4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
38 #include "i915_pvinfo.h"
41 #include "gt/intel_gt_regs.h"
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
46 #define gvt_vdbg_mm(fmt, args...)
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
53 * validate a gm address and related range size,
54 * translate it to host gm address
56 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
59 return vgpu_gmadr_is_valid(vgpu, addr);
61 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
62 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
64 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
65 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
68 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
73 /* translate a guest gmadr to host gmadr */
74 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
76 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
78 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
79 "invalid guest gmadr %llx\n", g_addr))
82 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
83 *h_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (g_addr - vgpu_aperture_offset(vgpu));
86 *h_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (g_addr - vgpu_hidden_offset(vgpu));
91 /* translate a host gmadr to guest gmadr */
92 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
94 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
96 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
97 "invalid host gmadr %llx\n", h_addr))
100 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
101 *g_addr = vgpu_aperture_gmadr_base(vgpu)
102 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
104 *g_addr = vgpu_hidden_gmadr_base(vgpu)
105 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
109 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
110 unsigned long *h_index)
115 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
120 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
124 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
125 unsigned long *g_index)
130 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
135 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
139 #define gtt_type_is_entry(type) \
140 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
141 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
142 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
144 #define gtt_type_is_pt(type) \
145 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
147 #define gtt_type_is_pte_pt(type) \
148 (type == GTT_TYPE_PPGTT_PTE_PT)
150 #define gtt_type_is_root_pointer(type) \
151 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
153 #define gtt_init_entry(e, t, p, v) do { \
156 memcpy(&(e)->val64, &v, sizeof(v)); \
160 * Mappings between GTT_TYPE* enumerations.
161 * Following information can be found according to the given type:
162 * - type of next level page table
163 * - type of entry inside this level page table
164 * - type of entry with PSE set
166 * If the given type doesn't have such a kind of information,
167 * e.g. give a l4 root entry type, then request to get its PSE type,
168 * give a PTE page table type, then request to get its next level page
169 * table type, as we know l4 root entry doesn't have a PSE bit,
170 * and a PTE page table doesn't have a next level page table type,
171 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
175 struct gtt_type_table_entry {
182 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
184 .entry_type = e_type, \
185 .pt_type = cpt_type, \
186 .next_pt_type = npt_type, \
187 .pse_entry_type = pse_type, \
190 static const struct gtt_type_table_entry gtt_type_table[] = {
191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
194 GTT_TYPE_PPGTT_PML4_PT,
196 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PML4_ENTRY,
198 GTT_TYPE_PPGTT_PML4_PT,
199 GTT_TYPE_PPGTT_PDP_PT,
201 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
202 GTT_TYPE_PPGTT_PML4_ENTRY,
203 GTT_TYPE_PPGTT_PML4_PT,
204 GTT_TYPE_PPGTT_PDP_PT,
206 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDP_ENTRY,
208 GTT_TYPE_PPGTT_PDP_PT,
209 GTT_TYPE_PPGTT_PDE_PT,
210 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
214 GTT_TYPE_PPGTT_PDE_PT,
215 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
216 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_PPGTT_PDP_ENTRY,
218 GTT_TYPE_PPGTT_PDP_PT,
219 GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PDE_ENTRY,
223 GTT_TYPE_PPGTT_PDE_PT,
224 GTT_TYPE_PPGTT_PTE_PT,
225 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
227 GTT_TYPE_PPGTT_PDE_ENTRY,
228 GTT_TYPE_PPGTT_PDE_PT,
229 GTT_TYPE_PPGTT_PTE_PT,
230 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
231 /* We take IPS bit as 'PSE' for PTE level. */
232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
234 GTT_TYPE_PPGTT_PTE_PT,
236 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239 GTT_TYPE_PPGTT_PTE_PT,
241 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
243 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
244 GTT_TYPE_PPGTT_PTE_PT,
246 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
247 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
248 GTT_TYPE_PPGTT_PDE_ENTRY,
249 GTT_TYPE_PPGTT_PDE_PT,
251 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
252 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
253 GTT_TYPE_PPGTT_PDP_ENTRY,
254 GTT_TYPE_PPGTT_PDP_PT,
256 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
257 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
264 static inline int get_next_pt_type(int type)
266 return gtt_type_table[type].next_pt_type;
269 static inline int get_entry_type(int type)
271 return gtt_type_table[type].entry_type;
274 static inline int get_pse_type(int type)
276 return gtt_type_table[type].pse_entry_type;
279 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
281 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
286 static void ggtt_invalidate(struct intel_gt *gt)
288 mmio_hw_access_pre(gt);
289 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
290 mmio_hw_access_post(gt);
293 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
295 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
300 static inline int gtt_get_entry64(void *pt,
301 struct intel_gvt_gtt_entry *e,
302 unsigned long index, bool hypervisor_access, unsigned long gpa,
303 struct intel_vgpu *vgpu)
305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
308 if (WARN_ON(info->gtt_entry_size != 8))
311 if (hypervisor_access) {
312 ret = intel_gvt_read_gpa(vgpu, gpa +
313 (index << info->gtt_entry_size_shift),
318 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
320 e->val64 = *((u64 *)pt + index);
325 static inline int gtt_set_entry64(void *pt,
326 struct intel_gvt_gtt_entry *e,
327 unsigned long index, bool hypervisor_access, unsigned long gpa,
328 struct intel_vgpu *vgpu)
330 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
333 if (WARN_ON(info->gtt_entry_size != 8))
336 if (hypervisor_access) {
337 ret = intel_gvt_write_gpa(vgpu, gpa +
338 (index << info->gtt_entry_size_shift),
343 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
345 *((u64 *)pt + index) = e->val64;
352 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
353 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
354 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
355 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
357 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
360 #define GTT_64K_PTE_STRIDE 16
362 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
373 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
379 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380 e->val64 &= ~ADDR_1G_MASK;
381 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383 e->val64 &= ~ADDR_2M_MASK;
384 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386 e->val64 &= ~ADDR_64K_MASK;
387 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
389 e->val64 &= ~ADDR_4K_MASK;
390 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
393 e->val64 |= (pfn << PAGE_SHIFT);
396 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
398 return !!(e->val64 & _PAGE_PSE);
401 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
403 if (gen8_gtt_test_pse(e)) {
405 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406 e->val64 &= ~_PAGE_PSE;
407 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
409 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411 e->val64 &= ~_PAGE_PSE;
419 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
421 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 return !!(e->val64 & GEN8_PDE_IPS_64K);
427 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
429 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
432 e->val64 &= ~GEN8_PDE_IPS_64K;
435 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
438 * i915 writes PDP root pointer registers without present bit,
439 * it also works, so we need to treat root pointer entry
442 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444 return (e->val64 != 0);
446 return (e->val64 & GEN8_PAGE_PRESENT);
449 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
451 e->val64 &= ~GEN8_PAGE_PRESENT;
454 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
456 e->val64 |= GEN8_PAGE_PRESENT;
459 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
461 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
464 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
466 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
469 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
471 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 * Per-platform GMA routines.
477 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
479 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
481 trace_gma_index(__func__, gma, x);
485 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
488 unsigned long x = (exp); \
489 trace_gma_index(__func__, gma, x); \
493 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
499 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500 .get_entry = gtt_get_entry64,
501 .set_entry = gtt_set_entry64,
502 .clear_present = gtt_entry_clear_present,
503 .set_present = gtt_entry_set_present,
504 .test_present = gen8_gtt_test_present,
505 .test_pse = gen8_gtt_test_pse,
506 .clear_pse = gen8_gtt_clear_pse,
507 .clear_ips = gen8_gtt_clear_ips,
508 .test_ips = gen8_gtt_test_ips,
509 .clear_64k_splited = gen8_gtt_clear_64k_splited,
510 .set_64k_splited = gen8_gtt_set_64k_splited,
511 .test_64k_splited = gen8_gtt_test_64k_splited,
512 .get_pfn = gen8_gtt_get_pfn,
513 .set_pfn = gen8_gtt_set_pfn,
516 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518 .gma_to_pte_index = gen8_gma_to_pte_index,
519 .gma_to_pde_index = gen8_gma_to_pde_index,
520 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522 .gma_to_pml4_index = gen8_gma_to_pml4_index,
525 /* Update entry type per pse and ips bit. */
526 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
527 struct intel_gvt_gtt_entry *entry, bool ips)
529 switch (entry->type) {
530 case GTT_TYPE_PPGTT_PDE_ENTRY:
531 case GTT_TYPE_PPGTT_PDP_ENTRY:
532 if (pte_ops->test_pse(entry))
533 entry->type = get_pse_type(entry->type);
535 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
537 entry->type = get_pse_type(entry->type);
540 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
543 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
549 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550 struct intel_gvt_gtt_entry *entry, unsigned long index,
553 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
555 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
557 entry->type = mm->ppgtt_mm.root_entry_type;
558 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559 mm->ppgtt_mm.shadow_pdps,
560 entry, index, false, 0, mm->vgpu);
561 update_entry_type_for_real(pte_ops, entry, false);
564 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
567 _ppgtt_get_root_entry(mm, entry, index, true);
570 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index)
573 _ppgtt_get_root_entry(mm, entry, index, false);
576 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577 struct intel_gvt_gtt_entry *entry, unsigned long index,
580 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
582 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583 mm->ppgtt_mm.shadow_pdps,
584 entry, index, false, 0, mm->vgpu);
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
590 _ppgtt_set_root_entry(mm, entry, index, false);
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
596 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
600 entry->type = GTT_TYPE_GGTT_PTE;
601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 struct intel_gvt_gtt_entry *entry, unsigned long index)
608 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
619 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
629 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 unsigned long offset = index;
632 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
634 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
635 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
636 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
637 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
642 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 * PPGTT shadow page table helpers.
648 static inline int ppgtt_spt_get_entry(
649 struct intel_vgpu_ppgtt_spt *spt,
650 void *page_table, int type,
651 struct intel_gvt_gtt_entry *e, unsigned long index,
654 struct intel_gvt *gvt = spt->vgpu->gvt;
655 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
658 e->type = get_entry_type(type);
660 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
663 ret = ops->get_entry(page_table, e, index, guest,
664 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
669 update_entry_type_for_real(ops, e, guest ?
670 spt->guest_page.pde_ips : false);
672 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 type, e->type, index, e->val64);
677 static inline int ppgtt_spt_set_entry(
678 struct intel_vgpu_ppgtt_spt *spt,
679 void *page_table, int type,
680 struct intel_gvt_gtt_entry *e, unsigned long index,
683 struct intel_gvt *gvt = spt->vgpu->gvt;
684 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
686 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
689 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 type, e->type, index, e->val64);
692 return ops->set_entry(page_table, e, index, guest,
693 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 ppgtt_spt_get_entry(spt, NULL, \
699 spt->guest_page.type, e, index, true)
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 ppgtt_spt_set_entry(spt, NULL, \
703 spt->guest_page.type, e, index, true)
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 spt->shadow_page.type, e, index, false)
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 spt->shadow_page.type, e, index, false)
713 static void *alloc_spt(gfp_t gfp_mask)
715 struct intel_vgpu_ppgtt_spt *spt;
717 spt = kzalloc(sizeof(*spt), gfp_mask);
721 spt->shadow_page.page = alloc_page(gfp_mask);
722 if (!spt->shadow_page.page) {
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
731 __free_page(spt->shadow_page.page);
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 struct intel_vgpu_oos_page *oos_page);
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
740 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
742 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
744 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
747 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
749 if (spt->guest_page.gfn) {
750 if (spt->guest_page.oos_page)
751 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
753 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
756 list_del_init(&spt->post_shadow_list);
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
762 struct intel_vgpu_ppgtt_spt *spt, *spn;
763 struct radix_tree_iter iter;
768 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 spt = radix_tree_deref_slot(slot);
770 list_move(&spt->post_shadow_list, &all_spt);
774 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 struct intel_vgpu_ppgtt_spt *spt,
780 u64 pa, void *p_data, int bytes);
782 static int ppgtt_write_protection_handler(
783 struct intel_vgpu_page_track *page_track,
784 u64 gpa, void *data, int bytes)
786 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790 if (bytes != 4 && bytes != 8)
793 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 struct intel_vgpu *vgpu, unsigned long gfn)
803 struct intel_vgpu_page_track *track;
805 track = intel_vgpu_find_page_track(vgpu, gfn);
806 if (track && track->handler == ppgtt_write_protection_handler)
807 return track->priv_data;
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 struct intel_vgpu *vgpu, unsigned long mfn)
816 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
825 struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
826 struct intel_vgpu_ppgtt_spt *spt = NULL;
831 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
833 if (reclaim_one_ppgtt_mm(vgpu->gvt))
836 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 return ERR_PTR(-ENOMEM);
841 atomic_set(&spt->refcount, 1);
842 INIT_LIST_HEAD(&spt->post_shadow_list);
847 spt->shadow_page.type = type;
848 daddr = dma_map_page(kdev, spt->shadow_page.page,
849 0, 4096, DMA_BIDIRECTIONAL);
850 if (dma_mapping_error(kdev, daddr)) {
851 gvt_vgpu_err("fail to map dma addr\n");
855 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
858 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
865 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 unsigned long gfn, bool guest_pde_ips)
876 struct intel_vgpu_ppgtt_spt *spt;
879 spt = ppgtt_alloc_spt(vgpu, type);
886 ret = intel_vgpu_register_page_track(vgpu, gfn,
887 ppgtt_write_protection_handler, spt);
893 spt->guest_page.type = type;
894 spt->guest_page.gfn = gfn;
895 spt->guest_page.pde_ips = guest_pde_ips;
897 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
902 #define pt_entry_size_shift(spt) \
903 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
905 #define pt_entries(spt) \
906 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
908 #define for_each_present_guest_entry(spt, e, i) \
909 for (i = 0; i < pt_entries(spt); \
910 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 if (!ppgtt_get_guest_entry(spt, e, i) && \
912 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
914 #define for_each_present_shadow_entry(spt, e, i) \
915 for (i = 0; i < pt_entries(spt); \
916 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
920 #define for_each_shadow_entry(spt, e, i) \
921 for (i = 0; i < pt_entries(spt); \
922 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 if (!ppgtt_get_shadow_entry(spt, e, i))
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
927 int v = atomic_read(&spt->refcount);
929 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 atomic_inc(&spt->refcount);
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
935 int v = atomic_read(&spt->refcount);
937 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 return atomic_dec_return(&spt->refcount);
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 struct intel_gvt_gtt_entry *e)
946 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 struct intel_vgpu_ppgtt_spt *s;
949 enum intel_gvt_gtt_type cur_pt_type;
951 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
953 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 cur_pt_type = get_next_pt_type(e->type);
957 if (!gtt_type_is_pt(cur_pt_type) ||
958 !gtt_type_is_pt(cur_pt_type + 1)) {
959 drm_WARN(&i915->drm, 1,
960 "Invalid page table type, cur_pt_type is: %d\n",
967 if (ops->get_pfn(e) ==
968 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
971 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
973 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 return ppgtt_invalidate_spt(s);
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 struct intel_gvt_gtt_entry *entry)
983 struct intel_vgpu *vgpu = spt->vgpu;
984 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 pfn = ops->get_pfn(entry);
989 type = spt->shadow_page.type;
991 /* Uninitialized spte or unshadowed spte. */
992 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
995 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1000 struct intel_vgpu *vgpu = spt->vgpu;
1001 struct intel_gvt_gtt_entry e;
1002 unsigned long index;
1005 trace_spt_change(spt->vgpu->id, "die", spt,
1006 spt->guest_page.gfn, spt->shadow_page.type);
1008 if (ppgtt_put_spt(spt) > 0)
1011 for_each_present_shadow_entry(spt, &e, index) {
1013 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 gvt_vdbg_mm("invalidate 4K entry\n");
1015 ppgtt_invalidate_pte(spt, &e);
1017 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 /* We don't setup 64K shadow entry so far. */
1019 WARN(1, "suspicious 64K gtt entry\n");
1021 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 gvt_vdbg_mm("invalidate 2M entry\n");
1024 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 WARN(1, "GVT doesn't support 1GB page\n");
1027 case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 ret = ppgtt_invalidate_spt_by_shadow_entry(
1041 trace_spt_change(spt->vgpu->id, "release", spt,
1042 spt->guest_page.gfn, spt->shadow_page.type);
1043 ppgtt_free_spt(spt);
1046 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 spt, e.val64, e.type);
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1053 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1055 if (GRAPHICS_VER(dev_priv) == 9) {
1056 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1059 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 } else if (GRAPHICS_VER(dev_priv) >= 11) {
1061 /* 64K paging only controlled by IPS bit in PTE now. */
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1072 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1079 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1082 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 if (ips != spt->guest_page.pde_ips) {
1087 spt->guest_page.pde_ips = ips;
1089 gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 clear_page(spt->shadow_page.vaddr);
1091 ret = ppgtt_populate_spt(spt);
1098 int type = get_next_pt_type(we->type);
1100 if (!gtt_type_is_pt(type)) {
1105 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1111 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 ret = ppgtt_populate_spt(spt);
1119 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 spt->shadow_page.type);
1125 ppgtt_free_spt(spt);
1128 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 spt, we->val64, we->type);
1130 return ERR_PTR(ret);
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1136 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1138 se->type = ge->type;
1139 se->val64 = ge->val64;
1141 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1145 ops->set_pfn(se, s->shadow_page.mfn);
1149 * Check if can do 2M page
1150 * @vgpu: target vgpu
1151 * @entry: target pfn's gtt entry
1153 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1154 * negative if found err.
1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157 struct intel_gvt_gtt_entry *entry)
1159 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
1167 if (is_error_noslot_pfn(pfn))
1170 if (!pfn_valid(pfn))
1173 ret = PageTransHuge(pfn_to_page(pfn));
1174 kvm_release_pfn_clean(pfn);
1178 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1179 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1180 struct intel_gvt_gtt_entry *se)
1182 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1183 struct intel_vgpu_ppgtt_spt *sub_spt;
1184 struct intel_gvt_gtt_entry sub_se;
1185 unsigned long start_gfn;
1186 dma_addr_t dma_addr;
1187 unsigned long sub_index;
1190 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1192 start_gfn = ops->get_pfn(se);
1194 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1195 if (IS_ERR(sub_spt))
1196 return PTR_ERR(sub_spt);
1198 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1199 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1200 PAGE_SIZE, &dma_addr);
1203 sub_se.val64 = se->val64;
1205 /* Copy the PAT field from PDE. */
1206 sub_se.val64 &= ~_PAGE_PAT;
1207 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1209 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1210 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1213 /* Clear dirty field. */
1214 se->val64 &= ~_PAGE_DIRTY;
1218 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1219 ppgtt_set_shadow_entry(spt, se, index);
1222 /* Cancel the existing addess mappings of DMA addr. */
1223 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1224 gvt_vdbg_mm("invalidate 4K entry\n");
1225 ppgtt_invalidate_pte(sub_spt, &sub_se);
1227 /* Release the new allocated spt. */
1228 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1229 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1230 ppgtt_free_spt(sub_spt);
1234 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1235 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1236 struct intel_gvt_gtt_entry *se)
1238 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1239 struct intel_gvt_gtt_entry entry = *se;
1240 unsigned long start_gfn;
1241 dma_addr_t dma_addr;
1244 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1246 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1248 start_gfn = ops->get_pfn(se);
1250 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1251 ops->set_64k_splited(&entry);
1253 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1254 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1255 PAGE_SIZE, &dma_addr);
1259 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1260 ppgtt_set_shadow_entry(spt, &entry, index + i);
1265 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1266 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1267 struct intel_gvt_gtt_entry *ge)
1269 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1270 struct intel_gvt_gtt_entry se = *ge;
1271 unsigned long gfn, page_size = PAGE_SIZE;
1272 dma_addr_t dma_addr;
1275 if (!pte_ops->test_present(ge))
1278 gfn = pte_ops->get_pfn(ge);
1281 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1282 gvt_vdbg_mm("shadow 4K gtt entry\n");
1284 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1285 gvt_vdbg_mm("shadow 64K gtt entry\n");
1287 * The layout of 64K page is special, the page size is
1288 * controlled by uper PDE. To be simple, we always split
1289 * 64K page to smaller 4K pages in shadow PT.
1291 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1292 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1293 gvt_vdbg_mm("shadow 2M gtt entry\n");
1294 ret = is_2MB_gtt_possible(vgpu, ge);
1296 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1299 page_size = I915_GTT_PAGE_SIZE_2M;
1301 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1302 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1309 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
1313 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1314 ppgtt_set_shadow_entry(spt, &se, index);
1318 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1320 struct intel_vgpu *vgpu = spt->vgpu;
1321 struct intel_vgpu_ppgtt_spt *s;
1322 struct intel_gvt_gtt_entry se, ge;
1326 trace_spt_change(spt->vgpu->id, "born", spt,
1327 spt->guest_page.gfn, spt->shadow_page.type);
1329 for_each_present_guest_entry(spt, &ge, i) {
1330 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1331 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1336 ppgtt_get_shadow_entry(spt, &se, i);
1337 ppgtt_generate_shadow_entry(&se, s, &ge);
1338 ppgtt_set_shadow_entry(spt, &se, i);
1340 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1347 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1348 spt, ge.val64, ge.type);
1352 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1353 struct intel_gvt_gtt_entry *se, unsigned long index)
1355 struct intel_vgpu *vgpu = spt->vgpu;
1356 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1359 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1360 spt->shadow_page.type, se->val64, index);
1362 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1363 se->type, index, se->val64);
1365 if (!ops->test_present(se))
1368 if (ops->get_pfn(se) ==
1369 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1372 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1373 struct intel_vgpu_ppgtt_spt *s =
1374 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1376 gvt_vgpu_err("fail to find guest page\n");
1380 ret = ppgtt_invalidate_spt(s);
1384 /* We don't setup 64K shadow entry so far. */
1385 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1386 "suspicious 64K entry\n");
1387 ppgtt_invalidate_pte(spt, se);
1392 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1393 spt, se->val64, se->type);
1397 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1398 struct intel_gvt_gtt_entry *we, unsigned long index)
1400 struct intel_vgpu *vgpu = spt->vgpu;
1401 struct intel_gvt_gtt_entry m;
1402 struct intel_vgpu_ppgtt_spt *s;
1405 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1408 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1409 we->type, index, we->val64);
1411 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1412 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1417 ppgtt_get_shadow_entry(spt, &m, index);
1418 ppgtt_generate_shadow_entry(&m, s, we);
1419 ppgtt_set_shadow_entry(spt, &m, index);
1421 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1427 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1428 spt, we->val64, we->type);
1432 static int sync_oos_page(struct intel_vgpu *vgpu,
1433 struct intel_vgpu_oos_page *oos_page)
1435 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1436 struct intel_gvt *gvt = vgpu->gvt;
1437 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1438 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1439 struct intel_gvt_gtt_entry old, new;
1443 trace_oos_change(vgpu->id, "sync", oos_page->id,
1444 spt, spt->guest_page.type);
1446 old.type = new.type = get_entry_type(spt->guest_page.type);
1447 old.val64 = new.val64 = 0;
1449 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1450 info->gtt_entry_size_shift); index++) {
1451 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1452 ops->get_entry(NULL, &new, index, true,
1453 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1455 if (old.val64 == new.val64
1456 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1459 trace_oos_sync(vgpu->id, oos_page->id,
1460 spt, spt->guest_page.type,
1463 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1467 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1470 spt->guest_page.write_cnt = 0;
1471 list_del_init(&spt->post_shadow_list);
1475 static int detach_oos_page(struct intel_vgpu *vgpu,
1476 struct intel_vgpu_oos_page *oos_page)
1478 struct intel_gvt *gvt = vgpu->gvt;
1479 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1481 trace_oos_change(vgpu->id, "detach", oos_page->id,
1482 spt, spt->guest_page.type);
1484 spt->guest_page.write_cnt = 0;
1485 spt->guest_page.oos_page = NULL;
1486 oos_page->spt = NULL;
1488 list_del_init(&oos_page->vm_list);
1489 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1494 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1495 struct intel_vgpu_ppgtt_spt *spt)
1497 struct intel_gvt *gvt = spt->vgpu->gvt;
1500 ret = intel_gvt_read_gpa(spt->vgpu,
1501 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1502 oos_page->mem, I915_GTT_PAGE_SIZE);
1506 oos_page->spt = spt;
1507 spt->guest_page.oos_page = oos_page;
1509 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1511 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1512 spt, spt->guest_page.type);
1516 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1518 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1521 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1525 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1526 spt, spt->guest_page.type);
1528 list_del_init(&oos_page->vm_list);
1529 return sync_oos_page(spt->vgpu, oos_page);
1532 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1534 struct intel_gvt *gvt = spt->vgpu->gvt;
1535 struct intel_gvt_gtt *gtt = &gvt->gtt;
1536 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1539 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1541 if (list_empty(>t->oos_page_free_list_head)) {
1542 oos_page = container_of(gtt->oos_page_use_list_head.next,
1543 struct intel_vgpu_oos_page, list);
1544 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1547 ret = detach_oos_page(spt->vgpu, oos_page);
1551 oos_page = container_of(gtt->oos_page_free_list_head.next,
1552 struct intel_vgpu_oos_page, list);
1553 return attach_oos_page(oos_page, spt);
1556 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1558 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1560 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1563 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1564 spt, spt->guest_page.type);
1566 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1567 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1571 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1574 * This function is called before submitting a guest workload to host,
1575 * to sync all the out-of-synced shadow for vGPU
1578 * Zero on success, negative error code if failed.
1580 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1582 struct list_head *pos, *n;
1583 struct intel_vgpu_oos_page *oos_page;
1586 if (!enable_out_of_sync)
1589 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1590 oos_page = container_of(pos,
1591 struct intel_vgpu_oos_page, vm_list);
1592 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1600 * The heart of PPGTT shadow page table.
1602 static int ppgtt_handle_guest_write_page_table(
1603 struct intel_vgpu_ppgtt_spt *spt,
1604 struct intel_gvt_gtt_entry *we, unsigned long index)
1606 struct intel_vgpu *vgpu = spt->vgpu;
1607 int type = spt->shadow_page.type;
1608 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1609 struct intel_gvt_gtt_entry old_se;
1613 new_present = ops->test_present(we);
1616 * Adding the new entry first and then removing the old one, that can
1617 * guarantee the ppgtt table is validated during the window between
1618 * adding and removal.
1620 ppgtt_get_shadow_entry(spt, &old_se, index);
1623 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1628 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1633 /* For 64KB splited entries, we need clear them all. */
1634 if (ops->test_64k_splited(&old_se) &&
1635 !(index % GTT_64K_PTE_STRIDE)) {
1636 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1637 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1638 ops->clear_64k_splited(&old_se);
1639 ops->set_pfn(&old_se,
1640 vgpu->gtt.scratch_pt[type].page_mfn);
1641 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1643 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1644 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1645 ops->clear_pse(&old_se);
1646 ops->set_pfn(&old_se,
1647 vgpu->gtt.scratch_pt[type].page_mfn);
1648 ppgtt_set_shadow_entry(spt, &old_se, index);
1650 ops->set_pfn(&old_se,
1651 vgpu->gtt.scratch_pt[type].page_mfn);
1652 ppgtt_set_shadow_entry(spt, &old_se, index);
1658 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1659 spt, we->val64, we->type);
1665 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1667 return enable_out_of_sync
1668 && gtt_type_is_pte_pt(spt->guest_page.type)
1669 && spt->guest_page.write_cnt >= 2;
1672 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1673 unsigned long index)
1675 set_bit(index, spt->post_shadow_bitmap);
1676 if (!list_empty(&spt->post_shadow_list))
1679 list_add_tail(&spt->post_shadow_list,
1680 &spt->vgpu->gtt.post_shadow_list_head);
1684 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1687 * This function is called before submitting a guest workload to host,
1688 * to flush all the post shadows for a vGPU.
1691 * Zero on success, negative error code if failed.
1693 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1695 struct list_head *pos, *n;
1696 struct intel_vgpu_ppgtt_spt *spt;
1697 struct intel_gvt_gtt_entry ge;
1698 unsigned long index;
1701 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1702 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1705 for_each_set_bit(index, spt->post_shadow_bitmap,
1706 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1707 ppgtt_get_guest_entry(spt, &ge, index);
1709 ret = ppgtt_handle_guest_write_page_table(spt,
1713 clear_bit(index, spt->post_shadow_bitmap);
1715 list_del_init(&spt->post_shadow_list);
1720 static int ppgtt_handle_guest_write_page_table_bytes(
1721 struct intel_vgpu_ppgtt_spt *spt,
1722 u64 pa, void *p_data, int bytes)
1724 struct intel_vgpu *vgpu = spt->vgpu;
1725 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1726 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1727 struct intel_gvt_gtt_entry we, se;
1728 unsigned long index;
1731 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1733 ppgtt_get_guest_entry(spt, &we, index);
1736 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1737 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1740 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1741 (index % GTT_64K_PTE_STRIDE)) {
1742 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1747 if (bytes == info->gtt_entry_size) {
1748 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1752 if (!test_bit(index, spt->post_shadow_bitmap)) {
1753 int type = spt->shadow_page.type;
1755 ppgtt_get_shadow_entry(spt, &se, index);
1756 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1759 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1760 ppgtt_set_shadow_entry(spt, &se, index);
1762 ppgtt_set_post_shadow(spt, index);
1765 if (!enable_out_of_sync)
1768 spt->guest_page.write_cnt++;
1770 if (spt->guest_page.oos_page)
1771 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1774 if (can_do_out_of_sync(spt)) {
1775 if (!spt->guest_page.oos_page)
1776 ppgtt_allocate_oos_page(spt);
1778 ret = ppgtt_set_guest_page_oos(spt);
1785 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1787 struct intel_vgpu *vgpu = mm->vgpu;
1788 struct intel_gvt *gvt = vgpu->gvt;
1789 struct intel_gvt_gtt *gtt = &gvt->gtt;
1790 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1791 struct intel_gvt_gtt_entry se;
1794 if (!mm->ppgtt_mm.shadowed)
1797 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1798 ppgtt_get_shadow_root_entry(mm, &se, index);
1800 if (!ops->test_present(&se))
1803 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1805 ppgtt_set_shadow_root_entry(mm, &se, index);
1807 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1808 NULL, se.type, se.val64, index);
1811 mm->ppgtt_mm.shadowed = false;
1815 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1817 struct intel_vgpu *vgpu = mm->vgpu;
1818 struct intel_gvt *gvt = vgpu->gvt;
1819 struct intel_gvt_gtt *gtt = &gvt->gtt;
1820 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1821 struct intel_vgpu_ppgtt_spt *spt;
1822 struct intel_gvt_gtt_entry ge, se;
1825 if (mm->ppgtt_mm.shadowed)
1828 if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1831 mm->ppgtt_mm.shadowed = true;
1833 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1834 ppgtt_get_guest_root_entry(mm, &ge, index);
1836 if (!ops->test_present(&ge))
1839 trace_spt_guest_change(vgpu->id, __func__, NULL,
1840 ge.type, ge.val64, index);
1842 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1844 gvt_vgpu_err("fail to populate guest root pointer\n");
1848 ppgtt_generate_shadow_entry(&se, spt, &ge);
1849 ppgtt_set_shadow_root_entry(mm, &se, index);
1851 trace_spt_guest_change(vgpu->id, "populate root pointer",
1852 NULL, se.type, se.val64, index);
1857 invalidate_ppgtt_mm(mm);
1861 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1863 struct intel_vgpu_mm *mm;
1865 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1870 kref_init(&mm->ref);
1871 atomic_set(&mm->pincount, 0);
1876 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1882 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1884 * @root_entry_type: ppgtt root entry type
1885 * @pdps: guest pdps.
1887 * This function is used to create a ppgtt mm object for a vGPU.
1890 * Zero on success, negative error code in pointer if failed.
1892 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1893 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1895 struct intel_gvt *gvt = vgpu->gvt;
1896 struct intel_vgpu_mm *mm;
1899 mm = vgpu_alloc_mm(vgpu);
1901 return ERR_PTR(-ENOMEM);
1903 mm->type = INTEL_GVT_MM_PPGTT;
1905 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1906 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1907 mm->ppgtt_mm.root_entry_type = root_entry_type;
1909 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1910 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1911 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1913 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1914 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1916 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1917 sizeof(mm->ppgtt_mm.guest_pdps));
1919 ret = shadow_ppgtt_mm(mm);
1921 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1923 return ERR_PTR(ret);
1926 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1928 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1929 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1930 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1935 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1937 struct intel_vgpu_mm *mm;
1938 unsigned long nr_entries;
1940 mm = vgpu_alloc_mm(vgpu);
1942 return ERR_PTR(-ENOMEM);
1944 mm->type = INTEL_GVT_MM_GGTT;
1946 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1947 mm->ggtt_mm.virtual_ggtt =
1948 vzalloc(array_size(nr_entries,
1949 vgpu->gvt->device_info.gtt_entry_size));
1950 if (!mm->ggtt_mm.virtual_ggtt) {
1952 return ERR_PTR(-ENOMEM);
1955 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1956 if (!mm->ggtt_mm.host_ggtt_aperture) {
1957 vfree(mm->ggtt_mm.virtual_ggtt);
1959 return ERR_PTR(-ENOMEM);
1962 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1963 if (!mm->ggtt_mm.host_ggtt_hidden) {
1964 vfree(mm->ggtt_mm.host_ggtt_aperture);
1965 vfree(mm->ggtt_mm.virtual_ggtt);
1967 return ERR_PTR(-ENOMEM);
1974 * _intel_vgpu_mm_release - destroy a mm object
1975 * @mm_ref: a kref object
1977 * This function is used to destroy a mm object for vGPU
1980 void _intel_vgpu_mm_release(struct kref *mm_ref)
1982 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1984 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1985 gvt_err("vgpu mm pin count bug detected\n");
1987 if (mm->type == INTEL_GVT_MM_PPGTT) {
1988 list_del(&mm->ppgtt_mm.list);
1990 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1991 list_del(&mm->ppgtt_mm.lru_list);
1992 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1994 invalidate_ppgtt_mm(mm);
1996 vfree(mm->ggtt_mm.virtual_ggtt);
1997 vfree(mm->ggtt_mm.host_ggtt_aperture);
1998 vfree(mm->ggtt_mm.host_ggtt_hidden);
2005 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2006 * @mm: a vGPU mm object
2008 * This function is called when user doesn't want to use a vGPU mm object
2010 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2012 atomic_dec_if_positive(&mm->pincount);
2016 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2017 * @mm: target vgpu mm
2019 * This function is called when user wants to use a vGPU mm object. If this
2020 * mm object hasn't been shadowed yet, the shadow will be populated at this
2024 * Zero on success, negative error code if failed.
2026 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2030 atomic_inc(&mm->pincount);
2032 if (mm->type == INTEL_GVT_MM_PPGTT) {
2033 ret = shadow_ppgtt_mm(mm);
2037 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2038 list_move_tail(&mm->ppgtt_mm.lru_list,
2039 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2040 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2046 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2048 struct intel_vgpu_mm *mm;
2049 struct list_head *pos, *n;
2051 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2053 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2054 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2056 if (atomic_read(&mm->pincount))
2059 list_del_init(&mm->ppgtt_mm.lru_list);
2060 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2061 invalidate_ppgtt_mm(mm);
2064 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2069 * GMA translation APIs.
2071 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2072 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2074 struct intel_vgpu *vgpu = mm->vgpu;
2075 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2076 struct intel_vgpu_ppgtt_spt *s;
2078 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2083 ppgtt_get_shadow_entry(s, e, index);
2085 ppgtt_get_guest_entry(s, e, index);
2090 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2091 * @mm: mm object. could be a PPGTT or GGTT mm object
2092 * @gma: graphics memory address in this mm object
2094 * This function is used to translate a graphics memory address in specific
2095 * graphics memory space to guest physical address.
2098 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2100 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2102 struct intel_vgpu *vgpu = mm->vgpu;
2103 struct intel_gvt *gvt = vgpu->gvt;
2104 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2105 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2106 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2107 unsigned long gma_index[4];
2108 struct intel_gvt_gtt_entry e;
2112 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2113 mm->type != INTEL_GVT_MM_PPGTT);
2115 if (mm->type == INTEL_GVT_MM_GGTT) {
2116 if (!vgpu_gmadr_is_valid(vgpu, gma))
2119 ggtt_get_guest_entry(mm, &e,
2120 gma_ops->gma_to_ggtt_pte_index(gma));
2122 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2123 + (gma & ~I915_GTT_PAGE_MASK);
2125 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2127 switch (mm->ppgtt_mm.root_entry_type) {
2128 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2129 ppgtt_get_shadow_root_entry(mm, &e, 0);
2131 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2132 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2133 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2134 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2137 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2138 ppgtt_get_shadow_root_entry(mm, &e,
2139 gma_ops->gma_to_l3_pdp_index(gma));
2141 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2142 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2149 /* walk the shadow page table and get gpa from guest entry */
2150 for (i = 0; i < levels; i++) {
2151 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2156 if (!pte_ops->test_present(&e)) {
2157 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2162 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2163 (gma & ~I915_GTT_PAGE_MASK);
2164 trace_gma_translate(vgpu->id, "ppgtt", 0,
2165 mm->ppgtt_mm.root_entry_type, gma, gpa);
2170 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2171 return INTEL_GVT_INVALID_ADDR;
2174 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2175 unsigned int off, void *p_data, unsigned int bytes)
2177 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2178 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2179 unsigned long index = off >> info->gtt_entry_size_shift;
2181 struct intel_gvt_gtt_entry e;
2183 if (bytes != 4 && bytes != 8)
2186 gma = index << I915_GTT_PAGE_SHIFT;
2187 if (!intel_gvt_ggtt_validate_range(vgpu,
2188 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2189 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2190 memset(p_data, 0, bytes);
2194 ggtt_get_guest_entry(ggtt_mm, &e, index);
2195 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2201 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2203 * @off: register offset
2204 * @p_data: data will be returned to guest
2205 * @bytes: data length
2207 * This function is used to emulate the GTT MMIO register read
2210 * Zero on success, error code if failed.
2212 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2213 void *p_data, unsigned int bytes)
2215 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2218 if (bytes != 4 && bytes != 8)
2221 off -= info->gtt_start_offset;
2222 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2226 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2227 struct intel_gvt_gtt_entry *entry)
2229 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2232 pfn = pte_ops->get_pfn(entry);
2233 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2234 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2237 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2238 void *p_data, unsigned int bytes)
2240 struct intel_gvt *gvt = vgpu->gvt;
2241 const struct intel_gvt_device_info *info = &gvt->device_info;
2242 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2243 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2244 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2245 unsigned long gma, gfn;
2246 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2247 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2248 dma_addr_t dma_addr;
2250 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2251 bool partial_update = false;
2253 if (bytes != 4 && bytes != 8)
2256 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2258 /* the VM may configure the whole GM space when ballooning is used */
2259 if (!vgpu_gmadr_is_valid(vgpu, gma))
2262 e.type = GTT_TYPE_GGTT_PTE;
2263 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2266 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2267 * write, save the first 4 bytes in a list and update virtual
2268 * PTE. Only update shadow PTE when the second 4 bytes comes.
2270 if (bytes < info->gtt_entry_size) {
2273 list_for_each_entry_safe(pos, n,
2274 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2275 if (g_gtt_index == pos->offset >>
2276 info->gtt_entry_size_shift) {
2277 if (off != pos->offset) {
2278 /* the second partial part*/
2279 int last_off = pos->offset &
2280 (info->gtt_entry_size - 1);
2282 memcpy((void *)&e.val64 + last_off,
2283 (void *)&pos->data + last_off,
2286 list_del(&pos->list);
2292 /* update of the first partial part */
2293 pos->data = e.val64;
2294 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2300 /* the first partial part */
2301 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2304 partial_pte->offset = off;
2305 partial_pte->data = e.val64;
2306 list_add_tail(&partial_pte->list,
2307 &ggtt_mm->ggtt_mm.partial_pte_list);
2308 partial_update = true;
2312 if (!partial_update && (ops->test_present(&e))) {
2313 gfn = ops->get_pfn(&e);
2317 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2320 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2321 /* guest driver may read/write the entry when partial
2322 * update the entry in this situation p2m will fail
2323 * setting the shadow entry to point to a scratch page
2325 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2327 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2329 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2330 ops->clear_present(&m);
2333 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2335 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2336 ggtt_invalidate_pte(vgpu, &e);
2338 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2339 ggtt_invalidate(gvt->gt);
2344 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2346 * @off: register offset
2347 * @p_data: data from guest write
2348 * @bytes: data length
2350 * This function is used to emulate the GTT MMIO register write
2353 * Zero on success, error code if failed.
2355 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2356 unsigned int off, void *p_data, unsigned int bytes)
2358 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2360 struct intel_vgpu_submission *s = &vgpu->submission;
2361 struct intel_engine_cs *engine;
2364 if (bytes != 4 && bytes != 8)
2367 off -= info->gtt_start_offset;
2368 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2370 /* if ggtt of last submitted context is written,
2371 * that context is probably got unpinned.
2372 * Set last shadowed ctx to invalid.
2374 for_each_engine(engine, vgpu->gvt->gt, i) {
2375 if (!s->last_ctx[i].valid)
2378 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2379 s->last_ctx[i].valid = false;
2384 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2385 enum intel_gvt_gtt_type type)
2387 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2388 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2389 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2390 int page_entry_num = I915_GTT_PAGE_SIZE >>
2391 vgpu->gvt->device_info.gtt_entry_size_shift;
2394 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2397 if (drm_WARN_ON(&i915->drm,
2398 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2401 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2403 gvt_vgpu_err("fail to allocate scratch page\n");
2407 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2408 if (dma_mapping_error(dev, daddr)) {
2409 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2410 __free_page(virt_to_page(scratch_pt));
2413 gtt->scratch_pt[type].page_mfn =
2414 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2415 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2416 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2417 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2419 /* Build the tree by full filled the scratch pt with the entries which
2420 * point to the next level scratch pt or scratch page. The
2421 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2423 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2424 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2425 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2427 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2428 struct intel_gvt_gtt_entry se;
2430 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2431 se.type = get_entry_type(type - 1);
2432 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2434 /* The entry parameters like present/writeable/cache type
2435 * set to the same as i915's scratch page tree.
2437 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2438 if (type == GTT_TYPE_PPGTT_PDE_PT)
2439 se.val64 |= PPAT_CACHED;
2441 for (i = 0; i < page_entry_num; i++)
2442 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2448 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2451 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2454 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2455 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2456 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2457 I915_GTT_PAGE_SHIFT);
2458 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2459 __free_page(vgpu->gtt.scratch_pt[i].page);
2460 vgpu->gtt.scratch_pt[i].page = NULL;
2461 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2468 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2472 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2473 ret = alloc_scratch_pages(vgpu, i);
2481 release_scratch_page_tree(vgpu);
2486 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2489 * This function is used to initialize per-vGPU graphics memory virtualization
2493 * Zero on success, error code if failed.
2495 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2497 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2499 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2501 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2502 INIT_LIST_HEAD(>t->oos_page_list_head);
2503 INIT_LIST_HEAD(>t->post_shadow_list_head);
2505 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2506 if (IS_ERR(gtt->ggtt_mm)) {
2507 gvt_vgpu_err("fail to create mm for ggtt.\n");
2508 return PTR_ERR(gtt->ggtt_mm);
2511 intel_vgpu_reset_ggtt(vgpu, false);
2513 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2515 return create_scratch_page_tree(vgpu);
2518 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2520 struct list_head *pos, *n;
2521 struct intel_vgpu_mm *mm;
2523 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2524 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2525 intel_vgpu_destroy_mm(mm);
2528 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2529 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2531 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2532 gvt_err("Why we still has spt not freed?\n");
2533 ppgtt_free_all_spt(vgpu);
2537 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2539 struct intel_gvt_partial_pte *pos, *next;
2541 list_for_each_entry_safe(pos, next,
2542 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2544 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2545 pos->offset, pos->data);
2548 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2549 vgpu->gtt.ggtt_mm = NULL;
2553 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2556 * This function is used to clean up per-vGPU graphics memory virtualization
2560 * Zero on success, error code if failed.
2562 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2564 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2565 intel_vgpu_destroy_ggtt_mm(vgpu);
2566 release_scratch_page_tree(vgpu);
2569 static void clean_spt_oos(struct intel_gvt *gvt)
2571 struct intel_gvt_gtt *gtt = &gvt->gtt;
2572 struct list_head *pos, *n;
2573 struct intel_vgpu_oos_page *oos_page;
2575 WARN(!list_empty(>t->oos_page_use_list_head),
2576 "someone is still using oos page\n");
2578 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2579 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2580 list_del(&oos_page->list);
2581 free_page((unsigned long)oos_page->mem);
2586 static int setup_spt_oos(struct intel_gvt *gvt)
2588 struct intel_gvt_gtt *gtt = &gvt->gtt;
2589 struct intel_vgpu_oos_page *oos_page;
2593 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2594 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2596 for (i = 0; i < preallocated_oos_pages; i++) {
2597 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2602 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2603 if (!oos_page->mem) {
2609 INIT_LIST_HEAD(&oos_page->list);
2610 INIT_LIST_HEAD(&oos_page->vm_list);
2612 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2615 gvt_dbg_mm("%d oos pages preallocated\n", i);
2624 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2626 * @pdps: pdp root array
2628 * This function is used to find a PPGTT mm object from mm object pool
2631 * pointer to mm object on success, NULL if failed.
2633 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2636 struct intel_vgpu_mm *mm;
2637 struct list_head *pos;
2639 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2640 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2642 switch (mm->ppgtt_mm.root_entry_type) {
2643 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2644 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2647 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2648 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2649 sizeof(mm->ppgtt_mm.guest_pdps)))
2660 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2662 * @root_entry_type: ppgtt root entry type
2665 * This function is used to find or create a PPGTT mm object from a guest.
2668 * Zero on success, negative error code if failed.
2670 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2671 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2673 struct intel_vgpu_mm *mm;
2675 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2677 intel_vgpu_mm_get(mm);
2679 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2681 gvt_vgpu_err("fail to create mm\n");
2687 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2691 * This function is used to find a PPGTT mm object from a guest and destroy it.
2694 * Zero on success, negative error code if failed.
2696 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2698 struct intel_vgpu_mm *mm;
2700 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2702 gvt_vgpu_err("fail to find ppgtt instance.\n");
2705 intel_vgpu_mm_put(mm);
2710 * intel_gvt_init_gtt - initialize mm components of a GVT device
2713 * This function is called at the initialization stage, to initialize
2714 * the mm components of a GVT device.
2717 * zero on success, negative error code if failed.
2719 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2723 struct device *dev = gvt->gt->i915->drm.dev;
2726 gvt_dbg_core("init gtt\n");
2728 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2729 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2731 page = (void *)get_zeroed_page(GFP_KERNEL);
2733 gvt_err("fail to allocate scratch ggtt page\n");
2737 daddr = dma_map_page(dev, virt_to_page(page), 0,
2738 4096, DMA_BIDIRECTIONAL);
2739 if (dma_mapping_error(dev, daddr)) {
2740 gvt_err("fail to dmamap scratch ggtt page\n");
2741 __free_page(virt_to_page(page));
2745 gvt->gtt.scratch_page = virt_to_page(page);
2746 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2748 if (enable_out_of_sync) {
2749 ret = setup_spt_oos(gvt);
2751 gvt_err("fail to initialize SPT oos\n");
2752 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2753 __free_page(gvt->gtt.scratch_page);
2757 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2758 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2763 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2766 * This function is called at the driver unloading stage, to clean up
2767 * the mm components of a GVT device.
2770 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2772 struct device *dev = gvt->gt->i915->drm.dev;
2773 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2774 I915_GTT_PAGE_SHIFT);
2776 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2778 __free_page(gvt->gtt.scratch_page);
2780 if (enable_out_of_sync)
2785 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2788 * This function is called when invalidate all PPGTT instances of a vGPU.
2791 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2793 struct list_head *pos, *n;
2794 struct intel_vgpu_mm *mm;
2796 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2797 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2798 if (mm->type == INTEL_GVT_MM_PPGTT) {
2799 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2800 list_del_init(&mm->ppgtt_mm.lru_list);
2801 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2802 if (mm->ppgtt_mm.shadowed)
2803 invalidate_ppgtt_mm(mm);
2809 * intel_vgpu_reset_ggtt - reset the GGTT entry
2811 * @invalidate_old: invalidate old entries
2813 * This function is called at the vGPU create stage
2814 * to reset all the GGTT entries.
2817 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2819 struct intel_gvt *gvt = vgpu->gvt;
2820 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2821 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2822 struct intel_gvt_gtt_entry old_entry;
2826 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2827 pte_ops->set_present(&entry);
2829 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2830 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2831 while (num_entries--) {
2832 if (invalidate_old) {
2833 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2834 ggtt_invalidate_pte(vgpu, &old_entry);
2836 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2839 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2840 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2841 while (num_entries--) {
2842 if (invalidate_old) {
2843 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2844 ggtt_invalidate_pte(vgpu, &old_entry);
2846 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2849 ggtt_invalidate(gvt->gt);
2853 * intel_vgpu_reset_gtt - reset the all GTT related status
2856 * This function is called from vfio core to reset reset all
2857 * GTT related status, including GGTT, PPGTT, scratch page.
2860 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2862 /* Shadow pages are only created when there is no page
2863 * table tracking data, so remove page tracking data after
2864 * removing the shadow pages.
2866 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2867 intel_vgpu_reset_ggtt(vgpu, true);
2871 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2872 * @gvt: intel gvt device
2874 * This function is called at driver resume stage to restore
2875 * GGTT entries of every vGPU.
2878 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2880 struct intel_vgpu *vgpu;
2881 struct intel_vgpu_mm *mm;
2884 u32 idx, num_low, num_hi, offset;
2886 /* Restore dirty host ggtt for all vGPUs */
2887 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2888 mm = vgpu->gtt.ggtt_mm;
2890 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2891 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2892 for (idx = 0; idx < num_low; idx++) {
2893 pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2894 if (pte & GEN8_PAGE_PRESENT)
2895 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2898 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2899 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2900 for (idx = 0; idx < num_hi; idx++) {
2901 pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2902 if (pte & GEN8_PAGE_PRESENT)
2903 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);