2be904c704e92bea6059a76c54fc7ccfa92d733f
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         const bool irq_test_in_progress =
1019                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020         struct timespec before, now;
1021         DEFINE_WAIT(wait);
1022         unsigned long timeout_expire;
1023         int ret;
1024
1025         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028                 return 0;
1029
1030         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033                 gen6_rps_boost(dev_priv);
1034                 if (file_priv)
1035                         mod_delayed_work(dev_priv->wq,
1036                                          &file_priv->mm.idle_work,
1037                                          msecs_to_jiffies(100));
1038         }
1039
1040         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041                 return -ENODEV;
1042
1043         /* Record current time in case interrupted by signal, or wedged */
1044         trace_i915_gem_request_wait_begin(ring, seqno);
1045         getrawmonotonic(&before);
1046         for (;;) {
1047                 struct timer_list timer;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         unsigned long expire;
1081
1082                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084                         mod_timer(&timer, expire);
1085                 }
1086
1087                 io_schedule();
1088
1089                 if (timer.function) {
1090                         del_singleshot_timer_sync(&timer);
1091                         destroy_timer_on_stack(&timer);
1092                 }
1093         }
1094         getrawmonotonic(&now);
1095         trace_i915_gem_request_wait_end(ring, seqno);
1096
1097         if (!irq_test_in_progress)
1098                 ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         intel_runtime_pm_get(dev_priv);
1384
1385         /* We don't use vmf->pgoff since that has the fake offset */
1386         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387                 PAGE_SHIFT;
1388
1389         ret = i915_mutex_lock_interruptible(dev);
1390         if (ret)
1391                 goto out;
1392
1393         trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395         /* Access to snoopable pages through the GTT is incoherent. */
1396         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397                 ret = -EINVAL;
1398                 goto unlock;
1399         }
1400
1401         /* Now bind it into the GTT if needed */
1402         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1403         if (ret)
1404                 goto unlock;
1405
1406         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407         if (ret)
1408                 goto unpin;
1409
1410         ret = i915_gem_object_get_fence(obj);
1411         if (ret)
1412                 goto unpin;
1413
1414         obj->fault_mappable = true;
1415
1416         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417         pfn >>= PAGE_SHIFT;
1418         pfn += page_offset;
1419
1420         /* Finally, remap it using the new GTT offset */
1421         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423         i915_gem_object_unpin(obj);
1424 unlock:
1425         mutex_unlock(&dev->struct_mutex);
1426 out:
1427         switch (ret) {
1428         case -EIO:
1429                 /* If this -EIO is due to a gpu hang, give the reset code a
1430                  * chance to clean up the mess. Otherwise return the proper
1431                  * SIGBUS. */
1432                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433                         ret = VM_FAULT_SIGBUS;
1434                         break;
1435                 }
1436         case -EAGAIN:
1437                 /*
1438                  * EAGAIN means the gpu is hung and we'll wait for the error
1439                  * handler to reset everything when re-faulting in
1440                  * i915_mutex_lock_interruptible.
1441                  */
1442         case 0:
1443         case -ERESTARTSYS:
1444         case -EINTR:
1445         case -EBUSY:
1446                 /*
1447                  * EBUSY is ok: this just means that another thread
1448                  * already did the job.
1449                  */
1450                 ret = VM_FAULT_NOPAGE;
1451                 break;
1452         case -ENOMEM:
1453                 ret = VM_FAULT_OOM;
1454                 break;
1455         case -ENOSPC:
1456                 ret = VM_FAULT_SIGBUS;
1457                 break;
1458         default:
1459                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460                 ret = VM_FAULT_SIGBUS;
1461                 break;
1462         }
1463
1464         intel_runtime_pm_put(dev_priv);
1465         return ret;
1466 }
1467
1468 /**
1469  * i915_gem_release_mmap - remove physical page mappings
1470  * @obj: obj in question
1471  *
1472  * Preserve the reservation of the mmapping with the DRM core code, but
1473  * relinquish ownership of the pages back to the system.
1474  *
1475  * It is vital that we remove the page mapping if we have mapped a tiled
1476  * object through the GTT and then lose the fence register due to
1477  * resource pressure. Similarly if the object has been moved out of the
1478  * aperture, than pages mapped into userspace must be revoked. Removing the
1479  * mapping will then trigger a page fault on the next user access, allowing
1480  * fixup by i915_gem_fault().
1481  */
1482 void
1483 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1484 {
1485         if (!obj->fault_mappable)
1486                 return;
1487
1488         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1489         obj->fault_mappable = false;
1490 }
1491
1492 uint32_t
1493 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1494 {
1495         uint32_t gtt_size;
1496
1497         if (INTEL_INFO(dev)->gen >= 4 ||
1498             tiling_mode == I915_TILING_NONE)
1499                 return size;
1500
1501         /* Previous chips need a power-of-two fence region when tiling */
1502         if (INTEL_INFO(dev)->gen == 3)
1503                 gtt_size = 1024*1024;
1504         else
1505                 gtt_size = 512*1024;
1506
1507         while (gtt_size < size)
1508                 gtt_size <<= 1;
1509
1510         return gtt_size;
1511 }
1512
1513 /**
1514  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1515  * @obj: object to check
1516  *
1517  * Return the required GTT alignment for an object, taking into account
1518  * potential fence register mapping.
1519  */
1520 uint32_t
1521 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1522                            int tiling_mode, bool fenced)
1523 {
1524         /*
1525          * Minimum alignment is 4k (GTT page size), but might be greater
1526          * if a fence register is needed for the object.
1527          */
1528         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1529             tiling_mode == I915_TILING_NONE)
1530                 return 4096;
1531
1532         /*
1533          * Previous chips need to be aligned to the size of the smallest
1534          * fence register that can contain the object.
1535          */
1536         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1537 }
1538
1539 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1540 {
1541         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1542         int ret;
1543
1544         if (drm_vma_node_has_offset(&obj->base.vma_node))
1545                 return 0;
1546
1547         dev_priv->mm.shrinker_no_lock_stealing = true;
1548
1549         ret = drm_gem_create_mmap_offset(&obj->base);
1550         if (ret != -ENOSPC)
1551                 goto out;
1552
1553         /* Badly fragmented mmap space? The only way we can recover
1554          * space is by destroying unwanted objects. We can't randomly release
1555          * mmap_offsets as userspace expects them to be persistent for the
1556          * lifetime of the objects. The closest we can is to release the
1557          * offsets on purgeable objects by truncating it and marking it purged,
1558          * which prevents userspace from ever using that object again.
1559          */
1560         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1561         ret = drm_gem_create_mmap_offset(&obj->base);
1562         if (ret != -ENOSPC)
1563                 goto out;
1564
1565         i915_gem_shrink_all(dev_priv);
1566         ret = drm_gem_create_mmap_offset(&obj->base);
1567 out:
1568         dev_priv->mm.shrinker_no_lock_stealing = false;
1569
1570         return ret;
1571 }
1572
1573 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1574 {
1575         drm_gem_free_mmap_offset(&obj->base);
1576 }
1577
1578 int
1579 i915_gem_mmap_gtt(struct drm_file *file,
1580                   struct drm_device *dev,
1581                   uint32_t handle,
1582                   uint64_t *offset)
1583 {
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         struct drm_i915_gem_object *obj;
1586         int ret;
1587
1588         ret = i915_mutex_lock_interruptible(dev);
1589         if (ret)
1590                 return ret;
1591
1592         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1593         if (&obj->base == NULL) {
1594                 ret = -ENOENT;
1595                 goto unlock;
1596         }
1597
1598         if (obj->base.size > dev_priv->gtt.mappable_end) {
1599                 ret = -E2BIG;
1600                 goto out;
1601         }
1602
1603         if (obj->madv != I915_MADV_WILLNEED) {
1604                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1605                 ret = -EINVAL;
1606                 goto out;
1607         }
1608
1609         ret = i915_gem_object_create_mmap_offset(obj);
1610         if (ret)
1611                 goto out;
1612
1613         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1614
1615 out:
1616         drm_gem_object_unreference(&obj->base);
1617 unlock:
1618         mutex_unlock(&dev->struct_mutex);
1619         return ret;
1620 }
1621
1622 /**
1623  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1624  * @dev: DRM device
1625  * @data: GTT mapping ioctl data
1626  * @file: GEM object info
1627  *
1628  * Simply returns the fake offset to userspace so it can mmap it.
1629  * The mmap call will end up in drm_gem_mmap(), which will set things
1630  * up so we can get faults in the handler above.
1631  *
1632  * The fault handler will take care of binding the object into the GTT
1633  * (since it may have been evicted to make room for something), allocating
1634  * a fence register, and mapping the appropriate aperture address into
1635  * userspace.
1636  */
1637 int
1638 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1639                         struct drm_file *file)
1640 {
1641         struct drm_i915_gem_mmap_gtt *args = data;
1642
1643         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1644 }
1645
1646 /* Immediately discard the backing storage */
1647 static void
1648 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1649 {
1650         struct inode *inode;
1651
1652         i915_gem_object_free_mmap_offset(obj);
1653
1654         if (obj->base.filp == NULL)
1655                 return;
1656
1657         /* Our goal here is to return as much of the memory as
1658          * is possible back to the system as we are called from OOM.
1659          * To do this we must instruct the shmfs to drop all of its
1660          * backing pages, *now*.
1661          */
1662         inode = file_inode(obj->base.filp);
1663         shmem_truncate_range(inode, 0, (loff_t)-1);
1664
1665         obj->madv = __I915_MADV_PURGED;
1666 }
1667
1668 static inline int
1669 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1670 {
1671         return obj->madv == I915_MADV_DONTNEED;
1672 }
1673
1674 static void
1675 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1676 {
1677         struct sg_page_iter sg_iter;
1678         int ret;
1679
1680         BUG_ON(obj->madv == __I915_MADV_PURGED);
1681
1682         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1683         if (ret) {
1684                 /* In the event of a disaster, abandon all caches and
1685                  * hope for the best.
1686                  */
1687                 WARN_ON(ret != -EIO);
1688                 i915_gem_clflush_object(obj, true);
1689                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1690         }
1691
1692         if (i915_gem_object_needs_bit17_swizzle(obj))
1693                 i915_gem_object_save_bit_17_swizzle(obj);
1694
1695         if (obj->madv == I915_MADV_DONTNEED)
1696                 obj->dirty = 0;
1697
1698         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1699                 struct page *page = sg_page_iter_page(&sg_iter);
1700
1701                 if (obj->dirty)
1702                         set_page_dirty(page);
1703
1704                 if (obj->madv == I915_MADV_WILLNEED)
1705                         mark_page_accessed(page);
1706
1707                 page_cache_release(page);
1708         }
1709         obj->dirty = 0;
1710
1711         sg_free_table(obj->pages);
1712         kfree(obj->pages);
1713 }
1714
1715 int
1716 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1717 {
1718         const struct drm_i915_gem_object_ops *ops = obj->ops;
1719
1720         if (obj->pages == NULL)
1721                 return 0;
1722
1723         if (obj->pages_pin_count)
1724                 return -EBUSY;
1725
1726         BUG_ON(i915_gem_obj_bound_any(obj));
1727
1728         /* ->put_pages might need to allocate memory for the bit17 swizzle
1729          * array, hence protect them from being reaped by removing them from gtt
1730          * lists early. */
1731         list_del(&obj->global_list);
1732
1733         ops->put_pages(obj);
1734         obj->pages = NULL;
1735
1736         if (i915_gem_object_is_purgeable(obj))
1737                 i915_gem_object_truncate(obj);
1738
1739         return 0;
1740 }
1741
1742 static unsigned long
1743 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1744                   bool purgeable_only)
1745 {
1746         struct list_head still_bound_list;
1747         struct drm_i915_gem_object *obj, *next;
1748         unsigned long count = 0;
1749
1750         list_for_each_entry_safe(obj, next,
1751                                  &dev_priv->mm.unbound_list,
1752                                  global_list) {
1753                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1754                     i915_gem_object_put_pages(obj) == 0) {
1755                         count += obj->base.size >> PAGE_SHIFT;
1756                         if (count >= target)
1757                                 return count;
1758                 }
1759         }
1760
1761         /*
1762          * As we may completely rewrite the bound list whilst unbinding
1763          * (due to retiring requests) we have to strictly process only
1764          * one element of the list at the time, and recheck the list
1765          * on every iteration.
1766          */
1767         INIT_LIST_HEAD(&still_bound_list);
1768         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1769                 struct i915_vma *vma, *v;
1770
1771                 obj = list_first_entry(&dev_priv->mm.bound_list,
1772                                        typeof(*obj), global_list);
1773                 list_move_tail(&obj->global_list, &still_bound_list);
1774
1775                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1776                         continue;
1777
1778                 /*
1779                  * Hold a reference whilst we unbind this object, as we may
1780                  * end up waiting for and retiring requests. This might
1781                  * release the final reference (held by the active list)
1782                  * and result in the object being freed from under us.
1783                  * in this object being freed.
1784                  *
1785                  * Note 1: Shrinking the bound list is special since only active
1786                  * (and hence bound objects) can contain such limbo objects, so
1787                  * we don't need special tricks for shrinking the unbound list.
1788                  * The only other place where we have to be careful with active
1789                  * objects suddenly disappearing due to retiring requests is the
1790                  * eviction code.
1791                  *
1792                  * Note 2: Even though the bound list doesn't hold a reference
1793                  * to the object we can safely grab one here: The final object
1794                  * unreferencing and the bound_list are both protected by the
1795                  * dev->struct_mutex and so we won't ever be able to observe an
1796                  * object on the bound_list with a reference count equals 0.
1797                  */
1798                 drm_gem_object_reference(&obj->base);
1799
1800                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1801                         if (i915_vma_unbind(vma))
1802                                 break;
1803
1804                 if (i915_gem_object_put_pages(obj) == 0)
1805                         count += obj->base.size >> PAGE_SHIFT;
1806
1807                 drm_gem_object_unreference(&obj->base);
1808         }
1809         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1810
1811         return count;
1812 }
1813
1814 static unsigned long
1815 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1816 {
1817         return __i915_gem_shrink(dev_priv, target, true);
1818 }
1819
1820 static unsigned long
1821 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1822 {
1823         struct drm_i915_gem_object *obj, *next;
1824         long freed = 0;
1825
1826         i915_gem_evict_everything(dev_priv->dev);
1827
1828         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1829                                  global_list) {
1830                 if (i915_gem_object_put_pages(obj) == 0)
1831                         freed += obj->base.size >> PAGE_SHIFT;
1832         }
1833         return freed;
1834 }
1835
1836 static int
1837 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1838 {
1839         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840         int page_count, i;
1841         struct address_space *mapping;
1842         struct sg_table *st;
1843         struct scatterlist *sg;
1844         struct sg_page_iter sg_iter;
1845         struct page *page;
1846         unsigned long last_pfn = 0;     /* suppress gcc warning */
1847         gfp_t gfp;
1848
1849         /* Assert that the object is not currently in any GPU domain. As it
1850          * wasn't in the GTT, there shouldn't be any way it could have been in
1851          * a GPU cache
1852          */
1853         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1854         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1855
1856         st = kmalloc(sizeof(*st), GFP_KERNEL);
1857         if (st == NULL)
1858                 return -ENOMEM;
1859
1860         page_count = obj->base.size / PAGE_SIZE;
1861         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1862                 kfree(st);
1863                 return -ENOMEM;
1864         }
1865
1866         /* Get the list of pages out of our struct file.  They'll be pinned
1867          * at this point until we release them.
1868          *
1869          * Fail silently without starting the shrinker
1870          */
1871         mapping = file_inode(obj->base.filp)->i_mapping;
1872         gfp = mapping_gfp_mask(mapping);
1873         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1874         gfp &= ~(__GFP_IO | __GFP_WAIT);
1875         sg = st->sgl;
1876         st->nents = 0;
1877         for (i = 0; i < page_count; i++) {
1878                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1879                 if (IS_ERR(page)) {
1880                         i915_gem_purge(dev_priv, page_count);
1881                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882                 }
1883                 if (IS_ERR(page)) {
1884                         /* We've tried hard to allocate the memory by reaping
1885                          * our own buffer, now let the real VM do its job and
1886                          * go down in flames if truly OOM.
1887                          */
1888                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1889                         gfp |= __GFP_IO | __GFP_WAIT;
1890
1891                         i915_gem_shrink_all(dev_priv);
1892                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1893                         if (IS_ERR(page))
1894                                 goto err_pages;
1895
1896                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1897                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1898                 }
1899 #ifdef CONFIG_SWIOTLB
1900                 if (swiotlb_nr_tbl()) {
1901                         st->nents++;
1902                         sg_set_page(sg, page, PAGE_SIZE, 0);
1903                         sg = sg_next(sg);
1904                         continue;
1905                 }
1906 #endif
1907                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1908                         if (i)
1909                                 sg = sg_next(sg);
1910                         st->nents++;
1911                         sg_set_page(sg, page, PAGE_SIZE, 0);
1912                 } else {
1913                         sg->length += PAGE_SIZE;
1914                 }
1915                 last_pfn = page_to_pfn(page);
1916
1917                 /* Check that the i965g/gm workaround works. */
1918                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1919         }
1920 #ifdef CONFIG_SWIOTLB
1921         if (!swiotlb_nr_tbl())
1922 #endif
1923                 sg_mark_end(sg);
1924         obj->pages = st;
1925
1926         if (i915_gem_object_needs_bit17_swizzle(obj))
1927                 i915_gem_object_do_bit_17_swizzle(obj);
1928
1929         return 0;
1930
1931 err_pages:
1932         sg_mark_end(sg);
1933         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1934                 page_cache_release(sg_page_iter_page(&sg_iter));
1935         sg_free_table(st);
1936         kfree(st);
1937         return PTR_ERR(page);
1938 }
1939
1940 /* Ensure that the associated pages are gathered from the backing storage
1941  * and pinned into our object. i915_gem_object_get_pages() may be called
1942  * multiple times before they are released by a single call to
1943  * i915_gem_object_put_pages() - once the pages are no longer referenced
1944  * either as a result of memory pressure (reaping pages under the shrinker)
1945  * or as the object is itself released.
1946  */
1947 int
1948 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1949 {
1950         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1951         const struct drm_i915_gem_object_ops *ops = obj->ops;
1952         int ret;
1953
1954         if (obj->pages)
1955                 return 0;
1956
1957         if (obj->madv != I915_MADV_WILLNEED) {
1958                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1959                 return -EINVAL;
1960         }
1961
1962         BUG_ON(obj->pages_pin_count);
1963
1964         ret = ops->get_pages(obj);
1965         if (ret)
1966                 return ret;
1967
1968         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1969         return 0;
1970 }
1971
1972 static void
1973 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1974                                struct intel_ring_buffer *ring)
1975 {
1976         struct drm_device *dev = obj->base.dev;
1977         struct drm_i915_private *dev_priv = dev->dev_private;
1978         u32 seqno = intel_ring_get_seqno(ring);
1979
1980         BUG_ON(ring == NULL);
1981         if (obj->ring != ring && obj->last_write_seqno) {
1982                 /* Keep the seqno relative to the current ring */
1983                 obj->last_write_seqno = seqno;
1984         }
1985         obj->ring = ring;
1986
1987         /* Add a reference if we're newly entering the active list. */
1988         if (!obj->active) {
1989                 drm_gem_object_reference(&obj->base);
1990                 obj->active = 1;
1991         }
1992
1993         list_move_tail(&obj->ring_list, &ring->active_list);
1994
1995         obj->last_read_seqno = seqno;
1996
1997         if (obj->fenced_gpu_access) {
1998                 obj->last_fenced_seqno = seqno;
1999
2000                 /* Bump MRU to take account of the delayed flush */
2001                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2002                         struct drm_i915_fence_reg *reg;
2003
2004                         reg = &dev_priv->fence_regs[obj->fence_reg];
2005                         list_move_tail(&reg->lru_list,
2006                                        &dev_priv->mm.fence_list);
2007                 }
2008         }
2009 }
2010
2011 void i915_vma_move_to_active(struct i915_vma *vma,
2012                              struct intel_ring_buffer *ring)
2013 {
2014         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2015         return i915_gem_object_move_to_active(vma->obj, ring);
2016 }
2017
2018 static void
2019 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2020 {
2021         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2023         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2024
2025         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2026         BUG_ON(!obj->active);
2027
2028         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2029
2030         list_del_init(&obj->ring_list);
2031         obj->ring = NULL;
2032
2033         obj->last_read_seqno = 0;
2034         obj->last_write_seqno = 0;
2035         obj->base.write_domain = 0;
2036
2037         obj->last_fenced_seqno = 0;
2038         obj->fenced_gpu_access = false;
2039
2040         obj->active = 0;
2041         drm_gem_object_unreference(&obj->base);
2042
2043         WARN_ON(i915_verify_lists(dev));
2044 }
2045
2046 static int
2047 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2048 {
2049         struct drm_i915_private *dev_priv = dev->dev_private;
2050         struct intel_ring_buffer *ring;
2051         int ret, i, j;
2052
2053         /* Carefully retire all requests without writing to the rings */
2054         for_each_ring(ring, dev_priv, i) {
2055                 ret = intel_ring_idle(ring);
2056                 if (ret)
2057                         return ret;
2058         }
2059         i915_gem_retire_requests(dev);
2060
2061         /* Finally reset hw state */
2062         for_each_ring(ring, dev_priv, i) {
2063                 intel_ring_init_seqno(ring, seqno);
2064
2065                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2066                         ring->sync_seqno[j] = 0;
2067         }
2068
2069         return 0;
2070 }
2071
2072 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2073 {
2074         struct drm_i915_private *dev_priv = dev->dev_private;
2075         int ret;
2076
2077         if (seqno == 0)
2078                 return -EINVAL;
2079
2080         /* HWS page needs to be set less than what we
2081          * will inject to ring
2082          */
2083         ret = i915_gem_init_seqno(dev, seqno - 1);
2084         if (ret)
2085                 return ret;
2086
2087         /* Carefully set the last_seqno value so that wrap
2088          * detection still works
2089          */
2090         dev_priv->next_seqno = seqno;
2091         dev_priv->last_seqno = seqno - 1;
2092         if (dev_priv->last_seqno == 0)
2093                 dev_priv->last_seqno--;
2094
2095         return 0;
2096 }
2097
2098 int
2099 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2100 {
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102
2103         /* reserve 0 for non-seqno */
2104         if (dev_priv->next_seqno == 0) {
2105                 int ret = i915_gem_init_seqno(dev, 0);
2106                 if (ret)
2107                         return ret;
2108
2109                 dev_priv->next_seqno = 1;
2110         }
2111
2112         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2113         return 0;
2114 }
2115
2116 int __i915_add_request(struct intel_ring_buffer *ring,
2117                        struct drm_file *file,
2118                        struct drm_i915_gem_object *obj,
2119                        u32 *out_seqno)
2120 {
2121         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2122         struct drm_i915_gem_request *request;
2123         u32 request_ring_position, request_start;
2124         int was_empty;
2125         int ret;
2126
2127         request_start = intel_ring_get_tail(ring);
2128         /*
2129          * Emit any outstanding flushes - execbuf can fail to emit the flush
2130          * after having emitted the batchbuffer command. Hence we need to fix
2131          * things up similar to emitting the lazy request. The difference here
2132          * is that the flush _must_ happen before the next request, no matter
2133          * what.
2134          */
2135         ret = intel_ring_flush_all_caches(ring);
2136         if (ret)
2137                 return ret;
2138
2139         request = ring->preallocated_lazy_request;
2140         if (WARN_ON(request == NULL))
2141                 return -ENOMEM;
2142
2143         /* Record the position of the start of the request so that
2144          * should we detect the updated seqno part-way through the
2145          * GPU processing the request, we never over-estimate the
2146          * position of the head.
2147          */
2148         request_ring_position = intel_ring_get_tail(ring);
2149
2150         ret = ring->add_request(ring);
2151         if (ret)
2152                 return ret;
2153
2154         request->seqno = intel_ring_get_seqno(ring);
2155         request->ring = ring;
2156         request->head = request_start;
2157         request->tail = request_ring_position;
2158
2159         /* Whilst this request exists, batch_obj will be on the
2160          * active_list, and so will hold the active reference. Only when this
2161          * request is retired will the the batch_obj be moved onto the
2162          * inactive_list and lose its active reference. Hence we do not need
2163          * to explicitly hold another reference here.
2164          */
2165         request->batch_obj = obj;
2166
2167         /* Hold a reference to the current context so that we can inspect
2168          * it later in case a hangcheck error event fires.
2169          */
2170         request->ctx = ring->last_context;
2171         if (request->ctx)
2172                 i915_gem_context_reference(request->ctx);
2173
2174         request->emitted_jiffies = jiffies;
2175         was_empty = list_empty(&ring->request_list);
2176         list_add_tail(&request->list, &ring->request_list);
2177         request->file_priv = NULL;
2178
2179         if (file) {
2180                 struct drm_i915_file_private *file_priv = file->driver_priv;
2181
2182                 spin_lock(&file_priv->mm.lock);
2183                 request->file_priv = file_priv;
2184                 list_add_tail(&request->client_list,
2185                               &file_priv->mm.request_list);
2186                 spin_unlock(&file_priv->mm.lock);
2187         }
2188
2189         trace_i915_gem_request_add(ring, request->seqno);
2190         ring->outstanding_lazy_seqno = 0;
2191         ring->preallocated_lazy_request = NULL;
2192
2193         if (!dev_priv->ums.mm_suspended) {
2194                 i915_queue_hangcheck(ring->dev);
2195
2196                 if (was_empty) {
2197                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2198                         queue_delayed_work(dev_priv->wq,
2199                                            &dev_priv->mm.retire_work,
2200                                            round_jiffies_up_relative(HZ));
2201                         intel_mark_busy(dev_priv->dev);
2202                 }
2203         }
2204
2205         if (out_seqno)
2206                 *out_seqno = request->seqno;
2207         return 0;
2208 }
2209
2210 static inline void
2211 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2212 {
2213         struct drm_i915_file_private *file_priv = request->file_priv;
2214
2215         if (!file_priv)
2216                 return;
2217
2218         spin_lock(&file_priv->mm.lock);
2219         list_del(&request->client_list);
2220         request->file_priv = NULL;
2221         spin_unlock(&file_priv->mm.lock);
2222 }
2223
2224 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2225                                     struct i915_address_space *vm)
2226 {
2227         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2228             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2229                 return true;
2230
2231         return false;
2232 }
2233
2234 static bool i915_head_inside_request(const u32 acthd_unmasked,
2235                                      const u32 request_start,
2236                                      const u32 request_end)
2237 {
2238         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2239
2240         if (request_start < request_end) {
2241                 if (acthd >= request_start && acthd < request_end)
2242                         return true;
2243         } else if (request_start > request_end) {
2244                 if (acthd >= request_start || acthd < request_end)
2245                         return true;
2246         }
2247
2248         return false;
2249 }
2250
2251 static struct i915_address_space *
2252 request_to_vm(struct drm_i915_gem_request *request)
2253 {
2254         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2255         struct i915_address_space *vm;
2256
2257         vm = &dev_priv->gtt.base;
2258
2259         return vm;
2260 }
2261
2262 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2263                                 const u32 acthd, bool *inside)
2264 {
2265         /* There is a possibility that unmasked head address
2266          * pointing inside the ring, matches the batch_obj address range.
2267          * However this is extremely unlikely.
2268          */
2269         if (request->batch_obj) {
2270                 if (i915_head_inside_object(acthd, request->batch_obj,
2271                                             request_to_vm(request))) {
2272                         *inside = true;
2273                         return true;
2274                 }
2275         }
2276
2277         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2278                 *inside = false;
2279                 return true;
2280         }
2281
2282         return false;
2283 }
2284
2285 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2286 {
2287         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2288
2289         if (hs->banned)
2290                 return true;
2291
2292         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2293                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2294                 return true;
2295         }
2296
2297         return false;
2298 }
2299
2300 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2301                                   struct drm_i915_gem_request *request,
2302                                   u32 acthd)
2303 {
2304         struct i915_ctx_hang_stats *hs = NULL;
2305         bool inside, guilty;
2306         unsigned long offset = 0;
2307
2308         /* Innocent until proven guilty */
2309         guilty = false;
2310
2311         if (request->batch_obj)
2312                 offset = i915_gem_obj_offset(request->batch_obj,
2313                                              request_to_vm(request));
2314
2315         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2316             i915_request_guilty(request, acthd, &inside)) {
2317                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2318                           ring->name,
2319                           inside ? "inside" : "flushing",
2320                           offset,
2321                           request->ctx ? request->ctx->id : 0,
2322                           acthd);
2323
2324                 guilty = true;
2325         }
2326
2327         /* If contexts are disabled or this is the default context, use
2328          * file_priv->reset_state
2329          */
2330         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2331                 hs = &request->ctx->hang_stats;
2332         else if (request->file_priv)
2333                 hs = &request->file_priv->hang_stats;
2334
2335         if (hs) {
2336                 if (guilty) {
2337                         hs->banned = i915_context_is_banned(hs);
2338                         hs->batch_active++;
2339                         hs->guilty_ts = get_seconds();
2340                 } else {
2341                         hs->batch_pending++;
2342                 }
2343         }
2344 }
2345
2346 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2347 {
2348         list_del(&request->list);
2349         i915_gem_request_remove_from_client(request);
2350
2351         if (request->ctx)
2352                 i915_gem_context_unreference(request->ctx);
2353
2354         kfree(request);
2355 }
2356
2357 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2358                                       struct intel_ring_buffer *ring)
2359 {
2360         u32 completed_seqno;
2361         u32 acthd;
2362
2363         acthd = intel_ring_get_active_head(ring);
2364         completed_seqno = ring->get_seqno(ring, false);
2365
2366         while (!list_empty(&ring->request_list)) {
2367                 struct drm_i915_gem_request *request;
2368
2369                 request = list_first_entry(&ring->request_list,
2370                                            struct drm_i915_gem_request,
2371                                            list);
2372
2373                 if (request->seqno > completed_seqno)
2374                         i915_set_reset_status(ring, request, acthd);
2375
2376                 i915_gem_free_request(request);
2377         }
2378
2379         while (!list_empty(&ring->active_list)) {
2380                 struct drm_i915_gem_object *obj;
2381
2382                 obj = list_first_entry(&ring->active_list,
2383                                        struct drm_i915_gem_object,
2384                                        ring_list);
2385
2386                 i915_gem_object_move_to_inactive(obj);
2387         }
2388 }
2389
2390 void i915_gem_restore_fences(struct drm_device *dev)
2391 {
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         int i;
2394
2395         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2396                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2397
2398                 /*
2399                  * Commit delayed tiling changes if we have an object still
2400                  * attached to the fence, otherwise just clear the fence.
2401                  */
2402                 if (reg->obj) {
2403                         i915_gem_object_update_fence(reg->obj, reg,
2404                                                      reg->obj->tiling_mode);
2405                 } else {
2406                         i915_gem_write_fence(dev, i, NULL);
2407                 }
2408         }
2409 }
2410
2411 void i915_gem_reset(struct drm_device *dev)
2412 {
2413         struct drm_i915_private *dev_priv = dev->dev_private;
2414         struct intel_ring_buffer *ring;
2415         int i;
2416
2417         for_each_ring(ring, dev_priv, i)
2418                 i915_gem_reset_ring_lists(dev_priv, ring);
2419
2420         i915_gem_cleanup_ringbuffer(dev);
2421
2422         i915_gem_restore_fences(dev);
2423 }
2424
2425 /**
2426  * This function clears the request list as sequence numbers are passed.
2427  */
2428 void
2429 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2430 {
2431         uint32_t seqno;
2432
2433         if (list_empty(&ring->request_list))
2434                 return;
2435
2436         WARN_ON(i915_verify_lists(ring->dev));
2437
2438         seqno = ring->get_seqno(ring, true);
2439
2440         while (!list_empty(&ring->request_list)) {
2441                 struct drm_i915_gem_request *request;
2442
2443                 request = list_first_entry(&ring->request_list,
2444                                            struct drm_i915_gem_request,
2445                                            list);
2446
2447                 if (!i915_seqno_passed(seqno, request->seqno))
2448                         break;
2449
2450                 trace_i915_gem_request_retire(ring, request->seqno);
2451                 /* We know the GPU must have read the request to have
2452                  * sent us the seqno + interrupt, so use the position
2453                  * of tail of the request to update the last known position
2454                  * of the GPU head.
2455                  */
2456                 ring->last_retired_head = request->tail;
2457
2458                 i915_gem_free_request(request);
2459         }
2460
2461         /* Move any buffers on the active list that are no longer referenced
2462          * by the ringbuffer to the flushing/inactive lists as appropriate.
2463          */
2464         while (!list_empty(&ring->active_list)) {
2465                 struct drm_i915_gem_object *obj;
2466
2467                 obj = list_first_entry(&ring->active_list,
2468                                       struct drm_i915_gem_object,
2469                                       ring_list);
2470
2471                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2472                         break;
2473
2474                 i915_gem_object_move_to_inactive(obj);
2475         }
2476
2477         if (unlikely(ring->trace_irq_seqno &&
2478                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2479                 ring->irq_put(ring);
2480                 ring->trace_irq_seqno = 0;
2481         }
2482
2483         WARN_ON(i915_verify_lists(ring->dev));
2484 }
2485
2486 bool
2487 i915_gem_retire_requests(struct drm_device *dev)
2488 {
2489         drm_i915_private_t *dev_priv = dev->dev_private;
2490         struct intel_ring_buffer *ring;
2491         bool idle = true;
2492         int i;
2493
2494         for_each_ring(ring, dev_priv, i) {
2495                 i915_gem_retire_requests_ring(ring);
2496                 idle &= list_empty(&ring->request_list);
2497         }
2498
2499         if (idle)
2500                 mod_delayed_work(dev_priv->wq,
2501                                    &dev_priv->mm.idle_work,
2502                                    msecs_to_jiffies(100));
2503
2504         return idle;
2505 }
2506
2507 static void
2508 i915_gem_retire_work_handler(struct work_struct *work)
2509 {
2510         struct drm_i915_private *dev_priv =
2511                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2512         struct drm_device *dev = dev_priv->dev;
2513         bool idle;
2514
2515         /* Come back later if the device is busy... */
2516         idle = false;
2517         if (mutex_trylock(&dev->struct_mutex)) {
2518                 idle = i915_gem_retire_requests(dev);
2519                 mutex_unlock(&dev->struct_mutex);
2520         }
2521         if (!idle)
2522                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2523                                    round_jiffies_up_relative(HZ));
2524 }
2525
2526 static void
2527 i915_gem_idle_work_handler(struct work_struct *work)
2528 {
2529         struct drm_i915_private *dev_priv =
2530                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2531
2532         intel_mark_idle(dev_priv->dev);
2533 }
2534
2535 /**
2536  * Ensures that an object will eventually get non-busy by flushing any required
2537  * write domains, emitting any outstanding lazy request and retiring and
2538  * completed requests.
2539  */
2540 static int
2541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2542 {
2543         int ret;
2544
2545         if (obj->active) {
2546                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2547                 if (ret)
2548                         return ret;
2549
2550                 i915_gem_retire_requests_ring(obj->ring);
2551         }
2552
2553         return 0;
2554 }
2555
2556 /**
2557  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2558  * @DRM_IOCTL_ARGS: standard ioctl arguments
2559  *
2560  * Returns 0 if successful, else an error is returned with the remaining time in
2561  * the timeout parameter.
2562  *  -ETIME: object is still busy after timeout
2563  *  -ERESTARTSYS: signal interrupted the wait
2564  *  -ENONENT: object doesn't exist
2565  * Also possible, but rare:
2566  *  -EAGAIN: GPU wedged
2567  *  -ENOMEM: damn
2568  *  -ENODEV: Internal IRQ fail
2569  *  -E?: The add request failed
2570  *
2571  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2572  * non-zero timeout parameter the wait ioctl will wait for the given number of
2573  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2574  * without holding struct_mutex the object may become re-busied before this
2575  * function completes. A similar but shorter * race condition exists in the busy
2576  * ioctl
2577  */
2578 int
2579 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2580 {
2581         drm_i915_private_t *dev_priv = dev->dev_private;
2582         struct drm_i915_gem_wait *args = data;
2583         struct drm_i915_gem_object *obj;
2584         struct intel_ring_buffer *ring = NULL;
2585         struct timespec timeout_stack, *timeout = NULL;
2586         unsigned reset_counter;
2587         u32 seqno = 0;
2588         int ret = 0;
2589
2590         if (args->timeout_ns >= 0) {
2591                 timeout_stack = ns_to_timespec(args->timeout_ns);
2592                 timeout = &timeout_stack;
2593         }
2594
2595         ret = i915_mutex_lock_interruptible(dev);
2596         if (ret)
2597                 return ret;
2598
2599         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2600         if (&obj->base == NULL) {
2601                 mutex_unlock(&dev->struct_mutex);
2602                 return -ENOENT;
2603         }
2604
2605         /* Need to make sure the object gets inactive eventually. */
2606         ret = i915_gem_object_flush_active(obj);
2607         if (ret)
2608                 goto out;
2609
2610         if (obj->active) {
2611                 seqno = obj->last_read_seqno;
2612                 ring = obj->ring;
2613         }
2614
2615         if (seqno == 0)
2616                  goto out;
2617
2618         /* Do this after OLR check to make sure we make forward progress polling
2619          * on this IOCTL with a 0 timeout (like busy ioctl)
2620          */
2621         if (!args->timeout_ns) {
2622                 ret = -ETIME;
2623                 goto out;
2624         }
2625
2626         drm_gem_object_unreference(&obj->base);
2627         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2628         mutex_unlock(&dev->struct_mutex);
2629
2630         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2631         if (timeout)
2632                 args->timeout_ns = timespec_to_ns(timeout);
2633         return ret;
2634
2635 out:
2636         drm_gem_object_unreference(&obj->base);
2637         mutex_unlock(&dev->struct_mutex);
2638         return ret;
2639 }
2640
2641 /**
2642  * i915_gem_object_sync - sync an object to a ring.
2643  *
2644  * @obj: object which may be in use on another ring.
2645  * @to: ring we wish to use the object on. May be NULL.
2646  *
2647  * This code is meant to abstract object synchronization with the GPU.
2648  * Calling with NULL implies synchronizing the object with the CPU
2649  * rather than a particular GPU ring.
2650  *
2651  * Returns 0 if successful, else propagates up the lower layer error.
2652  */
2653 int
2654 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2655                      struct intel_ring_buffer *to)
2656 {
2657         struct intel_ring_buffer *from = obj->ring;
2658         u32 seqno;
2659         int ret, idx;
2660
2661         if (from == NULL || to == from)
2662                 return 0;
2663
2664         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2665                 return i915_gem_object_wait_rendering(obj, false);
2666
2667         idx = intel_ring_sync_index(from, to);
2668
2669         seqno = obj->last_read_seqno;
2670         if (seqno <= from->sync_seqno[idx])
2671                 return 0;
2672
2673         ret = i915_gem_check_olr(obj->ring, seqno);
2674         if (ret)
2675                 return ret;
2676
2677         trace_i915_gem_ring_sync_to(from, to, seqno);
2678         ret = to->sync_to(to, from, seqno);
2679         if (!ret)
2680                 /* We use last_read_seqno because sync_to()
2681                  * might have just caused seqno wrap under
2682                  * the radar.
2683                  */
2684                 from->sync_seqno[idx] = obj->last_read_seqno;
2685
2686         return ret;
2687 }
2688
2689 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2690 {
2691         u32 old_write_domain, old_read_domains;
2692
2693         /* Force a pagefault for domain tracking on next user access */
2694         i915_gem_release_mmap(obj);
2695
2696         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2697                 return;
2698
2699         /* Wait for any direct GTT access to complete */
2700         mb();
2701
2702         old_read_domains = obj->base.read_domains;
2703         old_write_domain = obj->base.write_domain;
2704
2705         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2706         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2707
2708         trace_i915_gem_object_change_domain(obj,
2709                                             old_read_domains,
2710                                             old_write_domain);
2711 }
2712
2713 int i915_vma_unbind(struct i915_vma *vma)
2714 {
2715         struct drm_i915_gem_object *obj = vma->obj;
2716         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2717         int ret;
2718
2719         /* For now we only ever use 1 vma per object */
2720         WARN_ON(!list_is_singular(&obj->vma_list));
2721
2722         if (list_empty(&vma->vma_link))
2723                 return 0;
2724
2725         if (!drm_mm_node_allocated(&vma->node)) {
2726                 i915_gem_vma_destroy(vma);
2727
2728                 return 0;
2729         }
2730
2731         if (obj->pin_count)
2732                 return -EBUSY;
2733
2734         BUG_ON(obj->pages == NULL);
2735
2736         ret = i915_gem_object_finish_gpu(obj);
2737         if (ret)
2738                 return ret;
2739         /* Continue on if we fail due to EIO, the GPU is hung so we
2740          * should be safe and we need to cleanup or else we might
2741          * cause memory corruption through use-after-free.
2742          */
2743
2744         i915_gem_object_finish_gtt(obj);
2745
2746         /* release the fence reg _after_ flushing */
2747         ret = i915_gem_object_put_fence(obj);
2748         if (ret)
2749                 return ret;
2750
2751         trace_i915_vma_unbind(vma);
2752
2753         if (obj->has_global_gtt_mapping)
2754                 i915_gem_gtt_unbind_object(obj);
2755         if (obj->has_aliasing_ppgtt_mapping) {
2756                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2757                 obj->has_aliasing_ppgtt_mapping = 0;
2758         }
2759         i915_gem_gtt_finish_object(obj);
2760
2761         list_del(&vma->mm_list);
2762         /* Avoid an unnecessary call to unbind on rebind. */
2763         if (i915_is_ggtt(vma->vm))
2764                 obj->map_and_fenceable = true;
2765
2766         drm_mm_remove_node(&vma->node);
2767         i915_gem_vma_destroy(vma);
2768
2769         /* Since the unbound list is global, only move to that list if
2770          * no more VMAs exist. */
2771         if (list_empty(&obj->vma_list))
2772                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2773
2774         /* And finally now the object is completely decoupled from this vma,
2775          * we can drop its hold on the backing storage and allow it to be
2776          * reaped by the shrinker.
2777          */
2778         i915_gem_object_unpin_pages(obj);
2779
2780         return 0;
2781 }
2782
2783 /**
2784  * Unbinds an object from the global GTT aperture.
2785  */
2786 int
2787 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2788 {
2789         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2790         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2791
2792         if (!i915_gem_obj_ggtt_bound(obj))
2793                 return 0;
2794
2795         if (obj->pin_count)
2796                 return -EBUSY;
2797
2798         BUG_ON(obj->pages == NULL);
2799
2800         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2801 }
2802
2803 int i915_gpu_idle(struct drm_device *dev)
2804 {
2805         drm_i915_private_t *dev_priv = dev->dev_private;
2806         struct intel_ring_buffer *ring;
2807         int ret, i;
2808
2809         /* Flush everything onto the inactive list. */
2810         for_each_ring(ring, dev_priv, i) {
2811                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2812                 if (ret)
2813                         return ret;
2814
2815                 ret = intel_ring_idle(ring);
2816                 if (ret)
2817                         return ret;
2818         }
2819
2820         return 0;
2821 }
2822
2823 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2824                                  struct drm_i915_gem_object *obj)
2825 {
2826         drm_i915_private_t *dev_priv = dev->dev_private;
2827         int fence_reg;
2828         int fence_pitch_shift;
2829
2830         if (INTEL_INFO(dev)->gen >= 6) {
2831                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2832                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2833         } else {
2834                 fence_reg = FENCE_REG_965_0;
2835                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2836         }
2837
2838         fence_reg += reg * 8;
2839
2840         /* To w/a incoherency with non-atomic 64-bit register updates,
2841          * we split the 64-bit update into two 32-bit writes. In order
2842          * for a partial fence not to be evaluated between writes, we
2843          * precede the update with write to turn off the fence register,
2844          * and only enable the fence as the last step.
2845          *
2846          * For extra levels of paranoia, we make sure each step lands
2847          * before applying the next step.
2848          */
2849         I915_WRITE(fence_reg, 0);
2850         POSTING_READ(fence_reg);
2851
2852         if (obj) {
2853                 u32 size = i915_gem_obj_ggtt_size(obj);
2854                 uint64_t val;
2855
2856                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2857                                  0xfffff000) << 32;
2858                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2859                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2860                 if (obj->tiling_mode == I915_TILING_Y)
2861                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2862                 val |= I965_FENCE_REG_VALID;
2863
2864                 I915_WRITE(fence_reg + 4, val >> 32);
2865                 POSTING_READ(fence_reg + 4);
2866
2867                 I915_WRITE(fence_reg + 0, val);
2868                 POSTING_READ(fence_reg);
2869         } else {
2870                 I915_WRITE(fence_reg + 4, 0);
2871                 POSTING_READ(fence_reg + 4);
2872         }
2873 }
2874
2875 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2876                                  struct drm_i915_gem_object *obj)
2877 {
2878         drm_i915_private_t *dev_priv = dev->dev_private;
2879         u32 val;
2880
2881         if (obj) {
2882                 u32 size = i915_gem_obj_ggtt_size(obj);
2883                 int pitch_val;
2884                 int tile_width;
2885
2886                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2887                      (size & -size) != size ||
2888                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2889                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2890                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2891
2892                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2893                         tile_width = 128;
2894                 else
2895                         tile_width = 512;
2896
2897                 /* Note: pitch better be a power of two tile widths */
2898                 pitch_val = obj->stride / tile_width;
2899                 pitch_val = ffs(pitch_val) - 1;
2900
2901                 val = i915_gem_obj_ggtt_offset(obj);
2902                 if (obj->tiling_mode == I915_TILING_Y)
2903                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2904                 val |= I915_FENCE_SIZE_BITS(size);
2905                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2906                 val |= I830_FENCE_REG_VALID;
2907         } else
2908                 val = 0;
2909
2910         if (reg < 8)
2911                 reg = FENCE_REG_830_0 + reg * 4;
2912         else
2913                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2914
2915         I915_WRITE(reg, val);
2916         POSTING_READ(reg);
2917 }
2918
2919 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2920                                 struct drm_i915_gem_object *obj)
2921 {
2922         drm_i915_private_t *dev_priv = dev->dev_private;
2923         uint32_t val;
2924
2925         if (obj) {
2926                 u32 size = i915_gem_obj_ggtt_size(obj);
2927                 uint32_t pitch_val;
2928
2929                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2930                      (size & -size) != size ||
2931                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2932                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2933                      i915_gem_obj_ggtt_offset(obj), size);
2934
2935                 pitch_val = obj->stride / 128;
2936                 pitch_val = ffs(pitch_val) - 1;
2937
2938                 val = i915_gem_obj_ggtt_offset(obj);
2939                 if (obj->tiling_mode == I915_TILING_Y)
2940                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941                 val |= I830_FENCE_SIZE_BITS(size);
2942                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943                 val |= I830_FENCE_REG_VALID;
2944         } else
2945                 val = 0;
2946
2947         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2948         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2949 }
2950
2951 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2952 {
2953         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2954 }
2955
2956 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2957                                  struct drm_i915_gem_object *obj)
2958 {
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960
2961         /* Ensure that all CPU reads are completed before installing a fence
2962          * and all writes before removing the fence.
2963          */
2964         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2965                 mb();
2966
2967         WARN(obj && (!obj->stride || !obj->tiling_mode),
2968              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2969              obj->stride, obj->tiling_mode);
2970
2971         switch (INTEL_INFO(dev)->gen) {
2972         case 8:
2973         case 7:
2974         case 6:
2975         case 5:
2976         case 4: i965_write_fence_reg(dev, reg, obj); break;
2977         case 3: i915_write_fence_reg(dev, reg, obj); break;
2978         case 2: i830_write_fence_reg(dev, reg, obj); break;
2979         default: BUG();
2980         }
2981
2982         /* And similarly be paranoid that no direct access to this region
2983          * is reordered to before the fence is installed.
2984          */
2985         if (i915_gem_object_needs_mb(obj))
2986                 mb();
2987 }
2988
2989 static inline int fence_number(struct drm_i915_private *dev_priv,
2990                                struct drm_i915_fence_reg *fence)
2991 {
2992         return fence - dev_priv->fence_regs;
2993 }
2994
2995 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2996                                          struct drm_i915_fence_reg *fence,
2997                                          bool enable)
2998 {
2999         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3000         int reg = fence_number(dev_priv, fence);
3001
3002         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3003
3004         if (enable) {
3005                 obj->fence_reg = reg;
3006                 fence->obj = obj;
3007                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3008         } else {
3009                 obj->fence_reg = I915_FENCE_REG_NONE;
3010                 fence->obj = NULL;
3011                 list_del_init(&fence->lru_list);
3012         }
3013         obj->fence_dirty = false;
3014 }
3015
3016 static int
3017 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3018 {
3019         if (obj->last_fenced_seqno) {
3020                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3021                 if (ret)
3022                         return ret;
3023
3024                 obj->last_fenced_seqno = 0;
3025         }
3026
3027         obj->fenced_gpu_access = false;
3028         return 0;
3029 }
3030
3031 int
3032 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3033 {
3034         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035         struct drm_i915_fence_reg *fence;
3036         int ret;
3037
3038         ret = i915_gem_object_wait_fence(obj);
3039         if (ret)
3040                 return ret;
3041
3042         if (obj->fence_reg == I915_FENCE_REG_NONE)
3043                 return 0;
3044
3045         fence = &dev_priv->fence_regs[obj->fence_reg];
3046
3047         i915_gem_object_fence_lost(obj);
3048         i915_gem_object_update_fence(obj, fence, false);
3049
3050         return 0;
3051 }
3052
3053 static struct drm_i915_fence_reg *
3054 i915_find_fence_reg(struct drm_device *dev)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         struct drm_i915_fence_reg *reg, *avail;
3058         int i;
3059
3060         /* First try to find a free reg */
3061         avail = NULL;
3062         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3063                 reg = &dev_priv->fence_regs[i];
3064                 if (!reg->obj)
3065                         return reg;
3066
3067                 if (!reg->pin_count)
3068                         avail = reg;
3069         }
3070
3071         if (avail == NULL)
3072                 return NULL;
3073
3074         /* None available, try to steal one or wait for a user to finish */
3075         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3076                 if (reg->pin_count)
3077                         continue;
3078
3079                 return reg;
3080         }
3081
3082         return NULL;
3083 }
3084
3085 /**
3086  * i915_gem_object_get_fence - set up fencing for an object
3087  * @obj: object to map through a fence reg
3088  *
3089  * When mapping objects through the GTT, userspace wants to be able to write
3090  * to them without having to worry about swizzling if the object is tiled.
3091  * This function walks the fence regs looking for a free one for @obj,
3092  * stealing one if it can't find any.
3093  *
3094  * It then sets up the reg based on the object's properties: address, pitch
3095  * and tiling format.
3096  *
3097  * For an untiled surface, this removes any existing fence.
3098  */
3099 int
3100 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3101 {
3102         struct drm_device *dev = obj->base.dev;
3103         struct drm_i915_private *dev_priv = dev->dev_private;
3104         bool enable = obj->tiling_mode != I915_TILING_NONE;
3105         struct drm_i915_fence_reg *reg;
3106         int ret;
3107
3108         /* Have we updated the tiling parameters upon the object and so
3109          * will need to serialise the write to the associated fence register?
3110          */
3111         if (obj->fence_dirty) {
3112                 ret = i915_gem_object_wait_fence(obj);
3113                 if (ret)
3114                         return ret;
3115         }
3116
3117         /* Just update our place in the LRU if our fence is getting reused. */
3118         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3119                 reg = &dev_priv->fence_regs[obj->fence_reg];
3120                 if (!obj->fence_dirty) {
3121                         list_move_tail(&reg->lru_list,
3122                                        &dev_priv->mm.fence_list);
3123                         return 0;
3124                 }
3125         } else if (enable) {
3126                 reg = i915_find_fence_reg(dev);
3127                 if (reg == NULL)
3128                         return -EDEADLK;
3129
3130                 if (reg->obj) {
3131                         struct drm_i915_gem_object *old = reg->obj;
3132
3133                         ret = i915_gem_object_wait_fence(old);
3134                         if (ret)
3135                                 return ret;
3136
3137                         i915_gem_object_fence_lost(old);
3138                 }
3139         } else
3140                 return 0;
3141
3142         i915_gem_object_update_fence(obj, reg, enable);
3143
3144         return 0;
3145 }
3146
3147 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3148                                      struct drm_mm_node *gtt_space,
3149                                      unsigned long cache_level)
3150 {
3151         struct drm_mm_node *other;
3152
3153         /* On non-LLC machines we have to be careful when putting differing
3154          * types of snoopable memory together to avoid the prefetcher
3155          * crossing memory domains and dying.
3156          */
3157         if (HAS_LLC(dev))
3158                 return true;
3159
3160         if (!drm_mm_node_allocated(gtt_space))
3161                 return true;
3162
3163         if (list_empty(&gtt_space->node_list))
3164                 return true;
3165
3166         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3167         if (other->allocated && !other->hole_follows && other->color != cache_level)
3168                 return false;
3169
3170         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3171         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3172                 return false;
3173
3174         return true;
3175 }
3176
3177 static void i915_gem_verify_gtt(struct drm_device *dev)
3178 {
3179 #if WATCH_GTT
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         struct drm_i915_gem_object *obj;
3182         int err = 0;
3183
3184         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3185                 if (obj->gtt_space == NULL) {
3186                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3187                         err++;
3188                         continue;
3189                 }
3190
3191                 if (obj->cache_level != obj->gtt_space->color) {
3192                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3193                                i915_gem_obj_ggtt_offset(obj),
3194                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3195                                obj->cache_level,
3196                                obj->gtt_space->color);
3197                         err++;
3198                         continue;
3199                 }
3200
3201                 if (!i915_gem_valid_gtt_space(dev,
3202                                               obj->gtt_space,
3203                                               obj->cache_level)) {
3204                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3205                                i915_gem_obj_ggtt_offset(obj),
3206                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3207                                obj->cache_level);
3208                         err++;
3209                         continue;
3210                 }
3211         }
3212
3213         WARN_ON(err);
3214 #endif
3215 }
3216
3217 /**
3218  * Finds free space in the GTT aperture and binds the object there.
3219  */
3220 static int
3221 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3222                            struct i915_address_space *vm,
3223                            unsigned alignment,
3224                            bool map_and_fenceable,
3225                            bool nonblocking)
3226 {
3227         struct drm_device *dev = obj->base.dev;
3228         drm_i915_private_t *dev_priv = dev->dev_private;
3229         u32 size, fence_size, fence_alignment, unfenced_alignment;
3230         size_t gtt_max =
3231                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3232         struct i915_vma *vma;
3233         int ret;
3234
3235         fence_size = i915_gem_get_gtt_size(dev,
3236                                            obj->base.size,
3237                                            obj->tiling_mode);
3238         fence_alignment = i915_gem_get_gtt_alignment(dev,
3239                                                      obj->base.size,
3240                                                      obj->tiling_mode, true);
3241         unfenced_alignment =
3242                 i915_gem_get_gtt_alignment(dev,
3243                                                     obj->base.size,
3244                                                     obj->tiling_mode, false);
3245
3246         if (alignment == 0)
3247                 alignment = map_and_fenceable ? fence_alignment :
3248                                                 unfenced_alignment;
3249         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3250                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3251                 return -EINVAL;
3252         }
3253
3254         size = map_and_fenceable ? fence_size : obj->base.size;
3255
3256         /* If the object is bigger than the entire aperture, reject it early
3257          * before evicting everything in a vain attempt to find space.
3258          */
3259         if (obj->base.size > gtt_max) {
3260                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3261                           obj->base.size,
3262                           map_and_fenceable ? "mappable" : "total",
3263                           gtt_max);
3264                 return -E2BIG;
3265         }
3266
3267         ret = i915_gem_object_get_pages(obj);
3268         if (ret)
3269                 return ret;
3270
3271         i915_gem_object_pin_pages(obj);
3272
3273         BUG_ON(!i915_is_ggtt(vm));
3274
3275         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3276         if (IS_ERR(vma)) {
3277                 ret = PTR_ERR(vma);
3278                 goto err_unpin;
3279         }
3280
3281         /* For now we only ever use 1 vma per object */
3282         WARN_ON(!list_is_singular(&obj->vma_list));
3283
3284 search_free:
3285         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3286                                                   size, alignment,
3287                                                   obj->cache_level, 0, gtt_max,
3288                                                   DRM_MM_SEARCH_DEFAULT);
3289         if (ret) {
3290                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3291                                                obj->cache_level,
3292                                                map_and_fenceable,
3293                                                nonblocking);
3294                 if (ret == 0)
3295                         goto search_free;
3296
3297                 goto err_free_vma;
3298         }
3299         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3300                                               obj->cache_level))) {
3301                 ret = -EINVAL;
3302                 goto err_remove_node;
3303         }
3304
3305         ret = i915_gem_gtt_prepare_object(obj);
3306         if (ret)
3307                 goto err_remove_node;
3308
3309         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3310         list_add_tail(&vma->mm_list, &vm->inactive_list);
3311
3312         if (i915_is_ggtt(vm)) {
3313                 bool mappable, fenceable;
3314
3315                 fenceable = (vma->node.size == fence_size &&
3316                              (vma->node.start & (fence_alignment - 1)) == 0);
3317
3318                 mappable = (vma->node.start + obj->base.size <=
3319                             dev_priv->gtt.mappable_end);
3320
3321                 obj->map_and_fenceable = mappable && fenceable;
3322         }
3323
3324         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3325
3326         trace_i915_vma_bind(vma, map_and_fenceable);
3327         i915_gem_verify_gtt(dev);
3328         return 0;
3329
3330 err_remove_node:
3331         drm_mm_remove_node(&vma->node);
3332 err_free_vma:
3333         i915_gem_vma_destroy(vma);
3334 err_unpin:
3335         i915_gem_object_unpin_pages(obj);
3336         return ret;
3337 }
3338
3339 bool
3340 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3341                         bool force)
3342 {
3343         /* If we don't have a page list set up, then we're not pinned
3344          * to GPU, and we can ignore the cache flush because it'll happen
3345          * again at bind time.
3346          */
3347         if (obj->pages == NULL)
3348                 return false;
3349
3350         /*
3351          * Stolen memory is always coherent with the GPU as it is explicitly
3352          * marked as wc by the system, or the system is cache-coherent.
3353          */
3354         if (obj->stolen)
3355                 return false;
3356
3357         /* If the GPU is snooping the contents of the CPU cache,
3358          * we do not need to manually clear the CPU cache lines.  However,
3359          * the caches are only snooped when the render cache is
3360          * flushed/invalidated.  As we always have to emit invalidations
3361          * and flushes when moving into and out of the RENDER domain, correct
3362          * snooping behaviour occurs naturally as the result of our domain
3363          * tracking.
3364          */
3365         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3366                 return false;
3367
3368         trace_i915_gem_object_clflush(obj);
3369         drm_clflush_sg(obj->pages);
3370
3371         return true;
3372 }
3373
3374 /** Flushes the GTT write domain for the object if it's dirty. */
3375 static void
3376 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3377 {
3378         uint32_t old_write_domain;
3379
3380         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3381                 return;
3382
3383         /* No actual flushing is required for the GTT write domain.  Writes
3384          * to it immediately go to main memory as far as we know, so there's
3385          * no chipset flush.  It also doesn't land in render cache.
3386          *
3387          * However, we do have to enforce the order so that all writes through
3388          * the GTT land before any writes to the device, such as updates to
3389          * the GATT itself.
3390          */
3391         wmb();
3392
3393         old_write_domain = obj->base.write_domain;
3394         obj->base.write_domain = 0;
3395
3396         trace_i915_gem_object_change_domain(obj,
3397                                             obj->base.read_domains,
3398                                             old_write_domain);
3399 }
3400
3401 /** Flushes the CPU write domain for the object if it's dirty. */
3402 static void
3403 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3404                                        bool force)
3405 {
3406         uint32_t old_write_domain;
3407
3408         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3409                 return;
3410
3411         if (i915_gem_clflush_object(obj, force))
3412                 i915_gem_chipset_flush(obj->base.dev);
3413
3414         old_write_domain = obj->base.write_domain;
3415         obj->base.write_domain = 0;
3416
3417         trace_i915_gem_object_change_domain(obj,
3418                                             obj->base.read_domains,
3419                                             old_write_domain);
3420 }
3421
3422 /**
3423  * Moves a single object to the GTT read, and possibly write domain.
3424  *
3425  * This function returns when the move is complete, including waiting on
3426  * flushes to occur.
3427  */
3428 int
3429 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3430 {
3431         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3432         uint32_t old_write_domain, old_read_domains;
3433         int ret;
3434
3435         /* Not valid to be called on unbound objects. */
3436         if (!i915_gem_obj_bound_any(obj))
3437                 return -EINVAL;
3438
3439         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3440                 return 0;
3441
3442         ret = i915_gem_object_wait_rendering(obj, !write);
3443         if (ret)
3444                 return ret;
3445
3446         i915_gem_object_flush_cpu_write_domain(obj, false);
3447
3448         /* Serialise direct access to this object with the barriers for
3449          * coherent writes from the GPU, by effectively invalidating the
3450          * GTT domain upon first access.
3451          */
3452         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3453                 mb();
3454
3455         old_write_domain = obj->base.write_domain;
3456         old_read_domains = obj->base.read_domains;
3457
3458         /* It should now be out of any other write domains, and we can update
3459          * the domain values for our changes.
3460          */
3461         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3462         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3463         if (write) {
3464                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3465                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3466                 obj->dirty = 1;
3467         }
3468
3469         trace_i915_gem_object_change_domain(obj,
3470                                             old_read_domains,
3471                                             old_write_domain);
3472
3473         /* And bump the LRU for this access */
3474         if (i915_gem_object_is_inactive(obj)) {
3475                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3476                 if (vma)
3477                         list_move_tail(&vma->mm_list,
3478                                        &dev_priv->gtt.base.inactive_list);
3479
3480         }
3481
3482         return 0;
3483 }
3484
3485 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3486                                     enum i915_cache_level cache_level)
3487 {
3488         struct drm_device *dev = obj->base.dev;
3489         drm_i915_private_t *dev_priv = dev->dev_private;
3490         struct i915_vma *vma;
3491         int ret;
3492
3493         if (obj->cache_level == cache_level)
3494                 return 0;
3495
3496         if (obj->pin_count) {
3497                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3498                 return -EBUSY;
3499         }
3500
3501         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3502                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3503                         ret = i915_vma_unbind(vma);
3504                         if (ret)
3505                                 return ret;
3506
3507                         break;
3508                 }
3509         }
3510
3511         if (i915_gem_obj_bound_any(obj)) {
3512                 ret = i915_gem_object_finish_gpu(obj);
3513                 if (ret)
3514                         return ret;
3515
3516                 i915_gem_object_finish_gtt(obj);
3517
3518                 /* Before SandyBridge, you could not use tiling or fence
3519                  * registers with snooped memory, so relinquish any fences
3520                  * currently pointing to our region in the aperture.
3521                  */
3522                 if (INTEL_INFO(dev)->gen < 6) {
3523                         ret = i915_gem_object_put_fence(obj);
3524                         if (ret)
3525                                 return ret;
3526                 }
3527
3528                 if (obj->has_global_gtt_mapping)
3529                         i915_gem_gtt_bind_object(obj, cache_level);
3530                 if (obj->has_aliasing_ppgtt_mapping)
3531                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3532                                                obj, cache_level);
3533         }
3534
3535         list_for_each_entry(vma, &obj->vma_list, vma_link)
3536                 vma->node.color = cache_level;
3537         obj->cache_level = cache_level;
3538
3539         if (cpu_write_needs_clflush(obj)) {
3540                 u32 old_read_domains, old_write_domain;
3541
3542                 /* If we're coming from LLC cached, then we haven't
3543                  * actually been tracking whether the data is in the
3544                  * CPU cache or not, since we only allow one bit set
3545                  * in obj->write_domain and have been skipping the clflushes.
3546                  * Just set it to the CPU cache for now.
3547                  */
3548                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3549
3550                 old_read_domains = obj->base.read_domains;
3551                 old_write_domain = obj->base.write_domain;
3552
3553                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3554                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3555
3556                 trace_i915_gem_object_change_domain(obj,
3557                                                     old_read_domains,
3558                                                     old_write_domain);
3559         }
3560
3561         i915_gem_verify_gtt(dev);
3562         return 0;
3563 }
3564
3565 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3566                                struct drm_file *file)
3567 {
3568         struct drm_i915_gem_caching *args = data;
3569         struct drm_i915_gem_object *obj;
3570         int ret;
3571
3572         ret = i915_mutex_lock_interruptible(dev);
3573         if (ret)
3574                 return ret;
3575
3576         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3577         if (&obj->base == NULL) {
3578                 ret = -ENOENT;
3579                 goto unlock;
3580         }
3581
3582         switch (obj->cache_level) {
3583         case I915_CACHE_LLC:
3584         case I915_CACHE_L3_LLC:
3585                 args->caching = I915_CACHING_CACHED;
3586                 break;
3587
3588         case I915_CACHE_WT:
3589                 args->caching = I915_CACHING_DISPLAY;
3590                 break;
3591
3592         default:
3593                 args->caching = I915_CACHING_NONE;
3594                 break;
3595         }
3596
3597         drm_gem_object_unreference(&obj->base);
3598 unlock:
3599         mutex_unlock(&dev->struct_mutex);
3600         return ret;
3601 }
3602
3603 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3604                                struct drm_file *file)
3605 {
3606         struct drm_i915_gem_caching *args = data;
3607         struct drm_i915_gem_object *obj;
3608         enum i915_cache_level level;
3609         int ret;
3610
3611         switch (args->caching) {
3612         case I915_CACHING_NONE:
3613                 level = I915_CACHE_NONE;
3614                 break;
3615         case I915_CACHING_CACHED:
3616                 level = I915_CACHE_LLC;
3617                 break;
3618         case I915_CACHING_DISPLAY:
3619                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3620                 break;
3621         default:
3622                 return -EINVAL;
3623         }
3624
3625         ret = i915_mutex_lock_interruptible(dev);
3626         if (ret)
3627                 return ret;
3628
3629         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3630         if (&obj->base == NULL) {
3631                 ret = -ENOENT;
3632                 goto unlock;
3633         }
3634
3635         ret = i915_gem_object_set_cache_level(obj, level);
3636
3637         drm_gem_object_unreference(&obj->base);
3638 unlock:
3639         mutex_unlock(&dev->struct_mutex);
3640         return ret;
3641 }
3642
3643 static bool is_pin_display(struct drm_i915_gem_object *obj)
3644 {
3645         /* There are 3 sources that pin objects:
3646          *   1. The display engine (scanouts, sprites, cursors);
3647          *   2. Reservations for execbuffer;
3648          *   3. The user.
3649          *
3650          * We can ignore reservations as we hold the struct_mutex and
3651          * are only called outside of the reservation path.  The user
3652          * can only increment pin_count once, and so if after
3653          * subtracting the potential reference by the user, any pin_count
3654          * remains, it must be due to another use by the display engine.
3655          */
3656         return obj->pin_count - !!obj->user_pin_count;
3657 }
3658
3659 /*
3660  * Prepare buffer for display plane (scanout, cursors, etc).
3661  * Can be called from an uninterruptible phase (modesetting) and allows
3662  * any flushes to be pipelined (for pageflips).
3663  */
3664 int
3665 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3666                                      u32 alignment,
3667                                      struct intel_ring_buffer *pipelined)
3668 {
3669         u32 old_read_domains, old_write_domain;
3670         int ret;
3671
3672         if (pipelined != obj->ring) {
3673                 ret = i915_gem_object_sync(obj, pipelined);
3674                 if (ret)
3675                         return ret;
3676         }
3677
3678         /* Mark the pin_display early so that we account for the
3679          * display coherency whilst setting up the cache domains.
3680          */
3681         obj->pin_display = true;
3682
3683         /* The display engine is not coherent with the LLC cache on gen6.  As
3684          * a result, we make sure that the pinning that is about to occur is
3685          * done with uncached PTEs. This is lowest common denominator for all
3686          * chipsets.
3687          *
3688          * However for gen6+, we could do better by using the GFDT bit instead
3689          * of uncaching, which would allow us to flush all the LLC-cached data
3690          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3691          */
3692         ret = i915_gem_object_set_cache_level(obj,
3693                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3694         if (ret)
3695                 goto err_unpin_display;
3696
3697         /* As the user may map the buffer once pinned in the display plane
3698          * (e.g. libkms for the bootup splash), we have to ensure that we
3699          * always use map_and_fenceable for all scanout buffers.
3700          */
3701         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3702         if (ret)
3703                 goto err_unpin_display;
3704
3705         i915_gem_object_flush_cpu_write_domain(obj, true);
3706
3707         old_write_domain = obj->base.write_domain;
3708         old_read_domains = obj->base.read_domains;
3709
3710         /* It should now be out of any other write domains, and we can update
3711          * the domain values for our changes.
3712          */
3713         obj->base.write_domain = 0;
3714         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3715
3716         trace_i915_gem_object_change_domain(obj,
3717                                             old_read_domains,
3718                                             old_write_domain);
3719
3720         return 0;
3721
3722 err_unpin_display:
3723         obj->pin_display = is_pin_display(obj);
3724         return ret;
3725 }
3726
3727 void
3728 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3729 {
3730         i915_gem_object_unpin(obj);
3731         obj->pin_display = is_pin_display(obj);
3732 }
3733
3734 int
3735 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3736 {
3737         int ret;
3738
3739         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3740                 return 0;
3741
3742         ret = i915_gem_object_wait_rendering(obj, false);
3743         if (ret)
3744                 return ret;
3745
3746         /* Ensure that we invalidate the GPU's caches and TLBs. */
3747         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3748         return 0;
3749 }
3750
3751 /**
3752  * Moves a single object to the CPU read, and possibly write domain.
3753  *
3754  * This function returns when the move is complete, including waiting on
3755  * flushes to occur.
3756  */
3757 int
3758 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3759 {
3760         uint32_t old_write_domain, old_read_domains;
3761         int ret;
3762
3763         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3764                 return 0;
3765
3766         ret = i915_gem_object_wait_rendering(obj, !write);
3767         if (ret)
3768                 return ret;
3769
3770         i915_gem_object_flush_gtt_write_domain(obj);
3771
3772         old_write_domain = obj->base.write_domain;
3773         old_read_domains = obj->base.read_domains;
3774
3775         /* Flush the CPU cache if it's still invalid. */
3776         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3777                 i915_gem_clflush_object(obj, false);
3778
3779                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3780         }
3781
3782         /* It should now be out of any other write domains, and we can update
3783          * the domain values for our changes.
3784          */
3785         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3786
3787         /* If we're writing through the CPU, then the GPU read domains will
3788          * need to be invalidated at next use.
3789          */
3790         if (write) {
3791                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3792                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3793         }
3794
3795         trace_i915_gem_object_change_domain(obj,
3796                                             old_read_domains,
3797                                             old_write_domain);
3798
3799         return 0;
3800 }
3801
3802 /* Throttle our rendering by waiting until the ring has completed our requests
3803  * emitted over 20 msec ago.
3804  *
3805  * Note that if we were to use the current jiffies each time around the loop,
3806  * we wouldn't escape the function with any frames outstanding if the time to
3807  * render a frame was over 20ms.
3808  *
3809  * This should get us reasonable parallelism between CPU and GPU but also
3810  * relatively low latency when blocking on a particular request to finish.
3811  */
3812 static int
3813 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3814 {
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         struct drm_i915_file_private *file_priv = file->driver_priv;
3817         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3818         struct drm_i915_gem_request *request;
3819         struct intel_ring_buffer *ring = NULL;
3820         unsigned reset_counter;
3821         u32 seqno = 0;
3822         int ret;
3823
3824         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3825         if (ret)
3826                 return ret;
3827
3828         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3829         if (ret)
3830                 return ret;
3831
3832         spin_lock(&file_priv->mm.lock);
3833         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3834                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3835                         break;
3836
3837                 ring = request->ring;
3838                 seqno = request->seqno;
3839         }
3840         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3841         spin_unlock(&file_priv->mm.lock);
3842
3843         if (seqno == 0)
3844                 return 0;
3845
3846         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3847         if (ret == 0)
3848                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3849
3850         return ret;
3851 }
3852
3853 int
3854 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3855                     struct i915_address_space *vm,
3856                     uint32_t alignment,
3857                     bool map_and_fenceable,
3858                     bool nonblocking)
3859 {
3860         struct i915_vma *vma;
3861         int ret;
3862
3863         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3864                 return -EBUSY;
3865
3866         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3867
3868         vma = i915_gem_obj_to_vma(obj, vm);
3869
3870         if (vma) {
3871                 if ((alignment &&
3872                      vma->node.start & (alignment - 1)) ||
3873                     (map_and_fenceable && !obj->map_and_fenceable)) {
3874                         WARN(obj->pin_count,
3875                              "bo is already pinned with incorrect alignment:"
3876                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3877                              " obj->map_and_fenceable=%d\n",
3878                              i915_gem_obj_offset(obj, vm), alignment,
3879                              map_and_fenceable,
3880                              obj->map_and_fenceable);
3881                         ret = i915_vma_unbind(vma);
3882                         if (ret)
3883                                 return ret;
3884                 }
3885         }
3886
3887         if (!i915_gem_obj_bound(obj, vm)) {
3888                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3889
3890                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3891                                                  map_and_fenceable,
3892                                                  nonblocking);
3893                 if (ret)
3894                         return ret;
3895
3896                 if (!dev_priv->mm.aliasing_ppgtt)
3897                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3898         }
3899
3900         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3901                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3902
3903         obj->pin_count++;
3904         obj->pin_mappable |= map_and_fenceable;
3905
3906         return 0;
3907 }
3908
3909 void
3910 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3911 {
3912         BUG_ON(obj->pin_count == 0);
3913         BUG_ON(!i915_gem_obj_bound_any(obj));
3914
3915         if (--obj->pin_count == 0)
3916                 obj->pin_mappable = false;
3917 }
3918
3919 int
3920 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3921                    struct drm_file *file)
3922 {
3923         struct drm_i915_gem_pin *args = data;
3924         struct drm_i915_gem_object *obj;
3925         int ret;
3926
3927         ret = i915_mutex_lock_interruptible(dev);
3928         if (ret)
3929                 return ret;
3930
3931         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3932         if (&obj->base == NULL) {
3933                 ret = -ENOENT;
3934                 goto unlock;
3935         }
3936
3937         if (obj->madv != I915_MADV_WILLNEED) {
3938                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3944                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3945                           args->handle);
3946                 ret = -EINVAL;
3947                 goto out;
3948         }
3949
3950         if (obj->user_pin_count == ULONG_MAX) {
3951                 ret = -EBUSY;
3952                 goto out;
3953         }
3954
3955         if (obj->user_pin_count == 0) {
3956                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3957                 if (ret)
3958                         goto out;
3959         }
3960
3961         obj->user_pin_count++;
3962         obj->pin_filp = file;
3963
3964         args->offset = i915_gem_obj_ggtt_offset(obj);
3965 out:
3966         drm_gem_object_unreference(&obj->base);
3967 unlock:
3968         mutex_unlock(&dev->struct_mutex);
3969         return ret;
3970 }
3971
3972 int
3973 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3974                      struct drm_file *file)
3975 {
3976         struct drm_i915_gem_pin *args = data;
3977         struct drm_i915_gem_object *obj;
3978         int ret;
3979
3980         ret = i915_mutex_lock_interruptible(dev);
3981         if (ret)
3982                 return ret;
3983
3984         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3985         if (&obj->base == NULL) {
3986                 ret = -ENOENT;
3987                 goto unlock;
3988         }
3989
3990         if (obj->pin_filp != file) {
3991                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3992                           args->handle);
3993                 ret = -EINVAL;
3994                 goto out;
3995         }
3996         obj->user_pin_count--;
3997         if (obj->user_pin_count == 0) {
3998                 obj->pin_filp = NULL;
3999                 i915_gem_object_unpin(obj);
4000         }
4001
4002 out:
4003         drm_gem_object_unreference(&obj->base);
4004 unlock:
4005         mutex_unlock(&dev->struct_mutex);
4006         return ret;
4007 }
4008
4009 int
4010 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4011                     struct drm_file *file)
4012 {
4013         struct drm_i915_gem_busy *args = data;
4014         struct drm_i915_gem_object *obj;
4015         int ret;
4016
4017         ret = i915_mutex_lock_interruptible(dev);
4018         if (ret)
4019                 return ret;
4020
4021         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4022         if (&obj->base == NULL) {
4023                 ret = -ENOENT;
4024                 goto unlock;
4025         }
4026
4027         /* Count all active objects as busy, even if they are currently not used
4028          * by the gpu. Users of this interface expect objects to eventually
4029          * become non-busy without any further actions, therefore emit any
4030          * necessary flushes here.
4031          */
4032         ret = i915_gem_object_flush_active(obj);
4033
4034         args->busy = obj->active;
4035         if (obj->ring) {
4036                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4037                 args->busy |= intel_ring_flag(obj->ring) << 16;
4038         }
4039
4040         drm_gem_object_unreference(&obj->base);
4041 unlock:
4042         mutex_unlock(&dev->struct_mutex);
4043         return ret;
4044 }
4045
4046 int
4047 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4048                         struct drm_file *file_priv)
4049 {
4050         return i915_gem_ring_throttle(dev, file_priv);
4051 }
4052
4053 int
4054 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4055                        struct drm_file *file_priv)
4056 {
4057         struct drm_i915_gem_madvise *args = data;
4058         struct drm_i915_gem_object *obj;
4059         int ret;
4060
4061         switch (args->madv) {
4062         case I915_MADV_DONTNEED:
4063         case I915_MADV_WILLNEED:
4064             break;
4065         default:
4066             return -EINVAL;
4067         }
4068
4069         ret = i915_mutex_lock_interruptible(dev);
4070         if (ret)
4071                 return ret;
4072
4073         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4074         if (&obj->base == NULL) {
4075                 ret = -ENOENT;
4076                 goto unlock;
4077         }
4078
4079         if (obj->pin_count) {
4080                 ret = -EINVAL;
4081                 goto out;
4082         }
4083
4084         if (obj->madv != __I915_MADV_PURGED)
4085                 obj->madv = args->madv;
4086
4087         /* if the object is no longer attached, discard its backing storage */
4088         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4089                 i915_gem_object_truncate(obj);
4090
4091         args->retained = obj->madv != __I915_MADV_PURGED;
4092
4093 out:
4094         drm_gem_object_unreference(&obj->base);
4095 unlock:
4096         mutex_unlock(&dev->struct_mutex);
4097         return ret;
4098 }
4099
4100 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4101                           const struct drm_i915_gem_object_ops *ops)
4102 {
4103         INIT_LIST_HEAD(&obj->global_list);
4104         INIT_LIST_HEAD(&obj->ring_list);
4105         INIT_LIST_HEAD(&obj->obj_exec_link);
4106         INIT_LIST_HEAD(&obj->vma_list);
4107
4108         obj->ops = ops;
4109
4110         obj->fence_reg = I915_FENCE_REG_NONE;
4111         obj->madv = I915_MADV_WILLNEED;
4112         /* Avoid an unnecessary call to unbind on the first bind. */
4113         obj->map_and_fenceable = true;
4114
4115         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4116 }
4117
4118 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4119         .get_pages = i915_gem_object_get_pages_gtt,
4120         .put_pages = i915_gem_object_put_pages_gtt,
4121 };
4122
4123 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4124                                                   size_t size)
4125 {
4126         struct drm_i915_gem_object *obj;
4127         struct address_space *mapping;
4128         gfp_t mask;
4129
4130         obj = i915_gem_object_alloc(dev);
4131         if (obj == NULL)
4132                 return NULL;
4133
4134         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4135                 i915_gem_object_free(obj);
4136                 return NULL;
4137         }
4138
4139         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4140         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4141                 /* 965gm cannot relocate objects above 4GiB. */
4142                 mask &= ~__GFP_HIGHMEM;
4143                 mask |= __GFP_DMA32;
4144         }
4145
4146         mapping = file_inode(obj->base.filp)->i_mapping;
4147         mapping_set_gfp_mask(mapping, mask);
4148
4149         i915_gem_object_init(obj, &i915_gem_object_ops);
4150
4151         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4152         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4153
4154         if (HAS_LLC(dev)) {
4155                 /* On some devices, we can have the GPU use the LLC (the CPU
4156                  * cache) for about a 10% performance improvement
4157                  * compared to uncached.  Graphics requests other than
4158                  * display scanout are coherent with the CPU in
4159                  * accessing this cache.  This means in this mode we
4160                  * don't need to clflush on the CPU side, and on the
4161                  * GPU side we only need to flush internal caches to
4162                  * get data visible to the CPU.
4163                  *
4164                  * However, we maintain the display planes as UC, and so
4165                  * need to rebind when first used as such.
4166                  */
4167                 obj->cache_level = I915_CACHE_LLC;
4168         } else
4169                 obj->cache_level = I915_CACHE_NONE;
4170
4171         trace_i915_gem_object_create(obj);
4172
4173         return obj;
4174 }
4175
4176 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4177 {
4178         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4179         struct drm_device *dev = obj->base.dev;
4180         drm_i915_private_t *dev_priv = dev->dev_private;
4181         struct i915_vma *vma, *next;
4182
4183         intel_runtime_pm_get(dev_priv);
4184
4185         trace_i915_gem_object_destroy(obj);
4186
4187         if (obj->phys_obj)
4188                 i915_gem_detach_phys_object(dev, obj);
4189
4190         obj->pin_count = 0;
4191         /* NB: 0 or 1 elements */
4192         WARN_ON(!list_empty(&obj->vma_list) &&
4193                 !list_is_singular(&obj->vma_list));
4194         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4195                 int ret = i915_vma_unbind(vma);
4196                 if (WARN_ON(ret == -ERESTARTSYS)) {
4197                         bool was_interruptible;
4198
4199                         was_interruptible = dev_priv->mm.interruptible;
4200                         dev_priv->mm.interruptible = false;
4201
4202                         WARN_ON(i915_vma_unbind(vma));
4203
4204                         dev_priv->mm.interruptible = was_interruptible;
4205                 }
4206         }
4207
4208         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4209          * before progressing. */
4210         if (obj->stolen)
4211                 i915_gem_object_unpin_pages(obj);
4212
4213         if (WARN_ON(obj->pages_pin_count))
4214                 obj->pages_pin_count = 0;
4215         i915_gem_object_put_pages(obj);
4216         i915_gem_object_free_mmap_offset(obj);
4217         i915_gem_object_release_stolen(obj);
4218
4219         BUG_ON(obj->pages);
4220
4221         if (obj->base.import_attach)
4222                 drm_prime_gem_destroy(&obj->base, NULL);
4223
4224         drm_gem_object_release(&obj->base);
4225         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4226
4227         kfree(obj->bit_17);
4228         i915_gem_object_free(obj);
4229
4230         intel_runtime_pm_put(dev_priv);
4231 }
4232
4233 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4234                                      struct i915_address_space *vm)
4235 {
4236         struct i915_vma *vma;
4237         list_for_each_entry(vma, &obj->vma_list, vma_link)
4238                 if (vma->vm == vm)
4239                         return vma;
4240
4241         return NULL;
4242 }
4243
4244 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4245                                               struct i915_address_space *vm)
4246 {
4247         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4248         if (vma == NULL)
4249                 return ERR_PTR(-ENOMEM);
4250
4251         INIT_LIST_HEAD(&vma->vma_link);
4252         INIT_LIST_HEAD(&vma->mm_list);
4253         INIT_LIST_HEAD(&vma->exec_list);
4254         vma->vm = vm;
4255         vma->obj = obj;
4256
4257         /* Keep GGTT vmas first to make debug easier */
4258         if (i915_is_ggtt(vm))
4259                 list_add(&vma->vma_link, &obj->vma_list);
4260         else
4261                 list_add_tail(&vma->vma_link, &obj->vma_list);
4262
4263         return vma;
4264 }
4265
4266 struct i915_vma *
4267 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4268                                   struct i915_address_space *vm)
4269 {
4270         struct i915_vma *vma;
4271
4272         vma = i915_gem_obj_to_vma(obj, vm);
4273         if (!vma)
4274                 vma = __i915_gem_vma_create(obj, vm);
4275
4276         return vma;
4277 }
4278
4279 void i915_gem_vma_destroy(struct i915_vma *vma)
4280 {
4281         WARN_ON(vma->node.allocated);
4282
4283         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4284         if (!list_empty(&vma->exec_list))
4285                 return;
4286
4287         list_del(&vma->vma_link);
4288
4289         kfree(vma);
4290 }
4291
4292 int
4293 i915_gem_suspend(struct drm_device *dev)
4294 {
4295         drm_i915_private_t *dev_priv = dev->dev_private;
4296         int ret = 0;
4297
4298         mutex_lock(&dev->struct_mutex);
4299         if (dev_priv->ums.mm_suspended)
4300                 goto err;
4301
4302         ret = i915_gpu_idle(dev);
4303         if (ret)
4304                 goto err;
4305
4306         i915_gem_retire_requests(dev);
4307
4308         /* Under UMS, be paranoid and evict. */
4309         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4310                 i915_gem_evict_everything(dev);
4311
4312         i915_kernel_lost_context(dev);
4313         i915_gem_cleanup_ringbuffer(dev);
4314
4315         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4316          * We need to replace this with a semaphore, or something.
4317          * And not confound ums.mm_suspended!
4318          */
4319         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4320                                                              DRIVER_MODESET);
4321         mutex_unlock(&dev->struct_mutex);
4322
4323         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4324         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4325         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4326
4327         return 0;
4328
4329 err:
4330         mutex_unlock(&dev->struct_mutex);
4331         return ret;
4332 }
4333
4334 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4335 {
4336         struct drm_device *dev = ring->dev;
4337         drm_i915_private_t *dev_priv = dev->dev_private;
4338         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4339         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4340         int i, ret;
4341
4342         if (!HAS_L3_DPF(dev) || !remap_info)
4343                 return 0;
4344
4345         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4346         if (ret)
4347                 return ret;
4348
4349         /*
4350          * Note: We do not worry about the concurrent register cacheline hang
4351          * here because no other code should access these registers other than
4352          * at initialization time.
4353          */
4354         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4355                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4356                 intel_ring_emit(ring, reg_base + i);
4357                 intel_ring_emit(ring, remap_info[i/4]);
4358         }
4359
4360         intel_ring_advance(ring);
4361
4362         return ret;
4363 }
4364
4365 void i915_gem_init_swizzling(struct drm_device *dev)
4366 {
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368
4369         if (INTEL_INFO(dev)->gen < 5 ||
4370             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4371                 return;
4372
4373         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4374                                  DISP_TILE_SURFACE_SWIZZLING);
4375
4376         if (IS_GEN5(dev))
4377                 return;
4378
4379         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4380         if (IS_GEN6(dev))
4381                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4382         else if (IS_GEN7(dev))
4383                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4384         else if (IS_GEN8(dev))
4385                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4386         else
4387                 BUG();
4388 }
4389
4390 static bool
4391 intel_enable_blt(struct drm_device *dev)
4392 {
4393         if (!HAS_BLT(dev))
4394                 return false;
4395
4396         /* The blitter was dysfunctional on early prototypes */
4397         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4398                 DRM_INFO("BLT not supported on this pre-production hardware;"
4399                          " graphics performance will be degraded.\n");
4400                 return false;
4401         }
4402
4403         return true;
4404 }
4405
4406 static int i915_gem_init_rings(struct drm_device *dev)
4407 {
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409         int ret;
4410
4411         ret = intel_init_render_ring_buffer(dev);
4412         if (ret)
4413                 return ret;
4414
4415         if (HAS_BSD(dev)) {
4416                 ret = intel_init_bsd_ring_buffer(dev);
4417                 if (ret)
4418                         goto cleanup_render_ring;
4419         }
4420
4421         if (intel_enable_blt(dev)) {
4422                 ret = intel_init_blt_ring_buffer(dev);
4423                 if (ret)
4424                         goto cleanup_bsd_ring;
4425         }
4426
4427         if (HAS_VEBOX(dev)) {
4428                 ret = intel_init_vebox_ring_buffer(dev);
4429                 if (ret)
4430                         goto cleanup_blt_ring;
4431         }
4432
4433
4434         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4435         if (ret)
4436                 goto cleanup_vebox_ring;
4437
4438         return 0;
4439
4440 cleanup_vebox_ring:
4441         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4442 cleanup_blt_ring:
4443         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4444 cleanup_bsd_ring:
4445         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4446 cleanup_render_ring:
4447         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4448
4449         return ret;
4450 }
4451
4452 int
4453 i915_gem_init_hw(struct drm_device *dev)
4454 {
4455         drm_i915_private_t *dev_priv = dev->dev_private;
4456         int ret, i;
4457
4458         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4459                 return -EIO;
4460
4461         if (dev_priv->ellc_size)
4462                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4463
4464         if (IS_HASWELL(dev))
4465                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4466                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4467
4468         if (HAS_PCH_NOP(dev)) {
4469                 u32 temp = I915_READ(GEN7_MSG_CTL);
4470                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4471                 I915_WRITE(GEN7_MSG_CTL, temp);
4472         }
4473
4474         i915_gem_init_swizzling(dev);
4475
4476         ret = i915_gem_init_rings(dev);
4477         if (ret)
4478                 return ret;
4479
4480         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4481                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4482
4483         /*
4484          * XXX: There was some w/a described somewhere suggesting loading
4485          * contexts before PPGTT.
4486          */
4487         ret = i915_gem_context_init(dev);
4488         if (ret) {
4489                 i915_gem_cleanup_ringbuffer(dev);
4490                 DRM_ERROR("Context initialization failed %d\n", ret);
4491                 return ret;
4492         }
4493
4494         if (dev_priv->mm.aliasing_ppgtt) {
4495                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4496                 if (ret) {
4497                         i915_gem_cleanup_aliasing_ppgtt(dev);
4498                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4499                 }
4500         }
4501
4502         return 0;
4503 }
4504
4505 int i915_gem_init(struct drm_device *dev)
4506 {
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         int ret;
4509
4510         mutex_lock(&dev->struct_mutex);
4511
4512         if (IS_VALLEYVIEW(dev)) {
4513                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4514                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4515                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4516                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4517         }
4518
4519         i915_gem_init_global_gtt(dev);
4520
4521         ret = i915_gem_init_hw(dev);
4522         mutex_unlock(&dev->struct_mutex);
4523         if (ret) {
4524                 i915_gem_cleanup_aliasing_ppgtt(dev);
4525                 return ret;
4526         }
4527
4528         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4529         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4530                 dev_priv->dri1.allow_batchbuffer = 1;
4531         return 0;
4532 }
4533
4534 void
4535 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4536 {
4537         drm_i915_private_t *dev_priv = dev->dev_private;
4538         struct intel_ring_buffer *ring;
4539         int i;
4540
4541         for_each_ring(ring, dev_priv, i)
4542                 intel_cleanup_ring_buffer(ring);
4543 }
4544
4545 int
4546 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4547                        struct drm_file *file_priv)
4548 {
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550         int ret;
4551
4552         if (drm_core_check_feature(dev, DRIVER_MODESET))
4553                 return 0;
4554
4555         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4556                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4557                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4558         }
4559
4560         mutex_lock(&dev->struct_mutex);
4561         dev_priv->ums.mm_suspended = 0;
4562
4563         ret = i915_gem_init_hw(dev);
4564         if (ret != 0) {
4565                 mutex_unlock(&dev->struct_mutex);
4566                 return ret;
4567         }
4568
4569         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4570         mutex_unlock(&dev->struct_mutex);
4571
4572         ret = drm_irq_install(dev);
4573         if (ret)
4574                 goto cleanup_ringbuffer;
4575
4576         return 0;
4577
4578 cleanup_ringbuffer:
4579         mutex_lock(&dev->struct_mutex);
4580         i915_gem_cleanup_ringbuffer(dev);
4581         dev_priv->ums.mm_suspended = 1;
4582         mutex_unlock(&dev->struct_mutex);
4583
4584         return ret;
4585 }
4586
4587 int
4588 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4589                        struct drm_file *file_priv)
4590 {
4591         if (drm_core_check_feature(dev, DRIVER_MODESET))
4592                 return 0;
4593
4594         drm_irq_uninstall(dev);
4595
4596         return i915_gem_suspend(dev);
4597 }
4598
4599 void
4600 i915_gem_lastclose(struct drm_device *dev)
4601 {
4602         int ret;
4603
4604         if (drm_core_check_feature(dev, DRIVER_MODESET))
4605                 return;
4606
4607         ret = i915_gem_suspend(dev);
4608         if (ret)
4609                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4610 }
4611
4612 static void
4613 init_ring_lists(struct intel_ring_buffer *ring)
4614 {
4615         INIT_LIST_HEAD(&ring->active_list);
4616         INIT_LIST_HEAD(&ring->request_list);
4617 }
4618
4619 static void i915_init_vm(struct drm_i915_private *dev_priv,
4620                          struct i915_address_space *vm)
4621 {
4622         vm->dev = dev_priv->dev;
4623         INIT_LIST_HEAD(&vm->active_list);
4624         INIT_LIST_HEAD(&vm->inactive_list);
4625         INIT_LIST_HEAD(&vm->global_link);
4626         list_add(&vm->global_link, &dev_priv->vm_list);
4627 }
4628
4629 void
4630 i915_gem_load(struct drm_device *dev)
4631 {
4632         drm_i915_private_t *dev_priv = dev->dev_private;
4633         int i;
4634
4635         dev_priv->slab =
4636                 kmem_cache_create("i915_gem_object",
4637                                   sizeof(struct drm_i915_gem_object), 0,
4638                                   SLAB_HWCACHE_ALIGN,
4639                                   NULL);
4640
4641         INIT_LIST_HEAD(&dev_priv->vm_list);
4642         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4643
4644         INIT_LIST_HEAD(&dev_priv->context_list);
4645         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4646         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4647         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4648         for (i = 0; i < I915_NUM_RINGS; i++)
4649                 init_ring_lists(&dev_priv->ring[i]);
4650         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4651                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4652         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4653                           i915_gem_retire_work_handler);
4654         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4655                           i915_gem_idle_work_handler);
4656         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4657
4658         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4659         if (IS_GEN3(dev)) {
4660                 I915_WRITE(MI_ARB_STATE,
4661                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4662         }
4663
4664         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4665
4666         /* Old X drivers will take 0-2 for front, back, depth buffers */
4667         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4668                 dev_priv->fence_reg_start = 3;
4669
4670         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4671                 dev_priv->num_fence_regs = 32;
4672         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4673                 dev_priv->num_fence_regs = 16;
4674         else
4675                 dev_priv->num_fence_regs = 8;
4676
4677         /* Initialize fence registers to zero */
4678         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4679         i915_gem_restore_fences(dev);
4680
4681         i915_gem_detect_bit_6_swizzle(dev);
4682         init_waitqueue_head(&dev_priv->pending_flip_queue);
4683
4684         dev_priv->mm.interruptible = true;
4685
4686         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4687         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4688         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4689         register_shrinker(&dev_priv->mm.inactive_shrinker);
4690 }
4691
4692 /*
4693  * Create a physically contiguous memory object for this object
4694  * e.g. for cursor + overlay regs
4695  */
4696 static int i915_gem_init_phys_object(struct drm_device *dev,
4697                                      int id, int size, int align)
4698 {
4699         drm_i915_private_t *dev_priv = dev->dev_private;
4700         struct drm_i915_gem_phys_object *phys_obj;
4701         int ret;
4702
4703         if (dev_priv->mm.phys_objs[id - 1] || !size)
4704                 return 0;
4705
4706         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4707         if (!phys_obj)
4708                 return -ENOMEM;
4709
4710         phys_obj->id = id;
4711
4712         phys_obj->handle = drm_pci_alloc(dev, size, align);
4713         if (!phys_obj->handle) {
4714                 ret = -ENOMEM;
4715                 goto kfree_obj;
4716         }
4717 #ifdef CONFIG_X86
4718         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719 #endif
4720
4721         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4722
4723         return 0;
4724 kfree_obj:
4725         kfree(phys_obj);
4726         return ret;
4727 }
4728
4729 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4730 {
4731         drm_i915_private_t *dev_priv = dev->dev_private;
4732         struct drm_i915_gem_phys_object *phys_obj;
4733
4734         if (!dev_priv->mm.phys_objs[id - 1])
4735                 return;
4736
4737         phys_obj = dev_priv->mm.phys_objs[id - 1];
4738         if (phys_obj->cur_obj) {
4739                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4740         }
4741
4742 #ifdef CONFIG_X86
4743         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4744 #endif
4745         drm_pci_free(dev, phys_obj->handle);
4746         kfree(phys_obj);
4747         dev_priv->mm.phys_objs[id - 1] = NULL;
4748 }
4749
4750 void i915_gem_free_all_phys_object(struct drm_device *dev)
4751 {
4752         int i;
4753
4754         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4755                 i915_gem_free_phys_object(dev, i);
4756 }
4757
4758 void i915_gem_detach_phys_object(struct drm_device *dev,
4759                                  struct drm_i915_gem_object *obj)
4760 {
4761         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4762         char *vaddr;
4763         int i;
4764         int page_count;
4765
4766         if (!obj->phys_obj)
4767                 return;
4768         vaddr = obj->phys_obj->handle->vaddr;
4769
4770         page_count = obj->base.size / PAGE_SIZE;
4771         for (i = 0; i < page_count; i++) {
4772                 struct page *page = shmem_read_mapping_page(mapping, i);
4773                 if (!IS_ERR(page)) {
4774                         char *dst = kmap_atomic(page);
4775                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4776                         kunmap_atomic(dst);
4777
4778                         drm_clflush_pages(&page, 1);
4779
4780                         set_page_dirty(page);
4781                         mark_page_accessed(page);
4782                         page_cache_release(page);
4783                 }
4784         }
4785         i915_gem_chipset_flush(dev);
4786
4787         obj->phys_obj->cur_obj = NULL;
4788         obj->phys_obj = NULL;
4789 }
4790
4791 int
4792 i915_gem_attach_phys_object(struct drm_device *dev,
4793                             struct drm_i915_gem_object *obj,
4794                             int id,
4795                             int align)
4796 {
4797         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4798         drm_i915_private_t *dev_priv = dev->dev_private;
4799         int ret = 0;
4800         int page_count;
4801         int i;
4802
4803         if (id > I915_MAX_PHYS_OBJECT)
4804                 return -EINVAL;
4805
4806         if (obj->phys_obj) {
4807                 if (obj->phys_obj->id == id)
4808                         return 0;
4809                 i915_gem_detach_phys_object(dev, obj);
4810         }
4811
4812         /* create a new object */
4813         if (!dev_priv->mm.phys_objs[id - 1]) {
4814                 ret = i915_gem_init_phys_object(dev, id,
4815                                                 obj->base.size, align);
4816                 if (ret) {
4817                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4818                                   id, obj->base.size);
4819                         return ret;
4820                 }
4821         }
4822
4823         /* bind to the object */
4824         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4825         obj->phys_obj->cur_obj = obj;
4826
4827         page_count = obj->base.size / PAGE_SIZE;
4828
4829         for (i = 0; i < page_count; i++) {
4830                 struct page *page;
4831                 char *dst, *src;
4832
4833                 page = shmem_read_mapping_page(mapping, i);
4834                 if (IS_ERR(page))
4835                         return PTR_ERR(page);
4836
4837                 src = kmap_atomic(page);
4838                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4839                 memcpy(dst, src, PAGE_SIZE);
4840                 kunmap_atomic(src);
4841
4842                 mark_page_accessed(page);
4843                 page_cache_release(page);
4844         }
4845
4846         return 0;
4847 }
4848
4849 static int
4850 i915_gem_phys_pwrite(struct drm_device *dev,
4851                      struct drm_i915_gem_object *obj,
4852                      struct drm_i915_gem_pwrite *args,
4853                      struct drm_file *file_priv)
4854 {
4855         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4856         char __user *user_data = to_user_ptr(args->data_ptr);
4857
4858         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4859                 unsigned long unwritten;
4860
4861                 /* The physical object once assigned is fixed for the lifetime
4862                  * of the obj, so we can safely drop the lock and continue
4863                  * to access vaddr.
4864                  */
4865                 mutex_unlock(&dev->struct_mutex);
4866                 unwritten = copy_from_user(vaddr, user_data, args->size);
4867                 mutex_lock(&dev->struct_mutex);
4868                 if (unwritten)
4869                         return -EFAULT;
4870         }
4871
4872         i915_gem_chipset_flush(dev);
4873         return 0;
4874 }
4875
4876 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4877 {
4878         struct drm_i915_file_private *file_priv = file->driver_priv;
4879
4880         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4881
4882         /* Clean up our request list when the client is going away, so that
4883          * later retire_requests won't dereference our soon-to-be-gone
4884          * file_priv.
4885          */
4886         spin_lock(&file_priv->mm.lock);
4887         while (!list_empty(&file_priv->mm.request_list)) {
4888                 struct drm_i915_gem_request *request;
4889
4890                 request = list_first_entry(&file_priv->mm.request_list,
4891                                            struct drm_i915_gem_request,
4892                                            client_list);
4893                 list_del(&request->client_list);
4894                 request->file_priv = NULL;
4895         }
4896         spin_unlock(&file_priv->mm.lock);
4897 }
4898
4899 static void
4900 i915_gem_file_idle_work_handler(struct work_struct *work)
4901 {
4902         struct drm_i915_file_private *file_priv =
4903                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4904
4905         atomic_set(&file_priv->rps_wait_boost, false);
4906 }
4907
4908 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4909 {
4910         struct drm_i915_file_private *file_priv;
4911
4912         DRM_DEBUG_DRIVER("\n");
4913
4914         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4915         if (!file_priv)
4916                 return -ENOMEM;
4917
4918         file->driver_priv = file_priv;
4919         file_priv->dev_priv = dev->dev_private;
4920
4921         spin_lock_init(&file_priv->mm.lock);
4922         INIT_LIST_HEAD(&file_priv->mm.request_list);
4923         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4924                           i915_gem_file_idle_work_handler);
4925
4926         idr_init(&file_priv->context_idr);
4927
4928         return 0;
4929 }
4930
4931 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4932 {
4933         if (!mutex_is_locked(mutex))
4934                 return false;
4935
4936 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4937         return mutex->owner == task;
4938 #else
4939         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4940         return false;
4941 #endif
4942 }
4943
4944 static unsigned long
4945 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4946 {
4947         struct drm_i915_private *dev_priv =
4948                 container_of(shrinker,
4949                              struct drm_i915_private,
4950                              mm.inactive_shrinker);
4951         struct drm_device *dev = dev_priv->dev;
4952         struct drm_i915_gem_object *obj;
4953         bool unlock = true;
4954         unsigned long count;
4955
4956         if (!mutex_trylock(&dev->struct_mutex)) {
4957                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4958                         return 0;
4959
4960                 if (dev_priv->mm.shrinker_no_lock_stealing)
4961                         return 0;
4962
4963                 unlock = false;
4964         }
4965
4966         count = 0;
4967         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4968                 if (obj->pages_pin_count == 0)
4969                         count += obj->base.size >> PAGE_SHIFT;
4970
4971         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4972                 if (obj->active)
4973                         continue;
4974
4975                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4976                         count += obj->base.size >> PAGE_SHIFT;
4977         }
4978
4979         if (unlock)
4980                 mutex_unlock(&dev->struct_mutex);
4981
4982         return count;
4983 }
4984
4985 /* All the new VM stuff */
4986 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4987                                   struct i915_address_space *vm)
4988 {
4989         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4990         struct i915_vma *vma;
4991
4992         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4993                 vm = &dev_priv->gtt.base;
4994
4995         BUG_ON(list_empty(&o->vma_list));
4996         list_for_each_entry(vma, &o->vma_list, vma_link) {
4997                 if (vma->vm == vm)
4998                         return vma->node.start;
4999
5000         }
5001         return -1;
5002 }
5003
5004 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5005                         struct i915_address_space *vm)
5006 {
5007         struct i915_vma *vma;
5008
5009         list_for_each_entry(vma, &o->vma_list, vma_link)
5010                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5011                         return true;
5012
5013         return false;
5014 }
5015
5016 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5017 {
5018         struct i915_vma *vma;
5019
5020         list_for_each_entry(vma, &o->vma_list, vma_link)
5021                 if (drm_mm_node_allocated(&vma->node))
5022                         return true;
5023
5024         return false;
5025 }
5026
5027 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5028                                 struct i915_address_space *vm)
5029 {
5030         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5031         struct i915_vma *vma;
5032
5033         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5034                 vm = &dev_priv->gtt.base;
5035
5036         BUG_ON(list_empty(&o->vma_list));
5037
5038         list_for_each_entry(vma, &o->vma_list, vma_link)
5039                 if (vma->vm == vm)
5040                         return vma->node.size;
5041
5042         return 0;
5043 }
5044
5045 static unsigned long
5046 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5047 {
5048         struct drm_i915_private *dev_priv =
5049                 container_of(shrinker,
5050                              struct drm_i915_private,
5051                              mm.inactive_shrinker);
5052         struct drm_device *dev = dev_priv->dev;
5053         unsigned long freed;
5054         bool unlock = true;
5055
5056         if (!mutex_trylock(&dev->struct_mutex)) {
5057                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5058                         return SHRINK_STOP;
5059
5060                 if (dev_priv->mm.shrinker_no_lock_stealing)
5061                         return SHRINK_STOP;
5062
5063                 unlock = false;
5064         }
5065
5066         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5067         if (freed < sc->nr_to_scan)
5068                 freed += __i915_gem_shrink(dev_priv,
5069                                            sc->nr_to_scan - freed,
5070                                            false);
5071         if (freed < sc->nr_to_scan)
5072                 freed += i915_gem_shrink_all(dev_priv);
5073
5074         if (unlock)
5075                 mutex_unlock(&dev->struct_mutex);
5076
5077         return freed;
5078 }
5079
5080 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5081 {
5082         struct i915_vma *vma;
5083
5084         if (WARN_ON(list_empty(&obj->vma_list)))
5085                 return NULL;
5086
5087         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5088         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5089                 return NULL;
5090
5091         return vma;
5092 }