2 * SPDX-License-Identifier: MIT
4 * Copyright © 2019 Intel Corporation
7 #include <linux/debugobjects.h>
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
19 * Active refs memory management
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
25 static struct i915_global_active {
26 struct i915_global base;
27 struct kmem_cache *slab_cache;
32 struct i915_active_fence base;
33 struct i915_active *ref;
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
42 return container_of(active, struct active_node, base);
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
47 static inline bool is_barrier(const struct i915_active_fence *active)
49 return IS_ERR(rcu_access_pointer(active->fence));
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
54 GEM_BUG_ON(!is_barrier(&node->base));
55 return (struct llist_node *)&node->base.cb.node;
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
67 GEM_BUG_ON(!is_barrier(&node->base));
68 return __barrier_to_engine(node);
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
73 return container_of((struct list_head *)x,
74 struct active_node, base.cb.node);
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
79 static void *active_debug_hint(void *addr)
81 struct i915_active *ref = addr;
83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
86 static const struct debug_obj_descr active_debug_desc = {
87 .name = "i915_active",
88 .debug_hint = active_debug_hint,
91 static void debug_active_init(struct i915_active *ref)
93 debug_object_init(ref, &active_debug_desc);
96 static void debug_active_activate(struct i915_active *ref)
98 lockdep_assert_held(&ref->tree_lock);
99 if (!atomic_read(&ref->count)) /* before the first inc */
100 debug_object_activate(ref, &active_debug_desc);
103 static void debug_active_deactivate(struct i915_active *ref)
105 lockdep_assert_held(&ref->tree_lock);
106 if (!atomic_read(&ref->count)) /* after the last dec */
107 debug_object_deactivate(ref, &active_debug_desc);
110 static void debug_active_fini(struct i915_active *ref)
112 debug_object_free(ref, &active_debug_desc);
115 static void debug_active_assert(struct i915_active *ref)
117 debug_object_assert_init(ref, &active_debug_desc);
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
131 __active_retire(struct i915_active *ref)
133 struct rb_root root = RB_ROOT;
134 struct active_node *it, *n;
137 GEM_BUG_ON(i915_active_is_idle(ref));
139 /* return the unused nodes to our slabcache -- flushing the allocator */
140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 debug_active_deactivate(ref);
146 /* Even if we have not used the cache, we may still have a barrier */
148 ref->cache = fetch_node(ref->tree.rb_node);
150 /* Keep the MRU cached node for reuse */
152 /* Discard all other nodes in the tree */
153 rb_erase(&ref->cache->node, &ref->tree);
156 /* Rebuild the tree with only the cached node */
157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 rb_insert_color(&ref->cache->node, &ref->tree);
159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
161 /* Make the cached node available for reuse with any timeline */
162 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
165 spin_unlock_irqrestore(&ref->tree_lock, flags);
167 /* After the final retire, the entire struct may be freed */
171 /* ... except if you wait on it, you must manage your own references! */
174 /* Finally free the discarded timeline tree */
175 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176 GEM_BUG_ON(i915_active_fence_isset(&it->base));
177 kmem_cache_free(global.slab_cache, it);
182 active_work(struct work_struct *wrk)
184 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
186 GEM_BUG_ON(!atomic_read(&ref->count));
187 if (atomic_add_unless(&ref->count, -1, 1))
190 __active_retire(ref);
194 active_retire(struct i915_active *ref)
196 GEM_BUG_ON(!atomic_read(&ref->count));
197 if (atomic_add_unless(&ref->count, -1, 1))
200 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201 queue_work(system_unbound_wq, &ref->work);
205 __active_retire(ref);
208 static inline struct dma_fence **
209 __active_fence_slot(struct i915_active_fence *active)
211 return (struct dma_fence ** __force)&active->fence;
215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
217 struct i915_active_fence *active =
218 container_of(cb, typeof(*active), cb);
220 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
226 if (active_fence_cb(fence, cb))
227 active_retire(container_of(cb, struct active_node, base.cb)->ref);
231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
233 if (active_fence_cb(fence, cb))
234 active_retire(container_of(cb, struct i915_active, excl.cb));
237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
239 struct active_node *it;
241 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
244 * We track the most recently used timeline to skip a rbtree search
245 * for the common case, under typical loads we never need the rbtree
246 * at all. We can reuse the last slot if it is empty, that is
247 * after the previous activity has been retired, or if it matches the
250 it = READ_ONCE(ref->cache);
252 u64 cached = READ_ONCE(it->timeline);
254 /* Once claimed, this slot will only belong to this idx */
259 * An unclaimed cache [.timeline=0] can only be claimed once.
261 * If the value is already non-zero, some other thread has
262 * claimed the cache and we know that is does not match our
263 * idx. If, and only if, the timeline is currently zero is it
264 * worth competing to claim it atomically for ourselves (for
265 * only the winner of that race will cmpxchg return the old
268 if (!cached && !cmpxchg64(&it->timeline, 0, idx))
272 BUILD_BUG_ON(offsetof(typeof(*it), node));
274 /* While active, the tree can only be built; not destroyed */
275 GEM_BUG_ON(i915_active_is_idle(ref));
277 it = fetch_node(ref->tree.rb_node);
279 if (it->timeline < idx) {
280 it = fetch_node(it->node.rb_right);
281 } else if (it->timeline > idx) {
282 it = fetch_node(it->node.rb_left);
284 WRITE_ONCE(ref->cache, it);
289 /* NB: If the tree rotated beneath us, we may miss our target. */
293 static struct i915_active_fence *
294 active_instance(struct i915_active *ref, u64 idx)
296 struct active_node *node;
297 struct rb_node **p, *parent;
299 node = __active_lookup(ref, idx);
303 spin_lock_irq(&ref->tree_lock);
304 GEM_BUG_ON(i915_active_is_idle(ref));
307 p = &ref->tree.rb_node;
311 node = rb_entry(parent, struct active_node, node);
312 if (node->timeline == idx)
315 if (node->timeline < idx)
316 p = &parent->rb_right;
318 p = &parent->rb_left;
322 * XXX: We should preallocate this before i915_active_ref() is ever
323 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
325 node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
329 __i915_active_fence_init(&node->base, NULL, node_retire);
331 node->timeline = idx;
333 rb_link_node(&node->node, parent, p);
334 rb_insert_color(&node->node, &ref->tree);
337 WRITE_ONCE(ref->cache, node);
338 spin_unlock_irq(&ref->tree_lock);
343 void __i915_active_init(struct i915_active *ref,
344 int (*active)(struct i915_active *ref),
345 void (*retire)(struct i915_active *ref),
346 struct lock_class_key *mkey,
347 struct lock_class_key *wkey)
351 debug_active_init(ref);
354 ref->active = active;
355 ref->retire = ptr_unpack_bits(retire, &bits, 2);
356 if (bits & I915_ACTIVE_MAY_SLEEP)
357 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
359 spin_lock_init(&ref->tree_lock);
363 init_llist_head(&ref->preallocated_barriers);
364 atomic_set(&ref->count, 0);
365 __mutex_init(&ref->mutex, "i915_active", mkey);
366 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
367 INIT_WORK(&ref->work, active_work);
368 #if IS_ENABLED(CONFIG_LOCKDEP)
369 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
373 static bool ____active_del_barrier(struct i915_active *ref,
374 struct active_node *node,
375 struct intel_engine_cs *engine)
378 struct llist_node *head = NULL, *tail = NULL;
379 struct llist_node *pos, *next;
381 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
384 * Rebuild the llist excluding our node. We may perform this
385 * outside of the kernel_context timeline mutex and so someone
386 * else may be manipulating the engine->barrier_tasks, in
387 * which case either we or they will be upset :)
389 * A second __active_del_barrier() will report failure to claim
390 * the active_node and the caller will just shrug and know not to
391 * claim ownership of its node.
393 * A concurrent i915_request_add_active_barriers() will miss adding
394 * any of the tasks, but we will try again on the next -- and since
395 * we are actively using the barrier, we know that there will be
396 * at least another opportunity when we idle.
398 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
399 if (node == barrier_from_ll(pos)) {
410 llist_add_batch(head, tail, &engine->barrier_tasks);
416 __active_del_barrier(struct i915_active *ref, struct active_node *node)
418 return ____active_del_barrier(ref, node, barrier_to_engine(node));
422 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
424 if (!is_barrier(active)) /* proto-node used by our idle barrier? */
428 * This request is on the kernel_context timeline, and so
429 * we can use it to substitute for the pending idle-barrer
430 * request that we want to emit on the kernel_context.
432 __active_del_barrier(ref, node_from_active(active));
436 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
438 struct i915_active_fence *active;
441 /* Prevent reaping in case we malloc/wait while building the tree */
442 err = i915_active_acquire(ref);
446 active = active_instance(ref, idx);
452 if (replace_barrier(ref, active)) {
453 RCU_INIT_POINTER(active->fence, NULL);
454 atomic_dec(&ref->count);
456 if (!__i915_active_fence_set(active, fence))
457 __i915_active_acquire(ref);
460 i915_active_release(ref);
464 static struct dma_fence *
465 __i915_active_set_fence(struct i915_active *ref,
466 struct i915_active_fence *active,
467 struct dma_fence *fence)
469 struct dma_fence *prev;
471 if (replace_barrier(ref, active)) {
472 RCU_INIT_POINTER(active->fence, fence);
477 prev = __i915_active_fence_set(active, fence);
479 prev = dma_fence_get_rcu(prev);
481 __i915_active_acquire(ref);
487 static struct i915_active_fence *
488 __active_fence(struct i915_active *ref, u64 idx)
490 struct active_node *it;
492 it = __active_lookup(ref, idx);
493 if (unlikely(!it)) { /* Contention with parallel tree builders! */
494 spin_lock_irq(&ref->tree_lock);
495 it = __active_lookup(ref, idx);
496 spin_unlock_irq(&ref->tree_lock);
498 GEM_BUG_ON(!it); /* slot must be preallocated */
504 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
506 /* Only valid while active, see i915_active_acquire_for_context() */
507 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
513 /* We expect the caller to manage the exclusive timeline ordering */
514 return __i915_active_set_fence(ref, &ref->excl, f);
517 bool i915_active_acquire_if_busy(struct i915_active *ref)
519 debug_active_assert(ref);
520 return atomic_add_unless(&ref->count, 1, 0);
523 static void __i915_active_activate(struct i915_active *ref)
525 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
526 if (!atomic_fetch_inc(&ref->count))
527 debug_active_activate(ref);
528 spin_unlock_irq(&ref->tree_lock);
531 int i915_active_acquire(struct i915_active *ref)
535 if (i915_active_acquire_if_busy(ref))
539 __i915_active_activate(ref);
543 err = mutex_lock_interruptible(&ref->mutex);
547 if (likely(!i915_active_acquire_if_busy(ref))) {
548 err = ref->active(ref);
550 __i915_active_activate(ref);
553 mutex_unlock(&ref->mutex);
558 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
560 struct i915_active_fence *active;
563 err = i915_active_acquire(ref);
567 active = active_instance(ref, idx);
569 i915_active_release(ref);
573 return 0; /* return with active ref */
576 void i915_active_release(struct i915_active *ref)
578 debug_active_assert(ref);
582 static void enable_signaling(struct i915_active_fence *active)
584 struct dma_fence *fence;
586 if (unlikely(is_barrier(active)))
589 fence = i915_active_fence_get(active);
593 dma_fence_enable_sw_signaling(fence);
594 dma_fence_put(fence);
597 static int flush_barrier(struct active_node *it)
599 struct intel_engine_cs *engine;
601 if (likely(!is_barrier(&it->base)))
604 engine = __barrier_to_engine(it);
605 smp_rmb(); /* serialise with add_active_barriers */
606 if (!is_barrier(&it->base))
609 return intel_engine_flush_barriers(engine);
612 static int flush_lazy_signals(struct i915_active *ref)
614 struct active_node *it, *n;
617 enable_signaling(&ref->excl);
618 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
619 err = flush_barrier(it); /* unconnected idle barrier? */
623 enable_signaling(&it->base);
629 int __i915_active_wait(struct i915_active *ref, int state)
633 /* Any fence added after the wait begins will not be auto-signaled */
634 if (i915_active_acquire_if_busy(ref)) {
637 err = flush_lazy_signals(ref);
638 i915_active_release(ref);
642 if (___wait_var_event(ref, i915_active_is_idle(ref),
643 state, 0, 0, schedule()))
648 * After the wait is complete, the caller may free the active.
649 * We have to flush any concurrent retirement before returning.
651 flush_work(&ref->work);
655 static int __await_active(struct i915_active_fence *active,
656 int (*fn)(void *arg, struct dma_fence *fence),
659 struct dma_fence *fence;
661 if (is_barrier(active)) /* XXX flush the barrier? */
664 fence = i915_active_fence_get(active);
668 err = fn(arg, fence);
669 dma_fence_put(fence);
677 struct wait_barrier {
678 struct wait_queue_entry base;
679 struct i915_active *ref;
683 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
685 struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
687 if (i915_active_is_idle(wb->ref)) {
688 list_del(&wq->entry);
689 i915_sw_fence_complete(wq->private);
696 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
698 struct wait_barrier *wb;
700 wb = kmalloc(sizeof(*wb), GFP_KERNEL);
704 GEM_BUG_ON(i915_active_is_idle(ref));
705 if (!i915_sw_fence_await(fence)) {
711 wb->base.func = barrier_wake;
712 wb->base.private = fence;
715 add_wait_queue(__var_waitqueue(ref), &wb->base);
719 static int await_active(struct i915_active *ref,
721 int (*fn)(void *arg, struct dma_fence *fence),
722 void *arg, struct i915_sw_fence *barrier)
726 if (!i915_active_acquire_if_busy(ref))
729 if (flags & I915_ACTIVE_AWAIT_EXCL &&
730 rcu_access_pointer(ref->excl.fence)) {
731 err = __await_active(&ref->excl, fn, arg);
736 if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
737 struct active_node *it, *n;
739 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
740 err = __await_active(&it->base, fn, arg);
746 if (flags & I915_ACTIVE_AWAIT_BARRIER) {
747 err = flush_lazy_signals(ref);
751 err = __await_barrier(ref, barrier);
757 i915_active_release(ref);
761 static int rq_await_fence(void *arg, struct dma_fence *fence)
763 return i915_request_await_dma_fence(arg, fence);
766 int i915_request_await_active(struct i915_request *rq,
767 struct i915_active *ref,
770 return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
773 static int sw_await_fence(void *arg, struct dma_fence *fence)
775 return i915_sw_fence_await_dma_fence(arg, fence, 0,
776 GFP_NOWAIT | __GFP_NOWARN);
779 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
780 struct i915_active *ref,
783 return await_active(ref, flags, sw_await_fence, fence, fence);
786 void i915_active_fini(struct i915_active *ref)
788 debug_active_fini(ref);
789 GEM_BUG_ON(atomic_read(&ref->count));
790 GEM_BUG_ON(work_pending(&ref->work));
791 mutex_destroy(&ref->mutex);
794 kmem_cache_free(global.slab_cache, ref->cache);
797 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
799 return node->timeline == idx && !i915_active_fence_isset(&node->base);
802 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
804 struct rb_node *prev, *p;
806 if (RB_EMPTY_ROOT(&ref->tree))
809 GEM_BUG_ON(i915_active_is_idle(ref));
812 * Try to reuse any existing barrier nodes already allocated for this
813 * i915_active, due to overlapping active phases there is likely a
814 * node kept alive (as we reuse before parking). We prefer to reuse
815 * completely idle barriers (less hassle in manipulating the llists),
816 * but otherwise any will do.
818 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
819 p = &ref->cache->node;
824 p = ref->tree.rb_node;
826 struct active_node *node =
827 rb_entry(p, struct active_node, node);
829 if (is_idle_barrier(node, idx))
833 if (node->timeline < idx)
834 p = READ_ONCE(p->rb_right);
836 p = READ_ONCE(p->rb_left);
840 * No quick match, but we did find the leftmost rb_node for the
841 * kernel_context. Walk the rb_tree in-order to see if there were
842 * any idle-barriers on this timeline that we missed, or just use
843 * the first pending barrier.
845 for (p = prev; p; p = rb_next(p)) {
846 struct active_node *node =
847 rb_entry(p, struct active_node, node);
848 struct intel_engine_cs *engine;
850 if (node->timeline > idx)
853 if (node->timeline < idx)
856 if (is_idle_barrier(node, idx))
860 * The list of pending barriers is protected by the
861 * kernel_context timeline, which notably we do not hold
862 * here. i915_request_add_active_barriers() may consume
863 * the barrier before we claim it, so we have to check
866 engine = __barrier_to_engine(node);
867 smp_rmb(); /* serialise with add_active_barriers */
868 if (is_barrier(&node->base) &&
869 ____active_del_barrier(ref, node, engine))
876 spin_lock_irq(&ref->tree_lock);
877 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
878 if (p == &ref->cache->node)
879 WRITE_ONCE(ref->cache, NULL);
880 spin_unlock_irq(&ref->tree_lock);
882 return rb_entry(p, struct active_node, node);
885 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
886 struct intel_engine_cs *engine)
888 intel_engine_mask_t tmp, mask = engine->mask;
889 struct llist_node *first = NULL, *last = NULL;
890 struct intel_gt *gt = engine->gt;
892 GEM_BUG_ON(i915_active_is_idle(ref));
894 /* Wait until the previous preallocation is completed */
895 while (!llist_empty(&ref->preallocated_barriers))
899 * Preallocate a node for each physical engine supporting the target
900 * engine (remember virtual engines have more than one sibling).
901 * We can then use the preallocated nodes in
902 * i915_active_acquire_barrier()
905 for_each_engine_masked(engine, gt, mask, tmp) {
906 u64 idx = engine->kernel_context->timeline->fence_context;
907 struct llist_node *prev = first;
908 struct active_node *node;
911 node = reuse_idle_barrier(ref, idx);
914 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
918 RCU_INIT_POINTER(node->base.fence, NULL);
919 node->base.cb.func = node_retire;
920 node->timeline = idx;
924 if (!i915_active_fence_isset(&node->base)) {
926 * Mark this as being *our* unconnected proto-node.
928 * Since this node is not in any list, and we have
929 * decoupled it from the rbtree, we can reuse the
930 * request to indicate this is an idle-barrier node
931 * and then we can use the rb_node and list pointers
932 * for our tracking of the pending barrier.
934 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
935 node->base.cb.node.prev = (void *)engine;
936 __i915_active_acquire(ref);
938 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
940 GEM_BUG_ON(barrier_to_engine(node) != engine);
941 first = barrier_to_ll(node);
945 intel_engine_pm_get(engine);
948 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
949 llist_add_batch(first, last, &ref->preallocated_barriers);
955 struct active_node *node = barrier_from_ll(first);
959 atomic_dec(&ref->count);
960 intel_engine_pm_put(barrier_to_engine(node));
962 kmem_cache_free(global.slab_cache, node);
967 void i915_active_acquire_barrier(struct i915_active *ref)
969 struct llist_node *pos, *next;
972 GEM_BUG_ON(i915_active_is_idle(ref));
975 * Transfer the list of preallocated barriers into the
976 * i915_active rbtree, but only as proto-nodes. They will be
977 * populated by i915_request_add_active_barriers() to point to the
978 * request that will eventually release them.
980 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
981 struct active_node *node = barrier_from_ll(pos);
982 struct intel_engine_cs *engine = barrier_to_engine(node);
983 struct rb_node **p, *parent;
985 spin_lock_irqsave_nested(&ref->tree_lock, flags,
986 SINGLE_DEPTH_NESTING);
988 p = &ref->tree.rb_node;
990 struct active_node *it;
994 it = rb_entry(parent, struct active_node, node);
995 if (it->timeline < node->timeline)
996 p = &parent->rb_right;
998 p = &parent->rb_left;
1000 rb_link_node(&node->node, parent, p);
1001 rb_insert_color(&node->node, &ref->tree);
1002 spin_unlock_irqrestore(&ref->tree_lock, flags);
1004 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1005 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1006 intel_engine_pm_put_delay(engine, 1);
1010 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1012 return __active_fence_slot(&barrier_from_ll(node)->base);
1015 void i915_request_add_active_barriers(struct i915_request *rq)
1017 struct intel_engine_cs *engine = rq->engine;
1018 struct llist_node *node, *next;
1019 unsigned long flags;
1021 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1022 GEM_BUG_ON(intel_engine_is_virtual(engine));
1023 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1025 node = llist_del_all(&engine->barrier_tasks);
1029 * Attach the list of proto-fences to the in-flight request such
1030 * that the parent i915_active will be released when this request
1033 spin_lock_irqsave(&rq->lock, flags);
1034 llist_for_each_safe(node, next, node) {
1035 /* serialise with reuse_idle_barrier */
1036 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1037 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1039 spin_unlock_irqrestore(&rq->lock, flags);
1043 * __i915_active_fence_set: Update the last active fence along its timeline
1044 * @active: the active tracker
1045 * @fence: the new fence (under construction)
1047 * Records the new @fence as the last active fence along its timeline in
1048 * this active tracker, moving the tracking callbacks from the previous
1049 * fence onto this one. Returns the previous fence (if not already completed),
1050 * which the caller must ensure is executed before the new fence. To ensure
1051 * that the order of fences within the timeline of the i915_active_fence is
1052 * understood, it should be locked by the caller.
1055 __i915_active_fence_set(struct i915_active_fence *active,
1056 struct dma_fence *fence)
1058 struct dma_fence *prev;
1059 unsigned long flags;
1061 if (fence == rcu_access_pointer(active->fence))
1064 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1067 * Consider that we have two threads arriving (A and B), with
1068 * C already resident as the active->fence.
1070 * A does the xchg first, and so it sees C or NULL depending
1071 * on the timing of the interrupt handler. If it is NULL, the
1072 * previous fence must have been signaled and we know that
1073 * we are first on the timeline. If it is still present,
1074 * we acquire the lock on that fence and serialise with the interrupt
1075 * handler, in the process removing it from any future interrupt
1076 * callback. A will then wait on C before executing (if present).
1078 * As B is second, it sees A as the previous fence and so waits for
1079 * it to complete its transition and takes over the occupancy for
1080 * itself -- remembering that it needs to wait on A before executing.
1082 * Note the strong ordering of the timeline also provides consistent
1083 * nesting rules for the fence->lock; the inner lock is always the
1086 spin_lock_irqsave(fence->lock, flags);
1087 prev = xchg(__active_fence_slot(active), fence);
1089 GEM_BUG_ON(prev == fence);
1090 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1091 __list_del_entry(&active->cb.node);
1092 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1094 list_add_tail(&active->cb.node, &fence->cb_list);
1095 spin_unlock_irqrestore(fence->lock, flags);
1100 int i915_active_fence_set(struct i915_active_fence *active,
1101 struct i915_request *rq)
1103 struct dma_fence *fence;
1106 /* Must maintain timeline ordering wrt previous active requests */
1108 fence = __i915_active_fence_set(active, &rq->fence);
1109 if (fence) /* but the previous fence may not belong to that timeline! */
1110 fence = dma_fence_get_rcu(fence);
1113 err = i915_request_await_dma_fence(rq, fence);
1114 dma_fence_put(fence);
1120 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1122 active_fence_cb(fence, cb);
1125 struct auto_active {
1126 struct i915_active base;
1130 struct i915_active *i915_active_get(struct i915_active *ref)
1132 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1138 static void auto_release(struct kref *ref)
1140 struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1142 i915_active_fini(&aa->base);
1146 void i915_active_put(struct i915_active *ref)
1148 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1150 kref_put(&aa->ref, auto_release);
1153 static int auto_active(struct i915_active *ref)
1155 i915_active_get(ref);
1159 static void auto_retire(struct i915_active *ref)
1161 i915_active_put(ref);
1164 struct i915_active *i915_active_create(void)
1166 struct auto_active *aa;
1168 aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1172 kref_init(&aa->ref);
1173 i915_active_init(&aa->base, auto_active, auto_retire);
1178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1179 #include "selftests/i915_active.c"
1182 static void i915_global_active_shrink(void)
1184 kmem_cache_shrink(global.slab_cache);
1187 static void i915_global_active_exit(void)
1189 kmem_cache_destroy(global.slab_cache);
1192 static struct i915_global_active global = { {
1193 .shrink = i915_global_active_shrink,
1194 .exit = i915_global_active_exit,
1197 int __init i915_global_active_init(void)
1199 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1200 if (!global.slab_cache)
1203 i915_global_register(&global.base);