Merge tag 'linux-watchdog-6.5-rc2' of git://www.linux-watchdog.org/linux-watchdog
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / gt / uc / intel_huc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5
6 #include <linux/types.h>
7
8 #include "gt/intel_gt.h"
9 #include "intel_guc_reg.h"
10 #include "intel_huc.h"
11 #include "intel_huc_print.h"
12 #include "i915_drv.h"
13 #include "i915_reg.h"
14 #include "pxp/intel_pxp_cmd_interface_43.h"
15
16 #include <linux/device/bus.h>
17 #include <linux/mei_aux.h>
18
19 /**
20  * DOC: HuC
21  *
22  * The HuC is a dedicated microcontroller for usage in media HEVC (High
23  * Efficiency Video Coding) operations. Userspace can directly use the firmware
24  * capabilities by adding HuC specific commands to batch buffers.
25  *
26  * The kernel driver is only responsible for loading the HuC firmware and
27  * triggering its security authentication. This is done differently depending
28  * on the platform:
29  * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
30  *   and the authentication via GuC
31  * - DG2: load and authentication are both performed via GSC.
32  * - MTL and newer platforms: the load is performed via DMA (same as with
33  *   not-DG2 older platforms), while the authentication is done in 2-steps,
34  *   a first auth for clear-media workloads via GuC and a second one for all
35  *   workloads via GSC.
36  * On platforms where the GuC does the authentication, to correctly do so the
37  * HuC binary must be loaded before the GuC one.
38  * Loading the HuC is optional; however, not using the HuC might negatively
39  * impact power usage and/or performance of media workloads, depending on the
40  * use-cases.
41  * HuC must be reloaded on events that cause the WOPCM to lose its contents
42  * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
43  * reset, while on newer ones it will survive that.
44  *
45  * See https://github.com/intel/media-driver for the latest details on HuC
46  * functionality.
47  */
48
49 /**
50  * DOC: HuC Memory Management
51  *
52  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
53  * with the difference being that the allocations for HuC usage are handled by
54  * the userspace driver instead of the kernel one. The HuC accesses the memory
55  * via the PPGTT belonging to the context loaded on the VCS executing the
56  * HuC-specific commands.
57  */
58
59 /*
60  * MEI-GSC load is an async process. The probing of the exposed aux device
61  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
62  * on when the kernel schedules it. Unless something goes terribly wrong, we're
63  * guaranteed for this to happen during boot, so the big timeout is a safety net
64  * that we never expect to need.
65  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
66  * and/or reset, this can take longer. Note that the kernel might schedule
67  * other work between the i915 init/resume and the MEI one, which can add to
68  * the delay.
69  */
70 #define GSC_INIT_TIMEOUT_MS 10000
71 #define PXP_INIT_TIMEOUT_MS 5000
72
73 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
74                                  enum i915_sw_fence_notify state)
75 {
76         return NOTIFY_DONE;
77 }
78
79 static void __delayed_huc_load_complete(struct intel_huc *huc)
80 {
81         if (!i915_sw_fence_done(&huc->delayed_load.fence))
82                 i915_sw_fence_complete(&huc->delayed_load.fence);
83 }
84
85 static void delayed_huc_load_complete(struct intel_huc *huc)
86 {
87         hrtimer_cancel(&huc->delayed_load.timer);
88         __delayed_huc_load_complete(huc);
89 }
90
91 static void __gsc_init_error(struct intel_huc *huc)
92 {
93         huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
94         __delayed_huc_load_complete(huc);
95 }
96
97 static void gsc_init_error(struct intel_huc *huc)
98 {
99         hrtimer_cancel(&huc->delayed_load.timer);
100         __gsc_init_error(huc);
101 }
102
103 static void gsc_init_done(struct intel_huc *huc)
104 {
105         hrtimer_cancel(&huc->delayed_load.timer);
106
107         /* MEI-GSC init is done, now we wait for MEI-PXP to bind */
108         huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
109         if (!i915_sw_fence_done(&huc->delayed_load.fence))
110                 hrtimer_start(&huc->delayed_load.timer,
111                               ms_to_ktime(PXP_INIT_TIMEOUT_MS),
112                               HRTIMER_MODE_REL);
113 }
114
115 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
116 {
117         struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
118
119         if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
120                 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
121                         huc_notice(huc, "timed out waiting for MEI GSC\n");
122                 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
123                         huc_notice(huc, "timed out waiting for MEI PXP\n");
124                 else
125                         MISSING_CASE(huc->delayed_load.status);
126
127                 __gsc_init_error(huc);
128         }
129
130         return HRTIMER_NORESTART;
131 }
132
133 static void huc_delayed_load_start(struct intel_huc *huc)
134 {
135         ktime_t delay;
136
137         GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
138
139         /*
140          * On resume we don't have to wait for MEI-GSC to be re-probed, but we
141          * do need to wait for MEI-PXP to reset & re-bind
142          */
143         switch (huc->delayed_load.status) {
144         case INTEL_HUC_WAITING_ON_GSC:
145                 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
146                 break;
147         case INTEL_HUC_WAITING_ON_PXP:
148                 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
149                 break;
150         default:
151                 gsc_init_error(huc);
152                 return;
153         }
154
155         /*
156          * This fence is always complete unless we're waiting for the
157          * GSC device to come up to load the HuC. We arm the fence here
158          * and complete it when we confirm that the HuC is loaded from
159          * the PXP bind callback.
160          */
161         GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
162         i915_sw_fence_fini(&huc->delayed_load.fence);
163         i915_sw_fence_reinit(&huc->delayed_load.fence);
164         i915_sw_fence_await(&huc->delayed_load.fence);
165         i915_sw_fence_commit(&huc->delayed_load.fence);
166
167         hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
168 }
169
170 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
171 {
172         struct device *dev = data;
173         struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
174         struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
175
176         if (!intf->adev || &intf->adev->aux_dev.dev != dev)
177                 return 0;
178
179         switch (action) {
180         case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
181                 gsc_init_done(huc);
182                 break;
183
184         case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
185         case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
186                 huc_info(huc, "MEI driver not bound, disabling load\n");
187                 gsc_init_error(huc);
188                 break;
189         }
190
191         return 0;
192 }
193
194 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
195 {
196         int ret;
197
198         if (!intel_huc_is_loaded_by_gsc(huc))
199                 return;
200
201         huc->delayed_load.nb.notifier_call = gsc_notifier;
202         ret = bus_register_notifier(bus, &huc->delayed_load.nb);
203         if (ret) {
204                 huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
205                 huc->delayed_load.nb.notifier_call = NULL;
206                 gsc_init_error(huc);
207         }
208 }
209
210 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
211 {
212         if (!huc->delayed_load.nb.notifier_call)
213                 return;
214
215         delayed_huc_load_complete(huc);
216
217         bus_unregister_notifier(bus, &huc->delayed_load.nb);
218         huc->delayed_load.nb.notifier_call = NULL;
219 }
220
221 static void delayed_huc_load_init(struct intel_huc *huc)
222 {
223         /*
224          * Initialize fence to be complete as this is expected to be complete
225          * unless there is a delayed HuC load in progress.
226          */
227         i915_sw_fence_init(&huc->delayed_load.fence,
228                            sw_fence_dummy_notify);
229         i915_sw_fence_commit(&huc->delayed_load.fence);
230
231         hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
232         huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
233 }
234
235 static void delayed_huc_load_fini(struct intel_huc *huc)
236 {
237         /*
238          * the fence is initialized in init_early, so we need to clean it up
239          * even if HuC loading is off.
240          */
241         delayed_huc_load_complete(huc);
242         i915_sw_fence_fini(&huc->delayed_load.fence);
243 }
244
245 int intel_huc_sanitize(struct intel_huc *huc)
246 {
247         delayed_huc_load_complete(huc);
248         intel_uc_fw_sanitize(&huc->fw);
249         return 0;
250 }
251
252 static bool vcs_supported(struct intel_gt *gt)
253 {
254         intel_engine_mask_t mask = gt->info.engine_mask;
255
256         /*
257          * We reach here from i915_driver_early_probe for the primary GT before
258          * its engine mask is set, so we use the device info engine mask for it;
259          * this means we're not taking VCS fusing into account, but if the
260          * primary GT supports VCS engines we expect at least one of them to
261          * remain unfused so we're fine.
262          * For other GTs we expect the GT-specific mask to be set before we
263          * call this function.
264          */
265         GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
266
267         if (gt_is_root(gt))
268                 mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
269         else
270                 mask = gt->info.engine_mask;
271
272         return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
273 }
274
275 void intel_huc_init_early(struct intel_huc *huc)
276 {
277         struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
278         struct intel_gt *gt = huc_to_gt(huc);
279
280         intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
281
282         /*
283          * we always init the fence as already completed, even if HuC is not
284          * supported. This way we don't have to distinguish between HuC not
285          * supported/disabled or already loaded, and can focus on if the load
286          * is currently in progress (fence not complete) or not, which is what
287          * we care about for stalling userspace submissions.
288          */
289         delayed_huc_load_init(huc);
290
291         if (!vcs_supported(gt)) {
292                 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
293                 return;
294         }
295
296         if (GRAPHICS_VER(i915) >= 11) {
297                 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
298                 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
299                 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
300         } else {
301                 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
302                 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
303                 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
304         }
305
306         if (IS_DG2(i915)) {
307                 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
308                 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
309                 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
310         } else {
311                 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS5(MTL_GSC_HECI1_BASE);
312                 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI_FWSTS5_HUC_AUTH_DONE;
313                 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI_FWSTS5_HUC_AUTH_DONE;
314         }
315 }
316
317 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
318 static int check_huc_loading_mode(struct intel_huc *huc)
319 {
320         struct intel_gt *gt = huc_to_gt(huc);
321         bool gsc_enabled = huc->fw.has_gsc_headers;
322
323         /*
324          * The fuse for HuC load via GSC is only valid on platforms that have
325          * GuC deprivilege.
326          */
327         if (HAS_GUC_DEPRIVILEGE(gt->i915))
328                 huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
329                                       GSC_LOADS_HUC;
330
331         if (huc->loaded_via_gsc && !gsc_enabled) {
332                 huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
333                 return -ENOEXEC;
334         }
335
336         /*
337          * On newer platforms we have GSC-enabled binaries but we load the HuC
338          * via DMA. To do so we need to find the location of the legacy-style
339          * binary inside the GSC-enabled one, which we do at fetch time. Make
340          * sure that we were able to do so if the fuse says we need to load via
341          * DMA and the binary is GSC-enabled.
342          */
343         if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
344                 huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
345                 return -ENOEXEC;
346         }
347
348         /*
349          * If the HuC is loaded via GSC, we need to be able to access the GSC.
350          * On DG2 this is done via the mei components, while on newer platforms
351          * it is done via the GSCCS,
352          */
353         if (huc->loaded_via_gsc) {
354                 if (IS_DG2(gt->i915)) {
355                         if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
356                             !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
357                                 huc_info(huc, "can't load due to missing mei modules\n");
358                                 return -EIO;
359                         }
360                 } else {
361                         if (!HAS_ENGINE(gt, GSC0)) {
362                                 huc_info(huc, "can't load due to missing GSCCS\n");
363                                 return -EIO;
364                         }
365                 }
366         }
367
368         huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
369
370         return 0;
371 }
372
373 int intel_huc_init(struct intel_huc *huc)
374 {
375         struct intel_gt *gt = huc_to_gt(huc);
376         int err;
377
378         err = check_huc_loading_mode(huc);
379         if (err)
380                 goto out;
381
382         if (HAS_ENGINE(gt, GSC0)) {
383                 struct i915_vma *vma;
384
385                 vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
386                 if (IS_ERR(vma)) {
387                         err = PTR_ERR(vma);
388                         huc_info(huc, "Failed to allocate heci pkt\n");
389                         goto out;
390                 }
391
392                 huc->heci_pkt = vma;
393         }
394
395         err = intel_uc_fw_init(&huc->fw);
396         if (err)
397                 goto out_pkt;
398
399         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
400
401         return 0;
402
403 out_pkt:
404         if (huc->heci_pkt)
405                 i915_vma_unpin_and_release(&huc->heci_pkt, 0);
406 out:
407         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
408         huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
409         return err;
410 }
411
412 void intel_huc_fini(struct intel_huc *huc)
413 {
414         /*
415          * the fence is initialized in init_early, so we need to clean it up
416          * even if HuC loading is off.
417          */
418         delayed_huc_load_fini(huc);
419
420         if (huc->heci_pkt)
421                 i915_vma_unpin_and_release(&huc->heci_pkt, 0);
422
423         if (intel_uc_fw_is_loadable(&huc->fw))
424                 intel_uc_fw_fini(&huc->fw);
425 }
426
427 void intel_huc_suspend(struct intel_huc *huc)
428 {
429         if (!intel_uc_fw_is_loadable(&huc->fw))
430                 return;
431
432         /*
433          * in the unlikely case that we're suspending before the GSC has
434          * completed its loading sequence, just stop waiting. We'll restart
435          * on resume.
436          */
437         delayed_huc_load_complete(huc);
438 }
439
440 static const char *auth_mode_string(struct intel_huc *huc,
441                                     enum intel_huc_authentication_type type)
442 {
443         bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
444
445         return partial ? "clear media" : "all workloads";
446 }
447
448 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
449                                      enum intel_huc_authentication_type type)
450 {
451         struct intel_gt *gt = huc_to_gt(huc);
452         int ret;
453
454         ret = __intel_wait_for_register(gt->uncore,
455                                         huc->status[type].reg,
456                                         huc->status[type].mask,
457                                         huc->status[type].value,
458                                         2, 50, NULL);
459
460         /* mark the load process as complete even if the wait failed */
461         delayed_huc_load_complete(huc);
462
463         if (ret) {
464                 huc_err(huc, "firmware not verified for %s: %pe\n",
465                         auth_mode_string(huc, type), ERR_PTR(ret));
466                 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
467                 return ret;
468         }
469
470         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
471         huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
472         return 0;
473 }
474
475 /**
476  * intel_huc_auth() - Authenticate HuC uCode
477  * @huc: intel_huc structure
478  * @type: authentication type (via GuC or via GSC)
479  *
480  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
481  *
482  * This function invokes the GuC action to authenticate the HuC firmware,
483  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
484  * waits for up to 50ms for firmware verification ACK.
485  */
486 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
487 {
488         struct intel_gt *gt = huc_to_gt(huc);
489         struct intel_guc *guc = &gt->uc.guc;
490         int ret;
491
492         if (!intel_uc_fw_is_loaded(&huc->fw))
493                 return -ENOEXEC;
494
495         /* GSC will do the auth with the load */
496         if (intel_huc_is_loaded_by_gsc(huc))
497                 return -ENODEV;
498
499         if (intel_huc_is_authenticated(huc, type))
500                 return -EEXIST;
501
502         ret = i915_inject_probe_error(gt->i915, -ENXIO);
503         if (ret)
504                 goto fail;
505
506         switch (type) {
507         case INTEL_HUC_AUTH_BY_GUC:
508                 ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
509                 break;
510         case INTEL_HUC_AUTH_BY_GSC:
511                 ret = intel_huc_fw_auth_via_gsccs(huc);
512                 break;
513         default:
514                 MISSING_CASE(type);
515                 ret = -EINVAL;
516         }
517         if (ret)
518                 goto fail;
519
520         /* Check authentication status, it should be done by now */
521         ret = intel_huc_wait_for_auth_complete(huc, type);
522         if (ret)
523                 goto fail;
524
525         return 0;
526
527 fail:
528         huc_probe_error(huc, "%s authentication failed %pe\n",
529                         auth_mode_string(huc, type), ERR_PTR(ret));
530         return ret;
531 }
532
533 bool intel_huc_is_authenticated(struct intel_huc *huc,
534                                 enum intel_huc_authentication_type type)
535 {
536         struct intel_gt *gt = huc_to_gt(huc);
537         intel_wakeref_t wakeref;
538         u32 status = 0;
539
540         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
541                 status = intel_uncore_read(gt->uncore, huc->status[type].reg);
542
543         return (status & huc->status[type].mask) == huc->status[type].value;
544 }
545
546 static bool huc_is_fully_authenticated(struct intel_huc *huc)
547 {
548         struct intel_uc_fw *huc_fw = &huc->fw;
549
550         if (!huc_fw->has_gsc_headers)
551                 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
552         else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
553                 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
554         else
555                 return false;
556 }
557
558 /**
559  * intel_huc_check_status() - check HuC status
560  * @huc: intel_huc structure
561  *
562  * This function reads status register to verify if HuC
563  * firmware was successfully loaded.
564  *
565  * The return values match what is expected for the I915_PARAM_HUC_STATUS
566  * getparam.
567  */
568 int intel_huc_check_status(struct intel_huc *huc)
569 {
570         struct intel_uc_fw *huc_fw = &huc->fw;
571
572         switch (__intel_uc_fw_status(huc_fw)) {
573         case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
574                 return -ENODEV;
575         case INTEL_UC_FIRMWARE_DISABLED:
576                 return -EOPNOTSUPP;
577         case INTEL_UC_FIRMWARE_MISSING:
578                 return -ENOPKG;
579         case INTEL_UC_FIRMWARE_ERROR:
580                 return -ENOEXEC;
581         case INTEL_UC_FIRMWARE_INIT_FAIL:
582                 return -ENOMEM;
583         case INTEL_UC_FIRMWARE_LOAD_FAIL:
584                 return -EIO;
585         default:
586                 break;
587         }
588
589         /*
590          * GSC-enabled binaries loaded via DMA are first partially
591          * authenticated by GuC and then fully authenticated by GSC
592          */
593         if (huc_is_fully_authenticated(huc))
594                 return 1; /* full auth */
595         else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
596                  intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
597                 return 2; /* clear media only */
598         else
599                 return 0;
600 }
601
602 static bool huc_has_delayed_load(struct intel_huc *huc)
603 {
604         return intel_huc_is_loaded_by_gsc(huc) &&
605                (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
606 }
607
608 void intel_huc_update_auth_status(struct intel_huc *huc)
609 {
610         if (!intel_uc_fw_is_loadable(&huc->fw))
611                 return;
612
613         if (!huc->fw.has_gsc_headers)
614                 return;
615
616         if (huc_is_fully_authenticated(huc))
617                 intel_uc_fw_change_status(&huc->fw,
618                                           INTEL_UC_FIRMWARE_RUNNING);
619         else if (huc_has_delayed_load(huc))
620                 huc_delayed_load_start(huc);
621 }
622
623 /**
624  * intel_huc_load_status - dump information about HuC load status
625  * @huc: the HuC
626  * @p: the &drm_printer
627  *
628  * Pretty printer for HuC load status.
629  */
630 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
631 {
632         struct intel_gt *gt = huc_to_gt(huc);
633         intel_wakeref_t wakeref;
634
635         if (!intel_huc_is_supported(huc)) {
636                 drm_printf(p, "HuC not supported\n");
637                 return;
638         }
639
640         if (!intel_huc_is_wanted(huc)) {
641                 drm_printf(p, "HuC disabled\n");
642                 return;
643         }
644
645         intel_uc_fw_dump(&huc->fw, p);
646
647         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
648                 drm_printf(p, "HuC status: 0x%08x\n",
649                            intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
650 }