Merge tag 'drm-intel-next-2016-08-08' of git://anongit.freedesktop.org/drm-intel...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return i915_gem_object_is_active(obj) ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (i915_gem_object_get_tiling(obj)) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         unsigned int frontbuffer_bits;
142         int pin_count = 0;
143         enum intel_engine_id id;
144
145         lockdep_assert_held(&obj->base.dev->struct_mutex);
146
147         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
148                    &obj->base,
149                    get_active_flag(obj),
150                    get_pin_flag(obj),
151                    get_tiling_flag(obj),
152                    get_global_flag(obj),
153                    get_pin_mapped_flag(obj),
154                    obj->base.size / 1024,
155                    obj->base.read_domains,
156                    obj->base.write_domain);
157         for_each_engine_id(engine, dev_priv, id)
158                 seq_printf(m, "%x ",
159                            i915_gem_active_get_seqno(&obj->last_read[id],
160                                                      &obj->base.dev->struct_mutex));
161         seq_printf(m, "] %x %x%s%s%s",
162                    i915_gem_active_get_seqno(&obj->last_write,
163                                              &obj->base.dev->struct_mutex),
164                    i915_gem_active_get_seqno(&obj->last_fence,
165                                              &obj->base.dev->struct_mutex),
166                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
167                    obj->dirty ? " dirty" : "",
168                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
169         if (obj->base.name)
170                 seq_printf(m, " (name: %d)", obj->base.name);
171         list_for_each_entry(vma, &obj->vma_list, obj_link) {
172                 if (i915_vma_is_pinned(vma))
173                         pin_count++;
174         }
175         seq_printf(m, " (pinned x %d)", pin_count);
176         if (obj->pin_display)
177                 seq_printf(m, " (display)");
178         if (obj->fence_reg != I915_FENCE_REG_NONE)
179                 seq_printf(m, " (fence: %d)", obj->fence_reg);
180         list_for_each_entry(vma, &obj->vma_list, obj_link) {
181                 if (!drm_mm_node_allocated(&vma->node))
182                         continue;
183
184                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
185                            i915_vma_is_ggtt(vma) ? "g" : "pp",
186                            vma->node.start, vma->node.size);
187                 if (i915_vma_is_ggtt(vma))
188                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
189                 seq_puts(m, ")");
190         }
191         if (obj->stolen)
192                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
193         if (obj->pin_display || obj->fault_mappable) {
194                 char s[3], *t = s;
195                 if (obj->pin_display)
196                         *t++ = 'p';
197                 if (obj->fault_mappable)
198                         *t++ = 'f';
199                 *t = '\0';
200                 seq_printf(m, " (%s mappable)", s);
201         }
202
203         engine = i915_gem_active_get_engine(&obj->last_write,
204                                             &obj->base.dev->struct_mutex);
205         if (engine)
206                 seq_printf(m, " (%s)", engine->name);
207
208         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
209         if (frontbuffer_bits)
210                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
211 }
212
213 static int i915_gem_object_list_info(struct seq_file *m, void *data)
214 {
215         struct drm_info_node *node = m->private;
216         uintptr_t list = (uintptr_t) node->info_ent->data;
217         struct list_head *head;
218         struct drm_device *dev = node->minor->dev;
219         struct drm_i915_private *dev_priv = to_i915(dev);
220         struct i915_ggtt *ggtt = &dev_priv->ggtt;
221         struct i915_vma *vma;
222         u64 total_obj_size, total_gtt_size;
223         int count, ret;
224
225         ret = mutex_lock_interruptible(&dev->struct_mutex);
226         if (ret)
227                 return ret;
228
229         /* FIXME: the user of this interface might want more than just GGTT */
230         switch (list) {
231         case ACTIVE_LIST:
232                 seq_puts(m, "Active:\n");
233                 head = &ggtt->base.active_list;
234                 break;
235         case INACTIVE_LIST:
236                 seq_puts(m, "Inactive:\n");
237                 head = &ggtt->base.inactive_list;
238                 break;
239         default:
240                 mutex_unlock(&dev->struct_mutex);
241                 return -EINVAL;
242         }
243
244         total_obj_size = total_gtt_size = count = 0;
245         list_for_each_entry(vma, head, vm_link) {
246                 seq_printf(m, "   ");
247                 describe_obj(m, vma->obj);
248                 seq_printf(m, "\n");
249                 total_obj_size += vma->obj->base.size;
250                 total_gtt_size += vma->node.size;
251                 count++;
252         }
253         mutex_unlock(&dev->struct_mutex);
254
255         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
256                    count, total_obj_size, total_gtt_size);
257         return 0;
258 }
259
260 static int obj_rank_by_stolen(void *priv,
261                               struct list_head *A, struct list_head *B)
262 {
263         struct drm_i915_gem_object *a =
264                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
265         struct drm_i915_gem_object *b =
266                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
267
268         if (a->stolen->start < b->stolen->start)
269                 return -1;
270         if (a->stolen->start > b->stolen->start)
271                 return 1;
272         return 0;
273 }
274
275 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
276 {
277         struct drm_info_node *node = m->private;
278         struct drm_device *dev = node->minor->dev;
279         struct drm_i915_private *dev_priv = to_i915(dev);
280         struct drm_i915_gem_object *obj;
281         u64 total_obj_size, total_gtt_size;
282         LIST_HEAD(stolen);
283         int count, ret;
284
285         ret = mutex_lock_interruptible(&dev->struct_mutex);
286         if (ret)
287                 return ret;
288
289         total_obj_size = total_gtt_size = count = 0;
290         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
291                 if (obj->stolen == NULL)
292                         continue;
293
294                 list_add(&obj->obj_exec_link, &stolen);
295
296                 total_obj_size += obj->base.size;
297                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
298                 count++;
299         }
300         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
301                 if (obj->stolen == NULL)
302                         continue;
303
304                 list_add(&obj->obj_exec_link, &stolen);
305
306                 total_obj_size += obj->base.size;
307                 count++;
308         }
309         list_sort(NULL, &stolen, obj_rank_by_stolen);
310         seq_puts(m, "Stolen:\n");
311         while (!list_empty(&stolen)) {
312                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
313                 seq_puts(m, "   ");
314                 describe_obj(m, obj);
315                 seq_putc(m, '\n');
316                 list_del_init(&obj->obj_exec_link);
317         }
318         mutex_unlock(&dev->struct_mutex);
319
320         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
321                    count, total_obj_size, total_gtt_size);
322         return 0;
323 }
324
325 #define count_objects(list, member) do { \
326         list_for_each_entry(obj, list, member) { \
327                 size += i915_gem_obj_total_ggtt_size(obj); \
328                 ++count; \
329                 if (obj->map_and_fenceable) { \
330                         mappable_size += i915_gem_obj_ggtt_size(obj); \
331                         ++mappable_count; \
332                 } \
333         } \
334 } while (0)
335
336 struct file_stats {
337         struct drm_i915_file_private *file_priv;
338         unsigned long count;
339         u64 total, unbound;
340         u64 global, shared;
341         u64 active, inactive;
342 };
343
344 static int per_file_stats(int id, void *ptr, void *data)
345 {
346         struct drm_i915_gem_object *obj = ptr;
347         struct file_stats *stats = data;
348         struct i915_vma *vma;
349
350         stats->count++;
351         stats->total += obj->base.size;
352         if (!obj->bind_count)
353                 stats->unbound += obj->base.size;
354         if (obj->base.name || obj->base.dma_buf)
355                 stats->shared += obj->base.size;
356
357         list_for_each_entry(vma, &obj->vma_list, obj_link) {
358                 if (!drm_mm_node_allocated(&vma->node))
359                         continue;
360
361                 if (i915_vma_is_ggtt(vma)) {
362                         stats->global += vma->node.size;
363                 } else {
364                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
365
366                         if (ppgtt->base.file != stats->file_priv)
367                                 continue;
368                 }
369
370                 if (i915_vma_is_active(vma))
371                         stats->active += vma->node.size;
372                 else
373                         stats->inactive += vma->node.size;
374         }
375
376         return 0;
377 }
378
379 #define print_file_stats(m, name, stats) do { \
380         if (stats.count) \
381                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
382                            name, \
383                            stats.count, \
384                            stats.total, \
385                            stats.active, \
386                            stats.inactive, \
387                            stats.global, \
388                            stats.shared, \
389                            stats.unbound); \
390 } while (0)
391
392 static void print_batch_pool_stats(struct seq_file *m,
393                                    struct drm_i915_private *dev_priv)
394 {
395         struct drm_i915_gem_object *obj;
396         struct file_stats stats;
397         struct intel_engine_cs *engine;
398         int j;
399
400         memset(&stats, 0, sizeof(stats));
401
402         for_each_engine(engine, dev_priv) {
403                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
404                         list_for_each_entry(obj,
405                                             &engine->batch_pool.cache_list[j],
406                                             batch_pool_link)
407                                 per_file_stats(0, obj, &stats);
408                 }
409         }
410
411         print_file_stats(m, "[k]batch pool", stats);
412 }
413
414 static int per_file_ctx_stats(int id, void *ptr, void *data)
415 {
416         struct i915_gem_context *ctx = ptr;
417         int n;
418
419         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
420                 if (ctx->engine[n].state)
421                         per_file_stats(0, ctx->engine[n].state, data);
422                 if (ctx->engine[n].ring)
423                         per_file_stats(0, ctx->engine[n].ring->obj, data);
424         }
425
426         return 0;
427 }
428
429 static void print_context_stats(struct seq_file *m,
430                                 struct drm_i915_private *dev_priv)
431 {
432         struct file_stats stats;
433         struct drm_file *file;
434
435         memset(&stats, 0, sizeof(stats));
436
437         mutex_lock(&dev_priv->drm.struct_mutex);
438         if (dev_priv->kernel_context)
439                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
440
441         list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
442                 struct drm_i915_file_private *fpriv = file->driver_priv;
443                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
444         }
445         mutex_unlock(&dev_priv->drm.struct_mutex);
446
447         print_file_stats(m, "[k]contexts", stats);
448 }
449
450 #define count_vmas(list, member) do { \
451         list_for_each_entry(vma, list, member) { \
452                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
453                 ++count; \
454                 if (vma->obj->map_and_fenceable) { \
455                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
456                         ++mappable_count; \
457                 } \
458         } \
459 } while (0)
460
461 static int i915_gem_object_info(struct seq_file *m, void* data)
462 {
463         struct drm_info_node *node = m->private;
464         struct drm_device *dev = node->minor->dev;
465         struct drm_i915_private *dev_priv = to_i915(dev);
466         struct i915_ggtt *ggtt = &dev_priv->ggtt;
467         u32 count, mappable_count, purgeable_count;
468         u64 size, mappable_size, purgeable_size;
469         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
470         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
471         struct drm_i915_gem_object *obj;
472         struct drm_file *file;
473         struct i915_vma *vma;
474         int ret;
475
476         ret = mutex_lock_interruptible(&dev->struct_mutex);
477         if (ret)
478                 return ret;
479
480         seq_printf(m, "%u objects, %zu bytes\n",
481                    dev_priv->mm.object_count,
482                    dev_priv->mm.object_memory);
483
484         size = count = mappable_size = mappable_count = 0;
485         count_objects(&dev_priv->mm.bound_list, global_list);
486         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
487                    count, mappable_count, size, mappable_size);
488
489         size = count = mappable_size = mappable_count = 0;
490         count_vmas(&ggtt->base.active_list, vm_link);
491         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
492                    count, mappable_count, size, mappable_size);
493
494         size = count = mappable_size = mappable_count = 0;
495         count_vmas(&ggtt->base.inactive_list, vm_link);
496         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
497                    count, mappable_count, size, mappable_size);
498
499         size = count = purgeable_size = purgeable_count = 0;
500         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
501                 size += obj->base.size, ++count;
502                 if (obj->madv == I915_MADV_DONTNEED)
503                         purgeable_size += obj->base.size, ++purgeable_count;
504                 if (obj->mapping) {
505                         pin_mapped_count++;
506                         pin_mapped_size += obj->base.size;
507                         if (obj->pages_pin_count == 0) {
508                                 pin_mapped_purgeable_count++;
509                                 pin_mapped_purgeable_size += obj->base.size;
510                         }
511                 }
512         }
513         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
514
515         size = count = mappable_size = mappable_count = 0;
516         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
517                 if (obj->fault_mappable) {
518                         size += i915_gem_obj_ggtt_size(obj);
519                         ++count;
520                 }
521                 if (obj->pin_display) {
522                         mappable_size += i915_gem_obj_ggtt_size(obj);
523                         ++mappable_count;
524                 }
525                 if (obj->madv == I915_MADV_DONTNEED) {
526                         purgeable_size += obj->base.size;
527                         ++purgeable_count;
528                 }
529                 if (obj->mapping) {
530                         pin_mapped_count++;
531                         pin_mapped_size += obj->base.size;
532                         if (obj->pages_pin_count == 0) {
533                                 pin_mapped_purgeable_count++;
534                                 pin_mapped_purgeable_size += obj->base.size;
535                         }
536                 }
537         }
538         seq_printf(m, "%u purgeable objects, %llu bytes\n",
539                    purgeable_count, purgeable_size);
540         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
541                    mappable_count, mappable_size);
542         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
543                    count, size);
544         seq_printf(m,
545                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
546                    pin_mapped_count, pin_mapped_purgeable_count,
547                    pin_mapped_size, pin_mapped_purgeable_size);
548
549         seq_printf(m, "%llu [%llu] gtt total\n",
550                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
551
552         seq_putc(m, '\n');
553         print_batch_pool_stats(m, dev_priv);
554         mutex_unlock(&dev->struct_mutex);
555
556         mutex_lock(&dev->filelist_mutex);
557         print_context_stats(m, dev_priv);
558         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
559                 struct file_stats stats;
560                 struct task_struct *task;
561
562                 memset(&stats, 0, sizeof(stats));
563                 stats.file_priv = file->driver_priv;
564                 spin_lock(&file->table_lock);
565                 idr_for_each(&file->object_idr, per_file_stats, &stats);
566                 spin_unlock(&file->table_lock);
567                 /*
568                  * Although we have a valid reference on file->pid, that does
569                  * not guarantee that the task_struct who called get_pid() is
570                  * still alive (e.g. get_pid(current) => fork() => exit()).
571                  * Therefore, we need to protect this ->comm access using RCU.
572                  */
573                 rcu_read_lock();
574                 task = pid_task(file->pid, PIDTYPE_PID);
575                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
576                 rcu_read_unlock();
577         }
578         mutex_unlock(&dev->filelist_mutex);
579
580         return 0;
581 }
582
583 static int i915_gem_gtt_info(struct seq_file *m, void *data)
584 {
585         struct drm_info_node *node = m->private;
586         struct drm_device *dev = node->minor->dev;
587         uintptr_t list = (uintptr_t) node->info_ent->data;
588         struct drm_i915_private *dev_priv = to_i915(dev);
589         struct drm_i915_gem_object *obj;
590         u64 total_obj_size, total_gtt_size;
591         int count, ret;
592
593         ret = mutex_lock_interruptible(&dev->struct_mutex);
594         if (ret)
595                 return ret;
596
597         total_obj_size = total_gtt_size = count = 0;
598         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
599                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
600                         continue;
601
602                 seq_puts(m, "   ");
603                 describe_obj(m, obj);
604                 seq_putc(m, '\n');
605                 total_obj_size += obj->base.size;
606                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
607                 count++;
608         }
609
610         mutex_unlock(&dev->struct_mutex);
611
612         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
613                    count, total_obj_size, total_gtt_size);
614
615         return 0;
616 }
617
618 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
619 {
620         struct drm_info_node *node = m->private;
621         struct drm_device *dev = node->minor->dev;
622         struct drm_i915_private *dev_priv = to_i915(dev);
623         struct intel_crtc *crtc;
624         int ret;
625
626         ret = mutex_lock_interruptible(&dev->struct_mutex);
627         if (ret)
628                 return ret;
629
630         for_each_intel_crtc(dev, crtc) {
631                 const char pipe = pipe_name(crtc->pipe);
632                 const char plane = plane_name(crtc->plane);
633                 struct intel_flip_work *work;
634
635                 spin_lock_irq(&dev->event_lock);
636                 work = crtc->flip_work;
637                 if (work == NULL) {
638                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
639                                    pipe, plane);
640                 } else {
641                         u32 pending;
642                         u32 addr;
643
644                         pending = atomic_read(&work->pending);
645                         if (pending) {
646                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
647                                            pipe, plane);
648                         } else {
649                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
650                                            pipe, plane);
651                         }
652                         if (work->flip_queued_req) {
653                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
654
655                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
656                                            engine->name,
657                                            i915_gem_request_get_seqno(work->flip_queued_req),
658                                            dev_priv->next_seqno,
659                                            intel_engine_get_seqno(engine),
660                                            i915_gem_request_completed(work->flip_queued_req));
661                         } else
662                                 seq_printf(m, "Flip not associated with any ring\n");
663                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
664                                    work->flip_queued_vblank,
665                                    work->flip_ready_vblank,
666                                    intel_crtc_get_vblank_counter(crtc));
667                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
668
669                         if (INTEL_INFO(dev)->gen >= 4)
670                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
671                         else
672                                 addr = I915_READ(DSPADDR(crtc->plane));
673                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
674
675                         if (work->pending_flip_obj) {
676                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
677                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
678                         }
679                 }
680                 spin_unlock_irq(&dev->event_lock);
681         }
682
683         mutex_unlock(&dev->struct_mutex);
684
685         return 0;
686 }
687
688 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
689 {
690         struct drm_info_node *node = m->private;
691         struct drm_device *dev = node->minor->dev;
692         struct drm_i915_private *dev_priv = to_i915(dev);
693         struct drm_i915_gem_object *obj;
694         struct intel_engine_cs *engine;
695         int total = 0;
696         int ret, j;
697
698         ret = mutex_lock_interruptible(&dev->struct_mutex);
699         if (ret)
700                 return ret;
701
702         for_each_engine(engine, dev_priv) {
703                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
704                         int count;
705
706                         count = 0;
707                         list_for_each_entry(obj,
708                                             &engine->batch_pool.cache_list[j],
709                                             batch_pool_link)
710                                 count++;
711                         seq_printf(m, "%s cache[%d]: %d objects\n",
712                                    engine->name, j, count);
713
714                         list_for_each_entry(obj,
715                                             &engine->batch_pool.cache_list[j],
716                                             batch_pool_link) {
717                                 seq_puts(m, "   ");
718                                 describe_obj(m, obj);
719                                 seq_putc(m, '\n');
720                         }
721
722                         total += count;
723                 }
724         }
725
726         seq_printf(m, "total: %d\n", total);
727
728         mutex_unlock(&dev->struct_mutex);
729
730         return 0;
731 }
732
733 static int i915_gem_request_info(struct seq_file *m, void *data)
734 {
735         struct drm_info_node *node = m->private;
736         struct drm_device *dev = node->minor->dev;
737         struct drm_i915_private *dev_priv = to_i915(dev);
738         struct intel_engine_cs *engine;
739         struct drm_i915_gem_request *req;
740         int ret, any;
741
742         ret = mutex_lock_interruptible(&dev->struct_mutex);
743         if (ret)
744                 return ret;
745
746         any = 0;
747         for_each_engine(engine, dev_priv) {
748                 int count;
749
750                 count = 0;
751                 list_for_each_entry(req, &engine->request_list, link)
752                         count++;
753                 if (count == 0)
754                         continue;
755
756                 seq_printf(m, "%s requests: %d\n", engine->name, count);
757                 list_for_each_entry(req, &engine->request_list, link) {
758                         struct task_struct *task;
759
760                         rcu_read_lock();
761                         task = NULL;
762                         if (req->pid)
763                                 task = pid_task(req->pid, PIDTYPE_PID);
764                         seq_printf(m, "    %x @ %d: %s [%d]\n",
765                                    req->fence.seqno,
766                                    (int) (jiffies - req->emitted_jiffies),
767                                    task ? task->comm : "<unknown>",
768                                    task ? task->pid : -1);
769                         rcu_read_unlock();
770                 }
771
772                 any++;
773         }
774         mutex_unlock(&dev->struct_mutex);
775
776         if (any == 0)
777                 seq_puts(m, "No requests\n");
778
779         return 0;
780 }
781
782 static void i915_ring_seqno_info(struct seq_file *m,
783                                  struct intel_engine_cs *engine)
784 {
785         struct intel_breadcrumbs *b = &engine->breadcrumbs;
786         struct rb_node *rb;
787
788         seq_printf(m, "Current sequence (%s): %x\n",
789                    engine->name, intel_engine_get_seqno(engine));
790         seq_printf(m, "Current user interrupts (%s): %lx\n",
791                    engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
792
793         spin_lock(&b->lock);
794         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
795                 struct intel_wait *w = container_of(rb, typeof(*w), node);
796
797                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
798                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
799         }
800         spin_unlock(&b->lock);
801 }
802
803 static int i915_gem_seqno_info(struct seq_file *m, void *data)
804 {
805         struct drm_info_node *node = m->private;
806         struct drm_device *dev = node->minor->dev;
807         struct drm_i915_private *dev_priv = to_i915(dev);
808         struct intel_engine_cs *engine;
809         int ret;
810
811         ret = mutex_lock_interruptible(&dev->struct_mutex);
812         if (ret)
813                 return ret;
814         intel_runtime_pm_get(dev_priv);
815
816         for_each_engine(engine, dev_priv)
817                 i915_ring_seqno_info(m, engine);
818
819         intel_runtime_pm_put(dev_priv);
820         mutex_unlock(&dev->struct_mutex);
821
822         return 0;
823 }
824
825
826 static int i915_interrupt_info(struct seq_file *m, void *data)
827 {
828         struct drm_info_node *node = m->private;
829         struct drm_device *dev = node->minor->dev;
830         struct drm_i915_private *dev_priv = to_i915(dev);
831         struct intel_engine_cs *engine;
832         int ret, i, pipe;
833
834         ret = mutex_lock_interruptible(&dev->struct_mutex);
835         if (ret)
836                 return ret;
837         intel_runtime_pm_get(dev_priv);
838
839         if (IS_CHERRYVIEW(dev)) {
840                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
841                            I915_READ(GEN8_MASTER_IRQ));
842
843                 seq_printf(m, "Display IER:\t%08x\n",
844                            I915_READ(VLV_IER));
845                 seq_printf(m, "Display IIR:\t%08x\n",
846                            I915_READ(VLV_IIR));
847                 seq_printf(m, "Display IIR_RW:\t%08x\n",
848                            I915_READ(VLV_IIR_RW));
849                 seq_printf(m, "Display IMR:\t%08x\n",
850                            I915_READ(VLV_IMR));
851                 for_each_pipe(dev_priv, pipe)
852                         seq_printf(m, "Pipe %c stat:\t%08x\n",
853                                    pipe_name(pipe),
854                                    I915_READ(PIPESTAT(pipe)));
855
856                 seq_printf(m, "Port hotplug:\t%08x\n",
857                            I915_READ(PORT_HOTPLUG_EN));
858                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
859                            I915_READ(VLV_DPFLIPSTAT));
860                 seq_printf(m, "DPINVGTT:\t%08x\n",
861                            I915_READ(DPINVGTT));
862
863                 for (i = 0; i < 4; i++) {
864                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
865                                    i, I915_READ(GEN8_GT_IMR(i)));
866                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
867                                    i, I915_READ(GEN8_GT_IIR(i)));
868                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
869                                    i, I915_READ(GEN8_GT_IER(i)));
870                 }
871
872                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
873                            I915_READ(GEN8_PCU_IMR));
874                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
875                            I915_READ(GEN8_PCU_IIR));
876                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
877                            I915_READ(GEN8_PCU_IER));
878         } else if (INTEL_INFO(dev)->gen >= 8) {
879                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
880                            I915_READ(GEN8_MASTER_IRQ));
881
882                 for (i = 0; i < 4; i++) {
883                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
884                                    i, I915_READ(GEN8_GT_IMR(i)));
885                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
886                                    i, I915_READ(GEN8_GT_IIR(i)));
887                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
888                                    i, I915_READ(GEN8_GT_IER(i)));
889                 }
890
891                 for_each_pipe(dev_priv, pipe) {
892                         enum intel_display_power_domain power_domain;
893
894                         power_domain = POWER_DOMAIN_PIPE(pipe);
895                         if (!intel_display_power_get_if_enabled(dev_priv,
896                                                                 power_domain)) {
897                                 seq_printf(m, "Pipe %c power disabled\n",
898                                            pipe_name(pipe));
899                                 continue;
900                         }
901                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
902                                    pipe_name(pipe),
903                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
904                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
905                                    pipe_name(pipe),
906                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
907                         seq_printf(m, "Pipe %c IER:\t%08x\n",
908                                    pipe_name(pipe),
909                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
910
911                         intel_display_power_put(dev_priv, power_domain);
912                 }
913
914                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
915                            I915_READ(GEN8_DE_PORT_IMR));
916                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
917                            I915_READ(GEN8_DE_PORT_IIR));
918                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
919                            I915_READ(GEN8_DE_PORT_IER));
920
921                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
922                            I915_READ(GEN8_DE_MISC_IMR));
923                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
924                            I915_READ(GEN8_DE_MISC_IIR));
925                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
926                            I915_READ(GEN8_DE_MISC_IER));
927
928                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
929                            I915_READ(GEN8_PCU_IMR));
930                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
931                            I915_READ(GEN8_PCU_IIR));
932                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
933                            I915_READ(GEN8_PCU_IER));
934         } else if (IS_VALLEYVIEW(dev)) {
935                 seq_printf(m, "Display IER:\t%08x\n",
936                            I915_READ(VLV_IER));
937                 seq_printf(m, "Display IIR:\t%08x\n",
938                            I915_READ(VLV_IIR));
939                 seq_printf(m, "Display IIR_RW:\t%08x\n",
940                            I915_READ(VLV_IIR_RW));
941                 seq_printf(m, "Display IMR:\t%08x\n",
942                            I915_READ(VLV_IMR));
943                 for_each_pipe(dev_priv, pipe)
944                         seq_printf(m, "Pipe %c stat:\t%08x\n",
945                                    pipe_name(pipe),
946                                    I915_READ(PIPESTAT(pipe)));
947
948                 seq_printf(m, "Master IER:\t%08x\n",
949                            I915_READ(VLV_MASTER_IER));
950
951                 seq_printf(m, "Render IER:\t%08x\n",
952                            I915_READ(GTIER));
953                 seq_printf(m, "Render IIR:\t%08x\n",
954                            I915_READ(GTIIR));
955                 seq_printf(m, "Render IMR:\t%08x\n",
956                            I915_READ(GTIMR));
957
958                 seq_printf(m, "PM IER:\t\t%08x\n",
959                            I915_READ(GEN6_PMIER));
960                 seq_printf(m, "PM IIR:\t\t%08x\n",
961                            I915_READ(GEN6_PMIIR));
962                 seq_printf(m, "PM IMR:\t\t%08x\n",
963                            I915_READ(GEN6_PMIMR));
964
965                 seq_printf(m, "Port hotplug:\t%08x\n",
966                            I915_READ(PORT_HOTPLUG_EN));
967                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
968                            I915_READ(VLV_DPFLIPSTAT));
969                 seq_printf(m, "DPINVGTT:\t%08x\n",
970                            I915_READ(DPINVGTT));
971
972         } else if (!HAS_PCH_SPLIT(dev)) {
973                 seq_printf(m, "Interrupt enable:    %08x\n",
974                            I915_READ(IER));
975                 seq_printf(m, "Interrupt identity:  %08x\n",
976                            I915_READ(IIR));
977                 seq_printf(m, "Interrupt mask:      %08x\n",
978                            I915_READ(IMR));
979                 for_each_pipe(dev_priv, pipe)
980                         seq_printf(m, "Pipe %c stat:         %08x\n",
981                                    pipe_name(pipe),
982                                    I915_READ(PIPESTAT(pipe)));
983         } else {
984                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
985                            I915_READ(DEIER));
986                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
987                            I915_READ(DEIIR));
988                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
989                            I915_READ(DEIMR));
990                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
991                            I915_READ(SDEIER));
992                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
993                            I915_READ(SDEIIR));
994                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
995                            I915_READ(SDEIMR));
996                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
997                            I915_READ(GTIER));
998                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
999                            I915_READ(GTIIR));
1000                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
1001                            I915_READ(GTIMR));
1002         }
1003         for_each_engine(engine, dev_priv) {
1004                 if (INTEL_INFO(dev)->gen >= 6) {
1005                         seq_printf(m,
1006                                    "Graphics Interrupt mask (%s):       %08x\n",
1007                                    engine->name, I915_READ_IMR(engine));
1008                 }
1009                 i915_ring_seqno_info(m, engine);
1010         }
1011         intel_runtime_pm_put(dev_priv);
1012         mutex_unlock(&dev->struct_mutex);
1013
1014         return 0;
1015 }
1016
1017 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1018 {
1019         struct drm_info_node *node = m->private;
1020         struct drm_device *dev = node->minor->dev;
1021         struct drm_i915_private *dev_priv = to_i915(dev);
1022         int i, ret;
1023
1024         ret = mutex_lock_interruptible(&dev->struct_mutex);
1025         if (ret)
1026                 return ret;
1027
1028         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1029         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1030                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1031
1032                 seq_printf(m, "Fence %d, pin count = %d, object = ",
1033                            i, dev_priv->fence_regs[i].pin_count);
1034                 if (obj == NULL)
1035                         seq_puts(m, "unused");
1036                 else
1037                         describe_obj(m, obj);
1038                 seq_putc(m, '\n');
1039         }
1040
1041         mutex_unlock(&dev->struct_mutex);
1042         return 0;
1043 }
1044
1045 static int i915_hws_info(struct seq_file *m, void *data)
1046 {
1047         struct drm_info_node *node = m->private;
1048         struct drm_device *dev = node->minor->dev;
1049         struct drm_i915_private *dev_priv = to_i915(dev);
1050         struct intel_engine_cs *engine;
1051         const u32 *hws;
1052         int i;
1053
1054         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1055         hws = engine->status_page.page_addr;
1056         if (hws == NULL)
1057                 return 0;
1058
1059         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1060                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1061                            i * 4,
1062                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1063         }
1064         return 0;
1065 }
1066
1067 static ssize_t
1068 i915_error_state_write(struct file *filp,
1069                        const char __user *ubuf,
1070                        size_t cnt,
1071                        loff_t *ppos)
1072 {
1073         struct i915_error_state_file_priv *error_priv = filp->private_data;
1074         struct drm_device *dev = error_priv->dev;
1075         int ret;
1076
1077         DRM_DEBUG_DRIVER("Resetting error state\n");
1078
1079         ret = mutex_lock_interruptible(&dev->struct_mutex);
1080         if (ret)
1081                 return ret;
1082
1083         i915_destroy_error_state(dev);
1084         mutex_unlock(&dev->struct_mutex);
1085
1086         return cnt;
1087 }
1088
1089 static int i915_error_state_open(struct inode *inode, struct file *file)
1090 {
1091         struct drm_device *dev = inode->i_private;
1092         struct i915_error_state_file_priv *error_priv;
1093
1094         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1095         if (!error_priv)
1096                 return -ENOMEM;
1097
1098         error_priv->dev = dev;
1099
1100         i915_error_state_get(dev, error_priv);
1101
1102         file->private_data = error_priv;
1103
1104         return 0;
1105 }
1106
1107 static int i915_error_state_release(struct inode *inode, struct file *file)
1108 {
1109         struct i915_error_state_file_priv *error_priv = file->private_data;
1110
1111         i915_error_state_put(error_priv);
1112         kfree(error_priv);
1113
1114         return 0;
1115 }
1116
1117 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1118                                      size_t count, loff_t *pos)
1119 {
1120         struct i915_error_state_file_priv *error_priv = file->private_data;
1121         struct drm_i915_error_state_buf error_str;
1122         loff_t tmp_pos = 0;
1123         ssize_t ret_count = 0;
1124         int ret;
1125
1126         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1127         if (ret)
1128                 return ret;
1129
1130         ret = i915_error_state_to_str(&error_str, error_priv);
1131         if (ret)
1132                 goto out;
1133
1134         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1135                                             error_str.buf,
1136                                             error_str.bytes);
1137
1138         if (ret_count < 0)
1139                 ret = ret_count;
1140         else
1141                 *pos = error_str.start + ret_count;
1142 out:
1143         i915_error_state_buf_release(&error_str);
1144         return ret ?: ret_count;
1145 }
1146
1147 static const struct file_operations i915_error_state_fops = {
1148         .owner = THIS_MODULE,
1149         .open = i915_error_state_open,
1150         .read = i915_error_state_read,
1151         .write = i915_error_state_write,
1152         .llseek = default_llseek,
1153         .release = i915_error_state_release,
1154 };
1155
1156 static int
1157 i915_next_seqno_get(void *data, u64 *val)
1158 {
1159         struct drm_device *dev = data;
1160         struct drm_i915_private *dev_priv = to_i915(dev);
1161         int ret;
1162
1163         ret = mutex_lock_interruptible(&dev->struct_mutex);
1164         if (ret)
1165                 return ret;
1166
1167         *val = dev_priv->next_seqno;
1168         mutex_unlock(&dev->struct_mutex);
1169
1170         return 0;
1171 }
1172
1173 static int
1174 i915_next_seqno_set(void *data, u64 val)
1175 {
1176         struct drm_device *dev = data;
1177         int ret;
1178
1179         ret = mutex_lock_interruptible(&dev->struct_mutex);
1180         if (ret)
1181                 return ret;
1182
1183         ret = i915_gem_set_seqno(dev, val);
1184         mutex_unlock(&dev->struct_mutex);
1185
1186         return ret;
1187 }
1188
1189 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1190                         i915_next_seqno_get, i915_next_seqno_set,
1191                         "0x%llx\n");
1192
1193 static int i915_frequency_info(struct seq_file *m, void *unused)
1194 {
1195         struct drm_info_node *node = m->private;
1196         struct drm_device *dev = node->minor->dev;
1197         struct drm_i915_private *dev_priv = to_i915(dev);
1198         int ret = 0;
1199
1200         intel_runtime_pm_get(dev_priv);
1201
1202         if (IS_GEN5(dev)) {
1203                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1204                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1205
1206                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1207                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1208                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1209                            MEMSTAT_VID_SHIFT);
1210                 seq_printf(m, "Current P-state: %d\n",
1211                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1212         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213                 u32 freq_sts;
1214
1215                 mutex_lock(&dev_priv->rps.hw_lock);
1216                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1217                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1218                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1219
1220                 seq_printf(m, "actual GPU freq: %d MHz\n",
1221                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1222
1223                 seq_printf(m, "current GPU freq: %d MHz\n",
1224                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1225
1226                 seq_printf(m, "max GPU freq: %d MHz\n",
1227                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1228
1229                 seq_printf(m, "min GPU freq: %d MHz\n",
1230                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1231
1232                 seq_printf(m, "idle GPU freq: %d MHz\n",
1233                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1234
1235                 seq_printf(m,
1236                            "efficient (RPe) frequency: %d MHz\n",
1237                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1238                 mutex_unlock(&dev_priv->rps.hw_lock);
1239         } else if (INTEL_INFO(dev)->gen >= 6) {
1240                 u32 rp_state_limits;
1241                 u32 gt_perf_status;
1242                 u32 rp_state_cap;
1243                 u32 rpmodectl, rpinclimit, rpdeclimit;
1244                 u32 rpstat, cagf, reqf;
1245                 u32 rpupei, rpcurup, rpprevup;
1246                 u32 rpdownei, rpcurdown, rpprevdown;
1247                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1248                 int max_freq;
1249
1250                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1251                 if (IS_BROXTON(dev)) {
1252                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1253                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1254                 } else {
1255                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1256                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1257                 }
1258
1259                 /* RPSTAT1 is in the GT power well */
1260                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1261                 if (ret)
1262                         goto out;
1263
1264                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1265
1266                 reqf = I915_READ(GEN6_RPNSWREQ);
1267                 if (IS_GEN9(dev))
1268                         reqf >>= 23;
1269                 else {
1270                         reqf &= ~GEN6_TURBO_DISABLE;
1271                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1272                                 reqf >>= 24;
1273                         else
1274                                 reqf >>= 25;
1275                 }
1276                 reqf = intel_gpu_freq(dev_priv, reqf);
1277
1278                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1279                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1280                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1281
1282                 rpstat = I915_READ(GEN6_RPSTAT1);
1283                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1284                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1285                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1286                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1287                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1288                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1289                 if (IS_GEN9(dev))
1290                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1291                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1292                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1293                 else
1294                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1295                 cagf = intel_gpu_freq(dev_priv, cagf);
1296
1297                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1298                 mutex_unlock(&dev->struct_mutex);
1299
1300                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1301                         pm_ier = I915_READ(GEN6_PMIER);
1302                         pm_imr = I915_READ(GEN6_PMIMR);
1303                         pm_isr = I915_READ(GEN6_PMISR);
1304                         pm_iir = I915_READ(GEN6_PMIIR);
1305                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1306                 } else {
1307                         pm_ier = I915_READ(GEN8_GT_IER(2));
1308                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1309                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1310                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1311                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1312                 }
1313                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1314                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1315                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1316                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1317                 seq_printf(m, "Render p-state ratio: %d\n",
1318                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1319                 seq_printf(m, "Render p-state VID: %d\n",
1320                            gt_perf_status & 0xff);
1321                 seq_printf(m, "Render p-state limit: %d\n",
1322                            rp_state_limits & 0xff);
1323                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1324                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1325                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1326                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1327                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1328                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1329                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1330                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1331                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1332                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1333                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1334                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1335                 seq_printf(m, "Up threshold: %d%%\n",
1336                            dev_priv->rps.up_threshold);
1337
1338                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1339                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1340                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1341                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1342                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1343                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1344                 seq_printf(m, "Down threshold: %d%%\n",
1345                            dev_priv->rps.down_threshold);
1346
1347                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1348                             rp_state_cap >> 16) & 0xff;
1349                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1350                              GEN9_FREQ_SCALER : 1);
1351                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1352                            intel_gpu_freq(dev_priv, max_freq));
1353
1354                 max_freq = (rp_state_cap & 0xff00) >> 8;
1355                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1356                              GEN9_FREQ_SCALER : 1);
1357                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1358                            intel_gpu_freq(dev_priv, max_freq));
1359
1360                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1361                             rp_state_cap >> 0) & 0xff;
1362                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1363                              GEN9_FREQ_SCALER : 1);
1364                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1365                            intel_gpu_freq(dev_priv, max_freq));
1366                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1367                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1368
1369                 seq_printf(m, "Current freq: %d MHz\n",
1370                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1371                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1372                 seq_printf(m, "Idle freq: %d MHz\n",
1373                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1374                 seq_printf(m, "Min freq: %d MHz\n",
1375                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1376                 seq_printf(m, "Boost freq: %d MHz\n",
1377                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1378                 seq_printf(m, "Max freq: %d MHz\n",
1379                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1380                 seq_printf(m,
1381                            "efficient (RPe) frequency: %d MHz\n",
1382                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1383         } else {
1384                 seq_puts(m, "no P-state info available\n");
1385         }
1386
1387         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1388         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1389         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1390
1391 out:
1392         intel_runtime_pm_put(dev_priv);
1393         return ret;
1394 }
1395
1396 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1397 {
1398         struct drm_info_node *node = m->private;
1399         struct drm_device *dev = node->minor->dev;
1400         struct drm_i915_private *dev_priv = to_i915(dev);
1401         struct intel_engine_cs *engine;
1402         u64 acthd[I915_NUM_ENGINES];
1403         u32 seqno[I915_NUM_ENGINES];
1404         u32 instdone[I915_NUM_INSTDONE_REG];
1405         enum intel_engine_id id;
1406         int j;
1407
1408         if (!i915.enable_hangcheck) {
1409                 seq_printf(m, "Hangcheck disabled\n");
1410                 return 0;
1411         }
1412
1413         intel_runtime_pm_get(dev_priv);
1414
1415         for_each_engine_id(engine, dev_priv, id) {
1416                 acthd[id] = intel_engine_get_active_head(engine);
1417                 seqno[id] = intel_engine_get_seqno(engine);
1418         }
1419
1420         i915_get_extra_instdone(dev_priv, instdone);
1421
1422         intel_runtime_pm_put(dev_priv);
1423
1424         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1425                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1426                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1427                                             jiffies));
1428         } else
1429                 seq_printf(m, "Hangcheck inactive\n");
1430
1431         for_each_engine_id(engine, dev_priv, id) {
1432                 seq_printf(m, "%s:\n", engine->name);
1433                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1434                            engine->hangcheck.seqno,
1435                            seqno[id],
1436                            engine->last_submitted_seqno);
1437                 seq_printf(m, "\twaiters? %d\n",
1438                            intel_engine_has_waiter(engine));
1439                 seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
1440                            engine->hangcheck.user_interrupts,
1441                            READ_ONCE(engine->breadcrumbs.irq_wakeups));
1442                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1443                            (long long)engine->hangcheck.acthd,
1444                            (long long)acthd[id]);
1445                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1446                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1447
1448                 if (engine->id == RCS) {
1449                         seq_puts(m, "\tinstdone read =");
1450
1451                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1452                                 seq_printf(m, " 0x%08x", instdone[j]);
1453
1454                         seq_puts(m, "\n\tinstdone accu =");
1455
1456                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1457                                 seq_printf(m, " 0x%08x",
1458                                            engine->hangcheck.instdone[j]);
1459
1460                         seq_puts(m, "\n");
1461                 }
1462         }
1463
1464         return 0;
1465 }
1466
1467 static int ironlake_drpc_info(struct seq_file *m)
1468 {
1469         struct drm_info_node *node = m->private;
1470         struct drm_device *dev = node->minor->dev;
1471         struct drm_i915_private *dev_priv = to_i915(dev);
1472         u32 rgvmodectl, rstdbyctl;
1473         u16 crstandvid;
1474         int ret;
1475
1476         ret = mutex_lock_interruptible(&dev->struct_mutex);
1477         if (ret)
1478                 return ret;
1479         intel_runtime_pm_get(dev_priv);
1480
1481         rgvmodectl = I915_READ(MEMMODECTL);
1482         rstdbyctl = I915_READ(RSTDBYCTL);
1483         crstandvid = I915_READ16(CRSTANDVID);
1484
1485         intel_runtime_pm_put(dev_priv);
1486         mutex_unlock(&dev->struct_mutex);
1487
1488         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1489         seq_printf(m, "Boost freq: %d\n",
1490                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1491                    MEMMODE_BOOST_FREQ_SHIFT);
1492         seq_printf(m, "HW control enabled: %s\n",
1493                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1494         seq_printf(m, "SW control enabled: %s\n",
1495                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1496         seq_printf(m, "Gated voltage change: %s\n",
1497                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1498         seq_printf(m, "Starting frequency: P%d\n",
1499                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1500         seq_printf(m, "Max P-state: P%d\n",
1501                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1502         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1503         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1504         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1505         seq_printf(m, "Render standby enabled: %s\n",
1506                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1507         seq_puts(m, "Current RS state: ");
1508         switch (rstdbyctl & RSX_STATUS_MASK) {
1509         case RSX_STATUS_ON:
1510                 seq_puts(m, "on\n");
1511                 break;
1512         case RSX_STATUS_RC1:
1513                 seq_puts(m, "RC1\n");
1514                 break;
1515         case RSX_STATUS_RC1E:
1516                 seq_puts(m, "RC1E\n");
1517                 break;
1518         case RSX_STATUS_RS1:
1519                 seq_puts(m, "RS1\n");
1520                 break;
1521         case RSX_STATUS_RS2:
1522                 seq_puts(m, "RS2 (RC6)\n");
1523                 break;
1524         case RSX_STATUS_RS3:
1525                 seq_puts(m, "RC3 (RC6+)\n");
1526                 break;
1527         default:
1528                 seq_puts(m, "unknown\n");
1529                 break;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int i915_forcewake_domains(struct seq_file *m, void *data)
1536 {
1537         struct drm_info_node *node = m->private;
1538         struct drm_device *dev = node->minor->dev;
1539         struct drm_i915_private *dev_priv = to_i915(dev);
1540         struct intel_uncore_forcewake_domain *fw_domain;
1541
1542         spin_lock_irq(&dev_priv->uncore.lock);
1543         for_each_fw_domain(fw_domain, dev_priv) {
1544                 seq_printf(m, "%s.wake_count = %u\n",
1545                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1546                            fw_domain->wake_count);
1547         }
1548         spin_unlock_irq(&dev_priv->uncore.lock);
1549
1550         return 0;
1551 }
1552
1553 static int vlv_drpc_info(struct seq_file *m)
1554 {
1555         struct drm_info_node *node = m->private;
1556         struct drm_device *dev = node->minor->dev;
1557         struct drm_i915_private *dev_priv = to_i915(dev);
1558         u32 rpmodectl1, rcctl1, pw_status;
1559
1560         intel_runtime_pm_get(dev_priv);
1561
1562         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1563         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1564         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1565
1566         intel_runtime_pm_put(dev_priv);
1567
1568         seq_printf(m, "Video Turbo Mode: %s\n",
1569                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1570         seq_printf(m, "Turbo enabled: %s\n",
1571                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1572         seq_printf(m, "HW control enabled: %s\n",
1573                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1574         seq_printf(m, "SW control enabled: %s\n",
1575                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1576                           GEN6_RP_MEDIA_SW_MODE));
1577         seq_printf(m, "RC6 Enabled: %s\n",
1578                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1579                                         GEN6_RC_CTL_EI_MODE(1))));
1580         seq_printf(m, "Render Power Well: %s\n",
1581                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1582         seq_printf(m, "Media Power Well: %s\n",
1583                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1584
1585         seq_printf(m, "Render RC6 residency since boot: %u\n",
1586                    I915_READ(VLV_GT_RENDER_RC6));
1587         seq_printf(m, "Media RC6 residency since boot: %u\n",
1588                    I915_READ(VLV_GT_MEDIA_RC6));
1589
1590         return i915_forcewake_domains(m, NULL);
1591 }
1592
1593 static int gen6_drpc_info(struct seq_file *m)
1594 {
1595         struct drm_info_node *node = m->private;
1596         struct drm_device *dev = node->minor->dev;
1597         struct drm_i915_private *dev_priv = to_i915(dev);
1598         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1599         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1600         unsigned forcewake_count;
1601         int count = 0, ret;
1602
1603         ret = mutex_lock_interruptible(&dev->struct_mutex);
1604         if (ret)
1605                 return ret;
1606         intel_runtime_pm_get(dev_priv);
1607
1608         spin_lock_irq(&dev_priv->uncore.lock);
1609         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1610         spin_unlock_irq(&dev_priv->uncore.lock);
1611
1612         if (forcewake_count) {
1613                 seq_puts(m, "RC information inaccurate because somebody "
1614                             "holds a forcewake reference \n");
1615         } else {
1616                 /* NB: we cannot use forcewake, else we read the wrong values */
1617                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1618                         udelay(10);
1619                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1620         }
1621
1622         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1623         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1624
1625         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1626         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1627         if (INTEL_INFO(dev)->gen >= 9) {
1628                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1629                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1630         }
1631         mutex_unlock(&dev->struct_mutex);
1632         mutex_lock(&dev_priv->rps.hw_lock);
1633         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1634         mutex_unlock(&dev_priv->rps.hw_lock);
1635
1636         intel_runtime_pm_put(dev_priv);
1637
1638         seq_printf(m, "Video Turbo Mode: %s\n",
1639                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1640         seq_printf(m, "HW control enabled: %s\n",
1641                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1642         seq_printf(m, "SW control enabled: %s\n",
1643                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1644                           GEN6_RP_MEDIA_SW_MODE));
1645         seq_printf(m, "RC1e Enabled: %s\n",
1646                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1647         seq_printf(m, "RC6 Enabled: %s\n",
1648                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1649         if (INTEL_INFO(dev)->gen >= 9) {
1650                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1651                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1652                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1653                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1654         }
1655         seq_printf(m, "Deep RC6 Enabled: %s\n",
1656                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1657         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1658                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1659         seq_puts(m, "Current RC state: ");
1660         switch (gt_core_status & GEN6_RCn_MASK) {
1661         case GEN6_RC0:
1662                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1663                         seq_puts(m, "Core Power Down\n");
1664                 else
1665                         seq_puts(m, "on\n");
1666                 break;
1667         case GEN6_RC3:
1668                 seq_puts(m, "RC3\n");
1669                 break;
1670         case GEN6_RC6:
1671                 seq_puts(m, "RC6\n");
1672                 break;
1673         case GEN6_RC7:
1674                 seq_puts(m, "RC7\n");
1675                 break;
1676         default:
1677                 seq_puts(m, "Unknown\n");
1678                 break;
1679         }
1680
1681         seq_printf(m, "Core Power Down: %s\n",
1682                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1683         if (INTEL_INFO(dev)->gen >= 9) {
1684                 seq_printf(m, "Render Power Well: %s\n",
1685                         (gen9_powergate_status &
1686                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1687                 seq_printf(m, "Media Power Well: %s\n",
1688                         (gen9_powergate_status &
1689                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1690         }
1691
1692         /* Not exactly sure what this is */
1693         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1694                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1695         seq_printf(m, "RC6 residency since boot: %u\n",
1696                    I915_READ(GEN6_GT_GFX_RC6));
1697         seq_printf(m, "RC6+ residency since boot: %u\n",
1698                    I915_READ(GEN6_GT_GFX_RC6p));
1699         seq_printf(m, "RC6++ residency since boot: %u\n",
1700                    I915_READ(GEN6_GT_GFX_RC6pp));
1701
1702         seq_printf(m, "RC6   voltage: %dmV\n",
1703                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1704         seq_printf(m, "RC6+  voltage: %dmV\n",
1705                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1706         seq_printf(m, "RC6++ voltage: %dmV\n",
1707                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1708         return i915_forcewake_domains(m, NULL);
1709 }
1710
1711 static int i915_drpc_info(struct seq_file *m, void *unused)
1712 {
1713         struct drm_info_node *node = m->private;
1714         struct drm_device *dev = node->minor->dev;
1715
1716         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1717                 return vlv_drpc_info(m);
1718         else if (INTEL_INFO(dev)->gen >= 6)
1719                 return gen6_drpc_info(m);
1720         else
1721                 return ironlake_drpc_info(m);
1722 }
1723
1724 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1725 {
1726         struct drm_info_node *node = m->private;
1727         struct drm_device *dev = node->minor->dev;
1728         struct drm_i915_private *dev_priv = to_i915(dev);
1729
1730         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1731                    dev_priv->fb_tracking.busy_bits);
1732
1733         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1734                    dev_priv->fb_tracking.flip_bits);
1735
1736         return 0;
1737 }
1738
1739 static int i915_fbc_status(struct seq_file *m, void *unused)
1740 {
1741         struct drm_info_node *node = m->private;
1742         struct drm_device *dev = node->minor->dev;
1743         struct drm_i915_private *dev_priv = to_i915(dev);
1744
1745         if (!HAS_FBC(dev)) {
1746                 seq_puts(m, "FBC unsupported on this chipset\n");
1747                 return 0;
1748         }
1749
1750         intel_runtime_pm_get(dev_priv);
1751         mutex_lock(&dev_priv->fbc.lock);
1752
1753         if (intel_fbc_is_active(dev_priv))
1754                 seq_puts(m, "FBC enabled\n");
1755         else
1756                 seq_printf(m, "FBC disabled: %s\n",
1757                            dev_priv->fbc.no_fbc_reason);
1758
1759         if (INTEL_INFO(dev_priv)->gen >= 7)
1760                 seq_printf(m, "Compressing: %s\n",
1761                            yesno(I915_READ(FBC_STATUS2) &
1762                                  FBC_COMPRESSION_MASK));
1763
1764         mutex_unlock(&dev_priv->fbc.lock);
1765         intel_runtime_pm_put(dev_priv);
1766
1767         return 0;
1768 }
1769
1770 static int i915_fbc_fc_get(void *data, u64 *val)
1771 {
1772         struct drm_device *dev = data;
1773         struct drm_i915_private *dev_priv = to_i915(dev);
1774
1775         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1776                 return -ENODEV;
1777
1778         *val = dev_priv->fbc.false_color;
1779
1780         return 0;
1781 }
1782
1783 static int i915_fbc_fc_set(void *data, u64 val)
1784 {
1785         struct drm_device *dev = data;
1786         struct drm_i915_private *dev_priv = to_i915(dev);
1787         u32 reg;
1788
1789         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1790                 return -ENODEV;
1791
1792         mutex_lock(&dev_priv->fbc.lock);
1793
1794         reg = I915_READ(ILK_DPFC_CONTROL);
1795         dev_priv->fbc.false_color = val;
1796
1797         I915_WRITE(ILK_DPFC_CONTROL, val ?
1798                    (reg | FBC_CTL_FALSE_COLOR) :
1799                    (reg & ~FBC_CTL_FALSE_COLOR));
1800
1801         mutex_unlock(&dev_priv->fbc.lock);
1802         return 0;
1803 }
1804
1805 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1806                         i915_fbc_fc_get, i915_fbc_fc_set,
1807                         "%llu\n");
1808
1809 static int i915_ips_status(struct seq_file *m, void *unused)
1810 {
1811         struct drm_info_node *node = m->private;
1812         struct drm_device *dev = node->minor->dev;
1813         struct drm_i915_private *dev_priv = to_i915(dev);
1814
1815         if (!HAS_IPS(dev)) {
1816                 seq_puts(m, "not supported\n");
1817                 return 0;
1818         }
1819
1820         intel_runtime_pm_get(dev_priv);
1821
1822         seq_printf(m, "Enabled by kernel parameter: %s\n",
1823                    yesno(i915.enable_ips));
1824
1825         if (INTEL_INFO(dev)->gen >= 8) {
1826                 seq_puts(m, "Currently: unknown\n");
1827         } else {
1828                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1829                         seq_puts(m, "Currently: enabled\n");
1830                 else
1831                         seq_puts(m, "Currently: disabled\n");
1832         }
1833
1834         intel_runtime_pm_put(dev_priv);
1835
1836         return 0;
1837 }
1838
1839 static int i915_sr_status(struct seq_file *m, void *unused)
1840 {
1841         struct drm_info_node *node = m->private;
1842         struct drm_device *dev = node->minor->dev;
1843         struct drm_i915_private *dev_priv = to_i915(dev);
1844         bool sr_enabled = false;
1845
1846         intel_runtime_pm_get(dev_priv);
1847
1848         if (HAS_PCH_SPLIT(dev))
1849                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1850         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1851                  IS_I945G(dev) || IS_I945GM(dev))
1852                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1853         else if (IS_I915GM(dev))
1854                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1855         else if (IS_PINEVIEW(dev))
1856                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1857         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1858                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1859
1860         intel_runtime_pm_put(dev_priv);
1861
1862         seq_printf(m, "self-refresh: %s\n",
1863                    sr_enabled ? "enabled" : "disabled");
1864
1865         return 0;
1866 }
1867
1868 static int i915_emon_status(struct seq_file *m, void *unused)
1869 {
1870         struct drm_info_node *node = m->private;
1871         struct drm_device *dev = node->minor->dev;
1872         struct drm_i915_private *dev_priv = to_i915(dev);
1873         unsigned long temp, chipset, gfx;
1874         int ret;
1875
1876         if (!IS_GEN5(dev))
1877                 return -ENODEV;
1878
1879         ret = mutex_lock_interruptible(&dev->struct_mutex);
1880         if (ret)
1881                 return ret;
1882
1883         temp = i915_mch_val(dev_priv);
1884         chipset = i915_chipset_val(dev_priv);
1885         gfx = i915_gfx_val(dev_priv);
1886         mutex_unlock(&dev->struct_mutex);
1887
1888         seq_printf(m, "GMCH temp: %ld\n", temp);
1889         seq_printf(m, "Chipset power: %ld\n", chipset);
1890         seq_printf(m, "GFX power: %ld\n", gfx);
1891         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1892
1893         return 0;
1894 }
1895
1896 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1897 {
1898         struct drm_info_node *node = m->private;
1899         struct drm_device *dev = node->minor->dev;
1900         struct drm_i915_private *dev_priv = to_i915(dev);
1901         int ret = 0;
1902         int gpu_freq, ia_freq;
1903         unsigned int max_gpu_freq, min_gpu_freq;
1904
1905         if (!HAS_CORE_RING_FREQ(dev)) {
1906                 seq_puts(m, "unsupported on this chipset\n");
1907                 return 0;
1908         }
1909
1910         intel_runtime_pm_get(dev_priv);
1911
1912         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1913         if (ret)
1914                 goto out;
1915
1916         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1917                 /* Convert GT frequency to 50 HZ units */
1918                 min_gpu_freq =
1919                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1920                 max_gpu_freq =
1921                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1922         } else {
1923                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1924                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1925         }
1926
1927         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1928
1929         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1930                 ia_freq = gpu_freq;
1931                 sandybridge_pcode_read(dev_priv,
1932                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1933                                        &ia_freq);
1934                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1935                            intel_gpu_freq(dev_priv, (gpu_freq *
1936                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1937                                  GEN9_FREQ_SCALER : 1))),
1938                            ((ia_freq >> 0) & 0xff) * 100,
1939                            ((ia_freq >> 8) & 0xff) * 100);
1940         }
1941
1942         mutex_unlock(&dev_priv->rps.hw_lock);
1943
1944 out:
1945         intel_runtime_pm_put(dev_priv);
1946         return ret;
1947 }
1948
1949 static int i915_opregion(struct seq_file *m, void *unused)
1950 {
1951         struct drm_info_node *node = m->private;
1952         struct drm_device *dev = node->minor->dev;
1953         struct drm_i915_private *dev_priv = to_i915(dev);
1954         struct intel_opregion *opregion = &dev_priv->opregion;
1955         int ret;
1956
1957         ret = mutex_lock_interruptible(&dev->struct_mutex);
1958         if (ret)
1959                 goto out;
1960
1961         if (opregion->header)
1962                 seq_write(m, opregion->header, OPREGION_SIZE);
1963
1964         mutex_unlock(&dev->struct_mutex);
1965
1966 out:
1967         return 0;
1968 }
1969
1970 static int i915_vbt(struct seq_file *m, void *unused)
1971 {
1972         struct drm_info_node *node = m->private;
1973         struct drm_device *dev = node->minor->dev;
1974         struct drm_i915_private *dev_priv = to_i915(dev);
1975         struct intel_opregion *opregion = &dev_priv->opregion;
1976
1977         if (opregion->vbt)
1978                 seq_write(m, opregion->vbt, opregion->vbt_size);
1979
1980         return 0;
1981 }
1982
1983 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1984 {
1985         struct drm_info_node *node = m->private;
1986         struct drm_device *dev = node->minor->dev;
1987         struct intel_framebuffer *fbdev_fb = NULL;
1988         struct drm_framebuffer *drm_fb;
1989         int ret;
1990
1991         ret = mutex_lock_interruptible(&dev->struct_mutex);
1992         if (ret)
1993                 return ret;
1994
1995 #ifdef CONFIG_DRM_FBDEV_EMULATION
1996         if (to_i915(dev)->fbdev) {
1997                 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1998
1999                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2000                            fbdev_fb->base.width,
2001                            fbdev_fb->base.height,
2002                            fbdev_fb->base.depth,
2003                            fbdev_fb->base.bits_per_pixel,
2004                            fbdev_fb->base.modifier[0],
2005                            drm_framebuffer_read_refcount(&fbdev_fb->base));
2006                 describe_obj(m, fbdev_fb->obj);
2007                 seq_putc(m, '\n');
2008         }
2009 #endif
2010
2011         mutex_lock(&dev->mode_config.fb_lock);
2012         drm_for_each_fb(drm_fb, dev) {
2013                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
2014                 if (fb == fbdev_fb)
2015                         continue;
2016
2017                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2018                            fb->base.width,
2019                            fb->base.height,
2020                            fb->base.depth,
2021                            fb->base.bits_per_pixel,
2022                            fb->base.modifier[0],
2023                            drm_framebuffer_read_refcount(&fb->base));
2024                 describe_obj(m, fb->obj);
2025                 seq_putc(m, '\n');
2026         }
2027         mutex_unlock(&dev->mode_config.fb_lock);
2028         mutex_unlock(&dev->struct_mutex);
2029
2030         return 0;
2031 }
2032
2033 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
2034 {
2035         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2036                    ring->space, ring->head, ring->tail,
2037                    ring->last_retired_head);
2038 }
2039
2040 static int i915_context_status(struct seq_file *m, void *unused)
2041 {
2042         struct drm_info_node *node = m->private;
2043         struct drm_device *dev = node->minor->dev;
2044         struct drm_i915_private *dev_priv = to_i915(dev);
2045         struct intel_engine_cs *engine;
2046         struct i915_gem_context *ctx;
2047         int ret;
2048
2049         ret = mutex_lock_interruptible(&dev->struct_mutex);
2050         if (ret)
2051                 return ret;
2052
2053         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2054                 seq_printf(m, "HW context %u ", ctx->hw_id);
2055                 if (IS_ERR(ctx->file_priv)) {
2056                         seq_puts(m, "(deleted) ");
2057                 } else if (ctx->file_priv) {
2058                         struct pid *pid = ctx->file_priv->file->pid;
2059                         struct task_struct *task;
2060
2061                         task = get_pid_task(pid, PIDTYPE_PID);
2062                         if (task) {
2063                                 seq_printf(m, "(%s [%d]) ",
2064                                            task->comm, task->pid);
2065                                 put_task_struct(task);
2066                         }
2067                 } else {
2068                         seq_puts(m, "(kernel) ");
2069                 }
2070
2071                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2072                 seq_putc(m, '\n');
2073
2074                 for_each_engine(engine, dev_priv) {
2075                         struct intel_context *ce = &ctx->engine[engine->id];
2076
2077                         seq_printf(m, "%s: ", engine->name);
2078                         seq_putc(m, ce->initialised ? 'I' : 'i');
2079                         if (ce->state)
2080                                 describe_obj(m, ce->state);
2081                         if (ce->ring)
2082                                 describe_ctx_ring(m, ce->ring);
2083                         seq_putc(m, '\n');
2084                 }
2085
2086                 seq_putc(m, '\n');
2087         }
2088
2089         mutex_unlock(&dev->struct_mutex);
2090
2091         return 0;
2092 }
2093
2094 static void i915_dump_lrc_obj(struct seq_file *m,
2095                               struct i915_gem_context *ctx,
2096                               struct intel_engine_cs *engine)
2097 {
2098         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2099         struct page *page;
2100         uint32_t *reg_state;
2101         int j;
2102         unsigned long ggtt_offset = 0;
2103
2104         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2105
2106         if (ctx_obj == NULL) {
2107                 seq_puts(m, "\tNot allocated\n");
2108                 return;
2109         }
2110
2111         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2112                 seq_puts(m, "\tNot bound in GGTT\n");
2113         else
2114                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2115
2116         if (i915_gem_object_get_pages(ctx_obj)) {
2117                 seq_puts(m, "\tFailed to get pages for context object\n");
2118                 return;
2119         }
2120
2121         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2122         if (!WARN_ON(page == NULL)) {
2123                 reg_state = kmap_atomic(page);
2124
2125                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2126                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2127                                    ggtt_offset + 4096 + (j * 4),
2128                                    reg_state[j], reg_state[j + 1],
2129                                    reg_state[j + 2], reg_state[j + 3]);
2130                 }
2131                 kunmap_atomic(reg_state);
2132         }
2133
2134         seq_putc(m, '\n');
2135 }
2136
2137 static int i915_dump_lrc(struct seq_file *m, void *unused)
2138 {
2139         struct drm_info_node *node = (struct drm_info_node *) m->private;
2140         struct drm_device *dev = node->minor->dev;
2141         struct drm_i915_private *dev_priv = to_i915(dev);
2142         struct intel_engine_cs *engine;
2143         struct i915_gem_context *ctx;
2144         int ret;
2145
2146         if (!i915.enable_execlists) {
2147                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2148                 return 0;
2149         }
2150
2151         ret = mutex_lock_interruptible(&dev->struct_mutex);
2152         if (ret)
2153                 return ret;
2154
2155         list_for_each_entry(ctx, &dev_priv->context_list, link)
2156                 for_each_engine(engine, dev_priv)
2157                         i915_dump_lrc_obj(m, ctx, engine);
2158
2159         mutex_unlock(&dev->struct_mutex);
2160
2161         return 0;
2162 }
2163
2164 static int i915_execlists(struct seq_file *m, void *data)
2165 {
2166         struct drm_info_node *node = (struct drm_info_node *)m->private;
2167         struct drm_device *dev = node->minor->dev;
2168         struct drm_i915_private *dev_priv = to_i915(dev);
2169         struct intel_engine_cs *engine;
2170         u32 status_pointer;
2171         u8 read_pointer;
2172         u8 write_pointer;
2173         u32 status;
2174         u32 ctx_id;
2175         struct list_head *cursor;
2176         int i, ret;
2177
2178         if (!i915.enable_execlists) {
2179                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2180                 return 0;
2181         }
2182
2183         ret = mutex_lock_interruptible(&dev->struct_mutex);
2184         if (ret)
2185                 return ret;
2186
2187         intel_runtime_pm_get(dev_priv);
2188
2189         for_each_engine(engine, dev_priv) {
2190                 struct drm_i915_gem_request *head_req = NULL;
2191                 int count = 0;
2192
2193                 seq_printf(m, "%s\n", engine->name);
2194
2195                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2196                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2197                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2198                            status, ctx_id);
2199
2200                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2201                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2202
2203                 read_pointer = engine->next_context_status_buffer;
2204                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2205                 if (read_pointer > write_pointer)
2206                         write_pointer += GEN8_CSB_ENTRIES;
2207                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2208                            read_pointer, write_pointer);
2209
2210                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2211                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2212                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2213
2214                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2215                                    i, status, ctx_id);
2216                 }
2217
2218                 spin_lock_bh(&engine->execlist_lock);
2219                 list_for_each(cursor, &engine->execlist_queue)
2220                         count++;
2221                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2222                                                     struct drm_i915_gem_request,
2223                                                     execlist_link);
2224                 spin_unlock_bh(&engine->execlist_lock);
2225
2226                 seq_printf(m, "\t%d requests in queue\n", count);
2227                 if (head_req) {
2228                         seq_printf(m, "\tHead request context: %u\n",
2229                                    head_req->ctx->hw_id);
2230                         seq_printf(m, "\tHead request tail: %u\n",
2231                                    head_req->tail);
2232                 }
2233
2234                 seq_putc(m, '\n');
2235         }
2236
2237         intel_runtime_pm_put(dev_priv);
2238         mutex_unlock(&dev->struct_mutex);
2239
2240         return 0;
2241 }
2242
2243 static const char *swizzle_string(unsigned swizzle)
2244 {
2245         switch (swizzle) {
2246         case I915_BIT_6_SWIZZLE_NONE:
2247                 return "none";
2248         case I915_BIT_6_SWIZZLE_9:
2249                 return "bit9";
2250         case I915_BIT_6_SWIZZLE_9_10:
2251                 return "bit9/bit10";
2252         case I915_BIT_6_SWIZZLE_9_11:
2253                 return "bit9/bit11";
2254         case I915_BIT_6_SWIZZLE_9_10_11:
2255                 return "bit9/bit10/bit11";
2256         case I915_BIT_6_SWIZZLE_9_17:
2257                 return "bit9/bit17";
2258         case I915_BIT_6_SWIZZLE_9_10_17:
2259                 return "bit9/bit10/bit17";
2260         case I915_BIT_6_SWIZZLE_UNKNOWN:
2261                 return "unknown";
2262         }
2263
2264         return "bug";
2265 }
2266
2267 static int i915_swizzle_info(struct seq_file *m, void *data)
2268 {
2269         struct drm_info_node *node = m->private;
2270         struct drm_device *dev = node->minor->dev;
2271         struct drm_i915_private *dev_priv = to_i915(dev);
2272         int ret;
2273
2274         ret = mutex_lock_interruptible(&dev->struct_mutex);
2275         if (ret)
2276                 return ret;
2277         intel_runtime_pm_get(dev_priv);
2278
2279         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2280                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2281         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2282                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2283
2284         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2285                 seq_printf(m, "DDC = 0x%08x\n",
2286                            I915_READ(DCC));
2287                 seq_printf(m, "DDC2 = 0x%08x\n",
2288                            I915_READ(DCC2));
2289                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2290                            I915_READ16(C0DRB3));
2291                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2292                            I915_READ16(C1DRB3));
2293         } else if (INTEL_INFO(dev)->gen >= 6) {
2294                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2295                            I915_READ(MAD_DIMM_C0));
2296                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2297                            I915_READ(MAD_DIMM_C1));
2298                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2299                            I915_READ(MAD_DIMM_C2));
2300                 seq_printf(m, "TILECTL = 0x%08x\n",
2301                            I915_READ(TILECTL));
2302                 if (INTEL_INFO(dev)->gen >= 8)
2303                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2304                                    I915_READ(GAMTARBMODE));
2305                 else
2306                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2307                                    I915_READ(ARB_MODE));
2308                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2309                            I915_READ(DISP_ARB_CTL));
2310         }
2311
2312         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2313                 seq_puts(m, "L-shaped memory detected\n");
2314
2315         intel_runtime_pm_put(dev_priv);
2316         mutex_unlock(&dev->struct_mutex);
2317
2318         return 0;
2319 }
2320
2321 static int per_file_ctx(int id, void *ptr, void *data)
2322 {
2323         struct i915_gem_context *ctx = ptr;
2324         struct seq_file *m = data;
2325         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2326
2327         if (!ppgtt) {
2328                 seq_printf(m, "  no ppgtt for context %d\n",
2329                            ctx->user_handle);
2330                 return 0;
2331         }
2332
2333         if (i915_gem_context_is_default(ctx))
2334                 seq_puts(m, "  default context:\n");
2335         else
2336                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2337         ppgtt->debug_dump(ppgtt, m);
2338
2339         return 0;
2340 }
2341
2342 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2343 {
2344         struct drm_i915_private *dev_priv = to_i915(dev);
2345         struct intel_engine_cs *engine;
2346         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2347         int i;
2348
2349         if (!ppgtt)
2350                 return;
2351
2352         for_each_engine(engine, dev_priv) {
2353                 seq_printf(m, "%s\n", engine->name);
2354                 for (i = 0; i < 4; i++) {
2355                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2356                         pdp <<= 32;
2357                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2358                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2359                 }
2360         }
2361 }
2362
2363 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2364 {
2365         struct drm_i915_private *dev_priv = to_i915(dev);
2366         struct intel_engine_cs *engine;
2367
2368         if (IS_GEN6(dev_priv))
2369                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2370
2371         for_each_engine(engine, dev_priv) {
2372                 seq_printf(m, "%s\n", engine->name);
2373                 if (IS_GEN7(dev_priv))
2374                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2375                                    I915_READ(RING_MODE_GEN7(engine)));
2376                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2377                            I915_READ(RING_PP_DIR_BASE(engine)));
2378                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2379                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2380                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2381                            I915_READ(RING_PP_DIR_DCLV(engine)));
2382         }
2383         if (dev_priv->mm.aliasing_ppgtt) {
2384                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2385
2386                 seq_puts(m, "aliasing PPGTT:\n");
2387                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2388
2389                 ppgtt->debug_dump(ppgtt, m);
2390         }
2391
2392         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2393 }
2394
2395 static int i915_ppgtt_info(struct seq_file *m, void *data)
2396 {
2397         struct drm_info_node *node = m->private;
2398         struct drm_device *dev = node->minor->dev;
2399         struct drm_i915_private *dev_priv = to_i915(dev);
2400         struct drm_file *file;
2401
2402         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2403         if (ret)
2404                 return ret;
2405         intel_runtime_pm_get(dev_priv);
2406
2407         if (INTEL_INFO(dev)->gen >= 8)
2408                 gen8_ppgtt_info(m, dev);
2409         else if (INTEL_INFO(dev)->gen >= 6)
2410                 gen6_ppgtt_info(m, dev);
2411
2412         mutex_lock(&dev->filelist_mutex);
2413         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2414                 struct drm_i915_file_private *file_priv = file->driver_priv;
2415                 struct task_struct *task;
2416
2417                 task = get_pid_task(file->pid, PIDTYPE_PID);
2418                 if (!task) {
2419                         ret = -ESRCH;
2420                         goto out_unlock;
2421                 }
2422                 seq_printf(m, "\nproc: %s\n", task->comm);
2423                 put_task_struct(task);
2424                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2425                              (void *)(unsigned long)m);
2426         }
2427 out_unlock:
2428         mutex_unlock(&dev->filelist_mutex);
2429
2430         intel_runtime_pm_put(dev_priv);
2431         mutex_unlock(&dev->struct_mutex);
2432
2433         return ret;
2434 }
2435
2436 static int count_irq_waiters(struct drm_i915_private *i915)
2437 {
2438         struct intel_engine_cs *engine;
2439         int count = 0;
2440
2441         for_each_engine(engine, i915)
2442                 count += intel_engine_has_waiter(engine);
2443
2444         return count;
2445 }
2446
2447 static int i915_rps_boost_info(struct seq_file *m, void *data)
2448 {
2449         struct drm_info_node *node = m->private;
2450         struct drm_device *dev = node->minor->dev;
2451         struct drm_i915_private *dev_priv = to_i915(dev);
2452         struct drm_file *file;
2453
2454         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2455         seq_printf(m, "GPU busy? %s [%x]\n",
2456                    yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2457         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2458         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2459                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2460                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2461                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2462                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2463                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2464
2465         mutex_lock(&dev->filelist_mutex);
2466         spin_lock(&dev_priv->rps.client_lock);
2467         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2468                 struct drm_i915_file_private *file_priv = file->driver_priv;
2469                 struct task_struct *task;
2470
2471                 rcu_read_lock();
2472                 task = pid_task(file->pid, PIDTYPE_PID);
2473                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2474                            task ? task->comm : "<unknown>",
2475                            task ? task->pid : -1,
2476                            file_priv->rps.boosts,
2477                            list_empty(&file_priv->rps.link) ? "" : ", active");
2478                 rcu_read_unlock();
2479         }
2480         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2481         spin_unlock(&dev_priv->rps.client_lock);
2482         mutex_unlock(&dev->filelist_mutex);
2483
2484         return 0;
2485 }
2486
2487 static int i915_llc(struct seq_file *m, void *data)
2488 {
2489         struct drm_info_node *node = m->private;
2490         struct drm_device *dev = node->minor->dev;
2491         struct drm_i915_private *dev_priv = to_i915(dev);
2492         const bool edram = INTEL_GEN(dev_priv) > 8;
2493
2494         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2495         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2496                    intel_uncore_edram_size(dev_priv)/1024/1024);
2497
2498         return 0;
2499 }
2500
2501 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2502 {
2503         struct drm_info_node *node = m->private;
2504         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
2505         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2506         u32 tmp, i;
2507
2508         if (!HAS_GUC_UCODE(dev_priv))
2509                 return 0;
2510
2511         seq_printf(m, "GuC firmware status:\n");
2512         seq_printf(m, "\tpath: %s\n",
2513                 guc_fw->guc_fw_path);
2514         seq_printf(m, "\tfetch: %s\n",
2515                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2516         seq_printf(m, "\tload: %s\n",
2517                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2518         seq_printf(m, "\tversion wanted: %d.%d\n",
2519                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2520         seq_printf(m, "\tversion found: %d.%d\n",
2521                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2522         seq_printf(m, "\theader: offset is %d; size = %d\n",
2523                 guc_fw->header_offset, guc_fw->header_size);
2524         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2525                 guc_fw->ucode_offset, guc_fw->ucode_size);
2526         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2527                 guc_fw->rsa_offset, guc_fw->rsa_size);
2528
2529         tmp = I915_READ(GUC_STATUS);
2530
2531         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2532         seq_printf(m, "\tBootrom status = 0x%x\n",
2533                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2534         seq_printf(m, "\tuKernel status = 0x%x\n",
2535                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2536         seq_printf(m, "\tMIA Core status = 0x%x\n",
2537                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2538         seq_puts(m, "\nScratch registers:\n");
2539         for (i = 0; i < 16; i++)
2540                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2541
2542         return 0;
2543 }
2544
2545 static void i915_guc_client_info(struct seq_file *m,
2546                                  struct drm_i915_private *dev_priv,
2547                                  struct i915_guc_client *client)
2548 {
2549         struct intel_engine_cs *engine;
2550         uint64_t tot = 0;
2551
2552         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2553                 client->priority, client->ctx_index, client->proc_desc_offset);
2554         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2555                 client->doorbell_id, client->doorbell_offset, client->cookie);
2556         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2557                 client->wq_size, client->wq_offset, client->wq_tail);
2558
2559         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2560         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2561         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2562         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2563
2564         for_each_engine(engine, dev_priv) {
2565                 seq_printf(m, "\tSubmissions: %llu %s\n",
2566                                 client->submissions[engine->id],
2567                                 engine->name);
2568                 tot += client->submissions[engine->id];
2569         }
2570         seq_printf(m, "\tTotal: %llu\n", tot);
2571 }
2572
2573 static int i915_guc_info(struct seq_file *m, void *data)
2574 {
2575         struct drm_info_node *node = m->private;
2576         struct drm_device *dev = node->minor->dev;
2577         struct drm_i915_private *dev_priv = to_i915(dev);
2578         struct intel_guc guc;
2579         struct i915_guc_client client = {};
2580         struct intel_engine_cs *engine;
2581         u64 total = 0;
2582
2583         if (!HAS_GUC_SCHED(dev_priv))
2584                 return 0;
2585
2586         if (mutex_lock_interruptible(&dev->struct_mutex))
2587                 return 0;
2588
2589         /* Take a local copy of the GuC data, so we can dump it at leisure */
2590         guc = dev_priv->guc;
2591         if (guc.execbuf_client)
2592                 client = *guc.execbuf_client;
2593
2594         mutex_unlock(&dev->struct_mutex);
2595
2596         seq_printf(m, "Doorbell map:\n");
2597         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2598         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2599
2600         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2601         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2602         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2603         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2604         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2605
2606         seq_printf(m, "\nGuC submissions:\n");
2607         for_each_engine(engine, dev_priv) {
2608                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2609                         engine->name, guc.submissions[engine->id],
2610                         guc.last_seqno[engine->id]);
2611                 total += guc.submissions[engine->id];
2612         }
2613         seq_printf(m, "\t%s: %llu\n", "Total", total);
2614
2615         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2616         i915_guc_client_info(m, dev_priv, &client);
2617
2618         /* Add more as required ... */
2619
2620         return 0;
2621 }
2622
2623 static int i915_guc_log_dump(struct seq_file *m, void *data)
2624 {
2625         struct drm_info_node *node = m->private;
2626         struct drm_device *dev = node->minor->dev;
2627         struct drm_i915_private *dev_priv = to_i915(dev);
2628         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2629         u32 *log;
2630         int i = 0, pg;
2631
2632         if (!log_obj)
2633                 return 0;
2634
2635         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2636                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2637
2638                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2639                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2640                                    *(log + i), *(log + i + 1),
2641                                    *(log + i + 2), *(log + i + 3));
2642
2643                 kunmap_atomic(log);
2644         }
2645
2646         seq_putc(m, '\n');
2647
2648         return 0;
2649 }
2650
2651 static int i915_edp_psr_status(struct seq_file *m, void *data)
2652 {
2653         struct drm_info_node *node = m->private;
2654         struct drm_device *dev = node->minor->dev;
2655         struct drm_i915_private *dev_priv = to_i915(dev);
2656         u32 psrperf = 0;
2657         u32 stat[3];
2658         enum pipe pipe;
2659         bool enabled = false;
2660
2661         if (!HAS_PSR(dev)) {
2662                 seq_puts(m, "PSR not supported\n");
2663                 return 0;
2664         }
2665
2666         intel_runtime_pm_get(dev_priv);
2667
2668         mutex_lock(&dev_priv->psr.lock);
2669         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2670         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2671         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2672         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2673         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2674                    dev_priv->psr.busy_frontbuffer_bits);
2675         seq_printf(m, "Re-enable work scheduled: %s\n",
2676                    yesno(work_busy(&dev_priv->psr.work.work)));
2677
2678         if (HAS_DDI(dev))
2679                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2680         else {
2681                 for_each_pipe(dev_priv, pipe) {
2682                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2683                                 VLV_EDP_PSR_CURR_STATE_MASK;
2684                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2685                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2686                                 enabled = true;
2687                 }
2688         }
2689
2690         seq_printf(m, "Main link in standby mode: %s\n",
2691                    yesno(dev_priv->psr.link_standby));
2692
2693         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2694
2695         if (!HAS_DDI(dev))
2696                 for_each_pipe(dev_priv, pipe) {
2697                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2698                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2699                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2700                 }
2701         seq_puts(m, "\n");
2702
2703         /*
2704          * VLV/CHV PSR has no kind of performance counter
2705          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2706          */
2707         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2708                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2709                         EDP_PSR_PERF_CNT_MASK;
2710
2711                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2712         }
2713         mutex_unlock(&dev_priv->psr.lock);
2714
2715         intel_runtime_pm_put(dev_priv);
2716         return 0;
2717 }
2718
2719 static int i915_sink_crc(struct seq_file *m, void *data)
2720 {
2721         struct drm_info_node *node = m->private;
2722         struct drm_device *dev = node->minor->dev;
2723         struct intel_connector *connector;
2724         struct intel_dp *intel_dp = NULL;
2725         int ret;
2726         u8 crc[6];
2727
2728         drm_modeset_lock_all(dev);
2729         for_each_intel_connector(dev, connector) {
2730                 struct drm_crtc *crtc;
2731
2732                 if (!connector->base.state->best_encoder)
2733                         continue;
2734
2735                 crtc = connector->base.state->crtc;
2736                 if (!crtc->state->active)
2737                         continue;
2738
2739                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2740                         continue;
2741
2742                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2743
2744                 ret = intel_dp_sink_crc(intel_dp, crc);
2745                 if (ret)
2746                         goto out;
2747
2748                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2749                            crc[0], crc[1], crc[2],
2750                            crc[3], crc[4], crc[5]);
2751                 goto out;
2752         }
2753         ret = -ENODEV;
2754 out:
2755         drm_modeset_unlock_all(dev);
2756         return ret;
2757 }
2758
2759 static int i915_energy_uJ(struct seq_file *m, void *data)
2760 {
2761         struct drm_info_node *node = m->private;
2762         struct drm_device *dev = node->minor->dev;
2763         struct drm_i915_private *dev_priv = to_i915(dev);
2764         u64 power;
2765         u32 units;
2766
2767         if (INTEL_INFO(dev)->gen < 6)
2768                 return -ENODEV;
2769
2770         intel_runtime_pm_get(dev_priv);
2771
2772         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2773         power = (power & 0x1f00) >> 8;
2774         units = 1000000 / (1 << power); /* convert to uJ */
2775         power = I915_READ(MCH_SECP_NRG_STTS);
2776         power *= units;
2777
2778         intel_runtime_pm_put(dev_priv);
2779
2780         seq_printf(m, "%llu", (long long unsigned)power);
2781
2782         return 0;
2783 }
2784
2785 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2786 {
2787         struct drm_info_node *node = m->private;
2788         struct drm_device *dev = node->minor->dev;
2789         struct drm_i915_private *dev_priv = to_i915(dev);
2790
2791         if (!HAS_RUNTIME_PM(dev_priv))
2792                 seq_puts(m, "Runtime power management not supported\n");
2793
2794         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2795         seq_printf(m, "IRQs disabled: %s\n",
2796                    yesno(!intel_irqs_enabled(dev_priv)));
2797 #ifdef CONFIG_PM
2798         seq_printf(m, "Usage count: %d\n",
2799                    atomic_read(&dev->dev->power.usage_count));
2800 #else
2801         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2802 #endif
2803         seq_printf(m, "PCI device power state: %s [%d]\n",
2804                    pci_power_name(dev_priv->drm.pdev->current_state),
2805                    dev_priv->drm.pdev->current_state);
2806
2807         return 0;
2808 }
2809
2810 static int i915_power_domain_info(struct seq_file *m, void *unused)
2811 {
2812         struct drm_info_node *node = m->private;
2813         struct drm_device *dev = node->minor->dev;
2814         struct drm_i915_private *dev_priv = to_i915(dev);
2815         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2816         int i;
2817
2818         mutex_lock(&power_domains->lock);
2819
2820         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2821         for (i = 0; i < power_domains->power_well_count; i++) {
2822                 struct i915_power_well *power_well;
2823                 enum intel_display_power_domain power_domain;
2824
2825                 power_well = &power_domains->power_wells[i];
2826                 seq_printf(m, "%-25s %d\n", power_well->name,
2827                            power_well->count);
2828
2829                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2830                      power_domain++) {
2831                         if (!(BIT(power_domain) & power_well->domains))
2832                                 continue;
2833
2834                         seq_printf(m, "  %-23s %d\n",
2835                                  intel_display_power_domain_str(power_domain),
2836                                  power_domains->domain_use_count[power_domain]);
2837                 }
2838         }
2839
2840         mutex_unlock(&power_domains->lock);
2841
2842         return 0;
2843 }
2844
2845 static int i915_dmc_info(struct seq_file *m, void *unused)
2846 {
2847         struct drm_info_node *node = m->private;
2848         struct drm_device *dev = node->minor->dev;
2849         struct drm_i915_private *dev_priv = to_i915(dev);
2850         struct intel_csr *csr;
2851
2852         if (!HAS_CSR(dev)) {
2853                 seq_puts(m, "not supported\n");
2854                 return 0;
2855         }
2856
2857         csr = &dev_priv->csr;
2858
2859         intel_runtime_pm_get(dev_priv);
2860
2861         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2862         seq_printf(m, "path: %s\n", csr->fw_path);
2863
2864         if (!csr->dmc_payload)
2865                 goto out;
2866
2867         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2868                    CSR_VERSION_MINOR(csr->version));
2869
2870         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2871                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2872                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2873                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2874                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2875         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2876                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2877                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2878         }
2879
2880 out:
2881         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2882         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2883         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2884
2885         intel_runtime_pm_put(dev_priv);
2886
2887         return 0;
2888 }
2889
2890 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2891                                  struct drm_display_mode *mode)
2892 {
2893         int i;
2894
2895         for (i = 0; i < tabs; i++)
2896                 seq_putc(m, '\t');
2897
2898         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2899                    mode->base.id, mode->name,
2900                    mode->vrefresh, mode->clock,
2901                    mode->hdisplay, mode->hsync_start,
2902                    mode->hsync_end, mode->htotal,
2903                    mode->vdisplay, mode->vsync_start,
2904                    mode->vsync_end, mode->vtotal,
2905                    mode->type, mode->flags);
2906 }
2907
2908 static void intel_encoder_info(struct seq_file *m,
2909                                struct intel_crtc *intel_crtc,
2910                                struct intel_encoder *intel_encoder)
2911 {
2912         struct drm_info_node *node = m->private;
2913         struct drm_device *dev = node->minor->dev;
2914         struct drm_crtc *crtc = &intel_crtc->base;
2915         struct intel_connector *intel_connector;
2916         struct drm_encoder *encoder;
2917
2918         encoder = &intel_encoder->base;
2919         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2920                    encoder->base.id, encoder->name);
2921         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2922                 struct drm_connector *connector = &intel_connector->base;
2923                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2924                            connector->base.id,
2925                            connector->name,
2926                            drm_get_connector_status_name(connector->status));
2927                 if (connector->status == connector_status_connected) {
2928                         struct drm_display_mode *mode = &crtc->mode;
2929                         seq_printf(m, ", mode:\n");
2930                         intel_seq_print_mode(m, 2, mode);
2931                 } else {
2932                         seq_putc(m, '\n');
2933                 }
2934         }
2935 }
2936
2937 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2938 {
2939         struct drm_info_node *node = m->private;
2940         struct drm_device *dev = node->minor->dev;
2941         struct drm_crtc *crtc = &intel_crtc->base;
2942         struct intel_encoder *intel_encoder;
2943         struct drm_plane_state *plane_state = crtc->primary->state;
2944         struct drm_framebuffer *fb = plane_state->fb;
2945
2946         if (fb)
2947                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2948                            fb->base.id, plane_state->src_x >> 16,
2949                            plane_state->src_y >> 16, fb->width, fb->height);
2950         else
2951                 seq_puts(m, "\tprimary plane disabled\n");
2952         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2953                 intel_encoder_info(m, intel_crtc, intel_encoder);
2954 }
2955
2956 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2957 {
2958         struct drm_display_mode *mode = panel->fixed_mode;
2959
2960         seq_printf(m, "\tfixed mode:\n");
2961         intel_seq_print_mode(m, 2, mode);
2962 }
2963
2964 static void intel_dp_info(struct seq_file *m,
2965                           struct intel_connector *intel_connector)
2966 {
2967         struct intel_encoder *intel_encoder = intel_connector->encoder;
2968         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2969
2970         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2971         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2972         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2973                 intel_panel_info(m, &intel_connector->panel);
2974 }
2975
2976 static void intel_hdmi_info(struct seq_file *m,
2977                             struct intel_connector *intel_connector)
2978 {
2979         struct intel_encoder *intel_encoder = intel_connector->encoder;
2980         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2981
2982         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2983 }
2984
2985 static void intel_lvds_info(struct seq_file *m,
2986                             struct intel_connector *intel_connector)
2987 {
2988         intel_panel_info(m, &intel_connector->panel);
2989 }
2990
2991 static void intel_connector_info(struct seq_file *m,
2992                                  struct drm_connector *connector)
2993 {
2994         struct intel_connector *intel_connector = to_intel_connector(connector);
2995         struct intel_encoder *intel_encoder = intel_connector->encoder;
2996         struct drm_display_mode *mode;
2997
2998         seq_printf(m, "connector %d: type %s, status: %s\n",
2999                    connector->base.id, connector->name,
3000                    drm_get_connector_status_name(connector->status));
3001         if (connector->status == connector_status_connected) {
3002                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3003                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3004                            connector->display_info.width_mm,
3005                            connector->display_info.height_mm);
3006                 seq_printf(m, "\tsubpixel order: %s\n",
3007                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3008                 seq_printf(m, "\tCEA rev: %d\n",
3009                            connector->display_info.cea_rev);
3010         }
3011
3012         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3013                 return;
3014
3015         switch (connector->connector_type) {
3016         case DRM_MODE_CONNECTOR_DisplayPort:
3017         case DRM_MODE_CONNECTOR_eDP:
3018                 intel_dp_info(m, intel_connector);
3019                 break;
3020         case DRM_MODE_CONNECTOR_LVDS:
3021                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3022                         intel_lvds_info(m, intel_connector);
3023                 break;
3024         case DRM_MODE_CONNECTOR_HDMIA:
3025                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3026                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3027                         intel_hdmi_info(m, intel_connector);
3028                 break;
3029         default:
3030                 break;
3031         }
3032
3033         seq_printf(m, "\tmodes:\n");
3034         list_for_each_entry(mode, &connector->modes, head)
3035                 intel_seq_print_mode(m, 2, mode);
3036 }
3037
3038 static bool cursor_active(struct drm_device *dev, int pipe)
3039 {
3040         struct drm_i915_private *dev_priv = to_i915(dev);
3041         u32 state;
3042
3043         if (IS_845G(dev) || IS_I865G(dev))
3044                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3045         else
3046                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3047
3048         return state;
3049 }
3050
3051 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3052 {
3053         struct drm_i915_private *dev_priv = to_i915(dev);
3054         u32 pos;
3055
3056         pos = I915_READ(CURPOS(pipe));
3057
3058         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3059         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3060                 *x = -*x;
3061
3062         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3063         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3064                 *y = -*y;
3065
3066         return cursor_active(dev, pipe);
3067 }
3068
3069 static const char *plane_type(enum drm_plane_type type)
3070 {
3071         switch (type) {
3072         case DRM_PLANE_TYPE_OVERLAY:
3073                 return "OVL";
3074         case DRM_PLANE_TYPE_PRIMARY:
3075                 return "PRI";
3076         case DRM_PLANE_TYPE_CURSOR:
3077                 return "CUR";
3078         /*
3079          * Deliberately omitting default: to generate compiler warnings
3080          * when a new drm_plane_type gets added.
3081          */
3082         }
3083
3084         return "unknown";
3085 }
3086
3087 static const char *plane_rotation(unsigned int rotation)
3088 {
3089         static char buf[48];
3090         /*
3091          * According to doc only one DRM_ROTATE_ is allowed but this
3092          * will print them all to visualize if the values are misused
3093          */
3094         snprintf(buf, sizeof(buf),
3095                  "%s%s%s%s%s%s(0x%08x)",
3096                  (rotation & DRM_ROTATE_0) ? "0 " : "",
3097                  (rotation & DRM_ROTATE_90) ? "90 " : "",
3098                  (rotation & DRM_ROTATE_180) ? "180 " : "",
3099                  (rotation & DRM_ROTATE_270) ? "270 " : "",
3100                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3101                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3102                  rotation);
3103
3104         return buf;
3105 }
3106
3107 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3108 {
3109         struct drm_info_node *node = m->private;
3110         struct drm_device *dev = node->minor->dev;
3111         struct intel_plane *intel_plane;
3112
3113         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3114                 struct drm_plane_state *state;
3115                 struct drm_plane *plane = &intel_plane->base;
3116
3117                 if (!plane->state) {
3118                         seq_puts(m, "plane->state is NULL!\n");
3119                         continue;
3120                 }
3121
3122                 state = plane->state;
3123
3124                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3125                            plane->base.id,
3126                            plane_type(intel_plane->base.type),
3127                            state->crtc_x, state->crtc_y,
3128                            state->crtc_w, state->crtc_h,
3129                            (state->src_x >> 16),
3130                            ((state->src_x & 0xffff) * 15625) >> 10,
3131                            (state->src_y >> 16),
3132                            ((state->src_y & 0xffff) * 15625) >> 10,
3133                            (state->src_w >> 16),
3134                            ((state->src_w & 0xffff) * 15625) >> 10,
3135                            (state->src_h >> 16),
3136                            ((state->src_h & 0xffff) * 15625) >> 10,
3137                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3138                            plane_rotation(state->rotation));
3139         }
3140 }
3141
3142 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3143 {
3144         struct intel_crtc_state *pipe_config;
3145         int num_scalers = intel_crtc->num_scalers;
3146         int i;
3147
3148         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3149
3150         /* Not all platformas have a scaler */
3151         if (num_scalers) {
3152                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3153                            num_scalers,
3154                            pipe_config->scaler_state.scaler_users,
3155                            pipe_config->scaler_state.scaler_id);
3156
3157                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3158                         struct intel_scaler *sc =
3159                                         &pipe_config->scaler_state.scalers[i];
3160
3161                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3162                                    i, yesno(sc->in_use), sc->mode);
3163                 }
3164                 seq_puts(m, "\n");
3165         } else {
3166                 seq_puts(m, "\tNo scalers available on this platform\n");
3167         }
3168 }
3169
3170 static int i915_display_info(struct seq_file *m, void *unused)
3171 {
3172         struct drm_info_node *node = m->private;
3173         struct drm_device *dev = node->minor->dev;
3174         struct drm_i915_private *dev_priv = to_i915(dev);
3175         struct intel_crtc *crtc;
3176         struct drm_connector *connector;
3177
3178         intel_runtime_pm_get(dev_priv);
3179         drm_modeset_lock_all(dev);
3180         seq_printf(m, "CRTC info\n");
3181         seq_printf(m, "---------\n");
3182         for_each_intel_crtc(dev, crtc) {
3183                 bool active;
3184                 struct intel_crtc_state *pipe_config;
3185                 int x, y;
3186
3187                 pipe_config = to_intel_crtc_state(crtc->base.state);
3188
3189                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3190                            crtc->base.base.id, pipe_name(crtc->pipe),
3191                            yesno(pipe_config->base.active),
3192                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3193                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3194
3195                 if (pipe_config->base.active) {
3196                         intel_crtc_info(m, crtc);
3197
3198                         active = cursor_position(dev, crtc->pipe, &x, &y);
3199                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3200                                    yesno(crtc->cursor_base),
3201                                    x, y, crtc->base.cursor->state->crtc_w,
3202                                    crtc->base.cursor->state->crtc_h,
3203                                    crtc->cursor_addr, yesno(active));
3204                         intel_scaler_info(m, crtc);
3205                         intel_plane_info(m, crtc);
3206                 }
3207
3208                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3209                            yesno(!crtc->cpu_fifo_underrun_disabled),
3210                            yesno(!crtc->pch_fifo_underrun_disabled));
3211         }
3212
3213         seq_printf(m, "\n");
3214         seq_printf(m, "Connector info\n");
3215         seq_printf(m, "--------------\n");
3216         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3217                 intel_connector_info(m, connector);
3218         }
3219         drm_modeset_unlock_all(dev);
3220         intel_runtime_pm_put(dev_priv);
3221
3222         return 0;
3223 }
3224
3225 static int i915_semaphore_status(struct seq_file *m, void *unused)
3226 {
3227         struct drm_info_node *node = (struct drm_info_node *) m->private;
3228         struct drm_device *dev = node->minor->dev;
3229         struct drm_i915_private *dev_priv = to_i915(dev);
3230         struct intel_engine_cs *engine;
3231         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3232         enum intel_engine_id id;
3233         int j, ret;
3234
3235         if (!i915.semaphores) {
3236                 seq_puts(m, "Semaphores are disabled\n");
3237                 return 0;
3238         }
3239
3240         ret = mutex_lock_interruptible(&dev->struct_mutex);
3241         if (ret)
3242                 return ret;
3243         intel_runtime_pm_get(dev_priv);
3244
3245         if (IS_BROADWELL(dev)) {
3246                 struct page *page;
3247                 uint64_t *seqno;
3248
3249                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3250
3251                 seqno = (uint64_t *)kmap_atomic(page);
3252                 for_each_engine_id(engine, dev_priv, id) {
3253                         uint64_t offset;
3254
3255                         seq_printf(m, "%s\n", engine->name);
3256
3257                         seq_puts(m, "  Last signal:");
3258                         for (j = 0; j < num_rings; j++) {
3259                                 offset = id * I915_NUM_ENGINES + j;
3260                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3261                                            seqno[offset], offset * 8);
3262                         }
3263                         seq_putc(m, '\n');
3264
3265                         seq_puts(m, "  Last wait:  ");
3266                         for (j = 0; j < num_rings; j++) {
3267                                 offset = id + (j * I915_NUM_ENGINES);
3268                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3269                                            seqno[offset], offset * 8);
3270                         }
3271                         seq_putc(m, '\n');
3272
3273                 }
3274                 kunmap_atomic(seqno);
3275         } else {
3276                 seq_puts(m, "  Last signal:");
3277                 for_each_engine(engine, dev_priv)
3278                         for (j = 0; j < num_rings; j++)
3279                                 seq_printf(m, "0x%08x\n",
3280                                            I915_READ(engine->semaphore.mbox.signal[j]));
3281                 seq_putc(m, '\n');
3282         }
3283
3284         seq_puts(m, "\nSync seqno:\n");
3285         for_each_engine(engine, dev_priv) {
3286                 for (j = 0; j < num_rings; j++)
3287                         seq_printf(m, "  0x%08x ",
3288                                    engine->semaphore.sync_seqno[j]);
3289                 seq_putc(m, '\n');
3290         }
3291         seq_putc(m, '\n');
3292
3293         intel_runtime_pm_put(dev_priv);
3294         mutex_unlock(&dev->struct_mutex);
3295         return 0;
3296 }
3297
3298 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3299 {
3300         struct drm_info_node *node = (struct drm_info_node *) m->private;
3301         struct drm_device *dev = node->minor->dev;
3302         struct drm_i915_private *dev_priv = to_i915(dev);
3303         int i;
3304
3305         drm_modeset_lock_all(dev);
3306         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3307                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3308
3309                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3310                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3311                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3312                 seq_printf(m, " tracked hardware state:\n");
3313                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3314                 seq_printf(m, " dpll_md: 0x%08x\n",
3315                            pll->config.hw_state.dpll_md);
3316                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3317                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3318                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3319         }
3320         drm_modeset_unlock_all(dev);
3321
3322         return 0;
3323 }
3324
3325 static int i915_wa_registers(struct seq_file *m, void *unused)
3326 {
3327         int i;
3328         int ret;
3329         struct intel_engine_cs *engine;
3330         struct drm_info_node *node = (struct drm_info_node *) m->private;
3331         struct drm_device *dev = node->minor->dev;
3332         struct drm_i915_private *dev_priv = to_i915(dev);
3333         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3334         enum intel_engine_id id;
3335
3336         ret = mutex_lock_interruptible(&dev->struct_mutex);
3337         if (ret)
3338                 return ret;
3339
3340         intel_runtime_pm_get(dev_priv);
3341
3342         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3343         for_each_engine_id(engine, dev_priv, id)
3344                 seq_printf(m, "HW whitelist count for %s: %d\n",
3345                            engine->name, workarounds->hw_whitelist_count[id]);
3346         for (i = 0; i < workarounds->count; ++i) {
3347                 i915_reg_t addr;
3348                 u32 mask, value, read;
3349                 bool ok;
3350
3351                 addr = workarounds->reg[i].addr;
3352                 mask = workarounds->reg[i].mask;
3353                 value = workarounds->reg[i].value;
3354                 read = I915_READ(addr);
3355                 ok = (value & mask) == (read & mask);
3356                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3357                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3358         }
3359
3360         intel_runtime_pm_put(dev_priv);
3361         mutex_unlock(&dev->struct_mutex);
3362
3363         return 0;
3364 }
3365
3366 static int i915_ddb_info(struct seq_file *m, void *unused)
3367 {
3368         struct drm_info_node *node = m->private;
3369         struct drm_device *dev = node->minor->dev;
3370         struct drm_i915_private *dev_priv = to_i915(dev);
3371         struct skl_ddb_allocation *ddb;
3372         struct skl_ddb_entry *entry;
3373         enum pipe pipe;
3374         int plane;
3375
3376         if (INTEL_INFO(dev)->gen < 9)
3377                 return 0;
3378
3379         drm_modeset_lock_all(dev);
3380
3381         ddb = &dev_priv->wm.skl_hw.ddb;
3382
3383         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3384
3385         for_each_pipe(dev_priv, pipe) {
3386                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3387
3388                 for_each_plane(dev_priv, pipe, plane) {
3389                         entry = &ddb->plane[pipe][plane];
3390                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3391                                    entry->start, entry->end,
3392                                    skl_ddb_entry_size(entry));
3393                 }
3394
3395                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3396                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3397                            entry->end, skl_ddb_entry_size(entry));
3398         }
3399
3400         drm_modeset_unlock_all(dev);
3401
3402         return 0;
3403 }
3404
3405 static void drrs_status_per_crtc(struct seq_file *m,
3406                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3407 {
3408         struct drm_i915_private *dev_priv = to_i915(dev);
3409         struct i915_drrs *drrs = &dev_priv->drrs;
3410         int vrefresh = 0;
3411         struct drm_connector *connector;
3412
3413         drm_for_each_connector(connector, dev) {
3414                 if (connector->state->crtc != &intel_crtc->base)
3415                         continue;
3416
3417                 seq_printf(m, "%s:\n", connector->name);
3418         }
3419
3420         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3421                 seq_puts(m, "\tVBT: DRRS_type: Static");
3422         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3423                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3424         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3425                 seq_puts(m, "\tVBT: DRRS_type: None");
3426         else
3427                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3428
3429         seq_puts(m, "\n\n");
3430
3431         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3432                 struct intel_panel *panel;
3433
3434                 mutex_lock(&drrs->mutex);
3435                 /* DRRS Supported */
3436                 seq_puts(m, "\tDRRS Supported: Yes\n");
3437
3438                 /* disable_drrs() will make drrs->dp NULL */
3439                 if (!drrs->dp) {
3440                         seq_puts(m, "Idleness DRRS: Disabled");
3441                         mutex_unlock(&drrs->mutex);
3442                         return;
3443                 }
3444
3445                 panel = &drrs->dp->attached_connector->panel;
3446                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3447                                         drrs->busy_frontbuffer_bits);
3448
3449                 seq_puts(m, "\n\t\t");
3450                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3451                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3452                         vrefresh = panel->fixed_mode->vrefresh;
3453                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3454                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3455                         vrefresh = panel->downclock_mode->vrefresh;
3456                 } else {
3457                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3458                                                 drrs->refresh_rate_type);
3459                         mutex_unlock(&drrs->mutex);
3460                         return;
3461                 }
3462                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3463
3464                 seq_puts(m, "\n\t\t");
3465                 mutex_unlock(&drrs->mutex);
3466         } else {
3467                 /* DRRS not supported. Print the VBT parameter*/
3468                 seq_puts(m, "\tDRRS Supported : No");
3469         }
3470         seq_puts(m, "\n");
3471 }
3472
3473 static int i915_drrs_status(struct seq_file *m, void *unused)
3474 {
3475         struct drm_info_node *node = m->private;
3476         struct drm_device *dev = node->minor->dev;
3477         struct intel_crtc *intel_crtc;
3478         int active_crtc_cnt = 0;
3479
3480         drm_modeset_lock_all(dev);
3481         for_each_intel_crtc(dev, intel_crtc) {
3482                 if (intel_crtc->base.state->active) {
3483                         active_crtc_cnt++;
3484                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3485
3486                         drrs_status_per_crtc(m, dev, intel_crtc);
3487                 }
3488         }
3489         drm_modeset_unlock_all(dev);
3490
3491         if (!active_crtc_cnt)
3492                 seq_puts(m, "No active crtc found\n");
3493
3494         return 0;
3495 }
3496
3497 struct pipe_crc_info {
3498         const char *name;
3499         struct drm_device *dev;
3500         enum pipe pipe;
3501 };
3502
3503 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3504 {
3505         struct drm_info_node *node = (struct drm_info_node *) m->private;
3506         struct drm_device *dev = node->minor->dev;
3507         struct intel_encoder *intel_encoder;
3508         struct intel_digital_port *intel_dig_port;
3509         struct drm_connector *connector;
3510
3511         drm_modeset_lock_all(dev);
3512         drm_for_each_connector(connector, dev) {
3513                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3514                         continue;
3515
3516                 intel_encoder = intel_attached_encoder(connector);
3517                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3518                         continue;
3519
3520                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3521                 if (!intel_dig_port->dp.can_mst)
3522                         continue;
3523
3524                 seq_printf(m, "MST Source Port %c\n",
3525                            port_name(intel_dig_port->port));
3526                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3527         }
3528         drm_modeset_unlock_all(dev);
3529         return 0;
3530 }
3531
3532 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3533 {
3534         struct pipe_crc_info *info = inode->i_private;
3535         struct drm_i915_private *dev_priv = to_i915(info->dev);
3536         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3537
3538         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3539                 return -ENODEV;
3540
3541         spin_lock_irq(&pipe_crc->lock);
3542
3543         if (pipe_crc->opened) {
3544                 spin_unlock_irq(&pipe_crc->lock);
3545                 return -EBUSY; /* already open */
3546         }
3547
3548         pipe_crc->opened = true;
3549         filep->private_data = inode->i_private;
3550
3551         spin_unlock_irq(&pipe_crc->lock);
3552
3553         return 0;
3554 }
3555
3556 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3557 {
3558         struct pipe_crc_info *info = inode->i_private;
3559         struct drm_i915_private *dev_priv = to_i915(info->dev);
3560         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3561
3562         spin_lock_irq(&pipe_crc->lock);
3563         pipe_crc->opened = false;
3564         spin_unlock_irq(&pipe_crc->lock);
3565
3566         return 0;
3567 }
3568
3569 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3570 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3571 /* account for \'0' */
3572 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3573
3574 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3575 {
3576         assert_spin_locked(&pipe_crc->lock);
3577         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3578                         INTEL_PIPE_CRC_ENTRIES_NR);
3579 }
3580
3581 static ssize_t
3582 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3583                    loff_t *pos)
3584 {
3585         struct pipe_crc_info *info = filep->private_data;
3586         struct drm_device *dev = info->dev;
3587         struct drm_i915_private *dev_priv = to_i915(dev);
3588         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3589         char buf[PIPE_CRC_BUFFER_LEN];
3590         int n_entries;
3591         ssize_t bytes_read;
3592
3593         /*
3594          * Don't allow user space to provide buffers not big enough to hold
3595          * a line of data.
3596          */
3597         if (count < PIPE_CRC_LINE_LEN)
3598                 return -EINVAL;
3599
3600         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3601                 return 0;
3602
3603         /* nothing to read */
3604         spin_lock_irq(&pipe_crc->lock);
3605         while (pipe_crc_data_count(pipe_crc) == 0) {
3606                 int ret;
3607
3608                 if (filep->f_flags & O_NONBLOCK) {
3609                         spin_unlock_irq(&pipe_crc->lock);
3610                         return -EAGAIN;
3611                 }
3612
3613                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3614                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3615                 if (ret) {
3616                         spin_unlock_irq(&pipe_crc->lock);
3617                         return ret;
3618                 }
3619         }
3620
3621         /* We now have one or more entries to read */
3622         n_entries = count / PIPE_CRC_LINE_LEN;
3623
3624         bytes_read = 0;
3625         while (n_entries > 0) {
3626                 struct intel_pipe_crc_entry *entry =
3627                         &pipe_crc->entries[pipe_crc->tail];
3628
3629                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3630                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3631                         break;
3632
3633                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3634                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3635
3636                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3637                                        "%8u %8x %8x %8x %8x %8x\n",
3638                                        entry->frame, entry->crc[0],
3639                                        entry->crc[1], entry->crc[2],
3640                                        entry->crc[3], entry->crc[4]);
3641
3642                 spin_unlock_irq(&pipe_crc->lock);
3643
3644                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3645                         return -EFAULT;
3646
3647                 user_buf += PIPE_CRC_LINE_LEN;
3648                 n_entries--;
3649
3650                 spin_lock_irq(&pipe_crc->lock);
3651         }
3652
3653         spin_unlock_irq(&pipe_crc->lock);
3654
3655         return bytes_read;
3656 }
3657
3658 static const struct file_operations i915_pipe_crc_fops = {
3659         .owner = THIS_MODULE,
3660         .open = i915_pipe_crc_open,
3661         .read = i915_pipe_crc_read,
3662         .release = i915_pipe_crc_release,
3663 };
3664
3665 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3666         {
3667                 .name = "i915_pipe_A_crc",
3668                 .pipe = PIPE_A,
3669         },
3670         {
3671                 .name = "i915_pipe_B_crc",
3672                 .pipe = PIPE_B,
3673         },
3674         {
3675                 .name = "i915_pipe_C_crc",
3676                 .pipe = PIPE_C,
3677         },
3678 };
3679
3680 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3681                                 enum pipe pipe)
3682 {
3683         struct drm_device *dev = minor->dev;
3684         struct dentry *ent;
3685         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3686
3687         info->dev = dev;
3688         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3689                                   &i915_pipe_crc_fops);
3690         if (!ent)
3691                 return -ENOMEM;
3692
3693         return drm_add_fake_info_node(minor, ent, info);
3694 }
3695
3696 static const char * const pipe_crc_sources[] = {
3697         "none",
3698         "plane1",
3699         "plane2",
3700         "pf",
3701         "pipe",
3702         "TV",
3703         "DP-B",
3704         "DP-C",
3705         "DP-D",
3706         "auto",
3707 };
3708
3709 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3710 {
3711         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3712         return pipe_crc_sources[source];
3713 }
3714
3715 static int display_crc_ctl_show(struct seq_file *m, void *data)
3716 {
3717         struct drm_device *dev = m->private;
3718         struct drm_i915_private *dev_priv = to_i915(dev);
3719         int i;
3720
3721         for (i = 0; i < I915_MAX_PIPES; i++)
3722                 seq_printf(m, "%c %s\n", pipe_name(i),
3723                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3724
3725         return 0;
3726 }
3727
3728 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3729 {
3730         struct drm_device *dev = inode->i_private;
3731
3732         return single_open(file, display_crc_ctl_show, dev);
3733 }
3734
3735 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3736                                  uint32_t *val)
3737 {
3738         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3739                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3740
3741         switch (*source) {
3742         case INTEL_PIPE_CRC_SOURCE_PIPE:
3743                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3744                 break;
3745         case INTEL_PIPE_CRC_SOURCE_NONE:
3746                 *val = 0;
3747                 break;
3748         default:
3749                 return -EINVAL;
3750         }
3751
3752         return 0;
3753 }
3754
3755 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3756                                      enum intel_pipe_crc_source *source)
3757 {
3758         struct intel_encoder *encoder;
3759         struct intel_crtc *crtc;
3760         struct intel_digital_port *dig_port;
3761         int ret = 0;
3762
3763         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3764
3765         drm_modeset_lock_all(dev);
3766         for_each_intel_encoder(dev, encoder) {
3767                 if (!encoder->base.crtc)
3768                         continue;
3769
3770                 crtc = to_intel_crtc(encoder->base.crtc);
3771
3772                 if (crtc->pipe != pipe)
3773                         continue;
3774
3775                 switch (encoder->type) {
3776                 case INTEL_OUTPUT_TVOUT:
3777                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3778                         break;
3779                 case INTEL_OUTPUT_DP:
3780                 case INTEL_OUTPUT_EDP:
3781                         dig_port = enc_to_dig_port(&encoder->base);
3782                         switch (dig_port->port) {
3783                         case PORT_B:
3784                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3785                                 break;
3786                         case PORT_C:
3787                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3788                                 break;
3789                         case PORT_D:
3790                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3791                                 break;
3792                         default:
3793                                 WARN(1, "nonexisting DP port %c\n",
3794                                      port_name(dig_port->port));
3795                                 break;
3796                         }
3797                         break;
3798                 default:
3799                         break;
3800                 }
3801         }
3802         drm_modeset_unlock_all(dev);
3803
3804         return ret;
3805 }
3806
3807 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3808                                 enum pipe pipe,
3809                                 enum intel_pipe_crc_source *source,
3810                                 uint32_t *val)
3811 {
3812         struct drm_i915_private *dev_priv = to_i915(dev);
3813         bool need_stable_symbols = false;
3814
3815         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3816                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3817                 if (ret)
3818                         return ret;
3819         }
3820
3821         switch (*source) {
3822         case INTEL_PIPE_CRC_SOURCE_PIPE:
3823                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3824                 break;
3825         case INTEL_PIPE_CRC_SOURCE_DP_B:
3826                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3827                 need_stable_symbols = true;
3828                 break;
3829         case INTEL_PIPE_CRC_SOURCE_DP_C:
3830                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3831                 need_stable_symbols = true;
3832                 break;
3833         case INTEL_PIPE_CRC_SOURCE_DP_D:
3834                 if (!IS_CHERRYVIEW(dev))
3835                         return -EINVAL;
3836                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3837                 need_stable_symbols = true;
3838                 break;
3839         case INTEL_PIPE_CRC_SOURCE_NONE:
3840                 *val = 0;
3841                 break;
3842         default:
3843                 return -EINVAL;
3844         }
3845
3846         /*
3847          * When the pipe CRC tap point is after the transcoders we need
3848          * to tweak symbol-level features to produce a deterministic series of
3849          * symbols for a given frame. We need to reset those features only once
3850          * a frame (instead of every nth symbol):
3851          *   - DC-balance: used to ensure a better clock recovery from the data
3852          *     link (SDVO)
3853          *   - DisplayPort scrambling: used for EMI reduction
3854          */
3855         if (need_stable_symbols) {
3856                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3857
3858                 tmp |= DC_BALANCE_RESET_VLV;
3859                 switch (pipe) {
3860                 case PIPE_A:
3861                         tmp |= PIPE_A_SCRAMBLE_RESET;
3862                         break;
3863                 case PIPE_B:
3864                         tmp |= PIPE_B_SCRAMBLE_RESET;
3865                         break;
3866                 case PIPE_C:
3867                         tmp |= PIPE_C_SCRAMBLE_RESET;
3868                         break;
3869                 default:
3870                         return -EINVAL;
3871                 }
3872                 I915_WRITE(PORT_DFT2_G4X, tmp);
3873         }
3874
3875         return 0;
3876 }
3877
3878 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3879                                  enum pipe pipe,
3880                                  enum intel_pipe_crc_source *source,
3881                                  uint32_t *val)
3882 {
3883         struct drm_i915_private *dev_priv = to_i915(dev);
3884         bool need_stable_symbols = false;
3885
3886         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3887                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3888                 if (ret)
3889                         return ret;
3890         }
3891
3892         switch (*source) {
3893         case INTEL_PIPE_CRC_SOURCE_PIPE:
3894                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3895                 break;
3896         case INTEL_PIPE_CRC_SOURCE_TV:
3897                 if (!SUPPORTS_TV(dev))
3898                         return -EINVAL;
3899                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3900                 break;
3901         case INTEL_PIPE_CRC_SOURCE_DP_B:
3902                 if (!IS_G4X(dev))
3903                         return -EINVAL;
3904                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3905                 need_stable_symbols = true;
3906                 break;
3907         case INTEL_PIPE_CRC_SOURCE_DP_C:
3908                 if (!IS_G4X(dev))
3909                         return -EINVAL;
3910                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3911                 need_stable_symbols = true;
3912                 break;
3913         case INTEL_PIPE_CRC_SOURCE_DP_D:
3914                 if (!IS_G4X(dev))
3915                         return -EINVAL;
3916                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3917                 need_stable_symbols = true;
3918                 break;
3919         case INTEL_PIPE_CRC_SOURCE_NONE:
3920                 *val = 0;
3921                 break;
3922         default:
3923                 return -EINVAL;
3924         }
3925
3926         /*
3927          * When the pipe CRC tap point is after the transcoders we need
3928          * to tweak symbol-level features to produce a deterministic series of
3929          * symbols for a given frame. We need to reset those features only once
3930          * a frame (instead of every nth symbol):
3931          *   - DC-balance: used to ensure a better clock recovery from the data
3932          *     link (SDVO)
3933          *   - DisplayPort scrambling: used for EMI reduction
3934          */
3935         if (need_stable_symbols) {
3936                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3937
3938                 WARN_ON(!IS_G4X(dev));
3939
3940                 I915_WRITE(PORT_DFT_I9XX,
3941                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3942
3943                 if (pipe == PIPE_A)
3944                         tmp |= PIPE_A_SCRAMBLE_RESET;
3945                 else
3946                         tmp |= PIPE_B_SCRAMBLE_RESET;
3947
3948                 I915_WRITE(PORT_DFT2_G4X, tmp);
3949         }
3950
3951         return 0;
3952 }
3953
3954 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3955                                          enum pipe pipe)
3956 {
3957         struct drm_i915_private *dev_priv = to_i915(dev);
3958         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3959
3960         switch (pipe) {
3961         case PIPE_A:
3962                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3963                 break;
3964         case PIPE_B:
3965                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3966                 break;
3967         case PIPE_C:
3968                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3969                 break;
3970         default:
3971                 return;
3972         }
3973         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3974                 tmp &= ~DC_BALANCE_RESET_VLV;
3975         I915_WRITE(PORT_DFT2_G4X, tmp);
3976
3977 }
3978
3979 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3980                                          enum pipe pipe)
3981 {
3982         struct drm_i915_private *dev_priv = to_i915(dev);
3983         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3984
3985         if (pipe == PIPE_A)
3986                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3987         else
3988                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3989         I915_WRITE(PORT_DFT2_G4X, tmp);
3990
3991         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3992                 I915_WRITE(PORT_DFT_I9XX,
3993                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3994         }
3995 }
3996
3997 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3998                                 uint32_t *val)
3999 {
4000         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4001                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4002
4003         switch (*source) {
4004         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4005                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4006                 break;
4007         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4008                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4009                 break;
4010         case INTEL_PIPE_CRC_SOURCE_PIPE:
4011                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4012                 break;
4013         case INTEL_PIPE_CRC_SOURCE_NONE:
4014                 *val = 0;
4015                 break;
4016         default:
4017                 return -EINVAL;
4018         }
4019
4020         return 0;
4021 }
4022
4023 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4024 {
4025         struct drm_i915_private *dev_priv = to_i915(dev);
4026         struct intel_crtc *crtc =
4027                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4028         struct intel_crtc_state *pipe_config;
4029         struct drm_atomic_state *state;
4030         int ret = 0;
4031
4032         drm_modeset_lock_all(dev);
4033         state = drm_atomic_state_alloc(dev);
4034         if (!state) {
4035                 ret = -ENOMEM;
4036                 goto out;
4037         }
4038
4039         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4040         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4041         if (IS_ERR(pipe_config)) {
4042                 ret = PTR_ERR(pipe_config);
4043                 goto out;
4044         }
4045
4046         pipe_config->pch_pfit.force_thru = enable;
4047         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4048             pipe_config->pch_pfit.enabled != enable)
4049                 pipe_config->base.connectors_changed = true;
4050
4051         ret = drm_atomic_commit(state);
4052 out:
4053         drm_modeset_unlock_all(dev);
4054         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4055         if (ret)
4056                 drm_atomic_state_free(state);
4057 }
4058
4059 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4060                                 enum pipe pipe,
4061                                 enum intel_pipe_crc_source *source,
4062                                 uint32_t *val)
4063 {
4064         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4065                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4066
4067         switch (*source) {
4068         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4069                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4070                 break;
4071         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4072                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4073                 break;
4074         case INTEL_PIPE_CRC_SOURCE_PF:
4075                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4076                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4077
4078                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4079                 break;
4080         case INTEL_PIPE_CRC_SOURCE_NONE:
4081                 *val = 0;
4082                 break;
4083         default:
4084                 return -EINVAL;
4085         }
4086
4087         return 0;
4088 }
4089
4090 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4091                                enum intel_pipe_crc_source source)
4092 {
4093         struct drm_i915_private *dev_priv = to_i915(dev);
4094         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4095         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4096                                                                         pipe));
4097         enum intel_display_power_domain power_domain;
4098         u32 val = 0; /* shut up gcc */
4099         int ret;
4100
4101         if (pipe_crc->source == source)
4102                 return 0;
4103
4104         /* forbid changing the source without going back to 'none' */
4105         if (pipe_crc->source && source)
4106                 return -EINVAL;
4107
4108         power_domain = POWER_DOMAIN_PIPE(pipe);
4109         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4110                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4111                 return -EIO;
4112         }
4113
4114         if (IS_GEN2(dev))
4115                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4116         else if (INTEL_INFO(dev)->gen < 5)
4117                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4118         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4119                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4120         else if (IS_GEN5(dev) || IS_GEN6(dev))
4121                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4122         else
4123                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4124
4125         if (ret != 0)
4126                 goto out;
4127
4128         /* none -> real source transition */
4129         if (source) {
4130                 struct intel_pipe_crc_entry *entries;
4131
4132                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4133                                  pipe_name(pipe), pipe_crc_source_name(source));
4134
4135                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4136                                   sizeof(pipe_crc->entries[0]),
4137                                   GFP_KERNEL);
4138                 if (!entries) {
4139                         ret = -ENOMEM;
4140                         goto out;
4141                 }
4142
4143                 /*
4144                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4145                  * enabled and disabled dynamically based on package C states,
4146                  * user space can't make reliable use of the CRCs, so let's just
4147                  * completely disable it.
4148                  */
4149                 hsw_disable_ips(crtc);
4150
4151                 spin_lock_irq(&pipe_crc->lock);
4152                 kfree(pipe_crc->entries);
4153                 pipe_crc->entries = entries;
4154                 pipe_crc->head = 0;
4155                 pipe_crc->tail = 0;
4156                 spin_unlock_irq(&pipe_crc->lock);
4157         }
4158
4159         pipe_crc->source = source;
4160
4161         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4162         POSTING_READ(PIPE_CRC_CTL(pipe));
4163
4164         /* real source -> none transition */
4165         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4166                 struct intel_pipe_crc_entry *entries;
4167                 struct intel_crtc *crtc =
4168                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4169
4170                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4171                                  pipe_name(pipe));
4172
4173                 drm_modeset_lock(&crtc->base.mutex, NULL);
4174                 if (crtc->base.state->active)
4175                         intel_wait_for_vblank(dev, pipe);
4176                 drm_modeset_unlock(&crtc->base.mutex);
4177
4178                 spin_lock_irq(&pipe_crc->lock);
4179                 entries = pipe_crc->entries;
4180                 pipe_crc->entries = NULL;
4181                 pipe_crc->head = 0;
4182                 pipe_crc->tail = 0;
4183                 spin_unlock_irq(&pipe_crc->lock);
4184
4185                 kfree(entries);
4186
4187                 if (IS_G4X(dev))
4188                         g4x_undo_pipe_scramble_reset(dev, pipe);
4189                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4190                         vlv_undo_pipe_scramble_reset(dev, pipe);
4191                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4192                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4193
4194                 hsw_enable_ips(crtc);
4195         }
4196
4197         ret = 0;
4198
4199 out:
4200         intel_display_power_put(dev_priv, power_domain);
4201
4202         return ret;
4203 }
4204
4205 /*
4206  * Parse pipe CRC command strings:
4207  *   command: wsp* object wsp+ name wsp+ source wsp*
4208  *   object: 'pipe'
4209  *   name: (A | B | C)
4210  *   source: (none | plane1 | plane2 | pf)
4211  *   wsp: (#0x20 | #0x9 | #0xA)+
4212  *
4213  * eg.:
4214  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4215  *  "pipe A none"    ->  Stop CRC
4216  */
4217 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4218 {
4219         int n_words = 0;
4220
4221         while (*buf) {
4222                 char *end;
4223
4224                 /* skip leading white space */
4225                 buf = skip_spaces(buf);
4226                 if (!*buf)
4227                         break;  /* end of buffer */
4228
4229                 /* find end of word */
4230                 for (end = buf; *end && !isspace(*end); end++)
4231                         ;
4232
4233                 if (n_words == max_words) {
4234                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4235                                          max_words);
4236                         return -EINVAL; /* ran out of words[] before bytes */
4237                 }
4238
4239                 if (*end)
4240                         *end++ = '\0';
4241                 words[n_words++] = buf;
4242                 buf = end;
4243         }
4244
4245         return n_words;
4246 }
4247
4248 enum intel_pipe_crc_object {
4249         PIPE_CRC_OBJECT_PIPE,
4250 };
4251
4252 static const char * const pipe_crc_objects[] = {
4253         "pipe",
4254 };
4255
4256 static int
4257 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4258 {
4259         int i;
4260
4261         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4262                 if (!strcmp(buf, pipe_crc_objects[i])) {
4263                         *o = i;
4264                         return 0;
4265                     }
4266
4267         return -EINVAL;
4268 }
4269
4270 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4271 {
4272         const char name = buf[0];
4273
4274         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4275                 return -EINVAL;
4276
4277         *pipe = name - 'A';
4278
4279         return 0;
4280 }
4281
4282 static int
4283 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4284 {
4285         int i;
4286
4287         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4288                 if (!strcmp(buf, pipe_crc_sources[i])) {
4289                         *s = i;
4290                         return 0;
4291                     }
4292
4293         return -EINVAL;
4294 }
4295
4296 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4297 {
4298 #define N_WORDS 3
4299         int n_words;
4300         char *words[N_WORDS];
4301         enum pipe pipe;
4302         enum intel_pipe_crc_object object;
4303         enum intel_pipe_crc_source source;
4304
4305         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4306         if (n_words != N_WORDS) {
4307                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4308                                  N_WORDS);
4309                 return -EINVAL;
4310         }
4311
4312         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4313                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4314                 return -EINVAL;
4315         }
4316
4317         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4318                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4319                 return -EINVAL;
4320         }
4321
4322         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4323                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4324                 return -EINVAL;
4325         }
4326
4327         return pipe_crc_set_source(dev, pipe, source);
4328 }
4329
4330 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4331                                      size_t len, loff_t *offp)
4332 {
4333         struct seq_file *m = file->private_data;
4334         struct drm_device *dev = m->private;
4335         char *tmpbuf;
4336         int ret;
4337
4338         if (len == 0)
4339                 return 0;
4340
4341         if (len > PAGE_SIZE - 1) {
4342                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4343                                  PAGE_SIZE);
4344                 return -E2BIG;
4345         }
4346
4347         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4348         if (!tmpbuf)
4349                 return -ENOMEM;
4350
4351         if (copy_from_user(tmpbuf, ubuf, len)) {
4352                 ret = -EFAULT;
4353                 goto out;
4354         }
4355         tmpbuf[len] = '\0';
4356
4357         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4358
4359 out:
4360         kfree(tmpbuf);
4361         if (ret < 0)
4362                 return ret;
4363
4364         *offp += len;
4365         return len;
4366 }
4367
4368 static const struct file_operations i915_display_crc_ctl_fops = {
4369         .owner = THIS_MODULE,
4370         .open = display_crc_ctl_open,
4371         .read = seq_read,
4372         .llseek = seq_lseek,
4373         .release = single_release,
4374         .write = display_crc_ctl_write
4375 };
4376
4377 static ssize_t i915_displayport_test_active_write(struct file *file,
4378                                             const char __user *ubuf,
4379                                             size_t len, loff_t *offp)
4380 {
4381         char *input_buffer;
4382         int status = 0;
4383         struct drm_device *dev;
4384         struct drm_connector *connector;
4385         struct list_head *connector_list;
4386         struct intel_dp *intel_dp;
4387         int val = 0;
4388
4389         dev = ((struct seq_file *)file->private_data)->private;
4390
4391         connector_list = &dev->mode_config.connector_list;
4392
4393         if (len == 0)
4394                 return 0;
4395
4396         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4397         if (!input_buffer)
4398                 return -ENOMEM;
4399
4400         if (copy_from_user(input_buffer, ubuf, len)) {
4401                 status = -EFAULT;
4402                 goto out;
4403         }
4404
4405         input_buffer[len] = '\0';
4406         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4407
4408         list_for_each_entry(connector, connector_list, head) {
4409
4410                 if (connector->connector_type !=
4411                     DRM_MODE_CONNECTOR_DisplayPort)
4412                         continue;
4413
4414                 if (connector->status == connector_status_connected &&
4415                     connector->encoder != NULL) {
4416                         intel_dp = enc_to_intel_dp(connector->encoder);
4417                         status = kstrtoint(input_buffer, 10, &val);
4418                         if (status < 0)
4419                                 goto out;
4420                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4421                         /* To prevent erroneous activation of the compliance
4422                          * testing code, only accept an actual value of 1 here
4423                          */
4424                         if (val == 1)
4425                                 intel_dp->compliance_test_active = 1;
4426                         else
4427                                 intel_dp->compliance_test_active = 0;
4428                 }
4429         }
4430 out:
4431         kfree(input_buffer);
4432         if (status < 0)
4433                 return status;
4434
4435         *offp += len;
4436         return len;
4437 }
4438
4439 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4440 {
4441         struct drm_device *dev = m->private;
4442         struct drm_connector *connector;
4443         struct list_head *connector_list = &dev->mode_config.connector_list;
4444         struct intel_dp *intel_dp;
4445
4446         list_for_each_entry(connector, connector_list, head) {
4447
4448                 if (connector->connector_type !=
4449                     DRM_MODE_CONNECTOR_DisplayPort)
4450                         continue;
4451
4452                 if (connector->status == connector_status_connected &&
4453                     connector->encoder != NULL) {
4454                         intel_dp = enc_to_intel_dp(connector->encoder);
4455                         if (intel_dp->compliance_test_active)
4456                                 seq_puts(m, "1");
4457                         else
4458                                 seq_puts(m, "0");
4459                 } else
4460                         seq_puts(m, "0");
4461         }
4462
4463         return 0;
4464 }
4465
4466 static int i915_displayport_test_active_open(struct inode *inode,
4467                                        struct file *file)
4468 {
4469         struct drm_device *dev = inode->i_private;
4470
4471         return single_open(file, i915_displayport_test_active_show, dev);
4472 }
4473
4474 static const struct file_operations i915_displayport_test_active_fops = {
4475         .owner = THIS_MODULE,
4476         .open = i915_displayport_test_active_open,
4477         .read = seq_read,
4478         .llseek = seq_lseek,
4479         .release = single_release,
4480         .write = i915_displayport_test_active_write
4481 };
4482
4483 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4484 {
4485         struct drm_device *dev = m->private;
4486         struct drm_connector *connector;
4487         struct list_head *connector_list = &dev->mode_config.connector_list;
4488         struct intel_dp *intel_dp;
4489
4490         list_for_each_entry(connector, connector_list, head) {
4491
4492                 if (connector->connector_type !=
4493                     DRM_MODE_CONNECTOR_DisplayPort)
4494                         continue;
4495
4496                 if (connector->status == connector_status_connected &&
4497                     connector->encoder != NULL) {
4498                         intel_dp = enc_to_intel_dp(connector->encoder);
4499                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4500                 } else
4501                         seq_puts(m, "0");
4502         }
4503
4504         return 0;
4505 }
4506 static int i915_displayport_test_data_open(struct inode *inode,
4507                                        struct file *file)
4508 {
4509         struct drm_device *dev = inode->i_private;
4510
4511         return single_open(file, i915_displayport_test_data_show, dev);
4512 }
4513
4514 static const struct file_operations i915_displayport_test_data_fops = {
4515         .owner = THIS_MODULE,
4516         .open = i915_displayport_test_data_open,
4517         .read = seq_read,
4518         .llseek = seq_lseek,
4519         .release = single_release
4520 };
4521
4522 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4523 {
4524         struct drm_device *dev = m->private;
4525         struct drm_connector *connector;
4526         struct list_head *connector_list = &dev->mode_config.connector_list;
4527         struct intel_dp *intel_dp;
4528
4529         list_for_each_entry(connector, connector_list, head) {
4530
4531                 if (connector->connector_type !=
4532                     DRM_MODE_CONNECTOR_DisplayPort)
4533                         continue;
4534
4535                 if (connector->status == connector_status_connected &&
4536                     connector->encoder != NULL) {
4537                         intel_dp = enc_to_intel_dp(connector->encoder);
4538                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4539                 } else
4540                         seq_puts(m, "0");
4541         }
4542
4543         return 0;
4544 }
4545
4546 static int i915_displayport_test_type_open(struct inode *inode,
4547                                        struct file *file)
4548 {
4549         struct drm_device *dev = inode->i_private;
4550
4551         return single_open(file, i915_displayport_test_type_show, dev);
4552 }
4553
4554 static const struct file_operations i915_displayport_test_type_fops = {
4555         .owner = THIS_MODULE,
4556         .open = i915_displayport_test_type_open,
4557         .read = seq_read,
4558         .llseek = seq_lseek,
4559         .release = single_release
4560 };
4561
4562 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4563 {
4564         struct drm_device *dev = m->private;
4565         int level;
4566         int num_levels;
4567
4568         if (IS_CHERRYVIEW(dev))
4569                 num_levels = 3;
4570         else if (IS_VALLEYVIEW(dev))
4571                 num_levels = 1;
4572         else
4573                 num_levels = ilk_wm_max_level(dev) + 1;
4574
4575         drm_modeset_lock_all(dev);
4576
4577         for (level = 0; level < num_levels; level++) {
4578                 unsigned int latency = wm[level];
4579
4580                 /*
4581                  * - WM1+ latency values in 0.5us units
4582                  * - latencies are in us on gen9/vlv/chv
4583                  */
4584                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4585                     IS_CHERRYVIEW(dev))
4586                         latency *= 10;
4587                 else if (level > 0)
4588                         latency *= 5;
4589
4590                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4591                            level, wm[level], latency / 10, latency % 10);
4592         }
4593
4594         drm_modeset_unlock_all(dev);
4595 }
4596
4597 static int pri_wm_latency_show(struct seq_file *m, void *data)
4598 {
4599         struct drm_device *dev = m->private;
4600         struct drm_i915_private *dev_priv = to_i915(dev);
4601         const uint16_t *latencies;
4602
4603         if (INTEL_INFO(dev)->gen >= 9)
4604                 latencies = dev_priv->wm.skl_latency;
4605         else
4606                 latencies = to_i915(dev)->wm.pri_latency;
4607
4608         wm_latency_show(m, latencies);
4609
4610         return 0;
4611 }
4612
4613 static int spr_wm_latency_show(struct seq_file *m, void *data)
4614 {
4615         struct drm_device *dev = m->private;
4616         struct drm_i915_private *dev_priv = to_i915(dev);
4617         const uint16_t *latencies;
4618
4619         if (INTEL_INFO(dev)->gen >= 9)
4620                 latencies = dev_priv->wm.skl_latency;
4621         else
4622                 latencies = to_i915(dev)->wm.spr_latency;
4623
4624         wm_latency_show(m, latencies);
4625
4626         return 0;
4627 }
4628
4629 static int cur_wm_latency_show(struct seq_file *m, void *data)
4630 {
4631         struct drm_device *dev = m->private;
4632         struct drm_i915_private *dev_priv = to_i915(dev);
4633         const uint16_t *latencies;
4634
4635         if (INTEL_INFO(dev)->gen >= 9)
4636                 latencies = dev_priv->wm.skl_latency;
4637         else
4638                 latencies = to_i915(dev)->wm.cur_latency;
4639
4640         wm_latency_show(m, latencies);
4641
4642         return 0;
4643 }
4644
4645 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4646 {
4647         struct drm_device *dev = inode->i_private;
4648
4649         if (INTEL_INFO(dev)->gen < 5)
4650                 return -ENODEV;
4651
4652         return single_open(file, pri_wm_latency_show, dev);
4653 }
4654
4655 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4656 {
4657         struct drm_device *dev = inode->i_private;
4658
4659         if (HAS_GMCH_DISPLAY(dev))
4660                 return -ENODEV;
4661
4662         return single_open(file, spr_wm_latency_show, dev);
4663 }
4664
4665 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4666 {
4667         struct drm_device *dev = inode->i_private;
4668
4669         if (HAS_GMCH_DISPLAY(dev))
4670                 return -ENODEV;
4671
4672         return single_open(file, cur_wm_latency_show, dev);
4673 }
4674
4675 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4676                                 size_t len, loff_t *offp, uint16_t wm[8])
4677 {
4678         struct seq_file *m = file->private_data;
4679         struct drm_device *dev = m->private;
4680         uint16_t new[8] = { 0 };
4681         int num_levels;
4682         int level;
4683         int ret;
4684         char tmp[32];
4685
4686         if (IS_CHERRYVIEW(dev))
4687                 num_levels = 3;
4688         else if (IS_VALLEYVIEW(dev))
4689                 num_levels = 1;
4690         else
4691                 num_levels = ilk_wm_max_level(dev) + 1;
4692
4693         if (len >= sizeof(tmp))
4694                 return -EINVAL;
4695
4696         if (copy_from_user(tmp, ubuf, len))
4697                 return -EFAULT;
4698
4699         tmp[len] = '\0';
4700
4701         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4702                      &new[0], &new[1], &new[2], &new[3],
4703                      &new[4], &new[5], &new[6], &new[7]);
4704         if (ret != num_levels)
4705                 return -EINVAL;
4706
4707         drm_modeset_lock_all(dev);
4708
4709         for (level = 0; level < num_levels; level++)
4710                 wm[level] = new[level];
4711
4712         drm_modeset_unlock_all(dev);
4713
4714         return len;
4715 }
4716
4717
4718 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4719                                     size_t len, loff_t *offp)
4720 {
4721         struct seq_file *m = file->private_data;
4722         struct drm_device *dev = m->private;
4723         struct drm_i915_private *dev_priv = to_i915(dev);
4724         uint16_t *latencies;
4725
4726         if (INTEL_INFO(dev)->gen >= 9)
4727                 latencies = dev_priv->wm.skl_latency;
4728         else
4729                 latencies = to_i915(dev)->wm.pri_latency;
4730
4731         return wm_latency_write(file, ubuf, len, offp, latencies);
4732 }
4733
4734 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4735                                     size_t len, loff_t *offp)
4736 {
4737         struct seq_file *m = file->private_data;
4738         struct drm_device *dev = m->private;
4739         struct drm_i915_private *dev_priv = to_i915(dev);
4740         uint16_t *latencies;
4741
4742         if (INTEL_INFO(dev)->gen >= 9)
4743                 latencies = dev_priv->wm.skl_latency;
4744         else
4745                 latencies = to_i915(dev)->wm.spr_latency;
4746
4747         return wm_latency_write(file, ubuf, len, offp, latencies);
4748 }
4749
4750 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4751                                     size_t len, loff_t *offp)
4752 {
4753         struct seq_file *m = file->private_data;
4754         struct drm_device *dev = m->private;
4755         struct drm_i915_private *dev_priv = to_i915(dev);
4756         uint16_t *latencies;
4757
4758         if (INTEL_INFO(dev)->gen >= 9)
4759                 latencies = dev_priv->wm.skl_latency;
4760         else
4761                 latencies = to_i915(dev)->wm.cur_latency;
4762
4763         return wm_latency_write(file, ubuf, len, offp, latencies);
4764 }
4765
4766 static const struct file_operations i915_pri_wm_latency_fops = {
4767         .owner = THIS_MODULE,
4768         .open = pri_wm_latency_open,
4769         .read = seq_read,
4770         .llseek = seq_lseek,
4771         .release = single_release,
4772         .write = pri_wm_latency_write
4773 };
4774
4775 static const struct file_operations i915_spr_wm_latency_fops = {
4776         .owner = THIS_MODULE,
4777         .open = spr_wm_latency_open,
4778         .read = seq_read,
4779         .llseek = seq_lseek,
4780         .release = single_release,
4781         .write = spr_wm_latency_write
4782 };
4783
4784 static const struct file_operations i915_cur_wm_latency_fops = {
4785         .owner = THIS_MODULE,
4786         .open = cur_wm_latency_open,
4787         .read = seq_read,
4788         .llseek = seq_lseek,
4789         .release = single_release,
4790         .write = cur_wm_latency_write
4791 };
4792
4793 static int
4794 i915_wedged_get(void *data, u64 *val)
4795 {
4796         struct drm_device *dev = data;
4797         struct drm_i915_private *dev_priv = to_i915(dev);
4798
4799         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4800
4801         return 0;
4802 }
4803
4804 static int
4805 i915_wedged_set(void *data, u64 val)
4806 {
4807         struct drm_device *dev = data;
4808         struct drm_i915_private *dev_priv = to_i915(dev);
4809
4810         /*
4811          * There is no safeguard against this debugfs entry colliding
4812          * with the hangcheck calling same i915_handle_error() in
4813          * parallel, causing an explosion. For now we assume that the
4814          * test harness is responsible enough not to inject gpu hangs
4815          * while it is writing to 'i915_wedged'
4816          */
4817
4818         if (i915_reset_in_progress(&dev_priv->gpu_error))
4819                 return -EAGAIN;
4820
4821         intel_runtime_pm_get(dev_priv);
4822
4823         i915_handle_error(dev_priv, val,
4824                           "Manually setting wedged to %llu", val);
4825
4826         intel_runtime_pm_put(dev_priv);
4827
4828         return 0;
4829 }
4830
4831 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4832                         i915_wedged_get, i915_wedged_set,
4833                         "%llu\n");
4834
4835 static int
4836 i915_ring_missed_irq_get(void *data, u64 *val)
4837 {
4838         struct drm_device *dev = data;
4839         struct drm_i915_private *dev_priv = to_i915(dev);
4840
4841         *val = dev_priv->gpu_error.missed_irq_rings;
4842         return 0;
4843 }
4844
4845 static int
4846 i915_ring_missed_irq_set(void *data, u64 val)
4847 {
4848         struct drm_device *dev = data;
4849         struct drm_i915_private *dev_priv = to_i915(dev);
4850         int ret;
4851
4852         /* Lock against concurrent debugfs callers */
4853         ret = mutex_lock_interruptible(&dev->struct_mutex);
4854         if (ret)
4855                 return ret;
4856         dev_priv->gpu_error.missed_irq_rings = val;
4857         mutex_unlock(&dev->struct_mutex);
4858
4859         return 0;
4860 }
4861
4862 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4863                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4864                         "0x%08llx\n");
4865
4866 static int
4867 i915_ring_test_irq_get(void *data, u64 *val)
4868 {
4869         struct drm_device *dev = data;
4870         struct drm_i915_private *dev_priv = to_i915(dev);
4871
4872         *val = dev_priv->gpu_error.test_irq_rings;
4873
4874         return 0;
4875 }
4876
4877 static int
4878 i915_ring_test_irq_set(void *data, u64 val)
4879 {
4880         struct drm_device *dev = data;
4881         struct drm_i915_private *dev_priv = to_i915(dev);
4882
4883         val &= INTEL_INFO(dev_priv)->ring_mask;
4884         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4885         dev_priv->gpu_error.test_irq_rings = val;
4886
4887         return 0;
4888 }
4889
4890 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4891                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4892                         "0x%08llx\n");
4893
4894 #define DROP_UNBOUND 0x1
4895 #define DROP_BOUND 0x2
4896 #define DROP_RETIRE 0x4
4897 #define DROP_ACTIVE 0x8
4898 #define DROP_ALL (DROP_UNBOUND | \
4899                   DROP_BOUND | \
4900                   DROP_RETIRE | \
4901                   DROP_ACTIVE)
4902 static int
4903 i915_drop_caches_get(void *data, u64 *val)
4904 {
4905         *val = DROP_ALL;
4906
4907         return 0;
4908 }
4909
4910 static int
4911 i915_drop_caches_set(void *data, u64 val)
4912 {
4913         struct drm_device *dev = data;
4914         struct drm_i915_private *dev_priv = to_i915(dev);
4915         int ret;
4916
4917         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4918
4919         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4920          * on ioctls on -EAGAIN. */
4921         ret = mutex_lock_interruptible(&dev->struct_mutex);
4922         if (ret)
4923                 return ret;
4924
4925         if (val & DROP_ACTIVE) {
4926                 ret = i915_gem_wait_for_idle(dev_priv, true);
4927                 if (ret)
4928                         goto unlock;
4929         }
4930
4931         if (val & (DROP_RETIRE | DROP_ACTIVE))
4932                 i915_gem_retire_requests(dev_priv);
4933
4934         if (val & DROP_BOUND)
4935                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4936
4937         if (val & DROP_UNBOUND)
4938                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4939
4940 unlock:
4941         mutex_unlock(&dev->struct_mutex);
4942
4943         return ret;
4944 }
4945
4946 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4947                         i915_drop_caches_get, i915_drop_caches_set,
4948                         "0x%08llx\n");
4949
4950 static int
4951 i915_max_freq_get(void *data, u64 *val)
4952 {
4953         struct drm_device *dev = data;
4954         struct drm_i915_private *dev_priv = to_i915(dev);
4955
4956         if (INTEL_INFO(dev)->gen < 6)
4957                 return -ENODEV;
4958
4959         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4960         return 0;
4961 }
4962
4963 static int
4964 i915_max_freq_set(void *data, u64 val)
4965 {
4966         struct drm_device *dev = data;
4967         struct drm_i915_private *dev_priv = to_i915(dev);
4968         u32 hw_max, hw_min;
4969         int ret;
4970
4971         if (INTEL_INFO(dev)->gen < 6)
4972                 return -ENODEV;
4973
4974         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4975
4976         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4977         if (ret)
4978                 return ret;
4979
4980         /*
4981          * Turbo will still be enabled, but won't go above the set value.
4982          */
4983         val = intel_freq_opcode(dev_priv, val);
4984
4985         hw_max = dev_priv->rps.max_freq;
4986         hw_min = dev_priv->rps.min_freq;
4987
4988         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4989                 mutex_unlock(&dev_priv->rps.hw_lock);
4990                 return -EINVAL;
4991         }
4992
4993         dev_priv->rps.max_freq_softlimit = val;
4994
4995         intel_set_rps(dev_priv, val);
4996
4997         mutex_unlock(&dev_priv->rps.hw_lock);
4998
4999         return 0;
5000 }
5001
5002 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5003                         i915_max_freq_get, i915_max_freq_set,
5004                         "%llu\n");
5005
5006 static int
5007 i915_min_freq_get(void *data, u64 *val)
5008 {
5009         struct drm_device *dev = data;
5010         struct drm_i915_private *dev_priv = to_i915(dev);
5011
5012         if (INTEL_GEN(dev_priv) < 6)
5013                 return -ENODEV;
5014
5015         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5016         return 0;
5017 }
5018
5019 static int
5020 i915_min_freq_set(void *data, u64 val)
5021 {
5022         struct drm_device *dev = data;
5023         struct drm_i915_private *dev_priv = to_i915(dev);
5024         u32 hw_max, hw_min;
5025         int ret;
5026
5027         if (INTEL_GEN(dev_priv) < 6)
5028                 return -ENODEV;
5029
5030         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5031
5032         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5033         if (ret)
5034                 return ret;
5035
5036         /*
5037          * Turbo will still be enabled, but won't go below the set value.
5038          */
5039         val = intel_freq_opcode(dev_priv, val);
5040
5041         hw_max = dev_priv->rps.max_freq;
5042         hw_min = dev_priv->rps.min_freq;
5043
5044         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5045                 mutex_unlock(&dev_priv->rps.hw_lock);
5046                 return -EINVAL;
5047         }
5048
5049         dev_priv->rps.min_freq_softlimit = val;
5050
5051         intel_set_rps(dev_priv, val);
5052
5053         mutex_unlock(&dev_priv->rps.hw_lock);
5054
5055         return 0;
5056 }
5057
5058 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5059                         i915_min_freq_get, i915_min_freq_set,
5060                         "%llu\n");
5061
5062 static int
5063 i915_cache_sharing_get(void *data, u64 *val)
5064 {
5065         struct drm_device *dev = data;
5066         struct drm_i915_private *dev_priv = to_i915(dev);
5067         u32 snpcr;
5068         int ret;
5069
5070         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5071                 return -ENODEV;
5072
5073         ret = mutex_lock_interruptible(&dev->struct_mutex);
5074         if (ret)
5075                 return ret;
5076         intel_runtime_pm_get(dev_priv);
5077
5078         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5079
5080         intel_runtime_pm_put(dev_priv);
5081         mutex_unlock(&dev_priv->drm.struct_mutex);
5082
5083         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5084
5085         return 0;
5086 }
5087
5088 static int
5089 i915_cache_sharing_set(void *data, u64 val)
5090 {
5091         struct drm_device *dev = data;
5092         struct drm_i915_private *dev_priv = to_i915(dev);
5093         u32 snpcr;
5094
5095         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5096                 return -ENODEV;
5097
5098         if (val > 3)
5099                 return -EINVAL;
5100
5101         intel_runtime_pm_get(dev_priv);
5102         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5103
5104         /* Update the cache sharing policy here as well */
5105         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5106         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5107         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5108         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5109
5110         intel_runtime_pm_put(dev_priv);
5111         return 0;
5112 }
5113
5114 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5115                         i915_cache_sharing_get, i915_cache_sharing_set,
5116                         "%llu\n");
5117
5118 struct sseu_dev_status {
5119         unsigned int slice_total;
5120         unsigned int subslice_total;
5121         unsigned int subslice_per_slice;
5122         unsigned int eu_total;
5123         unsigned int eu_per_subslice;
5124 };
5125
5126 static void cherryview_sseu_device_status(struct drm_device *dev,
5127                                           struct sseu_dev_status *stat)
5128 {
5129         struct drm_i915_private *dev_priv = to_i915(dev);
5130         int ss_max = 2;
5131         int ss;
5132         u32 sig1[ss_max], sig2[ss_max];
5133
5134         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5135         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5136         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5137         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5138
5139         for (ss = 0; ss < ss_max; ss++) {
5140                 unsigned int eu_cnt;
5141
5142                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5143                         /* skip disabled subslice */
5144                         continue;
5145
5146                 stat->slice_total = 1;
5147                 stat->subslice_per_slice++;
5148                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5149                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5150                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5151                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5152                 stat->eu_total += eu_cnt;
5153                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5154         }
5155         stat->subslice_total = stat->subslice_per_slice;
5156 }
5157
5158 static void gen9_sseu_device_status(struct drm_device *dev,
5159                                     struct sseu_dev_status *stat)
5160 {
5161         struct drm_i915_private *dev_priv = to_i915(dev);
5162         int s_max = 3, ss_max = 4;
5163         int s, ss;
5164         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5165
5166         /* BXT has a single slice and at most 3 subslices. */
5167         if (IS_BROXTON(dev)) {
5168                 s_max = 1;
5169                 ss_max = 3;
5170         }
5171
5172         for (s = 0; s < s_max; s++) {
5173                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5174                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5175                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5176         }
5177
5178         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5179                      GEN9_PGCTL_SSA_EU19_ACK |
5180                      GEN9_PGCTL_SSA_EU210_ACK |
5181                      GEN9_PGCTL_SSA_EU311_ACK;
5182         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5183                      GEN9_PGCTL_SSB_EU19_ACK |
5184                      GEN9_PGCTL_SSB_EU210_ACK |
5185                      GEN9_PGCTL_SSB_EU311_ACK;
5186
5187         for (s = 0; s < s_max; s++) {
5188                 unsigned int ss_cnt = 0;
5189
5190                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5191                         /* skip disabled slice */
5192                         continue;
5193
5194                 stat->slice_total++;
5195
5196                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5197                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5198
5199                 for (ss = 0; ss < ss_max; ss++) {
5200                         unsigned int eu_cnt;
5201
5202                         if (IS_BROXTON(dev) &&
5203                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5204                                 /* skip disabled subslice */
5205                                 continue;
5206
5207                         if (IS_BROXTON(dev))
5208                                 ss_cnt++;
5209
5210                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5211                                                eu_mask[ss%2]);
5212                         stat->eu_total += eu_cnt;
5213                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5214                                                     eu_cnt);
5215                 }
5216
5217                 stat->subslice_total += ss_cnt;
5218                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5219                                                ss_cnt);
5220         }
5221 }
5222
5223 static void broadwell_sseu_device_status(struct drm_device *dev,
5224                                          struct sseu_dev_status *stat)
5225 {
5226         struct drm_i915_private *dev_priv = to_i915(dev);
5227         int s;
5228         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5229
5230         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5231
5232         if (stat->slice_total) {
5233                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5234                 stat->subslice_total = stat->slice_total *
5235                                        stat->subslice_per_slice;
5236                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5237                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5238
5239                 /* subtract fused off EU(s) from enabled slice(s) */
5240                 for (s = 0; s < stat->slice_total; s++) {
5241                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5242
5243                         stat->eu_total -= hweight8(subslice_7eu);
5244                 }
5245         }
5246 }
5247
5248 static int i915_sseu_status(struct seq_file *m, void *unused)
5249 {
5250         struct drm_info_node *node = (struct drm_info_node *) m->private;
5251         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
5252         struct drm_device *dev = &dev_priv->drm;
5253         struct sseu_dev_status stat;
5254
5255         if (INTEL_INFO(dev)->gen < 8)
5256                 return -ENODEV;
5257
5258         seq_puts(m, "SSEU Device Info\n");
5259         seq_printf(m, "  Available Slice Total: %u\n",
5260                    INTEL_INFO(dev)->slice_total);
5261         seq_printf(m, "  Available Subslice Total: %u\n",
5262                    INTEL_INFO(dev)->subslice_total);
5263         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5264                    INTEL_INFO(dev)->subslice_per_slice);
5265         seq_printf(m, "  Available EU Total: %u\n",
5266                    INTEL_INFO(dev)->eu_total);
5267         seq_printf(m, "  Available EU Per Subslice: %u\n",
5268                    INTEL_INFO(dev)->eu_per_subslice);
5269         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5270         if (HAS_POOLED_EU(dev))
5271                 seq_printf(m, "  Min EU in pool: %u\n",
5272                            INTEL_INFO(dev)->min_eu_in_pool);
5273         seq_printf(m, "  Has Slice Power Gating: %s\n",
5274                    yesno(INTEL_INFO(dev)->has_slice_pg));
5275         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5276                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5277         seq_printf(m, "  Has EU Power Gating: %s\n",
5278                    yesno(INTEL_INFO(dev)->has_eu_pg));
5279
5280         seq_puts(m, "SSEU Device Status\n");
5281         memset(&stat, 0, sizeof(stat));
5282
5283         intel_runtime_pm_get(dev_priv);
5284
5285         if (IS_CHERRYVIEW(dev)) {
5286                 cherryview_sseu_device_status(dev, &stat);
5287         } else if (IS_BROADWELL(dev)) {
5288                 broadwell_sseu_device_status(dev, &stat);
5289         } else if (INTEL_INFO(dev)->gen >= 9) {
5290                 gen9_sseu_device_status(dev, &stat);
5291         }
5292
5293         intel_runtime_pm_put(dev_priv);
5294
5295         seq_printf(m, "  Enabled Slice Total: %u\n",
5296                    stat.slice_total);
5297         seq_printf(m, "  Enabled Subslice Total: %u\n",
5298                    stat.subslice_total);
5299         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5300                    stat.subslice_per_slice);
5301         seq_printf(m, "  Enabled EU Total: %u\n",
5302                    stat.eu_total);
5303         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5304                    stat.eu_per_subslice);
5305
5306         return 0;
5307 }
5308
5309 static int i915_forcewake_open(struct inode *inode, struct file *file)
5310 {
5311         struct drm_device *dev = inode->i_private;
5312         struct drm_i915_private *dev_priv = to_i915(dev);
5313
5314         if (INTEL_INFO(dev)->gen < 6)
5315                 return 0;
5316
5317         intel_runtime_pm_get(dev_priv);
5318         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5319
5320         return 0;
5321 }
5322
5323 static int i915_forcewake_release(struct inode *inode, struct file *file)
5324 {
5325         struct drm_device *dev = inode->i_private;
5326         struct drm_i915_private *dev_priv = to_i915(dev);
5327
5328         if (INTEL_INFO(dev)->gen < 6)
5329                 return 0;
5330
5331         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5332         intel_runtime_pm_put(dev_priv);
5333
5334         return 0;
5335 }
5336
5337 static const struct file_operations i915_forcewake_fops = {
5338         .owner = THIS_MODULE,
5339         .open = i915_forcewake_open,
5340         .release = i915_forcewake_release,
5341 };
5342
5343 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5344 {
5345         struct drm_device *dev = minor->dev;
5346         struct dentry *ent;
5347
5348         ent = debugfs_create_file("i915_forcewake_user",
5349                                   S_IRUSR,
5350                                   root, dev,
5351                                   &i915_forcewake_fops);
5352         if (!ent)
5353                 return -ENOMEM;
5354
5355         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5356 }
5357
5358 static int i915_debugfs_create(struct dentry *root,
5359                                struct drm_minor *minor,
5360                                const char *name,
5361                                const struct file_operations *fops)
5362 {
5363         struct drm_device *dev = minor->dev;
5364         struct dentry *ent;
5365
5366         ent = debugfs_create_file(name,
5367                                   S_IRUGO | S_IWUSR,
5368                                   root, dev,
5369                                   fops);
5370         if (!ent)
5371                 return -ENOMEM;
5372
5373         return drm_add_fake_info_node(minor, ent, fops);
5374 }
5375
5376 static const struct drm_info_list i915_debugfs_list[] = {
5377         {"i915_capabilities", i915_capabilities, 0},
5378         {"i915_gem_objects", i915_gem_object_info, 0},
5379         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5380         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5381         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5382         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5383         {"i915_gem_stolen", i915_gem_stolen_list_info },
5384         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5385         {"i915_gem_request", i915_gem_request_info, 0},
5386         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5387         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5388         {"i915_gem_interrupt", i915_interrupt_info, 0},
5389         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5390         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5391         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5392         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5393         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5394         {"i915_guc_info", i915_guc_info, 0},
5395         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5396         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5397         {"i915_frequency_info", i915_frequency_info, 0},
5398         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5399         {"i915_drpc_info", i915_drpc_info, 0},
5400         {"i915_emon_status", i915_emon_status, 0},
5401         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5402         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5403         {"i915_fbc_status", i915_fbc_status, 0},
5404         {"i915_ips_status", i915_ips_status, 0},
5405         {"i915_sr_status", i915_sr_status, 0},
5406         {"i915_opregion", i915_opregion, 0},
5407         {"i915_vbt", i915_vbt, 0},
5408         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5409         {"i915_context_status", i915_context_status, 0},
5410         {"i915_dump_lrc", i915_dump_lrc, 0},
5411         {"i915_execlists", i915_execlists, 0},
5412         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5413         {"i915_swizzle_info", i915_swizzle_info, 0},
5414         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5415         {"i915_llc", i915_llc, 0},
5416         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5417         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5418         {"i915_energy_uJ", i915_energy_uJ, 0},
5419         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5420         {"i915_power_domain_info", i915_power_domain_info, 0},
5421         {"i915_dmc_info", i915_dmc_info, 0},
5422         {"i915_display_info", i915_display_info, 0},
5423         {"i915_semaphore_status", i915_semaphore_status, 0},
5424         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5425         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5426         {"i915_wa_registers", i915_wa_registers, 0},
5427         {"i915_ddb_info", i915_ddb_info, 0},
5428         {"i915_sseu_status", i915_sseu_status, 0},
5429         {"i915_drrs_status", i915_drrs_status, 0},
5430         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5431 };
5432 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5433
5434 static const struct i915_debugfs_files {
5435         const char *name;
5436         const struct file_operations *fops;
5437 } i915_debugfs_files[] = {
5438         {"i915_wedged", &i915_wedged_fops},
5439         {"i915_max_freq", &i915_max_freq_fops},
5440         {"i915_min_freq", &i915_min_freq_fops},
5441         {"i915_cache_sharing", &i915_cache_sharing_fops},
5442         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5443         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5444         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5445         {"i915_error_state", &i915_error_state_fops},
5446         {"i915_next_seqno", &i915_next_seqno_fops},
5447         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5448         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5449         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5450         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5451         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5452         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5453         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5454         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5455 };
5456
5457 void intel_display_crc_init(struct drm_device *dev)
5458 {
5459         struct drm_i915_private *dev_priv = to_i915(dev);
5460         enum pipe pipe;
5461
5462         for_each_pipe(dev_priv, pipe) {
5463                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5464
5465                 pipe_crc->opened = false;
5466                 spin_lock_init(&pipe_crc->lock);
5467                 init_waitqueue_head(&pipe_crc->wq);
5468         }
5469 }
5470
5471 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5472 {
5473         struct drm_minor *minor = dev_priv->drm.primary;
5474         int ret, i;
5475
5476         ret = i915_forcewake_create(minor->debugfs_root, minor);
5477         if (ret)
5478                 return ret;
5479
5480         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5481                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5482                 if (ret)
5483                         return ret;
5484         }
5485
5486         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5487                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5488                                           i915_debugfs_files[i].name,
5489                                           i915_debugfs_files[i].fops);
5490                 if (ret)
5491                         return ret;
5492         }
5493
5494         return drm_debugfs_create_files(i915_debugfs_list,
5495                                         I915_DEBUGFS_ENTRIES,
5496                                         minor->debugfs_root, minor);
5497 }
5498
5499 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5500 {
5501         struct drm_minor *minor = dev_priv->drm.primary;
5502         int i;
5503
5504         drm_debugfs_remove_files(i915_debugfs_list,
5505                                  I915_DEBUGFS_ENTRIES, minor);
5506
5507         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5508                                  1, minor);
5509
5510         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5511                 struct drm_info_list *info_list =
5512                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5513
5514                 drm_debugfs_remove_files(info_list, 1, minor);
5515         }
5516
5517         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5518                 struct drm_info_list *info_list =
5519                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5520
5521                 drm_debugfs_remove_files(info_list, 1, minor);
5522         }
5523 }
5524
5525 struct dpcd_block {
5526         /* DPCD dump start address. */
5527         unsigned int offset;
5528         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5529         unsigned int end;
5530         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5531         size_t size;
5532         /* Only valid for eDP. */
5533         bool edp;
5534 };
5535
5536 static const struct dpcd_block i915_dpcd_debug[] = {
5537         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5538         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5539         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5540         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5541         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5542         { .offset = DP_SET_POWER },
5543         { .offset = DP_EDP_DPCD_REV },
5544         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5545         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5546         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5547 };
5548
5549 static int i915_dpcd_show(struct seq_file *m, void *data)
5550 {
5551         struct drm_connector *connector = m->private;
5552         struct intel_dp *intel_dp =
5553                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5554         uint8_t buf[16];
5555         ssize_t err;
5556         int i;
5557
5558         if (connector->status != connector_status_connected)
5559                 return -ENODEV;
5560
5561         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5562                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5563                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5564
5565                 if (b->edp &&
5566                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5567                         continue;
5568
5569                 /* low tech for now */
5570                 if (WARN_ON(size > sizeof(buf)))
5571                         continue;
5572
5573                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5574                 if (err <= 0) {
5575                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5576                                   size, b->offset, err);
5577                         continue;
5578                 }
5579
5580                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5581         }
5582
5583         return 0;
5584 }
5585
5586 static int i915_dpcd_open(struct inode *inode, struct file *file)
5587 {
5588         return single_open(file, i915_dpcd_show, inode->i_private);
5589 }
5590
5591 static const struct file_operations i915_dpcd_fops = {
5592         .owner = THIS_MODULE,
5593         .open = i915_dpcd_open,
5594         .read = seq_read,
5595         .llseek = seq_lseek,
5596         .release = single_release,
5597 };
5598
5599 /**
5600  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5601  * @connector: pointer to a registered drm_connector
5602  *
5603  * Cleanup will be done by drm_connector_unregister() through a call to
5604  * drm_debugfs_connector_remove().
5605  *
5606  * Returns 0 on success, negative error codes on error.
5607  */
5608 int i915_debugfs_connector_add(struct drm_connector *connector)
5609 {
5610         struct dentry *root = connector->debugfs_entry;
5611
5612         /* The connector must have been registered beforehands. */
5613         if (!root)
5614                 return -ENODEV;
5615
5616         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5617             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5618                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5619                                     &i915_dpcd_fops);
5620
5621         return 0;
5622 }