b9eb75a2b4002a4463e3d6584a2f8fe2797d8635
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_engine_regs.h"
41 #include "gt/intel_gpu_commands.h"
42 #include "gt/intel_gt_regs.h"
43 #include "gt/intel_lrc.h"
44 #include "gt/intel_ring.h"
45 #include "gt/intel_gt_requests.h"
46 #include "gt/shmem_utils.h"
47 #include "gvt.h"
48 #include "i915_pvinfo.h"
49 #include "trace.h"
50
51 #include "gem/i915_gem_context.h"
52 #include "gem/i915_gem_pm.h"
53 #include "gt/intel_context.h"
54
55 #define INVALID_OP    (~0U)
56
57 #define OP_LEN_MI           9
58 #define OP_LEN_2D           10
59 #define OP_LEN_3D_MEDIA     16
60 #define OP_LEN_MFX_VC       16
61 #define OP_LEN_VEBOX        16
62
63 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
64
65 struct sub_op_bits {
66         int hi;
67         int low;
68 };
69 struct decode_info {
70         const char *name;
71         int op_len;
72         int nr_sub_op;
73         const struct sub_op_bits *sub_op;
74 };
75
76 #define   MAX_CMD_BUDGET                        0x7fffffff
77 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
78 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
79 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
80
81 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
82 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
83 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
84
85 /* Render Command Map */
86
87 /* MI_* command Opcode (28:23) */
88 #define OP_MI_NOOP                          0x0
89 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
90 #define OP_MI_USER_INTERRUPT                0x2
91 #define OP_MI_WAIT_FOR_EVENT                0x3
92 #define OP_MI_FLUSH                         0x4
93 #define OP_MI_ARB_CHECK                     0x5
94 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
95 #define OP_MI_REPORT_HEAD                   0x7
96 #define OP_MI_ARB_ON_OFF                    0x8
97 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
98 #define OP_MI_BATCH_BUFFER_END              0xA
99 #define OP_MI_SUSPEND_FLUSH                 0xB
100 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
101 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
102 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
103 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
104 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
105 #define OP_MI_DISPLAY_FLIP                  0x14
106 #define OP_MI_SEMAPHORE_MBOX                0x16
107 #define OP_MI_SET_CONTEXT                   0x18
108 #define OP_MI_MATH                          0x1A
109 #define OP_MI_URB_CLEAR                     0x19
110 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
111 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
112
113 #define OP_MI_STORE_DATA_IMM                0x20
114 #define OP_MI_STORE_DATA_INDEX              0x21
115 #define OP_MI_LOAD_REGISTER_IMM             0x22
116 #define OP_MI_UPDATE_GTT                    0x23
117 #define OP_MI_STORE_REGISTER_MEM            0x24
118 #define OP_MI_FLUSH_DW                      0x26
119 #define OP_MI_CLFLUSH                       0x27
120 #define OP_MI_REPORT_PERF_COUNT             0x28
121 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
122 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
123 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
124 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
125 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
126 #define OP_MI_2E                            0x2E  /* BDW+ */
127 #define OP_MI_2F                            0x2F  /* BDW+ */
128 #define OP_MI_BATCH_BUFFER_START            0x31
129
130 /* Bit definition for dword 0 */
131 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
132
133 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
134
135 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
136 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
137 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
138 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
139
140 /* 2D command: Opcode (28:22) */
141 #define OP_2D(x)    ((2<<7) | x)
142
143 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
144 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
145 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
146 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
147 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
148 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
149 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
150 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
151 #define OP_XY_PAT_BLT                               OP_2D(0x51)
152 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
153 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
154 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
155 #define OP_XY_FULL_BLT                              OP_2D(0x55)
156 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
157 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
158 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
159 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
160 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
161 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
162 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
163 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
164 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
165 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
166 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
167
168 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
169 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
170         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
171
172 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
173
174 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
175 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
176 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
177 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
178
179 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
180
181 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
182
183 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
184 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
185 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
186 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
187 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
188 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
189
190 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
191 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
192 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
193 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
194
195 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
196 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
197 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
198 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
199 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
200 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
201 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
202 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
203 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
204 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
205 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
206 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
207 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
208 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
209 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
210 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
211 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
212 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
213 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
214 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
215 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
216 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
217 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
218 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
219 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
220 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
221 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
222 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
223 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
224 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
225 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
226 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
237 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
238 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
239 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
240 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
252 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
253 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
254 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
255 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
261
262 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
263 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
264 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
265 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
266 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
267 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
268 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
269 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
270 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
271 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
272 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
273
274 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
275 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
276 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
277 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
278 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
279 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
280 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
281 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
282 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
283 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
284 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
285 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
286 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
287 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
288 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
294 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
295 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
296 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
297 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
298 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
299 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
300 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
301 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
302
303 /* VCCP Command Parser */
304
305 /*
306  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
307  * git://anongit.freedesktop.org/vaapi/intel-driver
308  * src/i965_defines.h
309  *
310  */
311
312 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
313         (3 << 13 | \
314          (pipeline) << 11 | \
315          (op) << 8 | \
316          (sub_opa) << 5 | \
317          (sub_opb))
318
319 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
320 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
321 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
322 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
323 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
324 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
325 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
326 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
327 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
328 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
329 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
330
331 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
332
333 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
334 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
335 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
336 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
337 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
338 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
339 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
340 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
341 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
342 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
343 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
344 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
345
346 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
347 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
348 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
349 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
350 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
351
352 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
353 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
354 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
355 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
356 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
357
358 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
359 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
360 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
361
362 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
363 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
364 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
365
366 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
367         (3 << 13 | \
368          (pipeline) << 11 | \
369          (op) << 8 | \
370          (sub_opa) << 5 | \
371          (sub_opb))
372
373 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
374 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
375 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
376
377 struct parser_exec_state;
378
379 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
380
381 #define GVT_CMD_HASH_BITS   7
382
383 /* which DWords need address fix */
384 #define ADDR_FIX_1(x1)                  (1 << (x1))
385 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
386 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
387 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
388 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
389
390 #define DWORD_FIELD(dword, end, start) \
391         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
392
393 #define OP_LENGTH_BIAS 2
394 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
395
396 static int gvt_check_valid_cmd_length(int len, int valid_len)
397 {
398         if (valid_len != len) {
399                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
400                         len, valid_len);
401                 return -EFAULT;
402         }
403         return 0;
404 }
405
406 struct cmd_info {
407         const char *name;
408         u32 opcode;
409
410 #define F_LEN_MASK      3U
411 #define F_LEN_CONST  1U
412 #define F_LEN_VAR    0U
413 /* value is const although LEN maybe variable */
414 #define F_LEN_VAR_FIXED    (1<<1)
415
416 /*
417  * command has its own ip advance logic
418  * e.g. MI_BATCH_START, MI_BATCH_END
419  */
420 #define F_IP_ADVANCE_CUSTOM (1<<2)
421         u32 flag;
422
423 #define R_RCS   BIT(RCS0)
424 #define R_VCS1  BIT(VCS0)
425 #define R_VCS2  BIT(VCS1)
426 #define R_VCS   (R_VCS1 | R_VCS2)
427 #define R_BCS   BIT(BCS0)
428 #define R_VECS  BIT(VECS0)
429 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
430         /* rings that support this cmd: BLT/RCS/VCS/VECS */
431         u16 rings;
432
433         /* devices that support this cmd: SNB/IVB/HSW/... */
434         u16 devices;
435
436         /* which DWords are address that need fix up.
437          * bit 0 means a 32-bit non address operand in command
438          * bit 1 means address operand, which could be 32-bit
439          * or 64-bit depending on different architectures.(
440          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
441          * No matter the address length, each address only takes
442          * one bit in the bitmap.
443          */
444         u16 addr_bitmap;
445
446         /* flag == F_LEN_CONST : command length
447          * flag == F_LEN_VAR : length bias bits
448          * Note: length is in DWord
449          */
450         u32 len;
451
452         parser_cmd_handler handler;
453
454         /* valid length in DWord */
455         u32 valid_len;
456 };
457
458 struct cmd_entry {
459         struct hlist_node hlist;
460         const struct cmd_info *info;
461 };
462
463 enum {
464         RING_BUFFER_INSTRUCTION,
465         BATCH_BUFFER_INSTRUCTION,
466         BATCH_BUFFER_2ND_LEVEL,
467         RING_BUFFER_CTX,
468 };
469
470 enum {
471         GTT_BUFFER,
472         PPGTT_BUFFER
473 };
474
475 struct parser_exec_state {
476         struct intel_vgpu *vgpu;
477         const struct intel_engine_cs *engine;
478
479         int buf_type;
480
481         /* batch buffer address type */
482         int buf_addr_type;
483
484         /* graphics memory address of ring buffer start */
485         unsigned long ring_start;
486         unsigned long ring_size;
487         unsigned long ring_head;
488         unsigned long ring_tail;
489
490         /* instruction graphics memory address */
491         unsigned long ip_gma;
492
493         /* mapped va of the instr_gma */
494         void *ip_va;
495         void *rb_va;
496
497         void *ret_bb_va;
498         /* next instruction when return from  batch buffer to ring buffer */
499         unsigned long ret_ip_gma_ring;
500
501         /* next instruction when return from 2nd batch buffer to batch buffer */
502         unsigned long ret_ip_gma_bb;
503
504         /* batch buffer address type (GTT or PPGTT)
505          * used when ret from 2nd level batch buffer
506          */
507         int saved_buf_addr_type;
508         bool is_ctx_wa;
509         bool is_init_ctx;
510
511         const struct cmd_info *info;
512
513         struct intel_vgpu_workload *workload;
514 };
515
516 #define gmadr_dw_number(s)      \
517         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
518
519 static unsigned long bypass_scan_mask = 0;
520
521 /* ring ALL, type = 0 */
522 static const struct sub_op_bits sub_op_mi[] = {
523         {31, 29},
524         {28, 23},
525 };
526
527 static const struct decode_info decode_info_mi = {
528         "MI",
529         OP_LEN_MI,
530         ARRAY_SIZE(sub_op_mi),
531         sub_op_mi,
532 };
533
534 /* ring RCS, command type 2 */
535 static const struct sub_op_bits sub_op_2d[] = {
536         {31, 29},
537         {28, 22},
538 };
539
540 static const struct decode_info decode_info_2d = {
541         "2D",
542         OP_LEN_2D,
543         ARRAY_SIZE(sub_op_2d),
544         sub_op_2d,
545 };
546
547 /* ring RCS, command type 3 */
548 static const struct sub_op_bits sub_op_3d_media[] = {
549         {31, 29},
550         {28, 27},
551         {26, 24},
552         {23, 16},
553 };
554
555 static const struct decode_info decode_info_3d_media = {
556         "3D_Media",
557         OP_LEN_3D_MEDIA,
558         ARRAY_SIZE(sub_op_3d_media),
559         sub_op_3d_media,
560 };
561
562 /* ring VCS, command type 3 */
563 static const struct sub_op_bits sub_op_mfx_vc[] = {
564         {31, 29},
565         {28, 27},
566         {26, 24},
567         {23, 21},
568         {20, 16},
569 };
570
571 static const struct decode_info decode_info_mfx_vc = {
572         "MFX_VC",
573         OP_LEN_MFX_VC,
574         ARRAY_SIZE(sub_op_mfx_vc),
575         sub_op_mfx_vc,
576 };
577
578 /* ring VECS, command type 3 */
579 static const struct sub_op_bits sub_op_vebox[] = {
580         {31, 29},
581         {28, 27},
582         {26, 24},
583         {23, 21},
584         {20, 16},
585 };
586
587 static const struct decode_info decode_info_vebox = {
588         "VEBOX",
589         OP_LEN_VEBOX,
590         ARRAY_SIZE(sub_op_vebox),
591         sub_op_vebox,
592 };
593
594 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
595         [RCS0] = {
596                 &decode_info_mi,
597                 NULL,
598                 NULL,
599                 &decode_info_3d_media,
600                 NULL,
601                 NULL,
602                 NULL,
603                 NULL,
604         },
605
606         [VCS0] = {
607                 &decode_info_mi,
608                 NULL,
609                 NULL,
610                 &decode_info_mfx_vc,
611                 NULL,
612                 NULL,
613                 NULL,
614                 NULL,
615         },
616
617         [BCS0] = {
618                 &decode_info_mi,
619                 NULL,
620                 &decode_info_2d,
621                 NULL,
622                 NULL,
623                 NULL,
624                 NULL,
625                 NULL,
626         },
627
628         [VECS0] = {
629                 &decode_info_mi,
630                 NULL,
631                 NULL,
632                 &decode_info_vebox,
633                 NULL,
634                 NULL,
635                 NULL,
636                 NULL,
637         },
638
639         [VCS1] = {
640                 &decode_info_mi,
641                 NULL,
642                 NULL,
643                 &decode_info_mfx_vc,
644                 NULL,
645                 NULL,
646                 NULL,
647                 NULL,
648         },
649 };
650
651 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
652 {
653         const struct decode_info *d_info;
654
655         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
656         if (d_info == NULL)
657                 return INVALID_OP;
658
659         return cmd >> (32 - d_info->op_len);
660 }
661
662 static inline const struct cmd_info *
663 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
664                const struct intel_engine_cs *engine)
665 {
666         struct cmd_entry *e;
667
668         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
669                 if (opcode == e->info->opcode &&
670                     e->info->rings & engine->mask)
671                         return e->info;
672         }
673         return NULL;
674 }
675
676 static inline const struct cmd_info *
677 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
678              const struct intel_engine_cs *engine)
679 {
680         u32 opcode;
681
682         opcode = get_opcode(cmd, engine);
683         if (opcode == INVALID_OP)
684                 return NULL;
685
686         return find_cmd_entry(gvt, opcode, engine);
687 }
688
689 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
690 {
691         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
692 }
693
694 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
695 {
696         const struct decode_info *d_info;
697         int i;
698
699         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
700         if (d_info == NULL)
701                 return;
702
703         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
704                         cmd >> (32 - d_info->op_len), d_info->name);
705
706         for (i = 0; i < d_info->nr_sub_op; i++)
707                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
708                                         d_info->sub_op[i].low));
709
710         pr_err("\n");
711 }
712
713 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
714 {
715         return s->ip_va + (index << 2);
716 }
717
718 static inline u32 cmd_val(struct parser_exec_state *s, int index)
719 {
720         return *cmd_ptr(s, index);
721 }
722
723 static inline bool is_init_ctx(struct parser_exec_state *s)
724 {
725         return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
726 }
727
728 static void parser_exec_state_dump(struct parser_exec_state *s)
729 {
730         int cnt = 0;
731         int i;
732
733         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
734                     " ring_head(%08lx) ring_tail(%08lx)\n",
735                     s->vgpu->id, s->engine->name,
736                     s->ring_start, s->ring_start + s->ring_size,
737                     s->ring_head, s->ring_tail);
738
739         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
740                         s->buf_type == RING_BUFFER_INSTRUCTION ?
741                         "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
742                                 "CTX_BUFFER" : "BATCH_BUFFER"),
743                         s->buf_addr_type == GTT_BUFFER ?
744                         "GTT" : "PPGTT", s->ip_gma);
745
746         if (s->ip_va == NULL) {
747                 gvt_dbg_cmd(" ip_va(NULL)");
748                 return;
749         }
750
751         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
752                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
753                         cmd_val(s, 2), cmd_val(s, 3));
754
755         print_opcode(cmd_val(s, 0), s->engine);
756
757         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
758
759         while (cnt < 1024) {
760                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
761                 for (i = 0; i < 8; i++)
762                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
763                 gvt_dbg_cmd("\n");
764
765                 s->ip_va += 8 * sizeof(u32);
766                 cnt += 8;
767         }
768 }
769
770 static inline void update_ip_va(struct parser_exec_state *s)
771 {
772         unsigned long len = 0;
773
774         if (WARN_ON(s->ring_head == s->ring_tail))
775                 return;
776
777         if (s->buf_type == RING_BUFFER_INSTRUCTION ||
778                         s->buf_type == RING_BUFFER_CTX) {
779                 unsigned long ring_top = s->ring_start + s->ring_size;
780
781                 if (s->ring_head > s->ring_tail) {
782                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
783                                 len = (s->ip_gma - s->ring_head);
784                         else if (s->ip_gma >= s->ring_start &&
785                                         s->ip_gma <= s->ring_tail)
786                                 len = (ring_top - s->ring_head) +
787                                         (s->ip_gma - s->ring_start);
788                 } else
789                         len = (s->ip_gma - s->ring_head);
790
791                 s->ip_va = s->rb_va + len;
792         } else {/* shadow batch buffer */
793                 s->ip_va = s->ret_bb_va;
794         }
795 }
796
797 static inline int ip_gma_set(struct parser_exec_state *s,
798                 unsigned long ip_gma)
799 {
800         WARN_ON(!IS_ALIGNED(ip_gma, 4));
801
802         s->ip_gma = ip_gma;
803         update_ip_va(s);
804         return 0;
805 }
806
807 static inline int ip_gma_advance(struct parser_exec_state *s,
808                 unsigned int dw_len)
809 {
810         s->ip_gma += (dw_len << 2);
811
812         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
813                 if (s->ip_gma >= s->ring_start + s->ring_size)
814                         s->ip_gma -= s->ring_size;
815                 update_ip_va(s);
816         } else {
817                 s->ip_va += (dw_len << 2);
818         }
819
820         return 0;
821 }
822
823 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
824 {
825         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
826                 return info->len;
827         else
828                 return (cmd & ((1U << info->len) - 1)) + 2;
829         return 0;
830 }
831
832 static inline int cmd_length(struct parser_exec_state *s)
833 {
834         return get_cmd_length(s->info, cmd_val(s, 0));
835 }
836
837 /* do not remove this, some platform may need clflush here */
838 #define patch_value(s, addr, val) do { \
839         *addr = val; \
840 } while (0)
841
842 static inline bool is_mocs_mmio(unsigned int offset)
843 {
844         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
845                 ((offset >= 0xb020) && (offset <= 0xb0a0));
846 }
847
848 static int is_cmd_update_pdps(unsigned int offset,
849                               struct parser_exec_state *s)
850 {
851         u32 base = s->workload->engine->mmio_base;
852         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
853 }
854
855 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
856                                        unsigned int offset, unsigned int index)
857 {
858         struct intel_vgpu *vgpu = s->vgpu;
859         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
860         struct intel_vgpu_mm *mm;
861         u64 pdps[GEN8_3LVL_PDPES];
862
863         if (shadow_mm->ppgtt_mm.root_entry_type ==
864             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
865                 pdps[0] = (u64)cmd_val(s, 2) << 32;
866                 pdps[0] |= cmd_val(s, 4);
867
868                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
869                 if (!mm) {
870                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
871                         return -EINVAL;
872                 }
873                 intel_vgpu_mm_get(mm);
874                 list_add_tail(&mm->ppgtt_mm.link,
875                               &s->workload->lri_shadow_mm);
876                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
877                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
878         } else {
879                 /* Currently all guests use PML4 table and now can't
880                  * have a guest with 3-level table but uses LRI for
881                  * PPGTT update. So this is simply un-testable. */
882                 GEM_BUG_ON(1);
883                 gvt_vgpu_err("invalid shared shadow vm type\n");
884                 return -EINVAL;
885         }
886         return 0;
887 }
888
889 static int cmd_reg_handler(struct parser_exec_state *s,
890         unsigned int offset, unsigned int index, char *cmd)
891 {
892         struct intel_vgpu *vgpu = s->vgpu;
893         struct intel_gvt *gvt = vgpu->gvt;
894         u32 ctx_sr_ctl;
895         u32 *vreg, vreg_old;
896
897         if (offset + 4 > gvt->device_info.mmio_size) {
898                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
899                                 cmd, offset);
900                 return -EFAULT;
901         }
902
903         if (is_init_ctx(s)) {
904                 struct intel_gvt_mmio_info *mmio_info;
905
906                 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
907                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
908                 if (mmio_info && mmio_info->write)
909                         intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
910                 return 0;
911         }
912
913         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
914                 gvt_vgpu_err("%s access to non-render register (%x)\n",
915                                 cmd, offset);
916                 return -EBADRQC;
917         }
918
919         if (!strncmp(cmd, "srm", 3) ||
920                         !strncmp(cmd, "lrm", 3)) {
921                 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
922                     offset == 0x21f0 ||
923                     (IS_BROADWELL(gvt->gt->i915) &&
924                      offset == i915_mmio_reg_offset(INSTPM)))
925                         return 0;
926                 else {
927                         gvt_vgpu_err("%s access to register (%x)\n",
928                                         cmd, offset);
929                         return -EPERM;
930                 }
931         }
932
933         if (!strncmp(cmd, "lrr-src", 7) ||
934                         !strncmp(cmd, "lrr-dst", 7)) {
935                 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
936                         return 0;
937                 else {
938                         gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
939                         return -EPERM;
940                 }
941         }
942
943         if (!strncmp(cmd, "pipe_ctrl", 9)) {
944                 /* TODO: add LRI POST logic here */
945                 return 0;
946         }
947
948         if (strncmp(cmd, "lri", 3))
949                 return -EPERM;
950
951         /* below are all lri handlers */
952         vreg = &vgpu_vreg(s->vgpu, offset);
953
954         if (is_cmd_update_pdps(offset, s) &&
955             cmd_pdp_mmio_update_handler(s, offset, index))
956                 return -EINVAL;
957
958         if (offset == i915_mmio_reg_offset(DERRMR) ||
959                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962         }
963
964         if (is_mocs_mmio(offset))
965                 *vreg = cmd_val(s, index + 1);
966
967         vreg_old = *vreg;
968
969         if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
970                 u32 cmdval_new, cmdval;
971                 struct intel_gvt_mmio_info *mmio_info;
972
973                 cmdval = cmd_val(s, index + 1);
974
975                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
976                 if (!mmio_info) {
977                         cmdval_new = cmdval;
978                 } else {
979                         u64 ro_mask = mmio_info->ro_mask;
980                         int ret;
981
982                         if (likely(!ro_mask))
983                                 ret = mmio_info->write(s->vgpu, offset,
984                                                 &cmdval, 4);
985                         else {
986                                 gvt_vgpu_err("try to write RO reg %x\n",
987                                                 offset);
988                                 ret = -EBADRQC;
989                         }
990                         if (ret)
991                                 return ret;
992                         cmdval_new = *vreg;
993                 }
994                 if (cmdval_new != cmdval)
995                         patch_value(s, cmd_ptr(s, index+1), cmdval_new);
996         }
997
998         /* only patch cmd. restore vreg value if changed in mmio write handler*/
999         *vreg = vreg_old;
1000
1001         /* TODO
1002          * In order to let workload with inhibit context to generate
1003          * correct image data into memory, vregs values will be loaded to
1004          * hw via LRIs in the workload with inhibit context. But as
1005          * indirect context is loaded prior to LRIs in workload, we don't
1006          * want reg values specified in indirect context overwritten by
1007          * LRIs in workloads. So, when scanning an indirect context, we
1008          * update reg values in it into vregs, so LRIs in workload with
1009          * inhibit context will restore with correct values
1010          */
1011         if (GRAPHICS_VER(s->engine->i915) == 9 &&
1012             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1013             !strncmp(cmd, "lri", 3)) {
1014                 intel_gvt_read_gpa(s->vgpu,
1015                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1016                 /* check inhibit context */
1017                 if (ctx_sr_ctl & 1) {
1018                         u32 data = cmd_val(s, index + 1);
1019
1020                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1021                                 intel_vgpu_mask_mmio_write(vgpu,
1022                                                         offset, &data, 4);
1023                         else
1024                                 vgpu_vreg(vgpu, offset) = data;
1025                 }
1026         }
1027
1028         return 0;
1029 }
1030
1031 #define cmd_reg(s, i) \
1032         (cmd_val(s, i) & GENMASK(22, 2))
1033
1034 #define cmd_reg_inhibit(s, i) \
1035         (cmd_val(s, i) & GENMASK(22, 18))
1036
1037 #define cmd_gma(s, i) \
1038         (cmd_val(s, i) & GENMASK(31, 2))
1039
1040 #define cmd_gma_hi(s, i) \
1041         (cmd_val(s, i) & GENMASK(15, 0))
1042
1043 static int cmd_handler_lri(struct parser_exec_state *s)
1044 {
1045         int i, ret = 0;
1046         int cmd_len = cmd_length(s);
1047
1048         for (i = 1; i < cmd_len; i += 2) {
1049                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1050                         if (s->engine->id == BCS0 &&
1051                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1052                                 ret |= 0;
1053                         else
1054                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1055                 }
1056                 if (ret)
1057                         break;
1058                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1059                 if (ret)
1060                         break;
1061         }
1062         return ret;
1063 }
1064
1065 static int cmd_handler_lrr(struct parser_exec_state *s)
1066 {
1067         int i, ret = 0;
1068         int cmd_len = cmd_length(s);
1069
1070         for (i = 1; i < cmd_len; i += 2) {
1071                 if (IS_BROADWELL(s->engine->i915))
1072                         ret |= ((cmd_reg_inhibit(s, i) ||
1073                                  (cmd_reg_inhibit(s, i + 1)))) ?
1074                                 -EBADRQC : 0;
1075                 if (ret)
1076                         break;
1077                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1078                 if (ret)
1079                         break;
1080                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1081                 if (ret)
1082                         break;
1083         }
1084         return ret;
1085 }
1086
1087 static inline int cmd_address_audit(struct parser_exec_state *s,
1088                 unsigned long guest_gma, int op_size, bool index_mode);
1089
1090 static int cmd_handler_lrm(struct parser_exec_state *s)
1091 {
1092         struct intel_gvt *gvt = s->vgpu->gvt;
1093         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1094         unsigned long gma;
1095         int i, ret = 0;
1096         int cmd_len = cmd_length(s);
1097
1098         for (i = 1; i < cmd_len;) {
1099                 if (IS_BROADWELL(s->engine->i915))
1100                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1101                 if (ret)
1102                         break;
1103                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1104                 if (ret)
1105                         break;
1106                 if (cmd_val(s, 0) & (1 << 22)) {
1107                         gma = cmd_gma(s, i + 1);
1108                         if (gmadr_bytes == 8)
1109                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1110                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1111                         if (ret)
1112                                 break;
1113                 }
1114                 i += gmadr_dw_number(s) + 1;
1115         }
1116         return ret;
1117 }
1118
1119 static int cmd_handler_srm(struct parser_exec_state *s)
1120 {
1121         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1122         unsigned long gma;
1123         int i, ret = 0;
1124         int cmd_len = cmd_length(s);
1125
1126         for (i = 1; i < cmd_len;) {
1127                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1128                 if (ret)
1129                         break;
1130                 if (cmd_val(s, 0) & (1 << 22)) {
1131                         gma = cmd_gma(s, i + 1);
1132                         if (gmadr_bytes == 8)
1133                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1134                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1135                         if (ret)
1136                                 break;
1137                 }
1138                 i += gmadr_dw_number(s) + 1;
1139         }
1140         return ret;
1141 }
1142
1143 struct cmd_interrupt_event {
1144         int pipe_control_notify;
1145         int mi_flush_dw;
1146         int mi_user_interrupt;
1147 };
1148
1149 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1150         [RCS0] = {
1151                 .pipe_control_notify = RCS_PIPE_CONTROL,
1152                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1153                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1154         },
1155         [BCS0] = {
1156                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1157                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1158                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1159         },
1160         [VCS0] = {
1161                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1162                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1163                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1164         },
1165         [VCS1] = {
1166                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1167                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1168                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1169         },
1170         [VECS0] = {
1171                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1172                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1173                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1174         },
1175 };
1176
1177 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1178 {
1179         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1180         unsigned long gma;
1181         bool index_mode = false;
1182         unsigned int post_sync;
1183         int ret = 0;
1184         u32 hws_pga, val;
1185
1186         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1187
1188         /* LRI post sync */
1189         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1190                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1191         /* post sync */
1192         else if (post_sync) {
1193                 if (post_sync == 2)
1194                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1195                 else if (post_sync == 3)
1196                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1197                 else if (post_sync == 1) {
1198                         /* check ggtt*/
1199                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1200                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1201                                 if (gmadr_bytes == 8)
1202                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1203                                 /* Store Data Index */
1204                                 if (cmd_val(s, 1) & (1 << 21))
1205                                         index_mode = true;
1206                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1207                                                 index_mode);
1208                                 if (ret)
1209                                         return ret;
1210                                 if (index_mode) {
1211                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1212                                         gma = hws_pga + gma;
1213                                         patch_value(s, cmd_ptr(s, 2), gma);
1214                                         val = cmd_val(s, 1) & (~(1 << 21));
1215                                         patch_value(s, cmd_ptr(s, 1), val);
1216                                 }
1217                         }
1218                 }
1219         }
1220
1221         if (ret)
1222                 return ret;
1223
1224         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1225                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1226                         s->workload->pending_events);
1227         return 0;
1228 }
1229
1230 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1231 {
1232         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1233                 s->workload->pending_events);
1234         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1235         return 0;
1236 }
1237
1238 static int cmd_advance_default(struct parser_exec_state *s)
1239 {
1240         return ip_gma_advance(s, cmd_length(s));
1241 }
1242
1243 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1244 {
1245         int ret;
1246
1247         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1248                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1249                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1250                 s->buf_addr_type = s->saved_buf_addr_type;
1251         } else if (s->buf_type == RING_BUFFER_CTX) {
1252                 ret = ip_gma_set(s, s->ring_tail);
1253         } else {
1254                 s->buf_type = RING_BUFFER_INSTRUCTION;
1255                 s->buf_addr_type = GTT_BUFFER;
1256                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1257                         s->ret_ip_gma_ring -= s->ring_size;
1258                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1259         }
1260         return ret;
1261 }
1262
1263 struct mi_display_flip_command_info {
1264         int pipe;
1265         int plane;
1266         int event;
1267         i915_reg_t stride_reg;
1268         i915_reg_t ctrl_reg;
1269         i915_reg_t surf_reg;
1270         u64 stride_val;
1271         u64 tile_val;
1272         u64 surf_val;
1273         bool async_flip;
1274 };
1275
1276 struct plane_code_mapping {
1277         int pipe;
1278         int plane;
1279         int event;
1280 };
1281
1282 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1283                 struct mi_display_flip_command_info *info)
1284 {
1285         struct drm_i915_private *dev_priv = s->engine->i915;
1286         struct plane_code_mapping gen8_plane_code[] = {
1287                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1288                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1289                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1290                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1291                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1292                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1293         };
1294         u32 dword0, dword1, dword2;
1295         u32 v;
1296
1297         dword0 = cmd_val(s, 0);
1298         dword1 = cmd_val(s, 1);
1299         dword2 = cmd_val(s, 2);
1300
1301         v = (dword0 & GENMASK(21, 19)) >> 19;
1302         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1303                 return -EBADRQC;
1304
1305         info->pipe = gen8_plane_code[v].pipe;
1306         info->plane = gen8_plane_code[v].plane;
1307         info->event = gen8_plane_code[v].event;
1308         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1309         info->tile_val = (dword1 & 0x1);
1310         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1311         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1312
1313         if (info->plane == PLANE_A) {
1314                 info->ctrl_reg = DSPCNTR(info->pipe);
1315                 info->stride_reg = DSPSTRIDE(info->pipe);
1316                 info->surf_reg = DSPSURF(info->pipe);
1317         } else if (info->plane == PLANE_B) {
1318                 info->ctrl_reg = SPRCTL(info->pipe);
1319                 info->stride_reg = SPRSTRIDE(info->pipe);
1320                 info->surf_reg = SPRSURF(info->pipe);
1321         } else {
1322                 drm_WARN_ON(&dev_priv->drm, 1);
1323                 return -EBADRQC;
1324         }
1325         return 0;
1326 }
1327
1328 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1329                 struct mi_display_flip_command_info *info)
1330 {
1331         struct drm_i915_private *dev_priv = s->engine->i915;
1332         struct intel_vgpu *vgpu = s->vgpu;
1333         u32 dword0 = cmd_val(s, 0);
1334         u32 dword1 = cmd_val(s, 1);
1335         u32 dword2 = cmd_val(s, 2);
1336         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1337
1338         info->plane = PRIMARY_PLANE;
1339
1340         switch (plane) {
1341         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1342                 info->pipe = PIPE_A;
1343                 info->event = PRIMARY_A_FLIP_DONE;
1344                 break;
1345         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1346                 info->pipe = PIPE_B;
1347                 info->event = PRIMARY_B_FLIP_DONE;
1348                 break;
1349         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1350                 info->pipe = PIPE_C;
1351                 info->event = PRIMARY_C_FLIP_DONE;
1352                 break;
1353
1354         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1355                 info->pipe = PIPE_A;
1356                 info->event = SPRITE_A_FLIP_DONE;
1357                 info->plane = SPRITE_PLANE;
1358                 break;
1359         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1360                 info->pipe = PIPE_B;
1361                 info->event = SPRITE_B_FLIP_DONE;
1362                 info->plane = SPRITE_PLANE;
1363                 break;
1364         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1365                 info->pipe = PIPE_C;
1366                 info->event = SPRITE_C_FLIP_DONE;
1367                 info->plane = SPRITE_PLANE;
1368                 break;
1369
1370         default:
1371                 gvt_vgpu_err("unknown plane code %d\n", plane);
1372                 return -EBADRQC;
1373         }
1374
1375         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1376         info->tile_val = (dword1 & GENMASK(2, 0));
1377         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1378         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1379
1380         info->ctrl_reg = DSPCNTR(info->pipe);
1381         info->stride_reg = DSPSTRIDE(info->pipe);
1382         info->surf_reg = DSPSURF(info->pipe);
1383
1384         return 0;
1385 }
1386
1387 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1388                 struct mi_display_flip_command_info *info)
1389 {
1390         u32 stride, tile;
1391
1392         if (!info->async_flip)
1393                 return 0;
1394
1395         if (GRAPHICS_VER(s->engine->i915) >= 9) {
1396                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1397                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1398                                 GENMASK(12, 10)) >> 10;
1399         } else {
1400                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1401                                 GENMASK(15, 6)) >> 6;
1402                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1403         }
1404
1405         if (stride != info->stride_val)
1406                 gvt_dbg_cmd("cannot change stride during async flip\n");
1407
1408         if (tile != info->tile_val)
1409                 gvt_dbg_cmd("cannot change tile during async flip\n");
1410
1411         return 0;
1412 }
1413
1414 static int gen8_update_plane_mmio_from_mi_display_flip(
1415                 struct parser_exec_state *s,
1416                 struct mi_display_flip_command_info *info)
1417 {
1418         struct drm_i915_private *dev_priv = s->engine->i915;
1419         struct intel_vgpu *vgpu = s->vgpu;
1420
1421         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1422                       info->surf_val << 12);
1423         if (GRAPHICS_VER(dev_priv) >= 9) {
1424                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1425                               info->stride_val);
1426                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1427                               info->tile_val << 10);
1428         } else {
1429                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1430                               info->stride_val << 6);
1431                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1432                               info->tile_val << 10);
1433         }
1434
1435         if (info->plane == PLANE_PRIMARY)
1436                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1437
1438         if (info->async_flip)
1439                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1440         else
1441                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1442
1443         return 0;
1444 }
1445
1446 static int decode_mi_display_flip(struct parser_exec_state *s,
1447                 struct mi_display_flip_command_info *info)
1448 {
1449         if (IS_BROADWELL(s->engine->i915))
1450                 return gen8_decode_mi_display_flip(s, info);
1451         if (GRAPHICS_VER(s->engine->i915) >= 9)
1452                 return skl_decode_mi_display_flip(s, info);
1453
1454         return -ENODEV;
1455 }
1456
1457 static int check_mi_display_flip(struct parser_exec_state *s,
1458                 struct mi_display_flip_command_info *info)
1459 {
1460         return gen8_check_mi_display_flip(s, info);
1461 }
1462
1463 static int update_plane_mmio_from_mi_display_flip(
1464                 struct parser_exec_state *s,
1465                 struct mi_display_flip_command_info *info)
1466 {
1467         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1468 }
1469
1470 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1471 {
1472         struct mi_display_flip_command_info info;
1473         struct intel_vgpu *vgpu = s->vgpu;
1474         int ret;
1475         int i;
1476         int len = cmd_length(s);
1477         u32 valid_len = CMD_LEN(1);
1478
1479         /* Flip Type == Stereo 3D Flip */
1480         if (DWORD_FIELD(2, 1, 0) == 2)
1481                 valid_len++;
1482         ret = gvt_check_valid_cmd_length(cmd_length(s),
1483                         valid_len);
1484         if (ret)
1485                 return ret;
1486
1487         ret = decode_mi_display_flip(s, &info);
1488         if (ret) {
1489                 gvt_vgpu_err("fail to decode MI display flip command\n");
1490                 return ret;
1491         }
1492
1493         ret = check_mi_display_flip(s, &info);
1494         if (ret) {
1495                 gvt_vgpu_err("invalid MI display flip command\n");
1496                 return ret;
1497         }
1498
1499         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1500         if (ret) {
1501                 gvt_vgpu_err("fail to update plane mmio\n");
1502                 return ret;
1503         }
1504
1505         for (i = 0; i < len; i++)
1506                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1507         return 0;
1508 }
1509
1510 static bool is_wait_for_flip_pending(u32 cmd)
1511 {
1512         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1513                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1514                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1515                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1516                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1517                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1518 }
1519
1520 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1521 {
1522         u32 cmd = cmd_val(s, 0);
1523
1524         if (!is_wait_for_flip_pending(cmd))
1525                 return 0;
1526
1527         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1528         return 0;
1529 }
1530
1531 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1532 {
1533         unsigned long addr;
1534         unsigned long gma_high, gma_low;
1535         struct intel_vgpu *vgpu = s->vgpu;
1536         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1537
1538         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1539                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1540                 return INTEL_GVT_INVALID_ADDR;
1541         }
1542
1543         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1544         if (gmadr_bytes == 4) {
1545                 addr = gma_low;
1546         } else {
1547                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1548                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1549         }
1550         return addr;
1551 }
1552
1553 static inline int cmd_address_audit(struct parser_exec_state *s,
1554                 unsigned long guest_gma, int op_size, bool index_mode)
1555 {
1556         struct intel_vgpu *vgpu = s->vgpu;
1557         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1558         int i;
1559         int ret;
1560
1561         if (op_size > max_surface_size) {
1562                 gvt_vgpu_err("command address audit fail name %s\n",
1563                         s->info->name);
1564                 return -EFAULT;
1565         }
1566
1567         if (index_mode) {
1568                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1569                         ret = -EFAULT;
1570                         goto err;
1571                 }
1572         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1573                 ret = -EFAULT;
1574                 goto err;
1575         }
1576
1577         return 0;
1578
1579 err:
1580         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1581                         s->info->name, guest_gma, op_size);
1582
1583         pr_err("cmd dump: ");
1584         for (i = 0; i < cmd_length(s); i++) {
1585                 if (!(i % 4))
1586                         pr_err("\n%08x ", cmd_val(s, i));
1587                 else
1588                         pr_err("%08x ", cmd_val(s, i));
1589         }
1590         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1591                         vgpu->id,
1592                         vgpu_aperture_gmadr_base(vgpu),
1593                         vgpu_aperture_gmadr_end(vgpu),
1594                         vgpu_hidden_gmadr_base(vgpu),
1595                         vgpu_hidden_gmadr_end(vgpu));
1596         return ret;
1597 }
1598
1599 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1600 {
1601         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1602         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1603         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1604         unsigned long gma, gma_low, gma_high;
1605         u32 valid_len = CMD_LEN(2);
1606         int ret = 0;
1607
1608         /* check ppggt */
1609         if (!(cmd_val(s, 0) & (1 << 22)))
1610                 return 0;
1611
1612         /* check if QWORD */
1613         if (DWORD_FIELD(0, 21, 21))
1614                 valid_len++;
1615         ret = gvt_check_valid_cmd_length(cmd_length(s),
1616                         valid_len);
1617         if (ret)
1618                 return ret;
1619
1620         gma = cmd_val(s, 2) & GENMASK(31, 2);
1621
1622         if (gmadr_bytes == 8) {
1623                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1624                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1625                 gma = (gma_high << 32) | gma_low;
1626                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1627         }
1628         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1629         return ret;
1630 }
1631
1632 static inline int unexpected_cmd(struct parser_exec_state *s)
1633 {
1634         struct intel_vgpu *vgpu = s->vgpu;
1635
1636         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1637
1638         return -EBADRQC;
1639 }
1640
1641 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1642 {
1643         return unexpected_cmd(s);
1644 }
1645
1646 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1647 {
1648         return unexpected_cmd(s);
1649 }
1650
1651 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1652 {
1653         return unexpected_cmd(s);
1654 }
1655
1656 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1657 {
1658         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1659         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1660                         sizeof(u32);
1661         unsigned long gma, gma_high;
1662         u32 valid_len = CMD_LEN(1);
1663         int ret = 0;
1664
1665         if (!(cmd_val(s, 0) & (1 << 22)))
1666                 return ret;
1667
1668         /* check inline data */
1669         if (cmd_val(s, 0) & BIT(18))
1670                 valid_len = CMD_LEN(9);
1671         ret = gvt_check_valid_cmd_length(cmd_length(s),
1672                         valid_len);
1673         if (ret)
1674                 return ret;
1675
1676         gma = cmd_val(s, 1) & GENMASK(31, 2);
1677         if (gmadr_bytes == 8) {
1678                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1679                 gma = (gma_high << 32) | gma;
1680         }
1681         ret = cmd_address_audit(s, gma, op_size, false);
1682         return ret;
1683 }
1684
1685 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1686 {
1687         return unexpected_cmd(s);
1688 }
1689
1690 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1691 {
1692         return unexpected_cmd(s);
1693 }
1694
1695 static int cmd_handler_mi_conditional_batch_buffer_end(
1696                 struct parser_exec_state *s)
1697 {
1698         return unexpected_cmd(s);
1699 }
1700
1701 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1702 {
1703         return unexpected_cmd(s);
1704 }
1705
1706 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1707 {
1708         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1709         unsigned long gma;
1710         bool index_mode = false;
1711         int ret = 0;
1712         u32 hws_pga, val;
1713         u32 valid_len = CMD_LEN(2);
1714
1715         ret = gvt_check_valid_cmd_length(cmd_length(s),
1716                         valid_len);
1717         if (ret) {
1718                 /* Check again for Qword */
1719                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1720                         ++valid_len);
1721                 return ret;
1722         }
1723
1724         /* Check post-sync and ppgtt bit */
1725         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1726                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1727                 if (gmadr_bytes == 8)
1728                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1729                 /* Store Data Index */
1730                 if (cmd_val(s, 0) & (1 << 21))
1731                         index_mode = true;
1732                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1733                 if (ret)
1734                         return ret;
1735                 if (index_mode) {
1736                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1737                         gma = hws_pga + gma;
1738                         patch_value(s, cmd_ptr(s, 1), gma);
1739                         val = cmd_val(s, 0) & (~(1 << 21));
1740                         patch_value(s, cmd_ptr(s, 0), val);
1741                 }
1742         }
1743         /* Check notify bit */
1744         if ((cmd_val(s, 0) & (1 << 8)))
1745                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1746                         s->workload->pending_events);
1747         return ret;
1748 }
1749
1750 static void addr_type_update_snb(struct parser_exec_state *s)
1751 {
1752         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1753                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1754                 s->buf_addr_type = PPGTT_BUFFER;
1755         }
1756 }
1757
1758
1759 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1760                 unsigned long gma, unsigned long end_gma, void *va)
1761 {
1762         unsigned long copy_len, offset;
1763         unsigned long len = 0;
1764         unsigned long gpa;
1765
1766         while (gma != end_gma) {
1767                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1768                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1769                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1770                         return -EFAULT;
1771                 }
1772
1773                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1774
1775                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1776                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1777
1778                 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1779
1780                 len += copy_len;
1781                 gma += copy_len;
1782         }
1783         return len;
1784 }
1785
1786
1787 /*
1788  * Check whether a batch buffer needs to be scanned. Currently
1789  * the only criteria is based on privilege.
1790  */
1791 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1792 {
1793         /* Decide privilege based on address space */
1794         if (cmd_val(s, 0) & BIT(8) &&
1795             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1796                 return 0;
1797
1798         return 1;
1799 }
1800
1801 static const char *repr_addr_type(unsigned int type)
1802 {
1803         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1804 }
1805
1806 static int find_bb_size(struct parser_exec_state *s,
1807                         unsigned long *bb_size,
1808                         unsigned long *bb_end_cmd_offset)
1809 {
1810         unsigned long gma = 0;
1811         const struct cmd_info *info;
1812         u32 cmd_len = 0;
1813         bool bb_end = false;
1814         struct intel_vgpu *vgpu = s->vgpu;
1815         u32 cmd;
1816         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1817                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1818
1819         *bb_size = 0;
1820         *bb_end_cmd_offset = 0;
1821
1822         /* get the start gm address of the batch buffer */
1823         gma = get_gma_bb_from_cmd(s, 1);
1824         if (gma == INTEL_GVT_INVALID_ADDR)
1825                 return -EFAULT;
1826
1827         cmd = cmd_val(s, 0);
1828         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1829         if (info == NULL) {
1830                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1831                              cmd, get_opcode(cmd, s->engine),
1832                              repr_addr_type(s->buf_addr_type),
1833                              s->engine->name, s->workload);
1834                 return -EBADRQC;
1835         }
1836         do {
1837                 if (copy_gma_to_hva(s->vgpu, mm,
1838                                     gma, gma + 4, &cmd) < 0)
1839                         return -EFAULT;
1840                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1841                 if (info == NULL) {
1842                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1843                                      cmd, get_opcode(cmd, s->engine),
1844                                      repr_addr_type(s->buf_addr_type),
1845                                      s->engine->name, s->workload);
1846                         return -EBADRQC;
1847                 }
1848
1849                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1850                         bb_end = true;
1851                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1852                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1853                                 /* chained batch buffer */
1854                                 bb_end = true;
1855                 }
1856
1857                 if (bb_end)
1858                         *bb_end_cmd_offset = *bb_size;
1859
1860                 cmd_len = get_cmd_length(info, cmd) << 2;
1861                 *bb_size += cmd_len;
1862                 gma += cmd_len;
1863         } while (!bb_end);
1864
1865         return 0;
1866 }
1867
1868 static int audit_bb_end(struct parser_exec_state *s, void *va)
1869 {
1870         struct intel_vgpu *vgpu = s->vgpu;
1871         u32 cmd = *(u32 *)va;
1872         const struct cmd_info *info;
1873
1874         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1875         if (info == NULL) {
1876                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1877                              cmd, get_opcode(cmd, s->engine),
1878                              repr_addr_type(s->buf_addr_type),
1879                              s->engine->name, s->workload);
1880                 return -EBADRQC;
1881         }
1882
1883         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1884             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1885              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1886                 return 0;
1887
1888         return -EBADRQC;
1889 }
1890
1891 static int perform_bb_shadow(struct parser_exec_state *s)
1892 {
1893         struct intel_vgpu *vgpu = s->vgpu;
1894         struct intel_vgpu_shadow_bb *bb;
1895         unsigned long gma = 0;
1896         unsigned long bb_size;
1897         unsigned long bb_end_cmd_offset;
1898         int ret = 0;
1899         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1900                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1901         unsigned long start_offset = 0;
1902
1903         /* get the start gm address of the batch buffer */
1904         gma = get_gma_bb_from_cmd(s, 1);
1905         if (gma == INTEL_GVT_INVALID_ADDR)
1906                 return -EFAULT;
1907
1908         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1909         if (ret)
1910                 return ret;
1911
1912         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1913         if (!bb)
1914                 return -ENOMEM;
1915
1916         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1917
1918         /* the start_offset stores the batch buffer's start gma's
1919          * offset relative to page boundary. so for non-privileged batch
1920          * buffer, the shadowed gem object holds exactly the same page
1921          * layout as original gem object. This is for the convience of
1922          * replacing the whole non-privilged batch buffer page to this
1923          * shadowed one in PPGTT at the same gma address. (this replacing
1924          * action is not implemented yet now, but may be necessary in
1925          * future).
1926          * for prileged batch buffer, we just change start gma address to
1927          * that of shadowed page.
1928          */
1929         if (bb->ppgtt)
1930                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1931
1932         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1933                                                round_up(bb_size + start_offset,
1934                                                         PAGE_SIZE));
1935         if (IS_ERR(bb->obj)) {
1936                 ret = PTR_ERR(bb->obj);
1937                 goto err_free_bb;
1938         }
1939
1940         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1941         if (IS_ERR(bb->va)) {
1942                 ret = PTR_ERR(bb->va);
1943                 goto err_free_obj;
1944         }
1945
1946         ret = copy_gma_to_hva(s->vgpu, mm,
1947                               gma, gma + bb_size,
1948                               bb->va + start_offset);
1949         if (ret < 0) {
1950                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1951                 ret = -EFAULT;
1952                 goto err_unmap;
1953         }
1954
1955         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1956         if (ret)
1957                 goto err_unmap;
1958
1959         i915_gem_object_unlock(bb->obj);
1960         INIT_LIST_HEAD(&bb->list);
1961         list_add(&bb->list, &s->workload->shadow_bb);
1962
1963         bb->bb_start_cmd_va = s->ip_va;
1964
1965         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1966                 bb->bb_offset = s->ip_va - s->rb_va;
1967         else
1968                 bb->bb_offset = 0;
1969
1970         /*
1971          * ip_va saves the virtual address of the shadow batch buffer, while
1972          * ip_gma saves the graphics address of the original batch buffer.
1973          * As the shadow batch buffer is just a copy from the originial one,
1974          * it should be right to use shadow batch buffer'va and original batch
1975          * buffer's gma in pair. After all, we don't want to pin the shadow
1976          * buffer here (too early).
1977          */
1978         s->ip_va = bb->va + start_offset;
1979         s->ip_gma = gma;
1980         return 0;
1981 err_unmap:
1982         i915_gem_object_unpin_map(bb->obj);
1983 err_free_obj:
1984         i915_gem_object_put(bb->obj);
1985 err_free_bb:
1986         kfree(bb);
1987         return ret;
1988 }
1989
1990 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1991 {
1992         bool second_level;
1993         int ret = 0;
1994         struct intel_vgpu *vgpu = s->vgpu;
1995
1996         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1997                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1998                 return -EFAULT;
1999         }
2000
2001         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2002         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2003                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2004                 return -EFAULT;
2005         }
2006
2007         s->saved_buf_addr_type = s->buf_addr_type;
2008         addr_type_update_snb(s);
2009         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2010                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2011                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2012         } else if (second_level) {
2013                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2014                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2015                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2016         }
2017
2018         if (batch_buffer_needs_scan(s)) {
2019                 ret = perform_bb_shadow(s);
2020                 if (ret < 0)
2021                         gvt_vgpu_err("invalid shadow batch buffer\n");
2022         } else {
2023                 /* emulate a batch buffer end to do return right */
2024                 ret = cmd_handler_mi_batch_buffer_end(s);
2025                 if (ret < 0)
2026                         return ret;
2027         }
2028         return ret;
2029 }
2030
2031 static int mi_noop_index;
2032
2033 static const struct cmd_info cmd_info[] = {
2034         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2035
2036         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2037                 0, 1, NULL},
2038
2039         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2040                 0, 1, cmd_handler_mi_user_interrupt},
2041
2042         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2043                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2044
2045         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2046
2047         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2048                 NULL},
2049
2050         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2051                 NULL},
2052
2053         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2054                 NULL},
2055
2056         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2057                 NULL},
2058
2059         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2060                 D_ALL, 0, 1, NULL},
2061
2062         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2063                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2064                 cmd_handler_mi_batch_buffer_end},
2065
2066         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2067                 0, 1, NULL},
2068
2069         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2070                 NULL},
2071
2072         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2073                 D_ALL, 0, 1, NULL},
2074
2075         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2076                 NULL},
2077
2078         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2079                 NULL},
2080
2081         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2082                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2083
2084         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2085                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2086
2087         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2088
2089         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2090                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2091
2092         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2093                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2094                 NULL, CMD_LEN(0)},
2095
2096         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2097                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2098                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2099
2100         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2101                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2102
2103         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2104                 0, 8, cmd_handler_mi_store_data_index},
2105
2106         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2107                 D_ALL, 0, 8, cmd_handler_lri},
2108
2109         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2110                 cmd_handler_mi_update_gtt},
2111
2112         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2113                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2114                 cmd_handler_srm, CMD_LEN(2)},
2115
2116         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2117                 cmd_handler_mi_flush_dw},
2118
2119         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2120                 10, cmd_handler_mi_clflush},
2121
2122         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2123                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2124                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2125
2126         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2127                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2128                 cmd_handler_lrm, CMD_LEN(2)},
2129
2130         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2131                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2132                 cmd_handler_lrr, CMD_LEN(1)},
2133
2134         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2135                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2136                 8, NULL, CMD_LEN(2)},
2137
2138         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2139                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2140
2141         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2142                 ADDR_FIX_1(2), 8, NULL},
2143
2144         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2145                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2146
2147         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2148                 8, cmd_handler_mi_op_2f},
2149
2150         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2151                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2152                 cmd_handler_mi_batch_buffer_start},
2153
2154         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2155                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2156                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2157
2158         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2159                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2160
2161         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2162                 ADDR_FIX_2(4, 7), 8, NULL},
2163
2164         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2165                 0, 8, NULL},
2166
2167         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2168                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2169
2170         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2171
2172         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2173                 0, 8, NULL},
2174
2175         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2176                 ADDR_FIX_1(3), 8, NULL},
2177
2178         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2179                 D_ALL, 0, 8, NULL},
2180
2181         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2182                 ADDR_FIX_1(4), 8, NULL},
2183
2184         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2185                 ADDR_FIX_2(4, 5), 8, NULL},
2186
2187         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2188                 ADDR_FIX_1(4), 8, NULL},
2189
2190         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2191                 ADDR_FIX_2(4, 7), 8, NULL},
2192
2193         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2194                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2195
2196         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2197
2198         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2199                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2200
2201         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2202                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2203
2204         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2205                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2206                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2207
2208         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2209                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2210
2211         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2212                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2213
2214         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2215                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2216
2217         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2218                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2219
2220         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2221                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2222
2223         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2224                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2225                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2226
2227         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2228                 ADDR_FIX_2(4, 5), 8, NULL},
2229
2230         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2231                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2232
2233         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2234                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2235                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2238                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2239                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240
2241         {"3DSTATE_BLEND_STATE_POINTERS",
2242                 OP_3DSTATE_BLEND_STATE_POINTERS,
2243                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2244
2245         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2246                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2247                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248
2249         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2250                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2251                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252
2253         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2254                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2255                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2258                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2259                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260
2261         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2262                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2263                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264
2265         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2266                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2267                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2270                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2271                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272
2273         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2274                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2275                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276
2277         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2278                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2279                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2282                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2283                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284
2285         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2286                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2287                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288
2289         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2290                 0, 8, NULL},
2291
2292         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2293                 0, 8, NULL},
2294
2295         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2296                 0, 8, NULL},
2297
2298         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2299                 0, 8, NULL},
2300
2301         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2302                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2303
2304         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2305                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2306
2307         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2308                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2309
2310         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2311                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312
2313         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2314                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315
2316         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2317                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2318
2319         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2320                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2321
2322         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2323                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324
2325         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2326                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2327
2328         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2329                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2330
2331         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2332                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333
2334         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2335                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336
2337         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2338                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339
2340         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2341                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342
2343         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2344                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2345
2346         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2347                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2348
2349         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2350                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2351
2352         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2353                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2354
2355         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2356                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357
2358         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2359                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2360
2361         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2362                 D_BDW_PLUS, 0, 8, NULL},
2363
2364         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2365                 NULL},
2366
2367         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2368                 D_BDW_PLUS, 0, 8, NULL},
2369
2370         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2371                 D_BDW_PLUS, 0, 8, NULL},
2372
2373         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2374                 8, NULL},
2375
2376         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2377                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2378
2379         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2380                 8, NULL},
2381
2382         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2383                 NULL},
2384
2385         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2386                 NULL},
2387
2388         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2389                 NULL},
2390
2391         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2392                 D_BDW_PLUS, 0, 8, NULL},
2393
2394         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2395                 R_RCS, D_ALL, 0, 8, NULL},
2396
2397         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2398                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2399
2400         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2401                 R_RCS, D_ALL, 0, 1, NULL},
2402
2403         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2404
2405         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2406                 R_RCS, D_ALL, 0, 8, NULL},
2407
2408         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2409                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2418                 D_BDW_PLUS, 0, 8, NULL},
2419
2420         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2421                 D_BDW_PLUS, 0, 8, NULL},
2422
2423         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2424                 D_ALL, 0, 8, NULL},
2425
2426         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2427                 D_BDW_PLUS, 0, 8, NULL},
2428
2429         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2430                 D_BDW_PLUS, 0, 8, NULL},
2431
2432         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2439                 D_ALL, 0, 8, NULL},
2440
2441         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2446                 R_RCS, D_ALL, 0, 8, NULL},
2447
2448         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2449                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2450
2451         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2452                 0, 8, NULL},
2453
2454         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2455                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2456
2457         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2458                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2459
2460         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2461                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2462
2463         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2464                 D_ALL, 0, 8, NULL},
2465
2466         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2467                 D_ALL, 0, 8, NULL},
2468
2469         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2470                 D_ALL, 0, 8, NULL},
2471
2472         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2473                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2474
2475         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2476                 D_BDW_PLUS, 0, 8, NULL},
2477
2478         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2479                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2480
2481         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2482                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2483
2484         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2485                 R_RCS, D_ALL, 0, 8, NULL},
2486
2487         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2488                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489
2490         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2491                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2492
2493         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2494                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495
2496         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2497                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498
2499         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2500                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2501
2502         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2503                 R_RCS, D_ALL, 0, 8, NULL},
2504
2505         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2506                 D_ALL, 0, 9, NULL},
2507
2508         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2509                 ADDR_FIX_2(2, 4), 8, NULL},
2510
2511         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2512                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2513                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2514
2515         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2516                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2517
2518         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2519                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2520                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2521
2522         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2523                 D_BDW_PLUS, 0, 8, NULL},
2524
2525         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2526                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2527
2528         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2529
2530         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2531                 1, NULL},
2532
2533         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2534                 ADDR_FIX_1(1), 8, NULL},
2535
2536         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2537
2538         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2539                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2540
2541         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2542                 ADDR_FIX_1(1), 8, NULL},
2543
2544         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2545                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2546
2547         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548
2549         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2552                 0, 8, NULL},
2553
2554         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2555                 D_SKL_PLUS, 0, 8, NULL},
2556
2557         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2558                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2559
2560         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2561                 0, 16, NULL},
2562
2563         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2564                 0, 16, NULL},
2565
2566         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2567                 0, 16, NULL},
2568
2569         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2570
2571         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2572                 0, 16, NULL},
2573
2574         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2575                 0, 16, NULL},
2576
2577         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2578                 0, 16, NULL},
2579
2580         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2581                 0, 8, NULL},
2582
2583         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2584                 NULL},
2585
2586         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2587                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2588
2589         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2590                 R_VCS, D_ALL, 0, 12, NULL},
2591
2592         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2593                 R_VCS, D_ALL, 0, 12, NULL},
2594
2595         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2596                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2597
2598         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2599                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2600
2601         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2602                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2603
2604         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2605
2606         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2607                 R_VCS, D_ALL, 0, 12, NULL},
2608
2609         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2610                 R_VCS, D_ALL, 0, 12, NULL},
2611
2612         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2613                 R_VCS, D_ALL, 0, 12, NULL},
2614
2615         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2616                 R_VCS, D_ALL, 0, 12, NULL},
2617
2618         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2619                 R_VCS, D_ALL, 0, 12, NULL},
2620
2621         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2622                 R_VCS, D_ALL, 0, 12, NULL},
2623
2624         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2625                 R_VCS, D_ALL, 0, 6, NULL},
2626
2627         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2628                 R_VCS, D_ALL, 0, 12, NULL},
2629
2630         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2631                 R_VCS, D_ALL, 0, 12, NULL},
2632
2633         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2634                 R_VCS, D_ALL, 0, 12, NULL},
2635
2636         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2637                 R_VCS, D_ALL, 0, 12, NULL},
2638
2639         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2640                 R_VCS, D_ALL, 0, 12, NULL},
2641
2642         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2643                 R_VCS, D_ALL, 0, 12, NULL},
2644
2645         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2646                 R_VCS, D_ALL, 0, 12, NULL},
2647         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2648                 R_VCS, D_ALL, 0, 12, NULL},
2649
2650         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2651                 R_VCS, D_ALL, 0, 12, NULL},
2652
2653         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2654                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2655
2656         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2657                 R_VCS, D_ALL, 0, 12, NULL},
2658
2659         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2660                 R_VCS, D_ALL, 0, 12, NULL},
2661
2662         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2663                 R_VCS, D_ALL, 0, 12, NULL},
2664
2665         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2666                 R_VCS, D_ALL, 0, 12, NULL},
2667
2668         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2669                 R_VCS, D_ALL, 0, 12, NULL},
2670
2671         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2672                 R_VCS, D_ALL, 0, 12, NULL},
2673
2674         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2675                 R_VCS, D_ALL, 0, 12, NULL},
2676
2677         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2678                 R_VCS, D_ALL, 0, 12, NULL},
2679
2680         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2681                 R_VCS, D_ALL, 0, 12, NULL},
2682
2683         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2684                 R_VCS, D_ALL, 0, 12, NULL},
2685
2686         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2687                 R_VCS, D_ALL, 0, 12, NULL},
2688
2689         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2690                 0, 16, NULL},
2691
2692         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2693
2694         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2697                 R_VCS, D_ALL, 0, 12, NULL},
2698
2699         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2700                 R_VCS, D_ALL, 0, 12, NULL},
2701
2702         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2703                 R_VCS, D_ALL, 0, 12, NULL},
2704
2705         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2706
2707         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2708                 0, 12, NULL},
2709
2710         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2711                 0, 12, NULL},
2712 };
2713
2714 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2715 {
2716         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2717 }
2718
2719 /* call the cmd handler, and advance ip */
2720 static int cmd_parser_exec(struct parser_exec_state *s)
2721 {
2722         struct intel_vgpu *vgpu = s->vgpu;
2723         const struct cmd_info *info;
2724         u32 cmd;
2725         int ret = 0;
2726
2727         cmd = cmd_val(s, 0);
2728
2729         /* fastpath for MI_NOOP */
2730         if (cmd == MI_NOOP)
2731                 info = &cmd_info[mi_noop_index];
2732         else
2733                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2734
2735         if (info == NULL) {
2736                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2737                              cmd, get_opcode(cmd, s->engine),
2738                              repr_addr_type(s->buf_addr_type),
2739                              s->engine->name, s->workload);
2740                 return -EBADRQC;
2741         }
2742
2743         s->info = info;
2744
2745         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2746                           cmd_length(s), s->buf_type, s->buf_addr_type,
2747                           s->workload, info->name);
2748
2749         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2750                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2751                                                  info->valid_len);
2752                 if (ret)
2753                         return ret;
2754         }
2755
2756         if (info->handler) {
2757                 ret = info->handler(s);
2758                 if (ret < 0) {
2759                         gvt_vgpu_err("%s handler error\n", info->name);
2760                         return ret;
2761                 }
2762         }
2763
2764         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2765                 ret = cmd_advance_default(s);
2766                 if (ret) {
2767                         gvt_vgpu_err("%s IP advance error\n", info->name);
2768                         return ret;
2769                 }
2770         }
2771         return 0;
2772 }
2773
2774 static inline bool gma_out_of_range(unsigned long gma,
2775                 unsigned long gma_head, unsigned int gma_tail)
2776 {
2777         if (gma_tail >= gma_head)
2778                 return (gma < gma_head) || (gma > gma_tail);
2779         else
2780                 return (gma > gma_tail) && (gma < gma_head);
2781 }
2782
2783 /* Keep the consistent return type, e.g EBADRQC for unknown
2784  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2785  * works as the input of VM healthy status.
2786  */
2787 static int command_scan(struct parser_exec_state *s,
2788                 unsigned long rb_head, unsigned long rb_tail,
2789                 unsigned long rb_start, unsigned long rb_len)
2790 {
2791
2792         unsigned long gma_head, gma_tail, gma_bottom;
2793         int ret = 0;
2794         struct intel_vgpu *vgpu = s->vgpu;
2795
2796         gma_head = rb_start + rb_head;
2797         gma_tail = rb_start + rb_tail;
2798         gma_bottom = rb_start +  rb_len;
2799
2800         while (s->ip_gma != gma_tail) {
2801                 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2802                                 s->buf_type == RING_BUFFER_CTX) {
2803                         if (!(s->ip_gma >= rb_start) ||
2804                                 !(s->ip_gma < gma_bottom)) {
2805                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2806                                         "(base:0x%lx, bottom: 0x%lx)\n",
2807                                         s->ip_gma, rb_start,
2808                                         gma_bottom);
2809                                 parser_exec_state_dump(s);
2810                                 return -EFAULT;
2811                         }
2812                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2813                                 gvt_vgpu_err("ip_gma %lx out of range."
2814                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2815                                         s->ip_gma, rb_start,
2816                                         rb_head, rb_tail);
2817                                 parser_exec_state_dump(s);
2818                                 break;
2819                         }
2820                 }
2821                 ret = cmd_parser_exec(s);
2822                 if (ret) {
2823                         gvt_vgpu_err("cmd parser error\n");
2824                         parser_exec_state_dump(s);
2825                         break;
2826                 }
2827         }
2828
2829         return ret;
2830 }
2831
2832 static int scan_workload(struct intel_vgpu_workload *workload)
2833 {
2834         unsigned long gma_head, gma_tail, gma_bottom;
2835         struct parser_exec_state s;
2836         int ret = 0;
2837
2838         /* ring base is page aligned */
2839         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2840                 return -EINVAL;
2841
2842         gma_head = workload->rb_start + workload->rb_head;
2843         gma_tail = workload->rb_start + workload->rb_tail;
2844         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2845
2846         s.buf_type = RING_BUFFER_INSTRUCTION;
2847         s.buf_addr_type = GTT_BUFFER;
2848         s.vgpu = workload->vgpu;
2849         s.engine = workload->engine;
2850         s.ring_start = workload->rb_start;
2851         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2852         s.ring_head = gma_head;
2853         s.ring_tail = gma_tail;
2854         s.rb_va = workload->shadow_ring_buffer_va;
2855         s.workload = workload;
2856         s.is_ctx_wa = false;
2857
2858         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2859                 return 0;
2860
2861         ret = ip_gma_set(&s, gma_head);
2862         if (ret)
2863                 goto out;
2864
2865         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2866                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2867
2868 out:
2869         return ret;
2870 }
2871
2872 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2873 {
2874
2875         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2876         struct parser_exec_state s;
2877         int ret = 0;
2878         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2879                                 struct intel_vgpu_workload,
2880                                 wa_ctx);
2881
2882         /* ring base is page aligned */
2883         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2884                                         I915_GTT_PAGE_SIZE)))
2885                 return -EINVAL;
2886
2887         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2888         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2889                         PAGE_SIZE);
2890         gma_head = wa_ctx->indirect_ctx.guest_gma;
2891         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2892         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2893
2894         s.buf_type = RING_BUFFER_INSTRUCTION;
2895         s.buf_addr_type = GTT_BUFFER;
2896         s.vgpu = workload->vgpu;
2897         s.engine = workload->engine;
2898         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899         s.ring_size = ring_size;
2900         s.ring_head = gma_head;
2901         s.ring_tail = gma_tail;
2902         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903         s.workload = workload;
2904         s.is_ctx_wa = true;
2905
2906         ret = ip_gma_set(&s, gma_head);
2907         if (ret)
2908                 goto out;
2909
2910         ret = command_scan(&s, 0, ring_tail,
2911                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2912 out:
2913         return ret;
2914 }
2915
2916 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917 {
2918         struct intel_vgpu *vgpu = workload->vgpu;
2919         struct intel_vgpu_submission *s = &vgpu->submission;
2920         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921         void *shadow_ring_buffer_va;
2922         int ret;
2923
2924         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926         /* calculate workload ring buffer size */
2927         workload->rb_len = (workload->rb_tail + guest_rb_size -
2928                         workload->rb_head) % guest_rb_size;
2929
2930         gma_head = workload->rb_start + workload->rb_head;
2931         gma_tail = workload->rb_start + workload->rb_tail;
2932         gma_top = workload->rb_start + guest_rb_size;
2933
2934         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935                 void *p;
2936
2937                 /* realloc the new ring buffer if needed */
2938                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939                              workload->rb_len, GFP_KERNEL);
2940                 if (!p) {
2941                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942                         return -ENOMEM;
2943                 }
2944                 s->ring_scan_buffer[workload->engine->id] = p;
2945                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946         }
2947
2948         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950         /* get shadow ring buffer va */
2951         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953         /* head > tail --> copy head <-> top */
2954         if (gma_head > gma_tail) {
2955                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956                                       gma_head, gma_top, shadow_ring_buffer_va);
2957                 if (ret < 0) {
2958                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2959                         return ret;
2960                 }
2961                 shadow_ring_buffer_va += ret;
2962                 gma_head = workload->rb_start;
2963         }
2964
2965         /* copy head or start <-> tail */
2966         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967                                 shadow_ring_buffer_va);
2968         if (ret < 0) {
2969                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2970                 return ret;
2971         }
2972         return 0;
2973 }
2974
2975 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976 {
2977         int ret;
2978         struct intel_vgpu *vgpu = workload->vgpu;
2979
2980         ret = shadow_workload_ring_buffer(workload);
2981         if (ret) {
2982                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983                 return ret;
2984         }
2985
2986         ret = scan_workload(workload);
2987         if (ret) {
2988                 gvt_vgpu_err("scan workload error\n");
2989                 return ret;
2990         }
2991         return 0;
2992 }
2993
2994 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995 {
2996         int ctx_size = wa_ctx->indirect_ctx.size;
2997         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999                                         struct intel_vgpu_workload,
3000                                         wa_ctx);
3001         struct intel_vgpu *vgpu = workload->vgpu;
3002         struct drm_i915_gem_object *obj;
3003         int ret = 0;
3004         void *map;
3005
3006         obj = i915_gem_object_create_shmem(workload->engine->i915,
3007                                            roundup(ctx_size + CACHELINE_BYTES,
3008                                                    PAGE_SIZE));
3009         if (IS_ERR(obj))
3010                 return PTR_ERR(obj);
3011
3012         /* get the va of the shadow batch buffer */
3013         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014         if (IS_ERR(map)) {
3015                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016                 ret = PTR_ERR(map);
3017                 goto put_obj;
3018         }
3019
3020         i915_gem_object_lock(obj, NULL);
3021         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022         i915_gem_object_unlock(obj);
3023         if (ret) {
3024                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025                 goto unmap_src;
3026         }
3027
3028         ret = copy_gma_to_hva(workload->vgpu,
3029                                 workload->vgpu->gtt.ggtt_mm,
3030                                 guest_gma, guest_gma + ctx_size,
3031                                 map);
3032         if (ret < 0) {
3033                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034                 goto unmap_src;
3035         }
3036
3037         wa_ctx->indirect_ctx.obj = obj;
3038         wa_ctx->indirect_ctx.shadow_va = map;
3039         return 0;
3040
3041 unmap_src:
3042         i915_gem_object_unpin_map(obj);
3043 put_obj:
3044         i915_gem_object_put(obj);
3045         return ret;
3046 }
3047
3048 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049 {
3050         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3051         unsigned char *bb_start_sva;
3052
3053         if (!wa_ctx->per_ctx.valid)
3054                 return 0;
3055
3056         per_ctx_start[0] = 0x18800001;
3057         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060                                 wa_ctx->indirect_ctx.size;
3061
3062         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064         return 0;
3065 }
3066
3067 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068 {
3069         int ret;
3070         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071                                         struct intel_vgpu_workload,
3072                                         wa_ctx);
3073         struct intel_vgpu *vgpu = workload->vgpu;
3074
3075         if (wa_ctx->indirect_ctx.size == 0)
3076                 return 0;
3077
3078         ret = shadow_indirect_ctx(wa_ctx);
3079         if (ret) {
3080                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3081                 return ret;
3082         }
3083
3084         combine_wa_ctx(wa_ctx);
3085
3086         ret = scan_wa_ctx(wa_ctx);
3087         if (ret) {
3088                 gvt_vgpu_err("scan wa ctx error\n");
3089                 return ret;
3090         }
3091
3092         return 0;
3093 }
3094
3095 /* generate dummy contexts by sending empty requests to HW, and let
3096  * the HW to fill Engine Contexts. This dummy contexts are used for
3097  * initialization purpose (update reg whitelist), so referred to as
3098  * init context here
3099  */
3100 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101 {
3102         const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103         struct intel_gvt *gvt = vgpu->gvt;
3104         struct intel_engine_cs *engine;
3105         enum intel_engine_id id;
3106
3107         if (gvt->is_reg_whitelist_updated)
3108                 return;
3109
3110         /* scan init ctx to update cmd accessible list */
3111         for_each_engine(engine, gvt->gt, id) {
3112                 struct parser_exec_state s;
3113                 void *vaddr;
3114                 int ret;
3115
3116                 if (!engine->default_state)
3117                         continue;
3118
3119                 vaddr = shmem_pin_map(engine->default_state);
3120                 if (IS_ERR(vaddr)) {
3121                         gvt_err("failed to map %s->default state, err:%zd\n",
3122                                 engine->name, PTR_ERR(vaddr));
3123                         return;
3124                 }
3125
3126                 s.buf_type = RING_BUFFER_CTX;
3127                 s.buf_addr_type = GTT_BUFFER;
3128                 s.vgpu = vgpu;
3129                 s.engine = engine;
3130                 s.ring_start = 0;
3131                 s.ring_size = engine->context_size - start;
3132                 s.ring_head = 0;
3133                 s.ring_tail = s.ring_size;
3134                 s.rb_va = vaddr + start;
3135                 s.workload = NULL;
3136                 s.is_ctx_wa = false;
3137                 s.is_init_ctx = true;
3138
3139                 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3140                 ret = ip_gma_set(&s, RING_CTX_SIZE);
3141                 if (ret == 0) {
3142                         ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143                         if (ret)
3144                                 gvt_err("Scan init ctx error\n");
3145                 }
3146
3147                 shmem_unpin_map(engine->default_state, vaddr);
3148                 if (ret)
3149                         return;
3150         }
3151
3152         gvt->is_reg_whitelist_updated = true;
3153 }
3154
3155 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156 {
3157         struct intel_vgpu *vgpu = workload->vgpu;
3158         unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159         struct parser_exec_state s;
3160         int ring_id = workload->engine->id;
3161         struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162         int ret;
3163
3164         GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166         ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168         /* Only ring contxt is loaded to HW for inhibit context, no need to
3169          * scan engine context
3170          */
3171         if (is_inhibit_context(ce))
3172                 return 0;
3173
3174         gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175         gma_head = 0;
3176         gma_tail = ctx_size;
3177
3178         s.buf_type = RING_BUFFER_CTX;
3179         s.buf_addr_type = GTT_BUFFER;
3180         s.vgpu = workload->vgpu;
3181         s.engine = workload->engine;
3182         s.ring_start = gma_start;
3183         s.ring_size = ctx_size;
3184         s.ring_head = gma_start + gma_head;
3185         s.ring_tail = gma_start + gma_tail;
3186         s.rb_va = ce->lrc_reg_state;
3187         s.workload = workload;
3188         s.is_ctx_wa = false;
3189         s.is_init_ctx = false;
3190
3191         /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192          * context
3193          */
3194         ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195         if (ret)
3196                 goto out;
3197
3198         ret = command_scan(&s, gma_head, gma_tail,
3199                 gma_start, ctx_size);
3200 out:
3201         if (ret)
3202                 gvt_vgpu_err("scan shadow ctx error\n");
3203
3204         return ret;
3205 }
3206
3207 static int init_cmd_table(struct intel_gvt *gvt)
3208 {
3209         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210         int i;
3211
3212         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213                 struct cmd_entry *e;
3214
3215                 if (!(cmd_info[i].devices & gen_type))
3216                         continue;
3217
3218                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3219                 if (!e)
3220                         return -ENOMEM;
3221
3222                 e->info = &cmd_info[i];
3223                 if (cmd_info[i].opcode == OP_MI_NOOP)
3224                         mi_noop_index = i;
3225
3226                 INIT_HLIST_NODE(&e->hlist);
3227                 add_cmd_entry(gvt, e);
3228                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229                             e->info->name, e->info->opcode, e->info->flag,
3230                             e->info->devices, e->info->rings);
3231         }
3232
3233         return 0;
3234 }
3235
3236 static void clean_cmd_table(struct intel_gvt *gvt)
3237 {
3238         struct hlist_node *tmp;
3239         struct cmd_entry *e;
3240         int i;
3241
3242         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243                 kfree(e);
3244
3245         hash_init(gvt->cmd_table);
3246 }
3247
3248 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249 {
3250         clean_cmd_table(gvt);
3251 }
3252
3253 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254 {
3255         int ret;
3256
3257         ret = init_cmd_table(gvt);
3258         if (ret) {
3259                 intel_gvt_clean_cmd_parser(gvt);
3260                 return ret;
3261         }
3262         return 0;
3263 }