279387a2fef5c90e28927124862ac019c1fe93a1
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         struct timespec before, now;
1019         DEFINE_WAIT(wait);
1020         unsigned long timeout_expire;
1021         int ret;
1022
1023         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026                 return 0;
1027
1028         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1029
1030         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031                 gen6_rps_boost(dev_priv);
1032                 if (file_priv)
1033                         mod_delayed_work(dev_priv->wq,
1034                                          &file_priv->mm.idle_work,
1035                                          msecs_to_jiffies(100));
1036         }
1037
1038         if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039             WARN_ON(!ring->irq_get(ring)))
1040                 return -ENODEV;
1041
1042         /* Record current time in case interrupted by signal, or wedged */
1043         trace_i915_gem_request_wait_begin(ring, seqno);
1044         getrawmonotonic(&before);
1045         for (;;) {
1046                 struct timer_list timer;
1047
1048                 prepare_to_wait(&ring->irq_queue, &wait,
1049                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1050
1051                 /* We need to check whether any gpu reset happened in between
1052                  * the caller grabbing the seqno and now ... */
1053                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1054                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1055                          * is truely gone. */
1056                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1057                         if (ret == 0)
1058                                 ret = -EAGAIN;
1059                         break;
1060                 }
1061
1062                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1063                         ret = 0;
1064                         break;
1065                 }
1066
1067                 if (interruptible && signal_pending(current)) {
1068                         ret = -ERESTARTSYS;
1069                         break;
1070                 }
1071
1072                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1073                         ret = -ETIME;
1074                         break;
1075                 }
1076
1077                 timer.function = NULL;
1078                 if (timeout || missed_irq(dev_priv, ring)) {
1079                         unsigned long expire;
1080
1081                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1082                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1083                         mod_timer(&timer, expire);
1084                 }
1085
1086                 io_schedule();
1087
1088                 if (timer.function) {
1089                         del_singleshot_timer_sync(&timer);
1090                         destroy_timer_on_stack(&timer);
1091                 }
1092         }
1093         getrawmonotonic(&now);
1094         trace_i915_gem_request_wait_end(ring, seqno);
1095
1096         ring->irq_put(ring);
1097
1098         finish_wait(&ring->irq_queue, &wait);
1099
1100         if (timeout) {
1101                 struct timespec sleep_time = timespec_sub(now, before);
1102                 *timeout = timespec_sub(*timeout, sleep_time);
1103                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1104                         set_normalized_timespec(timeout, 0, 0);
1105         }
1106
1107         return ret;
1108 }
1109
1110 /**
1111  * Waits for a sequence number to be signaled, and cleans up the
1112  * request and object lists appropriately for that event.
1113  */
1114 int
1115 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1116 {
1117         struct drm_device *dev = ring->dev;
1118         struct drm_i915_private *dev_priv = dev->dev_private;
1119         bool interruptible = dev_priv->mm.interruptible;
1120         int ret;
1121
1122         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1123         BUG_ON(seqno == 0);
1124
1125         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1126         if (ret)
1127                 return ret;
1128
1129         ret = i915_gem_check_olr(ring, seqno);
1130         if (ret)
1131                 return ret;
1132
1133         return __wait_seqno(ring, seqno,
1134                             atomic_read(&dev_priv->gpu_error.reset_counter),
1135                             interruptible, NULL, NULL);
1136 }
1137
1138 static int
1139 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1140                                      struct intel_ring_buffer *ring)
1141 {
1142         i915_gem_retire_requests_ring(ring);
1143
1144         /* Manually manage the write flush as we may have not yet
1145          * retired the buffer.
1146          *
1147          * Note that the last_write_seqno is always the earlier of
1148          * the two (read/write) seqno, so if we haved successfully waited,
1149          * we know we have passed the last write.
1150          */
1151         obj->last_write_seqno = 0;
1152         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1153
1154         return 0;
1155 }
1156
1157 /**
1158  * Ensures that all rendering to the object has completed and the object is
1159  * safe to unbind from the GTT or access from the CPU.
1160  */
1161 static __must_check int
1162 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1163                                bool readonly)
1164 {
1165         struct intel_ring_buffer *ring = obj->ring;
1166         u32 seqno;
1167         int ret;
1168
1169         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1170         if (seqno == 0)
1171                 return 0;
1172
1173         ret = i915_wait_seqno(ring, seqno);
1174         if (ret)
1175                 return ret;
1176
1177         return i915_gem_object_wait_rendering__tail(obj, ring);
1178 }
1179
1180 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1181  * as the object state may change during this call.
1182  */
1183 static __must_check int
1184 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1185                                             struct drm_file *file,
1186                                             bool readonly)
1187 {
1188         struct drm_device *dev = obj->base.dev;
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190         struct intel_ring_buffer *ring = obj->ring;
1191         unsigned reset_counter;
1192         u32 seqno;
1193         int ret;
1194
1195         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1196         BUG_ON(!dev_priv->mm.interruptible);
1197
1198         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1199         if (seqno == 0)
1200                 return 0;
1201
1202         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1203         if (ret)
1204                 return ret;
1205
1206         ret = i915_gem_check_olr(ring, seqno);
1207         if (ret)
1208                 return ret;
1209
1210         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1211         mutex_unlock(&dev->struct_mutex);
1212         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1213         mutex_lock(&dev->struct_mutex);
1214         if (ret)
1215                 return ret;
1216
1217         return i915_gem_object_wait_rendering__tail(obj, ring);
1218 }
1219
1220 /**
1221  * Called when user space prepares to use an object with the CPU, either
1222  * through the mmap ioctl's mapping or a GTT mapping.
1223  */
1224 int
1225 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1226                           struct drm_file *file)
1227 {
1228         struct drm_i915_gem_set_domain *args = data;
1229         struct drm_i915_gem_object *obj;
1230         uint32_t read_domains = args->read_domains;
1231         uint32_t write_domain = args->write_domain;
1232         int ret;
1233
1234         /* Only handle setting domains to types used by the CPU. */
1235         if (write_domain & I915_GEM_GPU_DOMAINS)
1236                 return -EINVAL;
1237
1238         if (read_domains & I915_GEM_GPU_DOMAINS)
1239                 return -EINVAL;
1240
1241         /* Having something in the write domain implies it's in the read
1242          * domain, and only that read domain.  Enforce that in the request.
1243          */
1244         if (write_domain != 0 && read_domains != write_domain)
1245                 return -EINVAL;
1246
1247         ret = i915_mutex_lock_interruptible(dev);
1248         if (ret)
1249                 return ret;
1250
1251         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252         if (&obj->base == NULL) {
1253                 ret = -ENOENT;
1254                 goto unlock;
1255         }
1256
1257         /* Try to flush the object off the GPU without holding the lock.
1258          * We will repeat the flush holding the lock in the normal manner
1259          * to catch cases where we are gazumped.
1260          */
1261         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1262         if (ret)
1263                 goto unref;
1264
1265         if (read_domains & I915_GEM_DOMAIN_GTT) {
1266                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1267
1268                 /* Silently promote "you're not bound, there was nothing to do"
1269                  * to success, since the client was just asking us to
1270                  * make sure everything was done.
1271                  */
1272                 if (ret == -EINVAL)
1273                         ret = 0;
1274         } else {
1275                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1276         }
1277
1278 unref:
1279         drm_gem_object_unreference(&obj->base);
1280 unlock:
1281         mutex_unlock(&dev->struct_mutex);
1282         return ret;
1283 }
1284
1285 /**
1286  * Called when user space has done writes to this buffer
1287  */
1288 int
1289 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1290                          struct drm_file *file)
1291 {
1292         struct drm_i915_gem_sw_finish *args = data;
1293         struct drm_i915_gem_object *obj;
1294         int ret = 0;
1295
1296         ret = i915_mutex_lock_interruptible(dev);
1297         if (ret)
1298                 return ret;
1299
1300         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1301         if (&obj->base == NULL) {
1302                 ret = -ENOENT;
1303                 goto unlock;
1304         }
1305
1306         /* Pinned buffers may be scanout, so flush the cache */
1307         if (obj->pin_display)
1308                 i915_gem_object_flush_cpu_write_domain(obj, true);
1309
1310         drm_gem_object_unreference(&obj->base);
1311 unlock:
1312         mutex_unlock(&dev->struct_mutex);
1313         return ret;
1314 }
1315
1316 /**
1317  * Maps the contents of an object, returning the address it is mapped
1318  * into.
1319  *
1320  * While the mapping holds a reference on the contents of the object, it doesn't
1321  * imply a ref on the object itself.
1322  */
1323 int
1324 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1325                     struct drm_file *file)
1326 {
1327         struct drm_i915_gem_mmap *args = data;
1328         struct drm_gem_object *obj;
1329         unsigned long addr;
1330
1331         obj = drm_gem_object_lookup(dev, file, args->handle);
1332         if (obj == NULL)
1333                 return -ENOENT;
1334
1335         /* prime objects have no backing filp to GEM mmap
1336          * pages from.
1337          */
1338         if (!obj->filp) {
1339                 drm_gem_object_unreference_unlocked(obj);
1340                 return -EINVAL;
1341         }
1342
1343         addr = vm_mmap(obj->filp, 0, args->size,
1344                        PROT_READ | PROT_WRITE, MAP_SHARED,
1345                        args->offset);
1346         drm_gem_object_unreference_unlocked(obj);
1347         if (IS_ERR((void *)addr))
1348                 return addr;
1349
1350         args->addr_ptr = (uint64_t) addr;
1351
1352         return 0;
1353 }
1354
1355 /**
1356  * i915_gem_fault - fault a page into the GTT
1357  * vma: VMA in question
1358  * vmf: fault info
1359  *
1360  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1361  * from userspace.  The fault handler takes care of binding the object to
1362  * the GTT (if needed), allocating and programming a fence register (again,
1363  * only if needed based on whether the old reg is still valid or the object
1364  * is tiled) and inserting a new PTE into the faulting process.
1365  *
1366  * Note that the faulting process may involve evicting existing objects
1367  * from the GTT and/or fence registers to make room.  So performance may
1368  * suffer if the GTT working set is large or there are few fence registers
1369  * left.
1370  */
1371 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1372 {
1373         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1374         struct drm_device *dev = obj->base.dev;
1375         drm_i915_private_t *dev_priv = dev->dev_private;
1376         pgoff_t page_offset;
1377         unsigned long pfn;
1378         int ret = 0;
1379         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1380
1381         intel_runtime_pm_get(dev_priv);
1382
1383         /* We don't use vmf->pgoff since that has the fake offset */
1384         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385                 PAGE_SHIFT;
1386
1387         ret = i915_mutex_lock_interruptible(dev);
1388         if (ret)
1389                 goto out;
1390
1391         trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393         /* Access to snoopable pages through the GTT is incoherent. */
1394         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395                 ret = -EINVAL;
1396                 goto unlock;
1397         }
1398
1399         /* Now bind it into the GTT if needed */
1400         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1401         if (ret)
1402                 goto unlock;
1403
1404         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405         if (ret)
1406                 goto unpin;
1407
1408         ret = i915_gem_object_get_fence(obj);
1409         if (ret)
1410                 goto unpin;
1411
1412         obj->fault_mappable = true;
1413
1414         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415         pfn >>= PAGE_SHIFT;
1416         pfn += page_offset;
1417
1418         /* Finally, remap it using the new GTT offset */
1419         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421         i915_gem_object_unpin(obj);
1422 unlock:
1423         mutex_unlock(&dev->struct_mutex);
1424 out:
1425         switch (ret) {
1426         case -EIO:
1427                 /* If this -EIO is due to a gpu hang, give the reset code a
1428                  * chance to clean up the mess. Otherwise return the proper
1429                  * SIGBUS. */
1430                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1431                         ret = VM_FAULT_SIGBUS;
1432                         break;
1433                 }
1434         case -EAGAIN:
1435                 /*
1436                  * EAGAIN means the gpu is hung and we'll wait for the error
1437                  * handler to reset everything when re-faulting in
1438                  * i915_mutex_lock_interruptible.
1439                  */
1440         case 0:
1441         case -ERESTARTSYS:
1442         case -EINTR:
1443         case -EBUSY:
1444                 /*
1445                  * EBUSY is ok: this just means that another thread
1446                  * already did the job.
1447                  */
1448                 ret = VM_FAULT_NOPAGE;
1449                 break;
1450         case -ENOMEM:
1451                 ret = VM_FAULT_OOM;
1452                 break;
1453         case -ENOSPC:
1454                 ret = VM_FAULT_SIGBUS;
1455                 break;
1456         default:
1457                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1458                 ret = VM_FAULT_SIGBUS;
1459                 break;
1460         }
1461
1462         intel_runtime_pm_put(dev_priv);
1463         return ret;
1464 }
1465
1466 /**
1467  * i915_gem_release_mmap - remove physical page mappings
1468  * @obj: obj in question
1469  *
1470  * Preserve the reservation of the mmapping with the DRM core code, but
1471  * relinquish ownership of the pages back to the system.
1472  *
1473  * It is vital that we remove the page mapping if we have mapped a tiled
1474  * object through the GTT and then lose the fence register due to
1475  * resource pressure. Similarly if the object has been moved out of the
1476  * aperture, than pages mapped into userspace must be revoked. Removing the
1477  * mapping will then trigger a page fault on the next user access, allowing
1478  * fixup by i915_gem_fault().
1479  */
1480 void
1481 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1482 {
1483         if (!obj->fault_mappable)
1484                 return;
1485
1486         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1487         obj->fault_mappable = false;
1488 }
1489
1490 uint32_t
1491 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1492 {
1493         uint32_t gtt_size;
1494
1495         if (INTEL_INFO(dev)->gen >= 4 ||
1496             tiling_mode == I915_TILING_NONE)
1497                 return size;
1498
1499         /* Previous chips need a power-of-two fence region when tiling */
1500         if (INTEL_INFO(dev)->gen == 3)
1501                 gtt_size = 1024*1024;
1502         else
1503                 gtt_size = 512*1024;
1504
1505         while (gtt_size < size)
1506                 gtt_size <<= 1;
1507
1508         return gtt_size;
1509 }
1510
1511 /**
1512  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1513  * @obj: object to check
1514  *
1515  * Return the required GTT alignment for an object, taking into account
1516  * potential fence register mapping.
1517  */
1518 uint32_t
1519 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1520                            int tiling_mode, bool fenced)
1521 {
1522         /*
1523          * Minimum alignment is 4k (GTT page size), but might be greater
1524          * if a fence register is needed for the object.
1525          */
1526         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1527             tiling_mode == I915_TILING_NONE)
1528                 return 4096;
1529
1530         /*
1531          * Previous chips need to be aligned to the size of the smallest
1532          * fence register that can contain the object.
1533          */
1534         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1535 }
1536
1537 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1538 {
1539         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1540         int ret;
1541
1542         if (drm_vma_node_has_offset(&obj->base.vma_node))
1543                 return 0;
1544
1545         dev_priv->mm.shrinker_no_lock_stealing = true;
1546
1547         ret = drm_gem_create_mmap_offset(&obj->base);
1548         if (ret != -ENOSPC)
1549                 goto out;
1550
1551         /* Badly fragmented mmap space? The only way we can recover
1552          * space is by destroying unwanted objects. We can't randomly release
1553          * mmap_offsets as userspace expects them to be persistent for the
1554          * lifetime of the objects. The closest we can is to release the
1555          * offsets on purgeable objects by truncating it and marking it purged,
1556          * which prevents userspace from ever using that object again.
1557          */
1558         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1559         ret = drm_gem_create_mmap_offset(&obj->base);
1560         if (ret != -ENOSPC)
1561                 goto out;
1562
1563         i915_gem_shrink_all(dev_priv);
1564         ret = drm_gem_create_mmap_offset(&obj->base);
1565 out:
1566         dev_priv->mm.shrinker_no_lock_stealing = false;
1567
1568         return ret;
1569 }
1570
1571 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1572 {
1573         drm_gem_free_mmap_offset(&obj->base);
1574 }
1575
1576 int
1577 i915_gem_mmap_gtt(struct drm_file *file,
1578                   struct drm_device *dev,
1579                   uint32_t handle,
1580                   uint64_t *offset)
1581 {
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         struct drm_i915_gem_object *obj;
1584         int ret;
1585
1586         ret = i915_mutex_lock_interruptible(dev);
1587         if (ret)
1588                 return ret;
1589
1590         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1591         if (&obj->base == NULL) {
1592                 ret = -ENOENT;
1593                 goto unlock;
1594         }
1595
1596         if (obj->base.size > dev_priv->gtt.mappable_end) {
1597                 ret = -E2BIG;
1598                 goto out;
1599         }
1600
1601         if (obj->madv != I915_MADV_WILLNEED) {
1602                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1603                 ret = -EINVAL;
1604                 goto out;
1605         }
1606
1607         ret = i915_gem_object_create_mmap_offset(obj);
1608         if (ret)
1609                 goto out;
1610
1611         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1612
1613 out:
1614         drm_gem_object_unreference(&obj->base);
1615 unlock:
1616         mutex_unlock(&dev->struct_mutex);
1617         return ret;
1618 }
1619
1620 /**
1621  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1622  * @dev: DRM device
1623  * @data: GTT mapping ioctl data
1624  * @file: GEM object info
1625  *
1626  * Simply returns the fake offset to userspace so it can mmap it.
1627  * The mmap call will end up in drm_gem_mmap(), which will set things
1628  * up so we can get faults in the handler above.
1629  *
1630  * The fault handler will take care of binding the object into the GTT
1631  * (since it may have been evicted to make room for something), allocating
1632  * a fence register, and mapping the appropriate aperture address into
1633  * userspace.
1634  */
1635 int
1636 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1637                         struct drm_file *file)
1638 {
1639         struct drm_i915_gem_mmap_gtt *args = data;
1640
1641         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1642 }
1643
1644 /* Immediately discard the backing storage */
1645 static void
1646 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1647 {
1648         struct inode *inode;
1649
1650         i915_gem_object_free_mmap_offset(obj);
1651
1652         if (obj->base.filp == NULL)
1653                 return;
1654
1655         /* Our goal here is to return as much of the memory as
1656          * is possible back to the system as we are called from OOM.
1657          * To do this we must instruct the shmfs to drop all of its
1658          * backing pages, *now*.
1659          */
1660         inode = file_inode(obj->base.filp);
1661         shmem_truncate_range(inode, 0, (loff_t)-1);
1662
1663         obj->madv = __I915_MADV_PURGED;
1664 }
1665
1666 static inline int
1667 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1668 {
1669         return obj->madv == I915_MADV_DONTNEED;
1670 }
1671
1672 static void
1673 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1674 {
1675         struct sg_page_iter sg_iter;
1676         int ret;
1677
1678         BUG_ON(obj->madv == __I915_MADV_PURGED);
1679
1680         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1681         if (ret) {
1682                 /* In the event of a disaster, abandon all caches and
1683                  * hope for the best.
1684                  */
1685                 WARN_ON(ret != -EIO);
1686                 i915_gem_clflush_object(obj, true);
1687                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1688         }
1689
1690         if (i915_gem_object_needs_bit17_swizzle(obj))
1691                 i915_gem_object_save_bit_17_swizzle(obj);
1692
1693         if (obj->madv == I915_MADV_DONTNEED)
1694                 obj->dirty = 0;
1695
1696         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1697                 struct page *page = sg_page_iter_page(&sg_iter);
1698
1699                 if (obj->dirty)
1700                         set_page_dirty(page);
1701
1702                 if (obj->madv == I915_MADV_WILLNEED)
1703                         mark_page_accessed(page);
1704
1705                 page_cache_release(page);
1706         }
1707         obj->dirty = 0;
1708
1709         sg_free_table(obj->pages);
1710         kfree(obj->pages);
1711 }
1712
1713 int
1714 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1715 {
1716         const struct drm_i915_gem_object_ops *ops = obj->ops;
1717
1718         if (obj->pages == NULL)
1719                 return 0;
1720
1721         if (obj->pages_pin_count)
1722                 return -EBUSY;
1723
1724         BUG_ON(i915_gem_obj_bound_any(obj));
1725
1726         /* ->put_pages might need to allocate memory for the bit17 swizzle
1727          * array, hence protect them from being reaped by removing them from gtt
1728          * lists early. */
1729         list_del(&obj->global_list);
1730
1731         ops->put_pages(obj);
1732         obj->pages = NULL;
1733
1734         if (i915_gem_object_is_purgeable(obj))
1735                 i915_gem_object_truncate(obj);
1736
1737         return 0;
1738 }
1739
1740 static unsigned long
1741 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1742                   bool purgeable_only)
1743 {
1744         struct list_head still_bound_list;
1745         struct drm_i915_gem_object *obj, *next;
1746         unsigned long count = 0;
1747
1748         list_for_each_entry_safe(obj, next,
1749                                  &dev_priv->mm.unbound_list,
1750                                  global_list) {
1751                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1752                     i915_gem_object_put_pages(obj) == 0) {
1753                         count += obj->base.size >> PAGE_SHIFT;
1754                         if (count >= target)
1755                                 return count;
1756                 }
1757         }
1758
1759         /*
1760          * As we may completely rewrite the bound list whilst unbinding
1761          * (due to retiring requests) we have to strictly process only
1762          * one element of the list at the time, and recheck the list
1763          * on every iteration.
1764          */
1765         INIT_LIST_HEAD(&still_bound_list);
1766         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1767                 struct i915_vma *vma, *v;
1768
1769                 obj = list_first_entry(&dev_priv->mm.bound_list,
1770                                        typeof(*obj), global_list);
1771                 list_move_tail(&obj->global_list, &still_bound_list);
1772
1773                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1774                         continue;
1775
1776                 /*
1777                  * Hold a reference whilst we unbind this object, as we may
1778                  * end up waiting for and retiring requests. This might
1779                  * release the final reference (held by the active list)
1780                  * and result in the object being freed from under us.
1781                  * in this object being freed.
1782                  *
1783                  * Note 1: Shrinking the bound list is special since only active
1784                  * (and hence bound objects) can contain such limbo objects, so
1785                  * we don't need special tricks for shrinking the unbound list.
1786                  * The only other place where we have to be careful with active
1787                  * objects suddenly disappearing due to retiring requests is the
1788                  * eviction code.
1789                  *
1790                  * Note 2: Even though the bound list doesn't hold a reference
1791                  * to the object we can safely grab one here: The final object
1792                  * unreferencing and the bound_list are both protected by the
1793                  * dev->struct_mutex and so we won't ever be able to observe an
1794                  * object on the bound_list with a reference count equals 0.
1795                  */
1796                 drm_gem_object_reference(&obj->base);
1797
1798                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1799                         if (i915_vma_unbind(vma))
1800                                 break;
1801
1802                 if (i915_gem_object_put_pages(obj) == 0)
1803                         count += obj->base.size >> PAGE_SHIFT;
1804
1805                 drm_gem_object_unreference(&obj->base);
1806         }
1807         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1808
1809         return count;
1810 }
1811
1812 static unsigned long
1813 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1814 {
1815         return __i915_gem_shrink(dev_priv, target, true);
1816 }
1817
1818 static unsigned long
1819 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1820 {
1821         struct drm_i915_gem_object *obj, *next;
1822         long freed = 0;
1823
1824         i915_gem_evict_everything(dev_priv->dev);
1825
1826         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1827                                  global_list) {
1828                 if (i915_gem_object_put_pages(obj) == 0)
1829                         freed += obj->base.size >> PAGE_SHIFT;
1830         }
1831         return freed;
1832 }
1833
1834 static int
1835 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1836 {
1837         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1838         int page_count, i;
1839         struct address_space *mapping;
1840         struct sg_table *st;
1841         struct scatterlist *sg;
1842         struct sg_page_iter sg_iter;
1843         struct page *page;
1844         unsigned long last_pfn = 0;     /* suppress gcc warning */
1845         gfp_t gfp;
1846
1847         /* Assert that the object is not currently in any GPU domain. As it
1848          * wasn't in the GTT, there shouldn't be any way it could have been in
1849          * a GPU cache
1850          */
1851         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1852         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1853
1854         st = kmalloc(sizeof(*st), GFP_KERNEL);
1855         if (st == NULL)
1856                 return -ENOMEM;
1857
1858         page_count = obj->base.size / PAGE_SIZE;
1859         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1860                 kfree(st);
1861                 return -ENOMEM;
1862         }
1863
1864         /* Get the list of pages out of our struct file.  They'll be pinned
1865          * at this point until we release them.
1866          *
1867          * Fail silently without starting the shrinker
1868          */
1869         mapping = file_inode(obj->base.filp)->i_mapping;
1870         gfp = mapping_gfp_mask(mapping);
1871         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1872         gfp &= ~(__GFP_IO | __GFP_WAIT);
1873         sg = st->sgl;
1874         st->nents = 0;
1875         for (i = 0; i < page_count; i++) {
1876                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1877                 if (IS_ERR(page)) {
1878                         i915_gem_purge(dev_priv, page_count);
1879                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1880                 }
1881                 if (IS_ERR(page)) {
1882                         /* We've tried hard to allocate the memory by reaping
1883                          * our own buffer, now let the real VM do its job and
1884                          * go down in flames if truly OOM.
1885                          */
1886                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1887                         gfp |= __GFP_IO | __GFP_WAIT;
1888
1889                         i915_gem_shrink_all(dev_priv);
1890                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1891                         if (IS_ERR(page))
1892                                 goto err_pages;
1893
1894                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1895                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1896                 }
1897 #ifdef CONFIG_SWIOTLB
1898                 if (swiotlb_nr_tbl()) {
1899                         st->nents++;
1900                         sg_set_page(sg, page, PAGE_SIZE, 0);
1901                         sg = sg_next(sg);
1902                         continue;
1903                 }
1904 #endif
1905                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1906                         if (i)
1907                                 sg = sg_next(sg);
1908                         st->nents++;
1909                         sg_set_page(sg, page, PAGE_SIZE, 0);
1910                 } else {
1911                         sg->length += PAGE_SIZE;
1912                 }
1913                 last_pfn = page_to_pfn(page);
1914
1915                 /* Check that the i965g/gm workaround works. */
1916                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1917         }
1918 #ifdef CONFIG_SWIOTLB
1919         if (!swiotlb_nr_tbl())
1920 #endif
1921                 sg_mark_end(sg);
1922         obj->pages = st;
1923
1924         if (i915_gem_object_needs_bit17_swizzle(obj))
1925                 i915_gem_object_do_bit_17_swizzle(obj);
1926
1927         return 0;
1928
1929 err_pages:
1930         sg_mark_end(sg);
1931         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1932                 page_cache_release(sg_page_iter_page(&sg_iter));
1933         sg_free_table(st);
1934         kfree(st);
1935         return PTR_ERR(page);
1936 }
1937
1938 /* Ensure that the associated pages are gathered from the backing storage
1939  * and pinned into our object. i915_gem_object_get_pages() may be called
1940  * multiple times before they are released by a single call to
1941  * i915_gem_object_put_pages() - once the pages are no longer referenced
1942  * either as a result of memory pressure (reaping pages under the shrinker)
1943  * or as the object is itself released.
1944  */
1945 int
1946 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1947 {
1948         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1949         const struct drm_i915_gem_object_ops *ops = obj->ops;
1950         int ret;
1951
1952         if (obj->pages)
1953                 return 0;
1954
1955         if (obj->madv != I915_MADV_WILLNEED) {
1956                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1957                 return -EINVAL;
1958         }
1959
1960         BUG_ON(obj->pages_pin_count);
1961
1962         ret = ops->get_pages(obj);
1963         if (ret)
1964                 return ret;
1965
1966         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1967         return 0;
1968 }
1969
1970 static void
1971 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1972                                struct intel_ring_buffer *ring)
1973 {
1974         struct drm_device *dev = obj->base.dev;
1975         struct drm_i915_private *dev_priv = dev->dev_private;
1976         u32 seqno = intel_ring_get_seqno(ring);
1977
1978         BUG_ON(ring == NULL);
1979         if (obj->ring != ring && obj->last_write_seqno) {
1980                 /* Keep the seqno relative to the current ring */
1981                 obj->last_write_seqno = seqno;
1982         }
1983         obj->ring = ring;
1984
1985         /* Add a reference if we're newly entering the active list. */
1986         if (!obj->active) {
1987                 drm_gem_object_reference(&obj->base);
1988                 obj->active = 1;
1989         }
1990
1991         list_move_tail(&obj->ring_list, &ring->active_list);
1992
1993         obj->last_read_seqno = seqno;
1994
1995         if (obj->fenced_gpu_access) {
1996                 obj->last_fenced_seqno = seqno;
1997
1998                 /* Bump MRU to take account of the delayed flush */
1999                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2000                         struct drm_i915_fence_reg *reg;
2001
2002                         reg = &dev_priv->fence_regs[obj->fence_reg];
2003                         list_move_tail(&reg->lru_list,
2004                                        &dev_priv->mm.fence_list);
2005                 }
2006         }
2007 }
2008
2009 void i915_vma_move_to_active(struct i915_vma *vma,
2010                              struct intel_ring_buffer *ring)
2011 {
2012         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2013         return i915_gem_object_move_to_active(vma->obj, ring);
2014 }
2015
2016 static void
2017 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2018 {
2019         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2020         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2021         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2022
2023         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2024         BUG_ON(!obj->active);
2025
2026         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2027
2028         list_del_init(&obj->ring_list);
2029         obj->ring = NULL;
2030
2031         obj->last_read_seqno = 0;
2032         obj->last_write_seqno = 0;
2033         obj->base.write_domain = 0;
2034
2035         obj->last_fenced_seqno = 0;
2036         obj->fenced_gpu_access = false;
2037
2038         obj->active = 0;
2039         drm_gem_object_unreference(&obj->base);
2040
2041         WARN_ON(i915_verify_lists(dev));
2042 }
2043
2044 static int
2045 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2046 {
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         struct intel_ring_buffer *ring;
2049         int ret, i, j;
2050
2051         /* Carefully retire all requests without writing to the rings */
2052         for_each_ring(ring, dev_priv, i) {
2053                 ret = intel_ring_idle(ring);
2054                 if (ret)
2055                         return ret;
2056         }
2057         i915_gem_retire_requests(dev);
2058
2059         /* Finally reset hw state */
2060         for_each_ring(ring, dev_priv, i) {
2061                 intel_ring_init_seqno(ring, seqno);
2062
2063                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2064                         ring->sync_seqno[j] = 0;
2065         }
2066
2067         return 0;
2068 }
2069
2070 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2071 {
2072         struct drm_i915_private *dev_priv = dev->dev_private;
2073         int ret;
2074
2075         if (seqno == 0)
2076                 return -EINVAL;
2077
2078         /* HWS page needs to be set less than what we
2079          * will inject to ring
2080          */
2081         ret = i915_gem_init_seqno(dev, seqno - 1);
2082         if (ret)
2083                 return ret;
2084
2085         /* Carefully set the last_seqno value so that wrap
2086          * detection still works
2087          */
2088         dev_priv->next_seqno = seqno;
2089         dev_priv->last_seqno = seqno - 1;
2090         if (dev_priv->last_seqno == 0)
2091                 dev_priv->last_seqno--;
2092
2093         return 0;
2094 }
2095
2096 int
2097 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2098 {
2099         struct drm_i915_private *dev_priv = dev->dev_private;
2100
2101         /* reserve 0 for non-seqno */
2102         if (dev_priv->next_seqno == 0) {
2103                 int ret = i915_gem_init_seqno(dev, 0);
2104                 if (ret)
2105                         return ret;
2106
2107                 dev_priv->next_seqno = 1;
2108         }
2109
2110         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2111         return 0;
2112 }
2113
2114 int __i915_add_request(struct intel_ring_buffer *ring,
2115                        struct drm_file *file,
2116                        struct drm_i915_gem_object *obj,
2117                        u32 *out_seqno)
2118 {
2119         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2120         struct drm_i915_gem_request *request;
2121         u32 request_ring_position, request_start;
2122         int was_empty;
2123         int ret;
2124
2125         request_start = intel_ring_get_tail(ring);
2126         /*
2127          * Emit any outstanding flushes - execbuf can fail to emit the flush
2128          * after having emitted the batchbuffer command. Hence we need to fix
2129          * things up similar to emitting the lazy request. The difference here
2130          * is that the flush _must_ happen before the next request, no matter
2131          * what.
2132          */
2133         ret = intel_ring_flush_all_caches(ring);
2134         if (ret)
2135                 return ret;
2136
2137         request = ring->preallocated_lazy_request;
2138         if (WARN_ON(request == NULL))
2139                 return -ENOMEM;
2140
2141         /* Record the position of the start of the request so that
2142          * should we detect the updated seqno part-way through the
2143          * GPU processing the request, we never over-estimate the
2144          * position of the head.
2145          */
2146         request_ring_position = intel_ring_get_tail(ring);
2147
2148         ret = ring->add_request(ring);
2149         if (ret)
2150                 return ret;
2151
2152         request->seqno = intel_ring_get_seqno(ring);
2153         request->ring = ring;
2154         request->head = request_start;
2155         request->tail = request_ring_position;
2156
2157         /* Whilst this request exists, batch_obj will be on the
2158          * active_list, and so will hold the active reference. Only when this
2159          * request is retired will the the batch_obj be moved onto the
2160          * inactive_list and lose its active reference. Hence we do not need
2161          * to explicitly hold another reference here.
2162          */
2163         request->batch_obj = obj;
2164
2165         /* Hold a reference to the current context so that we can inspect
2166          * it later in case a hangcheck error event fires.
2167          */
2168         request->ctx = ring->last_context;
2169         if (request->ctx)
2170                 i915_gem_context_reference(request->ctx);
2171
2172         request->emitted_jiffies = jiffies;
2173         was_empty = list_empty(&ring->request_list);
2174         list_add_tail(&request->list, &ring->request_list);
2175         request->file_priv = NULL;
2176
2177         if (file) {
2178                 struct drm_i915_file_private *file_priv = file->driver_priv;
2179
2180                 spin_lock(&file_priv->mm.lock);
2181                 request->file_priv = file_priv;
2182                 list_add_tail(&request->client_list,
2183                               &file_priv->mm.request_list);
2184                 spin_unlock(&file_priv->mm.lock);
2185         }
2186
2187         trace_i915_gem_request_add(ring, request->seqno);
2188         ring->outstanding_lazy_seqno = 0;
2189         ring->preallocated_lazy_request = NULL;
2190
2191         if (!dev_priv->ums.mm_suspended) {
2192                 i915_queue_hangcheck(ring->dev);
2193
2194                 if (was_empty) {
2195                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2196                         queue_delayed_work(dev_priv->wq,
2197                                            &dev_priv->mm.retire_work,
2198                                            round_jiffies_up_relative(HZ));
2199                         intel_mark_busy(dev_priv->dev);
2200                 }
2201         }
2202
2203         if (out_seqno)
2204                 *out_seqno = request->seqno;
2205         return 0;
2206 }
2207
2208 static inline void
2209 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2210 {
2211         struct drm_i915_file_private *file_priv = request->file_priv;
2212
2213         if (!file_priv)
2214                 return;
2215
2216         spin_lock(&file_priv->mm.lock);
2217         list_del(&request->client_list);
2218         request->file_priv = NULL;
2219         spin_unlock(&file_priv->mm.lock);
2220 }
2221
2222 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2223                                     struct i915_address_space *vm)
2224 {
2225         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2226             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2227                 return true;
2228
2229         return false;
2230 }
2231
2232 static bool i915_head_inside_request(const u32 acthd_unmasked,
2233                                      const u32 request_start,
2234                                      const u32 request_end)
2235 {
2236         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2237
2238         if (request_start < request_end) {
2239                 if (acthd >= request_start && acthd < request_end)
2240                         return true;
2241         } else if (request_start > request_end) {
2242                 if (acthd >= request_start || acthd < request_end)
2243                         return true;
2244         }
2245
2246         return false;
2247 }
2248
2249 static struct i915_address_space *
2250 request_to_vm(struct drm_i915_gem_request *request)
2251 {
2252         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2253         struct i915_address_space *vm;
2254
2255         vm = &dev_priv->gtt.base;
2256
2257         return vm;
2258 }
2259
2260 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2261                                 const u32 acthd, bool *inside)
2262 {
2263         /* There is a possibility that unmasked head address
2264          * pointing inside the ring, matches the batch_obj address range.
2265          * However this is extremely unlikely.
2266          */
2267         if (request->batch_obj) {
2268                 if (i915_head_inside_object(acthd, request->batch_obj,
2269                                             request_to_vm(request))) {
2270                         *inside = true;
2271                         return true;
2272                 }
2273         }
2274
2275         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2276                 *inside = false;
2277                 return true;
2278         }
2279
2280         return false;
2281 }
2282
2283 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2284 {
2285         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2286
2287         if (hs->banned)
2288                 return true;
2289
2290         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2291                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2292                 return true;
2293         }
2294
2295         return false;
2296 }
2297
2298 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2299                                   struct drm_i915_gem_request *request,
2300                                   u32 acthd)
2301 {
2302         struct i915_ctx_hang_stats *hs = NULL;
2303         bool inside, guilty;
2304         unsigned long offset = 0;
2305
2306         /* Innocent until proven guilty */
2307         guilty = false;
2308
2309         if (request->batch_obj)
2310                 offset = i915_gem_obj_offset(request->batch_obj,
2311                                              request_to_vm(request));
2312
2313         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2314             i915_request_guilty(request, acthd, &inside)) {
2315                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2316                           ring->name,
2317                           inside ? "inside" : "flushing",
2318                           offset,
2319                           request->ctx ? request->ctx->id : 0,
2320                           acthd);
2321
2322                 guilty = true;
2323         }
2324
2325         /* If contexts are disabled or this is the default context, use
2326          * file_priv->reset_state
2327          */
2328         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2329                 hs = &request->ctx->hang_stats;
2330         else if (request->file_priv)
2331                 hs = &request->file_priv->hang_stats;
2332
2333         if (hs) {
2334                 if (guilty) {
2335                         hs->banned = i915_context_is_banned(hs);
2336                         hs->batch_active++;
2337                         hs->guilty_ts = get_seconds();
2338                 } else {
2339                         hs->batch_pending++;
2340                 }
2341         }
2342 }
2343
2344 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2345 {
2346         list_del(&request->list);
2347         i915_gem_request_remove_from_client(request);
2348
2349         if (request->ctx)
2350                 i915_gem_context_unreference(request->ctx);
2351
2352         kfree(request);
2353 }
2354
2355 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2356                                       struct intel_ring_buffer *ring)
2357 {
2358         u32 completed_seqno;
2359         u32 acthd;
2360
2361         acthd = intel_ring_get_active_head(ring);
2362         completed_seqno = ring->get_seqno(ring, false);
2363
2364         while (!list_empty(&ring->request_list)) {
2365                 struct drm_i915_gem_request *request;
2366
2367                 request = list_first_entry(&ring->request_list,
2368                                            struct drm_i915_gem_request,
2369                                            list);
2370
2371                 if (request->seqno > completed_seqno)
2372                         i915_set_reset_status(ring, request, acthd);
2373
2374                 i915_gem_free_request(request);
2375         }
2376
2377         while (!list_empty(&ring->active_list)) {
2378                 struct drm_i915_gem_object *obj;
2379
2380                 obj = list_first_entry(&ring->active_list,
2381                                        struct drm_i915_gem_object,
2382                                        ring_list);
2383
2384                 i915_gem_object_move_to_inactive(obj);
2385         }
2386 }
2387
2388 void i915_gem_restore_fences(struct drm_device *dev)
2389 {
2390         struct drm_i915_private *dev_priv = dev->dev_private;
2391         int i;
2392
2393         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2394                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2395
2396                 /*
2397                  * Commit delayed tiling changes if we have an object still
2398                  * attached to the fence, otherwise just clear the fence.
2399                  */
2400                 if (reg->obj) {
2401                         i915_gem_object_update_fence(reg->obj, reg,
2402                                                      reg->obj->tiling_mode);
2403                 } else {
2404                         i915_gem_write_fence(dev, i, NULL);
2405                 }
2406         }
2407 }
2408
2409 void i915_gem_reset(struct drm_device *dev)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         struct intel_ring_buffer *ring;
2413         int i;
2414
2415         for_each_ring(ring, dev_priv, i)
2416                 i915_gem_reset_ring_lists(dev_priv, ring);
2417
2418         i915_gem_cleanup_ringbuffer(dev);
2419
2420         i915_gem_restore_fences(dev);
2421 }
2422
2423 /**
2424  * This function clears the request list as sequence numbers are passed.
2425  */
2426 void
2427 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2428 {
2429         uint32_t seqno;
2430
2431         if (list_empty(&ring->request_list))
2432                 return;
2433
2434         WARN_ON(i915_verify_lists(ring->dev));
2435
2436         seqno = ring->get_seqno(ring, true);
2437
2438         while (!list_empty(&ring->request_list)) {
2439                 struct drm_i915_gem_request *request;
2440
2441                 request = list_first_entry(&ring->request_list,
2442                                            struct drm_i915_gem_request,
2443                                            list);
2444
2445                 if (!i915_seqno_passed(seqno, request->seqno))
2446                         break;
2447
2448                 trace_i915_gem_request_retire(ring, request->seqno);
2449                 /* We know the GPU must have read the request to have
2450                  * sent us the seqno + interrupt, so use the position
2451                  * of tail of the request to update the last known position
2452                  * of the GPU head.
2453                  */
2454                 ring->last_retired_head = request->tail;
2455
2456                 i915_gem_free_request(request);
2457         }
2458
2459         /* Move any buffers on the active list that are no longer referenced
2460          * by the ringbuffer to the flushing/inactive lists as appropriate.
2461          */
2462         while (!list_empty(&ring->active_list)) {
2463                 struct drm_i915_gem_object *obj;
2464
2465                 obj = list_first_entry(&ring->active_list,
2466                                       struct drm_i915_gem_object,
2467                                       ring_list);
2468
2469                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2470                         break;
2471
2472                 i915_gem_object_move_to_inactive(obj);
2473         }
2474
2475         if (unlikely(ring->trace_irq_seqno &&
2476                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2477                 ring->irq_put(ring);
2478                 ring->trace_irq_seqno = 0;
2479         }
2480
2481         WARN_ON(i915_verify_lists(ring->dev));
2482 }
2483
2484 bool
2485 i915_gem_retire_requests(struct drm_device *dev)
2486 {
2487         drm_i915_private_t *dev_priv = dev->dev_private;
2488         struct intel_ring_buffer *ring;
2489         bool idle = true;
2490         int i;
2491
2492         for_each_ring(ring, dev_priv, i) {
2493                 i915_gem_retire_requests_ring(ring);
2494                 idle &= list_empty(&ring->request_list);
2495         }
2496
2497         if (idle)
2498                 mod_delayed_work(dev_priv->wq,
2499                                    &dev_priv->mm.idle_work,
2500                                    msecs_to_jiffies(100));
2501
2502         return idle;
2503 }
2504
2505 static void
2506 i915_gem_retire_work_handler(struct work_struct *work)
2507 {
2508         struct drm_i915_private *dev_priv =
2509                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2510         struct drm_device *dev = dev_priv->dev;
2511         bool idle;
2512
2513         /* Come back later if the device is busy... */
2514         idle = false;
2515         if (mutex_trylock(&dev->struct_mutex)) {
2516                 idle = i915_gem_retire_requests(dev);
2517                 mutex_unlock(&dev->struct_mutex);
2518         }
2519         if (!idle)
2520                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2521                                    round_jiffies_up_relative(HZ));
2522 }
2523
2524 static void
2525 i915_gem_idle_work_handler(struct work_struct *work)
2526 {
2527         struct drm_i915_private *dev_priv =
2528                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2529
2530         intel_mark_idle(dev_priv->dev);
2531 }
2532
2533 /**
2534  * Ensures that an object will eventually get non-busy by flushing any required
2535  * write domains, emitting any outstanding lazy request and retiring and
2536  * completed requests.
2537  */
2538 static int
2539 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2540 {
2541         int ret;
2542
2543         if (obj->active) {
2544                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2545                 if (ret)
2546                         return ret;
2547
2548                 i915_gem_retire_requests_ring(obj->ring);
2549         }
2550
2551         return 0;
2552 }
2553
2554 /**
2555  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2556  * @DRM_IOCTL_ARGS: standard ioctl arguments
2557  *
2558  * Returns 0 if successful, else an error is returned with the remaining time in
2559  * the timeout parameter.
2560  *  -ETIME: object is still busy after timeout
2561  *  -ERESTARTSYS: signal interrupted the wait
2562  *  -ENONENT: object doesn't exist
2563  * Also possible, but rare:
2564  *  -EAGAIN: GPU wedged
2565  *  -ENOMEM: damn
2566  *  -ENODEV: Internal IRQ fail
2567  *  -E?: The add request failed
2568  *
2569  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2570  * non-zero timeout parameter the wait ioctl will wait for the given number of
2571  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2572  * without holding struct_mutex the object may become re-busied before this
2573  * function completes. A similar but shorter * race condition exists in the busy
2574  * ioctl
2575  */
2576 int
2577 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2578 {
2579         drm_i915_private_t *dev_priv = dev->dev_private;
2580         struct drm_i915_gem_wait *args = data;
2581         struct drm_i915_gem_object *obj;
2582         struct intel_ring_buffer *ring = NULL;
2583         struct timespec timeout_stack, *timeout = NULL;
2584         unsigned reset_counter;
2585         u32 seqno = 0;
2586         int ret = 0;
2587
2588         if (args->timeout_ns >= 0) {
2589                 timeout_stack = ns_to_timespec(args->timeout_ns);
2590                 timeout = &timeout_stack;
2591         }
2592
2593         ret = i915_mutex_lock_interruptible(dev);
2594         if (ret)
2595                 return ret;
2596
2597         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2598         if (&obj->base == NULL) {
2599                 mutex_unlock(&dev->struct_mutex);
2600                 return -ENOENT;
2601         }
2602
2603         /* Need to make sure the object gets inactive eventually. */
2604         ret = i915_gem_object_flush_active(obj);
2605         if (ret)
2606                 goto out;
2607
2608         if (obj->active) {
2609                 seqno = obj->last_read_seqno;
2610                 ring = obj->ring;
2611         }
2612
2613         if (seqno == 0)
2614                  goto out;
2615
2616         /* Do this after OLR check to make sure we make forward progress polling
2617          * on this IOCTL with a 0 timeout (like busy ioctl)
2618          */
2619         if (!args->timeout_ns) {
2620                 ret = -ETIME;
2621                 goto out;
2622         }
2623
2624         drm_gem_object_unreference(&obj->base);
2625         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2626         mutex_unlock(&dev->struct_mutex);
2627
2628         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2629         if (timeout)
2630                 args->timeout_ns = timespec_to_ns(timeout);
2631         return ret;
2632
2633 out:
2634         drm_gem_object_unreference(&obj->base);
2635         mutex_unlock(&dev->struct_mutex);
2636         return ret;
2637 }
2638
2639 /**
2640  * i915_gem_object_sync - sync an object to a ring.
2641  *
2642  * @obj: object which may be in use on another ring.
2643  * @to: ring we wish to use the object on. May be NULL.
2644  *
2645  * This code is meant to abstract object synchronization with the GPU.
2646  * Calling with NULL implies synchronizing the object with the CPU
2647  * rather than a particular GPU ring.
2648  *
2649  * Returns 0 if successful, else propagates up the lower layer error.
2650  */
2651 int
2652 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2653                      struct intel_ring_buffer *to)
2654 {
2655         struct intel_ring_buffer *from = obj->ring;
2656         u32 seqno;
2657         int ret, idx;
2658
2659         if (from == NULL || to == from)
2660                 return 0;
2661
2662         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2663                 return i915_gem_object_wait_rendering(obj, false);
2664
2665         idx = intel_ring_sync_index(from, to);
2666
2667         seqno = obj->last_read_seqno;
2668         if (seqno <= from->sync_seqno[idx])
2669                 return 0;
2670
2671         ret = i915_gem_check_olr(obj->ring, seqno);
2672         if (ret)
2673                 return ret;
2674
2675         trace_i915_gem_ring_sync_to(from, to, seqno);
2676         ret = to->sync_to(to, from, seqno);
2677         if (!ret)
2678                 /* We use last_read_seqno because sync_to()
2679                  * might have just caused seqno wrap under
2680                  * the radar.
2681                  */
2682                 from->sync_seqno[idx] = obj->last_read_seqno;
2683
2684         return ret;
2685 }
2686
2687 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2688 {
2689         u32 old_write_domain, old_read_domains;
2690
2691         /* Force a pagefault for domain tracking on next user access */
2692         i915_gem_release_mmap(obj);
2693
2694         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2695                 return;
2696
2697         /* Wait for any direct GTT access to complete */
2698         mb();
2699
2700         old_read_domains = obj->base.read_domains;
2701         old_write_domain = obj->base.write_domain;
2702
2703         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2704         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2705
2706         trace_i915_gem_object_change_domain(obj,
2707                                             old_read_domains,
2708                                             old_write_domain);
2709 }
2710
2711 int i915_vma_unbind(struct i915_vma *vma)
2712 {
2713         struct drm_i915_gem_object *obj = vma->obj;
2714         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2715         int ret;
2716
2717         /* For now we only ever use 1 vma per object */
2718         WARN_ON(!list_is_singular(&obj->vma_list));
2719
2720         if (list_empty(&vma->vma_link))
2721                 return 0;
2722
2723         if (!drm_mm_node_allocated(&vma->node)) {
2724                 i915_gem_vma_destroy(vma);
2725
2726                 return 0;
2727         }
2728
2729         if (obj->pin_count)
2730                 return -EBUSY;
2731
2732         BUG_ON(obj->pages == NULL);
2733
2734         ret = i915_gem_object_finish_gpu(obj);
2735         if (ret)
2736                 return ret;
2737         /* Continue on if we fail due to EIO, the GPU is hung so we
2738          * should be safe and we need to cleanup or else we might
2739          * cause memory corruption through use-after-free.
2740          */
2741
2742         i915_gem_object_finish_gtt(obj);
2743
2744         /* release the fence reg _after_ flushing */
2745         ret = i915_gem_object_put_fence(obj);
2746         if (ret)
2747                 return ret;
2748
2749         trace_i915_vma_unbind(vma);
2750
2751         if (obj->has_global_gtt_mapping)
2752                 i915_gem_gtt_unbind_object(obj);
2753         if (obj->has_aliasing_ppgtt_mapping) {
2754                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2755                 obj->has_aliasing_ppgtt_mapping = 0;
2756         }
2757         i915_gem_gtt_finish_object(obj);
2758
2759         list_del(&vma->mm_list);
2760         /* Avoid an unnecessary call to unbind on rebind. */
2761         if (i915_is_ggtt(vma->vm))
2762                 obj->map_and_fenceable = true;
2763
2764         drm_mm_remove_node(&vma->node);
2765         i915_gem_vma_destroy(vma);
2766
2767         /* Since the unbound list is global, only move to that list if
2768          * no more VMAs exist. */
2769         if (list_empty(&obj->vma_list))
2770                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2771
2772         /* And finally now the object is completely decoupled from this vma,
2773          * we can drop its hold on the backing storage and allow it to be
2774          * reaped by the shrinker.
2775          */
2776         i915_gem_object_unpin_pages(obj);
2777
2778         return 0;
2779 }
2780
2781 /**
2782  * Unbinds an object from the global GTT aperture.
2783  */
2784 int
2785 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2786 {
2787         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2788         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2789
2790         if (!i915_gem_obj_ggtt_bound(obj))
2791                 return 0;
2792
2793         if (obj->pin_count)
2794                 return -EBUSY;
2795
2796         BUG_ON(obj->pages == NULL);
2797
2798         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2799 }
2800
2801 int i915_gpu_idle(struct drm_device *dev)
2802 {
2803         drm_i915_private_t *dev_priv = dev->dev_private;
2804         struct intel_ring_buffer *ring;
2805         int ret, i;
2806
2807         /* Flush everything onto the inactive list. */
2808         for_each_ring(ring, dev_priv, i) {
2809                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2810                 if (ret)
2811                         return ret;
2812
2813                 ret = intel_ring_idle(ring);
2814                 if (ret)
2815                         return ret;
2816         }
2817
2818         return 0;
2819 }
2820
2821 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2822                                  struct drm_i915_gem_object *obj)
2823 {
2824         drm_i915_private_t *dev_priv = dev->dev_private;
2825         int fence_reg;
2826         int fence_pitch_shift;
2827
2828         if (INTEL_INFO(dev)->gen >= 6) {
2829                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2830                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2831         } else {
2832                 fence_reg = FENCE_REG_965_0;
2833                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2834         }
2835
2836         fence_reg += reg * 8;
2837
2838         /* To w/a incoherency with non-atomic 64-bit register updates,
2839          * we split the 64-bit update into two 32-bit writes. In order
2840          * for a partial fence not to be evaluated between writes, we
2841          * precede the update with write to turn off the fence register,
2842          * and only enable the fence as the last step.
2843          *
2844          * For extra levels of paranoia, we make sure each step lands
2845          * before applying the next step.
2846          */
2847         I915_WRITE(fence_reg, 0);
2848         POSTING_READ(fence_reg);
2849
2850         if (obj) {
2851                 u32 size = i915_gem_obj_ggtt_size(obj);
2852                 uint64_t val;
2853
2854                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2855                                  0xfffff000) << 32;
2856                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2857                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2858                 if (obj->tiling_mode == I915_TILING_Y)
2859                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2860                 val |= I965_FENCE_REG_VALID;
2861
2862                 I915_WRITE(fence_reg + 4, val >> 32);
2863                 POSTING_READ(fence_reg + 4);
2864
2865                 I915_WRITE(fence_reg + 0, val);
2866                 POSTING_READ(fence_reg);
2867         } else {
2868                 I915_WRITE(fence_reg + 4, 0);
2869                 POSTING_READ(fence_reg + 4);
2870         }
2871 }
2872
2873 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2874                                  struct drm_i915_gem_object *obj)
2875 {
2876         drm_i915_private_t *dev_priv = dev->dev_private;
2877         u32 val;
2878
2879         if (obj) {
2880                 u32 size = i915_gem_obj_ggtt_size(obj);
2881                 int pitch_val;
2882                 int tile_width;
2883
2884                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2885                      (size & -size) != size ||
2886                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2887                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2888                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2889
2890                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2891                         tile_width = 128;
2892                 else
2893                         tile_width = 512;
2894
2895                 /* Note: pitch better be a power of two tile widths */
2896                 pitch_val = obj->stride / tile_width;
2897                 pitch_val = ffs(pitch_val) - 1;
2898
2899                 val = i915_gem_obj_ggtt_offset(obj);
2900                 if (obj->tiling_mode == I915_TILING_Y)
2901                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2902                 val |= I915_FENCE_SIZE_BITS(size);
2903                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2904                 val |= I830_FENCE_REG_VALID;
2905         } else
2906                 val = 0;
2907
2908         if (reg < 8)
2909                 reg = FENCE_REG_830_0 + reg * 4;
2910         else
2911                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2912
2913         I915_WRITE(reg, val);
2914         POSTING_READ(reg);
2915 }
2916
2917 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2918                                 struct drm_i915_gem_object *obj)
2919 {
2920         drm_i915_private_t *dev_priv = dev->dev_private;
2921         uint32_t val;
2922
2923         if (obj) {
2924                 u32 size = i915_gem_obj_ggtt_size(obj);
2925                 uint32_t pitch_val;
2926
2927                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2928                      (size & -size) != size ||
2929                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2930                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2931                      i915_gem_obj_ggtt_offset(obj), size);
2932
2933                 pitch_val = obj->stride / 128;
2934                 pitch_val = ffs(pitch_val) - 1;
2935
2936                 val = i915_gem_obj_ggtt_offset(obj);
2937                 if (obj->tiling_mode == I915_TILING_Y)
2938                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2939                 val |= I830_FENCE_SIZE_BITS(size);
2940                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2941                 val |= I830_FENCE_REG_VALID;
2942         } else
2943                 val = 0;
2944
2945         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2946         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2947 }
2948
2949 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2950 {
2951         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2952 }
2953
2954 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2955                                  struct drm_i915_gem_object *obj)
2956 {
2957         struct drm_i915_private *dev_priv = dev->dev_private;
2958
2959         /* Ensure that all CPU reads are completed before installing a fence
2960          * and all writes before removing the fence.
2961          */
2962         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2963                 mb();
2964
2965         WARN(obj && (!obj->stride || !obj->tiling_mode),
2966              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2967              obj->stride, obj->tiling_mode);
2968
2969         switch (INTEL_INFO(dev)->gen) {
2970         case 8:
2971         case 7:
2972         case 6:
2973         case 5:
2974         case 4: i965_write_fence_reg(dev, reg, obj); break;
2975         case 3: i915_write_fence_reg(dev, reg, obj); break;
2976         case 2: i830_write_fence_reg(dev, reg, obj); break;
2977         default: BUG();
2978         }
2979
2980         /* And similarly be paranoid that no direct access to this region
2981          * is reordered to before the fence is installed.
2982          */
2983         if (i915_gem_object_needs_mb(obj))
2984                 mb();
2985 }
2986
2987 static inline int fence_number(struct drm_i915_private *dev_priv,
2988                                struct drm_i915_fence_reg *fence)
2989 {
2990         return fence - dev_priv->fence_regs;
2991 }
2992
2993 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2994                                          struct drm_i915_fence_reg *fence,
2995                                          bool enable)
2996 {
2997         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2998         int reg = fence_number(dev_priv, fence);
2999
3000         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3001
3002         if (enable) {
3003                 obj->fence_reg = reg;
3004                 fence->obj = obj;
3005                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3006         } else {
3007                 obj->fence_reg = I915_FENCE_REG_NONE;
3008                 fence->obj = NULL;
3009                 list_del_init(&fence->lru_list);
3010         }
3011         obj->fence_dirty = false;
3012 }
3013
3014 static int
3015 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3016 {
3017         if (obj->last_fenced_seqno) {
3018                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3019                 if (ret)
3020                         return ret;
3021
3022                 obj->last_fenced_seqno = 0;
3023         }
3024
3025         obj->fenced_gpu_access = false;
3026         return 0;
3027 }
3028
3029 int
3030 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3031 {
3032         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3033         struct drm_i915_fence_reg *fence;
3034         int ret;
3035
3036         ret = i915_gem_object_wait_fence(obj);
3037         if (ret)
3038                 return ret;
3039
3040         if (obj->fence_reg == I915_FENCE_REG_NONE)
3041                 return 0;
3042
3043         fence = &dev_priv->fence_regs[obj->fence_reg];
3044
3045         i915_gem_object_fence_lost(obj);
3046         i915_gem_object_update_fence(obj, fence, false);
3047
3048         return 0;
3049 }
3050
3051 static struct drm_i915_fence_reg *
3052 i915_find_fence_reg(struct drm_device *dev)
3053 {
3054         struct drm_i915_private *dev_priv = dev->dev_private;
3055         struct drm_i915_fence_reg *reg, *avail;
3056         int i;
3057
3058         /* First try to find a free reg */
3059         avail = NULL;
3060         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3061                 reg = &dev_priv->fence_regs[i];
3062                 if (!reg->obj)
3063                         return reg;
3064
3065                 if (!reg->pin_count)
3066                         avail = reg;
3067         }
3068
3069         if (avail == NULL)
3070                 return NULL;
3071
3072         /* None available, try to steal one or wait for a user to finish */
3073         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3074                 if (reg->pin_count)
3075                         continue;
3076
3077                 return reg;
3078         }
3079
3080         return NULL;
3081 }
3082
3083 /**
3084  * i915_gem_object_get_fence - set up fencing for an object
3085  * @obj: object to map through a fence reg
3086  *
3087  * When mapping objects through the GTT, userspace wants to be able to write
3088  * to them without having to worry about swizzling if the object is tiled.
3089  * This function walks the fence regs looking for a free one for @obj,
3090  * stealing one if it can't find any.
3091  *
3092  * It then sets up the reg based on the object's properties: address, pitch
3093  * and tiling format.
3094  *
3095  * For an untiled surface, this removes any existing fence.
3096  */
3097 int
3098 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3099 {
3100         struct drm_device *dev = obj->base.dev;
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102         bool enable = obj->tiling_mode != I915_TILING_NONE;
3103         struct drm_i915_fence_reg *reg;
3104         int ret;
3105
3106         /* Have we updated the tiling parameters upon the object and so
3107          * will need to serialise the write to the associated fence register?
3108          */
3109         if (obj->fence_dirty) {
3110                 ret = i915_gem_object_wait_fence(obj);
3111                 if (ret)
3112                         return ret;
3113         }
3114
3115         /* Just update our place in the LRU if our fence is getting reused. */
3116         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3117                 reg = &dev_priv->fence_regs[obj->fence_reg];
3118                 if (!obj->fence_dirty) {
3119                         list_move_tail(&reg->lru_list,
3120                                        &dev_priv->mm.fence_list);
3121                         return 0;
3122                 }
3123         } else if (enable) {
3124                 reg = i915_find_fence_reg(dev);
3125                 if (reg == NULL)
3126                         return -EDEADLK;
3127
3128                 if (reg->obj) {
3129                         struct drm_i915_gem_object *old = reg->obj;
3130
3131                         ret = i915_gem_object_wait_fence(old);
3132                         if (ret)
3133                                 return ret;
3134
3135                         i915_gem_object_fence_lost(old);
3136                 }
3137         } else
3138                 return 0;
3139
3140         i915_gem_object_update_fence(obj, reg, enable);
3141
3142         return 0;
3143 }
3144
3145 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3146                                      struct drm_mm_node *gtt_space,
3147                                      unsigned long cache_level)
3148 {
3149         struct drm_mm_node *other;
3150
3151         /* On non-LLC machines we have to be careful when putting differing
3152          * types of snoopable memory together to avoid the prefetcher
3153          * crossing memory domains and dying.
3154          */
3155         if (HAS_LLC(dev))
3156                 return true;
3157
3158         if (!drm_mm_node_allocated(gtt_space))
3159                 return true;
3160
3161         if (list_empty(&gtt_space->node_list))
3162                 return true;
3163
3164         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3165         if (other->allocated && !other->hole_follows && other->color != cache_level)
3166                 return false;
3167
3168         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3169         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3170                 return false;
3171
3172         return true;
3173 }
3174
3175 static void i915_gem_verify_gtt(struct drm_device *dev)
3176 {
3177 #if WATCH_GTT
3178         struct drm_i915_private *dev_priv = dev->dev_private;
3179         struct drm_i915_gem_object *obj;
3180         int err = 0;
3181
3182         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3183                 if (obj->gtt_space == NULL) {
3184                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3185                         err++;
3186                         continue;
3187                 }
3188
3189                 if (obj->cache_level != obj->gtt_space->color) {
3190                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3191                                i915_gem_obj_ggtt_offset(obj),
3192                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3193                                obj->cache_level,
3194                                obj->gtt_space->color);
3195                         err++;
3196                         continue;
3197                 }
3198
3199                 if (!i915_gem_valid_gtt_space(dev,
3200                                               obj->gtt_space,
3201                                               obj->cache_level)) {
3202                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3203                                i915_gem_obj_ggtt_offset(obj),
3204                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3205                                obj->cache_level);
3206                         err++;
3207                         continue;
3208                 }
3209         }
3210
3211         WARN_ON(err);
3212 #endif
3213 }
3214
3215 /**
3216  * Finds free space in the GTT aperture and binds the object there.
3217  */
3218 static int
3219 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3220                            struct i915_address_space *vm,
3221                            unsigned alignment,
3222                            bool map_and_fenceable,
3223                            bool nonblocking)
3224 {
3225         struct drm_device *dev = obj->base.dev;
3226         drm_i915_private_t *dev_priv = dev->dev_private;
3227         u32 size, fence_size, fence_alignment, unfenced_alignment;
3228         size_t gtt_max =
3229                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3230         struct i915_vma *vma;
3231         int ret;
3232
3233         fence_size = i915_gem_get_gtt_size(dev,
3234                                            obj->base.size,
3235                                            obj->tiling_mode);
3236         fence_alignment = i915_gem_get_gtt_alignment(dev,
3237                                                      obj->base.size,
3238                                                      obj->tiling_mode, true);
3239         unfenced_alignment =
3240                 i915_gem_get_gtt_alignment(dev,
3241                                                     obj->base.size,
3242                                                     obj->tiling_mode, false);
3243
3244         if (alignment == 0)
3245                 alignment = map_and_fenceable ? fence_alignment :
3246                                                 unfenced_alignment;
3247         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3248                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3249                 return -EINVAL;
3250         }
3251
3252         size = map_and_fenceable ? fence_size : obj->base.size;
3253
3254         /* If the object is bigger than the entire aperture, reject it early
3255          * before evicting everything in a vain attempt to find space.
3256          */
3257         if (obj->base.size > gtt_max) {
3258                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3259                           obj->base.size,
3260                           map_and_fenceable ? "mappable" : "total",
3261                           gtt_max);
3262                 return -E2BIG;
3263         }
3264
3265         ret = i915_gem_object_get_pages(obj);
3266         if (ret)
3267                 return ret;
3268
3269         i915_gem_object_pin_pages(obj);
3270
3271         BUG_ON(!i915_is_ggtt(vm));
3272
3273         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3274         if (IS_ERR(vma)) {
3275                 ret = PTR_ERR(vma);
3276                 goto err_unpin;
3277         }
3278
3279         /* For now we only ever use 1 vma per object */
3280         WARN_ON(!list_is_singular(&obj->vma_list));
3281
3282 search_free:
3283         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3284                                                   size, alignment,
3285                                                   obj->cache_level, 0, gtt_max,
3286                                                   DRM_MM_SEARCH_DEFAULT);
3287         if (ret) {
3288                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3289                                                obj->cache_level,
3290                                                map_and_fenceable,
3291                                                nonblocking);
3292                 if (ret == 0)
3293                         goto search_free;
3294
3295                 goto err_free_vma;
3296         }
3297         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3298                                               obj->cache_level))) {
3299                 ret = -EINVAL;
3300                 goto err_remove_node;
3301         }
3302
3303         ret = i915_gem_gtt_prepare_object(obj);
3304         if (ret)
3305                 goto err_remove_node;
3306
3307         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3308         list_add_tail(&vma->mm_list, &vm->inactive_list);
3309
3310         if (i915_is_ggtt(vm)) {
3311                 bool mappable, fenceable;
3312
3313                 fenceable = (vma->node.size == fence_size &&
3314                              (vma->node.start & (fence_alignment - 1)) == 0);
3315
3316                 mappable = (vma->node.start + obj->base.size <=
3317                             dev_priv->gtt.mappable_end);
3318
3319                 obj->map_and_fenceable = mappable && fenceable;
3320         }
3321
3322         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3323
3324         trace_i915_vma_bind(vma, map_and_fenceable);
3325         i915_gem_verify_gtt(dev);
3326         return 0;
3327
3328 err_remove_node:
3329         drm_mm_remove_node(&vma->node);
3330 err_free_vma:
3331         i915_gem_vma_destroy(vma);
3332 err_unpin:
3333         i915_gem_object_unpin_pages(obj);
3334         return ret;
3335 }
3336
3337 bool
3338 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3339                         bool force)
3340 {
3341         /* If we don't have a page list set up, then we're not pinned
3342          * to GPU, and we can ignore the cache flush because it'll happen
3343          * again at bind time.
3344          */
3345         if (obj->pages == NULL)
3346                 return false;
3347
3348         /*
3349          * Stolen memory is always coherent with the GPU as it is explicitly
3350          * marked as wc by the system, or the system is cache-coherent.
3351          */
3352         if (obj->stolen)
3353                 return false;
3354
3355         /* If the GPU is snooping the contents of the CPU cache,
3356          * we do not need to manually clear the CPU cache lines.  However,
3357          * the caches are only snooped when the render cache is
3358          * flushed/invalidated.  As we always have to emit invalidations
3359          * and flushes when moving into and out of the RENDER domain, correct
3360          * snooping behaviour occurs naturally as the result of our domain
3361          * tracking.
3362          */
3363         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3364                 return false;
3365
3366         trace_i915_gem_object_clflush(obj);
3367         drm_clflush_sg(obj->pages);
3368
3369         return true;
3370 }
3371
3372 /** Flushes the GTT write domain for the object if it's dirty. */
3373 static void
3374 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3375 {
3376         uint32_t old_write_domain;
3377
3378         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3379                 return;
3380
3381         /* No actual flushing is required for the GTT write domain.  Writes
3382          * to it immediately go to main memory as far as we know, so there's
3383          * no chipset flush.  It also doesn't land in render cache.
3384          *
3385          * However, we do have to enforce the order so that all writes through
3386          * the GTT land before any writes to the device, such as updates to
3387          * the GATT itself.
3388          */
3389         wmb();
3390
3391         old_write_domain = obj->base.write_domain;
3392         obj->base.write_domain = 0;
3393
3394         trace_i915_gem_object_change_domain(obj,
3395                                             obj->base.read_domains,
3396                                             old_write_domain);
3397 }
3398
3399 /** Flushes the CPU write domain for the object if it's dirty. */
3400 static void
3401 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3402                                        bool force)
3403 {
3404         uint32_t old_write_domain;
3405
3406         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3407                 return;
3408
3409         if (i915_gem_clflush_object(obj, force))
3410                 i915_gem_chipset_flush(obj->base.dev);
3411
3412         old_write_domain = obj->base.write_domain;
3413         obj->base.write_domain = 0;
3414
3415         trace_i915_gem_object_change_domain(obj,
3416                                             obj->base.read_domains,
3417                                             old_write_domain);
3418 }
3419
3420 /**
3421  * Moves a single object to the GTT read, and possibly write domain.
3422  *
3423  * This function returns when the move is complete, including waiting on
3424  * flushes to occur.
3425  */
3426 int
3427 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3428 {
3429         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3430         uint32_t old_write_domain, old_read_domains;
3431         int ret;
3432
3433         /* Not valid to be called on unbound objects. */
3434         if (!i915_gem_obj_bound_any(obj))
3435                 return -EINVAL;
3436
3437         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3438                 return 0;
3439
3440         ret = i915_gem_object_wait_rendering(obj, !write);
3441         if (ret)
3442                 return ret;
3443
3444         i915_gem_object_flush_cpu_write_domain(obj, false);
3445
3446         /* Serialise direct access to this object with the barriers for
3447          * coherent writes from the GPU, by effectively invalidating the
3448          * GTT domain upon first access.
3449          */
3450         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3451                 mb();
3452
3453         old_write_domain = obj->base.write_domain;
3454         old_read_domains = obj->base.read_domains;
3455
3456         /* It should now be out of any other write domains, and we can update
3457          * the domain values for our changes.
3458          */
3459         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3460         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3461         if (write) {
3462                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3463                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3464                 obj->dirty = 1;
3465         }
3466
3467         trace_i915_gem_object_change_domain(obj,
3468                                             old_read_domains,
3469                                             old_write_domain);
3470
3471         /* And bump the LRU for this access */
3472         if (i915_gem_object_is_inactive(obj)) {
3473                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3474                 if (vma)
3475                         list_move_tail(&vma->mm_list,
3476                                        &dev_priv->gtt.base.inactive_list);
3477
3478         }
3479
3480         return 0;
3481 }
3482
3483 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3484                                     enum i915_cache_level cache_level)
3485 {
3486         struct drm_device *dev = obj->base.dev;
3487         drm_i915_private_t *dev_priv = dev->dev_private;
3488         struct i915_vma *vma;
3489         int ret;
3490
3491         if (obj->cache_level == cache_level)
3492                 return 0;
3493
3494         if (obj->pin_count) {
3495                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3496                 return -EBUSY;
3497         }
3498
3499         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3500                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3501                         ret = i915_vma_unbind(vma);
3502                         if (ret)
3503                                 return ret;
3504
3505                         break;
3506                 }
3507         }
3508
3509         if (i915_gem_obj_bound_any(obj)) {
3510                 ret = i915_gem_object_finish_gpu(obj);
3511                 if (ret)
3512                         return ret;
3513
3514                 i915_gem_object_finish_gtt(obj);
3515
3516                 /* Before SandyBridge, you could not use tiling or fence
3517                  * registers with snooped memory, so relinquish any fences
3518                  * currently pointing to our region in the aperture.
3519                  */
3520                 if (INTEL_INFO(dev)->gen < 6) {
3521                         ret = i915_gem_object_put_fence(obj);
3522                         if (ret)
3523                                 return ret;
3524                 }
3525
3526                 if (obj->has_global_gtt_mapping)
3527                         i915_gem_gtt_bind_object(obj, cache_level);
3528                 if (obj->has_aliasing_ppgtt_mapping)
3529                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3530                                                obj, cache_level);
3531         }
3532
3533         list_for_each_entry(vma, &obj->vma_list, vma_link)
3534                 vma->node.color = cache_level;
3535         obj->cache_level = cache_level;
3536
3537         if (cpu_write_needs_clflush(obj)) {
3538                 u32 old_read_domains, old_write_domain;
3539
3540                 /* If we're coming from LLC cached, then we haven't
3541                  * actually been tracking whether the data is in the
3542                  * CPU cache or not, since we only allow one bit set
3543                  * in obj->write_domain and have been skipping the clflushes.
3544                  * Just set it to the CPU cache for now.
3545                  */
3546                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3547
3548                 old_read_domains = obj->base.read_domains;
3549                 old_write_domain = obj->base.write_domain;
3550
3551                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3552                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3553
3554                 trace_i915_gem_object_change_domain(obj,
3555                                                     old_read_domains,
3556                                                     old_write_domain);
3557         }
3558
3559         i915_gem_verify_gtt(dev);
3560         return 0;
3561 }
3562
3563 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3564                                struct drm_file *file)
3565 {
3566         struct drm_i915_gem_caching *args = data;
3567         struct drm_i915_gem_object *obj;
3568         int ret;
3569
3570         ret = i915_mutex_lock_interruptible(dev);
3571         if (ret)
3572                 return ret;
3573
3574         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3575         if (&obj->base == NULL) {
3576                 ret = -ENOENT;
3577                 goto unlock;
3578         }
3579
3580         switch (obj->cache_level) {
3581         case I915_CACHE_LLC:
3582         case I915_CACHE_L3_LLC:
3583                 args->caching = I915_CACHING_CACHED;
3584                 break;
3585
3586         case I915_CACHE_WT:
3587                 args->caching = I915_CACHING_DISPLAY;
3588                 break;
3589
3590         default:
3591                 args->caching = I915_CACHING_NONE;
3592                 break;
3593         }
3594
3595         drm_gem_object_unreference(&obj->base);
3596 unlock:
3597         mutex_unlock(&dev->struct_mutex);
3598         return ret;
3599 }
3600
3601 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3602                                struct drm_file *file)
3603 {
3604         struct drm_i915_gem_caching *args = data;
3605         struct drm_i915_gem_object *obj;
3606         enum i915_cache_level level;
3607         int ret;
3608
3609         switch (args->caching) {
3610         case I915_CACHING_NONE:
3611                 level = I915_CACHE_NONE;
3612                 break;
3613         case I915_CACHING_CACHED:
3614                 level = I915_CACHE_LLC;
3615                 break;
3616         case I915_CACHING_DISPLAY:
3617                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3618                 break;
3619         default:
3620                 return -EINVAL;
3621         }
3622
3623         ret = i915_mutex_lock_interruptible(dev);
3624         if (ret)
3625                 return ret;
3626
3627         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3628         if (&obj->base == NULL) {
3629                 ret = -ENOENT;
3630                 goto unlock;
3631         }
3632
3633         ret = i915_gem_object_set_cache_level(obj, level);
3634
3635         drm_gem_object_unreference(&obj->base);
3636 unlock:
3637         mutex_unlock(&dev->struct_mutex);
3638         return ret;
3639 }
3640
3641 static bool is_pin_display(struct drm_i915_gem_object *obj)
3642 {
3643         /* There are 3 sources that pin objects:
3644          *   1. The display engine (scanouts, sprites, cursors);
3645          *   2. Reservations for execbuffer;
3646          *   3. The user.
3647          *
3648          * We can ignore reservations as we hold the struct_mutex and
3649          * are only called outside of the reservation path.  The user
3650          * can only increment pin_count once, and so if after
3651          * subtracting the potential reference by the user, any pin_count
3652          * remains, it must be due to another use by the display engine.
3653          */
3654         return obj->pin_count - !!obj->user_pin_count;
3655 }
3656
3657 /*
3658  * Prepare buffer for display plane (scanout, cursors, etc).
3659  * Can be called from an uninterruptible phase (modesetting) and allows
3660  * any flushes to be pipelined (for pageflips).
3661  */
3662 int
3663 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3664                                      u32 alignment,
3665                                      struct intel_ring_buffer *pipelined)
3666 {
3667         u32 old_read_domains, old_write_domain;
3668         int ret;
3669
3670         if (pipelined != obj->ring) {
3671                 ret = i915_gem_object_sync(obj, pipelined);
3672                 if (ret)
3673                         return ret;
3674         }
3675
3676         /* Mark the pin_display early so that we account for the
3677          * display coherency whilst setting up the cache domains.
3678          */
3679         obj->pin_display = true;
3680
3681         /* The display engine is not coherent with the LLC cache on gen6.  As
3682          * a result, we make sure that the pinning that is about to occur is
3683          * done with uncached PTEs. This is lowest common denominator for all
3684          * chipsets.
3685          *
3686          * However for gen6+, we could do better by using the GFDT bit instead
3687          * of uncaching, which would allow us to flush all the LLC-cached data
3688          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3689          */
3690         ret = i915_gem_object_set_cache_level(obj,
3691                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3692         if (ret)
3693                 goto err_unpin_display;
3694
3695         /* As the user may map the buffer once pinned in the display plane
3696          * (e.g. libkms for the bootup splash), we have to ensure that we
3697          * always use map_and_fenceable for all scanout buffers.
3698          */
3699         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3700         if (ret)
3701                 goto err_unpin_display;
3702
3703         i915_gem_object_flush_cpu_write_domain(obj, true);
3704
3705         old_write_domain = obj->base.write_domain;
3706         old_read_domains = obj->base.read_domains;
3707
3708         /* It should now be out of any other write domains, and we can update
3709          * the domain values for our changes.
3710          */
3711         obj->base.write_domain = 0;
3712         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3713
3714         trace_i915_gem_object_change_domain(obj,
3715                                             old_read_domains,
3716                                             old_write_domain);
3717
3718         return 0;
3719
3720 err_unpin_display:
3721         obj->pin_display = is_pin_display(obj);
3722         return ret;
3723 }
3724
3725 void
3726 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3727 {
3728         i915_gem_object_unpin(obj);
3729         obj->pin_display = is_pin_display(obj);
3730 }
3731
3732 int
3733 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3734 {
3735         int ret;
3736
3737         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3738                 return 0;
3739
3740         ret = i915_gem_object_wait_rendering(obj, false);
3741         if (ret)
3742                 return ret;
3743
3744         /* Ensure that we invalidate the GPU's caches and TLBs. */
3745         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3746         return 0;
3747 }
3748
3749 /**
3750  * Moves a single object to the CPU read, and possibly write domain.
3751  *
3752  * This function returns when the move is complete, including waiting on
3753  * flushes to occur.
3754  */
3755 int
3756 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3757 {
3758         uint32_t old_write_domain, old_read_domains;
3759         int ret;
3760
3761         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3762                 return 0;
3763
3764         ret = i915_gem_object_wait_rendering(obj, !write);
3765         if (ret)
3766                 return ret;
3767
3768         i915_gem_object_flush_gtt_write_domain(obj);
3769
3770         old_write_domain = obj->base.write_domain;
3771         old_read_domains = obj->base.read_domains;
3772
3773         /* Flush the CPU cache if it's still invalid. */
3774         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3775                 i915_gem_clflush_object(obj, false);
3776
3777                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3778         }
3779
3780         /* It should now be out of any other write domains, and we can update
3781          * the domain values for our changes.
3782          */
3783         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3784
3785         /* If we're writing through the CPU, then the GPU read domains will
3786          * need to be invalidated at next use.
3787          */
3788         if (write) {
3789                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3790                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3791         }
3792
3793         trace_i915_gem_object_change_domain(obj,
3794                                             old_read_domains,
3795                                             old_write_domain);
3796
3797         return 0;
3798 }
3799
3800 /* Throttle our rendering by waiting until the ring has completed our requests
3801  * emitted over 20 msec ago.
3802  *
3803  * Note that if we were to use the current jiffies each time around the loop,
3804  * we wouldn't escape the function with any frames outstanding if the time to
3805  * render a frame was over 20ms.
3806  *
3807  * This should get us reasonable parallelism between CPU and GPU but also
3808  * relatively low latency when blocking on a particular request to finish.
3809  */
3810 static int
3811 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3812 {
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         struct drm_i915_file_private *file_priv = file->driver_priv;
3815         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3816         struct drm_i915_gem_request *request;
3817         struct intel_ring_buffer *ring = NULL;
3818         unsigned reset_counter;
3819         u32 seqno = 0;
3820         int ret;
3821
3822         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3823         if (ret)
3824                 return ret;
3825
3826         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3827         if (ret)
3828                 return ret;
3829
3830         spin_lock(&file_priv->mm.lock);
3831         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3832                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3833                         break;
3834
3835                 ring = request->ring;
3836                 seqno = request->seqno;
3837         }
3838         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3839         spin_unlock(&file_priv->mm.lock);
3840
3841         if (seqno == 0)
3842                 return 0;
3843
3844         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3845         if (ret == 0)
3846                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3847
3848         return ret;
3849 }
3850
3851 int
3852 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3853                     struct i915_address_space *vm,
3854                     uint32_t alignment,
3855                     bool map_and_fenceable,
3856                     bool nonblocking)
3857 {
3858         struct i915_vma *vma;
3859         int ret;
3860
3861         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3862                 return -EBUSY;
3863
3864         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3865
3866         vma = i915_gem_obj_to_vma(obj, vm);
3867
3868         if (vma) {
3869                 if ((alignment &&
3870                      vma->node.start & (alignment - 1)) ||
3871                     (map_and_fenceable && !obj->map_and_fenceable)) {
3872                         WARN(obj->pin_count,
3873                              "bo is already pinned with incorrect alignment:"
3874                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3875                              " obj->map_and_fenceable=%d\n",
3876                              i915_gem_obj_offset(obj, vm), alignment,
3877                              map_and_fenceable,
3878                              obj->map_and_fenceable);
3879                         ret = i915_vma_unbind(vma);
3880                         if (ret)
3881                                 return ret;
3882                 }
3883         }
3884
3885         if (!i915_gem_obj_bound(obj, vm)) {
3886                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3887
3888                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3889                                                  map_and_fenceable,
3890                                                  nonblocking);
3891                 if (ret)
3892                         return ret;
3893
3894                 if (!dev_priv->mm.aliasing_ppgtt)
3895                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3896         }
3897
3898         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3899                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3900
3901         obj->pin_count++;
3902         obj->pin_mappable |= map_and_fenceable;
3903
3904         return 0;
3905 }
3906
3907 void
3908 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3909 {
3910         BUG_ON(obj->pin_count == 0);
3911         BUG_ON(!i915_gem_obj_bound_any(obj));
3912
3913         if (--obj->pin_count == 0)
3914                 obj->pin_mappable = false;
3915 }
3916
3917 int
3918 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3919                    struct drm_file *file)
3920 {
3921         struct drm_i915_gem_pin *args = data;
3922         struct drm_i915_gem_object *obj;
3923         int ret;
3924
3925         ret = i915_mutex_lock_interruptible(dev);
3926         if (ret)
3927                 return ret;
3928
3929         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3930         if (&obj->base == NULL) {
3931                 ret = -ENOENT;
3932                 goto unlock;
3933         }
3934
3935         if (obj->madv != I915_MADV_WILLNEED) {
3936                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3937                 ret = -EINVAL;
3938                 goto out;
3939         }
3940
3941         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3942                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3943                           args->handle);
3944                 ret = -EINVAL;
3945                 goto out;
3946         }
3947
3948         if (obj->user_pin_count == ULONG_MAX) {
3949                 ret = -EBUSY;
3950                 goto out;
3951         }
3952
3953         if (obj->user_pin_count == 0) {
3954                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3955                 if (ret)
3956                         goto out;
3957         }
3958
3959         obj->user_pin_count++;
3960         obj->pin_filp = file;
3961
3962         args->offset = i915_gem_obj_ggtt_offset(obj);
3963 out:
3964         drm_gem_object_unreference(&obj->base);
3965 unlock:
3966         mutex_unlock(&dev->struct_mutex);
3967         return ret;
3968 }
3969
3970 int
3971 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3972                      struct drm_file *file)
3973 {
3974         struct drm_i915_gem_pin *args = data;
3975         struct drm_i915_gem_object *obj;
3976         int ret;
3977
3978         ret = i915_mutex_lock_interruptible(dev);
3979         if (ret)
3980                 return ret;
3981
3982         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3983         if (&obj->base == NULL) {
3984                 ret = -ENOENT;
3985                 goto unlock;
3986         }
3987
3988         if (obj->pin_filp != file) {
3989                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3990                           args->handle);
3991                 ret = -EINVAL;
3992                 goto out;
3993         }
3994         obj->user_pin_count--;
3995         if (obj->user_pin_count == 0) {
3996                 obj->pin_filp = NULL;
3997                 i915_gem_object_unpin(obj);
3998         }
3999
4000 out:
4001         drm_gem_object_unreference(&obj->base);
4002 unlock:
4003         mutex_unlock(&dev->struct_mutex);
4004         return ret;
4005 }
4006
4007 int
4008 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4009                     struct drm_file *file)
4010 {
4011         struct drm_i915_gem_busy *args = data;
4012         struct drm_i915_gem_object *obj;
4013         int ret;
4014
4015         ret = i915_mutex_lock_interruptible(dev);
4016         if (ret)
4017                 return ret;
4018
4019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4020         if (&obj->base == NULL) {
4021                 ret = -ENOENT;
4022                 goto unlock;
4023         }
4024
4025         /* Count all active objects as busy, even if they are currently not used
4026          * by the gpu. Users of this interface expect objects to eventually
4027          * become non-busy without any further actions, therefore emit any
4028          * necessary flushes here.
4029          */
4030         ret = i915_gem_object_flush_active(obj);
4031
4032         args->busy = obj->active;
4033         if (obj->ring) {
4034                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4035                 args->busy |= intel_ring_flag(obj->ring) << 16;
4036         }
4037
4038         drm_gem_object_unreference(&obj->base);
4039 unlock:
4040         mutex_unlock(&dev->struct_mutex);
4041         return ret;
4042 }
4043
4044 int
4045 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4046                         struct drm_file *file_priv)
4047 {
4048         return i915_gem_ring_throttle(dev, file_priv);
4049 }
4050
4051 int
4052 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4053                        struct drm_file *file_priv)
4054 {
4055         struct drm_i915_gem_madvise *args = data;
4056         struct drm_i915_gem_object *obj;
4057         int ret;
4058
4059         switch (args->madv) {
4060         case I915_MADV_DONTNEED:
4061         case I915_MADV_WILLNEED:
4062             break;
4063         default:
4064             return -EINVAL;
4065         }
4066
4067         ret = i915_mutex_lock_interruptible(dev);
4068         if (ret)
4069                 return ret;
4070
4071         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4072         if (&obj->base == NULL) {
4073                 ret = -ENOENT;
4074                 goto unlock;
4075         }
4076
4077         if (obj->pin_count) {
4078                 ret = -EINVAL;
4079                 goto out;
4080         }
4081
4082         if (obj->madv != __I915_MADV_PURGED)
4083                 obj->madv = args->madv;
4084
4085         /* if the object is no longer attached, discard its backing storage */
4086         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4087                 i915_gem_object_truncate(obj);
4088
4089         args->retained = obj->madv != __I915_MADV_PURGED;
4090
4091 out:
4092         drm_gem_object_unreference(&obj->base);
4093 unlock:
4094         mutex_unlock(&dev->struct_mutex);
4095         return ret;
4096 }
4097
4098 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4099                           const struct drm_i915_gem_object_ops *ops)
4100 {
4101         INIT_LIST_HEAD(&obj->global_list);
4102         INIT_LIST_HEAD(&obj->ring_list);
4103         INIT_LIST_HEAD(&obj->obj_exec_link);
4104         INIT_LIST_HEAD(&obj->vma_list);
4105
4106         obj->ops = ops;
4107
4108         obj->fence_reg = I915_FENCE_REG_NONE;
4109         obj->madv = I915_MADV_WILLNEED;
4110         /* Avoid an unnecessary call to unbind on the first bind. */
4111         obj->map_and_fenceable = true;
4112
4113         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4114 }
4115
4116 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4117         .get_pages = i915_gem_object_get_pages_gtt,
4118         .put_pages = i915_gem_object_put_pages_gtt,
4119 };
4120
4121 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4122                                                   size_t size)
4123 {
4124         struct drm_i915_gem_object *obj;
4125         struct address_space *mapping;
4126         gfp_t mask;
4127
4128         obj = i915_gem_object_alloc(dev);
4129         if (obj == NULL)
4130                 return NULL;
4131
4132         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4133                 i915_gem_object_free(obj);
4134                 return NULL;
4135         }
4136
4137         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4138         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4139                 /* 965gm cannot relocate objects above 4GiB. */
4140                 mask &= ~__GFP_HIGHMEM;
4141                 mask |= __GFP_DMA32;
4142         }
4143
4144         mapping = file_inode(obj->base.filp)->i_mapping;
4145         mapping_set_gfp_mask(mapping, mask);
4146
4147         i915_gem_object_init(obj, &i915_gem_object_ops);
4148
4149         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4150         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4151
4152         if (HAS_LLC(dev)) {
4153                 /* On some devices, we can have the GPU use the LLC (the CPU
4154                  * cache) for about a 10% performance improvement
4155                  * compared to uncached.  Graphics requests other than
4156                  * display scanout are coherent with the CPU in
4157                  * accessing this cache.  This means in this mode we
4158                  * don't need to clflush on the CPU side, and on the
4159                  * GPU side we only need to flush internal caches to
4160                  * get data visible to the CPU.
4161                  *
4162                  * However, we maintain the display planes as UC, and so
4163                  * need to rebind when first used as such.
4164                  */
4165                 obj->cache_level = I915_CACHE_LLC;
4166         } else
4167                 obj->cache_level = I915_CACHE_NONE;
4168
4169         trace_i915_gem_object_create(obj);
4170
4171         return obj;
4172 }
4173
4174 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4175 {
4176         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4177         struct drm_device *dev = obj->base.dev;
4178         drm_i915_private_t *dev_priv = dev->dev_private;
4179         struct i915_vma *vma, *next;
4180
4181         intel_runtime_pm_get(dev_priv);
4182
4183         trace_i915_gem_object_destroy(obj);
4184
4185         if (obj->phys_obj)
4186                 i915_gem_detach_phys_object(dev, obj);
4187
4188         obj->pin_count = 0;
4189         /* NB: 0 or 1 elements */
4190         WARN_ON(!list_empty(&obj->vma_list) &&
4191                 !list_is_singular(&obj->vma_list));
4192         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4193                 int ret = i915_vma_unbind(vma);
4194                 if (WARN_ON(ret == -ERESTARTSYS)) {
4195                         bool was_interruptible;
4196
4197                         was_interruptible = dev_priv->mm.interruptible;
4198                         dev_priv->mm.interruptible = false;
4199
4200                         WARN_ON(i915_vma_unbind(vma));
4201
4202                         dev_priv->mm.interruptible = was_interruptible;
4203                 }
4204         }
4205
4206         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4207          * before progressing. */
4208         if (obj->stolen)
4209                 i915_gem_object_unpin_pages(obj);
4210
4211         if (WARN_ON(obj->pages_pin_count))
4212                 obj->pages_pin_count = 0;
4213         i915_gem_object_put_pages(obj);
4214         i915_gem_object_free_mmap_offset(obj);
4215         i915_gem_object_release_stolen(obj);
4216
4217         BUG_ON(obj->pages);
4218
4219         if (obj->base.import_attach)
4220                 drm_prime_gem_destroy(&obj->base, NULL);
4221
4222         drm_gem_object_release(&obj->base);
4223         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4224
4225         kfree(obj->bit_17);
4226         i915_gem_object_free(obj);
4227
4228         intel_runtime_pm_put(dev_priv);
4229 }
4230
4231 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4232                                      struct i915_address_space *vm)
4233 {
4234         struct i915_vma *vma;
4235         list_for_each_entry(vma, &obj->vma_list, vma_link)
4236                 if (vma->vm == vm)
4237                         return vma;
4238
4239         return NULL;
4240 }
4241
4242 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4243                                               struct i915_address_space *vm)
4244 {
4245         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4246         if (vma == NULL)
4247                 return ERR_PTR(-ENOMEM);
4248
4249         INIT_LIST_HEAD(&vma->vma_link);
4250         INIT_LIST_HEAD(&vma->mm_list);
4251         INIT_LIST_HEAD(&vma->exec_list);
4252         vma->vm = vm;
4253         vma->obj = obj;
4254
4255         /* Keep GGTT vmas first to make debug easier */
4256         if (i915_is_ggtt(vm))
4257                 list_add(&vma->vma_link, &obj->vma_list);
4258         else
4259                 list_add_tail(&vma->vma_link, &obj->vma_list);
4260
4261         return vma;
4262 }
4263
4264 struct i915_vma *
4265 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4266                                   struct i915_address_space *vm)
4267 {
4268         struct i915_vma *vma;
4269
4270         vma = i915_gem_obj_to_vma(obj, vm);
4271         if (!vma)
4272                 vma = __i915_gem_vma_create(obj, vm);
4273
4274         return vma;
4275 }
4276
4277 void i915_gem_vma_destroy(struct i915_vma *vma)
4278 {
4279         WARN_ON(vma->node.allocated);
4280
4281         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4282         if (!list_empty(&vma->exec_list))
4283                 return;
4284
4285         list_del(&vma->vma_link);
4286
4287         kfree(vma);
4288 }
4289
4290 int
4291 i915_gem_suspend(struct drm_device *dev)
4292 {
4293         drm_i915_private_t *dev_priv = dev->dev_private;
4294         int ret = 0;
4295
4296         mutex_lock(&dev->struct_mutex);
4297         if (dev_priv->ums.mm_suspended)
4298                 goto err;
4299
4300         ret = i915_gpu_idle(dev);
4301         if (ret)
4302                 goto err;
4303
4304         i915_gem_retire_requests(dev);
4305
4306         /* Under UMS, be paranoid and evict. */
4307         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4308                 i915_gem_evict_everything(dev);
4309
4310         i915_kernel_lost_context(dev);
4311         i915_gem_cleanup_ringbuffer(dev);
4312
4313         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4314          * We need to replace this with a semaphore, or something.
4315          * And not confound ums.mm_suspended!
4316          */
4317         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4318                                                              DRIVER_MODESET);
4319         mutex_unlock(&dev->struct_mutex);
4320
4321         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4322         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4323         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4324
4325         return 0;
4326
4327 err:
4328         mutex_unlock(&dev->struct_mutex);
4329         return ret;
4330 }
4331
4332 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4333 {
4334         struct drm_device *dev = ring->dev;
4335         drm_i915_private_t *dev_priv = dev->dev_private;
4336         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4337         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4338         int i, ret;
4339
4340         if (!HAS_L3_DPF(dev) || !remap_info)
4341                 return 0;
4342
4343         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4344         if (ret)
4345                 return ret;
4346
4347         /*
4348          * Note: We do not worry about the concurrent register cacheline hang
4349          * here because no other code should access these registers other than
4350          * at initialization time.
4351          */
4352         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4353                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4354                 intel_ring_emit(ring, reg_base + i);
4355                 intel_ring_emit(ring, remap_info[i/4]);
4356         }
4357
4358         intel_ring_advance(ring);
4359
4360         return ret;
4361 }
4362
4363 void i915_gem_init_swizzling(struct drm_device *dev)
4364 {
4365         drm_i915_private_t *dev_priv = dev->dev_private;
4366
4367         if (INTEL_INFO(dev)->gen < 5 ||
4368             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4369                 return;
4370
4371         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4372                                  DISP_TILE_SURFACE_SWIZZLING);
4373
4374         if (IS_GEN5(dev))
4375                 return;
4376
4377         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4378         if (IS_GEN6(dev))
4379                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4380         else if (IS_GEN7(dev))
4381                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4382         else if (IS_GEN8(dev))
4383                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4384         else
4385                 BUG();
4386 }
4387
4388 static bool
4389 intel_enable_blt(struct drm_device *dev)
4390 {
4391         if (!HAS_BLT(dev))
4392                 return false;
4393
4394         /* The blitter was dysfunctional on early prototypes */
4395         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4396                 DRM_INFO("BLT not supported on this pre-production hardware;"
4397                          " graphics performance will be degraded.\n");
4398                 return false;
4399         }
4400
4401         return true;
4402 }
4403
4404 static int i915_gem_init_rings(struct drm_device *dev)
4405 {
4406         struct drm_i915_private *dev_priv = dev->dev_private;
4407         int ret;
4408
4409         ret = intel_init_render_ring_buffer(dev);
4410         if (ret)
4411                 return ret;
4412
4413         if (HAS_BSD(dev)) {
4414                 ret = intel_init_bsd_ring_buffer(dev);
4415                 if (ret)
4416                         goto cleanup_render_ring;
4417         }
4418
4419         if (intel_enable_blt(dev)) {
4420                 ret = intel_init_blt_ring_buffer(dev);
4421                 if (ret)
4422                         goto cleanup_bsd_ring;
4423         }
4424
4425         if (HAS_VEBOX(dev)) {
4426                 ret = intel_init_vebox_ring_buffer(dev);
4427                 if (ret)
4428                         goto cleanup_blt_ring;
4429         }
4430
4431
4432         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4433         if (ret)
4434                 goto cleanup_vebox_ring;
4435
4436         return 0;
4437
4438 cleanup_vebox_ring:
4439         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4440 cleanup_blt_ring:
4441         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4442 cleanup_bsd_ring:
4443         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4444 cleanup_render_ring:
4445         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4446
4447         return ret;
4448 }
4449
4450 int
4451 i915_gem_init_hw(struct drm_device *dev)
4452 {
4453         drm_i915_private_t *dev_priv = dev->dev_private;
4454         int ret, i;
4455
4456         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4457                 return -EIO;
4458
4459         if (dev_priv->ellc_size)
4460                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4461
4462         if (IS_HSW_GT3(dev))
4463                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4464         else
4465                 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4466
4467         if (HAS_PCH_NOP(dev)) {
4468                 u32 temp = I915_READ(GEN7_MSG_CTL);
4469                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4470                 I915_WRITE(GEN7_MSG_CTL, temp);
4471         }
4472
4473         i915_gem_init_swizzling(dev);
4474
4475         ret = i915_gem_init_rings(dev);
4476         if (ret)
4477                 return ret;
4478
4479         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4480                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4481
4482         /*
4483          * XXX: There was some w/a described somewhere suggesting loading
4484          * contexts before PPGTT.
4485          */
4486         ret = i915_gem_context_init(dev);
4487         if (ret) {
4488                 i915_gem_cleanup_ringbuffer(dev);
4489                 DRM_ERROR("Context initialization failed %d\n", ret);
4490                 return ret;
4491         }
4492
4493         if (dev_priv->mm.aliasing_ppgtt) {
4494                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4495                 if (ret) {
4496                         i915_gem_cleanup_aliasing_ppgtt(dev);
4497                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4498                 }
4499         }
4500
4501         return 0;
4502 }
4503
4504 int i915_gem_init(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         int ret;
4508
4509         mutex_lock(&dev->struct_mutex);
4510
4511         if (IS_VALLEYVIEW(dev)) {
4512                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4513                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4514                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4515                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4516         }
4517
4518         i915_gem_init_global_gtt(dev);
4519
4520         ret = i915_gem_init_hw(dev);
4521         mutex_unlock(&dev->struct_mutex);
4522         if (ret) {
4523                 i915_gem_cleanup_aliasing_ppgtt(dev);
4524                 return ret;
4525         }
4526
4527         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4528         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4529                 dev_priv->dri1.allow_batchbuffer = 1;
4530         return 0;
4531 }
4532
4533 void
4534 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4535 {
4536         drm_i915_private_t *dev_priv = dev->dev_private;
4537         struct intel_ring_buffer *ring;
4538         int i;
4539
4540         for_each_ring(ring, dev_priv, i)
4541                 intel_cleanup_ring_buffer(ring);
4542 }
4543
4544 int
4545 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4546                        struct drm_file *file_priv)
4547 {
4548         struct drm_i915_private *dev_priv = dev->dev_private;
4549         int ret;
4550
4551         if (drm_core_check_feature(dev, DRIVER_MODESET))
4552                 return 0;
4553
4554         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4555                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4556                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4557         }
4558
4559         mutex_lock(&dev->struct_mutex);
4560         dev_priv->ums.mm_suspended = 0;
4561
4562         ret = i915_gem_init_hw(dev);
4563         if (ret != 0) {
4564                 mutex_unlock(&dev->struct_mutex);
4565                 return ret;
4566         }
4567
4568         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4569         mutex_unlock(&dev->struct_mutex);
4570
4571         ret = drm_irq_install(dev);
4572         if (ret)
4573                 goto cleanup_ringbuffer;
4574
4575         return 0;
4576
4577 cleanup_ringbuffer:
4578         mutex_lock(&dev->struct_mutex);
4579         i915_gem_cleanup_ringbuffer(dev);
4580         dev_priv->ums.mm_suspended = 1;
4581         mutex_unlock(&dev->struct_mutex);
4582
4583         return ret;
4584 }
4585
4586 int
4587 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4588                        struct drm_file *file_priv)
4589 {
4590         if (drm_core_check_feature(dev, DRIVER_MODESET))
4591                 return 0;
4592
4593         drm_irq_uninstall(dev);
4594
4595         return i915_gem_suspend(dev);
4596 }
4597
4598 void
4599 i915_gem_lastclose(struct drm_device *dev)
4600 {
4601         int ret;
4602
4603         if (drm_core_check_feature(dev, DRIVER_MODESET))
4604                 return;
4605
4606         ret = i915_gem_suspend(dev);
4607         if (ret)
4608                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4609 }
4610
4611 static void
4612 init_ring_lists(struct intel_ring_buffer *ring)
4613 {
4614         INIT_LIST_HEAD(&ring->active_list);
4615         INIT_LIST_HEAD(&ring->request_list);
4616 }
4617
4618 static void i915_init_vm(struct drm_i915_private *dev_priv,
4619                          struct i915_address_space *vm)
4620 {
4621         vm->dev = dev_priv->dev;
4622         INIT_LIST_HEAD(&vm->active_list);
4623         INIT_LIST_HEAD(&vm->inactive_list);
4624         INIT_LIST_HEAD(&vm->global_link);
4625         list_add(&vm->global_link, &dev_priv->vm_list);
4626 }
4627
4628 void
4629 i915_gem_load(struct drm_device *dev)
4630 {
4631         drm_i915_private_t *dev_priv = dev->dev_private;
4632         int i;
4633
4634         dev_priv->slab =
4635                 kmem_cache_create("i915_gem_object",
4636                                   sizeof(struct drm_i915_gem_object), 0,
4637                                   SLAB_HWCACHE_ALIGN,
4638                                   NULL);
4639
4640         INIT_LIST_HEAD(&dev_priv->vm_list);
4641         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4642
4643         INIT_LIST_HEAD(&dev_priv->context_list);
4644         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4645         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4646         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4647         for (i = 0; i < I915_NUM_RINGS; i++)
4648                 init_ring_lists(&dev_priv->ring[i]);
4649         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4650                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4651         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4652                           i915_gem_retire_work_handler);
4653         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4654                           i915_gem_idle_work_handler);
4655         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4656
4657         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4658         if (IS_GEN3(dev)) {
4659                 I915_WRITE(MI_ARB_STATE,
4660                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4661         }
4662
4663         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4664
4665         /* Old X drivers will take 0-2 for front, back, depth buffers */
4666         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4667                 dev_priv->fence_reg_start = 3;
4668
4669         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4670                 dev_priv->num_fence_regs = 32;
4671         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4672                 dev_priv->num_fence_regs = 16;
4673         else
4674                 dev_priv->num_fence_regs = 8;
4675
4676         /* Initialize fence registers to zero */
4677         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4678         i915_gem_restore_fences(dev);
4679
4680         i915_gem_detect_bit_6_swizzle(dev);
4681         init_waitqueue_head(&dev_priv->pending_flip_queue);
4682
4683         dev_priv->mm.interruptible = true;
4684
4685         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4686         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4687         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4688         register_shrinker(&dev_priv->mm.inactive_shrinker);
4689 }
4690
4691 /*
4692  * Create a physically contiguous memory object for this object
4693  * e.g. for cursor + overlay regs
4694  */
4695 static int i915_gem_init_phys_object(struct drm_device *dev,
4696                                      int id, int size, int align)
4697 {
4698         drm_i915_private_t *dev_priv = dev->dev_private;
4699         struct drm_i915_gem_phys_object *phys_obj;
4700         int ret;
4701
4702         if (dev_priv->mm.phys_objs[id - 1] || !size)
4703                 return 0;
4704
4705         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4706         if (!phys_obj)
4707                 return -ENOMEM;
4708
4709         phys_obj->id = id;
4710
4711         phys_obj->handle = drm_pci_alloc(dev, size, align);
4712         if (!phys_obj->handle) {
4713                 ret = -ENOMEM;
4714                 goto kfree_obj;
4715         }
4716 #ifdef CONFIG_X86
4717         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4718 #endif
4719
4720         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4721
4722         return 0;
4723 kfree_obj:
4724         kfree(phys_obj);
4725         return ret;
4726 }
4727
4728 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4729 {
4730         drm_i915_private_t *dev_priv = dev->dev_private;
4731         struct drm_i915_gem_phys_object *phys_obj;
4732
4733         if (!dev_priv->mm.phys_objs[id - 1])
4734                 return;
4735
4736         phys_obj = dev_priv->mm.phys_objs[id - 1];
4737         if (phys_obj->cur_obj) {
4738                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4739         }
4740
4741 #ifdef CONFIG_X86
4742         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4743 #endif
4744         drm_pci_free(dev, phys_obj->handle);
4745         kfree(phys_obj);
4746         dev_priv->mm.phys_objs[id - 1] = NULL;
4747 }
4748
4749 void i915_gem_free_all_phys_object(struct drm_device *dev)
4750 {
4751         int i;
4752
4753         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4754                 i915_gem_free_phys_object(dev, i);
4755 }
4756
4757 void i915_gem_detach_phys_object(struct drm_device *dev,
4758                                  struct drm_i915_gem_object *obj)
4759 {
4760         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4761         char *vaddr;
4762         int i;
4763         int page_count;
4764
4765         if (!obj->phys_obj)
4766                 return;
4767         vaddr = obj->phys_obj->handle->vaddr;
4768
4769         page_count = obj->base.size / PAGE_SIZE;
4770         for (i = 0; i < page_count; i++) {
4771                 struct page *page = shmem_read_mapping_page(mapping, i);
4772                 if (!IS_ERR(page)) {
4773                         char *dst = kmap_atomic(page);
4774                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4775                         kunmap_atomic(dst);
4776
4777                         drm_clflush_pages(&page, 1);
4778
4779                         set_page_dirty(page);
4780                         mark_page_accessed(page);
4781                         page_cache_release(page);
4782                 }
4783         }
4784         i915_gem_chipset_flush(dev);
4785
4786         obj->phys_obj->cur_obj = NULL;
4787         obj->phys_obj = NULL;
4788 }
4789
4790 int
4791 i915_gem_attach_phys_object(struct drm_device *dev,
4792                             struct drm_i915_gem_object *obj,
4793                             int id,
4794                             int align)
4795 {
4796         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4797         drm_i915_private_t *dev_priv = dev->dev_private;
4798         int ret = 0;
4799         int page_count;
4800         int i;
4801
4802         if (id > I915_MAX_PHYS_OBJECT)
4803                 return -EINVAL;
4804
4805         if (obj->phys_obj) {
4806                 if (obj->phys_obj->id == id)
4807                         return 0;
4808                 i915_gem_detach_phys_object(dev, obj);
4809         }
4810
4811         /* create a new object */
4812         if (!dev_priv->mm.phys_objs[id - 1]) {
4813                 ret = i915_gem_init_phys_object(dev, id,
4814                                                 obj->base.size, align);
4815                 if (ret) {
4816                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4817                                   id, obj->base.size);
4818                         return ret;
4819                 }
4820         }
4821
4822         /* bind to the object */
4823         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4824         obj->phys_obj->cur_obj = obj;
4825
4826         page_count = obj->base.size / PAGE_SIZE;
4827
4828         for (i = 0; i < page_count; i++) {
4829                 struct page *page;
4830                 char *dst, *src;
4831
4832                 page = shmem_read_mapping_page(mapping, i);
4833                 if (IS_ERR(page))
4834                         return PTR_ERR(page);
4835
4836                 src = kmap_atomic(page);
4837                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4838                 memcpy(dst, src, PAGE_SIZE);
4839                 kunmap_atomic(src);
4840
4841                 mark_page_accessed(page);
4842                 page_cache_release(page);
4843         }
4844
4845         return 0;
4846 }
4847
4848 static int
4849 i915_gem_phys_pwrite(struct drm_device *dev,
4850                      struct drm_i915_gem_object *obj,
4851                      struct drm_i915_gem_pwrite *args,
4852                      struct drm_file *file_priv)
4853 {
4854         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4855         char __user *user_data = to_user_ptr(args->data_ptr);
4856
4857         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4858                 unsigned long unwritten;
4859
4860                 /* The physical object once assigned is fixed for the lifetime
4861                  * of the obj, so we can safely drop the lock and continue
4862                  * to access vaddr.
4863                  */
4864                 mutex_unlock(&dev->struct_mutex);
4865                 unwritten = copy_from_user(vaddr, user_data, args->size);
4866                 mutex_lock(&dev->struct_mutex);
4867                 if (unwritten)
4868                         return -EFAULT;
4869         }
4870
4871         i915_gem_chipset_flush(dev);
4872         return 0;
4873 }
4874
4875 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4876 {
4877         struct drm_i915_file_private *file_priv = file->driver_priv;
4878
4879         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4880
4881         /* Clean up our request list when the client is going away, so that
4882          * later retire_requests won't dereference our soon-to-be-gone
4883          * file_priv.
4884          */
4885         spin_lock(&file_priv->mm.lock);
4886         while (!list_empty(&file_priv->mm.request_list)) {
4887                 struct drm_i915_gem_request *request;
4888
4889                 request = list_first_entry(&file_priv->mm.request_list,
4890                                            struct drm_i915_gem_request,
4891                                            client_list);
4892                 list_del(&request->client_list);
4893                 request->file_priv = NULL;
4894         }
4895         spin_unlock(&file_priv->mm.lock);
4896 }
4897
4898 static void
4899 i915_gem_file_idle_work_handler(struct work_struct *work)
4900 {
4901         struct drm_i915_file_private *file_priv =
4902                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4903
4904         atomic_set(&file_priv->rps_wait_boost, false);
4905 }
4906
4907 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4908 {
4909         struct drm_i915_file_private *file_priv;
4910
4911         DRM_DEBUG_DRIVER("\n");
4912
4913         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4914         if (!file_priv)
4915                 return -ENOMEM;
4916
4917         file->driver_priv = file_priv;
4918         file_priv->dev_priv = dev->dev_private;
4919
4920         spin_lock_init(&file_priv->mm.lock);
4921         INIT_LIST_HEAD(&file_priv->mm.request_list);
4922         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4923                           i915_gem_file_idle_work_handler);
4924
4925         idr_init(&file_priv->context_idr);
4926
4927         return 0;
4928 }
4929
4930 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4931 {
4932         if (!mutex_is_locked(mutex))
4933                 return false;
4934
4935 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4936         return mutex->owner == task;
4937 #else
4938         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4939         return false;
4940 #endif
4941 }
4942
4943 static unsigned long
4944 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4945 {
4946         struct drm_i915_private *dev_priv =
4947                 container_of(shrinker,
4948                              struct drm_i915_private,
4949                              mm.inactive_shrinker);
4950         struct drm_device *dev = dev_priv->dev;
4951         struct drm_i915_gem_object *obj;
4952         bool unlock = true;
4953         unsigned long count;
4954
4955         if (!mutex_trylock(&dev->struct_mutex)) {
4956                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4957                         return 0;
4958
4959                 if (dev_priv->mm.shrinker_no_lock_stealing)
4960                         return 0;
4961
4962                 unlock = false;
4963         }
4964
4965         count = 0;
4966         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4967                 if (obj->pages_pin_count == 0)
4968                         count += obj->base.size >> PAGE_SHIFT;
4969
4970         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4971                 if (obj->active)
4972                         continue;
4973
4974                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4975                         count += obj->base.size >> PAGE_SHIFT;
4976         }
4977
4978         if (unlock)
4979                 mutex_unlock(&dev->struct_mutex);
4980
4981         return count;
4982 }
4983
4984 /* All the new VM stuff */
4985 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4986                                   struct i915_address_space *vm)
4987 {
4988         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4989         struct i915_vma *vma;
4990
4991         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4992                 vm = &dev_priv->gtt.base;
4993
4994         BUG_ON(list_empty(&o->vma_list));
4995         list_for_each_entry(vma, &o->vma_list, vma_link) {
4996                 if (vma->vm == vm)
4997                         return vma->node.start;
4998
4999         }
5000         return -1;
5001 }
5002
5003 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5004                         struct i915_address_space *vm)
5005 {
5006         struct i915_vma *vma;
5007
5008         list_for_each_entry(vma, &o->vma_list, vma_link)
5009                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5010                         return true;
5011
5012         return false;
5013 }
5014
5015 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5016 {
5017         struct i915_vma *vma;
5018
5019         list_for_each_entry(vma, &o->vma_list, vma_link)
5020                 if (drm_mm_node_allocated(&vma->node))
5021                         return true;
5022
5023         return false;
5024 }
5025
5026 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5027                                 struct i915_address_space *vm)
5028 {
5029         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5030         struct i915_vma *vma;
5031
5032         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5033                 vm = &dev_priv->gtt.base;
5034
5035         BUG_ON(list_empty(&o->vma_list));
5036
5037         list_for_each_entry(vma, &o->vma_list, vma_link)
5038                 if (vma->vm == vm)
5039                         return vma->node.size;
5040
5041         return 0;
5042 }
5043
5044 static unsigned long
5045 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5046 {
5047         struct drm_i915_private *dev_priv =
5048                 container_of(shrinker,
5049                              struct drm_i915_private,
5050                              mm.inactive_shrinker);
5051         struct drm_device *dev = dev_priv->dev;
5052         unsigned long freed;
5053         bool unlock = true;
5054
5055         if (!mutex_trylock(&dev->struct_mutex)) {
5056                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5057                         return SHRINK_STOP;
5058
5059                 if (dev_priv->mm.shrinker_no_lock_stealing)
5060                         return SHRINK_STOP;
5061
5062                 unlock = false;
5063         }
5064
5065         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5066         if (freed < sc->nr_to_scan)
5067                 freed += __i915_gem_shrink(dev_priv,
5068                                            sc->nr_to_scan - freed,
5069                                            false);
5070         if (freed < sc->nr_to_scan)
5071                 freed += i915_gem_shrink_all(dev_priv);
5072
5073         if (unlock)
5074                 mutex_unlock(&dev->struct_mutex);
5075
5076         return freed;
5077 }
5078
5079 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5080 {
5081         struct i915_vma *vma;
5082
5083         if (WARN_ON(list_empty(&obj->vma_list)))
5084                 return NULL;
5085
5086         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5087         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5088                 return NULL;
5089
5090         return vma;
5091 }