Merge tag 'gvt-next-2020-04-22' of https://github.com/intel/gvt-linux into drm-intel...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct drm_i915_gem_object *ctx_obj =
62                 workload->req->context->state->obj;
63         struct execlist_ring_context *shadow_ring_context;
64         struct page *page;
65
66         if (WARN_ON(!workload->shadow_mm))
67                 return;
68
69         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70                 return;
71
72         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73         shadow_ring_context = kmap(page);
74         set_context_pdp_root_pointer(shadow_ring_context,
75                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76         kunmap(page);
77 }
78
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85                 u32 *reg_state, bool save)
86 {
87         struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90         int i = 0;
91         u32 flex_mmio[] = {
92                 i915_mmio_reg_offset(EU_PERF_CNTL0),
93                 i915_mmio_reg_offset(EU_PERF_CNTL1),
94                 i915_mmio_reg_offset(EU_PERF_CNTL2),
95                 i915_mmio_reg_offset(EU_PERF_CNTL3),
96                 i915_mmio_reg_offset(EU_PERF_CNTL4),
97                 i915_mmio_reg_offset(EU_PERF_CNTL5),
98                 i915_mmio_reg_offset(EU_PERF_CNTL6),
99         };
100
101         if (workload->engine->id != RCS0)
102                 return;
103
104         if (save) {
105                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108                         u32 state_offset = ctx_flexeu0 + i * 2;
109
110                         workload->flex_mmio[i] = reg_state[state_offset + 1];
111                 }
112         } else {
113                 reg_state[ctx_oactxctrl] =
114                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118                         u32 state_offset = ctx_flexeu0 + i * 2;
119                         u32 mmio = flex_mmio[i];
120
121                         reg_state[state_offset] = mmio;
122                         reg_state[state_offset + 1] = workload->flex_mmio[i];
123                 }
124         }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129         struct intel_vgpu *vgpu = workload->vgpu;
130         struct intel_gvt *gvt = vgpu->gvt;
131         struct intel_context *ctx = workload->req->context;
132         struct execlist_ring_context *shadow_ring_context;
133         void *dst;
134         void *context_base;
135         unsigned long context_gpa, context_page_num;
136         unsigned long gpa_base; /* first gpa of consecutive GPAs */
137         unsigned long gpa_size; /* size of consecutive GPAs */
138         struct intel_vgpu_submission *s = &vgpu->submission;
139         int i;
140         bool skip = false;
141         int ring_id = workload->engine->id;
142
143         GEM_BUG_ON(!intel_context_is_pinned(ctx));
144
145         context_base = (void *) ctx->lrc_reg_state -
146                                 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
147
148         shadow_ring_context = (void *) ctx->lrc_reg_state;
149
150         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
151 #define COPY_REG(name) \
152         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
153                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
154 #define COPY_REG_MASKED(name) {\
155                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
156                                               + RING_CTX_OFF(name.val),\
157                                               &shadow_ring_context->name.val, 4);\
158                 shadow_ring_context->name.val |= 0xffff << 16;\
159         }
160
161         COPY_REG_MASKED(ctx_ctrl);
162         COPY_REG(ctx_timestamp);
163
164         if (workload->engine->id == RCS0) {
165                 COPY_REG(bb_per_ctx_ptr);
166                 COPY_REG(rcs_indirect_ctx);
167                 COPY_REG(rcs_indirect_ctx_offset);
168         }
169 #undef COPY_REG
170 #undef COPY_REG_MASKED
171
172         intel_gvt_hypervisor_read_gpa(vgpu,
173                         workload->ring_context_gpa +
174                         sizeof(*shadow_ring_context),
175                         (void *)shadow_ring_context +
176                         sizeof(*shadow_ring_context),
177                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
178
179         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
180
181         gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
182                         workload->engine->name, workload->ctx_desc.lrca,
183                         workload->ctx_desc.context_id,
184                         workload->ring_context_gpa);
185
186         /* only need to ensure this context is not pinned/unpinned during the
187          * period from last submission to this this submission.
188          * Upon reaching this function, the currently submitted context is not
189          * supposed to get unpinned. If a misbehaving guest driver ever does
190          * this, it would corrupt itself.
191          */
192         if (s->last_ctx[ring_id].valid &&
193                         (s->last_ctx[ring_id].lrca ==
194                                 workload->ctx_desc.lrca) &&
195                         (s->last_ctx[ring_id].ring_context_gpa ==
196                                 workload->ring_context_gpa))
197                 skip = true;
198
199         s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
200         s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
201
202         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
203                 return 0;
204
205         s->last_ctx[ring_id].valid = false;
206         context_page_num = workload->engine->context_size;
207         context_page_num = context_page_num >> PAGE_SHIFT;
208
209         if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
210                 context_page_num = 19;
211
212         /* find consecutive GPAs from gma until the first inconsecutive GPA.
213          * read from the continuous GPAs into dst virtual address
214          */
215         gpa_size = 0;
216         for (i = 2; i < context_page_num; i++) {
217                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
218                                 (u32)((workload->ctx_desc.lrca + i) <<
219                                 I915_GTT_PAGE_SHIFT));
220                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
221                         gvt_vgpu_err("Invalid guest context descriptor\n");
222                         return -EFAULT;
223                 }
224
225                 if (gpa_size == 0) {
226                         gpa_base = context_gpa;
227                         dst = context_base + (i << I915_GTT_PAGE_SHIFT);
228                 } else if (context_gpa != gpa_base + gpa_size)
229                         goto read;
230
231                 gpa_size += I915_GTT_PAGE_SIZE;
232
233                 if (i == context_page_num - 1)
234                         goto read;
235
236                 continue;
237
238 read:
239                 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
240                 gpa_base = context_gpa;
241                 gpa_size = I915_GTT_PAGE_SIZE;
242                 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
243         }
244         s->last_ctx[ring_id].valid = true;
245         return 0;
246 }
247
248 static inline bool is_gvt_request(struct i915_request *rq)
249 {
250         return intel_context_force_single_submission(rq->context);
251 }
252
253 static void save_ring_hw_state(struct intel_vgpu *vgpu,
254                                const struct intel_engine_cs *engine)
255 {
256         struct intel_uncore *uncore = engine->uncore;
257         i915_reg_t reg;
258
259         reg = RING_INSTDONE(engine->mmio_base);
260         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261                 intel_uncore_read(uncore, reg);
262
263         reg = RING_ACTHD(engine->mmio_base);
264         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265                 intel_uncore_read(uncore, reg);
266
267         reg = RING_ACTHD_UDW(engine->mmio_base);
268         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
269                 intel_uncore_read(uncore, reg);
270 }
271
272 static int shadow_context_status_change(struct notifier_block *nb,
273                 unsigned long action, void *data)
274 {
275         struct i915_request *rq = data;
276         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
277                                 shadow_ctx_notifier_block[rq->engine->id]);
278         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
279         enum intel_engine_id ring_id = rq->engine->id;
280         struct intel_vgpu_workload *workload;
281         unsigned long flags;
282
283         if (!is_gvt_request(rq)) {
284                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
285                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
286                     scheduler->engine_owner[ring_id]) {
287                         /* Switch ring from vGPU to host. */
288                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
289                                               NULL, rq->engine);
290                         scheduler->engine_owner[ring_id] = NULL;
291                 }
292                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
293
294                 return NOTIFY_OK;
295         }
296
297         workload = scheduler->current_workload[ring_id];
298         if (unlikely(!workload))
299                 return NOTIFY_OK;
300
301         switch (action) {
302         case INTEL_CONTEXT_SCHEDULE_IN:
303                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
304                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
305                         /* Switch ring from host to vGPU or vGPU to vGPU. */
306                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
307                                               workload->vgpu, rq->engine);
308                         scheduler->engine_owner[ring_id] = workload->vgpu;
309                 } else
310                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
311                                       ring_id, workload->vgpu->id);
312                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
313                 atomic_set(&workload->shadow_ctx_active, 1);
314                 break;
315         case INTEL_CONTEXT_SCHEDULE_OUT:
316                 save_ring_hw_state(workload->vgpu, rq->engine);
317                 atomic_set(&workload->shadow_ctx_active, 0);
318                 break;
319         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
320                 save_ring_hw_state(workload->vgpu, rq->engine);
321                 break;
322         default:
323                 WARN_ON(1);
324                 return NOTIFY_OK;
325         }
326         wake_up(&workload->shadow_ctx_status_wq);
327         return NOTIFY_OK;
328 }
329
330 static void
331 shadow_context_descriptor_update(struct intel_context *ce,
332                                  struct intel_vgpu_workload *workload)
333 {
334         u64 desc = ce->lrc.desc;
335
336         /*
337          * Update bits 0-11 of the context descriptor which includes flags
338          * like GEN8_CTX_* cached in desc_template
339          */
340         desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
341         desc |= (u64)workload->ctx_desc.addressing_mode <<
342                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
343
344         ce->lrc.desc = desc;
345 }
346
347 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
348 {
349         struct intel_vgpu *vgpu = workload->vgpu;
350         struct i915_request *req = workload->req;
351         void *shadow_ring_buffer_va;
352         u32 *cs;
353         int err;
354
355         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
356                 intel_vgpu_restore_inhibit_context(vgpu, req);
357
358         /*
359          * To track whether a request has started on HW, we can emit a
360          * breadcrumb at the beginning of the request and check its
361          * timeline's HWSP to see if the breadcrumb has advanced past the
362          * start of this request. Actually, the request must have the
363          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
364          * scheduler might get a wrong state of it during reset. Since the
365          * requests from gvt always set the has_init_breadcrumb flag, here
366          * need to do the emit_init_breadcrumb for all the requests.
367          */
368         if (req->engine->emit_init_breadcrumb) {
369                 err = req->engine->emit_init_breadcrumb(req);
370                 if (err) {
371                         gvt_vgpu_err("fail to emit init breadcrumb\n");
372                         return err;
373                 }
374         }
375
376         /* allocate shadow ring buffer */
377         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
378         if (IS_ERR(cs)) {
379                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
380                         workload->rb_len);
381                 return PTR_ERR(cs);
382         }
383
384         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
385
386         /* get shadow ring buffer va */
387         workload->shadow_ring_buffer_va = cs;
388
389         memcpy(cs, shadow_ring_buffer_va,
390                         workload->rb_len);
391
392         cs += workload->rb_len / sizeof(u32);
393         intel_ring_advance(workload->req, cs);
394
395         return 0;
396 }
397
398 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
399 {
400         if (!wa_ctx->indirect_ctx.obj)
401                 return;
402
403         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
404         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
405
406         wa_ctx->indirect_ctx.obj = NULL;
407         wa_ctx->indirect_ctx.shadow_va = NULL;
408 }
409
410 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
411                                           struct intel_context *ce)
412 {
413         struct intel_vgpu_mm *mm = workload->shadow_mm;
414         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
415         int i = 0;
416
417         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
418                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
419         } else {
420                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
421                         struct i915_page_directory * const pd =
422                                 i915_pd_entry(ppgtt->pd, i);
423
424                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
425                 }
426         }
427 }
428
429 static int
430 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
431 {
432         struct intel_vgpu *vgpu = workload->vgpu;
433         struct intel_vgpu_submission *s = &vgpu->submission;
434         struct i915_request *rq;
435
436         if (workload->req)
437                 return 0;
438
439         rq = i915_request_create(s->shadow[workload->engine->id]);
440         if (IS_ERR(rq)) {
441                 gvt_vgpu_err("fail to allocate gem request\n");
442                 return PTR_ERR(rq);
443         }
444
445         workload->req = i915_request_get(rq);
446         return 0;
447 }
448
449 /**
450  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
451  * shadow it as well, include ringbuffer,wa_ctx and ctx.
452  * @workload: an abstract entity for each execlist submission.
453  *
454  * This function is called before the workload submitting to i915, to make
455  * sure the content of the workload is valid.
456  */
457 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
458 {
459         struct intel_vgpu *vgpu = workload->vgpu;
460         struct intel_vgpu_submission *s = &vgpu->submission;
461         int ret;
462
463         lockdep_assert_held(&vgpu->vgpu_lock);
464
465         if (workload->shadow)
466                 return 0;
467
468         if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
469                 shadow_context_descriptor_update(s->shadow[workload->engine->id],
470                                                  workload);
471
472         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
473         if (ret)
474                 return ret;
475
476         if (workload->engine->id == RCS0 &&
477             workload->wa_ctx.indirect_ctx.size) {
478                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
479                 if (ret)
480                         goto err_shadow;
481         }
482
483         workload->shadow = true;
484         return 0;
485
486 err_shadow:
487         release_shadow_wa_ctx(&workload->wa_ctx);
488         return ret;
489 }
490
491 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
492
493 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
494 {
495         struct intel_gvt *gvt = workload->vgpu->gvt;
496         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
497         struct intel_vgpu_shadow_bb *bb;
498         int ret;
499
500         list_for_each_entry(bb, &workload->shadow_bb, list) {
501                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
502                  * is only updated into ring_scan_buffer, not real ring address
503                  * allocated in later copy_workload_to_ring_buffer. pls be noted
504                  * shadow_ring_buffer_va is now pointed to real ring buffer va
505                  * in copy_workload_to_ring_buffer.
506                  */
507
508                 if (bb->bb_offset)
509                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
510                                 + bb->bb_offset;
511
512                 if (bb->ppgtt) {
513                         /* for non-priv bb, scan&shadow is only for
514                          * debugging purpose, so the content of shadow bb
515                          * is the same as original bb. Therefore,
516                          * here, rather than switch to shadow bb's gma
517                          * address, we directly use original batch buffer's
518                          * gma address, and send original bb to hardware
519                          * directly
520                          */
521                         if (bb->clflush & CLFLUSH_AFTER) {
522                                 drm_clflush_virt_range(bb->va,
523                                                 bb->obj->base.size);
524                                 bb->clflush &= ~CLFLUSH_AFTER;
525                         }
526                         i915_gem_object_finish_access(bb->obj);
527                         bb->accessing = false;
528
529                 } else {
530                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
531                                         NULL, 0, 0, 0);
532                         if (IS_ERR(bb->vma)) {
533                                 ret = PTR_ERR(bb->vma);
534                                 goto err;
535                         }
536
537                         /* relocate shadow batch buffer */
538                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
539                         if (gmadr_bytes == 8)
540                                 bb->bb_start_cmd_va[2] = 0;
541
542                         /* No one is going to touch shadow bb from now on. */
543                         if (bb->clflush & CLFLUSH_AFTER) {
544                                 drm_clflush_virt_range(bb->va,
545                                                 bb->obj->base.size);
546                                 bb->clflush &= ~CLFLUSH_AFTER;
547                         }
548
549                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
550                                                                 false);
551                         if (ret)
552                                 goto err;
553
554                         ret = i915_vma_move_to_active(bb->vma,
555                                                       workload->req,
556                                                       0);
557                         if (ret)
558                                 goto err;
559
560                         i915_gem_object_finish_access(bb->obj);
561                         bb->accessing = false;
562                 }
563         }
564         return 0;
565 err:
566         release_shadow_batch_buffer(workload);
567         return ret;
568 }
569
570 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
571 {
572         struct intel_vgpu_workload *workload =
573                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
574         struct i915_request *rq = workload->req;
575         struct execlist_ring_context *shadow_ring_context =
576                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
577
578         shadow_ring_context->bb_per_ctx_ptr.val =
579                 (shadow_ring_context->bb_per_ctx_ptr.val &
580                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
581         shadow_ring_context->rcs_indirect_ctx.val =
582                 (shadow_ring_context->rcs_indirect_ctx.val &
583                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
584 }
585
586 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
587 {
588         struct i915_vma *vma;
589         unsigned char *per_ctx_va =
590                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
591                 wa_ctx->indirect_ctx.size;
592
593         if (wa_ctx->indirect_ctx.size == 0)
594                 return 0;
595
596         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
597                                        0, CACHELINE_BYTES, 0);
598         if (IS_ERR(vma))
599                 return PTR_ERR(vma);
600
601         /* FIXME: we are not tracking our pinned VMA leaving it
602          * up to the core to fix up the stray pin_count upon
603          * free.
604          */
605
606         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
607
608         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
609         memset(per_ctx_va, 0, CACHELINE_BYTES);
610
611         update_wa_ctx_2_shadow_ctx(wa_ctx);
612         return 0;
613 }
614
615 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
616 {
617         vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
618                 workload->rb_start;
619 }
620
621 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
622 {
623         struct intel_vgpu_shadow_bb *bb, *pos;
624
625         if (list_empty(&workload->shadow_bb))
626                 return;
627
628         bb = list_first_entry(&workload->shadow_bb,
629                         struct intel_vgpu_shadow_bb, list);
630
631         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
632                 if (bb->obj) {
633                         if (bb->accessing)
634                                 i915_gem_object_finish_access(bb->obj);
635
636                         if (bb->va && !IS_ERR(bb->va))
637                                 i915_gem_object_unpin_map(bb->obj);
638
639                         if (bb->vma && !IS_ERR(bb->vma))
640                                 i915_vma_unpin(bb->vma);
641
642                         i915_gem_object_put(bb->obj);
643                 }
644                 list_del(&bb->list);
645                 kfree(bb);
646         }
647 }
648
649 static int prepare_workload(struct intel_vgpu_workload *workload)
650 {
651         struct intel_vgpu *vgpu = workload->vgpu;
652         struct intel_vgpu_submission *s = &vgpu->submission;
653         int ret = 0;
654
655         ret = intel_vgpu_pin_mm(workload->shadow_mm);
656         if (ret) {
657                 gvt_vgpu_err("fail to vgpu pin mm\n");
658                 return ret;
659         }
660
661         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
662             !workload->shadow_mm->ppgtt_mm.shadowed) {
663                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
664                 return -EINVAL;
665         }
666
667         update_shadow_pdps(workload);
668
669         set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
670
671         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
672         if (ret) {
673                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
674                 goto err_unpin_mm;
675         }
676
677         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
678         if (ret) {
679                 gvt_vgpu_err("fail to flush post shadow\n");
680                 goto err_unpin_mm;
681         }
682
683         ret = copy_workload_to_ring_buffer(workload);
684         if (ret) {
685                 gvt_vgpu_err("fail to generate request\n");
686                 goto err_unpin_mm;
687         }
688
689         ret = prepare_shadow_batch_buffer(workload);
690         if (ret) {
691                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
692                 goto err_unpin_mm;
693         }
694
695         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
696         if (ret) {
697                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
698                 goto err_shadow_batch;
699         }
700
701         if (workload->prepare) {
702                 ret = workload->prepare(workload);
703                 if (ret)
704                         goto err_shadow_wa_ctx;
705         }
706
707         return 0;
708 err_shadow_wa_ctx:
709         release_shadow_wa_ctx(&workload->wa_ctx);
710 err_shadow_batch:
711         release_shadow_batch_buffer(workload);
712 err_unpin_mm:
713         intel_vgpu_unpin_mm(workload->shadow_mm);
714         return ret;
715 }
716
717 static int dispatch_workload(struct intel_vgpu_workload *workload)
718 {
719         struct intel_vgpu *vgpu = workload->vgpu;
720         struct i915_request *rq;
721         int ret;
722
723         gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
724                       workload->engine->name, workload);
725
726         mutex_lock(&vgpu->vgpu_lock);
727
728         ret = intel_gvt_workload_req_alloc(workload);
729         if (ret)
730                 goto err_req;
731
732         ret = intel_gvt_scan_and_shadow_workload(workload);
733         if (ret)
734                 goto out;
735
736         ret = populate_shadow_context(workload);
737         if (ret) {
738                 release_shadow_wa_ctx(&workload->wa_ctx);
739                 goto out;
740         }
741
742         ret = prepare_workload(workload);
743 out:
744         if (ret) {
745                 /* We might still need to add request with
746                  * clean ctx to retire it properly..
747                  */
748                 rq = fetch_and_zero(&workload->req);
749                 i915_request_put(rq);
750         }
751
752         if (!IS_ERR_OR_NULL(workload->req)) {
753                 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
754                               workload->engine->name, workload->req);
755                 i915_request_add(workload->req);
756                 workload->dispatched = true;
757         }
758 err_req:
759         if (ret)
760                 workload->status = ret;
761         mutex_unlock(&vgpu->vgpu_lock);
762         return ret;
763 }
764
765 static struct intel_vgpu_workload *
766 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
767 {
768         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
769         struct intel_vgpu_workload *workload = NULL;
770
771         mutex_lock(&gvt->sched_lock);
772
773         /*
774          * no current vgpu / will be scheduled out / no workload
775          * bail out
776          */
777         if (!scheduler->current_vgpu) {
778                 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
779                 goto out;
780         }
781
782         if (scheduler->need_reschedule) {
783                 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
784                 goto out;
785         }
786
787         if (!scheduler->current_vgpu->active ||
788             list_empty(workload_q_head(scheduler->current_vgpu, engine)))
789                 goto out;
790
791         /*
792          * still have current workload, maybe the workload disptacher
793          * fail to submit it for some reason, resubmit it.
794          */
795         if (scheduler->current_workload[engine->id]) {
796                 workload = scheduler->current_workload[engine->id];
797                 gvt_dbg_sched("ring %s still have current workload %p\n",
798                               engine->name, workload);
799                 goto out;
800         }
801
802         /*
803          * pick a workload as current workload
804          * once current workload is set, schedule policy routines
805          * will wait the current workload is finished when trying to
806          * schedule out a vgpu.
807          */
808         scheduler->current_workload[engine->id] =
809                 list_first_entry(workload_q_head(scheduler->current_vgpu,
810                                                  engine),
811                                  struct intel_vgpu_workload, list);
812
813         workload = scheduler->current_workload[engine->id];
814
815         gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
816
817         atomic_inc(&workload->vgpu->submission.running_workload_num);
818 out:
819         mutex_unlock(&gvt->sched_lock);
820         return workload;
821 }
822
823 static void update_guest_context(struct intel_vgpu_workload *workload)
824 {
825         struct i915_request *rq = workload->req;
826         struct intel_vgpu *vgpu = workload->vgpu;
827         struct execlist_ring_context *shadow_ring_context;
828         struct intel_context *ctx = workload->req->context;
829         void *context_base;
830         void *src;
831         unsigned long context_gpa, context_page_num;
832         unsigned long gpa_base; /* first gpa of consecutive GPAs */
833         unsigned long gpa_size; /* size of consecutive GPAs*/
834         int i;
835         u32 ring_base;
836         u32 head, tail;
837         u16 wrap_count;
838
839         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
840                       workload->ctx_desc.lrca);
841
842         GEM_BUG_ON(!intel_context_is_pinned(ctx));
843
844         head = workload->rb_head;
845         tail = workload->rb_tail;
846         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
847
848         if (tail < head) {
849                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
850                         wrap_count = 0;
851                 else
852                         wrap_count += 1;
853         }
854
855         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
856
857         ring_base = rq->engine->mmio_base;
858         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
859         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
860
861         context_page_num = rq->engine->context_size;
862         context_page_num = context_page_num >> PAGE_SHIFT;
863
864         if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
865                 context_page_num = 19;
866
867         context_base = (void *) ctx->lrc_reg_state -
868                         (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
869
870         /* find consecutive GPAs from gma until the first inconsecutive GPA.
871          * write to the consecutive GPAs from src virtual address
872          */
873         gpa_size = 0;
874         for (i = 2; i < context_page_num; i++) {
875                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
876                                 (u32)((workload->ctx_desc.lrca + i) <<
877                                         I915_GTT_PAGE_SHIFT));
878                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
879                         gvt_vgpu_err("invalid guest context descriptor\n");
880                         return;
881                 }
882
883                 if (gpa_size == 0) {
884                         gpa_base = context_gpa;
885                         src = context_base + (i << I915_GTT_PAGE_SHIFT);
886                 } else if (context_gpa != gpa_base + gpa_size)
887                         goto write;
888
889                 gpa_size += I915_GTT_PAGE_SIZE;
890
891                 if (i == context_page_num - 1)
892                         goto write;
893
894                 continue;
895
896 write:
897                 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
898                 gpa_base = context_gpa;
899                 gpa_size = I915_GTT_PAGE_SIZE;
900                 src = context_base + (i << I915_GTT_PAGE_SHIFT);
901         }
902
903         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
904                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
905
906         shadow_ring_context = (void *) ctx->lrc_reg_state;
907
908 #define COPY_REG(name) \
909         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
910                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
911
912         COPY_REG(ctx_ctrl);
913         COPY_REG(ctx_timestamp);
914
915 #undef COPY_REG
916
917         intel_gvt_hypervisor_write_gpa(vgpu,
918                         workload->ring_context_gpa +
919                         sizeof(*shadow_ring_context),
920                         (void *)shadow_ring_context +
921                         sizeof(*shadow_ring_context),
922                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
923 }
924
925 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
926                                 intel_engine_mask_t engine_mask)
927 {
928         struct intel_vgpu_submission *s = &vgpu->submission;
929         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
930         struct intel_engine_cs *engine;
931         struct intel_vgpu_workload *pos, *n;
932         intel_engine_mask_t tmp;
933
934         /* free the unsubmited workloads in the queues. */
935         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
936                 list_for_each_entry_safe(pos, n,
937                         &s->workload_q_head[engine->id], list) {
938                         list_del_init(&pos->list);
939                         intel_vgpu_destroy_workload(pos);
940                 }
941                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
942         }
943 }
944
945 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
946 {
947         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
948         struct intel_vgpu_workload *workload =
949                 scheduler->current_workload[ring_id];
950         struct intel_vgpu *vgpu = workload->vgpu;
951         struct intel_vgpu_submission *s = &vgpu->submission;
952         struct i915_request *rq = workload->req;
953         int event;
954
955         mutex_lock(&vgpu->vgpu_lock);
956         mutex_lock(&gvt->sched_lock);
957
958         /* For the workload w/ request, needs to wait for the context
959          * switch to make sure request is completed.
960          * For the workload w/o request, directly complete the workload.
961          */
962         if (rq) {
963                 wait_event(workload->shadow_ctx_status_wq,
964                            !atomic_read(&workload->shadow_ctx_active));
965
966                 /* If this request caused GPU hang, req->fence.error will
967                  * be set to -EIO. Use -EIO to set workload status so
968                  * that when this request caused GPU hang, didn't trigger
969                  * context switch interrupt to guest.
970                  */
971                 if (likely(workload->status == -EINPROGRESS)) {
972                         if (workload->req->fence.error == -EIO)
973                                 workload->status = -EIO;
974                         else
975                                 workload->status = 0;
976                 }
977
978                 if (!workload->status &&
979                     !(vgpu->resetting_eng & BIT(ring_id))) {
980                         update_guest_context(workload);
981
982                         for_each_set_bit(event, workload->pending_events,
983                                          INTEL_GVT_EVENT_MAX)
984                                 intel_vgpu_trigger_virtual_event(vgpu, event);
985                 }
986
987                 i915_request_put(fetch_and_zero(&workload->req));
988         }
989
990         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
991                         ring_id, workload, workload->status);
992
993         scheduler->current_workload[ring_id] = NULL;
994
995         list_del_init(&workload->list);
996
997         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
998                 /* if workload->status is not successful means HW GPU
999                  * has occurred GPU hang or something wrong with i915/GVT,
1000                  * and GVT won't inject context switch interrupt to guest.
1001                  * So this error is a vGPU hang actually to the guest.
1002                  * According to this we should emunlate a vGPU hang. If
1003                  * there are pending workloads which are already submitted
1004                  * from guest, we should clean them up like HW GPU does.
1005                  *
1006                  * if it is in middle of engine resetting, the pending
1007                  * workloads won't be submitted to HW GPU and will be
1008                  * cleaned up during the resetting process later, so doing
1009                  * the workload clean up here doesn't have any impact.
1010                  **/
1011                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1012         }
1013
1014         workload->complete(workload);
1015
1016         atomic_dec(&s->running_workload_num);
1017         wake_up(&scheduler->workload_complete_wq);
1018
1019         if (gvt->scheduler.need_reschedule)
1020                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1021
1022         mutex_unlock(&gvt->sched_lock);
1023         mutex_unlock(&vgpu->vgpu_lock);
1024 }
1025
1026 static int workload_thread(void *arg)
1027 {
1028         struct intel_engine_cs *engine = arg;
1029         const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1030         struct intel_gvt *gvt = engine->i915->gvt;
1031         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1032         struct intel_vgpu_workload *workload = NULL;
1033         struct intel_vgpu *vgpu = NULL;
1034         int ret;
1035         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1036
1037         gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1038
1039         while (!kthread_should_stop()) {
1040                 intel_wakeref_t wakeref;
1041
1042                 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1043                 do {
1044                         workload = pick_next_workload(gvt, engine);
1045                         if (workload)
1046                                 break;
1047                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1048                                    MAX_SCHEDULE_TIMEOUT);
1049                 } while (!kthread_should_stop());
1050                 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1051
1052                 if (!workload)
1053                         break;
1054
1055                 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1056                               engine->name, workload,
1057                               workload->vgpu->id);
1058
1059                 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1060
1061                 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1062                               engine->name, workload);
1063
1064                 if (need_force_wake)
1065                         intel_uncore_forcewake_get(engine->uncore,
1066                                                    FORCEWAKE_ALL);
1067                 /*
1068                  * Update the vReg of the vGPU which submitted this
1069                  * workload. The vGPU may use these registers for checking
1070                  * the context state. The value comes from GPU commands
1071                  * in this workload.
1072                  */
1073                 update_vreg_in_ctx(workload);
1074
1075                 ret = dispatch_workload(workload);
1076
1077                 if (ret) {
1078                         vgpu = workload->vgpu;
1079                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1080                         goto complete;
1081                 }
1082
1083                 gvt_dbg_sched("ring %s wait workload %p\n",
1084                               engine->name, workload);
1085                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1086
1087 complete:
1088                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1089                               workload, workload->status);
1090
1091                 complete_current_workload(gvt, engine->id);
1092
1093                 if (need_force_wake)
1094                         intel_uncore_forcewake_put(engine->uncore,
1095                                                    FORCEWAKE_ALL);
1096
1097                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1098                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1099                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1100         }
1101         return 0;
1102 }
1103
1104 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1105 {
1106         struct intel_vgpu_submission *s = &vgpu->submission;
1107         struct intel_gvt *gvt = vgpu->gvt;
1108         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1109
1110         if (atomic_read(&s->running_workload_num)) {
1111                 gvt_dbg_sched("wait vgpu idle\n");
1112
1113                 wait_event(scheduler->workload_complete_wq,
1114                                 !atomic_read(&s->running_workload_num));
1115         }
1116 }
1117
1118 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1119 {
1120         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1121         struct intel_engine_cs *engine;
1122         enum intel_engine_id i;
1123
1124         gvt_dbg_core("clean workload scheduler\n");
1125
1126         for_each_engine(engine, gvt->gt, i) {
1127                 atomic_notifier_chain_unregister(
1128                                         &engine->context_status_notifier,
1129                                         &gvt->shadow_ctx_notifier_block[i]);
1130                 kthread_stop(scheduler->thread[i]);
1131         }
1132 }
1133
1134 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1135 {
1136         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1137         struct intel_engine_cs *engine;
1138         enum intel_engine_id i;
1139         int ret;
1140
1141         gvt_dbg_core("init workload scheduler\n");
1142
1143         init_waitqueue_head(&scheduler->workload_complete_wq);
1144
1145         for_each_engine(engine, gvt->gt, i) {
1146                 init_waitqueue_head(&scheduler->waitq[i]);
1147
1148                 scheduler->thread[i] = kthread_run(workload_thread, engine,
1149                                                    "gvt:%s", engine->name);
1150                 if (IS_ERR(scheduler->thread[i])) {
1151                         gvt_err("fail to create workload thread\n");
1152                         ret = PTR_ERR(scheduler->thread[i]);
1153                         goto err;
1154                 }
1155
1156                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1157                                         shadow_context_status_change;
1158                 atomic_notifier_chain_register(&engine->context_status_notifier,
1159                                         &gvt->shadow_ctx_notifier_block[i]);
1160         }
1161
1162         return 0;
1163
1164 err:
1165         intel_gvt_clean_workload_scheduler(gvt);
1166         return ret;
1167 }
1168
1169 static void
1170 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1171                                 struct i915_ppgtt *ppgtt)
1172 {
1173         int i;
1174
1175         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1176                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1177         } else {
1178                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1179                         struct i915_page_directory * const pd =
1180                                 i915_pd_entry(ppgtt->pd, i);
1181
1182                         px_dma(pd) = s->i915_context_pdps[i];
1183                 }
1184         }
1185 }
1186
1187 /**
1188  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1189  * @vgpu: a vGPU
1190  *
1191  * This function is called when a vGPU is being destroyed.
1192  *
1193  */
1194 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1195 {
1196         struct intel_vgpu_submission *s = &vgpu->submission;
1197         struct intel_engine_cs *engine;
1198         enum intel_engine_id id;
1199
1200         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1201
1202         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1203         for_each_engine(engine, vgpu->gvt->gt, id)
1204                 intel_context_unpin(s->shadow[id]);
1205
1206         kmem_cache_destroy(s->workloads);
1207 }
1208
1209
1210 /**
1211  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1212  * @vgpu: a vGPU
1213  * @engine_mask: engines expected to be reset
1214  *
1215  * This function is called when a vGPU is being destroyed.
1216  *
1217  */
1218 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1219                                  intel_engine_mask_t engine_mask)
1220 {
1221         struct intel_vgpu_submission *s = &vgpu->submission;
1222
1223         if (!s->active)
1224                 return;
1225
1226         intel_vgpu_clean_workloads(vgpu, engine_mask);
1227         s->ops->reset(vgpu, engine_mask);
1228 }
1229
1230 static void
1231 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1232                              struct i915_ppgtt *ppgtt)
1233 {
1234         int i;
1235
1236         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1237                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1238         } else {
1239                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1240                         struct i915_page_directory * const pd =
1241                                 i915_pd_entry(ppgtt->pd, i);
1242
1243                         s->i915_context_pdps[i] = px_dma(pd);
1244                 }
1245         }
1246 }
1247
1248 /**
1249  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1250  * @vgpu: a vGPU
1251  *
1252  * This function is called when a vGPU is being created.
1253  *
1254  * Returns:
1255  * Zero on success, negative error code if failed.
1256  *
1257  */
1258 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1259 {
1260         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1261         struct intel_vgpu_submission *s = &vgpu->submission;
1262         struct intel_engine_cs *engine;
1263         struct i915_ppgtt *ppgtt;
1264         enum intel_engine_id i;
1265         int ret;
1266
1267         ppgtt = i915_ppgtt_create(&i915->gt);
1268         if (IS_ERR(ppgtt))
1269                 return PTR_ERR(ppgtt);
1270
1271         i915_context_ppgtt_root_save(s, ppgtt);
1272
1273         for_each_engine(engine, vgpu->gvt->gt, i) {
1274                 struct intel_context *ce;
1275
1276                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1277                 s->shadow[i] = ERR_PTR(-EINVAL);
1278
1279                 ce = intel_context_create(engine);
1280                 if (IS_ERR(ce)) {
1281                         ret = PTR_ERR(ce);
1282                         goto out_shadow_ctx;
1283                 }
1284
1285                 i915_vm_put(ce->vm);
1286                 ce->vm = i915_vm_get(&ppgtt->vm);
1287                 intel_context_set_single_submission(ce);
1288
1289                 /* Max ring buffer size */
1290                 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1291                         const unsigned int ring_size = 512 * SZ_4K;
1292
1293                         ce->ring = __intel_context_ring_size(ring_size);
1294                 }
1295
1296                 ret = intel_context_pin(ce);
1297                 intel_context_put(ce);
1298                 if (ret)
1299                         goto out_shadow_ctx;
1300
1301                 s->shadow[i] = ce;
1302         }
1303
1304         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1305
1306         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1307                                                   sizeof(struct intel_vgpu_workload), 0,
1308                                                   SLAB_HWCACHE_ALIGN,
1309                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1310                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1311                                                   NULL);
1312
1313         if (!s->workloads) {
1314                 ret = -ENOMEM;
1315                 goto out_shadow_ctx;
1316         }
1317
1318         atomic_set(&s->running_workload_num, 0);
1319         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1320
1321         memset(s->last_ctx, 0, sizeof(s->last_ctx));
1322
1323         i915_vm_put(&ppgtt->vm);
1324         return 0;
1325
1326 out_shadow_ctx:
1327         i915_context_ppgtt_root_restore(s, ppgtt);
1328         for_each_engine(engine, vgpu->gvt->gt, i) {
1329                 if (IS_ERR(s->shadow[i]))
1330                         break;
1331
1332                 intel_context_unpin(s->shadow[i]);
1333                 intel_context_put(s->shadow[i]);
1334         }
1335         i915_vm_put(&ppgtt->vm);
1336         return ret;
1337 }
1338
1339 /**
1340  * intel_vgpu_select_submission_ops - select virtual submission interface
1341  * @vgpu: a vGPU
1342  * @engine_mask: either ALL_ENGINES or target engine mask
1343  * @interface: expected vGPU virtual submission interface
1344  *
1345  * This function is called when guest configures submission interface.
1346  *
1347  * Returns:
1348  * Zero on success, negative error code if failed.
1349  *
1350  */
1351 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1352                                      intel_engine_mask_t engine_mask,
1353                                      unsigned int interface)
1354 {
1355         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1356         struct intel_vgpu_submission *s = &vgpu->submission;
1357         const struct intel_vgpu_submission_ops *ops[] = {
1358                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1359                         &intel_vgpu_execlist_submission_ops,
1360         };
1361         int ret;
1362
1363         if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1364                 return -EINVAL;
1365
1366         if (drm_WARN_ON(&i915->drm,
1367                         interface == 0 && engine_mask != ALL_ENGINES))
1368                 return -EINVAL;
1369
1370         if (s->active)
1371                 s->ops->clean(vgpu, engine_mask);
1372
1373         if (interface == 0) {
1374                 s->ops = NULL;
1375                 s->virtual_submission_interface = 0;
1376                 s->active = false;
1377                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1378                 return 0;
1379         }
1380
1381         ret = ops[interface]->init(vgpu, engine_mask);
1382         if (ret)
1383                 return ret;
1384
1385         s->ops = ops[interface];
1386         s->virtual_submission_interface = interface;
1387         s->active = true;
1388
1389         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1390                         vgpu->id, s->ops->name);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * intel_vgpu_destroy_workload - destroy a vGPU workload
1397  * @workload: workload to destroy
1398  *
1399  * This function is called when destroy a vGPU workload.
1400  *
1401  */
1402 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1403 {
1404         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1405
1406         release_shadow_batch_buffer(workload);
1407         release_shadow_wa_ctx(&workload->wa_ctx);
1408
1409         if (workload->shadow_mm)
1410                 intel_vgpu_mm_put(workload->shadow_mm);
1411
1412         kmem_cache_free(s->workloads, workload);
1413 }
1414
1415 static struct intel_vgpu_workload *
1416 alloc_workload(struct intel_vgpu *vgpu)
1417 {
1418         struct intel_vgpu_submission *s = &vgpu->submission;
1419         struct intel_vgpu_workload *workload;
1420
1421         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1422         if (!workload)
1423                 return ERR_PTR(-ENOMEM);
1424
1425         INIT_LIST_HEAD(&workload->list);
1426         INIT_LIST_HEAD(&workload->shadow_bb);
1427
1428         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1429         atomic_set(&workload->shadow_ctx_active, 0);
1430
1431         workload->status = -EINPROGRESS;
1432         workload->vgpu = vgpu;
1433
1434         return workload;
1435 }
1436
1437 #define RING_CTX_OFF(x) \
1438         offsetof(struct execlist_ring_context, x)
1439
1440 static void read_guest_pdps(struct intel_vgpu *vgpu,
1441                 u64 ring_context_gpa, u32 pdp[8])
1442 {
1443         u64 gpa;
1444         int i;
1445
1446         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1447
1448         for (i = 0; i < 8; i++)
1449                 intel_gvt_hypervisor_read_gpa(vgpu,
1450                                 gpa + i * 8, &pdp[7 - i], 4);
1451 }
1452
1453 static int prepare_mm(struct intel_vgpu_workload *workload)
1454 {
1455         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1456         struct intel_vgpu_mm *mm;
1457         struct intel_vgpu *vgpu = workload->vgpu;
1458         enum intel_gvt_gtt_type root_entry_type;
1459         u64 pdps[GVT_RING_CTX_NR_PDPS];
1460
1461         switch (desc->addressing_mode) {
1462         case 1: /* legacy 32-bit */
1463                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1464                 break;
1465         case 3: /* legacy 64-bit */
1466                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1467                 break;
1468         default:
1469                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1470                 return -EINVAL;
1471         }
1472
1473         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1474
1475         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1476         if (IS_ERR(mm))
1477                 return PTR_ERR(mm);
1478
1479         workload->shadow_mm = mm;
1480         return 0;
1481 }
1482
1483 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1484                 ((a)->lrca == (b)->lrca))
1485
1486 /**
1487  * intel_vgpu_create_workload - create a vGPU workload
1488  * @vgpu: a vGPU
1489  * @engine: the engine
1490  * @desc: a guest context descriptor
1491  *
1492  * This function is called when creating a vGPU workload.
1493  *
1494  * Returns:
1495  * struct intel_vgpu_workload * on success, negative error code in
1496  * pointer if failed.
1497  *
1498  */
1499 struct intel_vgpu_workload *
1500 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1501                            const struct intel_engine_cs *engine,
1502                            struct execlist_ctx_descriptor_format *desc)
1503 {
1504         struct intel_vgpu_submission *s = &vgpu->submission;
1505         struct list_head *q = workload_q_head(vgpu, engine);
1506         struct intel_vgpu_workload *last_workload = NULL;
1507         struct intel_vgpu_workload *workload = NULL;
1508         u64 ring_context_gpa;
1509         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1510         u32 guest_head;
1511         int ret;
1512
1513         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1514                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1515         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1516                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1517                 return ERR_PTR(-EINVAL);
1518         }
1519
1520         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1521                         RING_CTX_OFF(ring_header.val), &head, 4);
1522
1523         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1524                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1525
1526         guest_head = head;
1527
1528         head &= RB_HEAD_OFF_MASK;
1529         tail &= RB_TAIL_OFF_MASK;
1530
1531         list_for_each_entry_reverse(last_workload, q, list) {
1532
1533                 if (same_context(&last_workload->ctx_desc, desc)) {
1534                         gvt_dbg_el("ring %s cur workload == last\n",
1535                                    engine->name);
1536                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1537                                    last_workload->rb_tail);
1538                         /*
1539                          * cannot use guest context head pointer here,
1540                          * as it might not be updated at this time
1541                          */
1542                         head = last_workload->rb_tail;
1543                         break;
1544                 }
1545         }
1546
1547         gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1548
1549         /* record some ring buffer register values for scan and shadow */
1550         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1551                         RING_CTX_OFF(rb_start.val), &start, 4);
1552         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1553                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1554         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1555                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1556
1557         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1558                                 _RING_CTL_BUF_SIZE(ctl))) {
1559                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1560                 return ERR_PTR(-EINVAL);
1561         }
1562
1563         workload = alloc_workload(vgpu);
1564         if (IS_ERR(workload))
1565                 return workload;
1566
1567         workload->engine = engine;
1568         workload->ctx_desc = *desc;
1569         workload->ring_context_gpa = ring_context_gpa;
1570         workload->rb_head = head;
1571         workload->guest_rb_head = guest_head;
1572         workload->rb_tail = tail;
1573         workload->rb_start = start;
1574         workload->rb_ctl = ctl;
1575
1576         if (engine->id == RCS0) {
1577                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1578                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1579                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1580                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1581
1582                 workload->wa_ctx.indirect_ctx.guest_gma =
1583                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1584                 workload->wa_ctx.indirect_ctx.size =
1585                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1586                         CACHELINE_BYTES;
1587
1588                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1589                         if (!intel_gvt_ggtt_validate_range(vgpu,
1590                                 workload->wa_ctx.indirect_ctx.guest_gma,
1591                                 workload->wa_ctx.indirect_ctx.size)) {
1592                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1593                                     workload->wa_ctx.indirect_ctx.guest_gma);
1594                                 kmem_cache_free(s->workloads, workload);
1595                                 return ERR_PTR(-EINVAL);
1596                         }
1597                 }
1598
1599                 workload->wa_ctx.per_ctx.guest_gma =
1600                         per_ctx & PER_CTX_ADDR_MASK;
1601                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1602                 if (workload->wa_ctx.per_ctx.valid) {
1603                         if (!intel_gvt_ggtt_validate_range(vgpu,
1604                                 workload->wa_ctx.per_ctx.guest_gma,
1605                                 CACHELINE_BYTES)) {
1606                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1607                                         workload->wa_ctx.per_ctx.guest_gma);
1608                                 kmem_cache_free(s->workloads, workload);
1609                                 return ERR_PTR(-EINVAL);
1610                         }
1611                 }
1612         }
1613
1614         gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1615                    workload, engine->name, head, tail, start, ctl);
1616
1617         ret = prepare_mm(workload);
1618         if (ret) {
1619                 kmem_cache_free(s->workloads, workload);
1620                 return ERR_PTR(ret);
1621         }
1622
1623         /* Only scan and shadow the first workload in the queue
1624          * as there is only one pre-allocated buf-obj for shadow.
1625          */
1626         if (list_empty(q)) {
1627                 intel_wakeref_t wakeref;
1628
1629                 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1630                         ret = intel_gvt_scan_and_shadow_workload(workload);
1631         }
1632
1633         if (ret) {
1634                 if (vgpu_is_vm_unhealthy(ret))
1635                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1636                 intel_vgpu_destroy_workload(workload);
1637                 return ERR_PTR(ret);
1638         }
1639
1640         return workload;
1641 }
1642
1643 /**
1644  * intel_vgpu_queue_workload - Qeue a vGPU workload
1645  * @workload: the workload to queue in
1646  */
1647 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1648 {
1649         list_add_tail(&workload->list,
1650                       workload_q_head(workload->vgpu, workload->engine));
1651         intel_gvt_kick_schedule(workload->vgpu->gvt);
1652         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1653 }