410905da8e974465cd4b42fb2cef87ff0a4c1ed6
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gt / uc / intel_huc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5
6 #include <linux/types.h>
7
8 #include "gt/intel_gt.h"
9 #include "intel_guc_reg.h"
10 #include "intel_huc.h"
11 #include "i915_drv.h"
12
13 #include <linux/device/bus.h>
14 #include <linux/mei_aux.h>
15
16 /**
17  * DOC: HuC
18  *
19  * The HuC is a dedicated microcontroller for usage in media HEVC (High
20  * Efficiency Video Coding) operations. Userspace can directly use the firmware
21  * capabilities by adding HuC specific commands to batch buffers.
22  *
23  * The kernel driver is only responsible for loading the HuC firmware and
24  * triggering its security authentication, which is performed by the GuC on
25  * older platforms and by the GSC on newer ones. For the GuC to correctly
26  * perform the authentication, the HuC binary must be loaded before the GuC one.
27  * Loading the HuC is optional; however, not using the HuC might negatively
28  * impact power usage and/or performance of media workloads, depending on the
29  * use-cases.
30  * HuC must be reloaded on events that cause the WOPCM to lose its contents
31  * (S3/S4, FLR); GuC-authenticated HuC must also be reloaded on GuC/GT reset,
32  * while GSC-managed HuC will survive that.
33  *
34  * See https://github.com/intel/media-driver for the latest details on HuC
35  * functionality.
36  */
37
38 /**
39  * DOC: HuC Memory Management
40  *
41  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
42  * with the difference being that the allocations for HuC usage are handled by
43  * the userspace driver instead of the kernel one. The HuC accesses the memory
44  * via the PPGTT belonging to the context loaded on the VCS executing the
45  * HuC-specific commands.
46  */
47
48 /*
49  * MEI-GSC load is an async process. The probing of the exposed aux device
50  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
51  * on when the kernel schedules it. Unless something goes terribly wrong, we're
52  * guaranteed for this to happen during boot, so the big timeout is a safety net
53  * that we never expect to need.
54  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
55  * and/or reset, this can take longer. Note that the kernel might schedule
56  * other work between the i915 init/resume and the MEI one, which can add to
57  * the delay.
58  */
59 #define GSC_INIT_TIMEOUT_MS 10000
60 #define PXP_INIT_TIMEOUT_MS 5000
61
62 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
63                                  enum i915_sw_fence_notify state)
64 {
65         return NOTIFY_DONE;
66 }
67
68 static void __delayed_huc_load_complete(struct intel_huc *huc)
69 {
70         if (!i915_sw_fence_done(&huc->delayed_load.fence))
71                 i915_sw_fence_complete(&huc->delayed_load.fence);
72 }
73
74 static void delayed_huc_load_complete(struct intel_huc *huc)
75 {
76         hrtimer_cancel(&huc->delayed_load.timer);
77         __delayed_huc_load_complete(huc);
78 }
79
80 static void __gsc_init_error(struct intel_huc *huc)
81 {
82         huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
83         __delayed_huc_load_complete(huc);
84 }
85
86 static void gsc_init_error(struct intel_huc *huc)
87 {
88         hrtimer_cancel(&huc->delayed_load.timer);
89         __gsc_init_error(huc);
90 }
91
92 static void gsc_init_done(struct intel_huc *huc)
93 {
94         hrtimer_cancel(&huc->delayed_load.timer);
95
96         /* MEI-GSC init is done, now we wait for MEI-PXP to bind */
97         huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
98         if (!i915_sw_fence_done(&huc->delayed_load.fence))
99                 hrtimer_start(&huc->delayed_load.timer,
100                               ms_to_ktime(PXP_INIT_TIMEOUT_MS),
101                               HRTIMER_MODE_REL);
102 }
103
104 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
105 {
106         struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
107
108         if (!intel_huc_is_authenticated(huc)) {
109                 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
110                         drm_notice(&huc_to_gt(huc)->i915->drm,
111                                    "timed out waiting for MEI GSC init to load HuC\n");
112                 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
113                         drm_notice(&huc_to_gt(huc)->i915->drm,
114                                    "timed out waiting for MEI PXP init to load HuC\n");
115                 else
116                         MISSING_CASE(huc->delayed_load.status);
117
118                 __gsc_init_error(huc);
119         }
120
121         return HRTIMER_NORESTART;
122 }
123
124 static void huc_delayed_load_start(struct intel_huc *huc)
125 {
126         ktime_t delay;
127
128         GEM_BUG_ON(intel_huc_is_authenticated(huc));
129
130         /*
131          * On resume we don't have to wait for MEI-GSC to be re-probed, but we
132          * do need to wait for MEI-PXP to reset & re-bind
133          */
134         switch (huc->delayed_load.status) {
135         case INTEL_HUC_WAITING_ON_GSC:
136                 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
137                 break;
138         case INTEL_HUC_WAITING_ON_PXP:
139                 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
140                 break;
141         default:
142                 gsc_init_error(huc);
143                 return;
144         }
145
146         /*
147          * This fence is always complete unless we're waiting for the
148          * GSC device to come up to load the HuC. We arm the fence here
149          * and complete it when we confirm that the HuC is loaded from
150          * the PXP bind callback.
151          */
152         GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
153         i915_sw_fence_fini(&huc->delayed_load.fence);
154         i915_sw_fence_reinit(&huc->delayed_load.fence);
155         i915_sw_fence_await(&huc->delayed_load.fence);
156         i915_sw_fence_commit(&huc->delayed_load.fence);
157
158         hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
159 }
160
161 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
162 {
163         struct device *dev = data;
164         struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
165         struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
166
167         if (!intf->adev || &intf->adev->aux_dev.dev != dev)
168                 return 0;
169
170         switch (action) {
171         case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
172                 gsc_init_done(huc);
173                 break;
174
175         case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
176         case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
177                 drm_info(&huc_to_gt(huc)->i915->drm,
178                          "mei driver not bound, disabling HuC load\n");
179                 gsc_init_error(huc);
180                 break;
181         }
182
183         return 0;
184 }
185
186 void intel_huc_register_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
187 {
188         int ret;
189
190         if (!intel_huc_is_loaded_by_gsc(huc))
191                 return;
192
193         huc->delayed_load.nb.notifier_call = gsc_notifier;
194         ret = bus_register_notifier(bus, &huc->delayed_load.nb);
195         if (ret) {
196                 drm_err(&huc_to_gt(huc)->i915->drm,
197                         "failed to register GSC notifier\n");
198                 huc->delayed_load.nb.notifier_call = NULL;
199                 gsc_init_error(huc);
200         }
201 }
202
203 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
204 {
205         if (!huc->delayed_load.nb.notifier_call)
206                 return;
207
208         delayed_huc_load_complete(huc);
209
210         bus_unregister_notifier(bus, &huc->delayed_load.nb);
211         huc->delayed_load.nb.notifier_call = NULL;
212 }
213
214 static void delayed_huc_load_init(struct intel_huc *huc)
215 {
216         /*
217          * Initialize fence to be complete as this is expected to be complete
218          * unless there is a delayed HuC load in progress.
219          */
220         i915_sw_fence_init(&huc->delayed_load.fence,
221                            sw_fence_dummy_notify);
222         i915_sw_fence_commit(&huc->delayed_load.fence);
223
224         hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
225         huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
226 }
227
228 static void delayed_huc_load_fini(struct intel_huc *huc)
229 {
230         /*
231          * the fence is initialized in init_early, so we need to clean it up
232          * even if HuC loading is off.
233          */
234         delayed_huc_load_complete(huc);
235         i915_sw_fence_fini(&huc->delayed_load.fence);
236 }
237
238 static bool vcs_supported(struct intel_gt *gt)
239 {
240         intel_engine_mask_t mask = gt->info.engine_mask;
241
242         /*
243          * We reach here from i915_driver_early_probe for the primary GT before
244          * its engine mask is set, so we use the device info engine mask for it;
245          * this means we're not taking VCS fusing into account, but if the
246          * primary GT supports VCS engines we expect at least one of them to
247          * remain unfused so we're fine.
248          * For other GTs we expect the GT-specific mask to be set before we
249          * call this function.
250          */
251         GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
252
253         if (gt_is_root(gt))
254                 mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
255         else
256                 mask = gt->info.engine_mask;
257
258         return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
259 }
260
261 void intel_huc_init_early(struct intel_huc *huc)
262 {
263         struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
264         struct intel_gt *gt = huc_to_gt(huc);
265
266         intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
267
268         /*
269          * we always init the fence as already completed, even if HuC is not
270          * supported. This way we don't have to distinguish between HuC not
271          * supported/disabled or already loaded, and can focus on if the load
272          * is currently in progress (fence not complete) or not, which is what
273          * we care about for stalling userspace submissions.
274          */
275         delayed_huc_load_init(huc);
276
277         if (!vcs_supported(gt)) {
278                 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
279                 return;
280         }
281
282         if (GRAPHICS_VER(i915) >= 11) {
283                 huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
284                 huc->status.mask = HUC_LOAD_SUCCESSFUL;
285                 huc->status.value = HUC_LOAD_SUCCESSFUL;
286         } else {
287                 huc->status.reg = HUC_STATUS2;
288                 huc->status.mask = HUC_FW_VERIFIED;
289                 huc->status.value = HUC_FW_VERIFIED;
290         }
291 }
292
293 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
294 static int check_huc_loading_mode(struct intel_huc *huc)
295 {
296         struct intel_gt *gt = huc_to_gt(huc);
297         bool fw_needs_gsc = intel_huc_is_loaded_by_gsc(huc);
298         bool hw_uses_gsc = false;
299
300         /*
301          * The fuse for HuC load via GSC is only valid on platforms that have
302          * GuC deprivilege.
303          */
304         if (HAS_GUC_DEPRIVILEGE(gt->i915))
305                 hw_uses_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
306                               GSC_LOADS_HUC;
307
308         if (fw_needs_gsc != hw_uses_gsc) {
309                 drm_err(&gt->i915->drm,
310                         "mismatch between HuC FW (%s) and HW (%s) load modes\n",
311                         HUC_LOAD_MODE_STRING(fw_needs_gsc),
312                         HUC_LOAD_MODE_STRING(hw_uses_gsc));
313                 return -ENOEXEC;
314         }
315
316         /* make sure we can access the GSC via the mei driver if we need it */
317         if (!(IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC)) &&
318             fw_needs_gsc) {
319                 drm_info(&gt->i915->drm,
320                          "Can't load HuC due to missing MEI modules\n");
321                 return -EIO;
322         }
323
324         drm_dbg(&gt->i915->drm, "GSC loads huc=%s\n", str_yes_no(fw_needs_gsc));
325
326         return 0;
327 }
328
329 int intel_huc_init(struct intel_huc *huc)
330 {
331         struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
332         int err;
333
334         err = check_huc_loading_mode(huc);
335         if (err)
336                 goto out;
337
338         err = intel_uc_fw_init(&huc->fw);
339         if (err)
340                 goto out;
341
342         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
343
344         return 0;
345
346 out:
347         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
348         drm_info(&i915->drm, "HuC init failed with %d\n", err);
349         return err;
350 }
351
352 void intel_huc_fini(struct intel_huc *huc)
353 {
354         /*
355          * the fence is initialized in init_early, so we need to clean it up
356          * even if HuC loading is off.
357          */
358         delayed_huc_load_fini(huc);
359
360         if (intel_uc_fw_is_loadable(&huc->fw))
361                 intel_uc_fw_fini(&huc->fw);
362 }
363
364 void intel_huc_suspend(struct intel_huc *huc)
365 {
366         if (!intel_uc_fw_is_loadable(&huc->fw))
367                 return;
368
369         /*
370          * in the unlikely case that we're suspending before the GSC has
371          * completed its loading sequence, just stop waiting. We'll restart
372          * on resume.
373          */
374         delayed_huc_load_complete(huc);
375 }
376
377 int intel_huc_wait_for_auth_complete(struct intel_huc *huc)
378 {
379         struct intel_gt *gt = huc_to_gt(huc);
380         int ret;
381
382         ret = __intel_wait_for_register(gt->uncore,
383                                         huc->status.reg,
384                                         huc->status.mask,
385                                         huc->status.value,
386                                         2, 50, NULL);
387
388         /* mark the load process as complete even if the wait failed */
389         delayed_huc_load_complete(huc);
390
391         if (ret) {
392                 drm_err(&gt->i915->drm, "HuC: Firmware not verified %d\n", ret);
393                 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
394                 return ret;
395         }
396
397         intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
398         drm_info(&gt->i915->drm, "HuC authenticated\n");
399         return 0;
400 }
401
402 /**
403  * intel_huc_auth() - Authenticate HuC uCode
404  * @huc: intel_huc structure
405  *
406  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
407  *
408  * This function invokes the GuC action to authenticate the HuC firmware,
409  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
410  * waits for up to 50ms for firmware verification ACK.
411  */
412 int intel_huc_auth(struct intel_huc *huc)
413 {
414         struct intel_gt *gt = huc_to_gt(huc);
415         struct intel_guc *guc = &gt->uc.guc;
416         int ret;
417
418         if (!intel_uc_fw_is_loaded(&huc->fw))
419                 return -ENOEXEC;
420
421         /* GSC will do the auth */
422         if (intel_huc_is_loaded_by_gsc(huc))
423                 return -ENODEV;
424
425         ret = i915_inject_probe_error(gt->i915, -ENXIO);
426         if (ret)
427                 goto fail;
428
429         GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw));
430
431         ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
432         if (ret) {
433                 DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
434                 goto fail;
435         }
436
437         /* Check authentication status, it should be done by now */
438         ret = intel_huc_wait_for_auth_complete(huc);
439         if (ret)
440                 goto fail;
441
442         return 0;
443
444 fail:
445         i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
446         return ret;
447 }
448
449 bool intel_huc_is_authenticated(struct intel_huc *huc)
450 {
451         struct intel_gt *gt = huc_to_gt(huc);
452         intel_wakeref_t wakeref;
453         u32 status = 0;
454
455         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
456                 status = intel_uncore_read(gt->uncore, huc->status.reg);
457
458         return (status & huc->status.mask) == huc->status.value;
459 }
460
461 /**
462  * intel_huc_check_status() - check HuC status
463  * @huc: intel_huc structure
464  *
465  * This function reads status register to verify if HuC
466  * firmware was successfully loaded.
467  *
468  * The return values match what is expected for the I915_PARAM_HUC_STATUS
469  * getparam.
470  */
471 int intel_huc_check_status(struct intel_huc *huc)
472 {
473         switch (__intel_uc_fw_status(&huc->fw)) {
474         case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
475                 return -ENODEV;
476         case INTEL_UC_FIRMWARE_DISABLED:
477                 return -EOPNOTSUPP;
478         case INTEL_UC_FIRMWARE_MISSING:
479                 return -ENOPKG;
480         case INTEL_UC_FIRMWARE_ERROR:
481                 return -ENOEXEC;
482         case INTEL_UC_FIRMWARE_INIT_FAIL:
483                 return -ENOMEM;
484         case INTEL_UC_FIRMWARE_LOAD_FAIL:
485                 return -EIO;
486         default:
487                 break;
488         }
489
490         return intel_huc_is_authenticated(huc);
491 }
492
493 static bool huc_has_delayed_load(struct intel_huc *huc)
494 {
495         return intel_huc_is_loaded_by_gsc(huc) &&
496                (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
497 }
498
499 void intel_huc_update_auth_status(struct intel_huc *huc)
500 {
501         if (!intel_uc_fw_is_loadable(&huc->fw))
502                 return;
503
504         if (intel_huc_is_authenticated(huc))
505                 intel_uc_fw_change_status(&huc->fw,
506                                           INTEL_UC_FIRMWARE_RUNNING);
507         else if (huc_has_delayed_load(huc))
508                 huc_delayed_load_start(huc);
509 }
510
511 /**
512  * intel_huc_load_status - dump information about HuC load status
513  * @huc: the HuC
514  * @p: the &drm_printer
515  *
516  * Pretty printer for HuC load status.
517  */
518 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
519 {
520         struct intel_gt *gt = huc_to_gt(huc);
521         intel_wakeref_t wakeref;
522
523         if (!intel_huc_is_supported(huc)) {
524                 drm_printf(p, "HuC not supported\n");
525                 return;
526         }
527
528         if (!intel_huc_is_wanted(huc)) {
529                 drm_printf(p, "HuC disabled\n");
530                 return;
531         }
532
533         intel_uc_fw_dump(&huc->fw, p);
534
535         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
536                 drm_printf(p, "HuC status: 0x%08x\n",
537                            intel_uncore_read(gt->uncore, huc->status.reg));
538 }