held(&obj->mm.lock);
2376         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2377
2378         switch (obj->mm.madv) {
2379         case I915_MADV_DONTNEED:
2380                 i915_gem_object_truncate(obj);
2381         case __I915_MADV_PURGED:
2382                 return;
2383         }
2384
2385         if (obj->base.filp == NULL)
2386                 return;
2387
2388         mapping = obj->base.filp->f_mapping,
2389         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2390 }
2391
2392 static void
2393 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2394                               struct sg_table *pages)
2395 {
2396         struct sgt_iter sgt_iter;
2397         struct page *page;
2398
2399         __i915_gem_object_release_shmem(obj, pages, true);
2400
2401         i915_gem_gtt_finish_pages(obj, pages);
2402
2403         if (i915_gem_object_needs_bit17_swizzle(obj))
2404                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2405
2406         for_each_sgt_page(page, sgt_iter, pages) {
2407                 if (obj->mm.dirty)
2408                         set_page_dirty(page);
2409
2410                 if (obj->mm.madv == I915_MADV_WILLNEED)
2411                         mark_page_accessed(page);
2412
2413                 put_page(page);
2414         }
2415         obj->mm.dirty = false;
2416
2417         sg_free_table(pages);
2418         kfree(pages);
2419 }
2420
2421 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2422 {
2423         struct radix_tree_iter iter;
2424         void __rcu **slot;
2425
2426         rcu_read_lock();
2427         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2428                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2429         rcu_read_unlock();
2430 }
2431
2432 static struct sg_table *
2433 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2434 {
2435         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2436         struct sg_table *pages;
2437
2438         pages = fetch_and_zero(&obj->mm.pages);
2439         if (!pages)
2440                 return NULL;
2441
2442         spin_lock(&i915->mm.obj_lock);
2443         list_del(&obj->mm.link);
2444         spin_unlock(&i915->mm.obj_lock);
2445
2446         if (obj->mm.mapping) {
2447                 void *ptr;
2448
2449                 ptr = page_mask_bits(obj->mm.mapping);
2450                 if (is_vmalloc_addr(ptr))
2451                         vunmap(ptr);
2452                 else
2453                         kunmap(kmap_to_page(ptr));
2454
2455                 obj->mm.mapping = NULL;
2456         }
2457
2458         __i915_gem_object_reset_page_iter(obj);
2459         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2460
2461         return pages;
2462 }
2463
2464 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2465                                  enum i915_mm_subclass subclass)
2466 {
2467         struct sg_table *pages;
2468
2469         if (i915_gem_object_has_pinned_pages(obj))
2470                 return;
2471
2472         GEM_BUG_ON(obj->bind_count);
2473         if (!i915_gem_object_has_pages(obj))
2474                 return;
2475
2476         /* May be called by shrinker from within get_pages() (on another bo) */
2477         mutex_lock_nested(&obj->mm.lock, subclass);
2478         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2479                 goto unlock;
2480
2481         /*
2482          * ->put_pages might need to allocate memory for the bit17 swizzle
2483          * array, hence protect them from being reaped by removing them from gtt
2484          * lists early.
2485          */
2486         pages = __i915_gem_object_unset_pages(obj);
2487         if (!IS_ERR(pages))
2488                 obj->ops->put_pages(obj, pages);
2489
2490 unlock:
2491         mutex_unlock(&obj->mm.lock);
2492 }
2493
2494 static bool i915_sg_trim(struct sg_table *orig_st)
2495 {
2496         struct sg_table new_st;
2497         struct scatterlist *sg, *new_sg;
2498         unsigned int i;
2499
2500         if (orig_st->nents == orig_st->orig_nents)
2501                 return false;
2502
2503         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2504                 return false;
2505
2506         new_sg = new_st.sgl;
2507         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2508                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2509                 /* called before being DMA mapped, no need to copy sg->dma_* */
2510                 new_sg = sg_next(new_sg);
2511         }
2512         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2513
2514         sg_free_table(orig_st);
2515
2516         *orig_st = new_st;
2517         return true;
2518 }
2519
2520 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2521 {
2522         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2523         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2524         unsigned long i;
2525         struct address_space *mapping;
2526         struct sg_table *st;
2527         struct scatterlist *sg;
2528         struct sgt_iter sgt_iter;
2529         struct page *page;
2530         unsigned long last_pfn = 0;     /* suppress gcc warning */
2531         unsigned int max_segment = i915_sg_segment_size();
2532         unsigned int sg_page_sizes;
2533         gfp_t noreclaim;
2534         int ret;
2535
2536         /*
2537          * Assert that the object is not currently in any GPU domain. As it
2538          * wasn't in the GTT, there shouldn't be any way it could have been in
2539          * a GPU cache
2540          */
2541         GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2542         GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2543
2544         /*
2545          * If there's no chance of allocating enough pages for the whole
2546          * object, bail early.
2547          */
2548         if (page_count > totalram_pages)
2549                 return -ENOMEM;
2550
2551         st = kmalloc(sizeof(*st), GFP_KERNEL);
2552         if (st == NULL)
2553                 return -ENOMEM;
2554
2555 rebuild_st:
2556         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2557                 kfree(st);
2558                 return -ENOMEM;
2559         }
2560
2561         /*
2562          * Get the list of pages out of our struct file.  They'll be pinned
2563          * at this point until we release them.
2564          *
2565          * Fail silently without starting the shrinker
2566          */
2567         mapping = obj->base.filp->f_mapping;
2568         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2569         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2570
2571         sg = st->sgl;
2572         st->nents = 0;
2573         sg_page_sizes = 0;
2574         for (i = 0; i < page_count; i++) {
2575                 const unsigned int shrink[] = {
2576                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2577                         0,
2578                 }, *s = shrink;
2579                 gfp_t gfp = noreclaim;
2580
2581                 do {
2582                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2583                         if (likely(!IS_ERR(page)))
2584                                 break;
2585
2586                         if (!*s) {
2587                                 ret = PTR_ERR(page);
2588                                 goto err_sg;
2589                         }
2590
2591                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2592                         cond_resched();
2593
2594                         /*
2595                          * We've tried hard to allocate the memory by reaping
2596                          * our own buffer, now let the real VM do its job and
2597                          * go down in flames if truly OOM.
2598                          *
2599                          * However, since graphics tend to be disposable,
2600                          * defer the oom here by reporting the ENOMEM back
2601                          * to userspace.
2602                          */
2603                         if (!*s) {
2604                                 /* reclaim and warn, but no oom */
2605                                 gfp = mapping_gfp_mask(mapping);
2606
2607                                 /*
2608                                  * Our bo are always dirty and so we require
2609                                  * kswapd to reclaim our pages (direct reclaim
2610                                  * does not effectively begin pageout of our
2611                                  * buffers on its own). However, direct reclaim
2612                                  * only waits for kswapd when under allocation
2613                                  * congestion. So as a result __GFP_RECLAIM is
2614                                  * unreliable and fails to actually reclaim our
2615                                  * dirty pages -- unless you try over and over
2616                                  * again with !__GFP_NORETRY. However, we still
2617                                  * want to fail this allocation rather than
2618                                  * trigger the out-of-memory killer and for
2619                                  * this we want __GFP_RETRY_MAYFAIL.
2620                                  */
2621                                 gfp |= __GFP_RETRY_MAYFAIL;
2622                         }
2623                 } while (1);
2624
2625                 if (!i ||
2626                     sg->length >= max_segment ||
2627                     page_to_pfn(page) != last_pfn + 1) {
2628                         if (i) {
2629                                 sg_page_sizes |= sg->length;
2630                                 sg = sg_next(sg);
2631                         }
2632                         st->nents++;
2633                         sg_set_page(sg, page, PAGE_SIZE, 0);
2634                 } else {
2635                         sg->length += PAGE_SIZE;
2636                 }
2637                 last_pfn = page_to_pfn(page);
2638
2639                 /* Check that the i965g/gm workaround works. */
2640                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2641         }
2642         if (sg) { /* loop terminated early; short sg table */
2643                 sg_page_sizes |= sg->length;
2644                 sg_mark_end(sg);
2645         }
2646
2647         /* Trim unused sg entries to avoid wasting memory. */
2648         i915_sg_trim(st);
2649
2650         ret = i915_gem_gtt_prepare_pages(obj, st);
2651         if (ret) {
2652                 /*
2653                  * DMA remapping failed? One possible cause is that
2654                  * it could not reserve enough large entries, asking
2655                  * for PAGE_SIZE chunks instead may be helpful.
2656                  */
2657                 if (max_segment > PAGE_SIZE) {
2658                         for_each_sgt_page(page, sgt_iter, st)
2659                                 put_page(page);
2660                         sg_free_table(st);
2661
2662                         max_segment = PAGE_SIZE;
2663                         goto rebuild_st;
2664                 } else {
2665                         dev_warn(&dev_priv->drm.pdev->dev,
2666                                  "Failed to DMA remap %lu pages\n",
2667                                  page_count);
2668                         goto err_pages;
2669                 }
2670         }
2671
2672         if (i915_gem_object_needs_bit17_swizzle(obj))
2673                 i915_gem_object_do_bit_17_swizzle(obj, st);
2674
2675         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2676
2677         return 0;
2678
2679 err_sg:
2680         sg_mark_end(sg);
2681 err_pages:
2682         for_each_sgt_page(page, sgt_iter, st)
2683                 put_page(page);
2684         sg_free_table(st);
2685         kfree(st);
2686
2687         /*
2688          * shmemfs first checks if there is enough memory to allocate the page
2689          * and reports ENOSPC should there be insufficient, along with the usual
2690          * ENOMEM for a genuine allocation failure.
2691          *
2692          * We use ENOSPC in our driver to mean that we have run out of aperture
2693          * space and so want to translate the error from shmemfs back to our
2694          * usual understanding of ENOMEM.
2695          */
2696         if (ret == -ENOSPC)
2697                 ret = -ENOMEM;
2698
2699         return ret;
2700 }
2701
2702 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2703                                  struct sg_table *pages,
2704                                  unsigned int sg_page_sizes)
2705 {
2706         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2707         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2708         int i;
2709
2710         lockdep_assert_held(&obj->mm.lock);
2711
2712         obj->mm.get_page.sg_pos = pages->sgl;
2713         obj->mm.get_page.sg_idx = 0;
2714
2715         obj->mm.pages = pages;
2716
2717         if (i915_gem_object_is_tiled(obj) &&
2718             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2719                 GEM_BUG_ON(obj->mm.quirked);
2720                 __i915_gem_object_pin_pages(obj);
2721                 obj->mm.quirked = true;
2722         }
2723
2724         GEM_BUG_ON(!sg_page_sizes);
2725         obj->mm.page_sizes.phys = sg_page_sizes;
2726
2727         /*
2728          * Calculate the supported page-sizes which fit into the given
2729          * sg_page_sizes. This will give us the page-sizes which we may be able
2730          * to use opportunistically when later inserting into the GTT. For
2731          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2732          * 64K or 4K pages, although in practice this will depend on a number of
2733          * other factors.
2734          */
2735         obj->mm.page_sizes.sg = 0;
2736         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2737                 if (obj->mm.page_sizes.phys & ~0u << i)
2738                         obj->mm.page_sizes.sg |= BIT(i);
2739         }
2740         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2741
2742         spin_lock(&i915->mm.obj_lock);
2743         list_add(&obj->mm.link, &i915->mm.unbound_list);
2744         spin_unlock(&i915->mm.obj_lock);
2745 }
2746
2747 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2748 {
2749         int err;
2750
2751         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2752                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2753                 return -EFAULT;
2754         }
2755
2756         err = obj->ops->get_pages(obj);
2757         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2758
2759         return err;
2760 }
2761
2762 /* Ensure that the associated pages are gathered from the backing storage
2763  * and pinned into our object. i915_gem_object_pin_pages() may be called
2764  * multiple times before they are released by a single call to
2765  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2766  * either as a result of memory pressure (reaping pages under the shrinker)
2767  * or as the object is itself released.
2768  */
2769 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2770 {
2771         int err;
2772
2773         err = mutex_lock_interruptible(&obj->mm.lock);
2774         if (err)
2775                 return err;
2776
2777         if (unlikely(!i915_gem_object_has_pages(obj))) {
2778                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2779
2780                 err = ____i915_gem_object_get_pages(obj);
2781                 if (err)
2782                         goto unlock;
2783
2784                 smp_mb__before_atomic();
2785         }
2786         atomic_inc(&obj->mm.pages_pin_count);
2787
2788 unlock:
2789         mutex_unlock(&obj->mm.lock);
2790         return err;
2791 }
2792
2793 /* The 'mapping' part of i915_gem_object_pin_map() below */
2794 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2795                                  enum i915_map_type type)
2796 {
2797         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2798         struct sg_table *sgt = obj->mm.pages;
2799         struct sgt_iter sgt_iter;
2800         struct page *page;
2801         struct page *stack_pages[32];
2802         struct page **pages = stack_pages;
2803         unsigned long i = 0;
2804         pgprot_t pgprot;
2805         void *addr;
2806
2807         /* A single page can always be kmapped */
2808         if (n_pages == 1 && type == I915_MAP_WB)
2809                 return kmap(sg_page(sgt->sgl));
2810
2811         if (n_pages > ARRAY_SIZE(stack_pages)) {
2812                 /* Too big for stack -- allocate temporary array instead */
2813                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2814                 if (!pages)
2815                         return NULL;
2816         }
2817
2818         for_each_sgt_page(page, sgt_iter, sgt)
2819                 pages[i++] = page;
2820
2821         /* Check that we have the expected number of pages */
2822         GEM_BUG_ON(i != n_pages);
2823
2824         switch (type) {
2825         default:
2826                 MISSING_CASE(type);
2827                 /* fallthrough to use PAGE_KERNEL anyway */
2828         case I915_MAP_WB:
2829                 pgprot = PAGE_KERNEL;
2830                 break;
2831         case I915_MAP_WC:
2832                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2833                 break;
2834         }
2835         addr = vmap(pages, n_pages, 0, pgprot);
2836
2837         if (pages != stack_pages)
2838                 kvfree(pages);
2839
2840         return addr;
2841 }
2842
2843 /* get, pin, and map the pages of the object into kernel space */
2844 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2845                               enum i915_map_type type)
2846 {
2847         enum i915_map_type has_type;
2848         bool pinned;
2849         void *ptr;
2850         int ret;
2851
2852         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2853                 return ERR_PTR(-ENXIO);
2854
2855         ret = mutex_lock_interruptible(&obj->mm.lock);
2856         if (ret)
2857                 return ERR_PTR(ret);
2858
2859         pinned = !(type & I915_MAP_OVERRIDE);
2860         type &= ~I915_MAP_OVERRIDE;
2861
2862         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2863                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2864                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2865
2866                         ret = ____i915_gem_object_get_pages(obj);
2867                         if (ret)
2868                                 goto err_unlock;
2869
2870                         smp_mb__before_atomic();
2871                 }
2872                 atomic_inc(&obj->mm.pages_pin_count);
2873                 pinned = false;
2874         }
2875         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2876
2877         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2878         if (ptr && has_type != type) {
2879                 if (pinned) {
2880                         ret = -EBUSY;
2881                         goto err_unpin;
2882                 }
2883
2884                 if (is_vmalloc_addr(ptr))
2885                         vunmap(ptr);
2886                 else
2887                         kunmap(kmap_to_page(ptr));
2888
2889                 ptr = obj->mm.mapping = NULL;
2890         }
2891
2892         if (!ptr) {
2893                 ptr = i915_gem_object_map(obj, type);
2894                 if (!ptr) {
2895                         ret = -ENOMEM;
2896                         goto err_unpin;
2897                 }
2898
2899                 obj->mm.mapping = page_pack_bits(ptr, type);
2900         }
2901
2902 out_unlock:
2903         mutex_unlock(&obj->mm.lock);
2904         return ptr;
2905
2906 err_unpin:
2907         atomic_dec(&obj->mm.pages_pin_count);
2908 err_unlock:
2909         ptr = ERR_PTR(ret);
2910         goto out_unlock;
2911 }
2912
2913 static int
2914 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2915                            const struct drm_i915_gem_pwrite *arg)
2916 {
2917         struct address_space *mapping = obj->base.filp->f_mapping;
2918         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2919         u64 remain, offset;
2920         unsigned int pg;
2921
2922         /* Before we instantiate/pin the backing store for our use, we
2923          * can prepopulate the shmemfs filp efficiently using a write into
2924          * the pagecache. We avoid the penalty of instantiating all the
2925          * pages, important if the user is just writing to a few and never
2926          * uses the object on the GPU, and using a direct write into shmemfs
2927          * allows it to avoid the cost of retrieving a page (either swapin
2928          * or clearing-before-use) before it is overwritten.
2929          */
2930         if (i915_gem_object_has_pages(obj))
2931                 return -ENODEV;
2932
2933         if (obj->mm.madv != I915_MADV_WILLNEED)
2934                 return -EFAULT;
2935
2936         /* Before the pages are instantiated the object is treated as being
2937          * in the CPU domain. The pages will be clflushed as required before
2938          * use, and we can freely write into the pages directly. If userspace
2939          * races pwrite with any other operation; corruption will ensue -
2940          * that is userspace's prerogative!
2941          */
2942
2943         remain = arg->size;
2944         offset = arg->offset;
2945         pg = offset_in_page(offset);
2946
2947         do {
2948                 unsigned int len, unwritten;
2949                 struct page *page;
2950                 void *data, *vaddr;
2951                 int err;
2952
2953                 len = PAGE_SIZE - pg;
2954                 if (len > remain)
2955                         len = remain;
2956
2957                 err = pagecache_write_begin(obj->base.filp, mapping,
2958                                             offset, len, 0,
2959                                             &page, &data);
2960                 if (err < 0)
2961                         return err;
2962
2963                 vaddr = kmap(page);
2964                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2965                 kunmap(page);
2966
2967                 err = pagecache_write_end(obj->base.filp, mapping,
2968                                           offset, len, len - unwritten,
2969                                           page, data);
2970                 if (err < 0)
2971                         return err;
2972
2973                 if (unwritten)
2974                         return -EFAULT;
2975
2976                 remain -= len;
2977                 user_data += len;
2978                 offset += len;
2979                 pg = 0;
2980         } while (remain);
2981
2982         return 0;
2983 }
2984
2985 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2986                                         const struct i915_gem_context *ctx)
2987 {
2988         unsigned int score;
2989         unsigned long prev_hang;
2990
2991         if (i915_gem_context_is_banned(ctx))
2992                 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2993         else
2994                 score = 0;
2995
2996         prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2997         if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2998                 score += I915_CLIENT_SCORE_HANG_FAST;
2999
3000         if (score) {
3001                 atomic_add(score, &file_priv->ban_score);
3002
3003                 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3004                                  ctx->name, score,
3005                                  atomic_read(&file_priv->ban_score));
3006         }
3007 }
3008
3009 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3010 {
3011         unsigned int score;
3012         bool banned, bannable;
3013
3014         atomic_inc(&ctx->guilty_count);
3015
3016         bannable = i915_gem_context_is_bannable(ctx);
3017         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3018         banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3019
3020         /* Cool contexts don't accumulate client ban score */
3021         if (!bannable)
3022                 return;
3023
3024         if (banned) {
3025                 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3026                                  ctx->name, atomic_read(&ctx->guilty_count),
3027                                  score);
3028                 i915_gem_context_set_banned(ctx);
3029         }
3030
3031         if (!IS_ERR_OR_NULL(ctx->file_priv))
3032                 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3033 }
3034
3035 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3036 {
3037         atomic_inc(&ctx->active_count);
3038 }
3039
3040 struct i915_request *
3041 i915_gem_find_active_request(struct intel_engine_cs *engine)
3042 {
3043         struct i915_request *request, *active = NULL;
3044         unsigned long flags;
3045
3046         /*
3047          * We are called by the error capture, reset and to dump engine
3048          * state at random points in time. In particular, note that neither is
3049          * crucially ordered with an interrupt. After a hang, the GPU is dead
3050          * and we assume that no more writes can happen (we waited long enough
3051          * for all writes that were in transaction to be flushed) - adding an
3052          * extra delay for a recent interrupt is pointless. Hence, we do
3053          * not need an engine->irq_seqno_barrier() before the seqno reads.
3054          * At all other times, we must assume the GPU is still running, but
3055          * we only care about the snapshot of this moment.
3056          */
3057         spin_lock_irqsave(&engine->timeline.lock, flags);
3058         list_for_each_entry(request, &engine->timeline.requests, link) {
3059                 if (__i915_request_completed(request, request->global_seqno))
3060                         continue;
3061
3062                 active = request;
3063                 break;
3064         }
3065         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3066
3067         return active;
3068 }
3069
3070 /*
3071  * Ensure irq handler finishes, and not run again.
3072  * Also return the active request so that we only search for it once.
3073  */
3074 struct i915_request *
3075 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3076 {
3077         struct i915_request *request;
3078
3079         /*
3080          * During the reset sequence, we must prevent the engine from
3081          * entering RC6. As the context state is undefined until we restart
3082          * the engine, if it does enter RC6 during the reset, the state
3083          * written to the powercontext is undefined and so we may lose
3084          * GPU state upon resume, i.e. fail to restart after a reset.
3085          */
3086         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3087
3088         request = engine->reset.prepare(engine);
3089         if (request && request->fence.error == -EIO)
3090                 request = ERR_PTR(-EIO); /* Previous reset failed! */
3091
3092         return request;
3093 }
3094
3095 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3096 {
3097         struct intel_engine_cs *engine;
3098         struct i915_request *request;
3099         enum intel_engine_id id;
3100         int err = 0;
3101
3102         for_each_engine(engine, dev_priv, id) {
3103                 request = i915_gem_reset_prepare_engine(engine);
3104                 if (IS_ERR(request)) {
3105                         err = PTR_ERR(request);
3106                         continue;
3107                 }
3108
3109                 engine->hangcheck.active_request = request;
3110         }
3111
3112         i915_gem_revoke_fences(dev_priv);
3113         intel_uc_sanitize(dev_priv);
3114
3115         return err;
3116 }
3117
3118 static void engine_skip_context(struct i915_request *request)
3119 {
3120         struct intel_engine_cs *engine = request->engine;
3121         struct i915_gem_context *hung_ctx = request->gem_context;
3122         struct i915_timeline *timeline = request->timeline;
3123         unsigned long flags;
3124
3125         GEM_BUG_ON(timeline == &engine->timeline);
3126
3127         spin_lock_irqsave(&engine->timeline.lock, flags);
3128         spin_lock(&timeline->lock);
3129
3130         list_for_each_entry_continue(request, &engine->timeline.requests, link)
3131                 if (request->gem_context == hung_ctx)
3132                         i915_request_skip(request, -EIO);
3133
3134         list_for_each_entry(request, &timeline->requests, link)
3135                 i915_request_skip(request, -EIO);
3136
3137         spin_unlock(&timeline->lock);
3138         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3139 }
3140
3141 /* Returns the request if it was guilty of the hang */
3142 static struct i915_request *
3143 i915_gem_reset_request(struct intel_engine_cs *engine,
3144                        struct i915_request *request,
3145                        bool stalled)
3146 {
3147         /* The guilty request will get skipped on a hung engine.
3148          *
3149          * Users of client default contexts do not rely on logical
3150          * state preserved between batches so it is safe to execute
3151          * queued requests following the hang. Non default contexts
3152          * rely on preserved state, so skipping a batch loses the
3153          * evolution of the state and it needs to be considered corrupted.
3154          * Executing more queued batches on top of corrupted state is
3155          * risky. But we take the risk by trying to advance through
3156          * the queued requests in order to make the client behaviour
3157          * more predictable around resets, by not throwing away random
3158          * amount of batches it has prepared for execution. Sophisticated
3159          * clients can use gem_reset_stats_ioctl and dma fence status
3160          * (exported via sync_file info ioctl on explicit fences) to observe
3161          * when it loses the context state and should rebuild accordingly.
3162          *
3163          * The context ban, and ultimately the client ban, mechanism are safety
3164          * valves if client submission ends up resulting in nothing more than
3165          * subsequent hangs.
3166          */
3167
3168         if (i915_request_completed(request)) {
3169                 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3170                           engine->name, request->global_seqno,
3171                           request->fence.context, request->fence.seqno,
3172                           intel_engine_get_seqno(engine));
3173                 stalled = false;
3174         }
3175
3176         if (stalled) {
3177                 i915_gem_context_mark_guilty(request->gem_context);
3178                 i915_request_skip(request, -EIO);
3179
3180                 /* If this context is now banned, skip all pending requests. */
3181                 if (i915_gem_context_is_banned(request->gem_context))
3182                         engine_skip_context(request);
3183         } else {
3184                 /*
3185                  * Since this is not the hung engine, it may have advanced
3186                  * since the hang declaration. Double check by refinding
3187                  * the active request at the time of the reset.
3188                  */
3189                 request = i915_gem_find_active_request(engine);
3190                 if (request) {
3191                         unsigned long flags;
3192
3193                         i915_gem_context_mark_innocent(request->gem_context);
3194                         dma_fence_set_error(&request->fence, -EAGAIN);
3195
3196                         /* Rewind the engine to replay the incomplete rq */
3197                         spin_lock_irqsave(&engine->timeline.lock, flags);
3198                         request = list_prev_entry(request, link);
3199                         if (&request->link == &engine->timeline.requests)
3200                                 request = NULL;
3201                         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3202                 }
3203         }
3204
3205         return request;
3206 }
3207
3208 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3209                            struct i915_request *request,
3210                            bool stalled)
3211 {
3212         /*
3213          * Make sure this write is visible before we re-enable the interrupt
3214          * handlers on another CPU, as tasklet_enable() resolves to just
3215          * a compiler barrier which is insufficient for our purpose here.
3216          */
3217         smp_store_mb(engine->irq_posted, 0);
3218
3219         if (request)
3220                 request = i915_gem_reset_request(engine, request, stalled);
3221
3222         /* Setup the CS to resume from the breadcrumb of the hung request */
3223         engine->reset.reset(engine, request);
3224 }
3225
3226 void i915_gem_reset(struct drm_i915_private *dev_priv,
3227                     unsigned int stalled_mask)
3228 {
3229         struct intel_engine_cs *engine;
3230         enum intel_engine_id id;
3231
3232         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3233
3234         i915_retire_requests(dev_priv);
3235
3236         for_each_engine(engine, dev_priv, id) {
3237                 struct intel_context *ce;
3238
3239                 i915_gem_reset_engine(engine,
3240                                       engine->hangcheck.active_request,
3241                                       stalled_mask & ENGINE_MASK(id));
3242                 ce = fetch_and_zero(&engine->last_retired_context);
3243                 if (ce)
3244                         intel_context_unpin(ce);
3245
3246                 /*
3247                  * Ostensibily, we always want a context loaded for powersaving,
3248                  * so if the engine is idle after the reset, send a request
3249                  * to load our scratch kernel_context.
3250                  *
3251                  * More mysteriously, if we leave the engine idle after a reset,
3252                  * the next userspace batch may hang, with what appears to be
3253                  * an incoherent read by the CS (presumably stale TLB). An
3254                  * empty request appears sufficient to paper over the glitch.
3255                  */
3256                 if (intel_engine_is_idle(engine)) {
3257                         struct i915_request *rq;
3258
3259                         rq = i915_request_alloc(engine,
3260                                                 dev_priv->kernel_context);
3261                         if (!IS_ERR(rq))
3262                                 i915_request_add(rq);
3263                 }
3264         }
3265
3266         i915_gem_restore_fences(dev_priv);
3267 }
3268
3269 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3270 {
3271         engine->reset.finish(engine);
3272
3273         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3274 }
3275
3276 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3277 {
3278         struct intel_engine_cs *engine;
3279         enum intel_engine_id id;
3280
3281         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3282
3283         for_each_engine(engine, dev_priv, id) {
3284                 engine->hangcheck.active_request = NULL;
3285                 i915_gem_reset_finish_engine(engine);
3286         }
3287 }
3288
3289 static void nop_submit_request(struct i915_request *request)
3290 {
3291         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3292                   request->engine->name,
3293                   request->fence.context, request->fence.seqno);
3294         dma_fence_set_error(&request->fence, -EIO);
3295
3296         i915_request_submit(request);
3297 }
3298
3299 static void nop_complete_submit_request(struct i915_request *request)
3300 {
3301         unsigned long flags;
3302
3303         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3304                   request->engine->name,
3305                   request->fence.context, request->fence.seqno);
3306         dma_fence_set_error(&request->fence, -EIO);
3307
3308         spin_lock_irqsave(&request->engine->timeline.lock, flags);
3309         __i915_request_submit(request);
3310         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3311         spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3312 }
3313
3314 void i915_gem_set_wedged(struct drm_i915_private *i915)
3315 {
3316         struct intel_engine_cs *engine;
3317         enum intel_engine_id id;
3318
3319         GEM_TRACE("start\n");
3320
3321         if (GEM_SHOW_DEBUG()) {
3322                 struct drm_printer p = drm_debug_printer(__func__);
3323
3324                 for_each_engine(engine, i915, id)
3325                         intel_engine_dump(engine, &p, "%s\n", engine->name);
3326         }
3327
3328         if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3329                 goto out;
3330
3331         /*
3332          * First, stop submission to hw, but do not yet complete requests by
3333          * rolling the global seqno forward (since this would complete requests
3334          * for which we haven't set the fence error to EIO yet).
3335          */
3336         for_each_engine(engine, i915, id) {
3337                 i915_gem_reset_prepare_engine(engine);
3338
3339                 engine->submit_request = nop_submit_request;
3340                 engine->schedule = NULL;
3341         }
3342         i915->caps.scheduler = 0;
3343
3344         /* Even if the GPU reset fails, it should still stop the engines */
3345         if (INTEL_GEN(i915) >= 5)
3346                 intel_gpu_reset(i915, ALL_ENGINES);
3347
3348         /*
3349          * Make sure no one is running the old callback before we proceed with
3350          * cancelling requests and resetting the completion tracking. Otherwise
3351          * we might submit a request to the hardware which never completes.
3352          */
3353         synchronize_rcu();
3354
3355         for_each_engine(engine, i915, id) {
3356                 /* Mark all executing requests as skipped */
3357                 engine->cancel_requests(engine);
3358
3359                 /*
3360                  * Only once we've force-cancelled all in-flight requests can we
3361                  * start to complete all requests.
3362                  */
3363                 engine->submit_request = nop_complete_submit_request;
3364         }
3365
3366         /*
3367          * Make sure no request can slip through without getting completed by
3368          * either this call here to intel_engine_init_global_seqno, or the one
3369          * in nop_complete_submit_request.
3370          */
3371         synchronize_rcu();
3372
3373         for_each_engine(engine, i915, id) {
3374                 unsigned long flags;
3375
3376                 /*
3377                  * Mark all pending requests as complete so that any concurrent
3378                  * (lockless) lookup doesn't try and wait upon the request as we
3379                  * reset it.
3380                  */
3381                 spin_lock_irqsave(&engine->timeline.lock, flags);
3382                 intel_engine_init_global_seqno(engine,
3383                                                intel_engine_last_submit(engine));
3384                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3385
3386                 i915_gem_reset_finish_engine(engine);
3387         }
3388
3389 out:
3390         GEM_TRACE("end\n");
3391
3392         wake_up_all(&i915->gpu_error.reset_queue);
3393 }
3394
3395 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3396 {
3397         struct i915_timeline *tl;
3398
3399         lockdep_assert_held(&i915->drm.struct_mutex);
3400         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3401                 return true;
3402
3403         GEM_TRACE("start\n");
3404
3405         /*
3406          * Before unwedging, make sure that all pending operations
3407          * are flushed and errored out - we may have requests waiting upon
3408          * third party fences. We marked all inflight requests as EIO, and
3409          * every execbuf since returned EIO, for consistency we want all
3410          * the currently pending requests to also be marked as EIO, which
3411          * is done inside our nop_submit_request - and so we must wait.
3412          *
3413          * No more can be submitted until we reset the wedged bit.
3414          */
3415         list_for_each_entry(tl, &i915->gt.timelines, link) {
3416                 struct i915_request *rq;
3417
3418                 rq = i915_gem_active_peek(&tl->last_request,
3419                                           &i915->drm.struct_mutex);
3420                 if (!rq)
3421                         continue;
3422
3423                 /*
3424                  * We can't use our normal waiter as we want to
3425                  * avoid recursively trying to handle the current
3426                  * reset. The basic dma_fence_default_wait() installs
3427                  * a callback for dma_fence_signal(), which is
3428                  * triggered by our nop handler (indirectly, the
3429                  * callback enables the signaler thread which is
3430                  * woken by the nop_submit_request() advancing the seqno
3431                  * and when the seqno passes the fence, the signaler
3432                  * then signals the fence waking us up).
3433                  */
3434                 if (dma_fence_default_wait(&rq->fence, true,
3435                                            MAX_SCHEDULE_TIMEOUT) < 0)
3436                         return false;
3437         }
3438         i915_retire_requests(i915);
3439         GEM_BUG_ON(i915->gt.active_requests);
3440
3441         /*
3442          * Undo nop_submit_request. We prevent all new i915 requests from
3443          * being queued (by disallowing execbuf whilst wedged) so having
3444          * waited for all active requests above, we know the system is idle
3445          * and do not have to worry about a thread being inside
3446          * engine->submit_request() as we swap over. So unlike installing
3447          * the nop_submit_request on reset, we can do this from normal
3448          * context and do not require stop_machine().
3449          */
3450         intel_engines_reset_default_submission(i915);
3451         i915_gem_contexts_lost(i915);
3452
3453         GEM_TRACE("end\n");
3454
3455         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3456         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3457
3458         return true;
3459 }
3460
3461 static void
3462 i915_gem_retire_work_handler(struct work_struct *work)
3463 {
3464         struct drm_i915_private *dev_priv =
3465                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3466         struct drm_device *dev = &dev_priv->drm;
3467
3468         /* Come back later if the device is busy... */
3469         if (mutex_trylock(&dev->struct_mutex)) {
3470                 i915_retire_requests(dev_priv);
3471                 mutex_unlock(&dev->struct_mutex);
3472         }
3473
3474         /*
3475          * Keep the retire handler running until we are finally idle.
3476          * We do not need to do this test under locking as in the worst-case
3477          * we queue the retire worker once too often.
3478          */
3479         if (READ_ONCE(dev_priv->gt.awake))
3480                 queue_delayed_work(dev_priv->wq,
3481                                    &dev_priv->gt.retire_work,
3482                                    round_jiffies_up_relative(HZ));
3483 }
3484
3485 static void shrink_caches(struct drm_i915_private *i915)
3486 {
3487         /*
3488          * kmem_cache_shrink() discards empty slabs and reorders partially
3489          * filled slabs to prioritise allocating from the mostly full slabs,
3490          * with the aim of reducing fragmentation.
3491          */
3492         kmem_cache_shrink(i915->priorities);
3493         kmem_cache_shrink(i915->dependencies);
3494         kmem_cache_shrink(i915->requests);
3495         kmem_cache_shrink(i915->luts);
3496         kmem_cache_shrink(i915->vmas);
3497         kmem_cache_shrink(i915->objects);
3498 }
3499
3500 struct sleep_rcu_work {
3501         union {
3502                 struct rcu_head rcu;
3503                 struct work_struct work;
3504         };
3505         struct drm_i915_private *i915;
3506         unsigned int epoch;
3507 };
3508
3509 static inline bool
3510 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3511 {
3512         /*
3513          * There is a small chance that the epoch wrapped since we started
3514          * sleeping. If we assume that epoch is at least a u32, then it will
3515          * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3516          */
3517         return epoch == READ_ONCE(i915->gt.epoch);
3518 }
3519
3520 static void __sleep_work(struct work_struct *work)
3521 {
3522         struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3523         struct drm_i915_private *i915 = s->i915;
3524         unsigned int epoch = s->epoch;
3525
3526         kfree(s);
3527         if (same_epoch(i915, epoch))
3528                 shrink_caches(i915);
3529 }
3530
3531 static void __sleep_rcu(struct rcu_head *rcu)
3532 {
3533         struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3534         struct drm_i915_private *i915 = s->i915;
3535
3536         if (same_epoch(i915, s->epoch)) {
3537                 INIT_WORK(&s->work, __sleep_work);
3538                 queue_work(i915->wq, &s->work);
3539         } else {
3540                 kfree(s);
3541         }
3542 }
3543
3544 static inline bool
3545 new_requests_since_last_retire(const struct drm_i915_private *i915)
3546 {
3547         return (READ_ONCE(i915->gt.active_requests) ||
3548                 work_pending(&i915->gt.idle_work.work));
3549 }
3550
3551 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3552 {
3553         struct intel_engine_cs *engine;
3554         enum intel_engine_id id;
3555
3556         if (i915_terminally_wedged(&i915->gpu_error))
3557                 return;
3558
3559         GEM_BUG_ON(i915->gt.active_requests);
3560         for_each_engine(engine, i915, id) {
3561                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3562                 GEM_BUG_ON(engine->last_retired_context !=
3563                            to_intel_context(i915->kernel_context, engine));
3564         }
3565 }
3566
3567 static void
3568 i915_gem_idle_work_handler(struct work_struct *work)
3569 {
3570         struct drm_i915_private *dev_priv =
3571                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3572         unsigned int epoch = I915_EPOCH_INVALID;
3573         bool rearm_hangcheck;
3574
3575         if (!READ_ONCE(dev_priv->gt.awake))
3576                 return;
3577
3578         if (READ_ONCE(dev_priv->gt.active_requests))
3579                 return;
3580
3581         /*
3582          * Flush out the last user context, leaving only the pinned
3583          * kernel context resident. When we are idling on the kernel_context,
3584          * no more new requests (with a context switch) are emitted and we
3585          * can finally rest. A consequence is that the idle work handler is
3586          * always called at least twice before idling (and if the system is
3587          * idle that implies a round trip through the retire worker).
3588          */
3589         mutex_lock(&dev_priv->drm.struct_mutex);
3590         i915_gem_switch_to_kernel_context(dev_priv);
3591         mutex_unlock(&dev_priv->drm.struct_mutex);
3592
3593         GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3594                   READ_ONCE(dev_priv->gt.active_requests));
3595
3596         /*
3597          * Wait for last execlists context complete, but bail out in case a
3598          * new request is submitted. As we don't trust the hardware, we
3599          * continue on if the wait times out. This is necessary to allow
3600          * the machine to suspend even if the hardware dies, and we will
3601          * try to recover in resume (after depriving the hardware of power,
3602          * it may be in a better mmod).
3603          */
3604         __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3605                    intel_engines_are_idle(dev_priv),
3606                    I915_IDLE_ENGINES_TIMEOUT * 1000,
3607                    10, 500);
3608
3609         rearm_hangcheck =
3610                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3611
3612         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3613                 /* Currently busy, come back later */
3614                 mod_delayed_work(dev_priv->wq,
3615                                  &dev_priv->gt.idle_work,
3616                                  msecs_to_jiffies(50));
3617                 goto out_rearm;
3618         }
3619
3620         /*
3621          * New request retired after this work handler started, extend active
3622          * period until next instance of the work.
3623          */
3624         if (new_requests_since_last_retire(dev_priv))
3625                 goto out_unlock;
3626
3627         epoch = __i915_gem_park(dev_priv);
3628
3629         assert_kernel_context_is_current(dev_priv);
3630
3631         rearm_hangcheck = false;
3632 out_unlock:
3633         mutex_unlock(&dev_priv->drm.struct_mutex);
3634
3635 out_rearm:
3636         if (rearm_hangcheck) {
3637                 GEM_BUG_ON(!dev_priv->gt.awake);
3638                 i915_queue_hangcheck(dev_priv);
3639         }
3640
3641         /*
3642          * When we are idle, it is an opportune time to reap our caches.
3643          * However, we have many objects that utilise RCU and the ordered
3644          * i915->wq that this work is executing on. To try and flush any
3645          * pending frees now we are idle, we first wait for an RCU grace
3646          * period, and then queue a task (that will run last on the wq) to
3647          * shrink and re-optimize the caches.
3648          */
3649         if (same_epoch(dev_priv, epoch)) {
3650                 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3651                 if (s) {
3652                         s->i915 = dev_priv;
3653                         s->epoch = epoch;
3654                         call_rcu(&s->rcu, __sleep_rcu);
3655                 }
3656         }
3657 }
3658
3659 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3660 {
3661         struct drm_i915_private *i915 = to_i915(gem->dev);
3662         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3663         struct drm_i915_file_private *fpriv = file->driver_priv;
3664         struct i915_lut_handle *lut, *ln;
3665
3666         mutex_lock(&i915->drm.struct_mutex);
3667
3668         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3669                 struct i915_gem_context *ctx = lut->ctx;
3670                 struct i915_vma *vma;
3671
3672                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3673                 if (ctx->file_priv != fpriv)
3674                         continue;
3675
3676                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3677                 GEM_BUG_ON(vma->obj != obj);
3678
3679                 /* We allow the process to have multiple handles to the same
3680                  * vma, in the same fd namespace, by virtue of flink/open.
3681                  */
3682                 GEM_BUG_ON(!vma->open_count);
3683                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3684                         i915_vma_close(vma);
3685
3686                 list_del(&lut->obj_link);
3687                 list_del(&lut->ctx_link);
3688
3689                 kmem_cache_free(i915->luts, lut);
3690                 __i915_gem_object_release_unless_active(obj);
3691         }
3692
3693         mutex_unlock(&i915->drm.struct_mutex);
3694 }
3695
3696 static unsigned long to_wait_timeout(s64 timeout_ns)
3697 {
3698         if (timeout_ns < 0)
3699                 return MAX_SCHEDULE_TIMEOUT;
3700
3701         if (timeout_ns == 0)
3702                 return 0;
3703
3704         return nsecs_to_jiffies_timeout(timeout_ns);
3705 }
3706
3707 /**
3708  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3709  * @dev: drm device pointer
3710  * @data: ioctl data blob
3711  * @file: drm file pointer
3712  *
3713  * Returns 0 if successful, else an error is returned with the remaining time in
3714  * the timeout parameter.
3715  *  -ETIME: object is still busy after timeout
3716  *  -ERESTARTSYS: signal interrupted the wait
3717  *  -ENONENT: object doesn't exist
3718  * Also possible, but rare:
3719  *  -EAGAIN: incomplete, restart syscall
3720  *  -ENOMEM: damn
3721  *  -ENODEV: Internal IRQ fail
3722  *  -E?: The add request failed
3723  *
3724  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3725  * non-zero timeout parameter the wait ioctl will wait for the given number of
3726  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3727  * without holding struct_mutex the object may become re-busied before this
3728  * function completes. A similar but shorter * race condition exists in the busy
3729  * ioctl
3730  */
3731 int
3732 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3733 {
3734         struct drm_i915_gem_wait *args = data;
3735         struct drm_i915_gem_object *obj;
3736         ktime_t start;
3737         long ret;
3738
3739         if (args->flags != 0)
3740                 return -EINVAL;
3741
3742         obj = i915_gem_object_lookup(file, args->bo_handle);
3743         if (!obj)
3744                 return -ENOENT;
3745
3746         start = ktime_get();
3747
3748         ret = i915_gem_object_wait(obj,
3749                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3750                                    to_wait_timeout(args->timeout_ns),
3751                                    to_rps_client(file));
3752
3753         if (args->timeout_ns > 0) {
3754                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3755                 if (args->timeout_ns < 0)
3756                         args->timeout_ns = 0;
3757
3758                 /*
3759                  * Apparently ktime isn't accurate enough and occasionally has a
3760                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3761                  * things up to make the test happy. We allow up to 1 jiffy.
3762                  *
3763                  * This is a regression from the timespec->ktime conversion.
3764                  */
3765                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3766                         args->timeout_ns = 0;
3767
3768                 /* Asked to wait beyond the jiffie/scheduler precision? */
3769                 if (ret == -ETIME && args->timeout_ns)
3770                         ret = -EAGAIN;
3771         }
3772
3773         i915_gem_object_put(obj);
3774         return ret;
3775 }
3776
3777 static long wait_for_timeline(struct i915_timeline *tl,
3778                               unsigned int flags, long timeout)
3779 {
3780         struct i915_request *rq;
3781
3782         rq = i915_gem_active_get_unlocked(&tl->last_request);
3783         if (!rq)
3784                 return timeout;
3785
3786         /*
3787          * "Race-to-idle".
3788          *
3789          * Switching to the kernel context is often used a synchronous
3790          * step prior to idling, e.g. in suspend for flushing all
3791          * current operations to memory before sleeping. These we
3792          * want to complete as quickly as possible to avoid prolonged
3793          * stalls, so allow the gpu to boost to maximum clocks.
3794          */
3795         if (flags & I915_WAIT_FOR_IDLE_BOOST)
3796                 gen6_rps_boost(rq, NULL);
3797
3798         timeout = i915_request_wait(rq, flags, timeout);
3799         i915_request_put(rq);
3800
3801         return timeout;
3802 }
3803
3804 static int wait_for_engines(struct drm_i915_private *i915)
3805 {
3806         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3807                 dev_err(i915->drm.dev,
3808                         "Failed to idle engines, declaring wedged!\n");
3809                 GEM_TRACE_DUMP();
3810                 i915_gem_set_wedged(i915);
3811                 return -EIO;
3812         }
3813
3814         return 0;
3815 }
3816
3817 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3818                            unsigned int flags, long timeout)
3819 {
3820         GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3821                   flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3822                   timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3823
3824         /* If the device is asleep, we have no requests outstanding */
3825         if (!READ_ONCE(i915->gt.awake))
3826                 return 0;
3827
3828         if (flags & I915_WAIT_LOCKED) {
3829                 struct i915_timeline *tl;
3830                 int err;
3831
3832                 lockdep_assert_held(&i915->drm.struct_mutex);
3833
3834                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3835                         timeout = wait_for_timeline(tl, flags, timeout);
3836                         if (timeout < 0)
3837                                 return timeout;
3838                 }
3839                 if (GEM_SHOW_DEBUG() && !timeout) {
3840                         /* Presume that timeout was non-zero to begin with! */
3841                         dev_warn(&i915->drm.pdev->dev,
3842                                  "Missed idle-completion interrupt!\n");
3843                         GEM_TRACE_DUMP();
3844                 }
3845
3846                 err = wait_for_engines(i915);
3847                 if (err)
3848                         return err;
3849
3850                 i915_retire_requests(i915);
3851                 GEM_BUG_ON(i915->gt.active_requests);
3852         } else {
3853                 struct intel_engine_cs *engine;
3854                 enum intel_engine_id id;
3855
3856                 for_each_engine(engine, i915, id) {
3857                         struct i915_timeline *tl = &engine->timeline;
3858
3859                         timeout = wait_for_timeline(tl, flags, timeout);
3860                         if (timeout < 0)
3861                                 return timeout;
3862                 }
3863         }
3864
3865         return 0;
3866 }
3867
3868 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3869 {
3870         /*
3871          * We manually flush the CPU domain so that we can override and
3872          * force the flush for the display, and perform it asyncrhonously.
3873          */
3874         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3875         if (obj->cache_dirty)
3876                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3877         obj->write_domain = 0;
3878 }
3879
3880 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3881 {
3882         if (!READ_ONCE(obj->pin_global))
3883                 return;
3884
3885         mutex_lock(&obj->base.dev->struct_mutex);
3886         __i915_gem_object_flush_for_display(obj);
3887         mutex_unlock(&obj->base.dev->struct_mutex);
3888 }
3889
3890 /**
3891  * Moves a single object to the WC read, and possibly write domain.
3892  * @obj: object to act on
3893  * @write: ask for write access or read only
3894  *
3895  * This function returns when the move is complete, including waiting on
3896  * flushes to occur.
3897  */
3898 int
3899 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3900 {
3901         int ret;
3902
3903         lockdep_assert_held(&obj->base.dev->struct_mutex);
3904
3905         ret = i915_gem_object_wait(obj,
3906                                    I915_WAIT_INTERRUPTIBLE |
3907                                    I915_WAIT_LOCKED |
3908                                    (write ? I915_WAIT_ALL : 0),
3909                                    MAX_SCHEDULE_TIMEOUT,
3910                                    NULL);
3911         if (ret)
3912                 return ret;
3913
3914         if (obj->write_domain == I915_GEM_DOMAIN_WC)
3915                 return 0;
3916
3917         /* Flush and acquire obj->pages so that we are coherent through
3918          * direct access in memory with previous cached writes through
3919          * shmemfs and that our cache domain tracking remains valid.
3920          * For example, if the obj->filp was moved to swap without us
3921          * being notified and releasing the pages, we would mistakenly
3922          * continue to assume that the obj remained out of the CPU cached
3923          * domain.
3924          */
3925         ret = i915_gem_object_pin_pages(obj);
3926         if (ret)
3927                 return ret;
3928
3929         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3930
3931         /* Serialise direct access to this object with the barriers for
3932          * coherent writes from the GPU, by effectively invalidating the
3933          * WC domain upon first access.
3934          */
3935         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3936                 mb();
3937
3938         /* It should now be out of any other write domains, and we can update
3939          * the domain values for our changes.
3940          */
3941         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3942         obj->read_domains |= I915_GEM_DOMAIN_WC;
3943         if (write) {
3944                 obj->read_domains = I915_GEM_DOMAIN_WC;
3945                 obj->write_domain = I915_GEM_DOMAIN_WC;
3946                 obj->mm.dirty = true;
3947         }
3948
3949         i915_gem_object_unpin_pages(obj);
3950         return 0;
3951 }
3952
3953 /**
3954  * Moves a single object to the GTT read, and possibly write domain.
3955  * @obj: object to act on
3956  * @write: ask for write access or read only
3957  *
3958  * This function returns when the move is complete, including waiting on
3959  * flushes to occur.
3960  */
3961 int
3962 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3963 {
3964         int ret;
3965
3966         lockdep_assert_held(&obj->base.dev->struct_mutex);
3967
3968         ret = i915_gem_object_wait(obj,
3969                                    I915_WAIT_INTERRUPTIBLE |
3970                                    I915_WAIT_LOCKED |
3971                                    (write ? I915_WAIT_ALL : 0),
3972                                    MAX_SCHEDULE_TIMEOUT,
3973                                    NULL);
3974         if (ret)
3975                 return ret;
3976
3977         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3978                 return 0;
3979
3980         /* Flush and acquire obj->pages so that we are coherent through
3981          * direct access in memory with previous cached writes through
3982          * shmemfs and that our cache domain tracking remains valid.
3983          * For example, if the obj->filp was moved to swap without us
3984          * being notified and releasing the pages, we would mistakenly
3985          * continue to assume that the obj remained out of the CPU cached
3986          * domain.
3987          */
3988         ret = i915_gem_object_pin_pages(obj);
3989         if (ret)
3990                 return ret;
3991
3992         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3993
3994         /* Serialise direct access to this object with the barriers for
3995          * coherent writes from the GPU, by effectively invalidating the
3996          * GTT domain upon first access.
3997          */
3998         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3999                 mb();
4000
4001         /* It should now be out of any other write domains, and we can update
4002          * the domain values for our changes.
4003          */
4004         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4005         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4006         if (write) {
4007                 obj->read_domains = I915_GEM_DOMAIN_GTT;
4008                 obj->write_domain = I915_GEM_DOMAIN_GTT;
4009                 obj->mm.dirty = true;
4010         }
4011
4012         i915_gem_object_unpin_pages(obj);
4013         return 0;
4014 }
4015
4016 /**
4017  * Changes the cache-level of an object across all VMA.
4018  * @obj: object to act on
4019  * @cache_level: new cache level to set for the object
4020  *
4021  * After this function returns, the object will be in the new cache-level
4022  * across all GTT and the contents of the backing storage will be coherent,
4023  * with respect to the new cache-level. In order to keep the backing storage
4024  * coherent for all users, we only allow a single cache level to be set
4025  * globally on the object and prevent it from being changed whilst the
4026  * hardware is reading from the object. That is if the object is currently
4027  * on the scanout it will be set to uncached (or equivalent display
4028  * cache coherency) and all non-MOCS GPU access will also be uncached so
4029  * that all direct access to the scanout remains coherent.
4030  */
4031 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4032                                     enum i915_cache_level cache_level)
4033 {
4034         struct i915_vma *vma;
4035         int ret;
4036
4037         lockdep_assert_held(&obj->base.dev->struct_mutex);
4038
4039         if (obj->cache_level == cache_level)
4040                 return 0;
4041
4042         /* Inspect the list of currently bound VMA and unbind any that would
4043          * be invalid given the new cache-level. This is principally to
4044          * catch the issue of the CS prefetch crossing page boundaries and
4045          * reading an invalid PTE on older architectures.
4046          */
4047 restart:
4048         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4049                 if (!drm_mm_node_allocated(&vma->node))
4050                         continue;
4051
4052                 if (i915_vma_is_pinned(vma)) {
4053                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4054                         return -EBUSY;
4055                 }
4056
4057                 if (!i915_vma_is_closed(vma) &&
4058                     i915_gem_valid_gtt_space(vma, cache_level))
4059                         continue;
4060
4061                 ret = i915_vma_unbind(vma);
4062                 if (ret)
4063                         return ret;
4064
4065                 /* As unbinding may affect other elements in the
4066                  * obj->vma_list (due to side-effects from retiring
4067                  * an active vma), play safe and restart the iterator.
4068                  */
4069                 goto restart;
4070         }
4071
4072         /* We can reuse the existing drm_mm nodes but need to change the
4073          * cache-level on the PTE. We could simply unbind them all and
4074          * rebind with the correct cache-level on next use. However since
4075          * we already have a valid slot, dma mapping, pages etc, we may as
4076          * rewrite the PTE in the belief that doing so tramples upon less
4077          * state and so involves less work.
4078          */
4079         if (obj->bind_count) {
4080                 /* Before we change the PTE, the GPU must not be accessing it.
4081                  * If we wait upon the object, we know that all the bound
4082                  * VMA are no longer active.
4083                  */
4084                 ret = i915_gem_object_wait(obj,
4085                                            I915_WAIT_INTERRUPTIBLE |
4086                                            I915_WAIT_LOCKED |
4087                                            I915_WAIT_ALL,
4088                                            MAX_SCHEDULE_TIMEOUT,
4089                                            NULL);
4090                 if (ret)
4091                         return ret;
4092
4093                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4094                     cache_level != I915_CACHE_NONE) {
4095                         /* Access to snoopable pages through the GTT is
4096                          * incoherent and on some machines causes a hard
4097                          * lockup. Relinquish the CPU mmaping to force
4098                          * userspace to refault in the pages and we can
4099                          * then double check if the GTT mapping is still
4100                          * valid for that pointer access.
4101                          */
4102                         i915_gem_release_mmap(obj);
4103
4104                         /* As we no longer need a fence for GTT access,
4105                          * we can relinquish it now (and so prevent having
4106                          * to steal a fence from someone else on the next
4107                          * fence request). Note GPU activity would have
4108                          * dropped the fence as all snoopable access is
4109                          * supposed to be linear.
4110                          */
4111                         for_each_ggtt_vma(vma, obj) {
4112                                 ret = i915_vma_put_fence(vma);
4113                                 if (ret)
4114                                         return ret;
4115                         }
4116                 } else {
4117                         /* We either have incoherent backing store and
4118                          * so no GTT access or the architecture is fully
4119                          * coherent. In such cases, existing GTT mmaps
4120                          * ignore the cache bit in the PTE and we can
4121                          * rewrite it without confusing the GPU or having
4122                          * to force userspace to fault back in its mmaps.
4123                          */
4124                 }
4125
4126                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4127                         if (!drm_mm_node_allocated(&vma->node))
4128                                 continue;
4129
4130                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4131                         if (ret)
4132                                 return ret;
4133                 }
4134         }
4135
4136         list_for_each_entry(vma, &obj->vma_list, obj_link)
4137                 vma->node.color = cache_level;
4138         i915_gem_object_set_cache_coherency(obj, cache_level);
4139         obj->cache_dirty = true; /* Always invalidate stale cachelines */
4140
4141         return 0;
4142 }
4143
4144 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4145                                struct drm_file *file)
4146 {
4147         struct drm_i915_gem_caching *args = data;
4148         struct drm_i915_gem_object *obj;
4149         int err = 0;
4150
4151         rcu_read_lock();
4152         obj = i915_gem_object_lookup_rcu(file, args->handle);
4153         if (!obj) {
4154                 err = -ENOENT;
4155                 goto out;
4156         }
4157
4158         switch (obj->cache_level) {
4159         case I915_CACHE_LLC:
4160         case I915_CACHE_L3_LLC:
4161                 args->caching = I915_CACHING_CACHED;
4162                 break;
4163
4164         case I915_CACHE_WT:
4165                 args->caching = I915_CACHING_DISPLAY;
4166                 break;
4167
4168         default:
4169                 args->caching = I915_CACHING_NONE;
4170                 break;
4171         }
4172 out:
4173         rcu_read_unlock();
4174         return err;
4175 }
4176
4177 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4178                                struct drm_file *file)
4179 {
4180         struct drm_i915_private *i915 = to_i915(dev);
4181         struct drm_i915_gem_caching *args = data;
4182         struct drm_i915_gem_object *obj;
4183         enum i915_cache_level level;
4184         int ret = 0;
4185
4186         switch (args->caching) {
4187         case I915_CACHING_NONE:
4188                 level = I915_CACHE_NONE;
4189                 break;
4190         case I915_CACHING_CACHED:
4191                 /*
4192                  * Due to a HW issue on BXT A stepping, GPU stores via a
4193                  * snooped mapping may leave stale data in a corresponding CPU
4194                  * cacheline, whereas normally such cachelines would get
4195                  * invalidated.
4196                  */
4197                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4198                         return -ENODEV;
4199
4200                 level = I915_CACHE_LLC;
4201                 break;
4202         case I915_CACHING_DISPLAY:
4203                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4204                 break;
4205         default:
4206                 return -EINVAL;
4207         }
4208
4209         obj = i915_gem_object_lookup(file, args->handle);
4210         if (!obj)
4211                 return -ENOENT;
4212
4213         /*
4214          * The caching mode of proxy object is handled by its generator, and
4215          * not allowed to be changed by userspace.
4216          */
4217         if (i915_gem_object_is_proxy(obj)) {
4218                 ret = -ENXIO;
4219                 goto out;
4220         }
4221
4222         if (obj->cache_level == level)
4223                 goto out;
4224
4225         ret = i915_gem_object_wait(obj,
4226                                    I915_WAIT_INTERRUPTIBLE,
4227                                    MAX_SCHEDULE_TIMEOUT,
4228                                    to_rps_client(file));
4229         if (ret)
4230                 goto out;
4231
4232         ret = i915_mutex_lock_interruptible(dev);
4233         if (ret)
4234                 goto out;
4235
4236         ret = i915_gem_object_set_cache_level(obj, level);
4237         mutex_unlock(&dev->struct_mutex);
4238
4239 out:
4240         i915_gem_object_put(obj);
4241         return ret;
4242 }
4243
4244 /*
4245  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4246  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4247  * (for pageflips). We only flush the caches while preparing the buffer for
4248  * display, the callers are responsible for frontbuffer flush.
4249  */
4250 struct i915_vma *
4251 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4252                                      u32 alignment,
4253                                      const struct i915_ggtt_view *view,
4254                                      unsigned int flags)
4255 {
4256         struct i915_vma *vma;
4257         int ret;
4258
4259         lockdep_assert_held(&obj->base.dev->struct_mutex);
4260
4261         /* Mark the global pin early so that we account for the
4262          * display coherency whilst setting up the cache domains.
4263          */
4264         obj->pin_global++;
4265
4266         /* The display engine is not coherent with the LLC cache on gen6.  As
4267          * a result, we make sure that the pinning that is about to occur is
4268          * done with uncached PTEs. This is lowest common denominator for all
4269          * chipsets.
4270          *
4271          * However for gen6+, we could do better by using the GFDT bit instead
4272          * of uncaching, which would allow us to flush all the LLC-cached data
4273          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4274          */
4275         ret = i915_gem_object_set_cache_level(obj,
4276                                               HAS_WT(to_i915(obj->base.dev)) ?
4277                                               I915_CACHE_WT : I915_CACHE_NONE);
4278         if (ret) {
4279                 vma = ERR_PTR(ret);
4280                 goto err_unpin_global;
4281         }
4282
4283         /* As the user may map the buffer once pinned in the display plane
4284          * (e.g. libkms for the bootup splash), we have to ensure that we
4285          * always use map_and_fenceable for all scanout buffers. However,
4286          * it may simply be too big to fit into mappable, in which case
4287          * put it anyway and hope that userspace can cope (but always first
4288          * try to preserve the existing ABI).
4289          */
4290         vma = ERR_PTR(-ENOSPC);
4291         if ((flags & PIN_MAPPABLE) == 0 &&
4292             (!view || view->type == I915_GGTT_VIEW_NORMAL))
4293                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4294                                                flags |
4295                                                PIN_MAPPABLE |
4296                                                PIN_NONBLOCK);
4297         if (IS_ERR(vma))
4298                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4299         if (IS_ERR(vma))
4300                 goto err_unpin_global;
4301
4302         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4303
4304         __i915_gem_object_flush_for_display(obj);
4305
4306         /* It should now be out of any other write domains, and we can update
4307          * the domain values for our changes.
4308          */
4309         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4310
4311         return vma;
4312
4313 err_unpin_global:
4314         obj->pin_global--;
4315         return vma;
4316 }
4317
4318 void
4319 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4320 {
4321         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4322
4323         if (WARN_ON(vma->obj->pin_global == 0))
4324                 return;
4325
4326         if (--vma->obj->pin_global == 0)
4327                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4328
4329         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4330         i915_gem_object_bump_inactive_ggtt(vma->obj);
4331
4332         i915_vma_unpin(vma);
4333 }
4334
4335 /**
4336  * Moves a single object to the CPU read, and possibly write domain.
4337  * @obj: object to act on
4338  * @write: requesting write or read-only access
4339  *
4340  * This function returns when the move is complete, including waiting on
4341  * flushes to occur.
4342  */
4343 int
4344 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4345 {
4346         int ret;
4347
4348         lockdep_assert_held(&obj->base.dev->struct_mutex);
4349
4350         ret = i915_gem_object_wait(obj,
4351                                    I915_WAIT_INTERRUPTIBLE |
4352                                    I915_WAIT_LOCKED |
4353                                    (write ? I915_WAIT_ALL : 0),
4354                                    MAX_SCHEDULE_TIMEOUT,
4355                                    NULL);
4356         if (ret)
4357                 return ret;
4358
4359         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4360
4361         /* Flush the CPU cache if it's still invalid. */
4362         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4363                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4364                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4365         }
4366
4367         /* It should now be out of any other write domains, and we can update
4368          * the domain values for our changes.
4369          */
4370         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4371
4372         /* If we're writing through the CPU, then the GPU read domains will
4373          * need to be invalidated at next use.
4374          */
4375         if (write)
4376                 __start_cpu_write(obj);
4377
4378         return 0;
4379 }
4380
4381 /* Throttle our rendering by waiting until the ring has completed our requests
4382  * emitted over 20 msec ago.
4383  *
4384  * Note that if we were to use the current jiffies each time around the loop,
4385  * we wouldn't escape the function with any frames outstanding if the time to
4386  * render a frame was over 20ms.
4387  *
4388  * This should get us reasonable parallelism between CPU and GPU but also
4389  * relatively low latency when blocking on a particular request to finish.
4390  */
4391 static int
4392 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4393 {
4394         struct drm_i915_private *dev_priv = to_i915(dev);
4395         struct drm_i915_file_private *file_priv = file->driver_priv;
4396         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4397         struct i915_request *request, *target = NULL;
4398         long ret;
4399
4400         /* ABI: return -EIO if already wedged */
4401         if (i915_terminally_wedged(&dev_priv->gpu_error))
4402                 return -EIO;
4403
4404         spin_lock(&file_priv->mm.lock);
4405         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4406                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4407                         break;
4408
4409                 if (target) {
4410                         list_del(&target->client_link);
4411                         target->file_priv = NULL;
4412                 }
4413
4414                 target = request;
4415         }
4416         if (target)
4417                 i915_request_get(target);
4418         spin_unlock(&file_priv->mm.lock);
4419
4420         if (target == NULL)
4421                 return 0;
4422
4423         ret = i915_request_wait(target,
4424                                 I915_WAIT_INTERRUPTIBLE,
4425                                 MAX_SCHEDULE_TIMEOUT);
4426         i915_request_put(target);
4427
4428         return ret < 0 ? ret : 0;
4429 }
4430
4431 struct i915_vma *
4432 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4433                          const struct i915_ggtt_view *view,
4434                          u64 size,
4435                          u64 alignment,
4436                          u64 flags)
4437 {
4438         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4439         struct i915_address_space *vm = &dev_priv->ggtt.vm;
4440         struct i915_vma *vma;
4441         int ret;
4442
4443         lockdep_assert_held(&obj->base.dev->struct_mutex);
4444
4445         if (flags & PIN_MAPPABLE &&
4446             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4447                 /* If the required space is larger than the available
4448                  * aperture, we will not able to find a slot for the
4449                  * object and unbinding the object now will be in
4450                  * vain. Worse, doing so may cause us to ping-pong
4451                  * the object in and out of the Global GTT and
4452                  * waste a lot of cycles under the mutex.
4453                  */
4454                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4455                         return ERR_PTR(-E2BIG);
4456
4457                 /* If NONBLOCK is set the caller is optimistically
4458                  * trying to cache the full object within the mappable
4459                  * aperture, and *must* have a fallback in place for
4460                  * situations where we cannot bind the object. We
4461                  * can be a little more lax here and use the fallback
4462                  * more often to avoid costly migrations of ourselves
4463                  * and other objects within the aperture.
4464                  *
4465                  * Half-the-aperture is used as a simple heuristic.
4466                  * More interesting would to do search for a free
4467                  * block prior to making the commitment to unbind.
4468                  * That caters for the self-harm case, and with a
4469                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4470                  * we could try to minimise harm to others.
4471                  */
4472                 if (flags & PIN_NONBLOCK &&
4473                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4474                         return ERR_PTR(-ENOSPC);
4475         }
4476
4477         vma = i915_vma_instance(obj, vm, view);
4478         if (unlikely(IS_ERR(vma)))
4479                 return vma;
4480
4481         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4482                 if (flags & PIN_NONBLOCK) {
4483                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4484                                 return ERR_PTR(-ENOSPC);
4485
4486                         if (flags & PIN_MAPPABLE &&
4487                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4488                                 return ERR_PTR(-ENOSPC);
4489                 }
4490
4491                 WARN(i915_vma_is_pinned(vma),
4492                      "bo is already pinned in ggtt with incorrect alignment:"
4493                      " offset=%08x, req.alignment=%llx,"
4494                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4495                      i915_ggtt_offset(vma), alignment,
4496                      !!(flags & PIN_MAPPABLE),
4497                      i915_vma_is_map_and_fenceable(vma));
4498                 ret = i915_vma_unbind(vma);
4499                 if (ret)
4500                         return ERR_PTR(ret);
4501         }
4502
4503         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4504         if (ret)
4505                 return ERR_PTR(ret);
4506
4507         return vma;
4508 }
4509
4510 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4511 {
4512         /* Note that we could alias engines in the execbuf API, but
4513          * that would be very unwise as it prevents userspace from
4514          * fine control over engine selection. Ahem.
4515          *
4516          * This should be something like EXEC_MAX_ENGINE instead of
4517          * I915_NUM_ENGINES.
4518          */
4519         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4520         return 0x10000 << id;
4521 }
4522
4523 static __always_inline unsigned int __busy_write_id(unsigned int id)
4524 {
4525         /* The uABI guarantees an active writer is also amongst the read
4526          * engines. This would be true if we accessed the activity tracking
4527          * under the lock, but as we perform the lookup of the object and
4528          * its activity locklessly we can not guarantee that the last_write
4529          * being active implies that we have set the same engine flag from
4530          * last_read - hence we always set both read and write busy for
4531          * last_write.
4532          */
4533         return id | __busy_read_flag(id);
4534 }
4535
4536 static __always_inline unsigned int
4537 __busy_set_if_active(const struct dma_fence *fence,
4538                      unsigned int (*flag)(unsigned int id))
4539 {
4540         struct i915_request *rq;
4541
4542         /* We have to check the current hw status of the fence as the uABI
4543          * guarantees forward progress. We could rely on the idle worker
4544          * to eventually flush us, but to minimise latency just ask the
4545          * hardware.
4546          *
4547          * Note we only report on the status of native fences.
4548          */
4549         if (!dma_fence_is_i915(fence))
4550                 return 0;
4551
4552         /* opencode to_request() in order to avoid const warnings */
4553         rq = container_of(fence, struct i915_request, fence);
4554         if (i915_request_completed(rq))
4555                 return 0;
4556
4557         return flag(rq->engine->uabi_id);
4558 }
4559
4560 static __always_inline unsigned int
4561 busy_check_reader(const struct dma_fence *fence)
4562 {
4563         return __busy_set_if_active(fence, __busy_read_flag);
4564 }
4565
4566 static __always_inline unsigned int
4567 busy_check_writer(const struct dma_fence *fence)
4568 {
4569         if (!fence)
4570                 return 0;
4571
4572         return __busy_set_if_active(fence, __busy_write_id);
4573 }
4574
4575 int
4576 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4577                     struct drm_file *file)
4578 {
4579         struct drm_i915_gem_busy *args = data;
4580         struct drm_i915_gem_object *obj;
4581         struct reservation_object_list *list;
4582         unsigned int seq;
4583         int err;
4584
4585         err = -ENOENT;
4586         rcu_read_lock();
4587         obj = i915_gem_object_lookup_rcu(file, args->handle);
4588         if (!obj)
4589                 goto out;
4590
4591         /* A discrepancy here is that we do not report the status of
4592          * non-i915 fences, i.e. even though we may report the object as idle,
4593          * a call to set-domain may still stall waiting for foreign rendering.
4594          * This also means that wait-ioctl may report an object as busy,
4595          * where busy-ioctl considers it idle.
4596          *
4597          * We trade the ability to warn of foreign fences to report on which
4598          * i915 engines are active for the object.
4599          *
4600          * Alternatively, we can trade that extra information on read/write
4601          * activity with
4602          *      args->busy =
4603          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4604          * to report the overall busyness. This is what the wait-ioctl does.
4605          *
4606          */
4607 retry:
4608         seq = raw_read_seqcount(&obj->resv->seq);
4609
4610         /* Translate the exclusive fence to the READ *and* WRITE engine */
4611         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4612
4613         /* Translate shared fences to READ set of engines */
4614         list = rcu_dereference(obj->resv->fence);
4615         if (list) {
4616                 unsigned int shared_count = list->shared_count, i;
4617
4618                 for (i = 0; i < shared_count; ++i) {
4619                         struct dma_fence *fence =
4620                                 rcu_dereference(list->shared[i]);
4621
4622                         args->busy |= busy_check_reader(fence);
4623                 }
4624         }
4625
4626         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4627                 goto retry;
4628
4629         err = 0;
4630 out:
4631         rcu_read_unlock();
4632         return err;
4633 }
4634
4635 int
4636 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4637                         struct drm_file *file_priv)
4638 {
4639         return i915_gem_ring_throttle(dev, file_priv);
4640 }
4641
4642 int
4643 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4644                        struct drm_file *file_priv)
4645 {
4646         struct drm_i915_private *dev_priv = to_i915(dev);
4647         struct drm_i915_gem_madvise *args = data;
4648         struct drm_i915_gem_object *obj;
4649         int err;
4650
4651         switch (args->madv) {
4652         case I915_MADV_DONTNEED:
4653         case I915_MADV_WILLNEED:
4654             break;
4655         default:
4656             return -EINVAL;
4657         }
4658
4659         obj = i915_gem_object_lookup(file_priv, args->handle);
4660         if (!obj)
4661                 return -ENOENT;
4662
4663         err = mutex_lock_interruptible(&obj->mm.lock);
4664         if (err)
4665                 goto out;
4666
4667         if (i915_gem_object_has_pages(obj) &&
4668             i915_gem_object_is_tiled(obj) &&
4669             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4670                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4671                         GEM_BUG_ON(!obj->mm.quirked);
4672                         __i915_gem_object_unpin_pages(obj);
4673                         obj->mm.quirked = false;
4674                 }
4675                 if (args->madv == I915_MADV_WILLNEED) {
4676                         GEM_BUG_ON(obj->mm.quirked);
4677                         __i915_gem_object_pin_pages(obj);
4678                         obj->mm.quirked = true;
4679                 }
4680         }
4681
4682         if (obj->mm.madv != __I915_MADV_PURGED)
4683                 obj->mm.madv = args->madv;
4684
4685         /* if the object is no longer attached, discard its backing storage */
4686         if (obj->mm.madv == I915_MADV_DONTNEED &&
4687             !i915_gem_object_has_pages(obj))
4688                 i915_gem_object_truncate(obj);
4689
4690         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4691         mutex_unlock(&obj->mm.lock);
4692
4693 out:
4694         i915_gem_object_put(obj);
4695         return err;
4696 }
4697
4698 static void
4699 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4700 {
4701         struct drm_i915_gem_object *obj =
4702                 container_of(active, typeof(*obj), frontbuffer_write);
4703
4704         intel_fb_obj_flush(obj, ORIGIN_CS);
4705 }
4706
4707 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4708                           const struct drm_i915_gem_object_ops *ops)
4709 {
4710         mutex_init(&obj->mm.lock);
4711
4712         INIT_LIST_HEAD(&obj->vma_list);
4713         INIT_LIST_HEAD(&obj->lut_list);
4714         INIT_LIST_HEAD(&obj->batch_pool_link);
4715
4716         obj->ops = ops;
4717
4718         reservation_object_init(&obj->__builtin_resv);
4719         obj->resv = &obj->__builtin_resv;
4720
4721         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4722         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4723
4724         obj->mm.madv = I915_MADV_WILLNEED;
4725         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4726         mutex_init(&obj->mm.get_page.lock);
4727
4728         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4729 }
4730
4731 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4732         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4733                  I915_GEM_OBJECT_IS_SHRINKABLE,
4734
4735         .get_pages = i915_gem_object_get_pages_gtt,
4736         .put_pages = i915_gem_object_put_pages_gtt,
4737
4738         .pwrite = i915_gem_object_pwrite_gtt,
4739 };
4740
4741 static int i915_gem_object_create_shmem(struct drm_device *dev,
4742                                         struct drm_gem_object *obj,
4743                                         size_t size)
4744 {
4745         struct drm_i915_private *i915 = to_i915(dev);
4746         unsigned long flags = VM_NORESERVE;
4747         struct file *filp;
4748
4749         drm_gem_private_object_init(dev, obj, size);
4750
4751         if (i915->mm.gemfs)
4752                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4753                                                  flags);
4754         else
4755                 filp = shmem_file_setup("i915", size, flags);
4756
4757         if (IS_ERR(filp))
4758                 return PTR_ERR(filp);
4759
4760         obj->filp = filp;
4761
4762         return 0;
4763 }
4764
4765 struct drm_i915_gem_object *
4766 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4767 {
4768         struct drm_i915_gem_object *obj;
4769         struct address_space *mapping;
4770         unsigned int cache_level;
4771         gfp_t mask;
4772         int ret;
4773
4774         /* There is a prevalence of the assumption that we fit the object's
4775          * page count inside a 32bit _signed_ variable. Let's document this and
4776          * catch if we ever need to fix it. In the meantime, if you do spot
4777          * such a local variable, please consider fixing!
4778          */
4779         if (size >> PAGE_SHIFT > INT_MAX)
4780                 return ERR_PTR(-E2BIG);
4781
4782         if (overflows_type(size, obj->base.size))
4783                 return ERR_PTR(-E2BIG);
4784
4785         obj = i915_gem_object_alloc(dev_priv);
4786         if (obj == NULL)
4787                 return ERR_PTR(-ENOMEM);
4788
4789         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4790         if (ret)
4791                 goto fail;
4792
4793         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4794         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4795                 /* 965gm cannot relocate objects above 4GiB. */
4796                 mask &= ~__GFP_HIGHMEM;
4797                 mask |= __GFP_DMA32;
4798         }
4799
4800         mapping = obj->base.filp->f_mapping;
4801         mapping_set_gfp_mask(mapping, mask);
4802         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4803
4804         i915_gem_object_init(obj, &i915_gem_object_ops);
4805
4806         obj->write_domain = I915_GEM_DOMAIN_CPU;
4807         obj->read_domains = I915_GEM_DOMAIN_CPU;
4808
4809         if (HAS_LLC(dev_priv))
4810                 /* On some devices, we can have the GPU use the LLC (the CPU
4811                  * cache) for about a 10% performance improvement
4812                  * compared to uncached.  Graphics requests other than
4813                  * display scanout are coherent with the CPU in
4814                  * accessing this cache.  This means in this mode we
4815                  * don't need to clflush on the CPU side, and on the
4816                  * GPU side we only need to flush internal caches to
4817                  * get data visible to the CPU.
4818                  *
4819                  * However, we maintain the display planes as UC, and so
4820                  * need to rebind when first used as such.
4821                  */
4822                 cache_level = I915_CACHE_LLC;
4823         else
4824                 cache_level = I915_CACHE_NONE;
4825
4826         i915_gem_object_set_cache_coherency(obj, cache_level);
4827
4828         trace_i915_gem_object_create(obj);
4829
4830         return obj;
4831
4832 fail:
4833         i915_gem_object_free(obj);
4834         return ERR_PTR(ret);
4835 }
4836
4837 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4838 {
4839         /* If we are the last user of the backing storage (be it shmemfs
4840          * pages or stolen etc), we know that the pages are going to be
4841          * immediately released. In this case, we can then skip copying
4842          * back the contents from the GPU.
4843          */
4844
4845         if (obj->mm.madv != I915_MADV_WILLNEED)
4846                 return false;
4847
4848         if (obj->base.filp == NULL)
4849                 return true;
4850
4851         /* At first glance, this looks racy, but then again so would be
4852          * userspace racing mmap against close. However, the first external
4853          * reference to the filp can only be obtained through the
4854          * i915_gem_mmap_ioctl() which safeguards us against the user
4855          * acquiring such a reference whilst we are in the middle of
4856          * freeing the object.
4857          */
4858         return atomic_long_read(&obj->base.filp->f_count) == 1;
4859 }
4860
4861 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4862                                     struct llist_node *freed)
4863 {
4864         struct drm_i915_gem_object *obj, *on;
4865
4866         intel_runtime_pm_get(i915);
4867         llist_for_each_entry_safe(obj, on, freed, freed) {
4868                 struct i915_vma *vma, *vn;
4869
4870                 trace_i915_gem_object_destroy(obj);
4871
4872                 mutex_lock(&i915->drm.struct_mutex);
4873
4874                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4875                 list_for_each_entry_safe(vma, vn,
4876                                          &obj->vma_list, obj_link) {
4877                         GEM_BUG_ON(i915_vma_is_active(vma));
4878                         vma->flags &= ~I915_VMA_PIN_MASK;
4879                         i915_vma_destroy(vma);
4880                 }
4881                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4882                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4883
4884                 /* This serializes freeing with the shrinker. Since the free
4885                  * is delayed, first by RCU then by the workqueue, we want the
4886                  * shrinker to be able to free pages of unreferenced objects,
4887                  * or else we may oom whilst there are plenty of deferred
4888                  * freed objects.
4889                  */
4890                 if (i915_gem_object_has_pages(obj)) {
4891                         spin_lock(&i915->mm.obj_lock);
4892                         list_del_init(&obj->mm.link);
4893                         spin_unlock(&i915->mm.obj_lock);
4894                 }
4895
4896                 mutex_unlock(&i915->drm.struct_mutex);
4897
4898                 GEM_BUG_ON(obj->bind_count);
4899                 GEM_BUG_ON(obj->userfault_count);
4900                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4901                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4902
4903                 if (obj->ops->release)
4904                         obj->ops->release(obj);
4905
4906                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4907                         atomic_set(&obj->mm.pages_pin_count, 0);
4908                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4909                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4910
4911                 if (obj->base.import_attach)
4912                         drm_prime_gem_destroy(&obj->base, NULL);
4913
4914                 reservation_object_fini(&obj->__builtin_resv);
4915                 drm_gem_object_release(&obj->base);
4916                 i915_gem_info_remove_obj(i915, obj->base.size);
4917
4918                 kfree(obj->bit_17);
4919                 i915_gem_object_free(obj);
4920
4921                 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4922                 atomic_dec(&i915->mm.free_count);
4923
4924                 if (on)
4925                         cond_resched();
4926         }
4927         intel_runtime_pm_put(i915);
4928 }
4929
4930 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4931 {
4932         struct llist_node *freed;
4933
4934         /* Free the oldest, most stale object to keep the free_list short */
4935         freed = NULL;
4936         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4937                 /* Only one consumer of llist_del_first() allowed */
4938                 spin_lock(&i915->mm.free_lock);
4939                 freed = llist_del_first(&i915->mm.free_list);
4940                 spin_unlock(&i915->mm.free_lock);
4941         }
4942         if (unlikely(freed)) {
4943                 freed->next = NULL;
4944                 __i915_gem_free_objects(i915, freed);
4945         }
4946 }
4947
4948 static void __i915_gem_free_work(struct work_struct *work)
4949 {
4950         struct drm_i915_private *i915 =
4951                 container_of(work, struct drm_i915_private, mm.free_work);
4952         struct llist_node *freed;
4953
4954         /*
4955          * All file-owned VMA should have been released by this point through
4956          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4957          * However, the object may also be bound into the global GTT (e.g.
4958          * older GPUs without per-process support, or for direct access through
4959          * the GTT either for the user or for scanout). Those VMA still need to
4960          * unbound now.
4961          */
4962
4963         spin_lock(&i915->mm.free_lock);
4964         while ((freed = llist_del_all(&i915->mm.free_list))) {
4965                 spin_unlock(&i915->mm.free_lock);
4966
4967                 __i915_gem_free_objects(i915, freed);
4968                 if (need_resched())
4969                         return;
4970
4971                 spin_lock(&i915->mm.free_lock);
4972         }
4973         spin_unlock(&i915->mm.free_lock);
4974 }
4975
4976 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4977 {
4978         struct drm_i915_gem_object *obj =
4979                 container_of(head, typeof(*obj), rcu);
4980         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4981
4982         /*
4983          * Since we require blocking on struct_mutex to unbind the freed
4984          * object from the GPU before releasing resources back to the
4985          * system, we can not do that directly from the RCU callback (which may
4986          * be a softirq context), but must instead then defer that work onto a
4987          * kthread. We use the RCU callback rather than move the freed object
4988          * directly onto the work queue so that we can mix between using the
4989          * worker and performing frees directly from subsequent allocations for
4990          * crude but effective memory throttling.
4991          */
4992         if (llist_add(&obj->freed, &i915->mm.free_list))
4993                 queue_work(i915->wq, &i915->mm.free_work);
4994 }
4995
4996 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4997 {
4998         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4999
5000         if (obj->mm.quirked)
5001                 __i915_gem_object_unpin_pages(obj);
5002
5003         if (discard_backing_storage(obj))
5004                 obj->mm.madv = I915_MADV_DONTNEED;
5005
5006         /*
5007          * Before we free the object, make sure any pure RCU-only
5008          * read-side critical sections are complete, e.g.
5009          * i915_gem_busy_ioctl(). For the corresponding synchronized
5010          * lookup see i915_gem_object_lookup_rcu().
5011          */
5012         atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5013         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5014 }
5015
5016 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5017 {
5018         lockdep_assert_held(&obj->base.dev->struct_mutex);
5019
5020         if (!i915_gem_object_has_active_reference(obj) &&
5021             i915_gem_object_is_active(obj))
5022                 i915_gem_object_set_active_reference(obj);
5023         else
5024                 i915_gem_object_put(obj);
5025 }
5026
5027 void i915_gem_sanitize(struct drm_i915_private *i915)
5028 {
5029         int err;
5030
5031         GEM_TRACE("\n");
5032
5033         mutex_lock(&i915->drm.struct_mutex);
5034
5035         intel_runtime_pm_get(i915);
5036         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5037
5038         /*
5039          * As we have just resumed the machine and woken the device up from
5040          * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5041          * back to defaults, recovering from whatever wedged state we left it
5042          * in and so worth trying to use the device once more.
5043          */
5044         if (i915_terminally_wedged(&i915->gpu_error))
5045                 i915_gem_unset_wedged(i915);
5046
5047         /*
5048          * If we inherit context state from the BIOS or earlier occupants
5049          * of the GPU, the GPU may be in an inconsistent state when we
5050          * try to take over. The only way to remove the earlier state
5051          * is by resetting. However, resetting on earlier gen is tricky as
5052          * it may impact the display and we are uncertain about the stability
5053          * of the reset, so this could be applied to even earlier gen.
5054          */
5055         err = -ENODEV;
5056         if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5057                 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5058         if (!err)
5059                 intel_engines_sanitize(i915);
5060
5061         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5062         intel_runtime_pm_put(i915);
5063
5064         i915_gem_contexts_lost(i915);
5065         mutex_unlock(&i915->drm.struct_mutex);
5066 }
5067
5068 int i915_gem_suspend(struct drm_i915_private *i915)
5069 {
5070         int ret;
5071
5072         GEM_TRACE("\n");
5073
5074         intel_runtime_pm_get(i915);
5075         intel_suspend_gt_powersave(i915);
5076
5077         mutex_lock(&i915->drm.struct_mutex);
5078
5079         /*
5080          * We have to flush all the executing contexts to main memory so
5081          * that they can saved in the hibernation image. To ensure the last
5082          * context image is coherent, we have to switch away from it. That
5083          * leaves the i915->kernel_context still active when
5084          * we actually suspend, and its image in memory may not match the GPU
5085          * state. Fortunately, the kernel_context is disposable and we do
5086          * not rely on its state.
5087          */
5088         if (!i915_terminally_wedged(&i915->gpu_error)) {
5089                 ret = i915_gem_switch_to_kernel_context(i915);
5090                 if (ret)
5091                         goto err_unlock;
5092
5093                 ret = i915_gem_wait_for_idle(i915,
5094                                              I915_WAIT_INTERRUPTIBLE |
5095                                              I915_WAIT_LOCKED |
5096                                              I915_WAIT_FOR_IDLE_BOOST,
5097                                              MAX_SCHEDULE_TIMEOUT);
5098                 if (ret && ret != -EIO)
5099                         goto err_unlock;
5100
5101                 assert_kernel_context_is_current(i915);
5102         }
5103         i915_retire_requests(i915); /* ensure we flush after wedging */
5104
5105         mutex_unlock(&i915->drm.struct_mutex);
5106
5107         intel_uc_suspend(i915);
5108
5109         cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5110         cancel_delayed_work_sync(&i915->gt.retire_work);
5111
5112         /*
5113          * As the idle_work is rearming if it detects a race, play safe and
5114          * repeat the flush until it is definitely idle.
5115          */
5116         drain_delayed_work(&i915->gt.idle_work);
5117
5118         /*
5119          * Assert that we successfully flushed all the work and
5120          * reset the GPU back to its idle, low power state.
5121          */
5122         WARN_ON(i915->gt.awake);
5123         if (WARN_ON(!intel_engines_are_idle(i915)))
5124                 i915_gem_set_wedged(i915); /* no hope, discard everything */
5125
5126         intel_runtime_pm_put(i915);
5127         return 0;
5128
5129 err_unlock:
5130         mutex_unlock(&i915->drm.struct_mutex);
5131         intel_runtime_pm_put(i915);
5132         return ret;
5133 }
5134
5135 void i915_gem_suspend_late(struct drm_i915_private *i915)
5136 {
5137         struct drm_i915_gem_object *obj;
5138         struct list_head *phases[] = {
5139                 &i915->mm.unbound_list,
5140                 &i915->mm.bound_list,
5141                 NULL
5142         }, **phase;
5143
5144         /*
5145          * Neither the BIOS, ourselves or any other kernel
5146          * expects the system to be in execlists mode on startup,
5147          * so we need to reset the GPU back to legacy mode. And the only
5148          * known way to disable logical contexts is through a GPU reset.
5149          *
5150          * So in order to leave the system in a known default configuration,
5151          * always reset the GPU upon unload and suspend. Afterwards we then
5152          * clean up the GEM state tracking, flushing off the requests and
5153          * leaving the system in a known idle state.
5154          *
5155          * Note that is of the upmost importance that the GPU is idle and
5156          * all stray writes are flushed *before* we dismantle the backing
5157          * storage for the pinned objects.
5158          *
5159          * However, since we are uncertain that resetting the GPU on older
5160          * machines is a good idea, we don't - just in case it leaves the
5161          * machine in an unusable condition.
5162          */
5163
5164         mutex_lock(&i915->drm.struct_mutex);
5165         for (phase = phases; *phase; phase++) {
5166                 list_for_each_entry(obj, *phase, mm.link)
5167                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5168         }
5169         mutex_unlock(&i915->drm.struct_mutex);
5170
5171         intel_uc_sanitize(i915);
5172         i915_gem_sanitize(i915);
5173 }
5174
5175 void i915_gem_resume(struct drm_i915_private *i915)
5176 {
5177         GEM_TRACE("\n");
5178
5179         WARN_ON(i915->gt.awake);
5180
5181         mutex_lock(&i915->drm.struct_mutex);
5182         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5183
5184         i915_gem_restore_gtt_mappings(i915);
5185         i915_gem_restore_fences(i915);
5186
5187         /*
5188          * As we didn't flush the kernel context before suspend, we cannot
5189          * guarantee that the context image is complete. So let's just reset
5190          * it and start again.
5191          */
5192         i915->gt.resume(i915);
5193
5194         if (i915_gem_init_hw(i915))
5195                 goto err_wedged;
5196
5197         intel_uc_resume(i915);
5198
5199         /* Always reload a context for powersaving. */
5200         if (i915_gem_switch_to_kernel_context(i915))
5201                 goto err_wedged;
5202
5203 out_unlock:
5204         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5205         mutex_unlock(&i915->drm.struct_mutex);
5206         return;
5207
5208 err_wedged:
5209         if (!i915_terminally_wedged(&i915->gpu_error)) {
5210                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5211                 i915_gem_set_wedged(i915);
5212         }
5213         goto out_unlock;
5214 }
5215
5216 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5217 {
5218         if (INTEL_GEN(dev_priv) < 5 ||
5219             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5220                 return;
5221
5222         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5223                                  DISP_TILE_SURFACE_SWIZZLING);
5224
5225         if (IS_GEN5(dev_priv))
5226                 return;
5227
5228         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5229         if (IS_GEN6(dev_priv))
5230                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5231         else if (IS_GEN7(dev_priv))
5232                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5233         else if (IS_GEN8(dev_priv))
5234                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5235         else
5236                 BUG();
5237 }
5238
5239 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5240 {
5241         I915_WRITE(RING_CTL(base), 0);
5242         I915_WRITE(RING_HEAD(base), 0);
5243         I915_WRITE(RING_TAIL(base), 0);
5244         I915_WRITE(RING_START(base), 0);
5245 }
5246
5247 static void init_unused_rings(struct drm_i915_private *dev_priv)
5248 {
5249         if (IS_I830(dev_priv)) {
5250                 init_unused_ring(dev_priv, PRB1_BASE);
5251                 init_unused_ring(dev_priv, SRB0_BASE);
5252                 init_unused_ring(dev_priv, SRB1_BASE);
5253                 init_unused_ring(dev_priv, SRB2_BASE);
5254                 init_unused_ring(dev_priv, SRB3_BASE);
5255         } else if (IS_GEN2(dev_priv)) {
5256                 init_unused_ring(dev_priv, SRB0_BASE);
5257                 init_unused_ring(dev_priv, SRB1_BASE);
5258         } else if (IS_GEN3(dev_priv)) {
5259                 init_unused_ring(dev_priv, PRB1_BASE);
5260                 init_unused_ring(dev_priv, PRB2_BASE);
5261         }
5262 }
5263
5264 static int __i915_gem_restart_engines(void *data)
5265 {
5266         struct drm_i915_private *i915 = data;
5267         struct intel_engine_cs *engine;
5268         enum intel_engine_id id;
5269         int err;
5270
5271         for_each_engine(engine, i915, id) {
5272                 err = engine->init_hw(engine);
5273                 if (err) {
5274                         DRM_ERROR("Failed to restart %s (%d)\n",
5275                                   engine->name, err);
5276                         return err;
5277                 }
5278         }
5279
5280         return 0;
5281 }
5282
5283 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5284 {
5285         int ret;
5286
5287         dev_priv->gt.last_init_time = ktime_get();
5288
5289         /* Double layer security blanket, see i915_gem_init() */
5290         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5291
5292         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5293                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5294
5295         if (IS_HASWELL(dev_priv))
5296                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5297                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5298
5299         if (HAS_PCH_NOP(dev_priv)) {
5300                 if (IS_IVYBRIDGE(dev_priv)) {
5301                         u32 temp = I915_READ(GEN7_MSG_CTL);
5302                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5303                         I915_WRITE(GEN7_MSG_CTL, temp);
5304                 } else if (INTEL_GEN(dev_priv) >= 7) {
5305                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5306                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5307                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5308                 }
5309         }
5310
5311         intel_gt_workarounds_apply(dev_priv);
5312
5313         i915_gem_init_swizzling(dev_priv);
5314
5315         /*
5316          * At least 830 can leave some of the unused rings
5317          * "active" (ie. head != tail) after resume which
5318          * will prevent c3 entry. Makes sure all unused rings
5319          * are totally idle.
5320          */
5321         init_unused_rings(dev_priv);
5322
5323         BUG_ON(!dev_priv->kernel_context);
5324         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5325                 ret = -EIO;
5326                 goto out;
5327         }
5328
5329         ret = i915_ppgtt_init_hw(dev_priv);
5330         if (ret) {
5331                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5332                 goto out;
5333         }
5334
5335         ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5336         if (ret) {
5337                 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5338                 goto out;
5339         }
5340
5341         /* We can't enable contexts until all firmware is loaded */
5342         ret = intel_uc_init_hw(dev_priv);
5343         if (ret) {
5344                 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5345                 goto out;
5346         }
5347
5348         intel_mocs_init_l3cc_table(dev_priv);
5349
5350         /* Only when the HW is re-initialised, can we replay the requests */
5351         ret = __i915_gem_restart_engines(dev_priv);
5352         if (ret)
5353                 goto cleanup_uc;
5354
5355         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5356
5357         return 0;
5358
5359 cleanup_uc:
5360         intel_uc_fini_hw(dev_priv);
5361 out:
5362         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5363
5364         return ret;
5365 }
5366
5367 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5368 {
5369         struct i915_gem_context *ctx;
5370         struct intel_engine_cs *engine;
5371         enum intel_engine_id id;
5372         int err;
5373
5374         /*
5375          * As we reset the gpu during very early sanitisation, the current
5376          * register state on the GPU should reflect its defaults values.
5377          * We load a context onto the hw (with restore-inhibit), then switch
5378          * over to a second context to save that default register state. We
5379          * can then prime every new context with that state so they all start
5380          * from the same default HW values.
5381          */
5382
5383         ctx = i915_gem_context_create_kernel(i915, 0);
5384         if (IS_ERR(ctx))
5385                 return PTR_ERR(ctx);
5386
5387         for_each_engine(engine, i915, id) {
5388                 struct i915_request *rq;
5389
5390                 rq = i915_request_alloc(engine, ctx);
5391                 if (IS_ERR(rq)) {
5392                         err = PTR_ERR(rq);
5393                         goto out_ctx;
5394                 }
5395
5396                 err = 0;
5397                 if (engine->init_context)
5398                         err = engine->init_context(rq);
5399
5400                 i915_request_add(rq);
5401                 if (err)
5402                         goto err_active;
5403         }
5404
5405         err = i915_gem_switch_to_kernel_context(i915);
5406         if (err)
5407                 goto err_active;
5408
5409         if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5410                 i915_gem_set_wedged(i915);
5411                 err = -EIO; /* Caller will declare us wedged */
5412                 goto err_active;
5413         }
5414
5415         assert_kernel_context_is_current(i915);
5416
5417         for_each_engine(engine, i915, id) {
5418                 struct i915_vma *state;
5419
5420                 state = to_intel_context(ctx, engine)->state;
5421                 if (!state)
5422                         continue;
5423
5424                 /*
5425                  * As we will hold a reference to the logical state, it will
5426                  * not be torn down with the context, and importantly the
5427                  * object will hold onto its vma (making it possible for a
5428                  * stray GTT write to corrupt our defaults). Unmap the vma
5429                  * from the GTT to prevent such accidents and reclaim the
5430                  * space.
5431                  */
5432                 err = i915_vma_unbind(state);
5433                 if (err)
5434                         goto err_active;
5435
5436                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5437                 if (err)
5438                         goto err_active;
5439
5440                 engine->default_state = i915_gem_object_get(state->obj);
5441         }
5442
5443         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5444                 unsigned int found = intel_engines_has_context_isolation(i915);
5445
5446                 /*
5447                  * Make sure that classes with multiple engine instances all
5448                  * share the same basic configuration.
5449                  */
5450                 for_each_engine(engine, i915, id) {
5451                         unsigned int bit = BIT(engine->uabi_class);
5452                         unsigned int expected = engine->default_state ? bit : 0;
5453
5454                         if ((found & bit) != expected) {
5455                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5456                                           engine->uabi_class, engine->name);
5457                         }
5458                 }
5459         }
5460
5461 out_ctx:
5462         i915_gem_context_set_closed(ctx);
5463         i915_gem_context_put(ctx);
5464         return err;
5465
5466 err_active:
5467         /*
5468          * If we have to abandon now, we expect the engines to be idle
5469          * and ready to be torn-down. First try to flush any remaining
5470          * request, ensure we are pointing at the kernel context and
5471          * then remove it.
5472          */
5473         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5474                 goto out_ctx;
5475
5476         if (WARN_ON(i915_gem_wait_for_idle(i915,
5477                                            I915_WAIT_LOCKED,
5478                                            MAX_SCHEDULE_TIMEOUT)))
5479                 goto out_ctx;
5480
5481         i915_gem_contexts_lost(i915);
5482         goto out_ctx;
5483 }
5484
5485 int i915_gem_init(struct drm_i915_private *dev_priv)
5486 {
5487         int ret;
5488
5489         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5490         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5491                 mkwrite_device_info(dev_priv)->page_sizes =
5492                         I915_GTT_PAGE_SIZE_4K;
5493
5494         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5495
5496         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5497                 dev_priv->gt.resume = intel_lr_context_resume;
5498                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5499         } else {
5500                 dev_priv->gt.resume = intel_legacy_submission_resume;
5501                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5502         }
5503
5504         ret = i915_gem_init_userptr(dev_priv);
5505         if (ret)
5506                 return ret;
5507
5508         ret = intel_uc_init_misc(dev_priv);
5509         if (ret)
5510                 return ret;
5511
5512         ret = intel_wopcm_init(&dev_priv->wopcm);
5513         if (ret)
5514                 goto err_uc_misc;
5515
5516         /* This is just a security blanket to placate dragons.
5517          * On some systems, we very sporadically observe that the first TLBs
5518          * used by the CS may be stale, despite us poking the TLB reset. If
5519          * we hold the forcewake during initialisation these problems
5520          * just magically go away.
5521          */
5522         mutex_lock(&dev_priv->drm.struct_mutex);
5523         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5524
5525         ret = i915_gem_init_ggtt(dev_priv);
5526         if (ret) {
5527                 GEM_BUG_ON(ret == -EIO);
5528                 goto err_unlock;
5529         }
5530
5531         ret = i915_gem_contexts_init(dev_priv);
5532         if (ret) {
5533                 GEM_BUG_ON(ret == -EIO);
5534                 goto err_ggtt;
5535         }
5536
5537         ret = intel_engines_init(dev_priv);
5538         if (ret) {
5539                 GEM_BUG_ON(ret == -EIO);
5540                 goto err_context;
5541         }
5542
5543         intel_init_gt_powersave(dev_priv);
5544
5545         ret = intel_uc_init(dev_priv);
5546         if (ret)
5547                 goto err_pm;
5548
5549         ret = i915_gem_init_hw(dev_priv);
5550         if (ret)
5551                 goto err_uc_init;
5552
5553         /*
5554          * Despite its name intel_init_clock_gating applies both display
5555          * clock gating workarounds; GT mmio workarounds and the occasional
5556          * GT power context workaround. Worse, sometimes it includes a context
5557          * register workaround which we need to apply before we record the
5558          * default HW state for all contexts.
5559          *
5560          * FIXME: break up the workarounds and apply them at the right time!
5561          */
5562         intel_init_clock_gating(dev_priv);
5563
5564         ret = __intel_engines_record_defaults(dev_priv);
5565         if (ret)
5566                 goto err_init_hw;
5567
5568         if (i915_inject_load_failure()) {
5569                 ret = -ENODEV;
5570                 goto err_init_hw;
5571         }
5572
5573         if (i915_inject_load_failure()) {
5574                 ret = -EIO;
5575                 goto err_init_hw;
5576         }
5577
5578         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5579         mutex_unlock(&dev_priv->drm.struct_mutex);
5580
5581         return 0;
5582
5583         /*
5584          * Unwinding is complicated by that we want to handle -EIO to mean
5585          * disable GPU submission but keep KMS alive. We want to mark the
5586          * HW as irrevisibly wedged, but keep enough state around that the
5587          * driver doesn't explode during runtime.
5588          */
5589 err_init_hw:
5590         mutex_unlock(&dev_priv->drm.struct_mutex);
5591
5592         WARN_ON(i915_gem_suspend(dev_priv));
5593         i915_gem_suspend_late(dev_priv);
5594
5595         i915_gem_drain_workqueue(dev_priv);
5596
5597         mutex_lock(&dev_priv->drm.struct_mutex);
5598         intel_uc_fini_hw(dev_priv);
5599 err_uc_init:
5600         intel_uc_fini(dev_priv);
5601 err_pm:
5602         if (ret != -EIO) {
5603                 intel_cleanup_gt_powersave(dev_priv);
5604                 i915_gem_cleanup_engines(dev_priv);
5605         }
5606 err_context:
5607         if (ret != -EIO)
5608                 i915_gem_contexts_fini(dev_priv);
5609 err_ggtt:
5610 err_unlock:
5611         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5612         mutex_unlock(&dev_priv->drm.struct_mutex);
5613
5614 err_uc_misc:
5615         intel_uc_fini_misc(dev_priv);
5616
5617         if (ret != -EIO)
5618                 i915_gem_cleanup_userptr(dev_priv);
5619
5620         if (ret == -EIO) {
5621                 mutex_lock(&dev_priv->drm.struct_mutex);
5622
5623                 /*
5624                  * Allow engine initialisation to fail by marking the GPU as
5625                  * wedged. But we only want to do this where the GPU is angry,
5626                  * for all other failure, such as an allocation failure, bail.
5627                  */
5628                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5629                         i915_load_error(dev_priv,
5630                                         "Failed to initialize GPU, declaring it wedged!\n");
5631                         i915_gem_set_wedged(dev_priv);
5632                 }
5633
5634                 /* Minimal basic recovery for KMS */
5635                 ret = i915_ggtt_enable_hw(dev_priv);
5636                 i915_gem_restore_gtt_mappings(dev_priv);
5637                 i915_gem_restore_fences(dev_priv);
5638                 intel_init_clock_gating(dev_priv);
5639
5640                 mutex_unlock(&dev_priv->drm.struct_mutex);
5641         }
5642
5643         i915_gem_drain_freed_objects(dev_priv);
5644         return ret;
5645 }
5646
5647 void i915_gem_fini(struct drm_i915_private *dev_priv)
5648 {
5649         i915_gem_suspend_late(dev_priv);
5650         intel_disable_gt_powersave(dev_priv);
5651
5652         /* Flush any outstanding unpin_work. */
5653         i915_gem_drain_workqueue(dev_priv);
5654
5655         mutex_lock(&dev_priv->drm.struct_mutex);
5656         intel_uc_fini_hw(dev_priv);
5657         intel_uc_fini(dev_priv);
5658         i915_gem_cleanup_engines(dev_priv);
5659         i915_gem_contexts_fini(dev_priv);
5660         mutex_unlock(&dev_priv->drm.struct_mutex);
5661
5662         intel_cleanup_gt_powersave(dev_priv);
5663
5664         intel_uc_fini_misc(dev_priv);
5665         i915_gem_cleanup_userptr(dev_priv);
5666
5667         i915_gem_drain_freed_objects(dev_priv);
5668
5669         WARN_ON(!list_empty(&dev_priv->contexts.list));
5670 }
5671
5672 void i915_gem_init_mmio(struct drm_i915_private *i915)
5673 {
5674         i915_gem_sanitize(i915);
5675 }
5676
5677 void
5678 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5679 {
5680         struct intel_engine_cs *engine;
5681         enum intel_engine_id id;
5682
5683         for_each_engine(engine, dev_priv, id)
5684                 dev_priv->gt.cleanup_engine(engine);
5685 }
5686
5687 void
5688 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5689 {
5690         int i;
5691
5692         if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5693             !IS_CHERRYVIEW(dev_priv))
5694                 dev_priv->num_fence_regs = 32;
5695         else if (INTEL_GEN(dev_priv) >= 4 ||
5696                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5697                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5698                 dev_priv->num_fence_regs = 16;
5699         else
5700                 dev_priv->num_fence_regs = 8;
5701
5702         if (intel_vgpu_active(dev_priv))
5703                 dev_priv->num_fence_regs =
5704                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5705
5706         /* Initialize fence registers to zero */
5707         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5708                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5709
5710                 fence->i915 = dev_priv;
5711                 fence->id = i;
5712                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5713         }
5714         i915_gem_restore_fences(dev_priv);
5715
5716         i915_gem_detect_bit_6_swizzle(dev_priv);
5717 }
5718
5719 static void i915_gem_init__mm(struct drm_i915_private *i915)
5720 {
5721         spin_lock_init(&i915->mm.object_stat_lock);
5722         spin_lock_init(&i915->mm.obj_lock);
5723         spin_lock_init(&i915->mm.free_lock);
5724
5725         init_llist_head(&i915->mm.free_list);
5726
5727         INIT_LIST_HEAD(&i915->mm.unbound_list);
5728         INIT_LIST_HEAD(&i915->mm.bound_list);
5729         INIT_LIST_HEAD(&i915->mm.fence_list);
5730         INIT_LIST_HEAD(&i915->mm.userfault_list);
5731
5732         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5733 }
5734
5735 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5736 {
5737         int err = -ENOMEM;
5738
5739         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5740         if (!dev_priv->objects)
5741                 goto err_out;
5742
5743         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5744         if (!dev_priv->vmas)
5745                 goto err_objects;
5746
5747         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5748         if (!dev_priv->luts)
5749                 goto err_vmas;
5750
5751         dev_priv->requests = KMEM_CACHE(i915_request,
5752                                         SLAB_HWCACHE_ALIGN |
5753                                         SLAB_RECLAIM_ACCOUNT |
5754                                         SLAB_TYPESAFE_BY_RCU);
5755         if (!dev_priv->requests)
5756                 goto err_luts;
5757
5758         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5759                                             SLAB_HWCACHE_ALIGN |
5760                                             SLAB_RECLAIM_ACCOUNT);
5761         if (!dev_priv->dependencies)
5762                 goto err_requests;
5763
5764         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5765         if (!dev_priv->priorities)
5766                 goto err_dependencies;
5767
5768         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5769         INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5770         INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5771
5772         i915_gem_init__mm(dev_priv);
5773
5774         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5775                           i915_gem_retire_work_handler);
5776         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5777                           i915_gem_idle_work_handler);
5778         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5779         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5780
5781         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5782
5783         spin_lock_init(&dev_priv->fb_tracking.lock);
5784
5785         err = i915_gemfs_init(dev_priv);
5786         if (err)
5787                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5788
5789         return 0;
5790
5791 err_dependencies:
5792         kmem_cache_destroy(dev_priv->dependencies);
5793 err_requests:
5794         kmem_cache_destroy(dev_priv->requests);
5795 err_luts:
5796         kmem_cache_destroy(dev_priv->luts);
5797 err_vmas:
5798         kmem_cache_destroy(dev_priv->vmas);
5799 err_objects:
5800         kmem_cache_destroy(dev_priv->objects);
5801 err_out:
5802         return err;
5803 }
5804
5805 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5806 {
5807         i915_gem_drain_freed_objects(dev_priv);
5808         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5809         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5810         WARN_ON(dev_priv->mm.object_count);
5811         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5812
5813         kmem_cache_destroy(dev_priv->priorities);
5814         kmem_cache_destroy(dev_priv->dependencies);
5815         kmem_cache_destroy(dev_priv->requests);
5816         kmem_cache_destroy(dev_priv->luts);
5817         kmem_cache_destroy(dev_priv->vmas);
5818         kmem_cache_destroy(dev_priv->objects);
5819
5820         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5821         rcu_barrier();
5822
5823         i915_gemfs_fini(dev_priv);
5824 }
5825
5826 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5827 {
5828         /* Discard all purgeable objects, let userspace recover those as
5829          * required after resuming.
5830          */
5831         i915_gem_shrink_all(dev_priv);
5832
5833         return 0;
5834 }
5835
5836 int i915_gem_freeze_late(struct drm_i915_private *i915)
5837 {
5838         struct drm_i915_gem_object *obj;
5839         struct list_head *phases[] = {
5840                 &i915->mm.unbound_list,
5841                 &i915->mm.bound_list,
5842                 NULL
5843         }, **phase;
5844
5845         /*
5846          * Called just before we write the hibernation image.
5847          *
5848          * We need to update the domain tracking to reflect that the CPU
5849          * will be accessing all the pages to create and restore from the
5850          * hibernation, and so upon restoration those pages will be in the
5851          * CPU domain.
5852          *
5853          * To make sure the hibernation image contains the latest state,
5854          * we update that state just before writing out the image.
5855          *
5856          * To try and reduce the hibernation image, we manually shrink
5857          * the objects as well, see i915_gem_freeze()
5858          */
5859
5860         i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5861         i915_gem_drain_freed_objects(i915);
5862
5863         mutex_lock(&i915->drm.struct_mutex);
5864         for (phase = phases; *phase; phase++) {
5865                 list_for_each_entry(obj, *phase, mm.link)
5866                         WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5867         }
5868         mutex_unlock(&i915->drm.struct_mutex);
5869
5870         return 0;
5871 }
5872
5873 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5874 {
5875         struct drm_i915_file_private *file_priv = file->driver_priv;
5876         struct i915_request *request;
5877
5878         /* Clean up our request list when the client is going away, so that
5879          * later retire_requests won't dereference our soon-to-be-gone
5880          * file_priv.
5881          */
5882         spin_lock(&file_priv->mm.lock);
5883         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5884                 request->file_priv = NULL;
5885         spin_unlock(&file_priv->mm.lock);
5886 }
5887
5888 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5889 {
5890         struct drm_i915_file_private *file_priv;
5891         int ret;
5892
5893         DRM_DEBUG("\n");
5894
5895         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5896         if (!file_priv)
5897                 return -ENOMEM;
5898
5899         file->driver_priv = file_priv;
5900         file_priv->dev_priv = i915;
5901         file_priv->file = file;
5902
5903         spin_lock_init(&file_priv->mm.lock);
5904         INIT_LIST_HEAD(&file_priv->mm.request_list);
5905
5906         file_priv->bsd_engine = -1;
5907         file_priv->hang_timestamp = jiffies;
5908
5909         ret = i915_gem_context_open(i915, file);
5910         if (ret)
5911                 kfree(file_priv);
5912
5913         return ret;
5914 }
5915
5916 /**
5917  * i915_gem_track_fb - update frontbuffer tracking
5918  * @old: current GEM buffer for the frontbuffer slots
5919  * @new: new GEM buffer for the frontbuffer slots
5920  * @frontbuffer_bits: bitmask of frontbuffer slots
5921  *
5922  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5923  * from @old and setting them in @new. Both @old and @new can be NULL.
5924  */
5925 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5926                        struct drm_i915_gem_object *new,
5927                        unsigned frontbuffer_bits)
5928 {
5929         /* Control of individual bits within the mask are guarded by
5930          * the owning plane->mutex, i.e. we can never see concurrent
5931          * manipulation of individual bits. But since the bitfield as a whole
5932          * is updated using RMW, we need to use atomics in order to update
5933          * the bits.
5934          */
5935         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5936                      sizeof(atomic_t) * BITS_PER_BYTE);
5937
5938         if (old) {
5939                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5940                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5941         }
5942
5943         if (new) {
5944                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5945                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5946         }
5947 }
5948
5949 /* Allocate a new GEM object and fill it with the supplied data */
5950 struct drm_i915_gem_object *
5951 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5952                                  const void *data, size_t size)
5953 {
5954         struct drm_i915_gem_object *obj;
5955         struct file *file;
5956         size_t offset;
5957         int err;
5958
5959         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5960         if (IS_ERR(obj))
5961                 return obj;
5962
5963         GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5964
5965         file = obj->base.filp;
5966         offset = 0;
5967         do {
5968                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5969                 struct page *page;
5970                 void *pgdata, *vaddr;
5971
5972                 err = pagecache_write_begin(file, file->f_mapping,
5973                                             offset, len, 0,
5974                                             &page, &pgdata);
5975                 if (err < 0)
5976                         goto fail;
5977
5978                 vaddr = kmap(page);
5979                 memcpy(vaddr, data, len);
5980                 kunmap(page);
5981
5982                 err = pagecache_write_end(file, file->f_mapping,
5983                                           offset, len, len,
5984                                           page, pgdata);
5985                 if (err < 0)
5986                         goto fail;
5987
5988                 size -= len;
5989                 data += len;
5990                 offset += len;
5991         } while (size);
5992
5993         return obj;
5994
5995 fail:
5996         i915_gem_object_put(obj);
5997         return ERR_PTR(err);
5998 }
5999
6000 struct scatterlist *
6001 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6002                        unsigned int n,
6003                        unsigned int *offset)
6004 {
6005         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6006         struct scatterlist *sg;
6007         unsigned int idx, count;
6008
6009         might_sleep();
6010         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6011         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6012
6013         /* As we iterate forward through the sg, we record each entry in a
6014          * radixtree for quick repeated (backwards) lookups. If we have seen
6015          * this index previously, we will have an entry for it.
6016          *
6017          * Initial lookup is O(N), but this is amortized to O(1) for
6018          * sequential page access (where each new request is consecutive
6019          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6020          * i.e. O(1) with a large constant!
6021          */
6022         if (n < READ_ONCE(iter->sg_idx))
6023                 goto lookup;
6024
6025         mutex_lock(&iter->lock);
6026
6027         /* We prefer to reuse the last sg so that repeated lookup of this
6028          * (or the subsequent) sg are fast - comparing against the last
6029          * sg is faster than going through the radixtree.
6030          */
6031
6032         sg = iter->sg_pos;
6033         idx = iter->sg_idx;
6034         count = __sg_page_count(sg);
6035
6036         while (idx + count <= n) {
6037                 unsigned long exception, i;
6038                 int ret;
6039
6040                 /* If we cannot allocate and insert this entry, or the
6041                  * individual pages from this range, cancel updating the
6042                  * sg_idx so that on this lookup we are forced to linearly
6043                  * scan onwards, but on future lookups we will try the
6044                  * insertion again (in which case we need to be careful of
6045                  * the error return reporting that we have already inserted
6046                  * this index).
6047                  */
6048                 ret = radix_tree_insert(&iter->radix, idx, sg);
6049                 if (ret && ret != -EEXIST)
6050                         goto scan;
6051
6052                 exception =
6053                         RADIX_TREE_EXCEPTIONAL_ENTRY |
6054                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6055                 for (i = 1; i < count; i++) {
6056                         ret = radix_tree_insert(&iter->radix, idx + i,
6057                                                 (void *)exception);
6058                         if (ret && ret != -EEXIST)
6059                                 goto scan;
6060                 }
6061
6062                 idx += count;
6063                 sg = ____sg_next(sg);
6064                 count = __sg_page_count(sg);
6065         }
6066
6067 scan:
6068         iter->sg_pos = sg;
6069         iter->sg_idx = idx;
6070
6071         mutex_unlock(&iter->lock);
6072
6073         if (unlikely(n < idx)) /* insertion completed by another thread */
6074                 goto lookup;
6075
6076         /* In case we failed to insert the entry into the radixtree, we need
6077          * to look beyond the current sg.
6078          */
6079         while (idx + count <= n) {
6080                 idx += count;
6081                 sg = ____sg_next(sg);
6082                 count = __sg_page_count(sg);
6083         }
6084
6085         *offset = n - idx;
6086         return sg;
6087
6088 lookup:
6089         rcu_read_lock();
6090
6091         sg = radix_tree_lookup(&iter->radix, n);
6092         GEM_BUG_ON(!sg);
6093
6094         /* If this index is in the middle of multi-page sg entry,
6095          * the radixtree will contain an exceptional entry that points
6096          * to the start of that range. We will return the pointer to
6097          * the base page and the offset of this page within the
6098          * sg entry's range.
6099          */
6100         *offset = 0;
6101         if (unlikely(radix_tree_exception(sg))) {
6102                 unsigned long base =
6103                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6104
6105                 sg = radix_tree_lookup(&iter->radix, base);
6106                 GEM_BUG_ON(!sg);
6107
6108                 *offset = n - base;
6109         }
6110
6111         rcu_read_unlock();
6112
6113         return sg;
6114 }
6115
6116 struct page *
6117 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6118 {
6119         struct scatterlist *sg;
6120         unsigned int offset;
6121
6122         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6123
6124         sg = i915_gem_object_get_sg(obj, n, &offset);
6125         return nth_page(sg_page(sg), offset);
6126 }
6127
6128 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6129 struct page *
6130 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6131                                unsigned int n)
6132 {
6133         struct page *page;
6134
6135         page = i915_gem_object_get_page(obj, n);
6136         if (!obj->mm.dirty)
6137                 set_page_dirty(page);
6138
6139         return page;
6140 }
6141
6142 dma_addr_t
6143 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6144                                 unsigned long n)
6145 {
6146         struct scatterlist *sg;
6147         unsigned int offset;
6148
6149         sg = i915_gem_object_get_sg(obj, n, &offset);
6150         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6151 }
6152
6153 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6154 {
6155         struct sg_table *pages;
6156         int err;
6157
6158         if (align > obj->base.size)
6159                 return -EINVAL;
6160
6161         if (obj->ops == &i915_gem_phys_ops)
6162                 return 0;
6163
6164         if (obj->ops != &i915_gem_object_ops)
6165                 return -EINVAL;
6166
6167         err = i915_gem_object_unbind(obj);
6168         if (err)
6169                 return err;
6170
6171         mutex_lock(&obj->mm.lock);
6172
6173         if (obj->mm.madv != I915_MADV_WILLNEED) {
6174                 err = -EFAULT;
6175                 goto err_unlock;
6176         }
6177
6178         if (obj->mm.quirked) {
6179                 err = -EFAULT;
6180                 goto err_unlock;
6181         }
6182
6183         if (obj->mm.mapping) {
6184                 err = -EBUSY;
6185                 goto err_unlock;
6186         }
6187
6188         pages = __i915_gem_object_unset_pages(obj);
6189
6190         obj->ops = &i915_gem_phys_ops;
6191
6192         err = ____i915_gem_object_get_pages(obj);
6193         if (err)
6194                 goto err_xfer;
6195
6196         /* Perma-pin (until release) the physical set of pages */
6197         __i915_gem_object_pin_pages(obj);
6198
6199         if (!IS_ERR_OR_NULL(pages))
6200                 i915_gem_object_ops.put_pages(obj, pages);
6201         mutex_unlock(&obj->mm.lock);
6202         return 0;
6203
6204 err_xfer:
6205         obj->ops = &i915_gem_object_ops;
6206         if (!IS_ERR_OR_NULL(pages)) {
6207                 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6208
6209                 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6210         }
6211 err_unlock:
6212         mutex_unlock(&obj->mm.lock);
6213         return err;
6214 }
6215
6216 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6217 #include "selftests/scatterlist.c"
6218 #include "selftests/mock_gem_device.c"
6219 #include "selftests/huge_gem_object.c"
6220 #include "selftests/huge_pages.c"
6221 #include "selftests/i915_gem_object.c"
6222 #include "selftests/i915_gem_coherency.c"
6223 #include "selftests/i915_gem.c"
6224 #endif