Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 put_page(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         put_page(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = u64_to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = u64_to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        u64_to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = u64_to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = u64_to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        u64_to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->ring->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before = 0; /* Only to silence a compiler warning. */
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275                 /*
1276                  * Record current time in case interrupted by signal, or wedged.
1277                  */
1278                 before = ktime_get_raw_ns();
1279         }
1280
1281         if (INTEL_INFO(dev_priv)->gen >= 6)
1282                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284         trace_i915_gem_request_wait_begin(req);
1285
1286         /* Optimistic spin for the next jiffie before touching IRQs */
1287         ret = __i915_spin_request(req, state);
1288         if (ret == 0)
1289                 goto out;
1290
1291         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292                 ret = -ENODEV;
1293                 goto out;
1294         }
1295
1296         for (;;) {
1297                 struct timer_list timer;
1298
1299                 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301                 /* We need to check whether any gpu reset happened in between
1302                  * the caller grabbing the seqno and now ... */
1303                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305                          * is truely gone. */
1306                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307                         if (ret == 0)
1308                                 ret = -EAGAIN;
1309                         break;
1310                 }
1311
1312                 if (i915_gem_request_completed(req, false)) {
1313                         ret = 0;
1314                         break;
1315                 }
1316
1317                 if (signal_pending_state(state, current)) {
1318                         ret = -ERESTARTSYS;
1319                         break;
1320                 }
1321
1322                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323                         ret = -ETIME;
1324                         break;
1325                 }
1326
1327                 timer.function = NULL;
1328                 if (timeout || missed_irq(dev_priv, ring)) {
1329                         unsigned long expire;
1330
1331                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333                         mod_timer(&timer, expire);
1334                 }
1335
1336                 io_schedule();
1337
1338                 if (timer.function) {
1339                         del_singleshot_timer_sync(&timer);
1340                         destroy_timer_on_stack(&timer);
1341                 }
1342         }
1343         if (!irq_test_in_progress)
1344                 ring->irq_put(ring);
1345
1346         finish_wait(&ring->irq_queue, &wait);
1347
1348 out:
1349         trace_i915_gem_request_wait_end(req);
1350
1351         if (timeout) {
1352                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354                 *timeout = tres < 0 ? 0 : tres;
1355
1356                 /*
1357                  * Apparently ktime isn't accurate enough and occasionally has a
1358                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359                  * things up to make the test happy. We allow up to 1 jiffy.
1360                  *
1361                  * This is a regrssion from the timespec->ktime conversion.
1362                  */
1363                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364                         *timeout = 0;
1365         }
1366
1367         return ret;
1368 }
1369
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371                                    struct drm_file *file)
1372 {
1373         struct drm_i915_private *dev_private;
1374         struct drm_i915_file_private *file_priv;
1375
1376         WARN_ON(!req || !file || req->file_priv);
1377
1378         if (!req || !file)
1379                 return -EINVAL;
1380
1381         if (req->file_priv)
1382                 return -EINVAL;
1383
1384         dev_private = req->ring->dev->dev_private;
1385         file_priv = file->driver_priv;
1386
1387         spin_lock(&file_priv->mm.lock);
1388         req->file_priv = file_priv;
1389         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390         spin_unlock(&file_priv->mm.lock);
1391
1392         req->pid = get_pid(task_pid(current));
1393
1394         return 0;
1395 }
1396
1397 static inline void
1398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399 {
1400         struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402         if (!file_priv)
1403                 return;
1404
1405         spin_lock(&file_priv->mm.lock);
1406         list_del(&request->client_list);
1407         request->file_priv = NULL;
1408         spin_unlock(&file_priv->mm.lock);
1409
1410         put_pid(request->pid);
1411         request->pid = NULL;
1412 }
1413
1414 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415 {
1416         trace_i915_gem_request_retire(request);
1417
1418         /* We know the GPU must have read the request to have
1419          * sent us the seqno + interrupt, so use the position
1420          * of tail of the request to update the last known position
1421          * of the GPU head.
1422          *
1423          * Note this requires that we are always called in request
1424          * completion order.
1425          */
1426         request->ringbuf->last_retired_head = request->postfix;
1427
1428         list_del_init(&request->list);
1429         i915_gem_request_remove_from_client(request);
1430
1431         i915_gem_request_unreference(request);
1432 }
1433
1434 static void
1435 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436 {
1437         struct intel_engine_cs *engine = req->ring;
1438         struct drm_i915_gem_request *tmp;
1439
1440         lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442         if (list_empty(&req->list))
1443                 return;
1444
1445         do {
1446                 tmp = list_first_entry(&engine->request_list,
1447                                        typeof(*tmp), list);
1448
1449                 i915_gem_request_retire(tmp);
1450         } while (tmp != req);
1451
1452         WARN_ON(i915_verify_lists(engine->dev));
1453 }
1454
1455 /**
1456  * Waits for a request to be signaled, and cleans up the
1457  * request and object lists appropriately for that event.
1458  */
1459 int
1460 i915_wait_request(struct drm_i915_gem_request *req)
1461 {
1462         struct drm_device *dev;
1463         struct drm_i915_private *dev_priv;
1464         bool interruptible;
1465         int ret;
1466
1467         BUG_ON(req == NULL);
1468
1469         dev = req->ring->dev;
1470         dev_priv = dev->dev_private;
1471         interruptible = dev_priv->mm.interruptible;
1472
1473         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476         if (ret)
1477                 return ret;
1478
1479         ret = __i915_wait_request(req,
1480                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1481                                   interruptible, NULL, NULL);
1482         if (ret)
1483                 return ret;
1484
1485         __i915_gem_request_retire__upto(req);
1486         return 0;
1487 }
1488
1489 /**
1490  * Ensures that all rendering to the object has completed and the object is
1491  * safe to unbind from the GTT or access from the CPU.
1492  */
1493 int
1494 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495                                bool readonly)
1496 {
1497         int ret, i;
1498
1499         if (!obj->active)
1500                 return 0;
1501
1502         if (readonly) {
1503                 if (obj->last_write_req != NULL) {
1504                         ret = i915_wait_request(obj->last_write_req);
1505                         if (ret)
1506                                 return ret;
1507
1508                         i = obj->last_write_req->ring->id;
1509                         if (obj->last_read_req[i] == obj->last_write_req)
1510                                 i915_gem_object_retire__read(obj, i);
1511                         else
1512                                 i915_gem_object_retire__write(obj);
1513                 }
1514         } else {
1515                 for (i = 0; i < I915_NUM_RINGS; i++) {
1516                         if (obj->last_read_req[i] == NULL)
1517                                 continue;
1518
1519                         ret = i915_wait_request(obj->last_read_req[i]);
1520                         if (ret)
1521                                 return ret;
1522
1523                         i915_gem_object_retire__read(obj, i);
1524                 }
1525                 RQ_BUG_ON(obj->active);
1526         }
1527
1528         return 0;
1529 }
1530
1531 static void
1532 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533                                struct drm_i915_gem_request *req)
1534 {
1535         int ring = req->ring->id;
1536
1537         if (obj->last_read_req[ring] == req)
1538                 i915_gem_object_retire__read(obj, ring);
1539         else if (obj->last_write_req == req)
1540                 i915_gem_object_retire__write(obj);
1541
1542         __i915_gem_request_retire__upto(req);
1543 }
1544
1545 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1546  * as the object state may change during this call.
1547  */
1548 static __must_check int
1549 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550                                             struct intel_rps_client *rps,
1551                                             bool readonly)
1552 {
1553         struct drm_device *dev = obj->base.dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556         unsigned reset_counter;
1557         int ret, i, n = 0;
1558
1559         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560         BUG_ON(!dev_priv->mm.interruptible);
1561
1562         if (!obj->active)
1563                 return 0;
1564
1565         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566         if (ret)
1567                 return ret;
1568
1569         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571         if (readonly) {
1572                 struct drm_i915_gem_request *req;
1573
1574                 req = obj->last_write_req;
1575                 if (req == NULL)
1576                         return 0;
1577
1578                 requests[n++] = i915_gem_request_reference(req);
1579         } else {
1580                 for (i = 0; i < I915_NUM_RINGS; i++) {
1581                         struct drm_i915_gem_request *req;
1582
1583                         req = obj->last_read_req[i];
1584                         if (req == NULL)
1585                                 continue;
1586
1587                         requests[n++] = i915_gem_request_reference(req);
1588                 }
1589         }
1590
1591         mutex_unlock(&dev->struct_mutex);
1592         for (i = 0; ret == 0 && i < n; i++)
1593                 ret = __i915_wait_request(requests[i], reset_counter, true,
1594                                           NULL, rps);
1595         mutex_lock(&dev->struct_mutex);
1596
1597         for (i = 0; i < n; i++) {
1598                 if (ret == 0)
1599                         i915_gem_object_retire_request(obj, requests[i]);
1600                 i915_gem_request_unreference(requests[i]);
1601         }
1602
1603         return ret;
1604 }
1605
1606 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607 {
1608         struct drm_i915_file_private *fpriv = file->driver_priv;
1609         return &fpriv->rps;
1610 }
1611
1612 /**
1613  * Called when user space prepares to use an object with the CPU, either
1614  * through the mmap ioctl's mapping or a GTT mapping.
1615  */
1616 int
1617 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618                           struct drm_file *file)
1619 {
1620         struct drm_i915_gem_set_domain *args = data;
1621         struct drm_i915_gem_object *obj;
1622         uint32_t read_domains = args->read_domains;
1623         uint32_t write_domain = args->write_domain;
1624         int ret;
1625
1626         /* Only handle setting domains to types used by the CPU. */
1627         if (write_domain & I915_GEM_GPU_DOMAINS)
1628                 return -EINVAL;
1629
1630         if (read_domains & I915_GEM_GPU_DOMAINS)
1631                 return -EINVAL;
1632
1633         /* Having something in the write domain implies it's in the read
1634          * domain, and only that read domain.  Enforce that in the request.
1635          */
1636         if (write_domain != 0 && read_domains != write_domain)
1637                 return -EINVAL;
1638
1639         ret = i915_mutex_lock_interruptible(dev);
1640         if (ret)
1641                 return ret;
1642
1643         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644         if (&obj->base == NULL) {
1645                 ret = -ENOENT;
1646                 goto unlock;
1647         }
1648
1649         /* Try to flush the object off the GPU without holding the lock.
1650          * We will repeat the flush holding the lock in the normal manner
1651          * to catch cases where we are gazumped.
1652          */
1653         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654                                                           to_rps_client(file),
1655                                                           !write_domain);
1656         if (ret)
1657                 goto unref;
1658
1659         if (read_domains & I915_GEM_DOMAIN_GTT)
1660                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661         else
1662                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664         if (write_domain != 0)
1665                 intel_fb_obj_invalidate(obj,
1666                                         write_domain == I915_GEM_DOMAIN_GTT ?
1667                                         ORIGIN_GTT : ORIGIN_CPU);
1668
1669 unref:
1670         drm_gem_object_unreference(&obj->base);
1671 unlock:
1672         mutex_unlock(&dev->struct_mutex);
1673         return ret;
1674 }
1675
1676 /**
1677  * Called when user space has done writes to this buffer
1678  */
1679 int
1680 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681                          struct drm_file *file)
1682 {
1683         struct drm_i915_gem_sw_finish *args = data;
1684         struct drm_i915_gem_object *obj;
1685         int ret = 0;
1686
1687         ret = i915_mutex_lock_interruptible(dev);
1688         if (ret)
1689                 return ret;
1690
1691         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692         if (&obj->base == NULL) {
1693                 ret = -ENOENT;
1694                 goto unlock;
1695         }
1696
1697         /* Pinned buffers may be scanout, so flush the cache */
1698         if (obj->pin_display)
1699                 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701         drm_gem_object_unreference(&obj->base);
1702 unlock:
1703         mutex_unlock(&dev->struct_mutex);
1704         return ret;
1705 }
1706
1707 /**
1708  * Maps the contents of an object, returning the address it is mapped
1709  * into.
1710  *
1711  * While the mapping holds a reference on the contents of the object, it doesn't
1712  * imply a ref on the object itself.
1713  *
1714  * IMPORTANT:
1715  *
1716  * DRM driver writers who look a this function as an example for how to do GEM
1717  * mmap support, please don't implement mmap support like here. The modern way
1718  * to implement DRM mmap support is with an mmap offset ioctl (like
1719  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720  * That way debug tooling like valgrind will understand what's going on, hiding
1721  * the mmap call in a driver private ioctl will break that. The i915 driver only
1722  * does cpu mmaps this way because we didn't know better.
1723  */
1724 int
1725 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726                     struct drm_file *file)
1727 {
1728         struct drm_i915_gem_mmap *args = data;
1729         struct drm_gem_object *obj;
1730         unsigned long addr;
1731
1732         if (args->flags & ~(I915_MMAP_WC))
1733                 return -EINVAL;
1734
1735         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1736                 return -ENODEV;
1737
1738         obj = drm_gem_object_lookup(dev, file, args->handle);
1739         if (obj == NULL)
1740                 return -ENOENT;
1741
1742         /* prime objects have no backing filp to GEM mmap
1743          * pages from.
1744          */
1745         if (!obj->filp) {
1746                 drm_gem_object_unreference_unlocked(obj);
1747                 return -EINVAL;
1748         }
1749
1750         addr = vm_mmap(obj->filp, 0, args->size,
1751                        PROT_READ | PROT_WRITE, MAP_SHARED,
1752                        args->offset);
1753         if (args->flags & I915_MMAP_WC) {
1754                 struct mm_struct *mm = current->mm;
1755                 struct vm_area_struct *vma;
1756
1757                 down_write(&mm->mmap_sem);
1758                 vma = find_vma(mm, addr);
1759                 if (vma)
1760                         vma->vm_page_prot =
1761                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762                 else
1763                         addr = -ENOMEM;
1764                 up_write(&mm->mmap_sem);
1765         }
1766         drm_gem_object_unreference_unlocked(obj);
1767         if (IS_ERR((void *)addr))
1768                 return addr;
1769
1770         args->addr_ptr = (uint64_t) addr;
1771
1772         return 0;
1773 }
1774
1775 /**
1776  * i915_gem_fault - fault a page into the GTT
1777  * @vma: VMA in question
1778  * @vmf: fault info
1779  *
1780  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781  * from userspace.  The fault handler takes care of binding the object to
1782  * the GTT (if needed), allocating and programming a fence register (again,
1783  * only if needed based on whether the old reg is still valid or the object
1784  * is tiled) and inserting a new PTE into the faulting process.
1785  *
1786  * Note that the faulting process may involve evicting existing objects
1787  * from the GTT and/or fence registers to make room.  So performance may
1788  * suffer if the GTT working set is large or there are few fence registers
1789  * left.
1790  */
1791 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792 {
1793         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794         struct drm_device *dev = obj->base.dev;
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         struct i915_ggtt_view view = i915_ggtt_view_normal;
1797         pgoff_t page_offset;
1798         unsigned long pfn;
1799         int ret = 0;
1800         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802         intel_runtime_pm_get(dev_priv);
1803
1804         /* We don't use vmf->pgoff since that has the fake offset */
1805         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806                 PAGE_SHIFT;
1807
1808         ret = i915_mutex_lock_interruptible(dev);
1809         if (ret)
1810                 goto out;
1811
1812         trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814         /* Try to flush the object off the GPU first without holding the lock.
1815          * Upon reacquiring the lock, we will perform our sanity checks and then
1816          * repeat the flush holding the lock in the normal manner to catch cases
1817          * where we are gazumped.
1818          */
1819         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820         if (ret)
1821                 goto unlock;
1822
1823         /* Access to snoopable pages through the GTT is incoherent. */
1824         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825                 ret = -EFAULT;
1826                 goto unlock;
1827         }
1828
1829         /* Use a partial view if the object is bigger than the aperture. */
1830         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831             obj->tiling_mode == I915_TILING_NONE) {
1832                 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834                 memset(&view, 0, sizeof(view));
1835                 view.type = I915_GGTT_VIEW_PARTIAL;
1836                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837                 view.params.partial.size =
1838                         min_t(unsigned int,
1839                               chunk_size,
1840                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841                               view.params.partial.offset);
1842         }
1843
1844         /* Now pin it into the GTT if needed */
1845         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846         if (ret)
1847                 goto unlock;
1848
1849         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850         if (ret)
1851                 goto unpin;
1852
1853         ret = i915_gem_object_get_fence(obj);
1854         if (ret)
1855                 goto unpin;
1856
1857         /* Finally, remap it using the new GTT offset */
1858         pfn = dev_priv->gtt.mappable_base +
1859                 i915_gem_obj_ggtt_offset_view(obj, &view);
1860         pfn >>= PAGE_SHIFT;
1861
1862         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863                 /* Overriding existing pages in partial view does not cause
1864                  * us any trouble as TLBs are still valid because the fault
1865                  * is due to userspace losing part of the mapping or never
1866                  * having accessed it before (at this partials' range).
1867                  */
1868                 unsigned long base = vma->vm_start +
1869                                      (view.params.partial.offset << PAGE_SHIFT);
1870                 unsigned int i;
1871
1872                 for (i = 0; i < view.params.partial.size; i++) {
1873                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874                         if (ret)
1875                                 break;
1876                 }
1877
1878                 obj->fault_mappable = true;
1879         } else {
1880                 if (!obj->fault_mappable) {
1881                         unsigned long size = min_t(unsigned long,
1882                                                    vma->vm_end - vma->vm_start,
1883                                                    obj->base.size);
1884                         int i;
1885
1886                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887                                 ret = vm_insert_pfn(vma,
1888                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889                                                     pfn + i);
1890                                 if (ret)
1891                                         break;
1892                         }
1893
1894                         obj->fault_mappable = true;
1895                 } else
1896                         ret = vm_insert_pfn(vma,
1897                                             (unsigned long)vmf->virtual_address,
1898                                             pfn + page_offset);
1899         }
1900 unpin:
1901         i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903         mutex_unlock(&dev->struct_mutex);
1904 out:
1905         switch (ret) {
1906         case -EIO:
1907                 /*
1908                  * We eat errors when the gpu is terminally wedged to avoid
1909                  * userspace unduly crashing (gl has no provisions for mmaps to
1910                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911                  * and so needs to be reported.
1912                  */
1913                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914                         ret = VM_FAULT_SIGBUS;
1915                         break;
1916                 }
1917         case -EAGAIN:
1918                 /*
1919                  * EAGAIN means the gpu is hung and we'll wait for the error
1920                  * handler to reset everything when re-faulting in
1921                  * i915_mutex_lock_interruptible.
1922                  */
1923         case 0:
1924         case -ERESTARTSYS:
1925         case -EINTR:
1926         case -EBUSY:
1927                 /*
1928                  * EBUSY is ok: this just means that another thread
1929                  * already did the job.
1930                  */
1931                 ret = VM_FAULT_NOPAGE;
1932                 break;
1933         case -ENOMEM:
1934                 ret = VM_FAULT_OOM;
1935                 break;
1936         case -ENOSPC:
1937         case -EFAULT:
1938                 ret = VM_FAULT_SIGBUS;
1939                 break;
1940         default:
1941                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942                 ret = VM_FAULT_SIGBUS;
1943                 break;
1944         }
1945
1946         intel_runtime_pm_put(dev_priv);
1947         return ret;
1948 }
1949
1950 /**
1951  * i915_gem_release_mmap - remove physical page mappings
1952  * @obj: obj in question
1953  *
1954  * Preserve the reservation of the mmapping with the DRM core code, but
1955  * relinquish ownership of the pages back to the system.
1956  *
1957  * It is vital that we remove the page mapping if we have mapped a tiled
1958  * object through the GTT and then lose the fence register due to
1959  * resource pressure. Similarly if the object has been moved out of the
1960  * aperture, than pages mapped into userspace must be revoked. Removing the
1961  * mapping will then trigger a page fault on the next user access, allowing
1962  * fixup by i915_gem_fault().
1963  */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967         if (!obj->fault_mappable)
1968                 return;
1969
1970         drm_vma_node_unmap(&obj->base.vma_node,
1971                            obj->base.dev->anon_inode->i_mapping);
1972         obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978         struct drm_i915_gem_object *obj;
1979
1980         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981                 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987         uint32_t gtt_size;
1988
1989         if (INTEL_INFO(dev)->gen >= 4 ||
1990             tiling_mode == I915_TILING_NONE)
1991                 return size;
1992
1993         /* Previous chips need a power-of-two fence region when tiling */
1994         if (INTEL_INFO(dev)->gen == 3)
1995                 gtt_size = 1024*1024;
1996         else
1997                 gtt_size = 512*1024;
1998
1999         while (gtt_size < size)
2000                 gtt_size <<= 1;
2001
2002         return gtt_size;
2003 }
2004
2005 /**
2006  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007  * @obj: object to check
2008  *
2009  * Return the required GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014                            int tiling_mode, bool fenced)
2015 {
2016         /*
2017          * Minimum alignment is 4k (GTT page size), but might be greater
2018          * if a fence register is needed for the object.
2019          */
2020         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021             tiling_mode == I915_TILING_NONE)
2022                 return 4096;
2023
2024         /*
2025          * Previous chips need to be aligned to the size of the smallest
2026          * fence register that can contain the object.
2027          */
2028         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034         int ret;
2035
2036         if (drm_vma_node_has_offset(&obj->base.vma_node))
2037                 return 0;
2038
2039         dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041         ret = drm_gem_create_mmap_offset(&obj->base);
2042         if (ret != -ENOSPC)
2043                 goto out;
2044
2045         /* Badly fragmented mmap space? The only way we can recover
2046          * space is by destroying unwanted objects. We can't randomly release
2047          * mmap_offsets as userspace expects them to be persistent for the
2048          * lifetime of the objects. The closest we can is to release the
2049          * offsets on purgeable objects by truncating it and marking it purged,
2050          * which prevents userspace from ever using that object again.
2051          */
2052         i915_gem_shrink(dev_priv,
2053                         obj->base.size >> PAGE_SHIFT,
2054                         I915_SHRINK_BOUND |
2055                         I915_SHRINK_UNBOUND |
2056                         I915_SHRINK_PURGEABLE);
2057         ret = drm_gem_create_mmap_offset(&obj->base);
2058         if (ret != -ENOSPC)
2059                 goto out;
2060
2061         i915_gem_shrink_all(dev_priv);
2062         ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064         dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066         return ret;
2067 }
2068
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071         drm_gem_free_mmap_offset(&obj->base);
2072 }
2073
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076                   struct drm_device *dev,
2077                   uint32_t handle,
2078                   uint64_t *offset)
2079 {
2080         struct drm_i915_gem_object *obj;
2081         int ret;
2082
2083         ret = i915_mutex_lock_interruptible(dev);
2084         if (ret)
2085                 return ret;
2086
2087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088         if (&obj->base == NULL) {
2089                 ret = -ENOENT;
2090                 goto unlock;
2091         }
2092
2093         if (obj->madv != I915_MADV_WILLNEED) {
2094                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095                 ret = -EFAULT;
2096                 goto out;
2097         }
2098
2099         ret = i915_gem_object_create_mmap_offset(obj);
2100         if (ret)
2101                 goto out;
2102
2103         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105 out:
2106         drm_gem_object_unreference(&obj->base);
2107 unlock:
2108         mutex_unlock(&dev->struct_mutex);
2109         return ret;
2110 }
2111
2112 /**
2113  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114  * @dev: DRM device
2115  * @data: GTT mapping ioctl data
2116  * @file: GEM object info
2117  *
2118  * Simply returns the fake offset to userspace so it can mmap it.
2119  * The mmap call will end up in drm_gem_mmap(), which will set things
2120  * up so we can get faults in the handler above.
2121  *
2122  * The fault handler will take care of binding the object into the GTT
2123  * (since it may have been evicted to make room for something), allocating
2124  * a fence register, and mapping the appropriate aperture address into
2125  * userspace.
2126  */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129                         struct drm_file *file)
2130 {
2131         struct drm_i915_gem_mmap_gtt *args = data;
2132
2133         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140         i915_gem_object_free_mmap_offset(obj);
2141
2142         if (obj->base.filp == NULL)
2143                 return;
2144
2145         /* Our goal here is to return as much of the memory as
2146          * is possible back to the system as we are called from OOM.
2147          * To do this we must instruct the shmfs to drop all of its
2148          * backing pages, *now*.
2149          */
2150         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151         obj->madv = __I915_MADV_PURGED;
2152 }
2153
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158         struct address_space *mapping;
2159
2160         switch (obj->madv) {
2161         case I915_MADV_DONTNEED:
2162                 i915_gem_object_truncate(obj);
2163         case __I915_MADV_PURGED:
2164                 return;
2165         }
2166
2167         if (obj->base.filp == NULL)
2168                 return;
2169
2170         mapping = file_inode(obj->base.filp)->i_mapping,
2171         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177         struct sg_page_iter sg_iter;
2178         int ret;
2179
2180         BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183         if (ret) {
2184                 /* In the event of a disaster, abandon all caches and
2185                  * hope for the best.
2186                  */
2187                 WARN_ON(ret != -EIO);
2188                 i915_gem_clflush_object(obj, true);
2189                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190         }
2191
2192         i915_gem_gtt_finish_object(obj);
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197         if (obj->madv == I915_MADV_DONTNEED)
2198                 obj->dirty = 0;
2199
2200         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201                 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203                 if (obj->dirty)
2204                         set_page_dirty(page);
2205
2206                 if (obj->madv == I915_MADV_WILLNEED)
2207                         mark_page_accessed(page);
2208
2209                 put_page(page);
2210         }
2211         obj->dirty = 0;
2212
2213         sg_free_table(obj->pages);
2214         kfree(obj->pages);
2215 }
2216
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220         const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222         if (obj->pages == NULL)
2223                 return 0;
2224
2225         if (obj->pages_pin_count)
2226                 return -EBUSY;
2227
2228         BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230         /* ->put_pages might need to allocate memory for the bit17 swizzle
2231          * array, hence protect them from being reaped by removing them from gtt
2232          * lists early. */
2233         list_del(&obj->global_list);
2234
2235         ops->put_pages(obj);
2236         obj->pages = NULL;
2237
2238         i915_gem_object_invalidate(obj);
2239
2240         return 0;
2241 }
2242
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247         int page_count, i;
2248         struct address_space *mapping;
2249         struct sg_table *st;
2250         struct scatterlist *sg;
2251         struct sg_page_iter sg_iter;
2252         struct page *page;
2253         unsigned long last_pfn = 0;     /* suppress gcc warning */
2254         int ret;
2255         gfp_t gfp;
2256
2257         /* Assert that the object is not currently in any GPU domain. As it
2258          * wasn't in the GTT, there shouldn't be any way it could have been in
2259          * a GPU cache
2260          */
2261         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264         st = kmalloc(sizeof(*st), GFP_KERNEL);
2265         if (st == NULL)
2266                 return -ENOMEM;
2267
2268         page_count = obj->base.size / PAGE_SIZE;
2269         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270                 kfree(st);
2271                 return -ENOMEM;
2272         }
2273
2274         /* Get the list of pages out of our struct file.  They'll be pinned
2275          * at this point until we release them.
2276          *
2277          * Fail silently without starting the shrinker
2278          */
2279         mapping = file_inode(obj->base.filp)->i_mapping;
2280         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282         sg = st->sgl;
2283         st->nents = 0;
2284         for (i = 0; i < page_count; i++) {
2285                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286                 if (IS_ERR(page)) {
2287                         i915_gem_shrink(dev_priv,
2288                                         page_count,
2289                                         I915_SHRINK_BOUND |
2290                                         I915_SHRINK_UNBOUND |
2291                                         I915_SHRINK_PURGEABLE);
2292                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293                 }
2294                 if (IS_ERR(page)) {
2295                         /* We've tried hard to allocate the memory by reaping
2296                          * our own buffer, now let the real VM do its job and
2297                          * go down in flames if truly OOM.
2298                          */
2299                         i915_gem_shrink_all(dev_priv);
2300                         page = shmem_read_mapping_page(mapping, i);
2301                         if (IS_ERR(page)) {
2302                                 ret = PTR_ERR(page);
2303                                 goto err_pages;
2304                         }
2305                 }
2306 #ifdef CONFIG_SWIOTLB
2307                 if (swiotlb_nr_tbl()) {
2308                         st->nents++;
2309                         sg_set_page(sg, page, PAGE_SIZE, 0);
2310                         sg = sg_next(sg);
2311                         continue;
2312                 }
2313 #endif
2314                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315                         if (i)
2316                                 sg = sg_next(sg);
2317                         st->nents++;
2318                         sg_set_page(sg, page, PAGE_SIZE, 0);
2319                 } else {
2320                         sg->length += PAGE_SIZE;
2321                 }
2322                 last_pfn = page_to_pfn(page);
2323
2324                 /* Check that the i965g/gm workaround works. */
2325                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326         }
2327 #ifdef CONFIG_SWIOTLB
2328         if (!swiotlb_nr_tbl())
2329 #endif
2330                 sg_mark_end(sg);
2331         obj->pages = st;
2332
2333         ret = i915_gem_gtt_prepare_object(obj);
2334         if (ret)
2335                 goto err_pages;
2336
2337         if (i915_gem_object_needs_bit17_swizzle(obj))
2338                 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340         if (obj->tiling_mode != I915_TILING_NONE &&
2341             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342                 i915_gem_object_pin_pages(obj);
2343
2344         return 0;
2345
2346 err_pages:
2347         sg_mark_end(sg);
2348         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349                 put_page(sg_page_iter_page(&sg_iter));
2350         sg_free_table(st);
2351         kfree(st);
2352
2353         /* shmemfs first checks if there is enough memory to allocate the page
2354          * and reports ENOSPC should there be insufficient, along with the usual
2355          * ENOMEM for a genuine allocation failure.
2356          *
2357          * We use ENOSPC in our driver to mean that we have run out of aperture
2358          * space and so want to translate the error from shmemfs back to our
2359          * usual understanding of ENOMEM.
2360          */
2361         if (ret == -ENOSPC)
2362                 ret = -ENOMEM;
2363
2364         return ret;
2365 }
2366
2367 /* Ensure that the associated pages are gathered from the backing storage
2368  * and pinned into our object. i915_gem_object_get_pages() may be called
2369  * multiple times before they are released by a single call to
2370  * i915_gem_object_put_pages() - once the pages are no longer referenced
2371  * either as a result of memory pressure (reaping pages under the shrinker)
2372  * or as the object is itself released.
2373  */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378         const struct drm_i915_gem_object_ops *ops = obj->ops;
2379         int ret;
2380
2381         if (obj->pages)
2382                 return 0;
2383
2384         if (obj->madv != I915_MADV_WILLNEED) {
2385                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386                 return -EFAULT;
2387         }
2388
2389         BUG_ON(obj->pages_pin_count);
2390
2391         ret = ops->get_pages(obj);
2392         if (ret)
2393                 return ret;
2394
2395         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397         obj->get_page.sg = obj->pages->sgl;
2398         obj->get_page.last = 0;
2399
2400         return 0;
2401 }
2402
2403 void i915_vma_move_to_active(struct i915_vma *vma,
2404                              struct drm_i915_gem_request *req)
2405 {
2406         struct drm_i915_gem_object *obj = vma->obj;
2407         struct intel_engine_cs *ring;
2408
2409         ring = i915_gem_request_get_ring(req);
2410
2411         /* Add a reference if we're newly entering the active list. */
2412         if (obj->active == 0)
2413                 drm_gem_object_reference(&obj->base);
2414         obj->active |= intel_ring_flag(ring);
2415
2416         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420 }
2421
2422 static void
2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424 {
2425         RQ_BUG_ON(obj->last_write_req == NULL);
2426         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428         i915_gem_request_assign(&obj->last_write_req, NULL);
2429         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430 }
2431
2432 static void
2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434 {
2435         struct i915_vma *vma;
2436
2437         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438         RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440         list_del_init(&obj->ring_list[ring]);
2441         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444                 i915_gem_object_retire__write(obj);
2445
2446         obj->active &= ~(1 << ring);
2447         if (obj->active)
2448                 return;
2449
2450         /* Bump our place on the bound list to keep it roughly in LRU order
2451          * so that we don't steal from recently used but inactive objects
2452          * (unless we are forced to ofc!)
2453          */
2454         list_move_tail(&obj->global_list,
2455                        &to_i915(obj->base.dev)->mm.bound_list);
2456
2457         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458                 if (!list_empty(&vma->vm_link))
2459                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460         }
2461
2462         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463         drm_gem_object_unreference(&obj->base);
2464 }
2465
2466 static int
2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468 {
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_engine_cs *ring;
2471         int ret, i, j;
2472
2473         /* Carefully retire all requests without writing to the rings */
2474         for_each_ring(ring, dev_priv, i) {
2475                 ret = intel_ring_idle(ring);
2476                 if (ret)
2477                         return ret;
2478         }
2479         i915_gem_retire_requests(dev);
2480
2481         /* Finally reset hw state */
2482         for_each_ring(ring, dev_priv, i) {
2483                 intel_ring_init_seqno(ring, seqno);
2484
2485                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486                         ring->semaphore.sync_seqno[j] = 0;
2487         }
2488
2489         return 0;
2490 }
2491
2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494         struct drm_i915_private *dev_priv = dev->dev_private;
2495         int ret;
2496
2497         if (seqno == 0)
2498                 return -EINVAL;
2499
2500         /* HWS page needs to be set less than what we
2501          * will inject to ring
2502          */
2503         ret = i915_gem_init_seqno(dev, seqno - 1);
2504         if (ret)
2505                 return ret;
2506
2507         /* Carefully set the last_seqno value so that wrap
2508          * detection still works
2509          */
2510         dev_priv->next_seqno = seqno;
2511         dev_priv->last_seqno = seqno - 1;
2512         if (dev_priv->last_seqno == 0)
2513                 dev_priv->last_seqno--;
2514
2515         return 0;
2516 }
2517
2518 int
2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523         /* reserve 0 for non-seqno */
2524         if (dev_priv->next_seqno == 0) {
2525                 int ret = i915_gem_init_seqno(dev, 0);
2526                 if (ret)
2527                         return ret;
2528
2529                 dev_priv->next_seqno = 1;
2530         }
2531
2532         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533         return 0;
2534 }
2535
2536 /*
2537  * NB: This function is not allowed to fail. Doing so would mean the the
2538  * request is not being tracked for completion but the work itself is
2539  * going to happen on the hardware. This would be a Bad Thing(tm).
2540  */
2541 void __i915_add_request(struct drm_i915_gem_request *request,
2542                         struct drm_i915_gem_object *obj,
2543                         bool flush_caches)
2544 {
2545         struct intel_engine_cs *ring;
2546         struct drm_i915_private *dev_priv;
2547         struct intel_ringbuffer *ringbuf;
2548         u32 request_start;
2549         int ret;
2550
2551         if (WARN_ON(request == NULL))
2552                 return;
2553
2554         ring = request->ring;
2555         dev_priv = ring->dev->dev_private;
2556         ringbuf = request->ringbuf;
2557
2558         /*
2559          * To ensure that this call will not fail, space for its emissions
2560          * should already have been reserved in the ring buffer. Let the ring
2561          * know that it is time to use that space up.
2562          */
2563         intel_ring_reserved_space_use(ringbuf);
2564
2565         request_start = intel_ring_get_tail(ringbuf);
2566         /*
2567          * Emit any outstanding flushes - execbuf can fail to emit the flush
2568          * after having emitted the batchbuffer command. Hence we need to fix
2569          * things up similar to emitting the lazy request. The difference here
2570          * is that the flush _must_ happen before the next request, no matter
2571          * what.
2572          */
2573         if (flush_caches) {
2574                 if (i915.enable_execlists)
2575                         ret = logical_ring_flush_all_caches(request);
2576                 else
2577                         ret = intel_ring_flush_all_caches(request);
2578                 /* Not allowed to fail! */
2579                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580         }
2581
2582         /* Record the position of the start of the request so that
2583          * should we detect the updated seqno part-way through the
2584          * GPU processing the request, we never over-estimate the
2585          * position of the head.
2586          */
2587         request->postfix = intel_ring_get_tail(ringbuf);
2588
2589         if (i915.enable_execlists)
2590                 ret = ring->emit_request(request);
2591         else {
2592                 ret = ring->add_request(request);
2593
2594                 request->tail = intel_ring_get_tail(ringbuf);
2595         }
2596         /* Not allowed to fail! */
2597         WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599         request->head = request_start;
2600
2601         /* Whilst this request exists, batch_obj will be on the
2602          * active_list, and so will hold the active reference. Only when this
2603          * request is retired will the the batch_obj be moved onto the
2604          * inactive_list and lose its active reference. Hence we do not need
2605          * to explicitly hold another reference here.
2606          */
2607         request->batch_obj = obj;
2608
2609         request->emitted_jiffies = jiffies;
2610         request->previous_seqno = ring->last_submitted_seqno;
2611         ring->last_submitted_seqno = request->seqno;
2612         list_add_tail(&request->list, &ring->request_list);
2613
2614         trace_i915_gem_request_add(request);
2615
2616         i915_queue_hangcheck(ring->dev);
2617
2618         queue_delayed_work(dev_priv->wq,
2619                            &dev_priv->mm.retire_work,
2620                            round_jiffies_up_relative(HZ));
2621         intel_mark_busy(dev_priv->dev);
2622
2623         /* Sanity check that the reserved size was large enough. */
2624         intel_ring_reserved_space_end(ringbuf);
2625 }
2626
2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628                                    const struct intel_context *ctx)
2629 {
2630         unsigned long elapsed;
2631
2632         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634         if (ctx->hang_stats.banned)
2635                 return true;
2636
2637         if (ctx->hang_stats.ban_period_seconds &&
2638             elapsed <= ctx->hang_stats.ban_period_seconds) {
2639                 if (!i915_gem_context_is_default(ctx)) {
2640                         DRM_DEBUG("context hanging too fast, banning!\n");
2641                         return true;
2642                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643                         if (i915_stop_ring_allow_warn(dev_priv))
2644                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2645                         return true;
2646                 }
2647         }
2648
2649         return false;
2650 }
2651
2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653                                   struct intel_context *ctx,
2654                                   const bool guilty)
2655 {
2656         struct i915_ctx_hang_stats *hs;
2657
2658         if (WARN_ON(!ctx))
2659                 return;
2660
2661         hs = &ctx->hang_stats;
2662
2663         if (guilty) {
2664                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665                 hs->batch_active++;
2666                 hs->guilty_ts = get_seconds();
2667         } else {
2668                 hs->batch_pending++;
2669         }
2670 }
2671
2672 void i915_gem_request_free(struct kref *req_ref)
2673 {
2674         struct drm_i915_gem_request *req = container_of(req_ref,
2675                                                  typeof(*req), ref);
2676         struct intel_context *ctx = req->ctx;
2677
2678         if (req->file_priv)
2679                 i915_gem_request_remove_from_client(req);
2680
2681         if (ctx) {
2682                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683                         intel_lr_context_unpin(ctx, req->ring);
2684
2685                 i915_gem_context_unreference(ctx);
2686         }
2687
2688         kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 static inline int
2692 __i915_gem_request_alloc(struct intel_engine_cs *ring,
2693                          struct intel_context *ctx,
2694                          struct drm_i915_gem_request **req_out)
2695 {
2696         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697         struct drm_i915_gem_request *req;
2698         int ret;
2699
2700         if (!req_out)
2701                 return -EINVAL;
2702
2703         *req_out = NULL;
2704
2705         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706         if (req == NULL)
2707                 return -ENOMEM;
2708
2709         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710         if (ret)
2711                 goto err;
2712
2713         kref_init(&req->ref);
2714         req->i915 = dev_priv;
2715         req->ring = ring;
2716         req->ctx  = ctx;
2717         i915_gem_context_reference(req->ctx);
2718
2719         if (i915.enable_execlists)
2720                 ret = intel_logical_ring_alloc_request_extras(req);
2721         else
2722                 ret = intel_ring_alloc_request_extras(req);
2723         if (ret) {
2724                 i915_gem_context_unreference(req->ctx);
2725                 goto err;
2726         }
2727
2728         /*
2729          * Reserve space in the ring buffer for all the commands required to
2730          * eventually emit this request. This is to guarantee that the
2731          * i915_add_request() call can't fail. Note that the reserve may need
2732          * to be redone if the request is not actually submitted straight
2733          * away, e.g. because a GPU scheduler has deferred it.
2734          */
2735         if (i915.enable_execlists)
2736                 ret = intel_logical_ring_reserve_space(req);
2737         else
2738                 ret = intel_ring_reserve_space(req);
2739         if (ret) {
2740                 /*
2741                  * At this point, the request is fully allocated even if not
2742                  * fully prepared. Thus it can be cleaned up using the proper
2743                  * free code.
2744                  */
2745                 i915_gem_request_cancel(req);
2746                 return ret;
2747         }
2748
2749         *req_out = req;
2750         return 0;
2751
2752 err:
2753         kmem_cache_free(dev_priv->requests, req);
2754         return ret;
2755 }
2756
2757 /**
2758  * i915_gem_request_alloc - allocate a request structure
2759  *
2760  * @engine: engine that we wish to issue the request on.
2761  * @ctx: context that the request will be associated with.
2762  *       This can be NULL if the request is not directly related to
2763  *       any specific user context, in which case this function will
2764  *       choose an appropriate context to use.
2765  *
2766  * Returns a pointer to the allocated request if successful,
2767  * or an error code if not.
2768  */
2769 struct drm_i915_gem_request *
2770 i915_gem_request_alloc(struct intel_engine_cs *engine,
2771                        struct intel_context *ctx)
2772 {
2773         struct drm_i915_gem_request *req;
2774         int err;
2775
2776         if (ctx == NULL)
2777                 ctx = to_i915(engine->dev)->kernel_context;
2778         err = __i915_gem_request_alloc(engine, ctx, &req);
2779         return err ? ERR_PTR(err) : req;
2780 }
2781
2782 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783 {
2784         intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786         i915_gem_request_unreference(req);
2787 }
2788
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *ring)
2791 {
2792         struct drm_i915_gem_request *request;
2793
2794         list_for_each_entry(request, &ring->request_list, list) {
2795                 if (i915_gem_request_completed(request, false))
2796                         continue;
2797
2798                 return request;
2799         }
2800
2801         return NULL;
2802 }
2803
2804 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805                                        struct intel_engine_cs *ring)
2806 {
2807         struct drm_i915_gem_request *request;
2808         bool ring_hung;
2809
2810         request = i915_gem_find_active_request(ring);
2811
2812         if (request == NULL)
2813                 return;
2814
2815         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819         list_for_each_entry_continue(request, &ring->request_list, list)
2820                 i915_set_reset_status(dev_priv, request->ctx, false);
2821 }
2822
2823 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824                                         struct intel_engine_cs *ring)
2825 {
2826         struct intel_ringbuffer *buffer;
2827
2828         while (!list_empty(&ring->active_list)) {
2829                 struct drm_i915_gem_object *obj;
2830
2831                 obj = list_first_entry(&ring->active_list,
2832                                        struct drm_i915_gem_object,
2833                                        ring_list[ring->id]);
2834
2835                 i915_gem_object_retire__read(obj, ring->id);
2836         }
2837
2838         /*
2839          * Clear the execlists queue up before freeing the requests, as those
2840          * are the ones that keep the context and ringbuffer backing objects
2841          * pinned in place.
2842          */
2843
2844         if (i915.enable_execlists) {
2845                 spin_lock_irq(&ring->execlist_lock);
2846
2847                 /* list_splice_tail_init checks for empty lists */
2848                 list_splice_tail_init(&ring->execlist_queue,
2849                                       &ring->execlist_retired_req_list);
2850
2851                 spin_unlock_irq(&ring->execlist_lock);
2852                 intel_execlists_retire_requests(ring);
2853         }
2854
2855         /*
2856          * We must free the requests after all the corresponding objects have
2857          * been moved off active lists. Which is the same order as the normal
2858          * retire_requests function does. This is important if object hold
2859          * implicit references on things like e.g. ppgtt address spaces through
2860          * the request.
2861          */
2862         while (!list_empty(&ring->request_list)) {
2863                 struct drm_i915_gem_request *request;
2864
2865                 request = list_first_entry(&ring->request_list,
2866                                            struct drm_i915_gem_request,
2867                                            list);
2868
2869                 i915_gem_request_retire(request);
2870         }
2871
2872         /* Having flushed all requests from all queues, we know that all
2873          * ringbuffers must now be empty. However, since we do not reclaim
2874          * all space when retiring the request (to prevent HEADs colliding
2875          * with rapid ringbuffer wraparound) the amount of available space
2876          * upon reset is less than when we start. Do one more pass over
2877          * all the ringbuffers to reset last_retired_head.
2878          */
2879         list_for_each_entry(buffer, &ring->buffers, link) {
2880                 buffer->last_retired_head = buffer->tail;
2881                 intel_ring_update_space(buffer);
2882         }
2883 }
2884
2885 void i915_gem_reset(struct drm_device *dev)
2886 {
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_engine_cs *ring;
2889         int i;
2890
2891         /*
2892          * Before we free the objects from the requests, we need to inspect
2893          * them for finding the guilty party. As the requests only borrow
2894          * their reference to the objects, the inspection must be done first.
2895          */
2896         for_each_ring(ring, dev_priv, i)
2897                 i915_gem_reset_ring_status(dev_priv, ring);
2898
2899         for_each_ring(ring, dev_priv, i)
2900                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902         i915_gem_context_reset(dev);
2903
2904         i915_gem_restore_fences(dev);
2905
2906         WARN_ON(i915_verify_lists(dev));
2907 }
2908
2909 /**
2910  * This function clears the request list as sequence numbers are passed.
2911  */
2912 void
2913 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914 {
2915         WARN_ON(i915_verify_lists(ring->dev));
2916
2917         /* Retire requests first as we use it above for the early return.
2918          * If we retire requests last, we may use a later seqno and so clear
2919          * the requests lists without clearing the active list, leading to
2920          * confusion.
2921          */
2922         while (!list_empty(&ring->request_list)) {
2923                 struct drm_i915_gem_request *request;
2924
2925                 request = list_first_entry(&ring->request_list,
2926                                            struct drm_i915_gem_request,
2927                                            list);
2928
2929                 if (!i915_gem_request_completed(request, true))
2930                         break;
2931
2932                 i915_gem_request_retire(request);
2933         }
2934
2935         /* Move any buffers on the active list that are no longer referenced
2936          * by the ringbuffer to the flushing/inactive lists as appropriate,
2937          * before we free the context associated with the requests.
2938          */
2939         while (!list_empty(&ring->active_list)) {
2940                 struct drm_i915_gem_object *obj;
2941
2942                 obj = list_first_entry(&ring->active_list,
2943                                       struct drm_i915_gem_object,
2944                                       ring_list[ring->id]);
2945
2946                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2947                         break;
2948
2949                 i915_gem_object_retire__read(obj, ring->id);
2950         }
2951
2952         if (unlikely(ring->trace_irq_req &&
2953                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2954                 ring->irq_put(ring);
2955                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956         }
2957
2958         WARN_ON(i915_verify_lists(ring->dev));
2959 }
2960
2961 bool
2962 i915_gem_retire_requests(struct drm_device *dev)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_engine_cs *ring;
2966         bool idle = true;
2967         int i;
2968
2969         for_each_ring(ring, dev_priv, i) {
2970                 i915_gem_retire_requests_ring(ring);
2971                 idle &= list_empty(&ring->request_list);
2972                 if (i915.enable_execlists) {
2973                         spin_lock_irq(&ring->execlist_lock);
2974                         idle &= list_empty(&ring->execlist_queue);
2975                         spin_unlock_irq(&ring->execlist_lock);
2976
2977                         intel_execlists_retire_requests(ring);
2978                 }
2979         }
2980
2981         if (idle)
2982                 mod_delayed_work(dev_priv->wq,
2983                                    &dev_priv->mm.idle_work,
2984                                    msecs_to_jiffies(100));
2985
2986         return idle;
2987 }
2988
2989 static void
2990 i915_gem_retire_work_handler(struct work_struct *work)
2991 {
2992         struct drm_i915_private *dev_priv =
2993                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994         struct drm_device *dev = dev_priv->dev;
2995         bool idle;
2996
2997         /* Come back later if the device is busy... */
2998         idle = false;
2999         if (mutex_trylock(&dev->struct_mutex)) {
3000                 idle = i915_gem_retire_requests(dev);
3001                 mutex_unlock(&dev->struct_mutex);
3002         }
3003         if (!idle)
3004                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005                                    round_jiffies_up_relative(HZ));
3006 }
3007
3008 static void
3009 i915_gem_idle_work_handler(struct work_struct *work)
3010 {
3011         struct drm_i915_private *dev_priv =
3012                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013         struct drm_device *dev = dev_priv->dev;
3014         struct intel_engine_cs *ring;
3015         int i;
3016
3017         for_each_ring(ring, dev_priv, i)
3018                 if (!list_empty(&ring->request_list))
3019                         return;
3020
3021         /* we probably should sync with hangcheck here, using cancel_work_sync.
3022          * Also locking seems to be fubar here, ring->request_list is protected
3023          * by dev->struct_mutex. */
3024
3025         intel_mark_idle(dev);
3026
3027         if (mutex_trylock(&dev->struct_mutex)) {
3028                 struct intel_engine_cs *ring;
3029                 int i;
3030
3031                 for_each_ring(ring, dev_priv, i)
3032                         i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034                 mutex_unlock(&dev->struct_mutex);
3035         }
3036 }
3037
3038 /**
3039  * Ensures that an object will eventually get non-busy by flushing any required
3040  * write domains, emitting any outstanding lazy request and retiring and
3041  * completed requests.
3042  */
3043 static int
3044 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045 {
3046         int i;
3047
3048         if (!obj->active)
3049                 return 0;
3050
3051         for (i = 0; i < I915_NUM_RINGS; i++) {
3052                 struct drm_i915_gem_request *req;
3053
3054                 req = obj->last_read_req[i];
3055                 if (req == NULL)
3056                         continue;
3057
3058                 if (list_empty(&req->list))
3059                         goto retire;
3060
3061                 if (i915_gem_request_completed(req, true)) {
3062                         __i915_gem_request_retire__upto(req);
3063 retire:
3064                         i915_gem_object_retire__read(obj, i);
3065                 }
3066         }
3067
3068         return 0;
3069 }
3070
3071 /**
3072  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073  * @DRM_IOCTL_ARGS: standard ioctl arguments
3074  *
3075  * Returns 0 if successful, else an error is returned with the remaining time in
3076  * the timeout parameter.
3077  *  -ETIME: object is still busy after timeout
3078  *  -ERESTARTSYS: signal interrupted the wait
3079  *  -ENONENT: object doesn't exist
3080  * Also possible, but rare:
3081  *  -EAGAIN: GPU wedged
3082  *  -ENOMEM: damn
3083  *  -ENODEV: Internal IRQ fail
3084  *  -E?: The add request failed
3085  *
3086  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087  * non-zero timeout parameter the wait ioctl will wait for the given number of
3088  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089  * without holding struct_mutex the object may become re-busied before this
3090  * function completes. A similar but shorter * race condition exists in the busy
3091  * ioctl
3092  */
3093 int
3094 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095 {
3096         struct drm_i915_private *dev_priv = dev->dev_private;
3097         struct drm_i915_gem_wait *args = data;
3098         struct drm_i915_gem_object *obj;
3099         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100         unsigned reset_counter;
3101         int i, n = 0;
3102         int ret;
3103
3104         if (args->flags != 0)
3105                 return -EINVAL;
3106
3107         ret = i915_mutex_lock_interruptible(dev);
3108         if (ret)
3109                 return ret;
3110
3111         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112         if (&obj->base == NULL) {
3113                 mutex_unlock(&dev->struct_mutex);
3114                 return -ENOENT;
3115         }
3116
3117         /* Need to make sure the object gets inactive eventually. */
3118         ret = i915_gem_object_flush_active(obj);
3119         if (ret)
3120                 goto out;
3121
3122         if (!obj->active)
3123                 goto out;
3124
3125         /* Do this after OLR check to make sure we make forward progress polling
3126          * on this IOCTL with a timeout == 0 (like busy ioctl)
3127          */
3128         if (args->timeout_ns == 0) {
3129                 ret = -ETIME;
3130                 goto out;
3131         }
3132
3133         drm_gem_object_unreference(&obj->base);
3134         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136         for (i = 0; i < I915_NUM_RINGS; i++) {
3137                 if (obj->last_read_req[i] == NULL)
3138                         continue;
3139
3140                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141         }
3142
3143         mutex_unlock(&dev->struct_mutex);
3144
3145         for (i = 0; i < n; i++) {
3146                 if (ret == 0)
3147                         ret = __i915_wait_request(req[i], reset_counter, true,
3148                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149                                                   to_rps_client(file));
3150                 i915_gem_request_unreference__unlocked(req[i]);
3151         }
3152         return ret;
3153
3154 out:
3155         drm_gem_object_unreference(&obj->base);
3156         mutex_unlock(&dev->struct_mutex);
3157         return ret;
3158 }
3159
3160 static int
3161 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162                        struct intel_engine_cs *to,
3163                        struct drm_i915_gem_request *from_req,
3164                        struct drm_i915_gem_request **to_req)
3165 {
3166         struct intel_engine_cs *from;
3167         int ret;
3168
3169         from = i915_gem_request_get_ring(from_req);
3170         if (to == from)
3171                 return 0;
3172
3173         if (i915_gem_request_completed(from_req, true))
3174                 return 0;
3175
3176         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178                 ret = __i915_wait_request(from_req,
3179                                           atomic_read(&i915->gpu_error.reset_counter),
3180                                           i915->mm.interruptible,
3181                                           NULL,
3182                                           &i915->rps.semaphores);
3183                 if (ret)
3184                         return ret;
3185
3186                 i915_gem_object_retire_request(obj, from_req);
3187         } else {
3188                 int idx = intel_ring_sync_index(from, to);
3189                 u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191                 WARN_ON(!to_req);
3192
3193                 if (seqno <= from->semaphore.sync_seqno[idx])
3194                         return 0;
3195
3196                 if (*to_req == NULL) {
3197                         struct drm_i915_gem_request *req;
3198
3199                         req = i915_gem_request_alloc(to, NULL);
3200                         if (IS_ERR(req))
3201                                 return PTR_ERR(req);
3202
3203                         *to_req = req;
3204                 }
3205
3206                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3208                 if (ret)
3209                         return ret;
3210
3211                 /* We use last_read_req because sync_to()
3212                  * might have just caused seqno wrap under
3213                  * the radar.
3214                  */
3215                 from->semaphore.sync_seqno[idx] =
3216                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217         }
3218
3219         return 0;
3220 }
3221
3222 /**
3223  * i915_gem_object_sync - sync an object to a ring.
3224  *
3225  * @obj: object which may be in use on another ring.
3226  * @to: ring we wish to use the object on. May be NULL.
3227  * @to_req: request we wish to use the object for. See below.
3228  *          This will be allocated and returned if a request is
3229  *          required but not passed in.
3230  *
3231  * This code is meant to abstract object synchronization with the GPU.
3232  * Calling with NULL implies synchronizing the object with the CPU
3233  * rather than a particular GPU ring. Conceptually we serialise writes
3234  * between engines inside the GPU. We only allow one engine to write
3235  * into a buffer at any time, but multiple readers. To ensure each has
3236  * a coherent view of memory, we must:
3237  *
3238  * - If there is an outstanding write request to the object, the new
3239  *   request must wait for it to complete (either CPU or in hw, requests
3240  *   on the same ring will be naturally ordered).
3241  *
3242  * - If we are a write request (pending_write_domain is set), the new
3243  *   request must wait for outstanding read requests to complete.
3244  *
3245  * For CPU synchronisation (NULL to) no request is required. For syncing with
3246  * rings to_req must be non-NULL. However, a request does not have to be
3247  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248  * request will be allocated automatically and returned through *to_req. Note
3249  * that it is not guaranteed that commands will be emitted (because the system
3250  * might already be idle). Hence there is no need to create a request that
3251  * might never have any work submitted. Note further that if a request is
3252  * returned in *to_req, it is the responsibility of the caller to submit
3253  * that request (after potentially adding more work to it).
3254  *
3255  * Returns 0 if successful, else propagates up the lower layer error.
3256  */
3257 int
3258 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259                      struct intel_engine_cs *to,
3260                      struct drm_i915_gem_request **to_req)
3261 {
3262         const bool readonly = obj->base.pending_write_domain == 0;
3263         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264         int ret, i, n;
3265
3266         if (!obj->active)
3267                 return 0;
3268
3269         if (to == NULL)
3270                 return i915_gem_object_wait_rendering(obj, readonly);
3271
3272         n = 0;
3273         if (readonly) {
3274                 if (obj->last_write_req)
3275                         req[n++] = obj->last_write_req;
3276         } else {
3277                 for (i = 0; i < I915_NUM_RINGS; i++)
3278                         if (obj->last_read_req[i])
3279                                 req[n++] = obj->last_read_req[i];
3280         }
3281         for (i = 0; i < n; i++) {
3282                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283                 if (ret)
3284                         return ret;
3285         }
3286
3287         return 0;
3288 }
3289
3290 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291 {
3292         u32 old_write_domain, old_read_domains;
3293
3294         /* Force a pagefault for domain tracking on next user access */
3295         i915_gem_release_mmap(obj);
3296
3297         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298                 return;
3299
3300         /* Wait for any direct GTT access to complete */
3301         mb();
3302
3303         old_read_domains = obj->base.read_domains;
3304         old_write_domain = obj->base.write_domain;
3305
3306         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309         trace_i915_gem_object_change_domain(obj,
3310                                             old_read_domains,
3311                                             old_write_domain);
3312 }
3313
3314 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315 {
3316         struct drm_i915_gem_object *obj = vma->obj;
3317         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318         int ret;
3319
3320         if (list_empty(&vma->obj_link))
3321                 return 0;
3322
3323         if (!drm_mm_node_allocated(&vma->node)) {
3324                 i915_gem_vma_destroy(vma);
3325                 return 0;
3326         }
3327
3328         if (vma->pin_count)
3329                 return -EBUSY;
3330
3331         BUG_ON(obj->pages == NULL);
3332
3333         if (wait) {
3334                 ret = i915_gem_object_wait_rendering(obj, false);
3335                 if (ret)
3336                         return ret;
3337         }
3338
3339         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340                 i915_gem_object_finish_gtt(obj);
3341
3342                 /* release the fence reg _after_ flushing */
3343                 ret = i915_gem_object_put_fence(obj);
3344                 if (ret)
3345                         return ret;
3346         }
3347
3348         trace_i915_vma_unbind(vma);
3349
3350         vma->vm->unbind_vma(vma);
3351         vma->bound = 0;
3352
3353         list_del_init(&vma->vm_link);
3354         if (vma->is_ggtt) {
3355                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356                         obj->map_and_fenceable = false;
3357                 } else if (vma->ggtt_view.pages) {
3358                         sg_free_table(vma->ggtt_view.pages);
3359                         kfree(vma->ggtt_view.pages);
3360                 }
3361                 vma->ggtt_view.pages = NULL;
3362         }
3363
3364         drm_mm_remove_node(&vma->node);
3365         i915_gem_vma_destroy(vma);
3366
3367         /* Since the unbound list is global, only move to that list if
3368          * no more VMAs exist. */
3369         if (list_empty(&obj->vma_list))
3370                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372         /* And finally now the object is completely decoupled from this vma,
3373          * we can drop its hold on the backing storage and allow it to be
3374          * reaped by the shrinker.
3375          */
3376         i915_gem_object_unpin_pages(obj);
3377
3378         return 0;
3379 }
3380
3381 int i915_vma_unbind(struct i915_vma *vma)
3382 {
3383         return __i915_vma_unbind(vma, true);
3384 }
3385
3386 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387 {
3388         return __i915_vma_unbind(vma, false);
3389 }
3390
3391 int i915_gpu_idle(struct drm_device *dev)
3392 {
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394         struct intel_engine_cs *ring;
3395         int ret, i;
3396
3397         /* Flush everything onto the inactive list. */
3398         for_each_ring(ring, dev_priv, i) {
3399                 if (!i915.enable_execlists) {
3400                         struct drm_i915_gem_request *req;
3401
3402                         req = i915_gem_request_alloc(ring, NULL);
3403                         if (IS_ERR(req))
3404                                 return PTR_ERR(req);
3405
3406                         ret = i915_switch_context(req);
3407                         if (ret) {
3408                                 i915_gem_request_cancel(req);
3409                                 return ret;
3410                         }
3411
3412                         i915_add_request_no_flush(req);
3413                 }
3414
3415                 ret = intel_ring_idle(ring);
3416                 if (ret)
3417                         return ret;
3418         }
3419
3420         WARN_ON(i915_verify_lists(dev));
3421         return 0;
3422 }
3423
3424 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425                                      unsigned long cache_level)
3426 {
3427         struct drm_mm_node *gtt_space = &vma->node;
3428         struct drm_mm_node *other;
3429
3430         /*
3431          * On some machines we have to be careful when putting differing types
3432          * of snoopable memory together to avoid the prefetcher crossing memory
3433          * domains and dying. During vm initialisation, we decide whether or not
3434          * these constraints apply and set the drm_mm.color_adjust
3435          * appropriately.
3436          */
3437         if (vma->vm->mm.color_adjust == NULL)
3438                 return true;
3439
3440         if (!drm_mm_node_allocated(gtt_space))
3441                 return true;
3442
3443         if (list_empty(&gtt_space->node_list))
3444                 return true;
3445
3446         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447         if (other->allocated && !other->hole_follows && other->color != cache_level)
3448                 return false;
3449
3450         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452                 return false;
3453
3454         return true;
3455 }
3456
3457 /**
3458  * Finds free space in the GTT aperture and binds the object or a view of it
3459  * there.
3460  */
3461 static struct i915_vma *
3462 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463                            struct i915_address_space *vm,
3464                            const struct i915_ggtt_view *ggtt_view,
3465                            unsigned alignment,
3466                            uint64_t flags)
3467 {
3468         struct drm_device *dev = obj->base.dev;
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         u32 fence_alignment, unfenced_alignment;
3471         u32 search_flag, alloc_flag;
3472         u64 start, end;
3473         u64 size, fence_size;
3474         struct i915_vma *vma;
3475         int ret;
3476
3477         if (i915_is_ggtt(vm)) {
3478                 u32 view_size;
3479
3480                 if (WARN_ON(!ggtt_view))
3481                         return ERR_PTR(-EINVAL);
3482
3483                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485                 fence_size = i915_gem_get_gtt_size(dev,
3486                                                    view_size,
3487                                                    obj->tiling_mode);
3488                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3489                                                              view_size,
3490                                                              obj->tiling_mode,
3491                                                              true);
3492                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493                                                                 view_size,
3494                                                                 obj->tiling_mode,
3495                                                                 false);
3496                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497         } else {
3498                 fence_size = i915_gem_get_gtt_size(dev,
3499                                                    obj->base.size,
3500                                                    obj->tiling_mode);
3501                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3502                                                              obj->base.size,
3503                                                              obj->tiling_mode,
3504                                                              true);
3505                 unfenced_alignment =
3506                         i915_gem_get_gtt_alignment(dev,
3507                                                    obj->base.size,
3508                                                    obj->tiling_mode,
3509                                                    false);
3510                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511         }
3512
3513         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514         end = vm->total;
3515         if (flags & PIN_MAPPABLE)
3516                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517         if (flags & PIN_ZONE_4G)
3518                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520         if (alignment == 0)
3521                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522                                                 unfenced_alignment;
3523         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525                           ggtt_view ? ggtt_view->type : 0,
3526                           alignment);
3527                 return ERR_PTR(-EINVAL);
3528         }
3529
3530         /* If binding the object/GGTT view requires more space than the entire
3531          * aperture has, reject it early before evicting everything in a vain
3532          * attempt to find space.
3533          */
3534         if (size > end) {
3535                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536                           ggtt_view ? ggtt_view->type : 0,
3537                           size,
3538                           flags & PIN_MAPPABLE ? "mappable" : "total",
3539                           end);
3540                 return ERR_PTR(-E2BIG);
3541         }
3542
3543         ret = i915_gem_object_get_pages(obj);
3544         if (ret)
3545                 return ERR_PTR(ret);
3546
3547         i915_gem_object_pin_pages(obj);
3548
3549         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552         if (IS_ERR(vma))
3553                 goto err_unpin;
3554
3555         if (flags & PIN_OFFSET_FIXED) {
3556                 uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558                 if (offset & (alignment - 1) || offset + size > end) {
3559                         ret = -EINVAL;
3560                         goto err_free_vma;
3561                 }
3562                 vma->node.start = offset;
3563                 vma->node.size = size;
3564                 vma->node.color = obj->cache_level;
3565                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566                 if (ret) {
3567                         ret = i915_gem_evict_for_vma(vma);
3568                         if (ret == 0)
3569                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570                 }
3571                 if (ret)
3572                         goto err_free_vma;
3573         } else {
3574                 if (flags & PIN_HIGH) {
3575                         search_flag = DRM_MM_SEARCH_BELOW;
3576                         alloc_flag = DRM_MM_CREATE_TOP;
3577                 } else {
3578                         search_flag = DRM_MM_SEARCH_DEFAULT;
3579                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3580                 }
3581
3582 search_free:
3583                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584                                                           size, alignment,
3585                                                           obj->cache_level,
3586                                                           start, end,
3587                                                           search_flag,
3588                                                           alloc_flag);
3589                 if (ret) {
3590                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3591                                                        obj->cache_level,
3592                                                        start, end,
3593                                                        flags);
3594                         if (ret == 0)
3595                                 goto search_free;
3596
3597                         goto err_free_vma;
3598                 }
3599         }
3600         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601                 ret = -EINVAL;
3602                 goto err_remove_node;
3603         }
3604
3605         trace_i915_vma_bind(vma, flags);
3606         ret = i915_vma_bind(vma, obj->cache_level, flags);
3607         if (ret)
3608                 goto err_remove_node;
3609
3610         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611         list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613         return vma;
3614
3615 err_remove_node:
3616         drm_mm_remove_node(&vma->node);
3617 err_free_vma:
3618         i915_gem_vma_destroy(vma);
3619         vma = ERR_PTR(ret);
3620 err_unpin:
3621         i915_gem_object_unpin_pages(obj);
3622         return vma;
3623 }
3624
3625 bool
3626 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627                         bool force)
3628 {
3629         /* If we don't have a page list set up, then we're not pinned
3630          * to GPU, and we can ignore the cache flush because it'll happen
3631          * again at bind time.
3632          */
3633         if (obj->pages == NULL)
3634                 return false;
3635
3636         /*
3637          * Stolen memory is always coherent with the GPU as it is explicitly
3638          * marked as wc by the system, or the system is cache-coherent.
3639          */
3640         if (obj->stolen || obj->phys_handle)
3641                 return false;
3642
3643         /* If the GPU is snooping the contents of the CPU cache,
3644          * we do not need to manually clear the CPU cache lines.  However,
3645          * the caches are only snooped when the render cache is
3646          * flushed/invalidated.  As we always have to emit invalidations
3647          * and flushes when moving into and out of the RENDER domain, correct
3648          * snooping behaviour occurs naturally as the result of our domain
3649          * tracking.
3650          */
3651         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652                 obj->cache_dirty = true;
3653                 return false;
3654         }
3655
3656         trace_i915_gem_object_clflush(obj);
3657         drm_clflush_sg(obj->pages);
3658         obj->cache_dirty = false;
3659
3660         return true;
3661 }
3662
3663 /** Flushes the GTT write domain for the object if it's dirty. */
3664 static void
3665 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666 {
3667         uint32_t old_write_domain;
3668
3669         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670                 return;
3671
3672         /* No actual flushing is required for the GTT write domain.  Writes
3673          * to it immediately go to main memory as far as we know, so there's
3674          * no chipset flush.  It also doesn't land in render cache.
3675          *
3676          * However, we do have to enforce the order so that all writes through
3677          * the GTT land before any writes to the device, such as updates to
3678          * the GATT itself.
3679          */
3680         wmb();
3681
3682         old_write_domain = obj->base.write_domain;
3683         obj->base.write_domain = 0;
3684
3685         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687         trace_i915_gem_object_change_domain(obj,
3688                                             obj->base.read_domains,
3689                                             old_write_domain);
3690 }
3691
3692 /** Flushes the CPU write domain for the object if it's dirty. */
3693 static void
3694 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695 {
3696         uint32_t old_write_domain;
3697
3698         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699                 return;
3700
3701         if (i915_gem_clflush_object(obj, obj->pin_display))
3702                 i915_gem_chipset_flush(obj->base.dev);
3703
3704         old_write_domain = obj->base.write_domain;
3705         obj->base.write_domain = 0;
3706
3707         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709         trace_i915_gem_object_change_domain(obj,
3710                                             obj->base.read_domains,
3711                                             old_write_domain);
3712 }
3713
3714 /**
3715  * Moves a single object to the GTT read, and possibly write domain.
3716  *
3717  * This function returns when the move is complete, including waiting on
3718  * flushes to occur.
3719  */
3720 int
3721 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722 {
3723         uint32_t old_write_domain, old_read_domains;
3724         struct i915_vma *vma;
3725         int ret;
3726
3727         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728                 return 0;
3729
3730         ret = i915_gem_object_wait_rendering(obj, !write);
3731         if (ret)
3732                 return ret;
3733
3734         /* Flush and acquire obj->pages so that we are coherent through
3735          * direct access in memory with previous cached writes through
3736          * shmemfs and that our cache domain tracking remains valid.
3737          * For example, if the obj->filp was moved to swap without us
3738          * being notified and releasing the pages, we would mistakenly
3739          * continue to assume that the obj remained out of the CPU cached
3740          * domain.
3741          */
3742         ret = i915_gem_object_get_pages(obj);
3743         if (ret)
3744                 return ret;
3745
3746         i915_gem_object_flush_cpu_write_domain(obj);
3747
3748         /* Serialise direct access to this object with the barriers for
3749          * coherent writes from the GPU, by effectively invalidating the
3750          * GTT domain upon first access.
3751          */
3752         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753                 mb();
3754
3755         old_write_domain = obj->base.write_domain;
3756         old_read_domains = obj->base.read_domains;
3757
3758         /* It should now be out of any other write domains, and we can update
3759          * the domain values for our changes.
3760          */
3761         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763         if (write) {
3764                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766                 obj->dirty = 1;
3767         }
3768
3769         trace_i915_gem_object_change_domain(obj,
3770                                             old_read_domains,
3771                                             old_write_domain);
3772
3773         /* And bump the LRU for this access */
3774         vma = i915_gem_obj_to_ggtt(obj);
3775         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776                 list_move_tail(&vma->vm_link,
3777                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779         return 0;
3780 }
3781
3782 /**
3783  * Changes the cache-level of an object across all VMA.
3784  *
3785  * After this function returns, the object will be in the new cache-level
3786  * across all GTT and the contents of the backing storage will be coherent,
3787  * with respect to the new cache-level. In order to keep the backing storage
3788  * coherent for all users, we only allow a single cache level to be set
3789  * globally on the object and prevent it from being changed whilst the
3790  * hardware is reading from the object. That is if the object is currently
3791  * on the scanout it will be set to uncached (or equivalent display
3792  * cache coherency) and all non-MOCS GPU access will also be uncached so
3793  * that all direct access to the scanout remains coherent.
3794  */
3795 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796                                     enum i915_cache_level cache_level)
3797 {
3798         struct drm_device *dev = obj->base.dev;
3799         struct i915_vma *vma, *next;
3800         bool bound = false;
3801         int ret = 0;
3802
3803         if (obj->cache_level == cache_level)
3804                 goto out;
3805
3806         /* Inspect the list of currently bound VMA and unbind any that would
3807          * be invalid given the new cache-level. This is principally to
3808          * catch the issue of the CS prefetch crossing page boundaries and
3809          * reading an invalid PTE on older architectures.
3810          */
3811         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812                 if (!drm_mm_node_allocated(&vma->node))
3813                         continue;
3814
3815                 if (vma->pin_count) {
3816                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3817                         return -EBUSY;
3818                 }
3819
3820                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821                         ret = i915_vma_unbind(vma);
3822                         if (ret)
3823                                 return ret;
3824                 } else
3825                         bound = true;
3826         }
3827
3828         /* We can reuse the existing drm_mm nodes but need to change the
3829          * cache-level on the PTE. We could simply unbind them all and
3830          * rebind with the correct cache-level on next use. However since
3831          * we already have a valid slot, dma mapping, pages etc, we may as
3832          * rewrite the PTE in the belief that doing so tramples upon less
3833          * state and so involves less work.
3834          */
3835         if (bound) {
3836                 /* Before we change the PTE, the GPU must not be accessing it.
3837                  * If we wait upon the object, we know that all the bound
3838                  * VMA are no longer active.
3839                  */
3840                 ret = i915_gem_object_wait_rendering(obj, false);
3841                 if (ret)
3842                         return ret;
3843
3844                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845                         /* Access to snoopable pages through the GTT is
3846                          * incoherent and on some machines causes a hard
3847                          * lockup. Relinquish the CPU mmaping to force
3848                          * userspace to refault in the pages and we can
3849                          * then double check if the GTT mapping is still
3850                          * valid for that pointer access.
3851                          */
3852                         i915_gem_release_mmap(obj);
3853
3854                         /* As we no longer need a fence for GTT access,
3855                          * we can relinquish it now (and so prevent having
3856                          * to steal a fence from someone else on the next
3857                          * fence request). Note GPU activity would have
3858                          * dropped the fence as all snoopable access is
3859                          * supposed to be linear.
3860                          */
3861                         ret = i915_gem_object_put_fence(obj);
3862                         if (ret)
3863                                 return ret;
3864                 } else {
3865                         /* We either have incoherent backing store and
3866                          * so no GTT access or the architecture is fully
3867                          * coherent. In such cases, existing GTT mmaps
3868                          * ignore the cache bit in the PTE and we can
3869                          * rewrite it without confusing the GPU or having
3870                          * to force userspace to fault back in its mmaps.
3871                          */
3872                 }
3873
3874                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875                         if (!drm_mm_node_allocated(&vma->node))
3876                                 continue;
3877
3878                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879                         if (ret)
3880                                 return ret;
3881                 }
3882         }
3883
3884         list_for_each_entry(vma, &obj->vma_list, obj_link)
3885                 vma->node.color = cache_level;
3886         obj->cache_level = cache_level;
3887
3888 out:
3889         /* Flush the dirty CPU caches to the backing storage so that the
3890          * object is now coherent at its new cache level (with respect
3891          * to the access domain).
3892          */
3893         if (obj->cache_dirty &&
3894             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895             cpu_write_needs_clflush(obj)) {
3896                 if (i915_gem_clflush_object(obj, true))
3897                         i915_gem_chipset_flush(obj->base.dev);
3898         }
3899
3900         return 0;
3901 }
3902
3903 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904                                struct drm_file *file)
3905 {
3906         struct drm_i915_gem_caching *args = data;
3907         struct drm_i915_gem_object *obj;
3908
3909         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910         if (&obj->base == NULL)
3911                 return -ENOENT;
3912
3913         switch (obj->cache_level) {
3914         case I915_CACHE_LLC:
3915         case I915_CACHE_L3_LLC:
3916                 args->caching = I915_CACHING_CACHED;
3917                 break;
3918
3919         case I915_CACHE_WT:
3920                 args->caching = I915_CACHING_DISPLAY;
3921                 break;
3922
3923         default:
3924                 args->caching = I915_CACHING_NONE;
3925                 break;
3926         }
3927
3928         drm_gem_object_unreference_unlocked(&obj->base);
3929         return 0;
3930 }
3931
3932 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933                                struct drm_file *file)
3934 {
3935         struct drm_i915_private *dev_priv = dev->dev_private;
3936         struct drm_i915_gem_caching *args = data;
3937         struct drm_i915_gem_object *obj;
3938         enum i915_cache_level level;
3939         int ret;
3940
3941         switch (args->caching) {
3942         case I915_CACHING_NONE:
3943                 level = I915_CACHE_NONE;
3944                 break;
3945         case I915_CACHING_CACHED:
3946                 /*
3947                  * Due to a HW issue on BXT A stepping, GPU stores via a
3948                  * snooped mapping may leave stale data in a corresponding CPU
3949                  * cacheline, whereas normally such cachelines would get
3950                  * invalidated.
3951                  */
3952                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953                         return -ENODEV;
3954
3955                 level = I915_CACHE_LLC;
3956                 break;
3957         case I915_CACHING_DISPLAY:
3958                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959                 break;
3960         default:
3961                 return -EINVAL;
3962         }
3963
3964         intel_runtime_pm_get(dev_priv);
3965
3966         ret = i915_mutex_lock_interruptible(dev);
3967         if (ret)
3968                 goto rpm_put;
3969
3970         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971         if (&obj->base == NULL) {
3972                 ret = -ENOENT;
3973                 goto unlock;
3974         }
3975
3976         ret = i915_gem_object_set_cache_level(obj, level);
3977
3978         drm_gem_object_unreference(&obj->base);
3979 unlock:
3980         mutex_unlock(&dev->struct_mutex);
3981 rpm_put:
3982         intel_runtime_pm_put(dev_priv);
3983
3984         return ret;
3985 }
3986
3987 /*
3988  * Prepare buffer for display plane (scanout, cursors, etc).
3989  * Can be called from an uninterruptible phase (modesetting) and allows
3990  * any flushes to be pipelined (for pageflips).
3991  */
3992 int
3993 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994                                      u32 alignment,
3995                                      const struct i915_ggtt_view *view)
3996 {
3997         u32 old_read_domains, old_write_domain;
3998         int ret;
3999
4000         /* Mark the pin_display early so that we account for the
4001          * display coherency whilst setting up the cache domains.
4002          */
4003         obj->pin_display++;
4004
4005         /* The display engine is not coherent with the LLC cache on gen6.  As
4006          * a result, we make sure that the pinning that is about to occur is
4007          * done with uncached PTEs. This is lowest common denominator for all
4008          * chipsets.
4009          *
4010          * However for gen6+, we could do better by using the GFDT bit instead
4011          * of uncaching, which would allow us to flush all the LLC-cached data
4012          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013          */
4014         ret = i915_gem_object_set_cache_level(obj,
4015                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016         if (ret)
4017                 goto err_unpin_display;
4018
4019         /* As the user may map the buffer once pinned in the display plane
4020          * (e.g. libkms for the bootup splash), we have to ensure that we
4021          * always use map_and_fenceable for all scanout buffers.
4022          */
4023         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024                                        view->type == I915_GGTT_VIEW_NORMAL ?
4025                                        PIN_MAPPABLE : 0);
4026         if (ret)
4027                 goto err_unpin_display;
4028
4029         i915_gem_object_flush_cpu_write_domain(obj);
4030
4031         old_write_domain = obj->base.write_domain;
4032         old_read_domains = obj->base.read_domains;
4033
4034         /* It should now be out of any other write domains, and we can update
4035          * the domain values for our changes.
4036          */
4037         obj->base.write_domain = 0;
4038         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040         trace_i915_gem_object_change_domain(obj,
4041                                             old_read_domains,
4042                                             old_write_domain);
4043
4044         return 0;
4045
4046 err_unpin_display:
4047         obj->pin_display--;
4048         return ret;
4049 }
4050
4051 void
4052 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053                                          const struct i915_ggtt_view *view)
4054 {
4055         if (WARN_ON(obj->pin_display == 0))
4056                 return;
4057
4058         i915_gem_object_ggtt_unpin_view(obj, view);
4059
4060         obj->pin_display--;
4061 }
4062
4063 /**
4064  * Moves a single object to the CPU read, and possibly write domain.
4065  *
4066  * This function returns when the move is complete, including waiting on
4067  * flushes to occur.
4068  */
4069 int
4070 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071 {
4072         uint32_t old_write_domain, old_read_domains;
4073         int ret;
4074
4075         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076                 return 0;
4077
4078         ret = i915_gem_object_wait_rendering(obj, !write);
4079         if (ret)
4080                 return ret;
4081
4082         i915_gem_object_flush_gtt_write_domain(obj);
4083
4084         old_write_domain = obj->base.write_domain;
4085         old_read_domains = obj->base.read_domains;
4086
4087         /* Flush the CPU cache if it's still invalid. */
4088         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089                 i915_gem_clflush_object(obj, false);
4090
4091                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092         }
4093
4094         /* It should now be out of any other write domains, and we can update
4095          * the domain values for our changes.
4096          */
4097         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099         /* If we're writing through the CPU, then the GPU read domains will
4100          * need to be invalidated at next use.
4101          */
4102         if (write) {
4103                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105         }
4106
4107         trace_i915_gem_object_change_domain(obj,
4108                                             old_read_domains,
4109                                             old_write_domain);
4110
4111         return 0;
4112 }
4113
4114 /* Throttle our rendering by waiting until the ring has completed our requests
4115  * emitted over 20 msec ago.
4116  *
4117  * Note that if we were to use the current jiffies each time around the loop,
4118  * we wouldn't escape the function with any frames outstanding if the time to
4119  * render a frame was over 20ms.
4120  *
4121  * This should get us reasonable parallelism between CPU and GPU but also
4122  * relatively low latency when blocking on a particular request to finish.
4123  */
4124 static int
4125 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126 {
4127         struct drm_i915_private *dev_priv = dev->dev_private;
4128         struct drm_i915_file_private *file_priv = file->driver_priv;
4129         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130         struct drm_i915_gem_request *request, *target = NULL;
4131         unsigned reset_counter;
4132         int ret;
4133
4134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135         if (ret)
4136                 return ret;
4137
4138         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139         if (ret)
4140                 return ret;
4141
4142         spin_lock(&file_priv->mm.lock);
4143         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4145                         break;
4146
4147                 /*
4148                  * Note that the request might not have been submitted yet.
4149                  * In which case emitted_jiffies will be zero.
4150                  */
4151                 if (!request->emitted_jiffies)
4152                         continue;
4153
4154                 target = request;
4155         }
4156         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157         if (target)
4158                 i915_gem_request_reference(target);
4159         spin_unlock(&file_priv->mm.lock);
4160
4161         if (target == NULL)
4162                 return 0;
4163
4164         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165         if (ret == 0)
4166                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168         i915_gem_request_unreference__unlocked(target);
4169
4170         return ret;
4171 }
4172
4173 static bool
4174 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175 {
4176         struct drm_i915_gem_object *obj = vma->obj;
4177
4178         if (alignment &&
4179             vma->node.start & (alignment - 1))
4180                 return true;
4181
4182         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183                 return true;
4184
4185         if (flags & PIN_OFFSET_BIAS &&
4186             vma->node.start < (flags & PIN_OFFSET_MASK))
4187                 return true;
4188
4189         if (flags & PIN_OFFSET_FIXED &&
4190             vma->node.start != (flags & PIN_OFFSET_MASK))
4191                 return true;
4192
4193         return false;
4194 }
4195
4196 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197 {
4198         struct drm_i915_gem_object *obj = vma->obj;
4199         bool mappable, fenceable;
4200         u32 fence_size, fence_alignment;
4201
4202         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203                                            obj->base.size,
4204                                            obj->tiling_mode);
4205         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206                                                      obj->base.size,
4207                                                      obj->tiling_mode,
4208                                                      true);
4209
4210         fenceable = (vma->node.size == fence_size &&
4211                      (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213         mappable = (vma->node.start + fence_size <=
4214                     to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216         obj->map_and_fenceable = mappable && fenceable;
4217 }
4218
4219 static int
4220 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221                        struct i915_address_space *vm,
4222                        const struct i915_ggtt_view *ggtt_view,
4223                        uint32_t alignment,
4224                        uint64_t flags)
4225 {
4226         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227         struct i915_vma *vma;
4228         unsigned bound;
4229         int ret;
4230
4231         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232                 return -ENODEV;
4233
4234         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235                 return -EINVAL;
4236
4237         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238                 return -EINVAL;
4239
4240         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241                 return -EINVAL;
4242
4243         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244                           i915_gem_obj_to_vma(obj, vm);
4245
4246         if (IS_ERR(vma))
4247                 return PTR_ERR(vma);
4248
4249         if (vma) {
4250                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251                         return -EBUSY;
4252
4253                 if (i915_vma_misplaced(vma, alignment, flags)) {
4254                         WARN(vma->pin_count,
4255                              "bo is already pinned in %s with incorrect alignment:"
4256                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257                              " obj->map_and_fenceable=%d\n",
4258                              ggtt_view ? "ggtt" : "ppgtt",
4259                              upper_32_bits(vma->node.start),
4260                              lower_32_bits(vma->node.start),
4261                              alignment,
4262                              !!(flags & PIN_MAPPABLE),
4263                              obj->map_and_fenceable);
4264                         ret = i915_vma_unbind(vma);
4265                         if (ret)
4266                                 return ret;
4267
4268                         vma = NULL;
4269                 }
4270         }
4271
4272         bound = vma ? vma->bound : 0;
4273         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275                                                  flags);
4276                 if (IS_ERR(vma))
4277                         return PTR_ERR(vma);
4278         } else {
4279                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4280                 if (ret)
4281                         return ret;
4282         }
4283
4284         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285             (bound ^ vma->bound) & GLOBAL_BIND) {
4286                 __i915_vma_set_map_and_fenceable(vma);
4287                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288         }
4289
4290         vma->pin_count++;
4291         return 0;
4292 }
4293
4294 int
4295 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296                     struct i915_address_space *vm,
4297                     uint32_t alignment,
4298                     uint64_t flags)
4299 {
4300         return i915_gem_object_do_pin(obj, vm,
4301                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302                                       alignment, flags);
4303 }
4304
4305 int
4306 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307                          const struct i915_ggtt_view *view,
4308                          uint32_t alignment,
4309                          uint64_t flags)
4310 {
4311         if (WARN_ONCE(!view, "no view specified"))
4312                 return -EINVAL;
4313
4314         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315                                       alignment, flags | PIN_GLOBAL);
4316 }
4317
4318 void
4319 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320                                 const struct i915_ggtt_view *view)
4321 {
4322         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324         BUG_ON(!vma);
4325         WARN_ON(vma->pin_count == 0);
4326         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328         --vma->pin_count;
4329 }
4330
4331 int
4332 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333                     struct drm_file *file)
4334 {
4335         struct drm_i915_gem_busy *args = data;
4336         struct drm_i915_gem_object *obj;
4337         int ret;
4338
4339         ret = i915_mutex_lock_interruptible(dev);
4340         if (ret)
4341                 return ret;
4342
4343         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344         if (&obj->base == NULL) {
4345                 ret = -ENOENT;
4346                 goto unlock;
4347         }
4348
4349         /* Count all active objects as busy, even if they are currently not used
4350          * by the gpu. Users of this interface expect objects to eventually
4351          * become non-busy without any further actions, therefore emit any
4352          * necessary flushes here.
4353          */
4354         ret = i915_gem_object_flush_active(obj);
4355         if (ret)
4356                 goto unref;
4357
4358         args->busy = 0;
4359         if (obj->active) {
4360                 int i;
4361
4362                 for (i = 0; i < I915_NUM_RINGS; i++) {
4363                         struct drm_i915_gem_request *req;
4364
4365                         req = obj->last_read_req[i];
4366                         if (req)
4367                                 args->busy |= 1 << (16 + req->ring->exec_id);
4368                 }
4369                 if (obj->last_write_req)
4370                         args->busy |= obj->last_write_req->ring->exec_id;
4371         }
4372
4373 unref:
4374         drm_gem_object_unreference(&obj->base);
4375 unlock:
4376         mutex_unlock(&dev->struct_mutex);
4377         return ret;
4378 }
4379
4380 int
4381 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382                         struct drm_file *file_priv)
4383 {
4384         return i915_gem_ring_throttle(dev, file_priv);
4385 }
4386
4387 int
4388 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389                        struct drm_file *file_priv)
4390 {
4391         struct drm_i915_private *dev_priv = dev->dev_private;
4392         struct drm_i915_gem_madvise *args = data;
4393         struct drm_i915_gem_object *obj;
4394         int ret;
4395
4396         switch (args->madv) {
4397         case I915_MADV_DONTNEED:
4398         case I915_MADV_WILLNEED:
4399             break;
4400         default:
4401             return -EINVAL;
4402         }
4403
4404         ret = i915_mutex_lock_interruptible(dev);
4405         if (ret)
4406                 return ret;
4407
4408         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409         if (&obj->base == NULL) {
4410                 ret = -ENOENT;
4411                 goto unlock;
4412         }
4413
4414         if (i915_gem_obj_is_pinned(obj)) {
4415                 ret = -EINVAL;
4416                 goto out;
4417         }
4418
4419         if (obj->pages &&
4420             obj->tiling_mode != I915_TILING_NONE &&
4421             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422                 if (obj->madv == I915_MADV_WILLNEED)
4423                         i915_gem_object_unpin_pages(obj);
4424                 if (args->madv == I915_MADV_WILLNEED)
4425                         i915_gem_object_pin_pages(obj);
4426         }
4427
4428         if (obj->madv != __I915_MADV_PURGED)
4429                 obj->madv = args->madv;
4430
4431         /* if the object is no longer attached, discard its backing storage */
4432         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433                 i915_gem_object_truncate(obj);
4434
4435         args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437 out:
4438         drm_gem_object_unreference(&obj->base);
4439 unlock:
4440         mutex_unlock(&dev->struct_mutex);
4441         return ret;
4442 }
4443
4444 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445                           const struct drm_i915_gem_object_ops *ops)
4446 {
4447         int i;
4448
4449         INIT_LIST_HEAD(&obj->global_list);
4450         for (i = 0; i < I915_NUM_RINGS; i++)
4451                 INIT_LIST_HEAD(&obj->ring_list[i]);
4452         INIT_LIST_HEAD(&obj->obj_exec_link);
4453         INIT_LIST_HEAD(&obj->vma_list);
4454         INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456         obj->ops = ops;
4457
4458         obj->fence_reg = I915_FENCE_REG_NONE;
4459         obj->madv = I915_MADV_WILLNEED;
4460
4461         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462 }
4463
4464 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466         .get_pages = i915_gem_object_get_pages_gtt,
4467         .put_pages = i915_gem_object_put_pages_gtt,
4468 };
4469
4470 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471                                                   size_t size)
4472 {
4473         struct drm_i915_gem_object *obj;
4474         struct address_space *mapping;
4475         gfp_t mask;
4476
4477         obj = i915_gem_object_alloc(dev);
4478         if (obj == NULL)
4479                 return NULL;
4480
4481         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482                 i915_gem_object_free(obj);
4483                 return NULL;
4484         }
4485
4486         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488                 /* 965gm cannot relocate objects above 4GiB. */
4489                 mask &= ~__GFP_HIGHMEM;
4490                 mask |= __GFP_DMA32;
4491         }
4492
4493         mapping = file_inode(obj->base.filp)->i_mapping;
4494         mapping_set_gfp_mask(mapping, mask);
4495
4496         i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501         if (HAS_LLC(dev)) {
4502                 /* On some devices, we can have the GPU use the LLC (the CPU
4503                  * cache) for about a 10% performance improvement
4504                  * compared to uncached.  Graphics requests other than
4505                  * display scanout are coherent with the CPU in
4506                  * accessing this cache.  This means in this mode we
4507                  * don't need to clflush on the CPU side, and on the
4508                  * GPU side we only need to flush internal caches to
4509                  * get data visible to the CPU.
4510                  *
4511                  * However, we maintain the display planes as UC, and so
4512                  * need to rebind when first used as such.
4513                  */
4514                 obj->cache_level = I915_CACHE_LLC;
4515         } else
4516                 obj->cache_level = I915_CACHE_NONE;
4517
4518         trace_i915_gem_object_create(obj);
4519
4520         return obj;
4521 }
4522
4523 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524 {
4525         /* If we are the last user of the backing storage (be it shmemfs
4526          * pages or stolen etc), we know that the pages are going to be
4527          * immediately released. In this case, we can then skip copying
4528          * back the contents from the GPU.
4529          */
4530
4531         if (obj->madv != I915_MADV_WILLNEED)
4532                 return false;
4533
4534         if (obj->base.filp == NULL)
4535                 return true;
4536
4537         /* At first glance, this looks racy, but then again so would be
4538          * userspace racing mmap against close. However, the first external
4539          * reference to the filp can only be obtained through the
4540          * i915_gem_mmap_ioctl() which safeguards us against the user
4541          * acquiring such a reference whilst we are in the middle of
4542          * freeing the object.
4543          */
4544         return atomic_long_read(&obj->base.filp->f_count) == 1;
4545 }
4546
4547 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548 {
4549         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550         struct drm_device *dev = obj->base.dev;
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552         struct i915_vma *vma, *next;
4553
4554         intel_runtime_pm_get(dev_priv);
4555
4556         trace_i915_gem_object_destroy(obj);
4557
4558         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559                 int ret;
4560
4561                 vma->pin_count = 0;
4562                 ret = i915_vma_unbind(vma);
4563                 if (WARN_ON(ret == -ERESTARTSYS)) {
4564                         bool was_interruptible;
4565
4566                         was_interruptible = dev_priv->mm.interruptible;
4567                         dev_priv->mm.interruptible = false;
4568
4569                         WARN_ON(i915_vma_unbind(vma));
4570
4571                         dev_priv->mm.interruptible = was_interruptible;
4572                 }
4573         }
4574
4575         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576          * before progressing. */
4577         if (obj->stolen)
4578                 i915_gem_object_unpin_pages(obj);
4579
4580         WARN_ON(obj->frontbuffer_bits);
4581
4582         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584             obj->tiling_mode != I915_TILING_NONE)
4585                 i915_gem_object_unpin_pages(obj);
4586
4587         if (WARN_ON(obj->pages_pin_count))
4588                 obj->pages_pin_count = 0;
4589         if (discard_backing_storage(obj))
4590                 obj->madv = I915_MADV_DONTNEED;
4591         i915_gem_object_put_pages(obj);
4592         i915_gem_object_free_mmap_offset(obj);
4593
4594         BUG_ON(obj->pages);
4595
4596         if (obj->base.import_attach)
4597                 drm_prime_gem_destroy(&obj->base, NULL);
4598
4599         if (obj->ops->release)
4600                 obj->ops->release(obj);
4601
4602         drm_gem_object_release(&obj->base);
4603         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605         kfree(obj->bit_17);
4606         i915_gem_object_free(obj);
4607
4608         intel_runtime_pm_put(dev_priv);
4609 }
4610
4611 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612                                      struct i915_address_space *vm)
4613 {
4614         struct i915_vma *vma;
4615         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617                     vma->vm == vm)
4618                         return vma;
4619         }
4620         return NULL;
4621 }
4622
4623 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624                                            const struct i915_ggtt_view *view)
4625 {
4626         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627         struct i915_vma *vma;
4628
4629         if (WARN_ONCE(!view, "no view specified"))
4630                 return ERR_PTR(-EINVAL);
4631
4632         list_for_each_entry(vma, &obj->vma_list, obj_link)
4633                 if (vma->vm == ggtt &&
4634                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4635                         return vma;
4636         return NULL;
4637 }
4638
4639 void i915_gem_vma_destroy(struct i915_vma *vma)
4640 {
4641         WARN_ON(vma->node.allocated);
4642
4643         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4644         if (!list_empty(&vma->exec_list))
4645                 return;
4646
4647         if (!vma->is_ggtt)
4648                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650         list_del(&vma->obj_link);
4651
4652         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653 }
4654
4655 static void
4656 i915_gem_stop_ringbuffers(struct drm_device *dev)
4657 {
4658         struct drm_i915_private *dev_priv = dev->dev_private;
4659         struct intel_engine_cs *ring;
4660         int i;
4661
4662         for_each_ring(ring, dev_priv, i)
4663                 dev_priv->gt.stop_ring(ring);
4664 }
4665
4666 int
4667 i915_gem_suspend(struct drm_device *dev)
4668 {
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670         int ret = 0;
4671
4672         mutex_lock(&dev->struct_mutex);
4673         ret = i915_gpu_idle(dev);
4674         if (ret)
4675                 goto err;
4676
4677         i915_gem_retire_requests(dev);
4678
4679         i915_gem_stop_ringbuffers(dev);
4680         mutex_unlock(&dev->struct_mutex);
4681
4682         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684         flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686         /* Assert that we sucessfully flushed all the work and
4687          * reset the GPU back to its idle, low power state.
4688          */
4689         WARN_ON(dev_priv->mm.busy);
4690
4691         return 0;
4692
4693 err:
4694         mutex_unlock(&dev->struct_mutex);
4695         return ret;
4696 }
4697
4698 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699 {
4700         struct intel_engine_cs *ring = req->ring;
4701         struct drm_device *dev = ring->dev;
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704         int i, ret;
4705
4706         if (!HAS_L3_DPF(dev) || !remap_info)
4707                 return 0;
4708
4709         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710         if (ret)
4711                 return ret;
4712
4713         /*
4714          * Note: We do not worry about the concurrent register cacheline hang
4715          * here because no other code should access these registers other than
4716          * at initialization time.
4717          */
4718         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721                 intel_ring_emit(ring, remap_info[i]);
4722         }
4723
4724         intel_ring_advance(ring);
4725
4726         return ret;
4727 }
4728
4729 void i915_gem_init_swizzling(struct drm_device *dev)
4730 {
4731         struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733         if (INTEL_INFO(dev)->gen < 5 ||
4734             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735                 return;
4736
4737         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738                                  DISP_TILE_SURFACE_SWIZZLING);
4739
4740         if (IS_GEN5(dev))
4741                 return;
4742
4743         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744         if (IS_GEN6(dev))
4745                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746         else if (IS_GEN7(dev))
4747                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748         else if (IS_GEN8(dev))
4749                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750         else
4751                 BUG();
4752 }
4753
4754 static void init_unused_ring(struct drm_device *dev, u32 base)
4755 {
4756         struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758         I915_WRITE(RING_CTL(base), 0);
4759         I915_WRITE(RING_HEAD(base), 0);
4760         I915_WRITE(RING_TAIL(base), 0);
4761         I915_WRITE(RING_START(base), 0);
4762 }
4763
4764 static void init_unused_rings(struct drm_device *dev)
4765 {
4766         if (IS_I830(dev)) {
4767                 init_unused_ring(dev, PRB1_BASE);
4768                 init_unused_ring(dev, SRB0_BASE);
4769                 init_unused_ring(dev, SRB1_BASE);
4770                 init_unused_ring(dev, SRB2_BASE);
4771                 init_unused_ring(dev, SRB3_BASE);
4772         } else if (IS_GEN2(dev)) {
4773                 init_unused_ring(dev, SRB0_BASE);
4774                 init_unused_ring(dev, SRB1_BASE);
4775         } else if (IS_GEN3(dev)) {
4776                 init_unused_ring(dev, PRB1_BASE);
4777                 init_unused_ring(dev, PRB2_BASE);
4778         }
4779 }
4780
4781 int i915_gem_init_rings(struct drm_device *dev)
4782 {
4783         struct drm_i915_private *dev_priv = dev->dev_private;
4784         int ret;
4785
4786         ret = intel_init_render_ring_buffer(dev);
4787         if (ret)
4788                 return ret;
4789
4790         if (HAS_BSD(dev)) {
4791                 ret = intel_init_bsd_ring_buffer(dev);
4792                 if (ret)
4793                         goto cleanup_render_ring;
4794         }
4795
4796         if (HAS_BLT(dev)) {
4797                 ret = intel_init_blt_ring_buffer(dev);
4798                 if (ret)
4799                         goto cleanup_bsd_ring;
4800         }
4801
4802         if (HAS_VEBOX(dev)) {
4803                 ret = intel_init_vebox_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_blt_ring;
4806         }
4807
4808         if (HAS_BSD2(dev)) {
4809                 ret = intel_init_bsd2_ring_buffer(dev);
4810                 if (ret)
4811                         goto cleanup_vebox_ring;
4812         }
4813
4814         return 0;
4815
4816 cleanup_vebox_ring:
4817         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818 cleanup_blt_ring:
4819         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820 cleanup_bsd_ring:
4821         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822 cleanup_render_ring:
4823         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825         return ret;
4826 }
4827
4828 int
4829 i915_gem_init_hw(struct drm_device *dev)
4830 {
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         struct intel_engine_cs *ring;
4833         int ret, i, j;
4834
4835         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836                 return -EIO;
4837
4838         /* Double layer security blanket, see i915_gem_init() */
4839         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841         if (dev_priv->ellc_size)
4842                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844         if (IS_HASWELL(dev))
4845                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848         if (HAS_PCH_NOP(dev)) {
4849                 if (IS_IVYBRIDGE(dev)) {
4850                         u32 temp = I915_READ(GEN7_MSG_CTL);
4851                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852                         I915_WRITE(GEN7_MSG_CTL, temp);
4853                 } else if (INTEL_INFO(dev)->gen >= 7) {
4854                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857                 }
4858         }
4859
4860         i915_gem_init_swizzling(dev);
4861
4862         /*
4863          * At least 830 can leave some of the unused rings
4864          * "active" (ie. head != tail) after resume which
4865          * will prevent c3 entry. Makes sure all unused rings
4866          * are totally idle.
4867          */
4868         init_unused_rings(dev);
4869
4870         BUG_ON(!dev_priv->kernel_context);
4871
4872         ret = i915_ppgtt_init_hw(dev);
4873         if (ret) {
4874                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875                 goto out;
4876         }
4877
4878         /* Need to do basic initialisation of all rings first: */
4879         for_each_ring(ring, dev_priv, i) {
4880                 ret = ring->init_hw(ring);
4881                 if (ret)
4882                         goto out;
4883         }
4884
4885         /* We can't enable contexts until all firmware is loaded */
4886         if (HAS_GUC_UCODE(dev)) {
4887                 ret = intel_guc_ucode_load(dev);
4888                 if (ret) {
4889                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890                         ret = -EIO;
4891                         goto out;
4892                 }
4893         }
4894
4895         /*
4896          * Increment the next seqno by 0x100 so we have a visible break
4897          * on re-initialisation
4898          */
4899         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900         if (ret)
4901                 goto out;
4902
4903         /* Now it is safe to go back round and do everything else: */
4904         for_each_ring(ring, dev_priv, i) {
4905                 struct drm_i915_gem_request *req;
4906
4907                 req = i915_gem_request_alloc(ring, NULL);
4908                 if (IS_ERR(req)) {
4909                         ret = PTR_ERR(req);
4910                         i915_gem_cleanup_ringbuffer(dev);
4911                         goto out;
4912                 }
4913
4914                 if (ring->id == RCS) {
4915                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916                                 i915_gem_l3_remap(req, j);
4917                 }
4918
4919                 ret = i915_ppgtt_init_ring(req);
4920                 if (ret && ret != -EIO) {
4921                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922                         i915_gem_request_cancel(req);
4923                         i915_gem_cleanup_ringbuffer(dev);
4924                         goto out;
4925                 }
4926
4927                 ret = i915_gem_context_enable(req);
4928                 if (ret && ret != -EIO) {
4929                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930                         i915_gem_request_cancel(req);
4931                         i915_gem_cleanup_ringbuffer(dev);
4932                         goto out;
4933                 }
4934
4935                 i915_add_request_no_flush(req);
4936         }
4937
4938 out:
4939         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940         return ret;
4941 }
4942
4943 int i915_gem_init(struct drm_device *dev)
4944 {
4945         struct drm_i915_private *dev_priv = dev->dev_private;
4946         int ret;
4947
4948         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949                         i915.enable_execlists);
4950
4951         mutex_lock(&dev->struct_mutex);
4952
4953         if (!i915.enable_execlists) {
4954                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955                 dev_priv->gt.init_rings = i915_gem_init_rings;
4956                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958         } else {
4959                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960                 dev_priv->gt.init_rings = intel_logical_rings_init;
4961                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963         }
4964
4965         /* This is just a security blanket to placate dragons.
4966          * On some systems, we very sporadically observe that the first TLBs
4967          * used by the CS may be stale, despite us poking the TLB reset. If
4968          * we hold the forcewake during initialisation these problems
4969          * just magically go away.
4970          */
4971         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973         ret = i915_gem_init_userptr(dev);
4974         if (ret)
4975                 goto out_unlock;
4976
4977         i915_gem_init_global_gtt(dev);
4978
4979         ret = i915_gem_context_init(dev);
4980         if (ret)
4981                 goto out_unlock;
4982
4983         ret = dev_priv->gt.init_rings(dev);
4984         if (ret)
4985                 goto out_unlock;
4986
4987         ret = i915_gem_init_hw(dev);
4988         if (ret == -EIO) {
4989                 /* Allow ring initialisation to fail by marking the GPU as
4990                  * wedged. But we only want to do this where the GPU is angry,
4991                  * for all other failure, such as an allocation failure, bail.
4992                  */
4993                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995                 ret = 0;
4996         }
4997
4998 out_unlock:
4999         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000         mutex_unlock(&dev->struct_mutex);
5001
5002         return ret;
5003 }
5004
5005 void
5006 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007 {
5008         struct drm_i915_private *dev_priv = dev->dev_private;
5009         struct intel_engine_cs *ring;
5010         int i;
5011
5012         for_each_ring(ring, dev_priv, i)
5013                 dev_priv->gt.cleanup_ring(ring);
5014
5015     if (i915.enable_execlists)
5016             /*
5017              * Neither the BIOS, ourselves or any other kernel
5018              * expects the system to be in execlists mode on startup,
5019              * so we need to reset the GPU back to legacy mode.
5020              */
5021             intel_gpu_reset(dev);
5022 }
5023
5024 static void
5025 init_ring_lists(struct intel_engine_cs *ring)
5026 {
5027         INIT_LIST_HEAD(&ring->active_list);
5028         INIT_LIST_HEAD(&ring->request_list);
5029 }
5030
5031 void
5032 i915_gem_load_init(struct drm_device *dev)
5033 {
5034         struct drm_i915_private *dev_priv = dev->dev_private;
5035         int i;
5036
5037         dev_priv->objects =
5038                 kmem_cache_create("i915_gem_object",
5039                                   sizeof(struct drm_i915_gem_object), 0,
5040                                   SLAB_HWCACHE_ALIGN,
5041                                   NULL);
5042         dev_priv->vmas =
5043                 kmem_cache_create("i915_gem_vma",
5044                                   sizeof(struct i915_vma), 0,
5045                                   SLAB_HWCACHE_ALIGN,
5046                                   NULL);
5047         dev_priv->requests =
5048                 kmem_cache_create("i915_gem_request",
5049                                   sizeof(struct drm_i915_gem_request), 0,
5050                                   SLAB_HWCACHE_ALIGN,
5051                                   NULL);
5052
5053         INIT_LIST_HEAD(&dev_priv->vm_list);
5054         INIT_LIST_HEAD(&dev_priv->context_list);
5055         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058         for (i = 0; i < I915_NUM_RINGS; i++)
5059                 init_ring_lists(&dev_priv->ring[i]);
5060         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063                           i915_gem_retire_work_handler);
5064         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065                           i915_gem_idle_work_handler);
5066         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071                 dev_priv->num_fence_regs = 32;
5072         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073                 dev_priv->num_fence_regs = 16;
5074         else
5075                 dev_priv->num_fence_regs = 8;
5076
5077         if (intel_vgpu_active(dev))
5078                 dev_priv->num_fence_regs =
5079                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081         /*
5082          * Set initial sequence number for requests.
5083          * Using this number allows the wraparound to happen early,
5084          * catching any obvious problems.
5085          */
5086         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089         /* Initialize fence registers to zero */
5090         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091         i915_gem_restore_fences(dev);
5092
5093         i915_gem_detect_bit_6_swizzle(dev);
5094         init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096         dev_priv->mm.interruptible = true;
5097
5098         mutex_init(&dev_priv->fb_tracking.lock);
5099 }
5100
5101 void i915_gem_load_cleanup(struct drm_device *dev)
5102 {
5103         struct drm_i915_private *dev_priv = to_i915(dev);
5104
5105         kmem_cache_destroy(dev_priv->requests);
5106         kmem_cache_destroy(dev_priv->vmas);
5107         kmem_cache_destroy(dev_priv->objects);
5108 }
5109
5110 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111 {
5112         struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114         /* Clean up our request list when the client is going away, so that
5115          * later retire_requests won't dereference our soon-to-be-gone
5116          * file_priv.
5117          */
5118         spin_lock(&file_priv->mm.lock);
5119         while (!list_empty(&file_priv->mm.request_list)) {
5120                 struct drm_i915_gem_request *request;
5121
5122                 request = list_first_entry(&file_priv->mm.request_list,
5123                                            struct drm_i915_gem_request,
5124                                            client_list);
5125                 list_del(&request->client_list);
5126                 request->file_priv = NULL;
5127         }
5128         spin_unlock(&file_priv->mm.lock);
5129
5130         if (!list_empty(&file_priv->rps.link)) {
5131                 spin_lock(&to_i915(dev)->rps.client_lock);
5132                 list_del(&file_priv->rps.link);
5133                 spin_unlock(&to_i915(dev)->rps.client_lock);
5134         }
5135 }
5136
5137 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138 {
5139         struct drm_i915_file_private *file_priv;
5140         int ret;
5141
5142         DRM_DEBUG_DRIVER("\n");
5143
5144         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145         if (!file_priv)
5146                 return -ENOMEM;
5147
5148         file->driver_priv = file_priv;
5149         file_priv->dev_priv = dev->dev_private;
5150         file_priv->file = file;
5151         INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153         spin_lock_init(&file_priv->mm.lock);
5154         INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156         file_priv->bsd_ring = -1;
5157
5158         ret = i915_gem_context_open(dev, file);
5159         if (ret)
5160                 kfree(file_priv);
5161
5162         return ret;
5163 }
5164
5165 /**
5166  * i915_gem_track_fb - update frontbuffer tracking
5167  * @old: current GEM buffer for the frontbuffer slots
5168  * @new: new GEM buffer for the frontbuffer slots
5169  * @frontbuffer_bits: bitmask of frontbuffer slots
5170  *
5171  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172  * from @old and setting them in @new. Both @old and @new can be NULL.
5173  */
5174 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175                        struct drm_i915_gem_object *new,
5176                        unsigned frontbuffer_bits)
5177 {
5178         if (old) {
5179                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181                 old->frontbuffer_bits &= ~frontbuffer_bits;
5182         }
5183
5184         if (new) {
5185                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187                 new->frontbuffer_bits |= frontbuffer_bits;
5188         }
5189 }
5190
5191 /* All the new VM stuff */
5192 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193                         struct i915_address_space *vm)
5194 {
5195         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196         struct i915_vma *vma;
5197
5198         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5199
5200         list_for_each_entry(vma, &o->vma_list, obj_link) {
5201                 if (vma->is_ggtt &&
5202                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203                         continue;
5204                 if (vma->vm == vm)
5205                         return vma->node.start;
5206         }
5207
5208         WARN(1, "%s vma for this object not found.\n",
5209              i915_is_ggtt(vm) ? "global" : "ppgtt");
5210         return -1;
5211 }
5212
5213 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214                                   const struct i915_ggtt_view *view)
5215 {
5216         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217         struct i915_vma *vma;
5218
5219         list_for_each_entry(vma, &o->vma_list, obj_link)
5220                 if (vma->vm == ggtt &&
5221                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5222                         return vma->node.start;
5223
5224         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225         return -1;
5226 }
5227
5228 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229                         struct i915_address_space *vm)
5230 {
5231         struct i915_vma *vma;
5232
5233         list_for_each_entry(vma, &o->vma_list, obj_link) {
5234                 if (vma->is_ggtt &&
5235                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236                         continue;
5237                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238                         return true;
5239         }
5240
5241         return false;
5242 }
5243
5244 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245                                   const struct i915_ggtt_view *view)
5246 {
5247         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248         struct i915_vma *vma;
5249
5250         list_for_each_entry(vma, &o->vma_list, obj_link)
5251                 if (vma->vm == ggtt &&
5252                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253                     drm_mm_node_allocated(&vma->node))
5254                         return true;
5255
5256         return false;
5257 }
5258
5259 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260 {
5261         struct i915_vma *vma;
5262
5263         list_for_each_entry(vma, &o->vma_list, obj_link)
5264                 if (drm_mm_node_allocated(&vma->node))
5265                         return true;
5266
5267         return false;
5268 }
5269
5270 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271                                 struct i915_address_space *vm)
5272 {
5273         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274         struct i915_vma *vma;
5275
5276         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5277
5278         BUG_ON(list_empty(&o->vma_list));
5279
5280         list_for_each_entry(vma, &o->vma_list, obj_link) {
5281                 if (vma->is_ggtt &&
5282                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283                         continue;
5284                 if (vma->vm == vm)
5285                         return vma->node.size;
5286         }
5287         return 0;
5288 }
5289
5290 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291 {
5292         struct i915_vma *vma;
5293         list_for_each_entry(vma, &obj->vma_list, obj_link)
5294                 if (vma->pin_count > 0)
5295                         return true;
5296
5297         return false;
5298 }
5299
5300 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301 struct page *
5302 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303 {
5304         struct page *page;
5305
5306         /* Only default objects have per-page dirty tracking */
5307         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308                 return NULL;
5309
5310         page = i915_gem_object_get_page(obj, n);
5311         set_page_dirty(page);
5312         return page;
5313 }
5314
5315 /* Allocate a new GEM object and fill it with the supplied data */
5316 struct drm_i915_gem_object *
5317 i915_gem_object_create_from_data(struct drm_device *dev,
5318                                  const void *data, size_t size)
5319 {
5320         struct drm_i915_gem_object *obj;
5321         struct sg_table *sg;
5322         size_t bytes;
5323         int ret;
5324
5325         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326         if (IS_ERR_OR_NULL(obj))
5327                 return obj;
5328
5329         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330         if (ret)
5331                 goto fail;
5332
5333         ret = i915_gem_object_get_pages(obj);
5334         if (ret)
5335                 goto fail;
5336
5337         i915_gem_object_pin_pages(obj);
5338         sg = obj->pages;
5339         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340         obj->dirty = 1;         /* Backing store is now out of date */
5341         i915_gem_object_unpin_pages(obj);
5342
5343         if (WARN_ON(bytes != size)) {
5344                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345                 ret = -EFAULT;
5346                 goto fail;
5347         }
5348
5349         return obj;
5350
5351 fail:
5352         drm_gem_object_unreference(&obj->base);
5353         return ERR_PTR(ret);
5354 }