drm/i915: Call io_schedule() whilst whilsting for the GPU
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         struct timespec before, now;
1019         DEFINE_WAIT(wait);
1020         long timeout_jiffies;
1021         int ret;
1022
1023         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026                 return 0;
1027
1028         timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031                 gen6_rps_boost(dev_priv);
1032                 if (file_priv)
1033                         mod_delayed_work(dev_priv->wq,
1034                                          &file_priv->mm.idle_work,
1035                                          msecs_to_jiffies(100));
1036         }
1037
1038         if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039             WARN_ON(!ring->irq_get(ring)))
1040                 return -ENODEV;
1041
1042         /* Record current time in case interrupted by signal, or wedged */
1043         trace_i915_gem_request_wait_begin(ring, seqno);
1044         getrawmonotonic(&before);
1045         for (;;) {
1046                 struct timer_list timer;
1047                 unsigned long expire;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout_jiffies <= 0) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081                         expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082                         mod_timer(&timer, expire);
1083                 }
1084
1085                 io_schedule();
1086
1087                 if (timeout)
1088                         timeout_jiffies = expire - jiffies;
1089
1090                 if (timer.function) {
1091                         del_singleshot_timer_sync(&timer);
1092                         destroy_timer_on_stack(&timer);
1093                 }
1094         }
1095         getrawmonotonic(&now);
1096         trace_i915_gem_request_wait_end(ring, seqno);
1097
1098         ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         /* We don't use vmf->pgoff since that has the fake offset */
1384         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385                 PAGE_SHIFT;
1386
1387         ret = i915_mutex_lock_interruptible(dev);
1388         if (ret)
1389                 goto out;
1390
1391         trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393         /* Access to snoopable pages through the GTT is incoherent. */
1394         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395                 ret = -EINVAL;
1396                 goto unlock;
1397         }
1398
1399         /* Now bind it into the GTT if needed */
1400         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1401         if (ret)
1402                 goto unlock;
1403
1404         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405         if (ret)
1406                 goto unpin;
1407
1408         ret = i915_gem_object_get_fence(obj);
1409         if (ret)
1410                 goto unpin;
1411
1412         obj->fault_mappable = true;
1413
1414         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415         pfn >>= PAGE_SHIFT;
1416         pfn += page_offset;
1417
1418         /* Finally, remap it using the new GTT offset */
1419         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421         i915_gem_object_unpin(obj);
1422 unlock:
1423         mutex_unlock(&dev->struct_mutex);
1424 out:
1425         switch (ret) {
1426         case -EIO:
1427                 /* If this -EIO is due to a gpu hang, give the reset code a
1428                  * chance to clean up the mess. Otherwise return the proper
1429                  * SIGBUS. */
1430                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431                         return VM_FAULT_SIGBUS;
1432         case -EAGAIN:
1433                 /*
1434                  * EAGAIN means the gpu is hung and we'll wait for the error
1435                  * handler to reset everything when re-faulting in
1436                  * i915_mutex_lock_interruptible.
1437                  */
1438         case 0:
1439         case -ERESTARTSYS:
1440         case -EINTR:
1441         case -EBUSY:
1442                 /*
1443                  * EBUSY is ok: this just means that another thread
1444                  * already did the job.
1445                  */
1446                 return VM_FAULT_NOPAGE;
1447         case -ENOMEM:
1448                 return VM_FAULT_OOM;
1449         case -ENOSPC:
1450                 return VM_FAULT_SIGBUS;
1451         default:
1452                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453                 return VM_FAULT_SIGBUS;
1454         }
1455 }
1456
1457 /**
1458  * i915_gem_release_mmap - remove physical page mappings
1459  * @obj: obj in question
1460  *
1461  * Preserve the reservation of the mmapping with the DRM core code, but
1462  * relinquish ownership of the pages back to the system.
1463  *
1464  * It is vital that we remove the page mapping if we have mapped a tiled
1465  * object through the GTT and then lose the fence register due to
1466  * resource pressure. Similarly if the object has been moved out of the
1467  * aperture, than pages mapped into userspace must be revoked. Removing the
1468  * mapping will then trigger a page fault on the next user access, allowing
1469  * fixup by i915_gem_fault().
1470  */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474         if (!obj->fault_mappable)
1475                 return;
1476
1477         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478         obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484         uint32_t gtt_size;
1485
1486         if (INTEL_INFO(dev)->gen >= 4 ||
1487             tiling_mode == I915_TILING_NONE)
1488                 return size;
1489
1490         /* Previous chips need a power-of-two fence region when tiling */
1491         if (INTEL_INFO(dev)->gen == 3)
1492                 gtt_size = 1024*1024;
1493         else
1494                 gtt_size = 512*1024;
1495
1496         while (gtt_size < size)
1497                 gtt_size <<= 1;
1498
1499         return gtt_size;
1500 }
1501
1502 /**
1503  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504  * @obj: object to check
1505  *
1506  * Return the required GTT alignment for an object, taking into account
1507  * potential fence register mapping.
1508  */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511                            int tiling_mode, bool fenced)
1512 {
1513         /*
1514          * Minimum alignment is 4k (GTT page size), but might be greater
1515          * if a fence register is needed for the object.
1516          */
1517         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518             tiling_mode == I915_TILING_NONE)
1519                 return 4096;
1520
1521         /*
1522          * Previous chips need to be aligned to the size of the smallest
1523          * fence register that can contain the object.
1524          */
1525         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531         int ret;
1532
1533         if (drm_vma_node_has_offset(&obj->base.vma_node))
1534                 return 0;
1535
1536         dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538         ret = drm_gem_create_mmap_offset(&obj->base);
1539         if (ret != -ENOSPC)
1540                 goto out;
1541
1542         /* Badly fragmented mmap space? The only way we can recover
1543          * space is by destroying unwanted objects. We can't randomly release
1544          * mmap_offsets as userspace expects them to be persistent for the
1545          * lifetime of the objects. The closest we can is to release the
1546          * offsets on purgeable objects by truncating it and marking it purged,
1547          * which prevents userspace from ever using that object again.
1548          */
1549         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550         ret = drm_gem_create_mmap_offset(&obj->base);
1551         if (ret != -ENOSPC)
1552                 goto out;
1553
1554         i915_gem_shrink_all(dev_priv);
1555         ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557         dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559         return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564         drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569                   struct drm_device *dev,
1570                   uint32_t handle,
1571                   uint64_t *offset)
1572 {
1573         struct drm_i915_private *dev_priv = dev->dev_private;
1574         struct drm_i915_gem_object *obj;
1575         int ret;
1576
1577         ret = i915_mutex_lock_interruptible(dev);
1578         if (ret)
1579                 return ret;
1580
1581         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582         if (&obj->base == NULL) {
1583                 ret = -ENOENT;
1584                 goto unlock;
1585         }
1586
1587         if (obj->base.size > dev_priv->gtt.mappable_end) {
1588                 ret = -E2BIG;
1589                 goto out;
1590         }
1591
1592         if (obj->madv != I915_MADV_WILLNEED) {
1593                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594                 ret = -EINVAL;
1595                 goto out;
1596         }
1597
1598         ret = i915_gem_object_create_mmap_offset(obj);
1599         if (ret)
1600                 goto out;
1601
1602         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605         drm_gem_object_unreference(&obj->base);
1606 unlock:
1607         mutex_unlock(&dev->struct_mutex);
1608         return ret;
1609 }
1610
1611 /**
1612  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613  * @dev: DRM device
1614  * @data: GTT mapping ioctl data
1615  * @file: GEM object info
1616  *
1617  * Simply returns the fake offset to userspace so it can mmap it.
1618  * The mmap call will end up in drm_gem_mmap(), which will set things
1619  * up so we can get faults in the handler above.
1620  *
1621  * The fault handler will take care of binding the object into the GTT
1622  * (since it may have been evicted to make room for something), allocating
1623  * a fence register, and mapping the appropriate aperture address into
1624  * userspace.
1625  */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628                         struct drm_file *file)
1629 {
1630         struct drm_i915_gem_mmap_gtt *args = data;
1631
1632         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639         struct inode *inode;
1640
1641         i915_gem_object_free_mmap_offset(obj);
1642
1643         if (obj->base.filp == NULL)
1644                 return;
1645
1646         /* Our goal here is to return as much of the memory as
1647          * is possible back to the system as we are called from OOM.
1648          * To do this we must instruct the shmfs to drop all of its
1649          * backing pages, *now*.
1650          */
1651         inode = file_inode(obj->base.filp);
1652         shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654         obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660         return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666         struct sg_page_iter sg_iter;
1667         int ret;
1668
1669         BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672         if (ret) {
1673                 /* In the event of a disaster, abandon all caches and
1674                  * hope for the best.
1675                  */
1676                 WARN_ON(ret != -EIO);
1677                 i915_gem_clflush_object(obj, true);
1678                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679         }
1680
1681         if (i915_gem_object_needs_bit17_swizzle(obj))
1682                 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684         if (obj->madv == I915_MADV_DONTNEED)
1685                 obj->dirty = 0;
1686
1687         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688                 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690                 if (obj->dirty)
1691                         set_page_dirty(page);
1692
1693                 if (obj->madv == I915_MADV_WILLNEED)
1694                         mark_page_accessed(page);
1695
1696                 page_cache_release(page);
1697         }
1698         obj->dirty = 0;
1699
1700         sg_free_table(obj->pages);
1701         kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707         const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709         if (obj->pages == NULL)
1710                 return 0;
1711
1712         if (obj->pages_pin_count)
1713                 return -EBUSY;
1714
1715         BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717         /* ->put_pages might need to allocate memory for the bit17 swizzle
1718          * array, hence protect them from being reaped by removing them from gtt
1719          * lists early. */
1720         list_del(&obj->global_list);
1721
1722         ops->put_pages(obj);
1723         obj->pages = NULL;
1724
1725         if (i915_gem_object_is_purgeable(obj))
1726                 i915_gem_object_truncate(obj);
1727
1728         return 0;
1729 }
1730
1731 static long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733                   bool purgeable_only)
1734 {
1735         struct list_head still_bound_list;
1736         struct drm_i915_gem_object *obj, *next;
1737         long count = 0;
1738
1739         list_for_each_entry_safe(obj, next,
1740                                  &dev_priv->mm.unbound_list,
1741                                  global_list) {
1742                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743                     i915_gem_object_put_pages(obj) == 0) {
1744                         count += obj->base.size >> PAGE_SHIFT;
1745                         if (count >= target)
1746                                 return count;
1747                 }
1748         }
1749
1750         /*
1751          * As we may completely rewrite the bound list whilst unbinding
1752          * (due to retiring requests) we have to strictly process only
1753          * one element of the list at the time, and recheck the list
1754          * on every iteration.
1755          */
1756         INIT_LIST_HEAD(&still_bound_list);
1757         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758                 struct i915_vma *vma, *v;
1759
1760                 obj = list_first_entry(&dev_priv->mm.bound_list,
1761                                        typeof(*obj), global_list);
1762                 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765                         continue;
1766
1767                 /*
1768                  * Hold a reference whilst we unbind this object, as we may
1769                  * end up waiting for and retiring requests. This might
1770                  * release the final reference (held by the active list)
1771                  * and result in the object being freed from under us.
1772                  * in this object being freed.
1773                  *
1774                  * Note 1: Shrinking the bound list is special since only active
1775                  * (and hence bound objects) can contain such limbo objects, so
1776                  * we don't need special tricks for shrinking the unbound list.
1777                  * The only other place where we have to be careful with active
1778                  * objects suddenly disappearing due to retiring requests is the
1779                  * eviction code.
1780                  *
1781                  * Note 2: Even though the bound list doesn't hold a reference
1782                  * to the object we can safely grab one here: The final object
1783                  * unreferencing and the bound_list are both protected by the
1784                  * dev->struct_mutex and so we won't ever be able to observe an
1785                  * object on the bound_list with a reference count equals 0.
1786                  */
1787                 drm_gem_object_reference(&obj->base);
1788
1789                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790                         if (i915_vma_unbind(vma))
1791                                 break;
1792
1793                 if (i915_gem_object_put_pages(obj) == 0)
1794                         count += obj->base.size >> PAGE_SHIFT;
1795
1796                 drm_gem_object_unreference(&obj->base);
1797         }
1798         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800         return count;
1801 }
1802
1803 static long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806         return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812         struct drm_i915_gem_object *obj, *next;
1813         long freed = 0;
1814
1815         i915_gem_evict_everything(dev_priv->dev);
1816
1817         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818                                  global_list) {
1819                 if (obj->pages_pin_count == 0)
1820                         freed += obj->base.size >> PAGE_SHIFT;
1821                 i915_gem_object_put_pages(obj);
1822         }
1823         return freed;
1824 }
1825
1826 static int
1827 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1828 {
1829         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1830         int page_count, i;
1831         struct address_space *mapping;
1832         struct sg_table *st;
1833         struct scatterlist *sg;
1834         struct sg_page_iter sg_iter;
1835         struct page *page;
1836         unsigned long last_pfn = 0;     /* suppress gcc warning */
1837         gfp_t gfp;
1838
1839         /* Assert that the object is not currently in any GPU domain. As it
1840          * wasn't in the GTT, there shouldn't be any way it could have been in
1841          * a GPU cache
1842          */
1843         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1844         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1845
1846         st = kmalloc(sizeof(*st), GFP_KERNEL);
1847         if (st == NULL)
1848                 return -ENOMEM;
1849
1850         page_count = obj->base.size / PAGE_SIZE;
1851         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1852                 kfree(st);
1853                 return -ENOMEM;
1854         }
1855
1856         /* Get the list of pages out of our struct file.  They'll be pinned
1857          * at this point until we release them.
1858          *
1859          * Fail silently without starting the shrinker
1860          */
1861         mapping = file_inode(obj->base.filp)->i_mapping;
1862         gfp = mapping_gfp_mask(mapping);
1863         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1864         gfp &= ~(__GFP_IO | __GFP_WAIT);
1865         sg = st->sgl;
1866         st->nents = 0;
1867         for (i = 0; i < page_count; i++) {
1868                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1869                 if (IS_ERR(page)) {
1870                         i915_gem_purge(dev_priv, page_count);
1871                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1872                 }
1873                 if (IS_ERR(page)) {
1874                         /* We've tried hard to allocate the memory by reaping
1875                          * our own buffer, now let the real VM do its job and
1876                          * go down in flames if truly OOM.
1877                          */
1878                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1879                         gfp |= __GFP_IO | __GFP_WAIT;
1880
1881                         i915_gem_shrink_all(dev_priv);
1882                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1883                         if (IS_ERR(page))
1884                                 goto err_pages;
1885
1886                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1887                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1888                 }
1889 #ifdef CONFIG_SWIOTLB
1890                 if (swiotlb_nr_tbl()) {
1891                         st->nents++;
1892                         sg_set_page(sg, page, PAGE_SIZE, 0);
1893                         sg = sg_next(sg);
1894                         continue;
1895                 }
1896 #endif
1897                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1898                         if (i)
1899                                 sg = sg_next(sg);
1900                         st->nents++;
1901                         sg_set_page(sg, page, PAGE_SIZE, 0);
1902                 } else {
1903                         sg->length += PAGE_SIZE;
1904                 }
1905                 last_pfn = page_to_pfn(page);
1906         }
1907 #ifdef CONFIG_SWIOTLB
1908         if (!swiotlb_nr_tbl())
1909 #endif
1910                 sg_mark_end(sg);
1911         obj->pages = st;
1912
1913         if (i915_gem_object_needs_bit17_swizzle(obj))
1914                 i915_gem_object_do_bit_17_swizzle(obj);
1915
1916         return 0;
1917
1918 err_pages:
1919         sg_mark_end(sg);
1920         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1921                 page_cache_release(sg_page_iter_page(&sg_iter));
1922         sg_free_table(st);
1923         kfree(st);
1924         return PTR_ERR(page);
1925 }
1926
1927 /* Ensure that the associated pages are gathered from the backing storage
1928  * and pinned into our object. i915_gem_object_get_pages() may be called
1929  * multiple times before they are released by a single call to
1930  * i915_gem_object_put_pages() - once the pages are no longer referenced
1931  * either as a result of memory pressure (reaping pages under the shrinker)
1932  * or as the object is itself released.
1933  */
1934 int
1935 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1936 {
1937         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1938         const struct drm_i915_gem_object_ops *ops = obj->ops;
1939         int ret;
1940
1941         if (obj->pages)
1942                 return 0;
1943
1944         if (obj->madv != I915_MADV_WILLNEED) {
1945                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1946                 return -EINVAL;
1947         }
1948
1949         BUG_ON(obj->pages_pin_count);
1950
1951         ret = ops->get_pages(obj);
1952         if (ret)
1953                 return ret;
1954
1955         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1956         return 0;
1957 }
1958
1959 static void
1960 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1961                                struct intel_ring_buffer *ring)
1962 {
1963         struct drm_device *dev = obj->base.dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         u32 seqno = intel_ring_get_seqno(ring);
1966
1967         BUG_ON(ring == NULL);
1968         if (obj->ring != ring && obj->last_write_seqno) {
1969                 /* Keep the seqno relative to the current ring */
1970                 obj->last_write_seqno = seqno;
1971         }
1972         obj->ring = ring;
1973
1974         /* Add a reference if we're newly entering the active list. */
1975         if (!obj->active) {
1976                 drm_gem_object_reference(&obj->base);
1977                 obj->active = 1;
1978         }
1979
1980         list_move_tail(&obj->ring_list, &ring->active_list);
1981
1982         obj->last_read_seqno = seqno;
1983
1984         if (obj->fenced_gpu_access) {
1985                 obj->last_fenced_seqno = seqno;
1986
1987                 /* Bump MRU to take account of the delayed flush */
1988                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1989                         struct drm_i915_fence_reg *reg;
1990
1991                         reg = &dev_priv->fence_regs[obj->fence_reg];
1992                         list_move_tail(&reg->lru_list,
1993                                        &dev_priv->mm.fence_list);
1994                 }
1995         }
1996 }
1997
1998 void i915_vma_move_to_active(struct i915_vma *vma,
1999                              struct intel_ring_buffer *ring)
2000 {
2001         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2002         return i915_gem_object_move_to_active(vma->obj, ring);
2003 }
2004
2005 static void
2006 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2007 {
2008         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2009         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2010         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2011
2012         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2013         BUG_ON(!obj->active);
2014
2015         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2016
2017         list_del_init(&obj->ring_list);
2018         obj->ring = NULL;
2019
2020         obj->last_read_seqno = 0;
2021         obj->last_write_seqno = 0;
2022         obj->base.write_domain = 0;
2023
2024         obj->last_fenced_seqno = 0;
2025         obj->fenced_gpu_access = false;
2026
2027         obj->active = 0;
2028         drm_gem_object_unreference(&obj->base);
2029
2030         WARN_ON(i915_verify_lists(dev));
2031 }
2032
2033 static int
2034 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2035 {
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037         struct intel_ring_buffer *ring;
2038         int ret, i, j;
2039
2040         /* Carefully retire all requests without writing to the rings */
2041         for_each_ring(ring, dev_priv, i) {
2042                 ret = intel_ring_idle(ring);
2043                 if (ret)
2044                         return ret;
2045         }
2046         i915_gem_retire_requests(dev);
2047
2048         /* Finally reset hw state */
2049         for_each_ring(ring, dev_priv, i) {
2050                 intel_ring_init_seqno(ring, seqno);
2051
2052                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2053                         ring->sync_seqno[j] = 0;
2054         }
2055
2056         return 0;
2057 }
2058
2059 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2060 {
2061         struct drm_i915_private *dev_priv = dev->dev_private;
2062         int ret;
2063
2064         if (seqno == 0)
2065                 return -EINVAL;
2066
2067         /* HWS page needs to be set less than what we
2068          * will inject to ring
2069          */
2070         ret = i915_gem_init_seqno(dev, seqno - 1);
2071         if (ret)
2072                 return ret;
2073
2074         /* Carefully set the last_seqno value so that wrap
2075          * detection still works
2076          */
2077         dev_priv->next_seqno = seqno;
2078         dev_priv->last_seqno = seqno - 1;
2079         if (dev_priv->last_seqno == 0)
2080                 dev_priv->last_seqno--;
2081
2082         return 0;
2083 }
2084
2085 int
2086 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2087 {
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089
2090         /* reserve 0 for non-seqno */
2091         if (dev_priv->next_seqno == 0) {
2092                 int ret = i915_gem_init_seqno(dev, 0);
2093                 if (ret)
2094                         return ret;
2095
2096                 dev_priv->next_seqno = 1;
2097         }
2098
2099         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2100         return 0;
2101 }
2102
2103 int __i915_add_request(struct intel_ring_buffer *ring,
2104                        struct drm_file *file,
2105                        struct drm_i915_gem_object *obj,
2106                        u32 *out_seqno)
2107 {
2108         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2109         struct drm_i915_gem_request *request;
2110         u32 request_ring_position, request_start;
2111         int was_empty;
2112         int ret;
2113
2114         request_start = intel_ring_get_tail(ring);
2115         /*
2116          * Emit any outstanding flushes - execbuf can fail to emit the flush
2117          * after having emitted the batchbuffer command. Hence we need to fix
2118          * things up similar to emitting the lazy request. The difference here
2119          * is that the flush _must_ happen before the next request, no matter
2120          * what.
2121          */
2122         ret = intel_ring_flush_all_caches(ring);
2123         if (ret)
2124                 return ret;
2125
2126         request = ring->preallocated_lazy_request;
2127         if (WARN_ON(request == NULL))
2128                 return -ENOMEM;
2129
2130         /* Record the position of the start of the request so that
2131          * should we detect the updated seqno part-way through the
2132          * GPU processing the request, we never over-estimate the
2133          * position of the head.
2134          */
2135         request_ring_position = intel_ring_get_tail(ring);
2136
2137         ret = ring->add_request(ring);
2138         if (ret)
2139                 return ret;
2140
2141         request->seqno = intel_ring_get_seqno(ring);
2142         request->ring = ring;
2143         request->head = request_start;
2144         request->tail = request_ring_position;
2145
2146         /* Whilst this request exists, batch_obj will be on the
2147          * active_list, and so will hold the active reference. Only when this
2148          * request is retired will the the batch_obj be moved onto the
2149          * inactive_list and lose its active reference. Hence we do not need
2150          * to explicitly hold another reference here.
2151          */
2152         request->batch_obj = obj;
2153
2154         /* Hold a reference to the current context so that we can inspect
2155          * it later in case a hangcheck error event fires.
2156          */
2157         request->ctx = ring->last_context;
2158         if (request->ctx)
2159                 i915_gem_context_reference(request->ctx);
2160
2161         request->emitted_jiffies = jiffies;
2162         was_empty = list_empty(&ring->request_list);
2163         list_add_tail(&request->list, &ring->request_list);
2164         request->file_priv = NULL;
2165
2166         if (file) {
2167                 struct drm_i915_file_private *file_priv = file->driver_priv;
2168
2169                 spin_lock(&file_priv->mm.lock);
2170                 request->file_priv = file_priv;
2171                 list_add_tail(&request->client_list,
2172                               &file_priv->mm.request_list);
2173                 spin_unlock(&file_priv->mm.lock);
2174         }
2175
2176         trace_i915_gem_request_add(ring, request->seqno);
2177         ring->outstanding_lazy_seqno = 0;
2178         ring->preallocated_lazy_request = NULL;
2179
2180         if (!dev_priv->ums.mm_suspended) {
2181                 i915_queue_hangcheck(ring->dev);
2182
2183                 if (was_empty) {
2184                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2185                         queue_delayed_work(dev_priv->wq,
2186                                            &dev_priv->mm.retire_work,
2187                                            round_jiffies_up_relative(HZ));
2188                         intel_mark_busy(dev_priv->dev);
2189                 }
2190         }
2191
2192         if (out_seqno)
2193                 *out_seqno = request->seqno;
2194         return 0;
2195 }
2196
2197 static inline void
2198 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2199 {
2200         struct drm_i915_file_private *file_priv = request->file_priv;
2201
2202         if (!file_priv)
2203                 return;
2204
2205         spin_lock(&file_priv->mm.lock);
2206         list_del(&request->client_list);
2207         request->file_priv = NULL;
2208         spin_unlock(&file_priv->mm.lock);
2209 }
2210
2211 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2212                                     struct i915_address_space *vm)
2213 {
2214         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2215             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2216                 return true;
2217
2218         return false;
2219 }
2220
2221 static bool i915_head_inside_request(const u32 acthd_unmasked,
2222                                      const u32 request_start,
2223                                      const u32 request_end)
2224 {
2225         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2226
2227         if (request_start < request_end) {
2228                 if (acthd >= request_start && acthd < request_end)
2229                         return true;
2230         } else if (request_start > request_end) {
2231                 if (acthd >= request_start || acthd < request_end)
2232                         return true;
2233         }
2234
2235         return false;
2236 }
2237
2238 static struct i915_address_space *
2239 request_to_vm(struct drm_i915_gem_request *request)
2240 {
2241         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2242         struct i915_address_space *vm;
2243
2244         vm = &dev_priv->gtt.base;
2245
2246         return vm;
2247 }
2248
2249 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2250                                 const u32 acthd, bool *inside)
2251 {
2252         /* There is a possibility that unmasked head address
2253          * pointing inside the ring, matches the batch_obj address range.
2254          * However this is extremely unlikely.
2255          */
2256         if (request->batch_obj) {
2257                 if (i915_head_inside_object(acthd, request->batch_obj,
2258                                             request_to_vm(request))) {
2259                         *inside = true;
2260                         return true;
2261                 }
2262         }
2263
2264         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2265                 *inside = false;
2266                 return true;
2267         }
2268
2269         return false;
2270 }
2271
2272 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2273 {
2274         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2275
2276         if (hs->banned)
2277                 return true;
2278
2279         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2280                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2281                 return true;
2282         }
2283
2284         return false;
2285 }
2286
2287 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2288                                   struct drm_i915_gem_request *request,
2289                                   u32 acthd)
2290 {
2291         struct i915_ctx_hang_stats *hs = NULL;
2292         bool inside, guilty;
2293         unsigned long offset = 0;
2294
2295         /* Innocent until proven guilty */
2296         guilty = false;
2297
2298         if (request->batch_obj)
2299                 offset = i915_gem_obj_offset(request->batch_obj,
2300                                              request_to_vm(request));
2301
2302         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2303             i915_request_guilty(request, acthd, &inside)) {
2304                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2305                           ring->name,
2306                           inside ? "inside" : "flushing",
2307                           offset,
2308                           request->ctx ? request->ctx->id : 0,
2309                           acthd);
2310
2311                 guilty = true;
2312         }
2313
2314         /* If contexts are disabled or this is the default context, use
2315          * file_priv->reset_state
2316          */
2317         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2318                 hs = &request->ctx->hang_stats;
2319         else if (request->file_priv)
2320                 hs = &request->file_priv->hang_stats;
2321
2322         if (hs) {
2323                 if (guilty) {
2324                         hs->banned = i915_context_is_banned(hs);
2325                         hs->batch_active++;
2326                         hs->guilty_ts = get_seconds();
2327                 } else {
2328                         hs->batch_pending++;
2329                 }
2330         }
2331 }
2332
2333 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2334 {
2335         list_del(&request->list);
2336         i915_gem_request_remove_from_client(request);
2337
2338         if (request->ctx)
2339                 i915_gem_context_unreference(request->ctx);
2340
2341         kfree(request);
2342 }
2343
2344 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2345                                       struct intel_ring_buffer *ring)
2346 {
2347         u32 completed_seqno;
2348         u32 acthd;
2349
2350         acthd = intel_ring_get_active_head(ring);
2351         completed_seqno = ring->get_seqno(ring, false);
2352
2353         while (!list_empty(&ring->request_list)) {
2354                 struct drm_i915_gem_request *request;
2355
2356                 request = list_first_entry(&ring->request_list,
2357                                            struct drm_i915_gem_request,
2358                                            list);
2359
2360                 if (request->seqno > completed_seqno)
2361                         i915_set_reset_status(ring, request, acthd);
2362
2363                 i915_gem_free_request(request);
2364         }
2365
2366         while (!list_empty(&ring->active_list)) {
2367                 struct drm_i915_gem_object *obj;
2368
2369                 obj = list_first_entry(&ring->active_list,
2370                                        struct drm_i915_gem_object,
2371                                        ring_list);
2372
2373                 i915_gem_object_move_to_inactive(obj);
2374         }
2375 }
2376
2377 void i915_gem_restore_fences(struct drm_device *dev)
2378 {
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         int i;
2381
2382         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2383                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2384
2385                 /*
2386                  * Commit delayed tiling changes if we have an object still
2387                  * attached to the fence, otherwise just clear the fence.
2388                  */
2389                 if (reg->obj) {
2390                         i915_gem_object_update_fence(reg->obj, reg,
2391                                                      reg->obj->tiling_mode);
2392                 } else {
2393                         i915_gem_write_fence(dev, i, NULL);
2394                 }
2395         }
2396 }
2397
2398 void i915_gem_reset(struct drm_device *dev)
2399 {
2400         struct drm_i915_private *dev_priv = dev->dev_private;
2401         struct intel_ring_buffer *ring;
2402         int i;
2403
2404         for_each_ring(ring, dev_priv, i)
2405                 i915_gem_reset_ring_lists(dev_priv, ring);
2406
2407         i915_gem_restore_fences(dev);
2408 }
2409
2410 /**
2411  * This function clears the request list as sequence numbers are passed.
2412  */
2413 void
2414 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2415 {
2416         uint32_t seqno;
2417
2418         if (list_empty(&ring->request_list))
2419                 return;
2420
2421         WARN_ON(i915_verify_lists(ring->dev));
2422
2423         seqno = ring->get_seqno(ring, true);
2424
2425         while (!list_empty(&ring->request_list)) {
2426                 struct drm_i915_gem_request *request;
2427
2428                 request = list_first_entry(&ring->request_list,
2429                                            struct drm_i915_gem_request,
2430                                            list);
2431
2432                 if (!i915_seqno_passed(seqno, request->seqno))
2433                         break;
2434
2435                 trace_i915_gem_request_retire(ring, request->seqno);
2436                 /* We know the GPU must have read the request to have
2437                  * sent us the seqno + interrupt, so use the position
2438                  * of tail of the request to update the last known position
2439                  * of the GPU head.
2440                  */
2441                 ring->last_retired_head = request->tail;
2442
2443                 i915_gem_free_request(request);
2444         }
2445
2446         /* Move any buffers on the active list that are no longer referenced
2447          * by the ringbuffer to the flushing/inactive lists as appropriate.
2448          */
2449         while (!list_empty(&ring->active_list)) {
2450                 struct drm_i915_gem_object *obj;
2451
2452                 obj = list_first_entry(&ring->active_list,
2453                                       struct drm_i915_gem_object,
2454                                       ring_list);
2455
2456                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2457                         break;
2458
2459                 i915_gem_object_move_to_inactive(obj);
2460         }
2461
2462         if (unlikely(ring->trace_irq_seqno &&
2463                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2464                 ring->irq_put(ring);
2465                 ring->trace_irq_seqno = 0;
2466         }
2467
2468         WARN_ON(i915_verify_lists(ring->dev));
2469 }
2470
2471 bool
2472 i915_gem_retire_requests(struct drm_device *dev)
2473 {
2474         drm_i915_private_t *dev_priv = dev->dev_private;
2475         struct intel_ring_buffer *ring;
2476         bool idle = true;
2477         int i;
2478
2479         for_each_ring(ring, dev_priv, i) {
2480                 i915_gem_retire_requests_ring(ring);
2481                 idle &= list_empty(&ring->request_list);
2482         }
2483
2484         if (idle)
2485                 mod_delayed_work(dev_priv->wq,
2486                                    &dev_priv->mm.idle_work,
2487                                    msecs_to_jiffies(100));
2488
2489         return idle;
2490 }
2491
2492 static void
2493 i915_gem_retire_work_handler(struct work_struct *work)
2494 {
2495         struct drm_i915_private *dev_priv =
2496                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2497         struct drm_device *dev = dev_priv->dev;
2498         bool idle;
2499
2500         /* Come back later if the device is busy... */
2501         idle = false;
2502         if (mutex_trylock(&dev->struct_mutex)) {
2503                 idle = i915_gem_retire_requests(dev);
2504                 mutex_unlock(&dev->struct_mutex);
2505         }
2506         if (!idle)
2507                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2508                                    round_jiffies_up_relative(HZ));
2509 }
2510
2511 static void
2512 i915_gem_idle_work_handler(struct work_struct *work)
2513 {
2514         struct drm_i915_private *dev_priv =
2515                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2516
2517         intel_mark_idle(dev_priv->dev);
2518 }
2519
2520 /**
2521  * Ensures that an object will eventually get non-busy by flushing any required
2522  * write domains, emitting any outstanding lazy request and retiring and
2523  * completed requests.
2524  */
2525 static int
2526 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2527 {
2528         int ret;
2529
2530         if (obj->active) {
2531                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2532                 if (ret)
2533                         return ret;
2534
2535                 i915_gem_retire_requests_ring(obj->ring);
2536         }
2537
2538         return 0;
2539 }
2540
2541 /**
2542  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2543  * @DRM_IOCTL_ARGS: standard ioctl arguments
2544  *
2545  * Returns 0 if successful, else an error is returned with the remaining time in
2546  * the timeout parameter.
2547  *  -ETIME: object is still busy after timeout
2548  *  -ERESTARTSYS: signal interrupted the wait
2549  *  -ENONENT: object doesn't exist
2550  * Also possible, but rare:
2551  *  -EAGAIN: GPU wedged
2552  *  -ENOMEM: damn
2553  *  -ENODEV: Internal IRQ fail
2554  *  -E?: The add request failed
2555  *
2556  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2557  * non-zero timeout parameter the wait ioctl will wait for the given number of
2558  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2559  * without holding struct_mutex the object may become re-busied before this
2560  * function completes. A similar but shorter * race condition exists in the busy
2561  * ioctl
2562  */
2563 int
2564 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2565 {
2566         drm_i915_private_t *dev_priv = dev->dev_private;
2567         struct drm_i915_gem_wait *args = data;
2568         struct drm_i915_gem_object *obj;
2569         struct intel_ring_buffer *ring = NULL;
2570         struct timespec timeout_stack, *timeout = NULL;
2571         unsigned reset_counter;
2572         u32 seqno = 0;
2573         int ret = 0;
2574
2575         if (args->timeout_ns >= 0) {
2576                 timeout_stack = ns_to_timespec(args->timeout_ns);
2577                 timeout = &timeout_stack;
2578         }
2579
2580         ret = i915_mutex_lock_interruptible(dev);
2581         if (ret)
2582                 return ret;
2583
2584         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2585         if (&obj->base == NULL) {
2586                 mutex_unlock(&dev->struct_mutex);
2587                 return -ENOENT;
2588         }
2589
2590         /* Need to make sure the object gets inactive eventually. */
2591         ret = i915_gem_object_flush_active(obj);
2592         if (ret)
2593                 goto out;
2594
2595         if (obj->active) {
2596                 seqno = obj->last_read_seqno;
2597                 ring = obj->ring;
2598         }
2599
2600         if (seqno == 0)
2601                  goto out;
2602
2603         /* Do this after OLR check to make sure we make forward progress polling
2604          * on this IOCTL with a 0 timeout (like busy ioctl)
2605          */
2606         if (!args->timeout_ns) {
2607                 ret = -ETIME;
2608                 goto out;
2609         }
2610
2611         drm_gem_object_unreference(&obj->base);
2612         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2613         mutex_unlock(&dev->struct_mutex);
2614
2615         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2616         if (timeout)
2617                 args->timeout_ns = timespec_to_ns(timeout);
2618         return ret;
2619
2620 out:
2621         drm_gem_object_unreference(&obj->base);
2622         mutex_unlock(&dev->struct_mutex);
2623         return ret;
2624 }
2625
2626 /**
2627  * i915_gem_object_sync - sync an object to a ring.
2628  *
2629  * @obj: object which may be in use on another ring.
2630  * @to: ring we wish to use the object on. May be NULL.
2631  *
2632  * This code is meant to abstract object synchronization with the GPU.
2633  * Calling with NULL implies synchronizing the object with the CPU
2634  * rather than a particular GPU ring.
2635  *
2636  * Returns 0 if successful, else propagates up the lower layer error.
2637  */
2638 int
2639 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2640                      struct intel_ring_buffer *to)
2641 {
2642         struct intel_ring_buffer *from = obj->ring;
2643         u32 seqno;
2644         int ret, idx;
2645
2646         if (from == NULL || to == from)
2647                 return 0;
2648
2649         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2650                 return i915_gem_object_wait_rendering(obj, false);
2651
2652         idx = intel_ring_sync_index(from, to);
2653
2654         seqno = obj->last_read_seqno;
2655         if (seqno <= from->sync_seqno[idx])
2656                 return 0;
2657
2658         ret = i915_gem_check_olr(obj->ring, seqno);
2659         if (ret)
2660                 return ret;
2661
2662         trace_i915_gem_ring_sync_to(from, to, seqno);
2663         ret = to->sync_to(to, from, seqno);
2664         if (!ret)
2665                 /* We use last_read_seqno because sync_to()
2666                  * might have just caused seqno wrap under
2667                  * the radar.
2668                  */
2669                 from->sync_seqno[idx] = obj->last_read_seqno;
2670
2671         return ret;
2672 }
2673
2674 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2675 {
2676         u32 old_write_domain, old_read_domains;
2677
2678         /* Force a pagefault for domain tracking on next user access */
2679         i915_gem_release_mmap(obj);
2680
2681         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2682                 return;
2683
2684         /* Wait for any direct GTT access to complete */
2685         mb();
2686
2687         old_read_domains = obj->base.read_domains;
2688         old_write_domain = obj->base.write_domain;
2689
2690         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2691         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2692
2693         trace_i915_gem_object_change_domain(obj,
2694                                             old_read_domains,
2695                                             old_write_domain);
2696 }
2697
2698 int i915_vma_unbind(struct i915_vma *vma)
2699 {
2700         struct drm_i915_gem_object *obj = vma->obj;
2701         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2702         int ret;
2703
2704         /* For now we only ever use 1 vma per object */
2705         WARN_ON(!list_is_singular(&obj->vma_list));
2706
2707         if (list_empty(&vma->vma_link))
2708                 return 0;
2709
2710         if (!drm_mm_node_allocated(&vma->node)) {
2711                 i915_gem_vma_destroy(vma);
2712
2713                 return 0;
2714         }
2715
2716         if (obj->pin_count)
2717                 return -EBUSY;
2718
2719         BUG_ON(obj->pages == NULL);
2720
2721         ret = i915_gem_object_finish_gpu(obj);
2722         if (ret)
2723                 return ret;
2724         /* Continue on if we fail due to EIO, the GPU is hung so we
2725          * should be safe and we need to cleanup or else we might
2726          * cause memory corruption through use-after-free.
2727          */
2728
2729         i915_gem_object_finish_gtt(obj);
2730
2731         /* release the fence reg _after_ flushing */
2732         ret = i915_gem_object_put_fence(obj);
2733         if (ret)
2734                 return ret;
2735
2736         trace_i915_vma_unbind(vma);
2737
2738         if (obj->has_global_gtt_mapping)
2739                 i915_gem_gtt_unbind_object(obj);
2740         if (obj->has_aliasing_ppgtt_mapping) {
2741                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2742                 obj->has_aliasing_ppgtt_mapping = 0;
2743         }
2744         i915_gem_gtt_finish_object(obj);
2745         i915_gem_object_unpin_pages(obj);
2746
2747         list_del(&vma->mm_list);
2748         /* Avoid an unnecessary call to unbind on rebind. */
2749         if (i915_is_ggtt(vma->vm))
2750                 obj->map_and_fenceable = true;
2751
2752         drm_mm_remove_node(&vma->node);
2753
2754         i915_gem_vma_destroy(vma);
2755
2756         /* Since the unbound list is global, only move to that list if
2757          * no more VMAs exist. */
2758         if (list_empty(&obj->vma_list))
2759                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2760
2761         return 0;
2762 }
2763
2764 /**
2765  * Unbinds an object from the global GTT aperture.
2766  */
2767 int
2768 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2769 {
2770         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2772
2773         if (!i915_gem_obj_ggtt_bound(obj))
2774                 return 0;
2775
2776         if (obj->pin_count)
2777                 return -EBUSY;
2778
2779         BUG_ON(obj->pages == NULL);
2780
2781         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2782 }
2783
2784 int i915_gpu_idle(struct drm_device *dev)
2785 {
2786         drm_i915_private_t *dev_priv = dev->dev_private;
2787         struct intel_ring_buffer *ring;
2788         int ret, i;
2789
2790         /* Flush everything onto the inactive list. */
2791         for_each_ring(ring, dev_priv, i) {
2792                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2793                 if (ret)
2794                         return ret;
2795
2796                 ret = intel_ring_idle(ring);
2797                 if (ret)
2798                         return ret;
2799         }
2800
2801         return 0;
2802 }
2803
2804 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2805                                  struct drm_i915_gem_object *obj)
2806 {
2807         drm_i915_private_t *dev_priv = dev->dev_private;
2808         int fence_reg;
2809         int fence_pitch_shift;
2810
2811         if (INTEL_INFO(dev)->gen >= 6) {
2812                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2813                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2814         } else {
2815                 fence_reg = FENCE_REG_965_0;
2816                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2817         }
2818
2819         fence_reg += reg * 8;
2820
2821         /* To w/a incoherency with non-atomic 64-bit register updates,
2822          * we split the 64-bit update into two 32-bit writes. In order
2823          * for a partial fence not to be evaluated between writes, we
2824          * precede the update with write to turn off the fence register,
2825          * and only enable the fence as the last step.
2826          *
2827          * For extra levels of paranoia, we make sure each step lands
2828          * before applying the next step.
2829          */
2830         I915_WRITE(fence_reg, 0);
2831         POSTING_READ(fence_reg);
2832
2833         if (obj) {
2834                 u32 size = i915_gem_obj_ggtt_size(obj);
2835                 uint64_t val;
2836
2837                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2838                                  0xfffff000) << 32;
2839                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2840                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2841                 if (obj->tiling_mode == I915_TILING_Y)
2842                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2843                 val |= I965_FENCE_REG_VALID;
2844
2845                 I915_WRITE(fence_reg + 4, val >> 32);
2846                 POSTING_READ(fence_reg + 4);
2847
2848                 I915_WRITE(fence_reg + 0, val);
2849                 POSTING_READ(fence_reg);
2850         } else {
2851                 I915_WRITE(fence_reg + 4, 0);
2852                 POSTING_READ(fence_reg + 4);
2853         }
2854 }
2855
2856 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2857                                  struct drm_i915_gem_object *obj)
2858 {
2859         drm_i915_private_t *dev_priv = dev->dev_private;
2860         u32 val;
2861
2862         if (obj) {
2863                 u32 size = i915_gem_obj_ggtt_size(obj);
2864                 int pitch_val;
2865                 int tile_width;
2866
2867                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2868                      (size & -size) != size ||
2869                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2870                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2871                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2872
2873                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2874                         tile_width = 128;
2875                 else
2876                         tile_width = 512;
2877
2878                 /* Note: pitch better be a power of two tile widths */
2879                 pitch_val = obj->stride / tile_width;
2880                 pitch_val = ffs(pitch_val) - 1;
2881
2882                 val = i915_gem_obj_ggtt_offset(obj);
2883                 if (obj->tiling_mode == I915_TILING_Y)
2884                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2885                 val |= I915_FENCE_SIZE_BITS(size);
2886                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2887                 val |= I830_FENCE_REG_VALID;
2888         } else
2889                 val = 0;
2890
2891         if (reg < 8)
2892                 reg = FENCE_REG_830_0 + reg * 4;
2893         else
2894                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2895
2896         I915_WRITE(reg, val);
2897         POSTING_READ(reg);
2898 }
2899
2900 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2901                                 struct drm_i915_gem_object *obj)
2902 {
2903         drm_i915_private_t *dev_priv = dev->dev_private;
2904         uint32_t val;
2905
2906         if (obj) {
2907                 u32 size = i915_gem_obj_ggtt_size(obj);
2908                 uint32_t pitch_val;
2909
2910                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2911                      (size & -size) != size ||
2912                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2913                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2914                      i915_gem_obj_ggtt_offset(obj), size);
2915
2916                 pitch_val = obj->stride / 128;
2917                 pitch_val = ffs(pitch_val) - 1;
2918
2919                 val = i915_gem_obj_ggtt_offset(obj);
2920                 if (obj->tiling_mode == I915_TILING_Y)
2921                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2922                 val |= I830_FENCE_SIZE_BITS(size);
2923                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2924                 val |= I830_FENCE_REG_VALID;
2925         } else
2926                 val = 0;
2927
2928         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2929         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2930 }
2931
2932 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2933 {
2934         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2935 }
2936
2937 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2938                                  struct drm_i915_gem_object *obj)
2939 {
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941
2942         /* Ensure that all CPU reads are completed before installing a fence
2943          * and all writes before removing the fence.
2944          */
2945         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2946                 mb();
2947
2948         WARN(obj && (!obj->stride || !obj->tiling_mode),
2949              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2950              obj->stride, obj->tiling_mode);
2951
2952         switch (INTEL_INFO(dev)->gen) {
2953         case 7:
2954         case 6:
2955         case 5:
2956         case 4: i965_write_fence_reg(dev, reg, obj); break;
2957         case 3: i915_write_fence_reg(dev, reg, obj); break;
2958         case 2: i830_write_fence_reg(dev, reg, obj); break;
2959         default: BUG();
2960         }
2961
2962         /* And similarly be paranoid that no direct access to this region
2963          * is reordered to before the fence is installed.
2964          */
2965         if (i915_gem_object_needs_mb(obj))
2966                 mb();
2967 }
2968
2969 static inline int fence_number(struct drm_i915_private *dev_priv,
2970                                struct drm_i915_fence_reg *fence)
2971 {
2972         return fence - dev_priv->fence_regs;
2973 }
2974
2975 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2976                                          struct drm_i915_fence_reg *fence,
2977                                          bool enable)
2978 {
2979         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2980         int reg = fence_number(dev_priv, fence);
2981
2982         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2983
2984         if (enable) {
2985                 obj->fence_reg = reg;
2986                 fence->obj = obj;
2987                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2988         } else {
2989                 obj->fence_reg = I915_FENCE_REG_NONE;
2990                 fence->obj = NULL;
2991                 list_del_init(&fence->lru_list);
2992         }
2993         obj->fence_dirty = false;
2994 }
2995
2996 static int
2997 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2998 {
2999         if (obj->last_fenced_seqno) {
3000                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3001                 if (ret)
3002                         return ret;
3003
3004                 obj->last_fenced_seqno = 0;
3005         }
3006
3007         obj->fenced_gpu_access = false;
3008         return 0;
3009 }
3010
3011 int
3012 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3013 {
3014         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3015         struct drm_i915_fence_reg *fence;
3016         int ret;
3017
3018         ret = i915_gem_object_wait_fence(obj);
3019         if (ret)
3020                 return ret;
3021
3022         if (obj->fence_reg == I915_FENCE_REG_NONE)
3023                 return 0;
3024
3025         fence = &dev_priv->fence_regs[obj->fence_reg];
3026
3027         i915_gem_object_fence_lost(obj);
3028         i915_gem_object_update_fence(obj, fence, false);
3029
3030         return 0;
3031 }
3032
3033 static struct drm_i915_fence_reg *
3034 i915_find_fence_reg(struct drm_device *dev)
3035 {
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct drm_i915_fence_reg *reg, *avail;
3038         int i;
3039
3040         /* First try to find a free reg */
3041         avail = NULL;
3042         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3043                 reg = &dev_priv->fence_regs[i];
3044                 if (!reg->obj)
3045                         return reg;
3046
3047                 if (!reg->pin_count)
3048                         avail = reg;
3049         }
3050
3051         if (avail == NULL)
3052                 return NULL;
3053
3054         /* None available, try to steal one or wait for a user to finish */
3055         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3056                 if (reg->pin_count)
3057                         continue;
3058
3059                 return reg;
3060         }
3061
3062         return NULL;
3063 }
3064
3065 /**
3066  * i915_gem_object_get_fence - set up fencing for an object
3067  * @obj: object to map through a fence reg
3068  *
3069  * When mapping objects through the GTT, userspace wants to be able to write
3070  * to them without having to worry about swizzling if the object is tiled.
3071  * This function walks the fence regs looking for a free one for @obj,
3072  * stealing one if it can't find any.
3073  *
3074  * It then sets up the reg based on the object's properties: address, pitch
3075  * and tiling format.
3076  *
3077  * For an untiled surface, this removes any existing fence.
3078  */
3079 int
3080 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3081 {
3082         struct drm_device *dev = obj->base.dev;
3083         struct drm_i915_private *dev_priv = dev->dev_private;
3084         bool enable = obj->tiling_mode != I915_TILING_NONE;
3085         struct drm_i915_fence_reg *reg;
3086         int ret;
3087
3088         /* Have we updated the tiling parameters upon the object and so
3089          * will need to serialise the write to the associated fence register?
3090          */
3091         if (obj->fence_dirty) {
3092                 ret = i915_gem_object_wait_fence(obj);
3093                 if (ret)
3094                         return ret;
3095         }
3096
3097         /* Just update our place in the LRU if our fence is getting reused. */
3098         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3099                 reg = &dev_priv->fence_regs[obj->fence_reg];
3100                 if (!obj->fence_dirty) {
3101                         list_move_tail(&reg->lru_list,
3102                                        &dev_priv->mm.fence_list);
3103                         return 0;
3104                 }
3105         } else if (enable) {
3106                 reg = i915_find_fence_reg(dev);
3107                 if (reg == NULL)
3108                         return -EDEADLK;
3109
3110                 if (reg->obj) {
3111                         struct drm_i915_gem_object *old = reg->obj;
3112
3113                         ret = i915_gem_object_wait_fence(old);
3114                         if (ret)
3115                                 return ret;
3116
3117                         i915_gem_object_fence_lost(old);
3118                 }
3119         } else
3120                 return 0;
3121
3122         i915_gem_object_update_fence(obj, reg, enable);
3123
3124         return 0;
3125 }
3126
3127 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3128                                      struct drm_mm_node *gtt_space,
3129                                      unsigned long cache_level)
3130 {
3131         struct drm_mm_node *other;
3132
3133         /* On non-LLC machines we have to be careful when putting differing
3134          * types of snoopable memory together to avoid the prefetcher
3135          * crossing memory domains and dying.
3136          */
3137         if (HAS_LLC(dev))
3138                 return true;
3139
3140         if (!drm_mm_node_allocated(gtt_space))
3141                 return true;
3142
3143         if (list_empty(&gtt_space->node_list))
3144                 return true;
3145
3146         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3147         if (other->allocated && !other->hole_follows && other->color != cache_level)
3148                 return false;
3149
3150         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3151         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3152                 return false;
3153
3154         return true;
3155 }
3156
3157 static void i915_gem_verify_gtt(struct drm_device *dev)
3158 {
3159 #if WATCH_GTT
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         struct drm_i915_gem_object *obj;
3162         int err = 0;
3163
3164         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3165                 if (obj->gtt_space == NULL) {
3166                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3167                         err++;
3168                         continue;
3169                 }
3170
3171                 if (obj->cache_level != obj->gtt_space->color) {
3172                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3173                                i915_gem_obj_ggtt_offset(obj),
3174                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3175                                obj->cache_level,
3176                                obj->gtt_space->color);
3177                         err++;
3178                         continue;
3179                 }
3180
3181                 if (!i915_gem_valid_gtt_space(dev,
3182                                               obj->gtt_space,
3183                                               obj->cache_level)) {
3184                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3185                                i915_gem_obj_ggtt_offset(obj),
3186                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3187                                obj->cache_level);
3188                         err++;
3189                         continue;
3190                 }
3191         }
3192
3193         WARN_ON(err);
3194 #endif
3195 }
3196
3197 /**
3198  * Finds free space in the GTT aperture and binds the object there.
3199  */
3200 static int
3201 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3202                            struct i915_address_space *vm,
3203                            unsigned alignment,
3204                            bool map_and_fenceable,
3205                            bool nonblocking)
3206 {
3207         struct drm_device *dev = obj->base.dev;
3208         drm_i915_private_t *dev_priv = dev->dev_private;
3209         u32 size, fence_size, fence_alignment, unfenced_alignment;
3210         size_t gtt_max =
3211                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3212         struct i915_vma *vma;
3213         int ret;
3214
3215         fence_size = i915_gem_get_gtt_size(dev,
3216                                            obj->base.size,
3217                                            obj->tiling_mode);
3218         fence_alignment = i915_gem_get_gtt_alignment(dev,
3219                                                      obj->base.size,
3220                                                      obj->tiling_mode, true);
3221         unfenced_alignment =
3222                 i915_gem_get_gtt_alignment(dev,
3223                                                     obj->base.size,
3224                                                     obj->tiling_mode, false);
3225
3226         if (alignment == 0)
3227                 alignment = map_and_fenceable ? fence_alignment :
3228                                                 unfenced_alignment;
3229         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3230                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3231                 return -EINVAL;
3232         }
3233
3234         size = map_and_fenceable ? fence_size : obj->base.size;
3235
3236         /* If the object is bigger than the entire aperture, reject it early
3237          * before evicting everything in a vain attempt to find space.
3238          */
3239         if (obj->base.size > gtt_max) {
3240                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3241                           obj->base.size,
3242                           map_and_fenceable ? "mappable" : "total",
3243                           gtt_max);
3244                 return -E2BIG;
3245         }
3246
3247         ret = i915_gem_object_get_pages(obj);
3248         if (ret)
3249                 return ret;
3250
3251         i915_gem_object_pin_pages(obj);
3252
3253         BUG_ON(!i915_is_ggtt(vm));
3254
3255         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3256         if (IS_ERR(vma)) {
3257                 ret = PTR_ERR(vma);
3258                 goto err_unpin;
3259         }
3260
3261         /* For now we only ever use 1 vma per object */
3262         WARN_ON(!list_is_singular(&obj->vma_list));
3263
3264 search_free:
3265         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3266                                                   size, alignment,
3267                                                   obj->cache_level, 0, gtt_max,
3268                                                   DRM_MM_SEARCH_DEFAULT);
3269         if (ret) {
3270                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3271                                                obj->cache_level,
3272                                                map_and_fenceable,
3273                                                nonblocking);
3274                 if (ret == 0)
3275                         goto search_free;
3276
3277                 goto err_free_vma;
3278         }
3279         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3280                                               obj->cache_level))) {
3281                 ret = -EINVAL;
3282                 goto err_remove_node;
3283         }
3284
3285         ret = i915_gem_gtt_prepare_object(obj);
3286         if (ret)
3287                 goto err_remove_node;
3288
3289         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3290         list_add_tail(&vma->mm_list, &vm->inactive_list);
3291
3292         if (i915_is_ggtt(vm)) {
3293                 bool mappable, fenceable;
3294
3295                 fenceable = (vma->node.size == fence_size &&
3296                              (vma->node.start & (fence_alignment - 1)) == 0);
3297
3298                 mappable = (vma->node.start + obj->base.size <=
3299                             dev_priv->gtt.mappable_end);
3300
3301                 obj->map_and_fenceable = mappable && fenceable;
3302         }
3303
3304         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3305
3306         trace_i915_vma_bind(vma, map_and_fenceable);
3307         i915_gem_verify_gtt(dev);
3308         return 0;
3309
3310 err_remove_node:
3311         drm_mm_remove_node(&vma->node);
3312 err_free_vma:
3313         i915_gem_vma_destroy(vma);
3314 err_unpin:
3315         i915_gem_object_unpin_pages(obj);
3316         return ret;
3317 }
3318
3319 bool
3320 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3321                         bool force)
3322 {
3323         /* If we don't have a page list set up, then we're not pinned
3324          * to GPU, and we can ignore the cache flush because it'll happen
3325          * again at bind time.
3326          */
3327         if (obj->pages == NULL)
3328                 return false;
3329
3330         /*
3331          * Stolen memory is always coherent with the GPU as it is explicitly
3332          * marked as wc by the system, or the system is cache-coherent.
3333          */
3334         if (obj->stolen)
3335                 return false;
3336
3337         /* If the GPU is snooping the contents of the CPU cache,
3338          * we do not need to manually clear the CPU cache lines.  However,
3339          * the caches are only snooped when the render cache is
3340          * flushed/invalidated.  As we always have to emit invalidations
3341          * and flushes when moving into and out of the RENDER domain, correct
3342          * snooping behaviour occurs naturally as the result of our domain
3343          * tracking.
3344          */
3345         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3346                 return false;
3347
3348         trace_i915_gem_object_clflush(obj);
3349         drm_clflush_sg(obj->pages);
3350
3351         return true;
3352 }
3353
3354 /** Flushes the GTT write domain for the object if it's dirty. */
3355 static void
3356 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3357 {
3358         uint32_t old_write_domain;
3359
3360         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3361                 return;
3362
3363         /* No actual flushing is required for the GTT write domain.  Writes
3364          * to it immediately go to main memory as far as we know, so there's
3365          * no chipset flush.  It also doesn't land in render cache.
3366          *
3367          * However, we do have to enforce the order so that all writes through
3368          * the GTT land before any writes to the device, such as updates to
3369          * the GATT itself.
3370          */
3371         wmb();
3372
3373         old_write_domain = obj->base.write_domain;
3374         obj->base.write_domain = 0;
3375
3376         trace_i915_gem_object_change_domain(obj,
3377                                             obj->base.read_domains,
3378                                             old_write_domain);
3379 }
3380
3381 /** Flushes the CPU write domain for the object if it's dirty. */
3382 static void
3383 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3384                                        bool force)
3385 {
3386         uint32_t old_write_domain;
3387
3388         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3389                 return;
3390
3391         if (i915_gem_clflush_object(obj, force))
3392                 i915_gem_chipset_flush(obj->base.dev);
3393
3394         old_write_domain = obj->base.write_domain;
3395         obj->base.write_domain = 0;
3396
3397         trace_i915_gem_object_change_domain(obj,
3398                                             obj->base.read_domains,
3399                                             old_write_domain);
3400 }
3401
3402 /**
3403  * Moves a single object to the GTT read, and possibly write domain.
3404  *
3405  * This function returns when the move is complete, including waiting on
3406  * flushes to occur.
3407  */
3408 int
3409 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3410 {
3411         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3412         uint32_t old_write_domain, old_read_domains;
3413         int ret;
3414
3415         /* Not valid to be called on unbound objects. */
3416         if (!i915_gem_obj_bound_any(obj))
3417                 return -EINVAL;
3418
3419         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3420                 return 0;
3421
3422         ret = i915_gem_object_wait_rendering(obj, !write);
3423         if (ret)
3424                 return ret;
3425
3426         i915_gem_object_flush_cpu_write_domain(obj, false);
3427
3428         /* Serialise direct access to this object with the barriers for
3429          * coherent writes from the GPU, by effectively invalidating the
3430          * GTT domain upon first access.
3431          */
3432         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3433                 mb();
3434
3435         old_write_domain = obj->base.write_domain;
3436         old_read_domains = obj->base.read_domains;
3437
3438         /* It should now be out of any other write domains, and we can update
3439          * the domain values for our changes.
3440          */
3441         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3442         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3443         if (write) {
3444                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3445                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3446                 obj->dirty = 1;
3447         }
3448
3449         trace_i915_gem_object_change_domain(obj,
3450                                             old_read_domains,
3451                                             old_write_domain);
3452
3453         /* And bump the LRU for this access */
3454         if (i915_gem_object_is_inactive(obj)) {
3455                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3456                 if (vma)
3457                         list_move_tail(&vma->mm_list,
3458                                        &dev_priv->gtt.base.inactive_list);
3459
3460         }
3461
3462         return 0;
3463 }
3464
3465 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3466                                     enum i915_cache_level cache_level)
3467 {
3468         struct drm_device *dev = obj->base.dev;
3469         drm_i915_private_t *dev_priv = dev->dev_private;
3470         struct i915_vma *vma;
3471         int ret;
3472
3473         if (obj->cache_level == cache_level)
3474                 return 0;
3475
3476         if (obj->pin_count) {
3477                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3478                 return -EBUSY;
3479         }
3480
3481         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3482                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3483                         ret = i915_vma_unbind(vma);
3484                         if (ret)
3485                                 return ret;
3486
3487                         break;
3488                 }
3489         }
3490
3491         if (i915_gem_obj_bound_any(obj)) {
3492                 ret = i915_gem_object_finish_gpu(obj);
3493                 if (ret)
3494                         return ret;
3495
3496                 i915_gem_object_finish_gtt(obj);
3497
3498                 /* Before SandyBridge, you could not use tiling or fence
3499                  * registers with snooped memory, so relinquish any fences
3500                  * currently pointing to our region in the aperture.
3501                  */
3502                 if (INTEL_INFO(dev)->gen < 6) {
3503                         ret = i915_gem_object_put_fence(obj);
3504                         if (ret)
3505                                 return ret;
3506                 }
3507
3508                 if (obj->has_global_gtt_mapping)
3509                         i915_gem_gtt_bind_object(obj, cache_level);
3510                 if (obj->has_aliasing_ppgtt_mapping)
3511                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3512                                                obj, cache_level);
3513         }
3514
3515         list_for_each_entry(vma, &obj->vma_list, vma_link)
3516                 vma->node.color = cache_level;
3517         obj->cache_level = cache_level;
3518
3519         if (cpu_write_needs_clflush(obj)) {
3520                 u32 old_read_domains, old_write_domain;
3521
3522                 /* If we're coming from LLC cached, then we haven't
3523                  * actually been tracking whether the data is in the
3524                  * CPU cache or not, since we only allow one bit set
3525                  * in obj->write_domain and have been skipping the clflushes.
3526                  * Just set it to the CPU cache for now.
3527                  */
3528                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3529
3530                 old_read_domains = obj->base.read_domains;
3531                 old_write_domain = obj->base.write_domain;
3532
3533                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3534                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3535
3536                 trace_i915_gem_object_change_domain(obj,
3537                                                     old_read_domains,
3538                                                     old_write_domain);
3539         }
3540
3541         i915_gem_verify_gtt(dev);
3542         return 0;
3543 }
3544
3545 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3546                                struct drm_file *file)
3547 {
3548         struct drm_i915_gem_caching *args = data;
3549         struct drm_i915_gem_object *obj;
3550         int ret;
3551
3552         ret = i915_mutex_lock_interruptible(dev);
3553         if (ret)
3554                 return ret;
3555
3556         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3557         if (&obj->base == NULL) {
3558                 ret = -ENOENT;
3559                 goto unlock;
3560         }
3561
3562         switch (obj->cache_level) {
3563         case I915_CACHE_LLC:
3564         case I915_CACHE_L3_LLC:
3565                 args->caching = I915_CACHING_CACHED;
3566                 break;
3567
3568         case I915_CACHE_WT:
3569                 args->caching = I915_CACHING_DISPLAY;
3570                 break;
3571
3572         default:
3573                 args->caching = I915_CACHING_NONE;
3574                 break;
3575         }
3576
3577         drm_gem_object_unreference(&obj->base);
3578 unlock:
3579         mutex_unlock(&dev->struct_mutex);
3580         return ret;
3581 }
3582
3583 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3584                                struct drm_file *file)
3585 {
3586         struct drm_i915_gem_caching *args = data;
3587         struct drm_i915_gem_object *obj;
3588         enum i915_cache_level level;
3589         int ret;
3590
3591         switch (args->caching) {
3592         case I915_CACHING_NONE:
3593                 level = I915_CACHE_NONE;
3594                 break;
3595         case I915_CACHING_CACHED:
3596                 level = I915_CACHE_LLC;
3597                 break;
3598         case I915_CACHING_DISPLAY:
3599                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3600                 break;
3601         default:
3602                 return -EINVAL;
3603         }
3604
3605         ret = i915_mutex_lock_interruptible(dev);
3606         if (ret)
3607                 return ret;
3608
3609         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3610         if (&obj->base == NULL) {
3611                 ret = -ENOENT;
3612                 goto unlock;
3613         }
3614
3615         ret = i915_gem_object_set_cache_level(obj, level);
3616
3617         drm_gem_object_unreference(&obj->base);
3618 unlock:
3619         mutex_unlock(&dev->struct_mutex);
3620         return ret;
3621 }
3622
3623 static bool is_pin_display(struct drm_i915_gem_object *obj)
3624 {
3625         /* There are 3 sources that pin objects:
3626          *   1. The display engine (scanouts, sprites, cursors);
3627          *   2. Reservations for execbuffer;
3628          *   3. The user.
3629          *
3630          * We can ignore reservations as we hold the struct_mutex and
3631          * are only called outside of the reservation path.  The user
3632          * can only increment pin_count once, and so if after
3633          * subtracting the potential reference by the user, any pin_count
3634          * remains, it must be due to another use by the display engine.
3635          */
3636         return obj->pin_count - !!obj->user_pin_count;
3637 }
3638
3639 /*
3640  * Prepare buffer for display plane (scanout, cursors, etc).
3641  * Can be called from an uninterruptible phase (modesetting) and allows
3642  * any flushes to be pipelined (for pageflips).
3643  */
3644 int
3645 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3646                                      u32 alignment,
3647                                      struct intel_ring_buffer *pipelined)
3648 {
3649         u32 old_read_domains, old_write_domain;
3650         int ret;
3651
3652         if (pipelined != obj->ring) {
3653                 ret = i915_gem_object_sync(obj, pipelined);
3654                 if (ret)
3655                         return ret;
3656         }
3657
3658         /* Mark the pin_display early so that we account for the
3659          * display coherency whilst setting up the cache domains.
3660          */
3661         obj->pin_display = true;
3662
3663         /* The display engine is not coherent with the LLC cache on gen6.  As
3664          * a result, we make sure that the pinning that is about to occur is
3665          * done with uncached PTEs. This is lowest common denominator for all
3666          * chipsets.
3667          *
3668          * However for gen6+, we could do better by using the GFDT bit instead
3669          * of uncaching, which would allow us to flush all the LLC-cached data
3670          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3671          */
3672         ret = i915_gem_object_set_cache_level(obj,
3673                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3674         if (ret)
3675                 goto err_unpin_display;
3676
3677         /* As the user may map the buffer once pinned in the display plane
3678          * (e.g. libkms for the bootup splash), we have to ensure that we
3679          * always use map_and_fenceable for all scanout buffers.
3680          */
3681         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3682         if (ret)
3683                 goto err_unpin_display;
3684
3685         i915_gem_object_flush_cpu_write_domain(obj, true);
3686
3687         old_write_domain = obj->base.write_domain;
3688         old_read_domains = obj->base.read_domains;
3689
3690         /* It should now be out of any other write domains, and we can update
3691          * the domain values for our changes.
3692          */
3693         obj->base.write_domain = 0;
3694         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3695
3696         trace_i915_gem_object_change_domain(obj,
3697                                             old_read_domains,
3698                                             old_write_domain);
3699
3700         return 0;
3701
3702 err_unpin_display:
3703         obj->pin_display = is_pin_display(obj);
3704         return ret;
3705 }
3706
3707 void
3708 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3709 {
3710         i915_gem_object_unpin(obj);
3711         obj->pin_display = is_pin_display(obj);
3712 }
3713
3714 int
3715 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3716 {
3717         int ret;
3718
3719         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3720                 return 0;
3721
3722         ret = i915_gem_object_wait_rendering(obj, false);
3723         if (ret)
3724                 return ret;
3725
3726         /* Ensure that we invalidate the GPU's caches and TLBs. */
3727         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3728         return 0;
3729 }
3730
3731 /**
3732  * Moves a single object to the CPU read, and possibly write domain.
3733  *
3734  * This function returns when the move is complete, including waiting on
3735  * flushes to occur.
3736  */
3737 int
3738 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3739 {
3740         uint32_t old_write_domain, old_read_domains;
3741         int ret;
3742
3743         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3744                 return 0;
3745
3746         ret = i915_gem_object_wait_rendering(obj, !write);
3747         if (ret)
3748                 return ret;
3749
3750         i915_gem_object_flush_gtt_write_domain(obj);
3751
3752         old_write_domain = obj->base.write_domain;
3753         old_read_domains = obj->base.read_domains;
3754
3755         /* Flush the CPU cache if it's still invalid. */
3756         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3757                 i915_gem_clflush_object(obj, false);
3758
3759                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3760         }
3761
3762         /* It should now be out of any other write domains, and we can update
3763          * the domain values for our changes.
3764          */
3765         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3766
3767         /* If we're writing through the CPU, then the GPU read domains will
3768          * need to be invalidated at next use.
3769          */
3770         if (write) {
3771                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3772                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3773         }
3774
3775         trace_i915_gem_object_change_domain(obj,
3776                                             old_read_domains,
3777                                             old_write_domain);
3778
3779         return 0;
3780 }
3781
3782 /* Throttle our rendering by waiting until the ring has completed our requests
3783  * emitted over 20 msec ago.
3784  *
3785  * Note that if we were to use the current jiffies each time around the loop,
3786  * we wouldn't escape the function with any frames outstanding if the time to
3787  * render a frame was over 20ms.
3788  *
3789  * This should get us reasonable parallelism between CPU and GPU but also
3790  * relatively low latency when blocking on a particular request to finish.
3791  */
3792 static int
3793 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3794 {
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         struct drm_i915_file_private *file_priv = file->driver_priv;
3797         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3798         struct drm_i915_gem_request *request;
3799         struct intel_ring_buffer *ring = NULL;
3800         unsigned reset_counter;
3801         u32 seqno = 0;
3802         int ret;
3803
3804         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3805         if (ret)
3806                 return ret;
3807
3808         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3809         if (ret)
3810                 return ret;
3811
3812         spin_lock(&file_priv->mm.lock);
3813         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3814                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3815                         break;
3816
3817                 ring = request->ring;
3818                 seqno = request->seqno;
3819         }
3820         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3821         spin_unlock(&file_priv->mm.lock);
3822
3823         if (seqno == 0)
3824                 return 0;
3825
3826         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3827         if (ret == 0)
3828                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3829
3830         return ret;
3831 }
3832
3833 int
3834 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3835                     struct i915_address_space *vm,
3836                     uint32_t alignment,
3837                     bool map_and_fenceable,
3838                     bool nonblocking)
3839 {
3840         struct i915_vma *vma;
3841         int ret;
3842
3843         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3844                 return -EBUSY;
3845
3846         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3847
3848         vma = i915_gem_obj_to_vma(obj, vm);
3849
3850         if (vma) {
3851                 if ((alignment &&
3852                      vma->node.start & (alignment - 1)) ||
3853                     (map_and_fenceable && !obj->map_and_fenceable)) {
3854                         WARN(obj->pin_count,
3855                              "bo is already pinned with incorrect alignment:"
3856                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3857                              " obj->map_and_fenceable=%d\n",
3858                              i915_gem_obj_offset(obj, vm), alignment,
3859                              map_and_fenceable,
3860                              obj->map_and_fenceable);
3861                         ret = i915_vma_unbind(vma);
3862                         if (ret)
3863                                 return ret;
3864                 }
3865         }
3866
3867         if (!i915_gem_obj_bound(obj, vm)) {
3868                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3869
3870                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3871                                                  map_and_fenceable,
3872                                                  nonblocking);
3873                 if (ret)
3874                         return ret;
3875
3876                 if (!dev_priv->mm.aliasing_ppgtt)
3877                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3878         }
3879
3880         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3881                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3882
3883         obj->pin_count++;
3884         obj->pin_mappable |= map_and_fenceable;
3885
3886         return 0;
3887 }
3888
3889 void
3890 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3891 {
3892         BUG_ON(obj->pin_count == 0);
3893         BUG_ON(!i915_gem_obj_bound_any(obj));
3894
3895         if (--obj->pin_count == 0)
3896                 obj->pin_mappable = false;
3897 }
3898
3899 int
3900 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3901                    struct drm_file *file)
3902 {
3903         struct drm_i915_gem_pin *args = data;
3904         struct drm_i915_gem_object *obj;
3905         int ret;
3906
3907         ret = i915_mutex_lock_interruptible(dev);
3908         if (ret)
3909                 return ret;
3910
3911         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912         if (&obj->base == NULL) {
3913                 ret = -ENOENT;
3914                 goto unlock;
3915         }
3916
3917         if (obj->madv != I915_MADV_WILLNEED) {
3918                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3919                 ret = -EINVAL;
3920                 goto out;
3921         }
3922
3923         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3924                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925                           args->handle);
3926                 ret = -EINVAL;
3927                 goto out;
3928         }
3929
3930         if (obj->user_pin_count == 0) {
3931                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3932                 if (ret)
3933                         goto out;
3934         }
3935
3936         obj->user_pin_count++;
3937         obj->pin_filp = file;
3938
3939         args->offset = i915_gem_obj_ggtt_offset(obj);
3940 out:
3941         drm_gem_object_unreference(&obj->base);
3942 unlock:
3943         mutex_unlock(&dev->struct_mutex);
3944         return ret;
3945 }
3946
3947 int
3948 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3949                      struct drm_file *file)
3950 {
3951         struct drm_i915_gem_pin *args = data;
3952         struct drm_i915_gem_object *obj;
3953         int ret;
3954
3955         ret = i915_mutex_lock_interruptible(dev);
3956         if (ret)
3957                 return ret;
3958
3959         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3960         if (&obj->base == NULL) {
3961                 ret = -ENOENT;
3962                 goto unlock;
3963         }
3964
3965         if (obj->pin_filp != file) {
3966                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3967                           args->handle);
3968                 ret = -EINVAL;
3969                 goto out;
3970         }
3971         obj->user_pin_count--;
3972         if (obj->user_pin_count == 0) {
3973                 obj->pin_filp = NULL;
3974                 i915_gem_object_unpin(obj);
3975         }
3976
3977 out:
3978         drm_gem_object_unreference(&obj->base);
3979 unlock:
3980         mutex_unlock(&dev->struct_mutex);
3981         return ret;
3982 }
3983
3984 int
3985 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3986                     struct drm_file *file)
3987 {
3988         struct drm_i915_gem_busy *args = data;
3989         struct drm_i915_gem_object *obj;
3990         int ret;
3991
3992         ret = i915_mutex_lock_interruptible(dev);
3993         if (ret)
3994                 return ret;
3995
3996         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3997         if (&obj->base == NULL) {
3998                 ret = -ENOENT;
3999                 goto unlock;
4000         }
4001
4002         /* Count all active objects as busy, even if they are currently not used
4003          * by the gpu. Users of this interface expect objects to eventually
4004          * become non-busy without any further actions, therefore emit any
4005          * necessary flushes here.
4006          */
4007         ret = i915_gem_object_flush_active(obj);
4008
4009         args->busy = obj->active;
4010         if (obj->ring) {
4011                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4012                 args->busy |= intel_ring_flag(obj->ring) << 16;
4013         }
4014
4015         drm_gem_object_unreference(&obj->base);
4016 unlock:
4017         mutex_unlock(&dev->struct_mutex);
4018         return ret;
4019 }
4020
4021 int
4022 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4023                         struct drm_file *file_priv)
4024 {
4025         return i915_gem_ring_throttle(dev, file_priv);
4026 }
4027
4028 int
4029 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4030                        struct drm_file *file_priv)
4031 {
4032         struct drm_i915_gem_madvise *args = data;
4033         struct drm_i915_gem_object *obj;
4034         int ret;
4035
4036         switch (args->madv) {
4037         case I915_MADV_DONTNEED:
4038         case I915_MADV_WILLNEED:
4039             break;
4040         default:
4041             return -EINVAL;
4042         }
4043
4044         ret = i915_mutex_lock_interruptible(dev);
4045         if (ret)
4046                 return ret;
4047
4048         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4049         if (&obj->base == NULL) {
4050                 ret = -ENOENT;
4051                 goto unlock;
4052         }
4053
4054         if (obj->pin_count) {
4055                 ret = -EINVAL;
4056                 goto out;
4057         }
4058
4059         if (obj->madv != __I915_MADV_PURGED)
4060                 obj->madv = args->madv;
4061
4062         /* if the object is no longer attached, discard its backing storage */
4063         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4064                 i915_gem_object_truncate(obj);
4065
4066         args->retained = obj->madv != __I915_MADV_PURGED;
4067
4068 out:
4069         drm_gem_object_unreference(&obj->base);
4070 unlock:
4071         mutex_unlock(&dev->struct_mutex);
4072         return ret;
4073 }
4074
4075 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4076                           const struct drm_i915_gem_object_ops *ops)
4077 {
4078         INIT_LIST_HEAD(&obj->global_list);
4079         INIT_LIST_HEAD(&obj->ring_list);
4080         INIT_LIST_HEAD(&obj->obj_exec_link);
4081         INIT_LIST_HEAD(&obj->vma_list);
4082
4083         obj->ops = ops;
4084
4085         obj->fence_reg = I915_FENCE_REG_NONE;
4086         obj->madv = I915_MADV_WILLNEED;
4087         /* Avoid an unnecessary call to unbind on the first bind. */
4088         obj->map_and_fenceable = true;
4089
4090         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4091 }
4092
4093 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4094         .get_pages = i915_gem_object_get_pages_gtt,
4095         .put_pages = i915_gem_object_put_pages_gtt,
4096 };
4097
4098 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4099                                                   size_t size)
4100 {
4101         struct drm_i915_gem_object *obj;
4102         struct address_space *mapping;
4103         gfp_t mask;
4104
4105         obj = i915_gem_object_alloc(dev);
4106         if (obj == NULL)
4107                 return NULL;
4108
4109         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4110                 i915_gem_object_free(obj);
4111                 return NULL;
4112         }
4113
4114         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4115         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4116                 /* 965gm cannot relocate objects above 4GiB. */
4117                 mask &= ~__GFP_HIGHMEM;
4118                 mask |= __GFP_DMA32;
4119         }
4120
4121         mapping = file_inode(obj->base.filp)->i_mapping;
4122         mapping_set_gfp_mask(mapping, mask);
4123
4124         i915_gem_object_init(obj, &i915_gem_object_ops);
4125
4126         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4127         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4128
4129         if (HAS_LLC(dev)) {
4130                 /* On some devices, we can have the GPU use the LLC (the CPU
4131                  * cache) for about a 10% performance improvement
4132                  * compared to uncached.  Graphics requests other than
4133                  * display scanout are coherent with the CPU in
4134                  * accessing this cache.  This means in this mode we
4135                  * don't need to clflush on the CPU side, and on the
4136                  * GPU side we only need to flush internal caches to
4137                  * get data visible to the CPU.
4138                  *
4139                  * However, we maintain the display planes as UC, and so
4140                  * need to rebind when first used as such.
4141                  */
4142                 obj->cache_level = I915_CACHE_LLC;
4143         } else
4144                 obj->cache_level = I915_CACHE_NONE;
4145
4146         trace_i915_gem_object_create(obj);
4147
4148         return obj;
4149 }
4150
4151 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4152 {
4153         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4154         struct drm_device *dev = obj->base.dev;
4155         drm_i915_private_t *dev_priv = dev->dev_private;
4156         struct i915_vma *vma, *next;
4157
4158         trace_i915_gem_object_destroy(obj);
4159
4160         if (obj->phys_obj)
4161                 i915_gem_detach_phys_object(dev, obj);
4162
4163         obj->pin_count = 0;
4164         /* NB: 0 or 1 elements */
4165         WARN_ON(!list_empty(&obj->vma_list) &&
4166                 !list_is_singular(&obj->vma_list));
4167         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4168                 int ret = i915_vma_unbind(vma);
4169                 if (WARN_ON(ret == -ERESTARTSYS)) {
4170                         bool was_interruptible;
4171
4172                         was_interruptible = dev_priv->mm.interruptible;
4173                         dev_priv->mm.interruptible = false;
4174
4175                         WARN_ON(i915_vma_unbind(vma));
4176
4177                         dev_priv->mm.interruptible = was_interruptible;
4178                 }
4179         }
4180
4181         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4182          * before progressing. */
4183         if (obj->stolen)
4184                 i915_gem_object_unpin_pages(obj);
4185
4186         if (WARN_ON(obj->pages_pin_count))
4187                 obj->pages_pin_count = 0;
4188         i915_gem_object_put_pages(obj);
4189         i915_gem_object_free_mmap_offset(obj);
4190         i915_gem_object_release_stolen(obj);
4191
4192         BUG_ON(obj->pages);
4193
4194         if (obj->base.import_attach)
4195                 drm_prime_gem_destroy(&obj->base, NULL);
4196
4197         drm_gem_object_release(&obj->base);
4198         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4199
4200         kfree(obj->bit_17);
4201         i915_gem_object_free(obj);
4202 }
4203
4204 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4205                                      struct i915_address_space *vm)
4206 {
4207         struct i915_vma *vma;
4208         list_for_each_entry(vma, &obj->vma_list, vma_link)
4209                 if (vma->vm == vm)
4210                         return vma;
4211
4212         return NULL;
4213 }
4214
4215 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4216                                               struct i915_address_space *vm)
4217 {
4218         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4219         if (vma == NULL)
4220                 return ERR_PTR(-ENOMEM);
4221
4222         INIT_LIST_HEAD(&vma->vma_link);
4223         INIT_LIST_HEAD(&vma->mm_list);
4224         INIT_LIST_HEAD(&vma->exec_list);
4225         vma->vm = vm;
4226         vma->obj = obj;
4227
4228         /* Keep GGTT vmas first to make debug easier */
4229         if (i915_is_ggtt(vm))
4230                 list_add(&vma->vma_link, &obj->vma_list);
4231         else
4232                 list_add_tail(&vma->vma_link, &obj->vma_list);
4233
4234         return vma;
4235 }
4236
4237 struct i915_vma *
4238 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4239                                   struct i915_address_space *vm)
4240 {
4241         struct i915_vma *vma;
4242
4243         vma = i915_gem_obj_to_vma(obj, vm);
4244         if (!vma)
4245                 vma = __i915_gem_vma_create(obj, vm);
4246
4247         return vma;
4248 }
4249
4250 void i915_gem_vma_destroy(struct i915_vma *vma)
4251 {
4252         WARN_ON(vma->node.allocated);
4253
4254         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4255         if (!list_empty(&vma->exec_list))
4256                 return;
4257
4258         list_del(&vma->vma_link);
4259
4260         kfree(vma);
4261 }
4262
4263 int
4264 i915_gem_idle(struct drm_device *dev)
4265 {
4266         drm_i915_private_t *dev_priv = dev->dev_private;
4267         int ret;
4268
4269         if (dev_priv->ums.mm_suspended)
4270                 return 0;
4271
4272         ret = i915_gpu_idle(dev);
4273         if (ret)
4274                 return ret;
4275
4276         i915_gem_retire_requests(dev);
4277
4278         /* Under UMS, be paranoid and evict. */
4279         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4280                 i915_gem_evict_everything(dev);
4281
4282         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4283
4284         i915_kernel_lost_context(dev);
4285         i915_gem_cleanup_ringbuffer(dev);
4286
4287         /* Cancel the retire work handler, which should be idle now. */
4288         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4289         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4290
4291         return 0;
4292 }
4293
4294 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4295 {
4296         struct drm_device *dev = ring->dev;
4297         drm_i915_private_t *dev_priv = dev->dev_private;
4298         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4299         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4300         int i, ret;
4301
4302         if (!HAS_L3_DPF(dev) || !remap_info)
4303                 return 0;
4304
4305         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4306         if (ret)
4307                 return ret;
4308
4309         /*
4310          * Note: We do not worry about the concurrent register cacheline hang
4311          * here because no other code should access these registers other than
4312          * at initialization time.
4313          */
4314         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4315                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4316                 intel_ring_emit(ring, reg_base + i);
4317                 intel_ring_emit(ring, remap_info[i/4]);
4318         }
4319
4320         intel_ring_advance(ring);
4321
4322         return ret;
4323 }
4324
4325 void i915_gem_init_swizzling(struct drm_device *dev)
4326 {
4327         drm_i915_private_t *dev_priv = dev->dev_private;
4328
4329         if (INTEL_INFO(dev)->gen < 5 ||
4330             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4331                 return;
4332
4333         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4334                                  DISP_TILE_SURFACE_SWIZZLING);
4335
4336         if (IS_GEN5(dev))
4337                 return;
4338
4339         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4340         if (IS_GEN6(dev))
4341                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4342         else if (IS_GEN7(dev))
4343                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4344         else
4345                 BUG();
4346 }
4347
4348 static bool
4349 intel_enable_blt(struct drm_device *dev)
4350 {
4351         if (!HAS_BLT(dev))
4352                 return false;
4353
4354         /* The blitter was dysfunctional on early prototypes */
4355         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4356                 DRM_INFO("BLT not supported on this pre-production hardware;"
4357                          " graphics performance will be degraded.\n");
4358                 return false;
4359         }
4360
4361         return true;
4362 }
4363
4364 static int i915_gem_init_rings(struct drm_device *dev)
4365 {
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         int ret;
4368
4369         ret = intel_init_render_ring_buffer(dev);
4370         if (ret)
4371                 return ret;
4372
4373         if (HAS_BSD(dev)) {
4374                 ret = intel_init_bsd_ring_buffer(dev);
4375                 if (ret)
4376                         goto cleanup_render_ring;
4377         }
4378
4379         if (intel_enable_blt(dev)) {
4380                 ret = intel_init_blt_ring_buffer(dev);
4381                 if (ret)
4382                         goto cleanup_bsd_ring;
4383         }
4384
4385         if (HAS_VEBOX(dev)) {
4386                 ret = intel_init_vebox_ring_buffer(dev);
4387                 if (ret)
4388                         goto cleanup_blt_ring;
4389         }
4390
4391
4392         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4393         if (ret)
4394                 goto cleanup_vebox_ring;
4395
4396         return 0;
4397
4398 cleanup_vebox_ring:
4399         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4400 cleanup_blt_ring:
4401         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4402 cleanup_bsd_ring:
4403         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4404 cleanup_render_ring:
4405         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4406
4407         return ret;
4408 }
4409
4410 int
4411 i915_gem_init_hw(struct drm_device *dev)
4412 {
4413         drm_i915_private_t *dev_priv = dev->dev_private;
4414         int ret, i;
4415
4416         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4417                 return -EIO;
4418
4419         if (dev_priv->ellc_size)
4420                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4421
4422         if (IS_HSW_GT3(dev))
4423                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4424         else
4425                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4426
4427         if (HAS_PCH_NOP(dev)) {
4428                 u32 temp = I915_READ(GEN7_MSG_CTL);
4429                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4430                 I915_WRITE(GEN7_MSG_CTL, temp);
4431         }
4432
4433         i915_gem_init_swizzling(dev);
4434
4435         ret = i915_gem_init_rings(dev);
4436         if (ret)
4437                 return ret;
4438
4439         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4440                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4441
4442         /*
4443          * XXX: There was some w/a described somewhere suggesting loading
4444          * contexts before PPGTT.
4445          */
4446         i915_gem_context_init(dev);
4447         if (dev_priv->mm.aliasing_ppgtt) {
4448                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4449                 if (ret) {
4450                         i915_gem_cleanup_aliasing_ppgtt(dev);
4451                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4452                 }
4453         }
4454
4455         return 0;
4456 }
4457
4458 int i915_gem_init(struct drm_device *dev)
4459 {
4460         struct drm_i915_private *dev_priv = dev->dev_private;
4461         int ret;
4462
4463         mutex_lock(&dev->struct_mutex);
4464
4465         if (IS_VALLEYVIEW(dev)) {
4466                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4467                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4468                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4469                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4470         }
4471
4472         i915_gem_init_global_gtt(dev);
4473
4474         ret = i915_gem_init_hw(dev);
4475         mutex_unlock(&dev->struct_mutex);
4476         if (ret) {
4477                 i915_gem_cleanup_aliasing_ppgtt(dev);
4478                 return ret;
4479         }
4480
4481         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4482         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4483                 dev_priv->dri1.allow_batchbuffer = 1;
4484         return 0;
4485 }
4486
4487 void
4488 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4489 {
4490         drm_i915_private_t *dev_priv = dev->dev_private;
4491         struct intel_ring_buffer *ring;
4492         int i;
4493
4494         for_each_ring(ring, dev_priv, i)
4495                 intel_cleanup_ring_buffer(ring);
4496 }
4497
4498 int
4499 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4500                        struct drm_file *file_priv)
4501 {
4502         struct drm_i915_private *dev_priv = dev->dev_private;
4503         int ret;
4504
4505         if (drm_core_check_feature(dev, DRIVER_MODESET))
4506                 return 0;
4507
4508         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4509                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4510                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4511         }
4512
4513         mutex_lock(&dev->struct_mutex);
4514         dev_priv->ums.mm_suspended = 0;
4515
4516         ret = i915_gem_init_hw(dev);
4517         if (ret != 0) {
4518                 mutex_unlock(&dev->struct_mutex);
4519                 return ret;
4520         }
4521
4522         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4523         mutex_unlock(&dev->struct_mutex);
4524
4525         ret = drm_irq_install(dev);
4526         if (ret)
4527                 goto cleanup_ringbuffer;
4528
4529         return 0;
4530
4531 cleanup_ringbuffer:
4532         mutex_lock(&dev->struct_mutex);
4533         i915_gem_cleanup_ringbuffer(dev);
4534         dev_priv->ums.mm_suspended = 1;
4535         mutex_unlock(&dev->struct_mutex);
4536
4537         return ret;
4538 }
4539
4540 int
4541 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4542                        struct drm_file *file_priv)
4543 {
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         int ret;
4546
4547         if (drm_core_check_feature(dev, DRIVER_MODESET))
4548                 return 0;
4549
4550         drm_irq_uninstall(dev);
4551
4552         mutex_lock(&dev->struct_mutex);
4553         ret =  i915_gem_idle(dev);
4554
4555         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4556          * We need to replace this with a semaphore, or something.
4557          * And not confound ums.mm_suspended!
4558          */
4559         if (ret != 0)
4560                 dev_priv->ums.mm_suspended = 1;
4561         mutex_unlock(&dev->struct_mutex);
4562
4563         return ret;
4564 }
4565
4566 void
4567 i915_gem_lastclose(struct drm_device *dev)
4568 {
4569         int ret;
4570
4571         if (drm_core_check_feature(dev, DRIVER_MODESET))
4572                 return;
4573
4574         mutex_lock(&dev->struct_mutex);
4575         ret = i915_gem_idle(dev);
4576         if (ret)
4577                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4578         mutex_unlock(&dev->struct_mutex);
4579 }
4580
4581 static void
4582 init_ring_lists(struct intel_ring_buffer *ring)
4583 {
4584         INIT_LIST_HEAD(&ring->active_list);
4585         INIT_LIST_HEAD(&ring->request_list);
4586 }
4587
4588 static void i915_init_vm(struct drm_i915_private *dev_priv,
4589                          struct i915_address_space *vm)
4590 {
4591         vm->dev = dev_priv->dev;
4592         INIT_LIST_HEAD(&vm->active_list);
4593         INIT_LIST_HEAD(&vm->inactive_list);
4594         INIT_LIST_HEAD(&vm->global_link);
4595         list_add(&vm->global_link, &dev_priv->vm_list);
4596 }
4597
4598 void
4599 i915_gem_load(struct drm_device *dev)
4600 {
4601         drm_i915_private_t *dev_priv = dev->dev_private;
4602         int i;
4603
4604         dev_priv->slab =
4605                 kmem_cache_create("i915_gem_object",
4606                                   sizeof(struct drm_i915_gem_object), 0,
4607                                   SLAB_HWCACHE_ALIGN,
4608                                   NULL);
4609
4610         INIT_LIST_HEAD(&dev_priv->vm_list);
4611         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4612
4613         INIT_LIST_HEAD(&dev_priv->context_list);
4614         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4615         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4616         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4617         for (i = 0; i < I915_NUM_RINGS; i++)
4618                 init_ring_lists(&dev_priv->ring[i]);
4619         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4620                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4621         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4622                           i915_gem_retire_work_handler);
4623         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4624                           i915_gem_idle_work_handler);
4625         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4626
4627         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4628         if (IS_GEN3(dev)) {
4629                 I915_WRITE(MI_ARB_STATE,
4630                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4631         }
4632
4633         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4634
4635         /* Old X drivers will take 0-2 for front, back, depth buffers */
4636         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4637                 dev_priv->fence_reg_start = 3;
4638
4639         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4640                 dev_priv->num_fence_regs = 32;
4641         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4642                 dev_priv->num_fence_regs = 16;
4643         else
4644                 dev_priv->num_fence_regs = 8;
4645
4646         /* Initialize fence registers to zero */
4647         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4648         i915_gem_restore_fences(dev);
4649
4650         i915_gem_detect_bit_6_swizzle(dev);
4651         init_waitqueue_head(&dev_priv->pending_flip_queue);
4652
4653         dev_priv->mm.interruptible = true;
4654
4655         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4656         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4657         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4658         register_shrinker(&dev_priv->mm.inactive_shrinker);
4659 }
4660
4661 /*
4662  * Create a physically contiguous memory object for this object
4663  * e.g. for cursor + overlay regs
4664  */
4665 static int i915_gem_init_phys_object(struct drm_device *dev,
4666                                      int id, int size, int align)
4667 {
4668         drm_i915_private_t *dev_priv = dev->dev_private;
4669         struct drm_i915_gem_phys_object *phys_obj;
4670         int ret;
4671
4672         if (dev_priv->mm.phys_objs[id - 1] || !size)
4673                 return 0;
4674
4675         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4676         if (!phys_obj)
4677                 return -ENOMEM;
4678
4679         phys_obj->id = id;
4680
4681         phys_obj->handle = drm_pci_alloc(dev, size, align);
4682         if (!phys_obj->handle) {
4683                 ret = -ENOMEM;
4684                 goto kfree_obj;
4685         }
4686 #ifdef CONFIG_X86
4687         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4688 #endif
4689
4690         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4691
4692         return 0;
4693 kfree_obj:
4694         kfree(phys_obj);
4695         return ret;
4696 }
4697
4698 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4699 {
4700         drm_i915_private_t *dev_priv = dev->dev_private;
4701         struct drm_i915_gem_phys_object *phys_obj;
4702
4703         if (!dev_priv->mm.phys_objs[id - 1])
4704                 return;
4705
4706         phys_obj = dev_priv->mm.phys_objs[id - 1];
4707         if (phys_obj->cur_obj) {
4708                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4709         }
4710
4711 #ifdef CONFIG_X86
4712         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4713 #endif
4714         drm_pci_free(dev, phys_obj->handle);
4715         kfree(phys_obj);
4716         dev_priv->mm.phys_objs[id - 1] = NULL;
4717 }
4718
4719 void i915_gem_free_all_phys_object(struct drm_device *dev)
4720 {
4721         int i;
4722
4723         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4724                 i915_gem_free_phys_object(dev, i);
4725 }
4726
4727 void i915_gem_detach_phys_object(struct drm_device *dev,
4728                                  struct drm_i915_gem_object *obj)
4729 {
4730         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4731         char *vaddr;
4732         int i;
4733         int page_count;
4734
4735         if (!obj->phys_obj)
4736                 return;
4737         vaddr = obj->phys_obj->handle->vaddr;
4738
4739         page_count = obj->base.size / PAGE_SIZE;
4740         for (i = 0; i < page_count; i++) {
4741                 struct page *page = shmem_read_mapping_page(mapping, i);
4742                 if (!IS_ERR(page)) {
4743                         char *dst = kmap_atomic(page);
4744                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4745                         kunmap_atomic(dst);
4746
4747                         drm_clflush_pages(&page, 1);
4748
4749                         set_page_dirty(page);
4750                         mark_page_accessed(page);
4751                         page_cache_release(page);
4752                 }
4753         }
4754         i915_gem_chipset_flush(dev);
4755
4756         obj->phys_obj->cur_obj = NULL;
4757         obj->phys_obj = NULL;
4758 }
4759
4760 int
4761 i915_gem_attach_phys_object(struct drm_device *dev,
4762                             struct drm_i915_gem_object *obj,
4763                             int id,
4764                             int align)
4765 {
4766         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4767         drm_i915_private_t *dev_priv = dev->dev_private;
4768         int ret = 0;
4769         int page_count;
4770         int i;
4771
4772         if (id > I915_MAX_PHYS_OBJECT)
4773                 return -EINVAL;
4774
4775         if (obj->phys_obj) {
4776                 if (obj->phys_obj->id == id)
4777                         return 0;
4778                 i915_gem_detach_phys_object(dev, obj);
4779         }
4780
4781         /* create a new object */
4782         if (!dev_priv->mm.phys_objs[id - 1]) {
4783                 ret = i915_gem_init_phys_object(dev, id,
4784                                                 obj->base.size, align);
4785                 if (ret) {
4786                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4787                                   id, obj->base.size);
4788                         return ret;
4789                 }
4790         }
4791
4792         /* bind to the object */
4793         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4794         obj->phys_obj->cur_obj = obj;
4795
4796         page_count = obj->base.size / PAGE_SIZE;
4797
4798         for (i = 0; i < page_count; i++) {
4799                 struct page *page;
4800                 char *dst, *src;
4801
4802                 page = shmem_read_mapping_page(mapping, i);
4803                 if (IS_ERR(page))
4804                         return PTR_ERR(page);
4805
4806                 src = kmap_atomic(page);
4807                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4808                 memcpy(dst, src, PAGE_SIZE);
4809                 kunmap_atomic(src);
4810
4811                 mark_page_accessed(page);
4812                 page_cache_release(page);
4813         }
4814
4815         return 0;
4816 }
4817
4818 static int
4819 i915_gem_phys_pwrite(struct drm_device *dev,
4820                      struct drm_i915_gem_object *obj,
4821                      struct drm_i915_gem_pwrite *args,
4822                      struct drm_file *file_priv)
4823 {
4824         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4825         char __user *user_data = to_user_ptr(args->data_ptr);
4826
4827         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4828                 unsigned long unwritten;
4829
4830                 /* The physical object once assigned is fixed for the lifetime
4831                  * of the obj, so we can safely drop the lock and continue
4832                  * to access vaddr.
4833                  */
4834                 mutex_unlock(&dev->struct_mutex);
4835                 unwritten = copy_from_user(vaddr, user_data, args->size);
4836                 mutex_lock(&dev->struct_mutex);
4837                 if (unwritten)
4838                         return -EFAULT;
4839         }
4840
4841         i915_gem_chipset_flush(dev);
4842         return 0;
4843 }
4844
4845 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4846 {
4847         struct drm_i915_file_private *file_priv = file->driver_priv;
4848
4849         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4850
4851         /* Clean up our request list when the client is going away, so that
4852          * later retire_requests won't dereference our soon-to-be-gone
4853          * file_priv.
4854          */
4855         spin_lock(&file_priv->mm.lock);
4856         while (!list_empty(&file_priv->mm.request_list)) {
4857                 struct drm_i915_gem_request *request;
4858
4859                 request = list_first_entry(&file_priv->mm.request_list,
4860                                            struct drm_i915_gem_request,
4861                                            client_list);
4862                 list_del(&request->client_list);
4863                 request->file_priv = NULL;
4864         }
4865         spin_unlock(&file_priv->mm.lock);
4866 }
4867
4868 static void
4869 i915_gem_file_idle_work_handler(struct work_struct *work)
4870 {
4871         struct drm_i915_file_private *file_priv =
4872                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4873
4874         atomic_set(&file_priv->rps_wait_boost, false);
4875 }
4876
4877 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4878 {
4879         struct drm_i915_file_private *file_priv;
4880
4881         DRM_DEBUG_DRIVER("\n");
4882
4883         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4884         if (!file_priv)
4885                 return -ENOMEM;
4886
4887         file->driver_priv = file_priv;
4888         file_priv->dev_priv = dev->dev_private;
4889
4890         spin_lock_init(&file_priv->mm.lock);
4891         INIT_LIST_HEAD(&file_priv->mm.request_list);
4892         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4893                           i915_gem_file_idle_work_handler);
4894
4895         idr_init(&file_priv->context_idr);
4896
4897         return 0;
4898 }
4899
4900 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4901 {
4902         if (!mutex_is_locked(mutex))
4903                 return false;
4904
4905 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4906         return mutex->owner == task;
4907 #else
4908         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4909         return false;
4910 #endif
4911 }
4912
4913 static unsigned long
4914 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4915 {
4916         struct drm_i915_private *dev_priv =
4917                 container_of(shrinker,
4918                              struct drm_i915_private,
4919                              mm.inactive_shrinker);
4920         struct drm_device *dev = dev_priv->dev;
4921         struct drm_i915_gem_object *obj;
4922         bool unlock = true;
4923         unsigned long count;
4924
4925         if (!mutex_trylock(&dev->struct_mutex)) {
4926                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4927                         return 0;
4928
4929                 if (dev_priv->mm.shrinker_no_lock_stealing)
4930                         return 0;
4931
4932                 unlock = false;
4933         }
4934
4935         count = 0;
4936         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4937                 if (obj->pages_pin_count == 0)
4938                         count += obj->base.size >> PAGE_SHIFT;
4939
4940         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4941                 if (obj->active)
4942                         continue;
4943
4944                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4945                         count += obj->base.size >> PAGE_SHIFT;
4946         }
4947
4948         if (unlock)
4949                 mutex_unlock(&dev->struct_mutex);
4950         return count;
4951 }
4952
4953 /* All the new VM stuff */
4954 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4955                                   struct i915_address_space *vm)
4956 {
4957         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4958         struct i915_vma *vma;
4959
4960         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4961                 vm = &dev_priv->gtt.base;
4962
4963         BUG_ON(list_empty(&o->vma_list));
4964         list_for_each_entry(vma, &o->vma_list, vma_link) {
4965                 if (vma->vm == vm)
4966                         return vma->node.start;
4967
4968         }
4969         return -1;
4970 }
4971
4972 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4973                         struct i915_address_space *vm)
4974 {
4975         struct i915_vma *vma;
4976
4977         list_for_each_entry(vma, &o->vma_list, vma_link)
4978                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4979                         return true;
4980
4981         return false;
4982 }
4983
4984 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4985 {
4986         struct i915_vma *vma;
4987
4988         list_for_each_entry(vma, &o->vma_list, vma_link)
4989                 if (drm_mm_node_allocated(&vma->node))
4990                         return true;
4991
4992         return false;
4993 }
4994
4995 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4996                                 struct i915_address_space *vm)
4997 {
4998         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4999         struct i915_vma *vma;
5000
5001         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5002                 vm = &dev_priv->gtt.base;
5003
5004         BUG_ON(list_empty(&o->vma_list));
5005
5006         list_for_each_entry(vma, &o->vma_list, vma_link)
5007                 if (vma->vm == vm)
5008                         return vma->node.size;
5009
5010         return 0;
5011 }
5012
5013 static unsigned long
5014 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5015 {
5016         struct drm_i915_private *dev_priv =
5017                 container_of(shrinker,
5018                              struct drm_i915_private,
5019                              mm.inactive_shrinker);
5020         struct drm_device *dev = dev_priv->dev;
5021         int nr_to_scan = sc->nr_to_scan;
5022         unsigned long freed;
5023         bool unlock = true;
5024
5025         if (!mutex_trylock(&dev->struct_mutex)) {
5026                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5027                         return SHRINK_STOP;
5028
5029                 if (dev_priv->mm.shrinker_no_lock_stealing)
5030                         return SHRINK_STOP;
5031
5032                 unlock = false;
5033         }
5034
5035         freed = i915_gem_purge(dev_priv, nr_to_scan);
5036         if (freed < nr_to_scan)
5037                 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
5038                                                         false);
5039         if (freed < nr_to_scan)
5040                 freed += i915_gem_shrink_all(dev_priv);
5041
5042         if (unlock)
5043                 mutex_unlock(&dev->struct_mutex);
5044         return freed;
5045 }
5046
5047 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5048 {
5049         struct i915_vma *vma;
5050
5051         if (WARN_ON(list_empty(&obj->vma_list)))
5052                 return NULL;
5053
5054         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5055         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5056                 return NULL;
5057
5058         return vma;
5059 }