Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36
37 /**
38  * DOC: GuC-based command submission
39  *
40  * The Scratch registers:
41  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
42  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
43  * triggers an interrupt on the GuC via another register write (0xC4C8).
44  * Firmware writes a success/fail code back to the action register after
45  * processes the request. The kernel driver polls waiting for this update and
46  * then proceeds.
47  *
48  * Command Transport buffers (CTBs):
49  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
50  * - G2H) are a message interface between the i915 and GuC.
51  *
52  * Context registration:
53  * Before a context can be submitted it must be registered with the GuC via a
54  * H2G. A unique guc_id is associated with each context. The context is either
55  * registered at request creation time (normal operation) or at submission time
56  * (abnormal operation, e.g. after a reset).
57  *
58  * Context submission:
59  * The i915 updates the LRC tail value in memory. The i915 must enable the
60  * scheduling of the context within the GuC for the GuC to actually consider it.
61  * Therefore, the first time a disabled context is submitted we use a schedule
62  * enable H2G, while follow up submissions are done via the context submit H2G,
63  * which informs the GuC that a previously enabled context has new work
64  * available.
65  *
66  * Context unpin:
67  * To unpin a context a H2G is used to disable scheduling. When the
68  * corresponding G2H returns indicating the scheduling disable operation has
69  * completed it is safe to unpin the context. While a disable is in flight it
70  * isn't safe to resubmit the context so a fence is used to stall all future
71  * requests of that context until the G2H is returned. Because this interaction
72  * with the GuC takes a non-zero amount of time we delay the disabling of
73  * scheduling after the pin count goes to zero by a configurable period of time
74  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
75  * time to resubmit something on the context before doing this costly operation.
76  * This delay is only done if the context isn't closed and the guc_id usage is
77  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
78  *
79  * Context deregistration:
80  * Before a context can be destroyed or if we steal its guc_id we must
81  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
82  * safe to submit anything to this guc_id until the deregister completes so a
83  * fence is used to stall all requests associated with this guc_id until the
84  * corresponding G2H returns indicating the guc_id has been deregistered.
85  *
86  * submission_state.guc_ids:
87  * Unique number associated with private GuC context data passed in during
88  * context registration / submission / deregistration. 64k available. Simple ida
89  * is used for allocation.
90  *
91  * Stealing guc_ids:
92  * If no guc_ids are available they can be stolen from another context at
93  * request creation time if that context is unpinned. If a guc_id can't be found
94  * we punt this problem to the user as we believe this is near impossible to hit
95  * during normal use cases.
96  *
97  * Locking:
98  * In the GuC submission code we have 3 basic spin locks which protect
99  * everything. Details about each below.
100  *
101  * sched_engine->lock
102  * This is the submission lock for all contexts that share an i915 schedule
103  * engine (sched_engine), thus only one of the contexts which share a
104  * sched_engine can be submitting at a time. Currently only one sched_engine is
105  * used for all of GuC submission but that could change in the future.
106  *
107  * guc->submission_state.lock
108  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
109  * list.
110  *
111  * ce->guc_state.lock
112  * Protects everything under ce->guc_state. Ensures that a context is in the
113  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
114  * on a disabled context (bad idea), we don't issue a schedule enable when a
115  * schedule disable is in flight, etc... Also protects list of inflight requests
116  * on the context and the priority management state. Lock is individual to each
117  * context.
118  *
119  * Lock ordering rules:
120  * sched_engine->lock -> ce->guc_state.lock
121  * guc->submission_state.lock -> ce->guc_state.lock
122  *
123  * Reset races:
124  * When a full GT reset is triggered it is assumed that some G2H responses to
125  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
126  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
127  * contexts, release guc_ids, etc...). When this occurs we can scrub the
128  * context state and cleanup appropriately, however this is quite racey.
129  * To avoid races, the reset code must disable submission before scrubbing for
130  * the missing G2H, while the submission code must check for submission being
131  * disabled and skip sending H2Gs and updating context states when it is. Both
132  * sides must also make sure to hold the relevant locks.
133  */
134
135 /* GuC Virtual Engine */
136 struct guc_virtual_engine {
137         struct intel_engine_cs base;
138         struct intel_context context;
139 };
140
141 static struct intel_context *
142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
143                    unsigned long flags);
144
145 static struct intel_context *
146 guc_create_parallel(struct intel_engine_cs **engines,
147                     unsigned int num_siblings,
148                     unsigned int width);
149
150 #define GUC_REQUEST_SIZE 64 /* bytes */
151
152 /*
153  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
154  * per the GuC submission interface. A different allocation algorithm is used
155  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
156  * partition the guc_id space. We believe the number of multi-lrc contexts in
157  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
158  * multi-lrc.
159  */
160 #define NUMBER_MULTI_LRC_GUC_ID(guc)    \
161         ((guc)->submission_state.num_guc_ids / 16)
162
163 /*
164  * Below is a set of functions which control the GuC scheduling state which
165  * require a lock.
166  */
167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER     BIT(0)
168 #define SCHED_STATE_DESTROYED                           BIT(1)
169 #define SCHED_STATE_PENDING_DISABLE                     BIT(2)
170 #define SCHED_STATE_BANNED                              BIT(3)
171 #define SCHED_STATE_ENABLED                             BIT(4)
172 #define SCHED_STATE_PENDING_ENABLE                      BIT(5)
173 #define SCHED_STATE_REGISTERED                          BIT(6)
174 #define SCHED_STATE_POLICY_REQUIRED                     BIT(7)
175 #define SCHED_STATE_CLOSED                              BIT(8)
176 #define SCHED_STATE_BLOCKED_SHIFT                       9
177 #define SCHED_STATE_BLOCKED             BIT(SCHED_STATE_BLOCKED_SHIFT)
178 #define SCHED_STATE_BLOCKED_MASK        (0xfff << SCHED_STATE_BLOCKED_SHIFT)
179
180 static inline void init_sched_state(struct intel_context *ce)
181 {
182         lockdep_assert_held(&ce->guc_state.lock);
183         ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
184 }
185
186 /*
187  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
188  * A context close can race with the submission path, so SCHED_STATE_CLOSED
189  * can be set immediately before we try to register.
190  */
191 #define SCHED_STATE_VALID_INIT \
192         (SCHED_STATE_BLOCKED_MASK | \
193          SCHED_STATE_CLOSED | \
194          SCHED_STATE_REGISTERED)
195
196 __maybe_unused
197 static bool sched_state_is_init(struct intel_context *ce)
198 {
199         return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
200 }
201
202 static inline bool
203 context_wait_for_deregister_to_register(struct intel_context *ce)
204 {
205         return ce->guc_state.sched_state &
206                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
207 }
208
209 static inline void
210 set_context_wait_for_deregister_to_register(struct intel_context *ce)
211 {
212         lockdep_assert_held(&ce->guc_state.lock);
213         ce->guc_state.sched_state |=
214                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
215 }
216
217 static inline void
218 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
219 {
220         lockdep_assert_held(&ce->guc_state.lock);
221         ce->guc_state.sched_state &=
222                 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
223 }
224
225 static inline bool
226 context_destroyed(struct intel_context *ce)
227 {
228         return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
229 }
230
231 static inline void
232 set_context_destroyed(struct intel_context *ce)
233 {
234         lockdep_assert_held(&ce->guc_state.lock);
235         ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
236 }
237
238 static inline bool context_pending_disable(struct intel_context *ce)
239 {
240         return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
241 }
242
243 static inline void set_context_pending_disable(struct intel_context *ce)
244 {
245         lockdep_assert_held(&ce->guc_state.lock);
246         ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
247 }
248
249 static inline void clr_context_pending_disable(struct intel_context *ce)
250 {
251         lockdep_assert_held(&ce->guc_state.lock);
252         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
253 }
254
255 static inline bool context_banned(struct intel_context *ce)
256 {
257         return ce->guc_state.sched_state & SCHED_STATE_BANNED;
258 }
259
260 static inline void set_context_banned(struct intel_context *ce)
261 {
262         lockdep_assert_held(&ce->guc_state.lock);
263         ce->guc_state.sched_state |= SCHED_STATE_BANNED;
264 }
265
266 static inline void clr_context_banned(struct intel_context *ce)
267 {
268         lockdep_assert_held(&ce->guc_state.lock);
269         ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
270 }
271
272 static inline bool context_enabled(struct intel_context *ce)
273 {
274         return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
275 }
276
277 static inline void set_context_enabled(struct intel_context *ce)
278 {
279         lockdep_assert_held(&ce->guc_state.lock);
280         ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
281 }
282
283 static inline void clr_context_enabled(struct intel_context *ce)
284 {
285         lockdep_assert_held(&ce->guc_state.lock);
286         ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
287 }
288
289 static inline bool context_pending_enable(struct intel_context *ce)
290 {
291         return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
292 }
293
294 static inline void set_context_pending_enable(struct intel_context *ce)
295 {
296         lockdep_assert_held(&ce->guc_state.lock);
297         ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
298 }
299
300 static inline void clr_context_pending_enable(struct intel_context *ce)
301 {
302         lockdep_assert_held(&ce->guc_state.lock);
303         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
304 }
305
306 static inline bool context_registered(struct intel_context *ce)
307 {
308         return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
309 }
310
311 static inline void set_context_registered(struct intel_context *ce)
312 {
313         lockdep_assert_held(&ce->guc_state.lock);
314         ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
315 }
316
317 static inline void clr_context_registered(struct intel_context *ce)
318 {
319         lockdep_assert_held(&ce->guc_state.lock);
320         ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
321 }
322
323 static inline bool context_policy_required(struct intel_context *ce)
324 {
325         return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
326 }
327
328 static inline void set_context_policy_required(struct intel_context *ce)
329 {
330         lockdep_assert_held(&ce->guc_state.lock);
331         ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
332 }
333
334 static inline void clr_context_policy_required(struct intel_context *ce)
335 {
336         lockdep_assert_held(&ce->guc_state.lock);
337         ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
338 }
339
340 static inline bool context_close_done(struct intel_context *ce)
341 {
342         return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
343 }
344
345 static inline void set_context_close_done(struct intel_context *ce)
346 {
347         lockdep_assert_held(&ce->guc_state.lock);
348         ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
349 }
350
351 static inline u32 context_blocked(struct intel_context *ce)
352 {
353         return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
354                 SCHED_STATE_BLOCKED_SHIFT;
355 }
356
357 static inline void incr_context_blocked(struct intel_context *ce)
358 {
359         lockdep_assert_held(&ce->guc_state.lock);
360
361         ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
362
363         GEM_BUG_ON(!context_blocked(ce));       /* Overflow check */
364 }
365
366 static inline void decr_context_blocked(struct intel_context *ce)
367 {
368         lockdep_assert_held(&ce->guc_state.lock);
369
370         GEM_BUG_ON(!context_blocked(ce));       /* Underflow check */
371
372         ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
373 }
374
375 static struct intel_context *
376 request_to_scheduling_context(struct i915_request *rq)
377 {
378         return intel_context_to_parent(rq->context);
379 }
380
381 static inline bool context_guc_id_invalid(struct intel_context *ce)
382 {
383         return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
384 }
385
386 static inline void set_context_guc_id_invalid(struct intel_context *ce)
387 {
388         ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
389 }
390
391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
392 {
393         return &ce->engine->gt->uc.guc;
394 }
395
396 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
397 {
398         return rb_entry(rb, struct i915_priolist, node);
399 }
400
401 /*
402  * When using multi-lrc submission a scratch memory area is reserved in the
403  * parent's context state for the process descriptor, work queue, and handshake
404  * between the parent + children contexts to insert safe preemption points
405  * between each of the BBs. Currently the scratch area is sized to a page.
406  *
407  * The layout of this scratch area is below:
408  * 0                                            guc_process_desc
409  * + sizeof(struct guc_process_desc)            child go
410  * + CACHELINE_BYTES                            child join[0]
411  * ...
412  * + CACHELINE_BYTES                            child join[n - 1]
413  * ...                                          unused
414  * PARENT_SCRATCH_SIZE / 2                      work queue start
415  * ...                                          work queue
416  * PARENT_SCRATCH_SIZE - 1                      work queue end
417  */
418 #define WQ_SIZE                 (PARENT_SCRATCH_SIZE / 2)
419 #define WQ_OFFSET               (PARENT_SCRATCH_SIZE - WQ_SIZE)
420
421 struct sync_semaphore {
422         u32 semaphore;
423         u8 unused[CACHELINE_BYTES - sizeof(u32)];
424 };
425
426 struct parent_scratch {
427         union guc_descs {
428                 struct guc_sched_wq_desc wq_desc;
429                 struct guc_process_desc_v69 pdesc;
430         } descs;
431
432         struct sync_semaphore go;
433         struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
434
435         u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
436                 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
437
438         u32 wq[WQ_SIZE / sizeof(u32)];
439 };
440
441 static u32 __get_parent_scratch_offset(struct intel_context *ce)
442 {
443         GEM_BUG_ON(!ce->parallel.guc.parent_page);
444
445         return ce->parallel.guc.parent_page * PAGE_SIZE;
446 }
447
448 static u32 __get_wq_offset(struct intel_context *ce)
449 {
450         BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
451
452         return __get_parent_scratch_offset(ce) + WQ_OFFSET;
453 }
454
455 static struct parent_scratch *
456 __get_parent_scratch(struct intel_context *ce)
457 {
458         BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
459         BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
460
461         /*
462          * Need to subtract LRC_STATE_OFFSET here as the
463          * parallel.guc.parent_page is the offset into ce->state while
464          * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
465          */
466         return (struct parent_scratch *)
467                 (ce->lrc_reg_state +
468                  ((__get_parent_scratch_offset(ce) -
469                    LRC_STATE_OFFSET) / sizeof(u32)));
470 }
471
472 static struct guc_process_desc_v69 *
473 __get_process_desc_v69(struct intel_context *ce)
474 {
475         struct parent_scratch *ps = __get_parent_scratch(ce);
476
477         return &ps->descs.pdesc;
478 }
479
480 static struct guc_sched_wq_desc *
481 __get_wq_desc_v70(struct intel_context *ce)
482 {
483         struct parent_scratch *ps = __get_parent_scratch(ce);
484
485         return &ps->descs.wq_desc;
486 }
487
488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
489 {
490         /*
491          * Check for space in work queue. Caching a value of head pointer in
492          * intel_context structure in order reduce the number accesses to shared
493          * GPU memory which may be across a PCIe bus.
494          */
495 #define AVAILABLE_SPACE \
496         CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
497         if (wqi_size > AVAILABLE_SPACE) {
498                 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
499
500                 if (wqi_size > AVAILABLE_SPACE)
501                         return NULL;
502         }
503 #undef AVAILABLE_SPACE
504
505         return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
506 }
507
508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
509 {
510         struct intel_context *ce = xa_load(&guc->context_lookup, id);
511
512         GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
513
514         return ce;
515 }
516
517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
518 {
519         struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
520
521         if (!base)
522                 return NULL;
523
524         GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
525
526         return &base[index];
527 }
528
529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
530 {
531         u32 size;
532         int ret;
533
534         size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
535                           GUC_MAX_CONTEXT_ID);
536         ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
537                                              (void **)&guc->lrc_desc_pool_vaddr_v69);
538         if (ret)
539                 return ret;
540
541         return 0;
542 }
543
544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
545 {
546         if (!guc->lrc_desc_pool_vaddr_v69)
547                 return;
548
549         guc->lrc_desc_pool_vaddr_v69 = NULL;
550         i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
551 }
552
553 static inline bool guc_submission_initialized(struct intel_guc *guc)
554 {
555         return guc->submission_initialized;
556 }
557
558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
559 {
560         struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
561
562         if (desc)
563                 memset(desc, 0, sizeof(*desc));
564 }
565
566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
567 {
568         return __get_context(guc, id);
569 }
570
571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
572                                       struct intel_context *ce)
573 {
574         unsigned long flags;
575
576         /*
577          * xarray API doesn't have xa_save_irqsave wrapper, so calling the
578          * lower level functions directly.
579          */
580         xa_lock_irqsave(&guc->context_lookup, flags);
581         __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
582         xa_unlock_irqrestore(&guc->context_lookup, flags);
583 }
584
585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
586 {
587         unsigned long flags;
588
589         if (unlikely(!guc_submission_initialized(guc)))
590                 return;
591
592         _reset_lrc_desc_v69(guc, id);
593
594         /*
595          * xarray API doesn't have xa_erase_irqsave wrapper, so calling
596          * the lower level functions directly.
597          */
598         xa_lock_irqsave(&guc->context_lookup, flags);
599         __xa_erase(&guc->context_lookup, id);
600         xa_unlock_irqrestore(&guc->context_lookup, flags);
601 }
602
603 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
604 {
605         if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
606                 wake_up_all(&guc->ct.wq);
607 }
608
609 static int guc_submission_send_busy_loop(struct intel_guc *guc,
610                                          const u32 *action,
611                                          u32 len,
612                                          u32 g2h_len_dw,
613                                          bool loop)
614 {
615         /*
616          * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
617          * so we don't handle the case where we don't get a reply because we
618          * aborted the send due to the channel being busy.
619          */
620         GEM_BUG_ON(g2h_len_dw && !loop);
621
622         if (g2h_len_dw)
623                 atomic_inc(&guc->outstanding_submission_g2h);
624
625         return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
626 }
627
628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
629                                    atomic_t *wait_var,
630                                    bool interruptible,
631                                    long timeout)
632 {
633         const int state = interruptible ?
634                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
635         DEFINE_WAIT(wait);
636
637         might_sleep();
638         GEM_BUG_ON(timeout < 0);
639
640         if (!atomic_read(wait_var))
641                 return 0;
642
643         if (!timeout)
644                 return -ETIME;
645
646         for (;;) {
647                 prepare_to_wait(&guc->ct.wq, &wait, state);
648
649                 if (!atomic_read(wait_var))
650                         break;
651
652                 if (signal_pending_state(state, current)) {
653                         timeout = -EINTR;
654                         break;
655                 }
656
657                 if (!timeout) {
658                         timeout = -ETIME;
659                         break;
660                 }
661
662                 timeout = io_schedule_timeout(timeout);
663         }
664         finish_wait(&guc->ct.wq, &wait);
665
666         return (timeout < 0) ? timeout : 0;
667 }
668
669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
670 {
671         if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
672                 return 0;
673
674         return intel_guc_wait_for_pending_msg(guc,
675                                               &guc->outstanding_submission_g2h,
676                                               true, timeout);
677 }
678
679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
680 static int try_context_registration(struct intel_context *ce, bool loop);
681
682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
683 {
684         int err = 0;
685         struct intel_context *ce = request_to_scheduling_context(rq);
686         u32 action[3];
687         int len = 0;
688         u32 g2h_len_dw = 0;
689         bool enabled;
690
691         lockdep_assert_held(&rq->engine->sched_engine->lock);
692
693         /*
694          * Corner case where requests were sitting in the priority list or a
695          * request resubmitted after the context was banned.
696          */
697         if (unlikely(!intel_context_is_schedulable(ce))) {
698                 i915_request_put(i915_request_mark_eio(rq));
699                 intel_engine_signal_breadcrumbs(ce->engine);
700                 return 0;
701         }
702
703         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
704         GEM_BUG_ON(context_guc_id_invalid(ce));
705
706         if (context_policy_required(ce)) {
707                 err = guc_context_policy_init_v70(ce, false);
708                 if (err)
709                         return err;
710         }
711
712         spin_lock(&ce->guc_state.lock);
713
714         /*
715          * The request / context will be run on the hardware when scheduling
716          * gets enabled in the unblock. For multi-lrc we still submit the
717          * context to move the LRC tails.
718          */
719         if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
720                 goto out;
721
722         enabled = context_enabled(ce) || context_blocked(ce);
723
724         if (!enabled) {
725                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
726                 action[len++] = ce->guc_id.id;
727                 action[len++] = GUC_CONTEXT_ENABLE;
728                 set_context_pending_enable(ce);
729                 intel_context_get(ce);
730                 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
731         } else {
732                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
733                 action[len++] = ce->guc_id.id;
734         }
735
736         err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
737         if (!enabled && !err) {
738                 trace_intel_context_sched_enable(ce);
739                 atomic_inc(&guc->outstanding_submission_g2h);
740                 set_context_enabled(ce);
741
742                 /*
743                  * Without multi-lrc KMD does the submission step (moving the
744                  * lrc tail) so enabling scheduling is sufficient to submit the
745                  * context. This isn't the case in multi-lrc submission as the
746                  * GuC needs to move the tails, hence the need for another H2G
747                  * to submit a multi-lrc context after enabling scheduling.
748                  */
749                 if (intel_context_is_parent(ce)) {
750                         action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
751                         err = intel_guc_send_nb(guc, action, len - 1, 0);
752                 }
753         } else if (!enabled) {
754                 clr_context_pending_enable(ce);
755                 intel_context_put(ce);
756         }
757         if (likely(!err))
758                 trace_i915_request_guc_submit(rq);
759
760 out:
761         spin_unlock(&ce->guc_state.lock);
762         return err;
763 }
764
765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
766 {
767         int ret = __guc_add_request(guc, rq);
768
769         if (unlikely(ret == -EBUSY)) {
770                 guc->stalled_request = rq;
771                 guc->submission_stall_reason = STALL_ADD_REQUEST;
772         }
773
774         return ret;
775 }
776
777 static inline void guc_set_lrc_tail(struct i915_request *rq)
778 {
779         rq->context->lrc_reg_state[CTX_RING_TAIL] =
780                 intel_ring_set_tail(rq->ring, rq->tail);
781 }
782
783 static inline int rq_prio(const struct i915_request *rq)
784 {
785         return rq->sched.attr.priority;
786 }
787
788 static bool is_multi_lrc_rq(struct i915_request *rq)
789 {
790         return intel_context_is_parallel(rq->context);
791 }
792
793 static bool can_merge_rq(struct i915_request *rq,
794                          struct i915_request *last)
795 {
796         return request_to_scheduling_context(rq) ==
797                 request_to_scheduling_context(last);
798 }
799
800 static u32 wq_space_until_wrap(struct intel_context *ce)
801 {
802         return (WQ_SIZE - ce->parallel.guc.wqi_tail);
803 }
804
805 static void write_wqi(struct intel_context *ce, u32 wqi_size)
806 {
807         BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
808
809         /*
810          * Ensure WQI are visible before updating tail
811          */
812         intel_guc_write_barrier(ce_to_guc(ce));
813
814         ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
815                 (WQ_SIZE - 1);
816         WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
817 }
818
819 static int guc_wq_noop_append(struct intel_context *ce)
820 {
821         u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
822         u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
823
824         if (!wqi)
825                 return -EBUSY;
826
827         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
828
829         *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
830                 FIELD_PREP(WQ_LEN_MASK, len_dw);
831         ce->parallel.guc.wqi_tail = 0;
832
833         return 0;
834 }
835
836 static int __guc_wq_item_append(struct i915_request *rq)
837 {
838         struct intel_context *ce = request_to_scheduling_context(rq);
839         struct intel_context *child;
840         unsigned int wqi_size = (ce->parallel.number_children + 4) *
841                 sizeof(u32);
842         u32 *wqi;
843         u32 len_dw = (wqi_size / sizeof(u32)) - 1;
844         int ret;
845
846         /* Ensure context is in correct state updating work queue */
847         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
848         GEM_BUG_ON(context_guc_id_invalid(ce));
849         GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
850         GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
851
852         /* Insert NOOP if this work queue item will wrap the tail pointer. */
853         if (wqi_size > wq_space_until_wrap(ce)) {
854                 ret = guc_wq_noop_append(ce);
855                 if (ret)
856                         return ret;
857         }
858
859         wqi = get_wq_pointer(ce, wqi_size);
860         if (!wqi)
861                 return -EBUSY;
862
863         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
864
865         *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
866                 FIELD_PREP(WQ_LEN_MASK, len_dw);
867         *wqi++ = ce->lrc.lrca;
868         *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
869                FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
870         *wqi++ = 0;     /* fence_id */
871         for_each_child(ce, child)
872                 *wqi++ = child->ring->tail / sizeof(u64);
873
874         write_wqi(ce, wqi_size);
875
876         return 0;
877 }
878
879 static int guc_wq_item_append(struct intel_guc *guc,
880                               struct i915_request *rq)
881 {
882         struct intel_context *ce = request_to_scheduling_context(rq);
883         int ret;
884
885         if (unlikely(!intel_context_is_schedulable(ce)))
886                 return 0;
887
888         ret = __guc_wq_item_append(rq);
889         if (unlikely(ret == -EBUSY)) {
890                 guc->stalled_request = rq;
891                 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
892         }
893
894         return ret;
895 }
896
897 static bool multi_lrc_submit(struct i915_request *rq)
898 {
899         struct intel_context *ce = request_to_scheduling_context(rq);
900
901         intel_ring_set_tail(rq->ring, rq->tail);
902
903         /*
904          * We expect the front end (execbuf IOCTL) to set this flag on the last
905          * request generated from a multi-BB submission. This indicates to the
906          * backend (GuC interface) that we should submit this context thus
907          * submitting all the requests generated in parallel.
908          */
909         return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
910                !intel_context_is_schedulable(ce);
911 }
912
913 static int guc_dequeue_one_context(struct intel_guc *guc)
914 {
915         struct i915_sched_engine * const sched_engine = guc->sched_engine;
916         struct i915_request *last = NULL;
917         bool submit = false;
918         struct rb_node *rb;
919         int ret;
920
921         lockdep_assert_held(&sched_engine->lock);
922
923         if (guc->stalled_request) {
924                 submit = true;
925                 last = guc->stalled_request;
926
927                 switch (guc->submission_stall_reason) {
928                 case STALL_REGISTER_CONTEXT:
929                         goto register_context;
930                 case STALL_MOVE_LRC_TAIL:
931                         goto move_lrc_tail;
932                 case STALL_ADD_REQUEST:
933                         goto add_request;
934                 default:
935                         MISSING_CASE(guc->submission_stall_reason);
936                 }
937         }
938
939         while ((rb = rb_first_cached(&sched_engine->queue))) {
940                 struct i915_priolist *p = to_priolist(rb);
941                 struct i915_request *rq, *rn;
942
943                 priolist_for_each_request_consume(rq, rn, p) {
944                         if (last && !can_merge_rq(rq, last))
945                                 goto register_context;
946
947                         list_del_init(&rq->sched.link);
948
949                         __i915_request_submit(rq);
950
951                         trace_i915_request_in(rq, 0);
952                         last = rq;
953
954                         if (is_multi_lrc_rq(rq)) {
955                                 /*
956                                  * We need to coalesce all multi-lrc requests in
957                                  * a relationship into a single H2G. We are
958                                  * guaranteed that all of these requests will be
959                                  * submitted sequentially.
960                                  */
961                                 if (multi_lrc_submit(rq)) {
962                                         submit = true;
963                                         goto register_context;
964                                 }
965                         } else {
966                                 submit = true;
967                         }
968                 }
969
970                 rb_erase_cached(&p->node, &sched_engine->queue);
971                 i915_priolist_free(p);
972         }
973
974 register_context:
975         if (submit) {
976                 struct intel_context *ce = request_to_scheduling_context(last);
977
978                 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
979                              intel_context_is_schedulable(ce))) {
980                         ret = try_context_registration(ce, false);
981                         if (unlikely(ret == -EPIPE)) {
982                                 goto deadlk;
983                         } else if (ret == -EBUSY) {
984                                 guc->stalled_request = last;
985                                 guc->submission_stall_reason =
986                                         STALL_REGISTER_CONTEXT;
987                                 goto schedule_tasklet;
988                         } else if (ret != 0) {
989                                 GEM_WARN_ON(ret);       /* Unexpected */
990                                 goto deadlk;
991                         }
992                 }
993
994 move_lrc_tail:
995                 if (is_multi_lrc_rq(last)) {
996                         ret = guc_wq_item_append(guc, last);
997                         if (ret == -EBUSY) {
998                                 goto schedule_tasklet;
999                         } else if (ret != 0) {
1000                                 GEM_WARN_ON(ret);       /* Unexpected */
1001                                 goto deadlk;
1002                         }
1003                 } else {
1004                         guc_set_lrc_tail(last);
1005                 }
1006
1007 add_request:
1008                 ret = guc_add_request(guc, last);
1009                 if (unlikely(ret == -EPIPE)) {
1010                         goto deadlk;
1011                 } else if (ret == -EBUSY) {
1012                         goto schedule_tasklet;
1013                 } else if (ret != 0) {
1014                         GEM_WARN_ON(ret);       /* Unexpected */
1015                         goto deadlk;
1016                 }
1017         }
1018
1019         guc->stalled_request = NULL;
1020         guc->submission_stall_reason = STALL_NONE;
1021         return submit;
1022
1023 deadlk:
1024         sched_engine->tasklet.callback = NULL;
1025         tasklet_disable_nosync(&sched_engine->tasklet);
1026         return false;
1027
1028 schedule_tasklet:
1029         tasklet_schedule(&sched_engine->tasklet);
1030         return false;
1031 }
1032
1033 static void guc_submission_tasklet(struct tasklet_struct *t)
1034 {
1035         struct i915_sched_engine *sched_engine =
1036                 from_tasklet(sched_engine, t, tasklet);
1037         unsigned long flags;
1038         bool loop;
1039
1040         spin_lock_irqsave(&sched_engine->lock, flags);
1041
1042         do {
1043                 loop = guc_dequeue_one_context(sched_engine->private_data);
1044         } while (loop);
1045
1046         i915_sched_engine_reset_on_empty(sched_engine);
1047
1048         spin_unlock_irqrestore(&sched_engine->lock, flags);
1049 }
1050
1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1052 {
1053         if (iir & GT_RENDER_USER_INTERRUPT)
1054                 intel_engine_signal_breadcrumbs(engine);
1055 }
1056
1057 static void __guc_context_destroy(struct intel_context *ce);
1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1059 static void guc_signal_context_fence(struct intel_context *ce);
1060 static void guc_cancel_context_requests(struct intel_context *ce);
1061 static void guc_blocked_fence_complete(struct intel_context *ce);
1062
1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1064 {
1065         struct intel_context *ce;
1066         unsigned long index, flags;
1067         bool pending_disable, pending_enable, deregister, destroyed, banned;
1068
1069         xa_lock_irqsave(&guc->context_lookup, flags);
1070         xa_for_each(&guc->context_lookup, index, ce) {
1071                 /*
1072                  * Corner case where the ref count on the object is zero but and
1073                  * deregister G2H was lost. In this case we don't touch the ref
1074                  * count and finish the destroy of the context.
1075                  */
1076                 bool do_put = kref_get_unless_zero(&ce->ref);
1077
1078                 xa_unlock(&guc->context_lookup);
1079
1080                 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1081                     (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1082                         /* successful cancel so jump straight to close it */
1083                         intel_context_sched_disable_unpin(ce);
1084                 }
1085
1086                 spin_lock(&ce->guc_state.lock);
1087
1088                 /*
1089                  * Once we are at this point submission_disabled() is guaranteed
1090                  * to be visible to all callers who set the below flags (see above
1091                  * flush and flushes in reset_prepare). If submission_disabled()
1092                  * is set, the caller shouldn't set these flags.
1093                  */
1094
1095                 destroyed = context_destroyed(ce);
1096                 pending_enable = context_pending_enable(ce);
1097                 pending_disable = context_pending_disable(ce);
1098                 deregister = context_wait_for_deregister_to_register(ce);
1099                 banned = context_banned(ce);
1100                 init_sched_state(ce);
1101
1102                 spin_unlock(&ce->guc_state.lock);
1103
1104                 if (pending_enable || destroyed || deregister) {
1105                         decr_outstanding_submission_g2h(guc);
1106                         if (deregister)
1107                                 guc_signal_context_fence(ce);
1108                         if (destroyed) {
1109                                 intel_gt_pm_put_async(guc_to_gt(guc));
1110                                 release_guc_id(guc, ce);
1111                                 __guc_context_destroy(ce);
1112                         }
1113                         if (pending_enable || deregister)
1114                                 intel_context_put(ce);
1115                 }
1116
1117                 /* Not mutualy exclusive with above if statement. */
1118                 if (pending_disable) {
1119                         guc_signal_context_fence(ce);
1120                         if (banned) {
1121                                 guc_cancel_context_requests(ce);
1122                                 intel_engine_signal_breadcrumbs(ce->engine);
1123                         }
1124                         intel_context_sched_disable_unpin(ce);
1125                         decr_outstanding_submission_g2h(guc);
1126
1127                         spin_lock(&ce->guc_state.lock);
1128                         guc_blocked_fence_complete(ce);
1129                         spin_unlock(&ce->guc_state.lock);
1130
1131                         intel_context_put(ce);
1132                 }
1133
1134                 if (do_put)
1135                         intel_context_put(ce);
1136                 xa_lock(&guc->context_lookup);
1137         }
1138         xa_unlock_irqrestore(&guc->context_lookup, flags);
1139 }
1140
1141 /*
1142  * GuC stores busyness stats for each engine at context in/out boundaries. A
1143  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1144  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1145  * GuC.
1146  *
1147  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1148  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1149  * active. For an active engine total busyness = total + (now - start), where
1150  * 'now' is the time at which the busyness is sampled. For inactive engine,
1151  * total busyness = total.
1152  *
1153  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1154  *
1155  * The start and total values provided by GuC are 32 bits and wrap around in a
1156  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1157  * increasing ns values, there is a need for this implementation to account for
1158  * overflows and extend the GuC provided values to 64 bits before returning
1159  * busyness to the user. In order to do that, a worker runs periodically at
1160  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1161  * 27 seconds for a gt clock frequency of 19.2 MHz).
1162  */
1163
1164 #define WRAP_TIME_CLKS U32_MAX
1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1166
1167 static void
1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1169 {
1170         u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1171         u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1172
1173         if (new_start == lower_32_bits(*prev_start))
1174                 return;
1175
1176         /*
1177          * When gt is unparked, we update the gt timestamp and start the ping
1178          * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1179          * is unparked, all switched in contexts will have a start time that is
1180          * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1181          *
1182          * If neither gt_stamp nor new_start has rolled over, then the
1183          * gt_stamp_hi does not need to be adjusted, however if one of them has
1184          * rolled over, we need to adjust gt_stamp_hi accordingly.
1185          *
1186          * The below conditions address the cases of new_start rollover and
1187          * gt_stamp_last rollover respectively.
1188          */
1189         if (new_start < gt_stamp_last &&
1190             (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1191                 gt_stamp_hi++;
1192
1193         if (new_start > gt_stamp_last &&
1194             (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1195                 gt_stamp_hi--;
1196
1197         *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1198 }
1199
1200 #define record_read(map_, field_) \
1201         iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1202
1203 /*
1204  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1205  * we run into a race where the value read is inconsistent. Sometimes the
1206  * inconsistency is in reading the upper MSB bytes of the last_in value when
1207  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1208  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1209  * determine validity of these values. Instead we read the values multiple times
1210  * until they are consistent. In test runs, 3 attempts results in consistent
1211  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1212  * any new occurences.
1213  */
1214 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1215                                       u32 *last_in, u32 *id, u32 *total)
1216 {
1217         struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1218         int i = 0;
1219
1220         do {
1221                 *last_in = record_read(&rec_map, last_switch_in_stamp);
1222                 *id = record_read(&rec_map, current_context_index);
1223                 *total = record_read(&rec_map, total_runtime);
1224
1225                 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1226                     record_read(&rec_map, current_context_index) == *id &&
1227                     record_read(&rec_map, total_runtime) == *total)
1228                         break;
1229         } while (++i < 6);
1230 }
1231
1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1233 {
1234         struct intel_engine_guc_stats *stats = &engine->stats.guc;
1235         struct intel_guc *guc = &engine->gt->uc.guc;
1236         u32 last_switch, ctx_id, total;
1237
1238         lockdep_assert_held(&guc->timestamp.lock);
1239
1240         __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1241
1242         stats->running = ctx_id != ~0U && last_switch;
1243         if (stats->running)
1244                 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1245
1246         /*
1247          * Instead of adjusting the total for overflow, just add the
1248          * difference from previous sample stats->total_gt_clks
1249          */
1250         if (total && total != ~0U) {
1251                 stats->total_gt_clks += (u32)(total - stats->prev_total);
1252                 stats->prev_total = total;
1253         }
1254 }
1255
1256 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1257 {
1258         intel_wakeref_t wakeref;
1259         u32 reg, shift;
1260
1261         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1262                 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1263
1264         shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1265                 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1266
1267         return 3 - shift;
1268 }
1269
1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1271 {
1272         struct intel_gt *gt = guc_to_gt(guc);
1273         u32 gt_stamp_lo, gt_stamp_hi;
1274         u64 gpm_ts;
1275
1276         lockdep_assert_held(&guc->timestamp.lock);
1277
1278         gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1279         gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1280                                           MISC_STATUS1) >> guc->timestamp.shift;
1281         gt_stamp_lo = lower_32_bits(gpm_ts);
1282         *now = ktime_get();
1283
1284         if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1285                 gt_stamp_hi++;
1286
1287         guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1288 }
1289
1290 /*
1291  * Unlike the execlist mode of submission total and active times are in terms of
1292  * gt clocks. The *now parameter is retained to return the cpu time at which the
1293  * busyness was sampled.
1294  */
1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1296 {
1297         struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1298         struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1299         struct intel_gt *gt = engine->gt;
1300         struct intel_guc *guc = &gt->uc.guc;
1301         u64 total, gt_stamp_saved;
1302         unsigned long flags;
1303         u32 reset_count;
1304         bool in_reset;
1305
1306         spin_lock_irqsave(&guc->timestamp.lock, flags);
1307
1308         /*
1309          * If a reset happened, we risk reading partially updated engine
1310          * busyness from GuC, so we just use the driver stored copy of busyness.
1311          * Synchronize with gt reset using reset_count and the
1312          * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1313          * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1314          * usable by checking the flag afterwards.
1315          */
1316         reset_count = i915_reset_count(gpu_error);
1317         in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1318
1319         *now = ktime_get();
1320
1321         /*
1322          * The active busyness depends on start_gt_clk and gt_stamp.
1323          * gt_stamp is updated by i915 only when gt is awake and the
1324          * start_gt_clk is derived from GuC state. To get a consistent
1325          * view of activity, we query the GuC state only if gt is awake.
1326          */
1327         if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1328                 stats_saved = *stats;
1329                 gt_stamp_saved = guc->timestamp.gt_stamp;
1330                 /*
1331                  * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1332                  * start_gt_clk' calculation below for active engines.
1333                  */
1334                 guc_update_engine_gt_clks(engine);
1335                 guc_update_pm_timestamp(guc, now);
1336                 intel_gt_pm_put_async(gt);
1337                 if (i915_reset_count(gpu_error) != reset_count) {
1338                         *stats = stats_saved;
1339                         guc->timestamp.gt_stamp = gt_stamp_saved;
1340                 }
1341         }
1342
1343         total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1344         if (stats->running) {
1345                 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1346
1347                 total += intel_gt_clock_interval_to_ns(gt, clk);
1348         }
1349
1350         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1351
1352         return ns_to_ktime(total);
1353 }
1354
1355 static void guc_enable_busyness_worker(struct intel_guc *guc)
1356 {
1357         mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1358 }
1359
1360 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1361 {
1362         cancel_delayed_work_sync(&guc->timestamp.work);
1363 }
1364
1365 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1366 {
1367         struct intel_gt *gt = guc_to_gt(guc);
1368         struct intel_engine_cs *engine;
1369         enum intel_engine_id id;
1370         unsigned long flags;
1371         ktime_t unused;
1372
1373         guc_cancel_busyness_worker(guc);
1374
1375         spin_lock_irqsave(&guc->timestamp.lock, flags);
1376
1377         guc_update_pm_timestamp(guc, &unused);
1378         for_each_engine(engine, gt, id) {
1379                 guc_update_engine_gt_clks(engine);
1380                 engine->stats.guc.prev_total = 0;
1381         }
1382
1383         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1384 }
1385
1386 static void __update_guc_busyness_stats(struct intel_guc *guc)
1387 {
1388         struct intel_gt *gt = guc_to_gt(guc);
1389         struct intel_engine_cs *engine;
1390         enum intel_engine_id id;
1391         unsigned long flags;
1392         ktime_t unused;
1393
1394         guc->timestamp.last_stat_jiffies = jiffies;
1395
1396         spin_lock_irqsave(&guc->timestamp.lock, flags);
1397
1398         guc_update_pm_timestamp(guc, &unused);
1399         for_each_engine(engine, gt, id)
1400                 guc_update_engine_gt_clks(engine);
1401
1402         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1403 }
1404
1405 static void __guc_context_update_stats(struct intel_context *ce)
1406 {
1407         struct intel_guc *guc = ce_to_guc(ce);
1408         unsigned long flags;
1409
1410         spin_lock_irqsave(&guc->timestamp.lock, flags);
1411         lrc_update_runtime(ce);
1412         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1413 }
1414
1415 static void guc_context_update_stats(struct intel_context *ce)
1416 {
1417         if (!intel_context_pin_if_active(ce))
1418                 return;
1419
1420         __guc_context_update_stats(ce);
1421         intel_context_unpin(ce);
1422 }
1423
1424 static void guc_timestamp_ping(struct work_struct *wrk)
1425 {
1426         struct intel_guc *guc = container_of(wrk, typeof(*guc),
1427                                              timestamp.work.work);
1428         struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1429         struct intel_gt *gt = guc_to_gt(guc);
1430         struct intel_context *ce;
1431         intel_wakeref_t wakeref;
1432         unsigned long index;
1433         int srcu, ret;
1434
1435         /*
1436          * Ideally the busyness worker should take a gt pm wakeref because the
1437          * worker only needs to be active while gt is awake. However, the
1438          * gt_park path cancels the worker synchronously and this complicates
1439          * the flow if the worker is also running at the same time. The cancel
1440          * waits for the worker and when the worker releases the wakeref, that
1441          * would call gt_park and would lead to a deadlock.
1442          *
1443          * The resolution is to take the global pm wakeref if runtime pm is
1444          * already active. If not, we don't need to update the busyness stats as
1445          * the stats would already be updated when the gt was parked.
1446          *
1447          * Note:
1448          * - We do not requeue the worker if we cannot take a reference to runtime
1449          *   pm since intel_guc_busyness_unpark would requeue the worker in the
1450          *   resume path.
1451          *
1452          * - If the gt was parked longer than time taken for GT timestamp to roll
1453          *   over, we ignore those rollovers since we don't care about tracking
1454          *   the exact GT time. We only care about roll overs when the gt is
1455          *   active and running workloads.
1456          *
1457          * - There is a window of time between gt_park and runtime suspend,
1458          *   where the worker may run. This is acceptable since the worker will
1459          *   not find any new data to update busyness.
1460          */
1461         wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1462         if (!wakeref)
1463                 return;
1464
1465         /*
1466          * Synchronize with gt reset to make sure the worker does not
1467          * corrupt the engine/guc stats. NB: can't actually block waiting
1468          * for a reset to complete as the reset requires flushing out
1469          * this worker thread if started. So waiting would deadlock.
1470          */
1471         ret = intel_gt_reset_trylock(gt, &srcu);
1472         if (ret)
1473                 goto err_trylock;
1474
1475         __update_guc_busyness_stats(guc);
1476
1477         /* adjust context stats for overflow */
1478         xa_for_each(&guc->context_lookup, index, ce)
1479                 guc_context_update_stats(ce);
1480
1481         intel_gt_reset_unlock(gt, srcu);
1482
1483         guc_enable_busyness_worker(guc);
1484
1485 err_trylock:
1486         intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1487 }
1488
1489 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1490 {
1491         u32 offset = intel_guc_engine_usage_offset(guc);
1492         u32 action[] = {
1493                 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1494                 offset,
1495                 0,
1496         };
1497
1498         return intel_guc_send(guc, action, ARRAY_SIZE(action));
1499 }
1500
1501 static int guc_init_engine_stats(struct intel_guc *guc)
1502 {
1503         struct intel_gt *gt = guc_to_gt(guc);
1504         intel_wakeref_t wakeref;
1505         int ret;
1506
1507         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1508                 ret = guc_action_enable_usage_stats(guc);
1509
1510         if (ret)
1511                 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1512         else
1513                 guc_enable_busyness_worker(guc);
1514
1515         return ret;
1516 }
1517
1518 static void guc_fini_engine_stats(struct intel_guc *guc)
1519 {
1520         guc_cancel_busyness_worker(guc);
1521 }
1522
1523 void intel_guc_busyness_park(struct intel_gt *gt)
1524 {
1525         struct intel_guc *guc = &gt->uc.guc;
1526
1527         if (!guc_submission_initialized(guc))
1528                 return;
1529
1530         /*
1531          * There is a race with suspend flow where the worker runs after suspend
1532          * and causes an unclaimed register access warning. Cancel the worker
1533          * synchronously here.
1534          */
1535         guc_cancel_busyness_worker(guc);
1536
1537         /*
1538          * Before parking, we should sample engine busyness stats if we need to.
1539          * We can skip it if we are less than half a ping from the last time we
1540          * sampled the busyness stats.
1541          */
1542         if (guc->timestamp.last_stat_jiffies &&
1543             !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1544                         (guc->timestamp.ping_delay / 2)))
1545                 return;
1546
1547         __update_guc_busyness_stats(guc);
1548 }
1549
1550 void intel_guc_busyness_unpark(struct intel_gt *gt)
1551 {
1552         struct intel_guc *guc = &gt->uc.guc;
1553         unsigned long flags;
1554         ktime_t unused;
1555
1556         if (!guc_submission_initialized(guc))
1557                 return;
1558
1559         spin_lock_irqsave(&guc->timestamp.lock, flags);
1560         guc_update_pm_timestamp(guc, &unused);
1561         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1562         guc_enable_busyness_worker(guc);
1563 }
1564
1565 static inline bool
1566 submission_disabled(struct intel_guc *guc)
1567 {
1568         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1569
1570         return unlikely(!sched_engine ||
1571                         !__tasklet_is_enabled(&sched_engine->tasklet) ||
1572                         intel_gt_is_wedged(guc_to_gt(guc)));
1573 }
1574
1575 static void disable_submission(struct intel_guc *guc)
1576 {
1577         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1578
1579         if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1580                 GEM_BUG_ON(!guc->ct.enabled);
1581                 __tasklet_disable_sync_once(&sched_engine->tasklet);
1582                 sched_engine->tasklet.callback = NULL;
1583         }
1584 }
1585
1586 static void enable_submission(struct intel_guc *guc)
1587 {
1588         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1589         unsigned long flags;
1590
1591         spin_lock_irqsave(&guc->sched_engine->lock, flags);
1592         sched_engine->tasklet.callback = guc_submission_tasklet;
1593         wmb();  /* Make sure callback visible */
1594         if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1595             __tasklet_enable(&sched_engine->tasklet)) {
1596                 GEM_BUG_ON(!guc->ct.enabled);
1597
1598                 /* And kick in case we missed a new request submission. */
1599                 tasklet_hi_schedule(&sched_engine->tasklet);
1600         }
1601         spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1602 }
1603
1604 static void guc_flush_submissions(struct intel_guc *guc)
1605 {
1606         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1607         unsigned long flags;
1608
1609         spin_lock_irqsave(&sched_engine->lock, flags);
1610         spin_unlock_irqrestore(&sched_engine->lock, flags);
1611 }
1612
1613 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1614
1615 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1616 {
1617         if (unlikely(!guc_submission_initialized(guc))) {
1618                 /* Reset called during driver load? GuC not yet initialised! */
1619                 return;
1620         }
1621
1622         intel_gt_park_heartbeats(guc_to_gt(guc));
1623         disable_submission(guc);
1624         guc->interrupts.disable(guc);
1625         __reset_guc_busyness_stats(guc);
1626
1627         /* Flush IRQ handler */
1628         spin_lock_irq(guc_to_gt(guc)->irq_lock);
1629         spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1630
1631         guc_flush_submissions(guc);
1632         guc_flush_destroyed_contexts(guc);
1633         flush_work(&guc->ct.requests.worker);
1634
1635         scrub_guc_desc_for_outstanding_g2h(guc);
1636 }
1637
1638 static struct intel_engine_cs *
1639 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1640 {
1641         struct intel_engine_cs *engine;
1642         intel_engine_mask_t tmp, mask = ve->mask;
1643         unsigned int num_siblings = 0;
1644
1645         for_each_engine_masked(engine, ve->gt, mask, tmp)
1646                 if (num_siblings++ == sibling)
1647                         return engine;
1648
1649         return NULL;
1650 }
1651
1652 static inline struct intel_engine_cs *
1653 __context_to_physical_engine(struct intel_context *ce)
1654 {
1655         struct intel_engine_cs *engine = ce->engine;
1656
1657         if (intel_engine_is_virtual(engine))
1658                 engine = guc_virtual_get_sibling(engine, 0);
1659
1660         return engine;
1661 }
1662
1663 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1664 {
1665         struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1666
1667         if (!intel_context_is_schedulable(ce))
1668                 return;
1669
1670         GEM_BUG_ON(!intel_context_is_pinned(ce));
1671
1672         /*
1673          * We want a simple context + ring to execute the breadcrumb update.
1674          * We cannot rely on the context being intact across the GPU hang,
1675          * so clear it and rebuild just what we need for the breadcrumb.
1676          * All pending requests for this context will be zapped, and any
1677          * future request will be after userspace has had the opportunity
1678          * to recreate its own state.
1679          */
1680         if (scrub)
1681                 lrc_init_regs(ce, engine, true);
1682
1683         /* Rerun the request; its payload has been neutered (if guilty). */
1684         lrc_update_regs(ce, engine, head);
1685 }
1686
1687 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1688 {
1689         /*
1690          * Wa_22011802037: In addition to stopping the cs, we need
1691          * to wait for any pending mi force wakeups
1692          */
1693         if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1694             (GRAPHICS_VER(engine->i915) >= 11 &&
1695              GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) {
1696                 intel_engine_stop_cs(engine);
1697                 intel_engine_wait_for_pending_mi_fw(engine);
1698         }
1699 }
1700
1701 static void guc_reset_nop(struct intel_engine_cs *engine)
1702 {
1703 }
1704
1705 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1706 {
1707 }
1708
1709 static void
1710 __unwind_incomplete_requests(struct intel_context *ce)
1711 {
1712         struct i915_request *rq, *rn;
1713         struct list_head *pl;
1714         int prio = I915_PRIORITY_INVALID;
1715         struct i915_sched_engine * const sched_engine =
1716                 ce->engine->sched_engine;
1717         unsigned long flags;
1718
1719         spin_lock_irqsave(&sched_engine->lock, flags);
1720         spin_lock(&ce->guc_state.lock);
1721         list_for_each_entry_safe_reverse(rq, rn,
1722                                          &ce->guc_state.requests,
1723                                          sched.link) {
1724                 if (i915_request_completed(rq))
1725                         continue;
1726
1727                 list_del_init(&rq->sched.link);
1728                 __i915_request_unsubmit(rq);
1729
1730                 /* Push the request back into the queue for later resubmission. */
1731                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1732                 if (rq_prio(rq) != prio) {
1733                         prio = rq_prio(rq);
1734                         pl = i915_sched_lookup_priolist(sched_engine, prio);
1735                 }
1736                 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1737
1738                 list_add(&rq->sched.link, pl);
1739                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1740         }
1741         spin_unlock(&ce->guc_state.lock);
1742         spin_unlock_irqrestore(&sched_engine->lock, flags);
1743 }
1744
1745 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1746 {
1747         bool guilty;
1748         struct i915_request *rq;
1749         unsigned long flags;
1750         u32 head;
1751         int i, number_children = ce->parallel.number_children;
1752         struct intel_context *parent = ce;
1753
1754         GEM_BUG_ON(intel_context_is_child(ce));
1755
1756         intel_context_get(ce);
1757
1758         /*
1759          * GuC will implicitly mark the context as non-schedulable when it sends
1760          * the reset notification. Make sure our state reflects this change. The
1761          * context will be marked enabled on resubmission.
1762          */
1763         spin_lock_irqsave(&ce->guc_state.lock, flags);
1764         clr_context_enabled(ce);
1765         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1766
1767         /*
1768          * For each context in the relationship find the hanging request
1769          * resetting each context / request as needed
1770          */
1771         for (i = 0; i < number_children + 1; ++i) {
1772                 if (!intel_context_is_pinned(ce))
1773                         goto next_context;
1774
1775                 guilty = false;
1776                 rq = intel_context_get_active_request(ce);
1777                 if (!rq) {
1778                         head = ce->ring->tail;
1779                         goto out_replay;
1780                 }
1781
1782                 if (i915_request_started(rq))
1783                         guilty = stalled & ce->engine->mask;
1784
1785                 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1786                 head = intel_ring_wrap(ce->ring, rq->head);
1787
1788                 __i915_request_reset(rq, guilty);
1789                 i915_request_put(rq);
1790 out_replay:
1791                 guc_reset_state(ce, head, guilty);
1792 next_context:
1793                 if (i != number_children)
1794                         ce = list_next_entry(ce, parallel.child_link);
1795         }
1796
1797         __unwind_incomplete_requests(parent);
1798         intel_context_put(parent);
1799 }
1800
1801 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1802 {
1803         struct intel_context *ce;
1804         unsigned long index;
1805         unsigned long flags;
1806
1807         if (unlikely(!guc_submission_initialized(guc))) {
1808                 /* Reset called during driver load? GuC not yet initialised! */
1809                 return;
1810         }
1811
1812         xa_lock_irqsave(&guc->context_lookup, flags);
1813         xa_for_each(&guc->context_lookup, index, ce) {
1814                 if (!kref_get_unless_zero(&ce->ref))
1815                         continue;
1816
1817                 xa_unlock(&guc->context_lookup);
1818
1819                 if (intel_context_is_pinned(ce) &&
1820                     !intel_context_is_child(ce))
1821                         __guc_reset_context(ce, stalled);
1822
1823                 intel_context_put(ce);
1824
1825                 xa_lock(&guc->context_lookup);
1826         }
1827         xa_unlock_irqrestore(&guc->context_lookup, flags);
1828
1829         /* GuC is blown away, drop all references to contexts */
1830         xa_destroy(&guc->context_lookup);
1831 }
1832
1833 static void guc_cancel_context_requests(struct intel_context *ce)
1834 {
1835         struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1836         struct i915_request *rq;
1837         unsigned long flags;
1838
1839         /* Mark all executing requests as skipped. */
1840         spin_lock_irqsave(&sched_engine->lock, flags);
1841         spin_lock(&ce->guc_state.lock);
1842         list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1843                 i915_request_put(i915_request_mark_eio(rq));
1844         spin_unlock(&ce->guc_state.lock);
1845         spin_unlock_irqrestore(&sched_engine->lock, flags);
1846 }
1847
1848 static void
1849 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1850 {
1851         struct i915_request *rq, *rn;
1852         struct rb_node *rb;
1853         unsigned long flags;
1854
1855         /* Can be called during boot if GuC fails to load */
1856         if (!sched_engine)
1857                 return;
1858
1859         /*
1860          * Before we call engine->cancel_requests(), we should have exclusive
1861          * access to the submission state. This is arranged for us by the
1862          * caller disabling the interrupt generation, the tasklet and other
1863          * threads that may then access the same state, giving us a free hand
1864          * to reset state. However, we still need to let lockdep be aware that
1865          * we know this state may be accessed in hardirq context, so we
1866          * disable the irq around this manipulation and we want to keep
1867          * the spinlock focused on its duties and not accidentally conflate
1868          * coverage to the submission's irq state. (Similarly, although we
1869          * shouldn't need to disable irq around the manipulation of the
1870          * submission's irq state, we also wish to remind ourselves that
1871          * it is irq state.)
1872          */
1873         spin_lock_irqsave(&sched_engine->lock, flags);
1874
1875         /* Flush the queued requests to the timeline list (for retiring). */
1876         while ((rb = rb_first_cached(&sched_engine->queue))) {
1877                 struct i915_priolist *p = to_priolist(rb);
1878
1879                 priolist_for_each_request_consume(rq, rn, p) {
1880                         list_del_init(&rq->sched.link);
1881
1882                         __i915_request_submit(rq);
1883
1884                         i915_request_put(i915_request_mark_eio(rq));
1885                 }
1886
1887                 rb_erase_cached(&p->node, &sched_engine->queue);
1888                 i915_priolist_free(p);
1889         }
1890
1891         /* Remaining _unready_ requests will be nop'ed when submitted */
1892
1893         sched_engine->queue_priority_hint = INT_MIN;
1894         sched_engine->queue = RB_ROOT_CACHED;
1895
1896         spin_unlock_irqrestore(&sched_engine->lock, flags);
1897 }
1898
1899 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1900 {
1901         struct intel_context *ce;
1902         unsigned long index;
1903         unsigned long flags;
1904
1905         xa_lock_irqsave(&guc->context_lookup, flags);
1906         xa_for_each(&guc->context_lookup, index, ce) {
1907                 if (!kref_get_unless_zero(&ce->ref))
1908                         continue;
1909
1910                 xa_unlock(&guc->context_lookup);
1911
1912                 if (intel_context_is_pinned(ce) &&
1913                     !intel_context_is_child(ce))
1914                         guc_cancel_context_requests(ce);
1915
1916                 intel_context_put(ce);
1917
1918                 xa_lock(&guc->context_lookup);
1919         }
1920         xa_unlock_irqrestore(&guc->context_lookup, flags);
1921
1922         guc_cancel_sched_engine_requests(guc->sched_engine);
1923
1924         /* GuC is blown away, drop all references to contexts */
1925         xa_destroy(&guc->context_lookup);
1926 }
1927
1928 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1929 {
1930         /* Reset called during driver load or during wedge? */
1931         if (unlikely(!guc_submission_initialized(guc) ||
1932                      intel_gt_is_wedged(guc_to_gt(guc)))) {
1933                 return;
1934         }
1935
1936         /*
1937          * Technically possible for either of these values to be non-zero here,
1938          * but very unlikely + harmless. Regardless let's add a warn so we can
1939          * see in CI if this happens frequently / a precursor to taking down the
1940          * machine.
1941          */
1942         GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1943         atomic_set(&guc->outstanding_submission_g2h, 0);
1944
1945         intel_guc_global_policies_update(guc);
1946         enable_submission(guc);
1947         intel_gt_unpark_heartbeats(guc_to_gt(guc));
1948 }
1949
1950 static void destroyed_worker_func(struct work_struct *w);
1951 static void reset_fail_worker_func(struct work_struct *w);
1952
1953 /*
1954  * Set up the memory resources to be shared with the GuC (via the GGTT)
1955  * at firmware loading time.
1956  */
1957 int intel_guc_submission_init(struct intel_guc *guc)
1958 {
1959         struct intel_gt *gt = guc_to_gt(guc);
1960         int ret;
1961
1962         if (guc->submission_initialized)
1963                 return 0;
1964
1965         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
1966                 ret = guc_lrc_desc_pool_create_v69(guc);
1967                 if (ret)
1968                         return ret;
1969         }
1970
1971         guc->submission_state.guc_ids_bitmap =
1972                 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1973         if (!guc->submission_state.guc_ids_bitmap) {
1974                 ret = -ENOMEM;
1975                 goto destroy_pool;
1976         }
1977
1978         guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1979         guc->timestamp.shift = gpm_timestamp_shift(gt);
1980         guc->submission_initialized = true;
1981
1982         return 0;
1983
1984 destroy_pool:
1985         guc_lrc_desc_pool_destroy_v69(guc);
1986
1987         return ret;
1988 }
1989
1990 void intel_guc_submission_fini(struct intel_guc *guc)
1991 {
1992         if (!guc->submission_initialized)
1993                 return;
1994
1995         guc_flush_destroyed_contexts(guc);
1996         guc_lrc_desc_pool_destroy_v69(guc);
1997         i915_sched_engine_put(guc->sched_engine);
1998         bitmap_free(guc->submission_state.guc_ids_bitmap);
1999         guc->submission_initialized = false;
2000 }
2001
2002 static inline void queue_request(struct i915_sched_engine *sched_engine,
2003                                  struct i915_request *rq,
2004                                  int prio)
2005 {
2006         GEM_BUG_ON(!list_empty(&rq->sched.link));
2007         list_add_tail(&rq->sched.link,
2008                       i915_sched_lookup_priolist(sched_engine, prio));
2009         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2010         tasklet_hi_schedule(&sched_engine->tasklet);
2011 }
2012
2013 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2014                                      struct i915_request *rq)
2015 {
2016         int ret = 0;
2017
2018         __i915_request_submit(rq);
2019
2020         trace_i915_request_in(rq, 0);
2021
2022         if (is_multi_lrc_rq(rq)) {
2023                 if (multi_lrc_submit(rq)) {
2024                         ret = guc_wq_item_append(guc, rq);
2025                         if (!ret)
2026                                 ret = guc_add_request(guc, rq);
2027                 }
2028         } else {
2029                 guc_set_lrc_tail(rq);
2030                 ret = guc_add_request(guc, rq);
2031         }
2032
2033         if (unlikely(ret == -EPIPE))
2034                 disable_submission(guc);
2035
2036         return ret;
2037 }
2038
2039 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2040 {
2041         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2042         struct intel_context *ce = request_to_scheduling_context(rq);
2043
2044         return submission_disabled(guc) || guc->stalled_request ||
2045                 !i915_sched_engine_is_empty(sched_engine) ||
2046                 !ctx_id_mapped(guc, ce->guc_id.id);
2047 }
2048
2049 static void guc_submit_request(struct i915_request *rq)
2050 {
2051         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2052         struct intel_guc *guc = &rq->engine->gt->uc.guc;
2053         unsigned long flags;
2054
2055         /* Will be called from irq-context when using foreign fences. */
2056         spin_lock_irqsave(&sched_engine->lock, flags);
2057
2058         if (need_tasklet(guc, rq))
2059                 queue_request(sched_engine, rq, rq_prio(rq));
2060         else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2061                 tasklet_hi_schedule(&sched_engine->tasklet);
2062
2063         spin_unlock_irqrestore(&sched_engine->lock, flags);
2064 }
2065
2066 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2067 {
2068         int ret;
2069
2070         GEM_BUG_ON(intel_context_is_child(ce));
2071
2072         if (intel_context_is_parent(ce))
2073                 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2074                                               NUMBER_MULTI_LRC_GUC_ID(guc),
2075                                               order_base_2(ce->parallel.number_children
2076                                                            + 1));
2077         else
2078                 ret = ida_simple_get(&guc->submission_state.guc_ids,
2079                                      NUMBER_MULTI_LRC_GUC_ID(guc),
2080                                      guc->submission_state.num_guc_ids,
2081                                      GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2082                                      __GFP_NOWARN);
2083         if (unlikely(ret < 0))
2084                 return ret;
2085
2086         if (!intel_context_is_parent(ce))
2087                 ++guc->submission_state.guc_ids_in_use;
2088
2089         ce->guc_id.id = ret;
2090         return 0;
2091 }
2092
2093 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2094 {
2095         GEM_BUG_ON(intel_context_is_child(ce));
2096
2097         if (!context_guc_id_invalid(ce)) {
2098                 if (intel_context_is_parent(ce)) {
2099                         bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2100                                               ce->guc_id.id,
2101                                               order_base_2(ce->parallel.number_children
2102                                                            + 1));
2103                 } else {
2104                         --guc->submission_state.guc_ids_in_use;
2105                         ida_simple_remove(&guc->submission_state.guc_ids,
2106                                           ce->guc_id.id);
2107                 }
2108                 clr_ctx_id_mapping(guc, ce->guc_id.id);
2109                 set_context_guc_id_invalid(ce);
2110         }
2111         if (!list_empty(&ce->guc_id.link))
2112                 list_del_init(&ce->guc_id.link);
2113 }
2114
2115 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2116 {
2117         unsigned long flags;
2118
2119         spin_lock_irqsave(&guc->submission_state.lock, flags);
2120         __release_guc_id(guc, ce);
2121         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2122 }
2123
2124 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2125 {
2126         struct intel_context *cn;
2127
2128         lockdep_assert_held(&guc->submission_state.lock);
2129         GEM_BUG_ON(intel_context_is_child(ce));
2130         GEM_BUG_ON(intel_context_is_parent(ce));
2131
2132         if (!list_empty(&guc->submission_state.guc_id_list)) {
2133                 cn = list_first_entry(&guc->submission_state.guc_id_list,
2134                                       struct intel_context,
2135                                       guc_id.link);
2136
2137                 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2138                 GEM_BUG_ON(context_guc_id_invalid(cn));
2139                 GEM_BUG_ON(intel_context_is_child(cn));
2140                 GEM_BUG_ON(intel_context_is_parent(cn));
2141
2142                 list_del_init(&cn->guc_id.link);
2143                 ce->guc_id.id = cn->guc_id.id;
2144
2145                 spin_lock(&cn->guc_state.lock);
2146                 clr_context_registered(cn);
2147                 spin_unlock(&cn->guc_state.lock);
2148
2149                 set_context_guc_id_invalid(cn);
2150
2151 #ifdef CONFIG_DRM_I915_SELFTEST
2152                 guc->number_guc_id_stolen++;
2153 #endif
2154
2155                 return 0;
2156         } else {
2157                 return -EAGAIN;
2158         }
2159 }
2160
2161 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2162 {
2163         int ret;
2164
2165         lockdep_assert_held(&guc->submission_state.lock);
2166         GEM_BUG_ON(intel_context_is_child(ce));
2167
2168         ret = new_guc_id(guc, ce);
2169         if (unlikely(ret < 0)) {
2170                 if (intel_context_is_parent(ce))
2171                         return -ENOSPC;
2172
2173                 ret = steal_guc_id(guc, ce);
2174                 if (ret < 0)
2175                         return ret;
2176         }
2177
2178         if (intel_context_is_parent(ce)) {
2179                 struct intel_context *child;
2180                 int i = 1;
2181
2182                 for_each_child(ce, child)
2183                         child->guc_id.id = ce->guc_id.id + i++;
2184         }
2185
2186         return 0;
2187 }
2188
2189 #define PIN_GUC_ID_TRIES        4
2190 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2191 {
2192         int ret = 0;
2193         unsigned long flags, tries = PIN_GUC_ID_TRIES;
2194
2195         GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2196
2197 try_again:
2198         spin_lock_irqsave(&guc->submission_state.lock, flags);
2199
2200         might_lock(&ce->guc_state.lock);
2201
2202         if (context_guc_id_invalid(ce)) {
2203                 ret = assign_guc_id(guc, ce);
2204                 if (ret)
2205                         goto out_unlock;
2206                 ret = 1;        /* Indidcates newly assigned guc_id */
2207         }
2208         if (!list_empty(&ce->guc_id.link))
2209                 list_del_init(&ce->guc_id.link);
2210         atomic_inc(&ce->guc_id.ref);
2211
2212 out_unlock:
2213         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2214
2215         /*
2216          * -EAGAIN indicates no guc_id are available, let's retire any
2217          * outstanding requests to see if that frees up a guc_id. If the first
2218          * retire didn't help, insert a sleep with the timeslice duration before
2219          * attempting to retire more requests. Double the sleep period each
2220          * subsequent pass before finally giving up. The sleep period has max of
2221          * 100ms and minimum of 1ms.
2222          */
2223         if (ret == -EAGAIN && --tries) {
2224                 if (PIN_GUC_ID_TRIES - tries > 1) {
2225                         unsigned int timeslice_shifted =
2226                                 ce->engine->props.timeslice_duration_ms <<
2227                                 (PIN_GUC_ID_TRIES - tries - 2);
2228                         unsigned int max = min_t(unsigned int, 100,
2229                                                  timeslice_shifted);
2230
2231                         msleep(max_t(unsigned int, max, 1));
2232                 }
2233                 intel_gt_retire_requests(guc_to_gt(guc));
2234                 goto try_again;
2235         }
2236
2237         return ret;
2238 }
2239
2240 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2241 {
2242         unsigned long flags;
2243
2244         GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2245         GEM_BUG_ON(intel_context_is_child(ce));
2246
2247         if (unlikely(context_guc_id_invalid(ce) ||
2248                      intel_context_is_parent(ce)))
2249                 return;
2250
2251         spin_lock_irqsave(&guc->submission_state.lock, flags);
2252         if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2253             !atomic_read(&ce->guc_id.ref))
2254                 list_add_tail(&ce->guc_id.link,
2255                               &guc->submission_state.guc_id_list);
2256         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2257 }
2258
2259 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2260                                                struct intel_context *ce,
2261                                                u32 guc_id,
2262                                                u32 offset,
2263                                                bool loop)
2264 {
2265         struct intel_context *child;
2266         u32 action[4 + MAX_ENGINE_INSTANCE];
2267         int len = 0;
2268
2269         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2270
2271         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2272         action[len++] = guc_id;
2273         action[len++] = ce->parallel.number_children + 1;
2274         action[len++] = offset;
2275         for_each_child(ce, child) {
2276                 offset += sizeof(struct guc_lrc_desc_v69);
2277                 action[len++] = offset;
2278         }
2279
2280         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2281 }
2282
2283 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2284                                                struct intel_context *ce,
2285                                                struct guc_ctxt_registration_info *info,
2286                                                bool loop)
2287 {
2288         struct intel_context *child;
2289         u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2290         int len = 0;
2291         u32 next_id;
2292
2293         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2294
2295         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2296         action[len++] = info->flags;
2297         action[len++] = info->context_idx;
2298         action[len++] = info->engine_class;
2299         action[len++] = info->engine_submit_mask;
2300         action[len++] = info->wq_desc_lo;
2301         action[len++] = info->wq_desc_hi;
2302         action[len++] = info->wq_base_lo;
2303         action[len++] = info->wq_base_hi;
2304         action[len++] = info->wq_size;
2305         action[len++] = ce->parallel.number_children + 1;
2306         action[len++] = info->hwlrca_lo;
2307         action[len++] = info->hwlrca_hi;
2308
2309         next_id = info->context_idx + 1;
2310         for_each_child(ce, child) {
2311                 GEM_BUG_ON(next_id++ != child->guc_id.id);
2312
2313                 /*
2314                  * NB: GuC interface supports 64 bit LRCA even though i915/HW
2315                  * only supports 32 bit currently.
2316                  */
2317                 action[len++] = lower_32_bits(child->lrc.lrca);
2318                 action[len++] = upper_32_bits(child->lrc.lrca);
2319         }
2320
2321         GEM_BUG_ON(len > ARRAY_SIZE(action));
2322
2323         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2324 }
2325
2326 static int __guc_action_register_context_v69(struct intel_guc *guc,
2327                                              u32 guc_id,
2328                                              u32 offset,
2329                                              bool loop)
2330 {
2331         u32 action[] = {
2332                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2333                 guc_id,
2334                 offset,
2335         };
2336
2337         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2338                                              0, loop);
2339 }
2340
2341 static int __guc_action_register_context_v70(struct intel_guc *guc,
2342                                              struct guc_ctxt_registration_info *info,
2343                                              bool loop)
2344 {
2345         u32 action[] = {
2346                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2347                 info->flags,
2348                 info->context_idx,
2349                 info->engine_class,
2350                 info->engine_submit_mask,
2351                 info->wq_desc_lo,
2352                 info->wq_desc_hi,
2353                 info->wq_base_lo,
2354                 info->wq_base_hi,
2355                 info->wq_size,
2356                 info->hwlrca_lo,
2357                 info->hwlrca_hi,
2358         };
2359
2360         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2361                                              0, loop);
2362 }
2363
2364 static void prepare_context_registration_info_v69(struct intel_context *ce);
2365 static void prepare_context_registration_info_v70(struct intel_context *ce,
2366                                                   struct guc_ctxt_registration_info *info);
2367
2368 static int
2369 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2370 {
2371         u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2372                 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2373
2374         prepare_context_registration_info_v69(ce);
2375
2376         if (intel_context_is_parent(ce))
2377                 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2378                                                            offset, loop);
2379         else
2380                 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2381                                                          offset, loop);
2382 }
2383
2384 static int
2385 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2386 {
2387         struct guc_ctxt_registration_info info;
2388
2389         prepare_context_registration_info_v70(ce, &info);
2390
2391         if (intel_context_is_parent(ce))
2392                 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2393         else
2394                 return __guc_action_register_context_v70(guc, &info, loop);
2395 }
2396
2397 static int register_context(struct intel_context *ce, bool loop)
2398 {
2399         struct intel_guc *guc = ce_to_guc(ce);
2400         int ret;
2401
2402         GEM_BUG_ON(intel_context_is_child(ce));
2403         trace_intel_context_register(ce);
2404
2405         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2406                 ret = register_context_v70(guc, ce, loop);
2407         else
2408                 ret = register_context_v69(guc, ce, loop);
2409
2410         if (likely(!ret)) {
2411                 unsigned long flags;
2412
2413                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2414                 set_context_registered(ce);
2415                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2416
2417                 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2418                         guc_context_policy_init_v70(ce, loop);
2419         }
2420
2421         return ret;
2422 }
2423
2424 static int __guc_action_deregister_context(struct intel_guc *guc,
2425                                            u32 guc_id)
2426 {
2427         u32 action[] = {
2428                 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2429                 guc_id,
2430         };
2431
2432         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2433                                              G2H_LEN_DW_DEREGISTER_CONTEXT,
2434                                              true);
2435 }
2436
2437 static int deregister_context(struct intel_context *ce, u32 guc_id)
2438 {
2439         struct intel_guc *guc = ce_to_guc(ce);
2440
2441         GEM_BUG_ON(intel_context_is_child(ce));
2442         trace_intel_context_deregister(ce);
2443
2444         return __guc_action_deregister_context(guc, guc_id);
2445 }
2446
2447 static inline void clear_children_join_go_memory(struct intel_context *ce)
2448 {
2449         struct parent_scratch *ps = __get_parent_scratch(ce);
2450         int i;
2451
2452         ps->go.semaphore = 0;
2453         for (i = 0; i < ce->parallel.number_children + 1; ++i)
2454                 ps->join[i].semaphore = 0;
2455 }
2456
2457 static inline u32 get_children_go_value(struct intel_context *ce)
2458 {
2459         return __get_parent_scratch(ce)->go.semaphore;
2460 }
2461
2462 static inline u32 get_children_join_value(struct intel_context *ce,
2463                                           u8 child_index)
2464 {
2465         return __get_parent_scratch(ce)->join[child_index].semaphore;
2466 }
2467
2468 struct context_policy {
2469         u32 count;
2470         struct guc_update_context_policy h2g;
2471 };
2472
2473 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2474 {
2475         size_t bytes = sizeof(policy->h2g.header) +
2476                        (sizeof(policy->h2g.klv[0]) * policy->count);
2477
2478         return bytes / sizeof(u32);
2479 }
2480
2481 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2482 {
2483         policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2484         policy->h2g.header.ctx_id = guc_id;
2485         policy->count = 0;
2486 }
2487
2488 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2489 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2490 { \
2491         GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2492         policy->h2g.klv[policy->count].kl = \
2493                 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2494                 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2495         policy->h2g.klv[policy->count].value = data; \
2496         policy->count++; \
2497 }
2498
2499 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2500 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2501 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2502 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2503
2504 #undef MAKE_CONTEXT_POLICY_ADD
2505
2506 static int __guc_context_set_context_policies(struct intel_guc *guc,
2507                                               struct context_policy *policy,
2508                                               bool loop)
2509 {
2510         return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2511                                         __guc_context_policy_action_size(policy),
2512                                         0, loop);
2513 }
2514
2515 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2516 {
2517         struct intel_engine_cs *engine = ce->engine;
2518         struct intel_guc *guc = &engine->gt->uc.guc;
2519         struct context_policy policy;
2520         u32 execution_quantum;
2521         u32 preemption_timeout;
2522         unsigned long flags;
2523         int ret;
2524
2525         /* NB: For both of these, zero means disabled. */
2526         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2527                                   execution_quantum));
2528         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2529                                   preemption_timeout));
2530         execution_quantum = engine->props.timeslice_duration_ms * 1000;
2531         preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2532
2533         __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2534
2535         __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2536         __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2537         __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2538
2539         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2540                 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2541
2542         ret = __guc_context_set_context_policies(guc, &policy, loop);
2543
2544         spin_lock_irqsave(&ce->guc_state.lock, flags);
2545         if (ret != 0)
2546                 set_context_policy_required(ce);
2547         else
2548                 clr_context_policy_required(ce);
2549         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2550
2551         return ret;
2552 }
2553
2554 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2555                                         struct guc_lrc_desc_v69 *desc)
2556 {
2557         desc->policy_flags = 0;
2558
2559         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2560                 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2561
2562         /* NB: For both of these, zero means disabled. */
2563         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2564                                   desc->execution_quantum));
2565         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2566                                   desc->preemption_timeout));
2567         desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2568         desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2569 }
2570
2571 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2572 {
2573         /*
2574          * this matches the mapping we do in map_i915_prio_to_guc_prio()
2575          * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2576          */
2577         switch (prio) {
2578         default:
2579                 MISSING_CASE(prio);
2580                 fallthrough;
2581         case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2582                 return GEN12_CTX_PRIORITY_NORMAL;
2583         case GUC_CLIENT_PRIORITY_NORMAL:
2584                 return GEN12_CTX_PRIORITY_LOW;
2585         case GUC_CLIENT_PRIORITY_HIGH:
2586         case GUC_CLIENT_PRIORITY_KMD_HIGH:
2587                 return GEN12_CTX_PRIORITY_HIGH;
2588         }
2589 }
2590
2591 static void prepare_context_registration_info_v69(struct intel_context *ce)
2592 {
2593         struct intel_engine_cs *engine = ce->engine;
2594         struct intel_guc *guc = &engine->gt->uc.guc;
2595         u32 ctx_id = ce->guc_id.id;
2596         struct guc_lrc_desc_v69 *desc;
2597         struct intel_context *child;
2598
2599         GEM_BUG_ON(!engine->mask);
2600
2601         /*
2602          * Ensure LRC + CT vmas are is same region as write barrier is done
2603          * based on CT vma region.
2604          */
2605         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2606                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2607
2608         desc = __get_lrc_desc_v69(guc, ctx_id);
2609         GEM_BUG_ON(!desc);
2610         desc->engine_class = engine_class_to_guc_class(engine->class);
2611         desc->engine_submit_mask = engine->logical_mask;
2612         desc->hw_context_desc = ce->lrc.lrca;
2613         desc->priority = ce->guc_state.prio;
2614         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2615         guc_context_policy_init_v69(engine, desc);
2616
2617         /*
2618          * If context is a parent, we need to register a process descriptor
2619          * describing a work queue and register all child contexts.
2620          */
2621         if (intel_context_is_parent(ce)) {
2622                 struct guc_process_desc_v69 *pdesc;
2623
2624                 ce->parallel.guc.wqi_tail = 0;
2625                 ce->parallel.guc.wqi_head = 0;
2626
2627                 desc->process_desc = i915_ggtt_offset(ce->state) +
2628                         __get_parent_scratch_offset(ce);
2629                 desc->wq_addr = i915_ggtt_offset(ce->state) +
2630                         __get_wq_offset(ce);
2631                 desc->wq_size = WQ_SIZE;
2632
2633                 pdesc = __get_process_desc_v69(ce);
2634                 memset(pdesc, 0, sizeof(*(pdesc)));
2635                 pdesc->stage_id = ce->guc_id.id;
2636                 pdesc->wq_base_addr = desc->wq_addr;
2637                 pdesc->wq_size_bytes = desc->wq_size;
2638                 pdesc->wq_status = WQ_STATUS_ACTIVE;
2639
2640                 ce->parallel.guc.wq_head = &pdesc->head;
2641                 ce->parallel.guc.wq_tail = &pdesc->tail;
2642                 ce->parallel.guc.wq_status = &pdesc->wq_status;
2643
2644                 for_each_child(ce, child) {
2645                         desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2646
2647                         desc->engine_class =
2648                                 engine_class_to_guc_class(engine->class);
2649                         desc->hw_context_desc = child->lrc.lrca;
2650                         desc->priority = ce->guc_state.prio;
2651                         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2652                         guc_context_policy_init_v69(engine, desc);
2653                 }
2654
2655                 clear_children_join_go_memory(ce);
2656         }
2657 }
2658
2659 static void prepare_context_registration_info_v70(struct intel_context *ce,
2660                                                   struct guc_ctxt_registration_info *info)
2661 {
2662         struct intel_engine_cs *engine = ce->engine;
2663         struct intel_guc *guc = &engine->gt->uc.guc;
2664         u32 ctx_id = ce->guc_id.id;
2665
2666         GEM_BUG_ON(!engine->mask);
2667
2668         /*
2669          * Ensure LRC + CT vmas are is same region as write barrier is done
2670          * based on CT vma region.
2671          */
2672         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2673                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2674
2675         memset(info, 0, sizeof(*info));
2676         info->context_idx = ctx_id;
2677         info->engine_class = engine_class_to_guc_class(engine->class);
2678         info->engine_submit_mask = engine->logical_mask;
2679         /*
2680          * NB: GuC interface supports 64 bit LRCA even though i915/HW
2681          * only supports 32 bit currently.
2682          */
2683         info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2684         info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2685         if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2686                 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2687         info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2688
2689         /*
2690          * If context is a parent, we need to register a process descriptor
2691          * describing a work queue and register all child contexts.
2692          */
2693         if (intel_context_is_parent(ce)) {
2694                 struct guc_sched_wq_desc *wq_desc;
2695                 u64 wq_desc_offset, wq_base_offset;
2696
2697                 ce->parallel.guc.wqi_tail = 0;
2698                 ce->parallel.guc.wqi_head = 0;
2699
2700                 wq_desc_offset = i915_ggtt_offset(ce->state) +
2701                                  __get_parent_scratch_offset(ce);
2702                 wq_base_offset = i915_ggtt_offset(ce->state) +
2703                                  __get_wq_offset(ce);
2704                 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2705                 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2706                 info->wq_base_lo = lower_32_bits(wq_base_offset);
2707                 info->wq_base_hi = upper_32_bits(wq_base_offset);
2708                 info->wq_size = WQ_SIZE;
2709
2710                 wq_desc = __get_wq_desc_v70(ce);
2711                 memset(wq_desc, 0, sizeof(*wq_desc));
2712                 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2713
2714                 ce->parallel.guc.wq_head = &wq_desc->head;
2715                 ce->parallel.guc.wq_tail = &wq_desc->tail;
2716                 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2717
2718                 clear_children_join_go_memory(ce);
2719         }
2720 }
2721
2722 static int try_context_registration(struct intel_context *ce, bool loop)
2723 {
2724         struct intel_engine_cs *engine = ce->engine;
2725         struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2726         struct intel_guc *guc = &engine->gt->uc.guc;
2727         intel_wakeref_t wakeref;
2728         u32 ctx_id = ce->guc_id.id;
2729         bool context_registered;
2730         int ret = 0;
2731
2732         GEM_BUG_ON(!sched_state_is_init(ce));
2733
2734         context_registered = ctx_id_mapped(guc, ctx_id);
2735
2736         clr_ctx_id_mapping(guc, ctx_id);
2737         set_ctx_id_mapping(guc, ctx_id, ce);
2738
2739         /*
2740          * The context_lookup xarray is used to determine if the hardware
2741          * context is currently registered. There are two cases in which it
2742          * could be registered either the guc_id has been stolen from another
2743          * context or the lrc descriptor address of this context has changed. In
2744          * either case the context needs to be deregistered with the GuC before
2745          * registering this context.
2746          */
2747         if (context_registered) {
2748                 bool disabled;
2749                 unsigned long flags;
2750
2751                 trace_intel_context_steal_guc_id(ce);
2752                 GEM_BUG_ON(!loop);
2753
2754                 /* Seal race with Reset */
2755                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2756                 disabled = submission_disabled(guc);
2757                 if (likely(!disabled)) {
2758                         set_context_wait_for_deregister_to_register(ce);
2759                         intel_context_get(ce);
2760                 }
2761                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2762                 if (unlikely(disabled)) {
2763                         clr_ctx_id_mapping(guc, ctx_id);
2764                         return 0;       /* Will get registered later */
2765                 }
2766
2767                 /*
2768                  * If stealing the guc_id, this ce has the same guc_id as the
2769                  * context whose guc_id was stolen.
2770                  */
2771                 with_intel_runtime_pm(runtime_pm, wakeref)
2772                         ret = deregister_context(ce, ce->guc_id.id);
2773                 if (unlikely(ret == -ENODEV))
2774                         ret = 0;        /* Will get registered later */
2775         } else {
2776                 with_intel_runtime_pm(runtime_pm, wakeref)
2777                         ret = register_context(ce, loop);
2778                 if (unlikely(ret == -EBUSY)) {
2779                         clr_ctx_id_mapping(guc, ctx_id);
2780                 } else if (unlikely(ret == -ENODEV)) {
2781                         clr_ctx_id_mapping(guc, ctx_id);
2782                         ret = 0;        /* Will get registered later */
2783                 }
2784         }
2785
2786         return ret;
2787 }
2788
2789 static int __guc_context_pre_pin(struct intel_context *ce,
2790                                  struct intel_engine_cs *engine,
2791                                  struct i915_gem_ww_ctx *ww,
2792                                  void **vaddr)
2793 {
2794         return lrc_pre_pin(ce, engine, ww, vaddr);
2795 }
2796
2797 static int __guc_context_pin(struct intel_context *ce,
2798                              struct intel_engine_cs *engine,
2799                              void *vaddr)
2800 {
2801         if (i915_ggtt_offset(ce->state) !=
2802             (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2803                 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2804
2805         /*
2806          * GuC context gets pinned in guc_request_alloc. See that function for
2807          * explaination of why.
2808          */
2809
2810         return lrc_pin(ce, engine, vaddr);
2811 }
2812
2813 static int guc_context_pre_pin(struct intel_context *ce,
2814                                struct i915_gem_ww_ctx *ww,
2815                                void **vaddr)
2816 {
2817         return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2818 }
2819
2820 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2821 {
2822         int ret = __guc_context_pin(ce, ce->engine, vaddr);
2823
2824         if (likely(!ret && !intel_context_is_barrier(ce)))
2825                 intel_engine_pm_get(ce->engine);
2826
2827         return ret;
2828 }
2829
2830 static void guc_context_unpin(struct intel_context *ce)
2831 {
2832         struct intel_guc *guc = ce_to_guc(ce);
2833
2834         __guc_context_update_stats(ce);
2835         unpin_guc_id(guc, ce);
2836         lrc_unpin(ce);
2837
2838         if (likely(!intel_context_is_barrier(ce)))
2839                 intel_engine_pm_put_async(ce->engine);
2840 }
2841
2842 static void guc_context_post_unpin(struct intel_context *ce)
2843 {
2844         lrc_post_unpin(ce);
2845 }
2846
2847 static void __guc_context_sched_enable(struct intel_guc *guc,
2848                                        struct intel_context *ce)
2849 {
2850         u32 action[] = {
2851                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2852                 ce->guc_id.id,
2853                 GUC_CONTEXT_ENABLE
2854         };
2855
2856         trace_intel_context_sched_enable(ce);
2857
2858         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2859                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2860 }
2861
2862 static void __guc_context_sched_disable(struct intel_guc *guc,
2863                                         struct intel_context *ce,
2864                                         u16 guc_id)
2865 {
2866         u32 action[] = {
2867                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2868                 guc_id, /* ce->guc_id.id not stable */
2869                 GUC_CONTEXT_DISABLE
2870         };
2871
2872         GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2873
2874         GEM_BUG_ON(intel_context_is_child(ce));
2875         trace_intel_context_sched_disable(ce);
2876
2877         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2878                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2879 }
2880
2881 static void guc_blocked_fence_complete(struct intel_context *ce)
2882 {
2883         lockdep_assert_held(&ce->guc_state.lock);
2884
2885         if (!i915_sw_fence_done(&ce->guc_state.blocked))
2886                 i915_sw_fence_complete(&ce->guc_state.blocked);
2887 }
2888
2889 static void guc_blocked_fence_reinit(struct intel_context *ce)
2890 {
2891         lockdep_assert_held(&ce->guc_state.lock);
2892         GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2893
2894         /*
2895          * This fence is always complete unless a pending schedule disable is
2896          * outstanding. We arm the fence here and complete it when we receive
2897          * the pending schedule disable complete message.
2898          */
2899         i915_sw_fence_fini(&ce->guc_state.blocked);
2900         i915_sw_fence_reinit(&ce->guc_state.blocked);
2901         i915_sw_fence_await(&ce->guc_state.blocked);
2902         i915_sw_fence_commit(&ce->guc_state.blocked);
2903 }
2904
2905 static u16 prep_context_pending_disable(struct intel_context *ce)
2906 {
2907         lockdep_assert_held(&ce->guc_state.lock);
2908
2909         set_context_pending_disable(ce);
2910         clr_context_enabled(ce);
2911         guc_blocked_fence_reinit(ce);
2912         intel_context_get(ce);
2913
2914         return ce->guc_id.id;
2915 }
2916
2917 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2918 {
2919         struct intel_guc *guc = ce_to_guc(ce);
2920         unsigned long flags;
2921         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2922         intel_wakeref_t wakeref;
2923         u16 guc_id;
2924         bool enabled;
2925
2926         GEM_BUG_ON(intel_context_is_child(ce));
2927
2928         spin_lock_irqsave(&ce->guc_state.lock, flags);
2929
2930         incr_context_blocked(ce);
2931
2932         enabled = context_enabled(ce);
2933         if (unlikely(!enabled || submission_disabled(guc))) {
2934                 if (enabled)
2935                         clr_context_enabled(ce);
2936                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2937                 return &ce->guc_state.blocked;
2938         }
2939
2940         /*
2941          * We add +2 here as the schedule disable complete CTB handler calls
2942          * intel_context_sched_disable_unpin (-2 to pin_count).
2943          */
2944         atomic_add(2, &ce->pin_count);
2945
2946         guc_id = prep_context_pending_disable(ce);
2947
2948         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2949
2950         with_intel_runtime_pm(runtime_pm, wakeref)
2951                 __guc_context_sched_disable(guc, ce, guc_id);
2952
2953         return &ce->guc_state.blocked;
2954 }
2955
2956 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2957         (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2958 #define SCHED_STATE_NO_UNBLOCK \
2959         (SCHED_STATE_MULTI_BLOCKED_MASK | \
2960          SCHED_STATE_PENDING_DISABLE | \
2961          SCHED_STATE_BANNED)
2962
2963 static bool context_cant_unblock(struct intel_context *ce)
2964 {
2965         lockdep_assert_held(&ce->guc_state.lock);
2966
2967         return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2968                 context_guc_id_invalid(ce) ||
2969                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2970                 !intel_context_is_pinned(ce);
2971 }
2972
2973 static void guc_context_unblock(struct intel_context *ce)
2974 {
2975         struct intel_guc *guc = ce_to_guc(ce);
2976         unsigned long flags;
2977         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2978         intel_wakeref_t wakeref;
2979         bool enable;
2980
2981         GEM_BUG_ON(context_enabled(ce));
2982         GEM_BUG_ON(intel_context_is_child(ce));
2983
2984         spin_lock_irqsave(&ce->guc_state.lock, flags);
2985
2986         if (unlikely(submission_disabled(guc) ||
2987                      context_cant_unblock(ce))) {
2988                 enable = false;
2989         } else {
2990                 enable = true;
2991                 set_context_pending_enable(ce);
2992                 set_context_enabled(ce);
2993                 intel_context_get(ce);
2994         }
2995
2996         decr_context_blocked(ce);
2997
2998         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2999
3000         if (enable) {
3001                 with_intel_runtime_pm(runtime_pm, wakeref)
3002                         __guc_context_sched_enable(guc, ce);
3003         }
3004 }
3005
3006 static void guc_context_cancel_request(struct intel_context *ce,
3007                                        struct i915_request *rq)
3008 {
3009         struct intel_context *block_context =
3010                 request_to_scheduling_context(rq);
3011
3012         if (i915_sw_fence_signaled(&rq->submit)) {
3013                 struct i915_sw_fence *fence;
3014
3015                 intel_context_get(ce);
3016                 fence = guc_context_block(block_context);
3017                 i915_sw_fence_wait(fence);
3018                 if (!i915_request_completed(rq)) {
3019                         __i915_request_skip(rq);
3020                         guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3021                                         true);
3022                 }
3023
3024                 guc_context_unblock(block_context);
3025                 intel_context_put(ce);
3026         }
3027 }
3028
3029 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3030                                                  u16 guc_id,
3031                                                  u32 preemption_timeout)
3032 {
3033         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3034                 struct context_policy policy;
3035
3036                 __guc_context_policy_start_klv(&policy, guc_id);
3037                 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3038                 __guc_context_set_context_policies(guc, &policy, true);
3039         } else {
3040                 u32 action[] = {
3041                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3042                         guc_id,
3043                         preemption_timeout
3044                 };
3045
3046                 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3047         }
3048 }
3049
3050 static void
3051 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3052                    unsigned int preempt_timeout_ms)
3053 {
3054         struct intel_guc *guc = ce_to_guc(ce);
3055         struct intel_runtime_pm *runtime_pm =
3056                 &ce->engine->gt->i915->runtime_pm;
3057         intel_wakeref_t wakeref;
3058         unsigned long flags;
3059
3060         GEM_BUG_ON(intel_context_is_child(ce));
3061
3062         guc_flush_submissions(guc);
3063
3064         spin_lock_irqsave(&ce->guc_state.lock, flags);
3065         set_context_banned(ce);
3066
3067         if (submission_disabled(guc) ||
3068             (!context_enabled(ce) && !context_pending_disable(ce))) {
3069                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3070
3071                 guc_cancel_context_requests(ce);
3072                 intel_engine_signal_breadcrumbs(ce->engine);
3073         } else if (!context_pending_disable(ce)) {
3074                 u16 guc_id;
3075
3076                 /*
3077                  * We add +2 here as the schedule disable complete CTB handler
3078                  * calls intel_context_sched_disable_unpin (-2 to pin_count).
3079                  */
3080                 atomic_add(2, &ce->pin_count);
3081
3082                 guc_id = prep_context_pending_disable(ce);
3083                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3084
3085                 /*
3086                  * In addition to disabling scheduling, set the preemption
3087                  * timeout to the minimum value (1 us) so the banned context
3088                  * gets kicked off the HW ASAP.
3089                  */
3090                 with_intel_runtime_pm(runtime_pm, wakeref) {
3091                         __guc_context_set_preemption_timeout(guc, guc_id,
3092                                                              preempt_timeout_ms);
3093                         __guc_context_sched_disable(guc, ce, guc_id);
3094                 }
3095         } else {
3096                 if (!context_guc_id_invalid(ce))
3097                         with_intel_runtime_pm(runtime_pm, wakeref)
3098                                 __guc_context_set_preemption_timeout(guc,
3099                                                                      ce->guc_id.id,
3100                                                                      preempt_timeout_ms);
3101                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3102         }
3103 }
3104
3105 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3106                              unsigned long flags)
3107         __releases(ce->guc_state.lock)
3108 {
3109         struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3110         intel_wakeref_t wakeref;
3111         u16 guc_id;
3112
3113         lockdep_assert_held(&ce->guc_state.lock);
3114         guc_id = prep_context_pending_disable(ce);
3115
3116         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3117
3118         with_intel_runtime_pm(runtime_pm, wakeref)
3119                 __guc_context_sched_disable(guc, ce, guc_id);
3120 }
3121
3122 static bool bypass_sched_disable(struct intel_guc *guc,
3123                                  struct intel_context *ce)
3124 {
3125         lockdep_assert_held(&ce->guc_state.lock);
3126         GEM_BUG_ON(intel_context_is_child(ce));
3127
3128         if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3129             !ctx_id_mapped(guc, ce->guc_id.id)) {
3130                 clr_context_enabled(ce);
3131                 return true;
3132         }
3133
3134         return !context_enabled(ce);
3135 }
3136
3137 static void __delay_sched_disable(struct work_struct *wrk)
3138 {
3139         struct intel_context *ce =
3140                 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3141         struct intel_guc *guc = ce_to_guc(ce);
3142         unsigned long flags;
3143
3144         spin_lock_irqsave(&ce->guc_state.lock, flags);
3145
3146         if (bypass_sched_disable(guc, ce)) {
3147                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3148                 intel_context_sched_disable_unpin(ce);
3149         } else {
3150                 do_sched_disable(guc, ce, flags);
3151         }
3152 }
3153
3154 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3155 {
3156         /*
3157          * parent contexts are perma-pinned, if we are unpinning do schedule
3158          * disable immediately.
3159          */
3160         if (intel_context_is_parent(ce))
3161                 return true;
3162
3163         /*
3164          * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3165          */
3166         return guc->submission_state.guc_ids_in_use >
3167                 guc->submission_state.sched_disable_gucid_threshold;
3168 }
3169
3170 static void guc_context_sched_disable(struct intel_context *ce)
3171 {
3172         struct intel_guc *guc = ce_to_guc(ce);
3173         u64 delay = guc->submission_state.sched_disable_delay_ms;
3174         unsigned long flags;
3175
3176         spin_lock_irqsave(&ce->guc_state.lock, flags);
3177
3178         if (bypass_sched_disable(guc, ce)) {
3179                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3180                 intel_context_sched_disable_unpin(ce);
3181         } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3182                    delay) {
3183                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3184                 mod_delayed_work(system_unbound_wq,
3185                                  &ce->guc_state.sched_disable_delay_work,
3186                                  msecs_to_jiffies(delay));
3187         } else {
3188                 do_sched_disable(guc, ce, flags);
3189         }
3190 }
3191
3192 static void guc_context_close(struct intel_context *ce)
3193 {
3194         unsigned long flags;
3195
3196         if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3197             cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3198                 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3199
3200         spin_lock_irqsave(&ce->guc_state.lock, flags);
3201         set_context_close_done(ce);
3202         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3203 }
3204
3205 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3206 {
3207         struct intel_guc *guc = ce_to_guc(ce);
3208         struct intel_gt *gt = guc_to_gt(guc);
3209         unsigned long flags;
3210         bool disabled;
3211
3212         GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3213         GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3214         GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3215         GEM_BUG_ON(context_enabled(ce));
3216
3217         /* Seal race with Reset */
3218         spin_lock_irqsave(&ce->guc_state.lock, flags);
3219         disabled = submission_disabled(guc);
3220         if (likely(!disabled)) {
3221                 __intel_gt_pm_get(gt);
3222                 set_context_destroyed(ce);
3223                 clr_context_registered(ce);
3224         }
3225         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3226         if (unlikely(disabled)) {
3227                 release_guc_id(guc, ce);
3228                 __guc_context_destroy(ce);
3229                 return;
3230         }
3231
3232         deregister_context(ce, ce->guc_id.id);
3233 }
3234
3235 static void __guc_context_destroy(struct intel_context *ce)
3236 {
3237         GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3238                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3239                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3240                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3241
3242         lrc_fini(ce);
3243         intel_context_fini(ce);
3244
3245         if (intel_engine_is_virtual(ce->engine)) {
3246                 struct guc_virtual_engine *ve =
3247                         container_of(ce, typeof(*ve), context);
3248
3249                 if (ve->base.breadcrumbs)
3250                         intel_breadcrumbs_put(ve->base.breadcrumbs);
3251
3252                 kfree(ve);
3253         } else {
3254                 intel_context_free(ce);
3255         }
3256 }
3257
3258 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3259 {
3260         struct intel_context *ce;
3261         unsigned long flags;
3262
3263         GEM_BUG_ON(!submission_disabled(guc) &&
3264                    guc_submission_initialized(guc));
3265
3266         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3267                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3268                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3269                                               struct intel_context,
3270                                               destroyed_link);
3271                 if (ce)
3272                         list_del_init(&ce->destroyed_link);
3273                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3274
3275                 if (!ce)
3276                         break;
3277
3278                 release_guc_id(guc, ce);
3279                 __guc_context_destroy(ce);
3280         }
3281 }
3282
3283 static void deregister_destroyed_contexts(struct intel_guc *guc)
3284 {
3285         struct intel_context *ce;
3286         unsigned long flags;
3287
3288         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3289                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3290                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3291                                               struct intel_context,
3292                                               destroyed_link);
3293                 if (ce)
3294                         list_del_init(&ce->destroyed_link);
3295                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3296
3297                 if (!ce)
3298                         break;
3299
3300                 guc_lrc_desc_unpin(ce);
3301         }
3302 }
3303
3304 static void destroyed_worker_func(struct work_struct *w)
3305 {
3306         struct intel_guc *guc = container_of(w, struct intel_guc,
3307                                              submission_state.destroyed_worker);
3308         struct intel_gt *gt = guc_to_gt(guc);
3309         int tmp;
3310
3311         with_intel_gt_pm(gt, tmp)
3312                 deregister_destroyed_contexts(guc);
3313 }
3314
3315 static void guc_context_destroy(struct kref *kref)
3316 {
3317         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3318         struct intel_guc *guc = ce_to_guc(ce);
3319         unsigned long flags;
3320         bool destroy;
3321
3322         /*
3323          * If the guc_id is invalid this context has been stolen and we can free
3324          * it immediately. Also can be freed immediately if the context is not
3325          * registered with the GuC or the GuC is in the middle of a reset.
3326          */
3327         spin_lock_irqsave(&guc->submission_state.lock, flags);
3328         destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3329                 !ctx_id_mapped(guc, ce->guc_id.id);
3330         if (likely(!destroy)) {
3331                 if (!list_empty(&ce->guc_id.link))
3332                         list_del_init(&ce->guc_id.link);
3333                 list_add_tail(&ce->destroyed_link,
3334                               &guc->submission_state.destroyed_contexts);
3335         } else {
3336                 __release_guc_id(guc, ce);
3337         }
3338         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3339         if (unlikely(destroy)) {
3340                 __guc_context_destroy(ce);
3341                 return;
3342         }
3343
3344         /*
3345          * We use a worker to issue the H2G to deregister the context as we can
3346          * take the GT PM for the first time which isn't allowed from an atomic
3347          * context.
3348          */
3349         queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3350 }
3351
3352 static int guc_context_alloc(struct intel_context *ce)
3353 {
3354         return lrc_alloc(ce, ce->engine);
3355 }
3356
3357 static void __guc_context_set_prio(struct intel_guc *guc,
3358                                    struct intel_context *ce)
3359 {
3360         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3361                 struct context_policy policy;
3362
3363                 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3364                 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3365                 __guc_context_set_context_policies(guc, &policy, true);
3366         } else {
3367                 u32 action[] = {
3368                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3369                         ce->guc_id.id,
3370                         ce->guc_state.prio,
3371                 };
3372
3373                 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3374         }
3375 }
3376
3377 static void guc_context_set_prio(struct intel_guc *guc,
3378                                  struct intel_context *ce,
3379                                  u8 prio)
3380 {
3381         GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3382                    prio > GUC_CLIENT_PRIORITY_NORMAL);
3383         lockdep_assert_held(&ce->guc_state.lock);
3384
3385         if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3386             !context_registered(ce)) {
3387                 ce->guc_state.prio = prio;
3388                 return;
3389         }
3390
3391         ce->guc_state.prio = prio;
3392         __guc_context_set_prio(guc, ce);
3393
3394         trace_intel_context_set_prio(ce);
3395 }
3396
3397 static inline u8 map_i915_prio_to_guc_prio(int prio)
3398 {
3399         if (prio == I915_PRIORITY_NORMAL)
3400                 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3401         else if (prio < I915_PRIORITY_NORMAL)
3402                 return GUC_CLIENT_PRIORITY_NORMAL;
3403         else if (prio < I915_PRIORITY_DISPLAY)
3404                 return GUC_CLIENT_PRIORITY_HIGH;
3405         else
3406                 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3407 }
3408
3409 static inline void add_context_inflight_prio(struct intel_context *ce,
3410                                              u8 guc_prio)
3411 {
3412         lockdep_assert_held(&ce->guc_state.lock);
3413         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3414
3415         ++ce->guc_state.prio_count[guc_prio];
3416
3417         /* Overflow protection */
3418         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3419 }
3420
3421 static inline void sub_context_inflight_prio(struct intel_context *ce,
3422                                              u8 guc_prio)
3423 {
3424         lockdep_assert_held(&ce->guc_state.lock);
3425         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3426
3427         /* Underflow protection */
3428         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3429
3430         --ce->guc_state.prio_count[guc_prio];
3431 }
3432
3433 static inline void update_context_prio(struct intel_context *ce)
3434 {
3435         struct intel_guc *guc = &ce->engine->gt->uc.guc;
3436         int i;
3437
3438         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3439         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3440
3441         lockdep_assert_held(&ce->guc_state.lock);
3442
3443         for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3444                 if (ce->guc_state.prio_count[i]) {
3445                         guc_context_set_prio(guc, ce, i);
3446                         break;
3447                 }
3448         }
3449 }
3450
3451 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3452 {
3453         /* Lower value is higher priority */
3454         return new_guc_prio < old_guc_prio;
3455 }
3456
3457 static void add_to_context(struct i915_request *rq)
3458 {
3459         struct intel_context *ce = request_to_scheduling_context(rq);
3460         u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3461
3462         GEM_BUG_ON(intel_context_is_child(ce));
3463         GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3464
3465         spin_lock(&ce->guc_state.lock);
3466         list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3467
3468         if (rq->guc_prio == GUC_PRIO_INIT) {
3469                 rq->guc_prio = new_guc_prio;
3470                 add_context_inflight_prio(ce, rq->guc_prio);
3471         } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3472                 sub_context_inflight_prio(ce, rq->guc_prio);
3473                 rq->guc_prio = new_guc_prio;
3474                 add_context_inflight_prio(ce, rq->guc_prio);
3475         }
3476         update_context_prio(ce);
3477
3478         spin_unlock(&ce->guc_state.lock);
3479 }
3480
3481 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3482 {
3483         lockdep_assert_held(&ce->guc_state.lock);
3484
3485         if (rq->guc_prio != GUC_PRIO_INIT &&
3486             rq->guc_prio != GUC_PRIO_FINI) {
3487                 sub_context_inflight_prio(ce, rq->guc_prio);
3488                 update_context_prio(ce);
3489         }
3490         rq->guc_prio = GUC_PRIO_FINI;
3491 }
3492
3493 static void remove_from_context(struct i915_request *rq)
3494 {
3495         struct intel_context *ce = request_to_scheduling_context(rq);
3496
3497         GEM_BUG_ON(intel_context_is_child(ce));
3498
3499         spin_lock_irq(&ce->guc_state.lock);
3500
3501         list_del_init(&rq->sched.link);
3502         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3503
3504         /* Prevent further __await_execution() registering a cb, then flush */
3505         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3506
3507         guc_prio_fini(rq, ce);
3508
3509         spin_unlock_irq(&ce->guc_state.lock);
3510
3511         atomic_dec(&ce->guc_id.ref);
3512         i915_request_notify_execute_cb_imm(rq);
3513 }
3514
3515 static const struct intel_context_ops guc_context_ops = {
3516         .flags = COPS_RUNTIME_CYCLES,
3517         .alloc = guc_context_alloc,
3518
3519         .close = guc_context_close,
3520
3521         .pre_pin = guc_context_pre_pin,
3522         .pin = guc_context_pin,
3523         .unpin = guc_context_unpin,
3524         .post_unpin = guc_context_post_unpin,
3525
3526         .revoke = guc_context_revoke,
3527
3528         .cancel_request = guc_context_cancel_request,
3529
3530         .enter = intel_context_enter_engine,
3531         .exit = intel_context_exit_engine,
3532
3533         .sched_disable = guc_context_sched_disable,
3534
3535         .update_stats = guc_context_update_stats,
3536
3537         .reset = lrc_reset,
3538         .destroy = guc_context_destroy,
3539
3540         .create_virtual = guc_create_virtual,
3541         .create_parallel = guc_create_parallel,
3542 };
3543
3544 static void submit_work_cb(struct irq_work *wrk)
3545 {
3546         struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3547
3548         might_lock(&rq->engine->sched_engine->lock);
3549         i915_sw_fence_complete(&rq->submit);
3550 }
3551
3552 static void __guc_signal_context_fence(struct intel_context *ce)
3553 {
3554         struct i915_request *rq, *rn;
3555
3556         lockdep_assert_held(&ce->guc_state.lock);
3557
3558         if (!list_empty(&ce->guc_state.fences))
3559                 trace_intel_context_fence_release(ce);
3560
3561         /*
3562          * Use an IRQ to ensure locking order of sched_engine->lock ->
3563          * ce->guc_state.lock is preserved.
3564          */
3565         list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3566                                  guc_fence_link) {
3567                 list_del(&rq->guc_fence_link);
3568                 irq_work_queue(&rq->submit_work);
3569         }
3570
3571         INIT_LIST_HEAD(&ce->guc_state.fences);
3572 }
3573
3574 static void guc_signal_context_fence(struct intel_context *ce)
3575 {
3576         unsigned long flags;
3577
3578         GEM_BUG_ON(intel_context_is_child(ce));
3579
3580         spin_lock_irqsave(&ce->guc_state.lock, flags);
3581         clr_context_wait_for_deregister_to_register(ce);
3582         __guc_signal_context_fence(ce);
3583         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3584 }
3585
3586 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3587 {
3588         return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3589                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3590                 !submission_disabled(ce_to_guc(ce));
3591 }
3592
3593 static void guc_context_init(struct intel_context *ce)
3594 {
3595         const struct i915_gem_context *ctx;
3596         int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3597
3598         rcu_read_lock();
3599         ctx = rcu_dereference(ce->gem_context);
3600         if (ctx)
3601                 prio = ctx->sched.priority;
3602         rcu_read_unlock();
3603
3604         ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3605
3606         INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3607                           __delay_sched_disable);
3608
3609         set_bit(CONTEXT_GUC_INIT, &ce->flags);
3610 }
3611
3612 static int guc_request_alloc(struct i915_request *rq)
3613 {
3614         struct intel_context *ce = request_to_scheduling_context(rq);
3615         struct intel_guc *guc = ce_to_guc(ce);
3616         unsigned long flags;
3617         int ret;
3618
3619         GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3620
3621         /*
3622          * Flush enough space to reduce the likelihood of waiting after
3623          * we start building the request - in which case we will just
3624          * have to repeat work.
3625          */
3626         rq->reserved_space += GUC_REQUEST_SIZE;
3627
3628         /*
3629          * Note that after this point, we have committed to using
3630          * this request as it is being used to both track the
3631          * state of engine initialisation and liveness of the
3632          * golden renderstate above. Think twice before you try
3633          * to cancel/unwind this request now.
3634          */
3635
3636         /* Unconditionally invalidate GPU caches and TLBs. */
3637         ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3638         if (ret)
3639                 return ret;
3640
3641         rq->reserved_space -= GUC_REQUEST_SIZE;
3642
3643         if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3644                 guc_context_init(ce);
3645
3646         /*
3647          * If the context gets closed while the execbuf is ongoing, the context
3648          * close code will race with the below code to cancel the delayed work.
3649          * If the context close wins the race and cancels the work, it will
3650          * immediately call the sched disable (see guc_context_close), so there
3651          * is a chance we can get past this check while the sched_disable code
3652          * is being executed. To make sure that code completes before we check
3653          * the status further down, we wait for the close process to complete.
3654          * Else, this code path could send a request down thinking that the
3655          * context is still in a schedule-enable mode while the GuC ends up
3656          * dropping the request completely because the disable did go from the
3657          * context_close path right to GuC just prior. In the event the CT is
3658          * full, we could potentially need to wait up to 1.5 seconds.
3659          */
3660         if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3661                 intel_context_sched_disable_unpin(ce);
3662         else if (intel_context_is_closed(ce))
3663                 if (wait_for(context_close_done(ce), 1500))
3664                         guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3665         /*
3666          * Call pin_guc_id here rather than in the pinning step as with
3667          * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3668          * guc_id and creating horrible race conditions. This is especially bad
3669          * when guc_id are being stolen due to over subscription. By the time
3670          * this function is reached, it is guaranteed that the guc_id will be
3671          * persistent until the generated request is retired. Thus, sealing these
3672          * race conditions. It is still safe to fail here if guc_id are
3673          * exhausted and return -EAGAIN to the user indicating that they can try
3674          * again in the future.
3675          *
3676          * There is no need for a lock here as the timeline mutex ensures at
3677          * most one context can be executing this code path at once. The
3678          * guc_id_ref is incremented once for every request in flight and
3679          * decremented on each retire. When it is zero, a lock around the
3680          * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3681          */
3682         if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3683                 goto out;
3684
3685         ret = pin_guc_id(guc, ce);      /* returns 1 if new guc_id assigned */
3686         if (unlikely(ret < 0))
3687                 return ret;
3688         if (context_needs_register(ce, !!ret)) {
3689                 ret = try_context_registration(ce, true);
3690                 if (unlikely(ret)) {    /* unwind */
3691                         if (ret == -EPIPE) {
3692                                 disable_submission(guc);
3693                                 goto out;       /* GPU will be reset */
3694                         }
3695                         atomic_dec(&ce->guc_id.ref);
3696                         unpin_guc_id(guc, ce);
3697                         return ret;
3698                 }
3699         }
3700
3701         clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3702
3703 out:
3704         /*
3705          * We block all requests on this context if a G2H is pending for a
3706          * schedule disable or context deregistration as the GuC will fail a
3707          * schedule enable or context registration if either G2H is pending
3708          * respectfully. Once a G2H returns, the fence is released that is
3709          * blocking these requests (see guc_signal_context_fence).
3710          */
3711         spin_lock_irqsave(&ce->guc_state.lock, flags);
3712         if (context_wait_for_deregister_to_register(ce) ||
3713             context_pending_disable(ce)) {
3714                 init_irq_work(&rq->submit_work, submit_work_cb);
3715                 i915_sw_fence_await(&rq->submit);
3716
3717                 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3718         }
3719         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3720
3721         return 0;
3722 }
3723
3724 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3725                                        struct i915_gem_ww_ctx *ww,
3726                                        void **vaddr)
3727 {
3728         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3729
3730         return __guc_context_pre_pin(ce, engine, ww, vaddr);
3731 }
3732
3733 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3734 {
3735         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3736         int ret = __guc_context_pin(ce, engine, vaddr);
3737         intel_engine_mask_t tmp, mask = ce->engine->mask;
3738
3739         if (likely(!ret))
3740                 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3741                         intel_engine_pm_get(engine);
3742
3743         return ret;
3744 }
3745
3746 static void guc_virtual_context_unpin(struct intel_context *ce)
3747 {
3748         intel_engine_mask_t tmp, mask = ce->engine->mask;
3749         struct intel_engine_cs *engine;
3750         struct intel_guc *guc = ce_to_guc(ce);
3751
3752         GEM_BUG_ON(context_enabled(ce));
3753         GEM_BUG_ON(intel_context_is_barrier(ce));
3754
3755         unpin_guc_id(guc, ce);
3756         lrc_unpin(ce);
3757
3758         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3759                 intel_engine_pm_put_async(engine);
3760 }
3761
3762 static void guc_virtual_context_enter(struct intel_context *ce)
3763 {
3764         intel_engine_mask_t tmp, mask = ce->engine->mask;
3765         struct intel_engine_cs *engine;
3766
3767         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3768                 intel_engine_pm_get(engine);
3769
3770         intel_timeline_enter(ce->timeline);
3771 }
3772
3773 static void guc_virtual_context_exit(struct intel_context *ce)
3774 {
3775         intel_engine_mask_t tmp, mask = ce->engine->mask;
3776         struct intel_engine_cs *engine;
3777
3778         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3779                 intel_engine_pm_put(engine);
3780
3781         intel_timeline_exit(ce->timeline);
3782 }
3783
3784 static int guc_virtual_context_alloc(struct intel_context *ce)
3785 {
3786         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3787
3788         return lrc_alloc(ce, engine);
3789 }
3790
3791 static const struct intel_context_ops virtual_guc_context_ops = {
3792         .flags = COPS_RUNTIME_CYCLES,
3793         .alloc = guc_virtual_context_alloc,
3794
3795         .close = guc_context_close,
3796
3797         .pre_pin = guc_virtual_context_pre_pin,
3798         .pin = guc_virtual_context_pin,
3799         .unpin = guc_virtual_context_unpin,
3800         .post_unpin = guc_context_post_unpin,
3801
3802         .revoke = guc_context_revoke,
3803
3804         .cancel_request = guc_context_cancel_request,
3805
3806         .enter = guc_virtual_context_enter,
3807         .exit = guc_virtual_context_exit,
3808
3809         .sched_disable = guc_context_sched_disable,
3810         .update_stats = guc_context_update_stats,
3811
3812         .destroy = guc_context_destroy,
3813
3814         .get_sibling = guc_virtual_get_sibling,
3815 };
3816
3817 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3818 {
3819         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3820         struct intel_guc *guc = ce_to_guc(ce);
3821         int ret;
3822
3823         GEM_BUG_ON(!intel_context_is_parent(ce));
3824         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3825
3826         ret = pin_guc_id(guc, ce);
3827         if (unlikely(ret < 0))
3828                 return ret;
3829
3830         return __guc_context_pin(ce, engine, vaddr);
3831 }
3832
3833 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3834 {
3835         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3836
3837         GEM_BUG_ON(!intel_context_is_child(ce));
3838         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3839
3840         __intel_context_pin(ce->parallel.parent);
3841         return __guc_context_pin(ce, engine, vaddr);
3842 }
3843
3844 static void guc_parent_context_unpin(struct intel_context *ce)
3845 {
3846         struct intel_guc *guc = ce_to_guc(ce);
3847
3848         GEM_BUG_ON(context_enabled(ce));
3849         GEM_BUG_ON(intel_context_is_barrier(ce));
3850         GEM_BUG_ON(!intel_context_is_parent(ce));
3851         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3852
3853         unpin_guc_id(guc, ce);
3854         lrc_unpin(ce);
3855 }
3856
3857 static void guc_child_context_unpin(struct intel_context *ce)
3858 {
3859         GEM_BUG_ON(context_enabled(ce));
3860         GEM_BUG_ON(intel_context_is_barrier(ce));
3861         GEM_BUG_ON(!intel_context_is_child(ce));
3862         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3863
3864         lrc_unpin(ce);
3865 }
3866
3867 static void guc_child_context_post_unpin(struct intel_context *ce)
3868 {
3869         GEM_BUG_ON(!intel_context_is_child(ce));
3870         GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3871         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3872
3873         lrc_post_unpin(ce);
3874         intel_context_unpin(ce->parallel.parent);
3875 }
3876
3877 static void guc_child_context_destroy(struct kref *kref)
3878 {
3879         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3880
3881         __guc_context_destroy(ce);
3882 }
3883
3884 static const struct intel_context_ops virtual_parent_context_ops = {
3885         .alloc = guc_virtual_context_alloc,
3886
3887         .close = guc_context_close,
3888
3889         .pre_pin = guc_context_pre_pin,
3890         .pin = guc_parent_context_pin,
3891         .unpin = guc_parent_context_unpin,
3892         .post_unpin = guc_context_post_unpin,
3893
3894         .revoke = guc_context_revoke,
3895
3896         .cancel_request = guc_context_cancel_request,
3897
3898         .enter = guc_virtual_context_enter,
3899         .exit = guc_virtual_context_exit,
3900
3901         .sched_disable = guc_context_sched_disable,
3902
3903         .destroy = guc_context_destroy,
3904
3905         .get_sibling = guc_virtual_get_sibling,
3906 };
3907
3908 static const struct intel_context_ops virtual_child_context_ops = {
3909         .alloc = guc_virtual_context_alloc,
3910
3911         .pre_pin = guc_context_pre_pin,
3912         .pin = guc_child_context_pin,
3913         .unpin = guc_child_context_unpin,
3914         .post_unpin = guc_child_context_post_unpin,
3915
3916         .cancel_request = guc_context_cancel_request,
3917
3918         .enter = guc_virtual_context_enter,
3919         .exit = guc_virtual_context_exit,
3920
3921         .destroy = guc_child_context_destroy,
3922
3923         .get_sibling = guc_virtual_get_sibling,
3924 };
3925
3926 /*
3927  * The below override of the breadcrumbs is enabled when the user configures a
3928  * context for parallel submission (multi-lrc, parent-child).
3929  *
3930  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3931  * safely preempt all the hw contexts configured for parallel submission
3932  * between each BB. The contract between the i915 and GuC is if the parent
3933  * context can be preempted, all the children can be preempted, and the GuC will
3934  * always try to preempt the parent before the children. A handshake between the
3935  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3936  * creating a window to preempt between each set of BBs.
3937  */
3938 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3939                                                      u64 offset, u32 len,
3940                                                      const unsigned int flags);
3941 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3942                                                     u64 offset, u32 len,
3943                                                     const unsigned int flags);
3944 static u32 *
3945 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3946                                                  u32 *cs);
3947 static u32 *
3948 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3949                                                 u32 *cs);
3950
3951 static struct intel_context *
3952 guc_create_parallel(struct intel_engine_cs **engines,
3953                     unsigned int num_siblings,
3954                     unsigned int width)
3955 {
3956         struct intel_engine_cs **siblings = NULL;
3957         struct intel_context *parent = NULL, *ce, *err;
3958         int i, j;
3959
3960         siblings = kmalloc_array(num_siblings,
3961                                  sizeof(*siblings),
3962                                  GFP_KERNEL);
3963         if (!siblings)
3964                 return ERR_PTR(-ENOMEM);
3965
3966         for (i = 0; i < width; ++i) {
3967                 for (j = 0; j < num_siblings; ++j)
3968                         siblings[j] = engines[i * num_siblings + j];
3969
3970                 ce = intel_engine_create_virtual(siblings, num_siblings,
3971                                                  FORCE_VIRTUAL);
3972                 if (IS_ERR(ce)) {
3973                         err = ERR_CAST(ce);
3974                         goto unwind;
3975                 }
3976
3977                 if (i == 0) {
3978                         parent = ce;
3979                         parent->ops = &virtual_parent_context_ops;
3980                 } else {
3981                         ce->ops = &virtual_child_context_ops;
3982                         intel_context_bind_parent_child(parent, ce);
3983                 }
3984         }
3985
3986         parent->parallel.fence_context = dma_fence_context_alloc(1);
3987
3988         parent->engine->emit_bb_start =
3989                 emit_bb_start_parent_no_preempt_mid_batch;
3990         parent->engine->emit_fini_breadcrumb =
3991                 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3992         parent->engine->emit_fini_breadcrumb_dw =
3993                 12 + 4 * parent->parallel.number_children;
3994         for_each_child(parent, ce) {
3995                 ce->engine->emit_bb_start =
3996                         emit_bb_start_child_no_preempt_mid_batch;
3997                 ce->engine->emit_fini_breadcrumb =
3998                         emit_fini_breadcrumb_child_no_preempt_mid_batch;
3999                 ce->engine->emit_fini_breadcrumb_dw = 16;
4000         }
4001
4002         kfree(siblings);
4003         return parent;
4004
4005 unwind:
4006         if (parent)
4007                 intel_context_put(parent);
4008         kfree(siblings);
4009         return err;
4010 }
4011
4012 static bool
4013 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4014 {
4015         struct intel_engine_cs *sibling;
4016         intel_engine_mask_t tmp, mask = b->engine_mask;
4017         bool result = false;
4018
4019         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4020                 result |= intel_engine_irq_enable(sibling);
4021
4022         return result;
4023 }
4024
4025 static void
4026 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4027 {
4028         struct intel_engine_cs *sibling;
4029         intel_engine_mask_t tmp, mask = b->engine_mask;
4030
4031         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4032                 intel_engine_irq_disable(sibling);
4033 }
4034
4035 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4036 {
4037         int i;
4038
4039         /*
4040          * In GuC submission mode we do not know which physical engine a request
4041          * will be scheduled on, this creates a problem because the breadcrumb
4042          * interrupt is per physical engine. To work around this we attach
4043          * requests and direct all breadcrumb interrupts to the first instance
4044          * of an engine per class. In addition all breadcrumb interrupts are
4045          * enabled / disabled across an engine class in unison.
4046          */
4047         for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4048                 struct intel_engine_cs *sibling =
4049                         engine->gt->engine_class[engine->class][i];
4050
4051                 if (sibling) {
4052                         if (engine->breadcrumbs != sibling->breadcrumbs) {
4053                                 intel_breadcrumbs_put(engine->breadcrumbs);
4054                                 engine->breadcrumbs =
4055                                         intel_breadcrumbs_get(sibling->breadcrumbs);
4056                         }
4057                         break;
4058                 }
4059         }
4060
4061         if (engine->breadcrumbs) {
4062                 engine->breadcrumbs->engine_mask |= engine->mask;
4063                 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4064                 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4065         }
4066 }
4067
4068 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4069                                            int prio)
4070 {
4071         struct intel_context *ce = request_to_scheduling_context(rq);
4072         u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4073
4074         /* Short circuit function */
4075         if (prio < I915_PRIORITY_NORMAL ||
4076             rq->guc_prio == GUC_PRIO_FINI ||
4077             (rq->guc_prio != GUC_PRIO_INIT &&
4078              !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4079                 return;
4080
4081         spin_lock(&ce->guc_state.lock);
4082         if (rq->guc_prio != GUC_PRIO_FINI) {
4083                 if (rq->guc_prio != GUC_PRIO_INIT)
4084                         sub_context_inflight_prio(ce, rq->guc_prio);
4085                 rq->guc_prio = new_guc_prio;
4086                 add_context_inflight_prio(ce, rq->guc_prio);
4087                 update_context_prio(ce);
4088         }
4089         spin_unlock(&ce->guc_state.lock);
4090 }
4091
4092 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4093 {
4094         struct intel_context *ce = request_to_scheduling_context(rq);
4095
4096         spin_lock(&ce->guc_state.lock);
4097         guc_prio_fini(rq, ce);
4098         spin_unlock(&ce->guc_state.lock);
4099 }
4100
4101 static void sanitize_hwsp(struct intel_engine_cs *engine)
4102 {
4103         struct intel_timeline *tl;
4104
4105         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4106                 intel_timeline_reset_seqno(tl);
4107 }
4108
4109 static void guc_sanitize(struct intel_engine_cs *engine)
4110 {
4111         /*
4112          * Poison residual state on resume, in case the suspend didn't!
4113          *
4114          * We have to assume that across suspend/resume (or other loss
4115          * of control) that the contents of our pinned buffers has been
4116          * lost, replaced by garbage. Since this doesn't always happen,
4117          * let's poison such state so that we more quickly spot when
4118          * we falsely assume it has been preserved.
4119          */
4120         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4121                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4122
4123         /*
4124          * The kernel_context HWSP is stored in the status_page. As above,
4125          * that may be lost on resume/initialisation, and so we need to
4126          * reset the value in the HWSP.
4127          */
4128         sanitize_hwsp(engine);
4129
4130         /* And scrub the dirty cachelines for the HWSP */
4131         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4132
4133         intel_engine_reset_pinned_contexts(engine);
4134 }
4135
4136 static void setup_hwsp(struct intel_engine_cs *engine)
4137 {
4138         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4139
4140         ENGINE_WRITE_FW(engine,
4141                         RING_HWS_PGA,
4142                         i915_ggtt_offset(engine->status_page.vma));
4143 }
4144
4145 static void start_engine(struct intel_engine_cs *engine)
4146 {
4147         ENGINE_WRITE_FW(engine,
4148                         RING_MODE_GEN7,
4149                         _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4150
4151         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4152         ENGINE_POSTING_READ(engine, RING_MI_MODE);
4153 }
4154
4155 static int guc_resume(struct intel_engine_cs *engine)
4156 {
4157         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4158
4159         intel_mocs_init_engine(engine);
4160
4161         intel_breadcrumbs_reset(engine->breadcrumbs);
4162
4163         setup_hwsp(engine);
4164         start_engine(engine);
4165
4166         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4167                 xehp_enable_ccs_engines(engine);
4168
4169         return 0;
4170 }
4171
4172 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4173 {
4174         return !sched_engine->tasklet.callback;
4175 }
4176
4177 static void guc_set_default_submission(struct intel_engine_cs *engine)
4178 {
4179         engine->submit_request = guc_submit_request;
4180 }
4181
4182 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4183                                          struct intel_context *ce)
4184 {
4185         int ret;
4186
4187         /*
4188          * Note: we purposefully do not check the returns below because
4189          * the registration can only fail if a reset is just starting.
4190          * This is called at the end of reset so presumably another reset
4191          * isn't happening and even it did this code would be run again.
4192          */
4193
4194         if (context_guc_id_invalid(ce)) {
4195                 ret = pin_guc_id(guc, ce);
4196
4197                 if (ret < 0)
4198                         return ret;
4199         }
4200
4201         if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4202                 guc_context_init(ce);
4203
4204         ret = try_context_registration(ce, true);
4205         if (ret)
4206                 unpin_guc_id(guc, ce);
4207
4208         return ret;
4209 }
4210
4211 static inline int guc_init_submission(struct intel_guc *guc)
4212 {
4213         struct intel_gt *gt = guc_to_gt(guc);
4214         struct intel_engine_cs *engine;
4215         enum intel_engine_id id;
4216
4217         /* make sure all descriptors are clean... */
4218         xa_destroy(&guc->context_lookup);
4219
4220         /*
4221          * A reset might have occurred while we had a pending stalled request,
4222          * so make sure we clean that up.
4223          */
4224         guc->stalled_request = NULL;
4225         guc->submission_stall_reason = STALL_NONE;
4226
4227         /*
4228          * Some contexts might have been pinned before we enabled GuC
4229          * submission, so we need to add them to the GuC bookeeping.
4230          * Also, after a reset the of the GuC we want to make sure that the
4231          * information shared with GuC is properly reset. The kernel LRCs are
4232          * not attached to the gem_context, so they need to be added separately.
4233          */
4234         for_each_engine(engine, gt, id) {
4235                 struct intel_context *ce;
4236
4237                 list_for_each_entry(ce, &engine->pinned_contexts_list,
4238                                     pinned_contexts_link) {
4239                         int ret = guc_kernel_context_pin(guc, ce);
4240
4241                         if (ret) {
4242                                 /* No point in trying to clean up as i915 will wedge on failure */
4243                                 return ret;
4244                         }
4245                 }
4246         }
4247
4248         return 0;
4249 }
4250
4251 static void guc_release(struct intel_engine_cs *engine)
4252 {
4253         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4254
4255         intel_engine_cleanup_common(engine);
4256         lrc_fini_wa_ctx(engine);
4257 }
4258
4259 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4260 {
4261         struct intel_engine_cs *e;
4262         intel_engine_mask_t tmp, mask = engine->mask;
4263
4264         for_each_engine_masked(e, engine->gt, mask, tmp)
4265                 e->serial++;
4266 }
4267
4268 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4269 {
4270         /* Default vfuncs which can be overridden by each engine. */
4271
4272         engine->resume = guc_resume;
4273
4274         engine->cops = &guc_context_ops;
4275         engine->request_alloc = guc_request_alloc;
4276         engine->add_active_request = add_to_context;
4277         engine->remove_active_request = remove_from_context;
4278
4279         engine->sched_engine->schedule = i915_schedule;
4280
4281         engine->reset.prepare = guc_engine_reset_prepare;
4282         engine->reset.rewind = guc_rewind_nop;
4283         engine->reset.cancel = guc_reset_nop;
4284         engine->reset.finish = guc_reset_nop;
4285
4286         engine->emit_flush = gen8_emit_flush_xcs;
4287         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4288         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4289         if (GRAPHICS_VER(engine->i915) >= 12) {
4290                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4291                 engine->emit_flush = gen12_emit_flush_xcs;
4292         }
4293         engine->set_default_submission = guc_set_default_submission;
4294         engine->busyness = guc_engine_busyness;
4295
4296         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4297         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4298         engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4299
4300         /* Wa_14014475959:dg2 */
4301         if (engine->class == COMPUTE_CLASS)
4302                 if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
4303                     IS_DG2(engine->i915))
4304                         engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4305
4306         /*
4307          * TODO: GuC supports timeslicing and semaphores as well, but they're
4308          * handled by the firmware so some minor tweaks are required before
4309          * enabling.
4310          *
4311          * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4312          */
4313
4314         engine->emit_bb_start = gen8_emit_bb_start;
4315         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4316                 engine->emit_bb_start = xehp_emit_bb_start;
4317 }
4318
4319 static void rcs_submission_override(struct intel_engine_cs *engine)
4320 {
4321         switch (GRAPHICS_VER(engine->i915)) {
4322         case 12:
4323                 engine->emit_flush = gen12_emit_flush_rcs;
4324                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4325                 break;
4326         case 11:
4327                 engine->emit_flush = gen11_emit_flush_rcs;
4328                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4329                 break;
4330         default:
4331                 engine->emit_flush = gen8_emit_flush_rcs;
4332                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4333                 break;
4334         }
4335 }
4336
4337 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4338 {
4339         engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4340         intel_engine_set_irq_handler(engine, cs_irq_handler);
4341 }
4342
4343 static void guc_sched_engine_destroy(struct kref *kref)
4344 {
4345         struct i915_sched_engine *sched_engine =
4346                 container_of(kref, typeof(*sched_engine), ref);
4347         struct intel_guc *guc = sched_engine->private_data;
4348
4349         guc->sched_engine = NULL;
4350         tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4351         kfree(sched_engine);
4352 }
4353
4354 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4355 {
4356         struct drm_i915_private *i915 = engine->i915;
4357         struct intel_guc *guc = &engine->gt->uc.guc;
4358
4359         /*
4360          * The setup relies on several assumptions (e.g. irqs always enabled)
4361          * that are only valid on gen11+
4362          */
4363         GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4364
4365         if (!guc->sched_engine) {
4366                 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4367                 if (!guc->sched_engine)
4368                         return -ENOMEM;
4369
4370                 guc->sched_engine->schedule = i915_schedule;
4371                 guc->sched_engine->disabled = guc_sched_engine_disabled;
4372                 guc->sched_engine->private_data = guc;
4373                 guc->sched_engine->destroy = guc_sched_engine_destroy;
4374                 guc->sched_engine->bump_inflight_request_prio =
4375                         guc_bump_inflight_request_prio;
4376                 guc->sched_engine->retire_inflight_request_prio =
4377                         guc_retire_inflight_request_prio;
4378                 tasklet_setup(&guc->sched_engine->tasklet,
4379                               guc_submission_tasklet);
4380         }
4381         i915_sched_engine_put(engine->sched_engine);
4382         engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4383
4384         guc_default_vfuncs(engine);
4385         guc_default_irqs(engine);
4386         guc_init_breadcrumbs(engine);
4387
4388         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4389                 rcs_submission_override(engine);
4390
4391         lrc_init_wa_ctx(engine);
4392
4393         /* Finally, take ownership and responsibility for cleanup! */
4394         engine->sanitize = guc_sanitize;
4395         engine->release = guc_release;
4396
4397         return 0;
4398 }
4399
4400 struct scheduling_policy {
4401         /* internal data */
4402         u32 max_words, num_words;
4403         u32 count;
4404         /* API data */
4405         struct guc_update_scheduling_policy h2g;
4406 };
4407
4408 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4409 {
4410         u32 *start = (void *)&policy->h2g;
4411         u32 *end = policy->h2g.data + policy->num_words;
4412         size_t delta = end - start;
4413
4414         return delta;
4415 }
4416
4417 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4418 {
4419         policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4420         policy->max_words = ARRAY_SIZE(policy->h2g.data);
4421         policy->num_words = 0;
4422         policy->count = 0;
4423
4424         return policy;
4425 }
4426
4427 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4428                                             u32 action, u32 *data, u32 len)
4429 {
4430         u32 *klv_ptr = policy->h2g.data + policy->num_words;
4431
4432         GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4433         *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4434                        FIELD_PREP(GUC_KLV_0_LEN, len);
4435         memcpy(klv_ptr, data, sizeof(u32) * len);
4436         policy->num_words += 1 + len;
4437         policy->count++;
4438 }
4439
4440 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4441                                                 struct scheduling_policy *policy)
4442 {
4443         int ret;
4444
4445         ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4446                              __guc_scheduling_policy_action_size(policy));
4447         if (ret < 0) {
4448                 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4449                                 ERR_PTR(ret));
4450                 return ret;
4451         }
4452
4453         if (ret != policy->count) {
4454                 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4455                          ret, policy->count);
4456                 if (ret > policy->count)
4457                         return -EPROTO;
4458         }
4459
4460         return 0;
4461 }
4462
4463 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4464 {
4465         struct scheduling_policy policy;
4466         struct intel_gt *gt = guc_to_gt(guc);
4467         intel_wakeref_t wakeref;
4468         int ret;
4469
4470         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4471                 return 0;
4472
4473         __guc_scheduling_policy_start_klv(&policy);
4474
4475         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4476                 u32 yield[] = {
4477                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4478                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4479                 };
4480
4481                 __guc_scheduling_policy_add_klv(&policy,
4482                                                 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4483                                                 yield, ARRAY_SIZE(yield));
4484
4485                 ret = __guc_action_set_scheduling_policies(guc, &policy);
4486         }
4487
4488         return ret;
4489 }
4490
4491 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4492 {
4493         struct intel_gt *gt = guc_to_gt(guc);
4494         u32 val;
4495
4496         if (GRAPHICS_VER(gt->i915) < 12)
4497                 return;
4498
4499         if (to_guc)
4500                 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4501         else
4502                 val = 0;
4503
4504         intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4505 }
4506
4507 int intel_guc_submission_enable(struct intel_guc *guc)
4508 {
4509         int ret;
4510
4511         /* Semaphore interrupt enable and route to GuC */
4512         guc_route_semaphores(guc, true);
4513
4514         ret = guc_init_submission(guc);
4515         if (ret)
4516                 goto fail_sem;
4517
4518         ret = guc_init_engine_stats(guc);
4519         if (ret)
4520                 goto fail_sem;
4521
4522         ret = guc_init_global_schedule_policy(guc);
4523         if (ret)
4524                 goto fail_stats;
4525
4526         return 0;
4527
4528 fail_stats:
4529         guc_fini_engine_stats(guc);
4530 fail_sem:
4531         guc_route_semaphores(guc, false);
4532         return ret;
4533 }
4534
4535 /* Note: By the time we're here, GuC may have already been reset */
4536 void intel_guc_submission_disable(struct intel_guc *guc)
4537 {
4538         guc_cancel_busyness_worker(guc);
4539
4540         /* Semaphore interrupt disable and route to host */
4541         guc_route_semaphores(guc, false);
4542 }
4543
4544 static bool __guc_submission_supported(struct intel_guc *guc)
4545 {
4546         /* GuC submission is unavailable for pre-Gen11 */
4547         return intel_guc_is_supported(guc) &&
4548                GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4549 }
4550
4551 static bool __guc_submission_selected(struct intel_guc *guc)
4552 {
4553         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4554
4555         if (!intel_guc_submission_is_supported(guc))
4556                 return false;
4557
4558         return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4559 }
4560
4561 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4562 {
4563         return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4564 }
4565
4566 /*
4567  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4568  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4569  * operation. This matches the 30fps game-render + encode (real world) workload this
4570  * knob was tested against.
4571  */
4572 #define SCHED_DISABLE_DELAY_MS  34
4573
4574 /*
4575  * A threshold of 75% is a reasonable starting point considering that real world apps
4576  * generally don't get anywhere near this.
4577  */
4578 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4579         (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4580
4581 void intel_guc_submission_init_early(struct intel_guc *guc)
4582 {
4583         xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4584
4585         spin_lock_init(&guc->submission_state.lock);
4586         INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4587         ida_init(&guc->submission_state.guc_ids);
4588         INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4589         INIT_WORK(&guc->submission_state.destroyed_worker,
4590                   destroyed_worker_func);
4591         INIT_WORK(&guc->submission_state.reset_fail_worker,
4592                   reset_fail_worker_func);
4593
4594         spin_lock_init(&guc->timestamp.lock);
4595         INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4596
4597         guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4598         guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4599         guc->submission_state.sched_disable_gucid_threshold =
4600                 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4601         guc->submission_supported = __guc_submission_supported(guc);
4602         guc->submission_selected = __guc_submission_selected(guc);
4603 }
4604
4605 static inline struct intel_context *
4606 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4607 {
4608         struct intel_context *ce;
4609
4610         if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4611                 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4612                 return NULL;
4613         }
4614
4615         ce = __get_context(guc, ctx_id);
4616         if (unlikely(!ce)) {
4617                 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4618                 return NULL;
4619         }
4620
4621         if (unlikely(intel_context_is_child(ce))) {
4622                 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4623                 return NULL;
4624         }
4625
4626         return ce;
4627 }
4628
4629 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4630                                           const u32 *msg,
4631                                           u32 len)
4632 {
4633         struct intel_context *ce;
4634         u32 ctx_id;
4635
4636         if (unlikely(len < 1)) {
4637                 guc_err(guc, "Invalid length %u\n", len);
4638                 return -EPROTO;
4639         }
4640         ctx_id = msg[0];
4641
4642         ce = g2h_context_lookup(guc, ctx_id);
4643         if (unlikely(!ce))
4644                 return -EPROTO;
4645
4646         trace_intel_context_deregister_done(ce);
4647
4648 #ifdef CONFIG_DRM_I915_SELFTEST
4649         if (unlikely(ce->drop_deregister)) {
4650                 ce->drop_deregister = false;
4651                 return 0;
4652         }
4653 #endif
4654
4655         if (context_wait_for_deregister_to_register(ce)) {
4656                 struct intel_runtime_pm *runtime_pm =
4657                         &ce->engine->gt->i915->runtime_pm;
4658                 intel_wakeref_t wakeref;
4659
4660                 /*
4661                  * Previous owner of this guc_id has been deregistered, now safe
4662                  * register this context.
4663                  */
4664                 with_intel_runtime_pm(runtime_pm, wakeref)
4665                         register_context(ce, true);
4666                 guc_signal_context_fence(ce);
4667                 intel_context_put(ce);
4668         } else if (context_destroyed(ce)) {
4669                 /* Context has been destroyed */
4670                 intel_gt_pm_put_async(guc_to_gt(guc));
4671                 release_guc_id(guc, ce);
4672                 __guc_context_destroy(ce);
4673         }
4674
4675         decr_outstanding_submission_g2h(guc);
4676
4677         return 0;
4678 }
4679
4680 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4681                                      const u32 *msg,
4682                                      u32 len)
4683 {
4684         struct intel_context *ce;
4685         unsigned long flags;
4686         u32 ctx_id;
4687
4688         if (unlikely(len < 2)) {
4689                 guc_err(guc, "Invalid length %u\n", len);
4690                 return -EPROTO;
4691         }
4692         ctx_id = msg[0];
4693
4694         ce = g2h_context_lookup(guc, ctx_id);
4695         if (unlikely(!ce))
4696                 return -EPROTO;
4697
4698         if (unlikely(context_destroyed(ce) ||
4699                      (!context_pending_enable(ce) &&
4700                      !context_pending_disable(ce)))) {
4701                 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4702                         ce->guc_state.sched_state, ctx_id);
4703                 return -EPROTO;
4704         }
4705
4706         trace_intel_context_sched_done(ce);
4707
4708         if (context_pending_enable(ce)) {
4709 #ifdef CONFIG_DRM_I915_SELFTEST
4710                 if (unlikely(ce->drop_schedule_enable)) {
4711                         ce->drop_schedule_enable = false;
4712                         return 0;
4713                 }
4714 #endif
4715
4716                 spin_lock_irqsave(&ce->guc_state.lock, flags);
4717                 clr_context_pending_enable(ce);
4718                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4719         } else if (context_pending_disable(ce)) {
4720                 bool banned;
4721
4722 #ifdef CONFIG_DRM_I915_SELFTEST
4723                 if (unlikely(ce->drop_schedule_disable)) {
4724                         ce->drop_schedule_disable = false;
4725                         return 0;
4726                 }
4727 #endif
4728
4729                 /*
4730                  * Unpin must be done before __guc_signal_context_fence,
4731                  * otherwise a race exists between the requests getting
4732                  * submitted + retired before this unpin completes resulting in
4733                  * the pin_count going to zero and the context still being
4734                  * enabled.
4735                  */
4736                 intel_context_sched_disable_unpin(ce);
4737
4738                 spin_lock_irqsave(&ce->guc_state.lock, flags);
4739                 banned = context_banned(ce);
4740                 clr_context_banned(ce);
4741                 clr_context_pending_disable(ce);
4742                 __guc_signal_context_fence(ce);
4743                 guc_blocked_fence_complete(ce);
4744                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4745
4746                 if (banned) {
4747                         guc_cancel_context_requests(ce);
4748                         intel_engine_signal_breadcrumbs(ce->engine);
4749                 }
4750         }
4751
4752         decr_outstanding_submission_g2h(guc);
4753         intel_context_put(ce);
4754
4755         return 0;
4756 }
4757
4758 static void capture_error_state(struct intel_guc *guc,
4759                                 struct intel_context *ce)
4760 {
4761         struct intel_gt *gt = guc_to_gt(guc);
4762         struct drm_i915_private *i915 = gt->i915;
4763         intel_wakeref_t wakeref;
4764         intel_engine_mask_t engine_mask;
4765
4766         if (intel_engine_is_virtual(ce->engine)) {
4767                 struct intel_engine_cs *e;
4768                 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4769
4770                 engine_mask = 0;
4771                 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
4772                         bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
4773
4774                         if (match) {
4775                                 intel_engine_set_hung_context(e, ce);
4776                                 engine_mask |= e->mask;
4777                                 atomic_inc(&i915->gpu_error.reset_engine_count[e->uabi_class]);
4778                         }
4779                 }
4780
4781                 if (!engine_mask) {
4782                         guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
4783                                  ce->guc_id.id, ce->engine->name);
4784                         engine_mask = ~0U;
4785                 }
4786         } else {
4787                 intel_engine_set_hung_context(ce->engine, ce);
4788                 engine_mask = ce->engine->mask;
4789                 atomic_inc(&i915->gpu_error.reset_engine_count[ce->engine->uabi_class]);
4790         }
4791
4792         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4793                 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4794 }
4795
4796 static void guc_context_replay(struct intel_context *ce)
4797 {
4798         struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4799
4800         __guc_reset_context(ce, ce->engine->mask);
4801         tasklet_hi_schedule(&sched_engine->tasklet);
4802 }
4803
4804 static void guc_handle_context_reset(struct intel_guc *guc,
4805                                      struct intel_context *ce)
4806 {
4807         trace_intel_context_reset(ce);
4808
4809         guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
4810                 ce->guc_id.id, ce->engine->name,
4811                 str_yes_no(intel_context_is_exiting(ce)),
4812                 str_yes_no(intel_context_is_banned(ce)));
4813
4814         if (likely(intel_context_is_schedulable(ce))) {
4815                 capture_error_state(guc, ce);
4816                 guc_context_replay(ce);
4817         } else {
4818                 guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s",
4819                          ce->guc_id.id, ce->engine->name);
4820         }
4821 }
4822
4823 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4824                                         const u32 *msg, u32 len)
4825 {
4826         struct intel_context *ce;
4827         unsigned long flags;
4828         int ctx_id;
4829
4830         if (unlikely(len != 1)) {
4831                 guc_err(guc, "Invalid length %u", len);
4832                 return -EPROTO;
4833         }
4834
4835         ctx_id = msg[0];
4836
4837         /*
4838          * The context lookup uses the xarray but lookups only require an RCU lock
4839          * not the full spinlock. So take the lock explicitly and keep it until the
4840          * context has been reference count locked to ensure it can't be destroyed
4841          * asynchronously until the reset is done.
4842          */
4843         xa_lock_irqsave(&guc->context_lookup, flags);
4844         ce = g2h_context_lookup(guc, ctx_id);
4845         if (ce)
4846                 intel_context_get(ce);
4847         xa_unlock_irqrestore(&guc->context_lookup, flags);
4848
4849         if (unlikely(!ce))
4850                 return -EPROTO;
4851
4852         guc_handle_context_reset(guc, ce);
4853         intel_context_put(ce);
4854
4855         return 0;
4856 }
4857
4858 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4859                                         const u32 *msg, u32 len)
4860 {
4861         u32 status;
4862
4863         if (unlikely(len != 1)) {
4864                 guc_dbg(guc, "Invalid length %u", len);
4865                 return -EPROTO;
4866         }
4867
4868         status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4869         if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4870                 guc_warn(guc, "No space for error capture");
4871
4872         intel_guc_capture_process(guc);
4873
4874         return 0;
4875 }
4876
4877 struct intel_engine_cs *
4878 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4879 {
4880         struct intel_gt *gt = guc_to_gt(guc);
4881         u8 engine_class = guc_class_to_engine_class(guc_class);
4882
4883         /* Class index is checked in class converter */
4884         GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4885
4886         return gt->engine_class[engine_class][instance];
4887 }
4888
4889 static void reset_fail_worker_func(struct work_struct *w)
4890 {
4891         struct intel_guc *guc = container_of(w, struct intel_guc,
4892                                              submission_state.reset_fail_worker);
4893         struct intel_gt *gt = guc_to_gt(guc);
4894         intel_engine_mask_t reset_fail_mask;
4895         unsigned long flags;
4896
4897         spin_lock_irqsave(&guc->submission_state.lock, flags);
4898         reset_fail_mask = guc->submission_state.reset_fail_mask;
4899         guc->submission_state.reset_fail_mask = 0;
4900         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4901
4902         if (likely(reset_fail_mask)) {
4903                 struct intel_engine_cs *engine;
4904                 enum intel_engine_id id;
4905
4906                 /*
4907                  * GuC is toast at this point - it dead loops after sending the failed
4908                  * reset notification. So need to manually determine the guilty context.
4909                  * Note that it should be reliable to do this here because the GuC is
4910                  * toast and will not be scheduling behind the KMD's back.
4911                  */
4912                 for_each_engine_masked(engine, gt, reset_fail_mask, id)
4913                         intel_guc_find_hung_context(engine);
4914
4915                 intel_gt_handle_error(gt, reset_fail_mask,
4916                                       I915_ERROR_CAPTURE,
4917                                       "GuC failed to reset engine mask=0x%x",
4918                                       reset_fail_mask);
4919         }
4920 }
4921
4922 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4923                                          const u32 *msg, u32 len)
4924 {
4925         struct intel_engine_cs *engine;
4926         u8 guc_class, instance;
4927         u32 reason;
4928         unsigned long flags;
4929
4930         if (unlikely(len != 3)) {
4931                 guc_err(guc, "Invalid length %u", len);
4932                 return -EPROTO;
4933         }
4934
4935         guc_class = msg[0];
4936         instance = msg[1];
4937         reason = msg[2];
4938
4939         engine = intel_guc_lookup_engine(guc, guc_class, instance);
4940         if (unlikely(!engine)) {
4941                 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
4942                 return -EPROTO;
4943         }
4944
4945         /*
4946          * This is an unexpected failure of a hardware feature. So, log a real
4947          * error message not just the informational that comes with the reset.
4948          */
4949         guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
4950                 guc_class, instance, engine->name, reason);
4951
4952         spin_lock_irqsave(&guc->submission_state.lock, flags);
4953         guc->submission_state.reset_fail_mask |= engine->mask;
4954         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4955
4956         /*
4957          * A GT reset flushes this worker queue (G2H handler) so we must use
4958          * another worker to trigger a GT reset.
4959          */
4960         queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4961
4962         return 0;
4963 }
4964
4965 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4966 {
4967         struct intel_guc *guc = &engine->gt->uc.guc;
4968         struct intel_context *ce;
4969         struct i915_request *rq;
4970         unsigned long index;
4971         unsigned long flags;
4972
4973         /* Reset called during driver load? GuC not yet initialised! */
4974         if (unlikely(!guc_submission_initialized(guc)))
4975                 return;
4976
4977         xa_lock_irqsave(&guc->context_lookup, flags);
4978         xa_for_each(&guc->context_lookup, index, ce) {
4979                 bool found;
4980
4981                 if (!kref_get_unless_zero(&ce->ref))
4982                         continue;
4983
4984                 xa_unlock(&guc->context_lookup);
4985
4986                 if (!intel_context_is_pinned(ce))
4987                         goto next;
4988
4989                 if (intel_engine_is_virtual(ce->engine)) {
4990                         if (!(ce->engine->mask & engine->mask))
4991                                 goto next;
4992                 } else {
4993                         if (ce->engine != engine)
4994                                 goto next;
4995                 }
4996
4997                 found = false;
4998                 spin_lock(&ce->guc_state.lock);
4999                 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5000                         if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5001                                 continue;
5002
5003                         found = true;
5004                         break;
5005                 }
5006                 spin_unlock(&ce->guc_state.lock);
5007
5008                 if (found) {
5009                         intel_engine_set_hung_context(engine, ce);
5010
5011                         /* Can only cope with one hang at a time... */
5012                         intel_context_put(ce);
5013                         xa_lock(&guc->context_lookup);
5014                         goto done;
5015                 }
5016
5017 next:
5018                 intel_context_put(ce);
5019                 xa_lock(&guc->context_lookup);
5020         }
5021 done:
5022         xa_unlock_irqrestore(&guc->context_lookup, flags);
5023 }
5024
5025 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5026                                     struct i915_request *hung_rq,
5027                                     struct drm_printer *m)
5028 {
5029         struct intel_guc *guc = &engine->gt->uc.guc;
5030         struct intel_context *ce;
5031         unsigned long index;
5032         unsigned long flags;
5033
5034         /* Reset called during driver load? GuC not yet initialised! */
5035         if (unlikely(!guc_submission_initialized(guc)))
5036                 return;
5037
5038         xa_lock_irqsave(&guc->context_lookup, flags);
5039         xa_for_each(&guc->context_lookup, index, ce) {
5040                 if (!kref_get_unless_zero(&ce->ref))
5041                         continue;
5042
5043                 xa_unlock(&guc->context_lookup);
5044
5045                 if (!intel_context_is_pinned(ce))
5046                         goto next;
5047
5048                 if (intel_engine_is_virtual(ce->engine)) {
5049                         if (!(ce->engine->mask & engine->mask))
5050                                 goto next;
5051                 } else {
5052                         if (ce->engine != engine)
5053                                 goto next;
5054                 }
5055
5056                 spin_lock(&ce->guc_state.lock);
5057                 intel_engine_dump_active_requests(&ce->guc_state.requests,
5058                                                   hung_rq, m);
5059                 spin_unlock(&ce->guc_state.lock);
5060
5061 next:
5062                 intel_context_put(ce);
5063                 xa_lock(&guc->context_lookup);
5064         }
5065         xa_unlock_irqrestore(&guc->context_lookup, flags);
5066 }
5067
5068 void intel_guc_submission_print_info(struct intel_guc *guc,
5069                                      struct drm_printer *p)
5070 {
5071         struct i915_sched_engine *sched_engine = guc->sched_engine;
5072         struct rb_node *rb;
5073         unsigned long flags;
5074
5075         if (!sched_engine)
5076                 return;
5077
5078         drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5079                    guc->submission_version.major, guc->submission_version.minor,
5080                    guc->submission_version.patch);
5081         drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5082                    atomic_read(&guc->outstanding_submission_g2h));
5083         drm_printf(p, "GuC tasklet count: %u\n",
5084                    atomic_read(&sched_engine->tasklet.count));
5085
5086         spin_lock_irqsave(&sched_engine->lock, flags);
5087         drm_printf(p, "Requests in GuC submit tasklet:\n");
5088         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5089                 struct i915_priolist *pl = to_priolist(rb);
5090                 struct i915_request *rq;
5091
5092                 priolist_for_each_request(rq, pl)
5093                         drm_printf(p, "guc_id=%u, seqno=%llu\n",
5094                                    rq->context->guc_id.id,
5095                                    rq->fence.seqno);
5096         }
5097         spin_unlock_irqrestore(&sched_engine->lock, flags);
5098         drm_printf(p, "\n");
5099 }
5100
5101 static inline void guc_log_context_priority(struct drm_printer *p,
5102                                             struct intel_context *ce)
5103 {
5104         int i;
5105
5106         drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5107         drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5108         for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5109              i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5110                 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5111                            i, ce->guc_state.prio_count[i]);
5112         }
5113         drm_printf(p, "\n");
5114 }
5115
5116 static inline void guc_log_context(struct drm_printer *p,
5117                                    struct intel_context *ce)
5118 {
5119         drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5120         drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5121         drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5122                    ce->ring->head,
5123                    ce->lrc_reg_state[CTX_RING_HEAD]);
5124         drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5125                    ce->ring->tail,
5126                    ce->lrc_reg_state[CTX_RING_TAIL]);
5127         drm_printf(p, "\t\tContext Pin Count: %u\n",
5128                    atomic_read(&ce->pin_count));
5129         drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5130                    atomic_read(&ce->guc_id.ref));
5131         drm_printf(p, "\t\tSchedule State: 0x%x\n",
5132                    ce->guc_state.sched_state);
5133 }
5134
5135 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5136                                              struct drm_printer *p)
5137 {
5138         struct intel_context *ce;
5139         unsigned long index;
5140         unsigned long flags;
5141
5142         xa_lock_irqsave(&guc->context_lookup, flags);
5143         xa_for_each(&guc->context_lookup, index, ce) {
5144                 GEM_BUG_ON(intel_context_is_child(ce));
5145
5146                 guc_log_context(p, ce);
5147                 guc_log_context_priority(p, ce);
5148
5149                 if (intel_context_is_parent(ce)) {
5150                         struct intel_context *child;
5151
5152                         drm_printf(p, "\t\tNumber children: %u\n",
5153                                    ce->parallel.number_children);
5154
5155                         if (ce->parallel.guc.wq_status) {
5156                                 drm_printf(p, "\t\tWQI Head: %u\n",
5157                                            READ_ONCE(*ce->parallel.guc.wq_head));
5158                                 drm_printf(p, "\t\tWQI Tail: %u\n",
5159                                            READ_ONCE(*ce->parallel.guc.wq_tail));
5160                                 drm_printf(p, "\t\tWQI Status: %u\n",
5161                                            READ_ONCE(*ce->parallel.guc.wq_status));
5162                         }
5163
5164                         if (ce->engine->emit_bb_start ==
5165                             emit_bb_start_parent_no_preempt_mid_batch) {
5166                                 u8 i;
5167
5168                                 drm_printf(p, "\t\tChildren Go: %u\n",
5169                                            get_children_go_value(ce));
5170                                 for (i = 0; i < ce->parallel.number_children; ++i)
5171                                         drm_printf(p, "\t\tChildren Join: %u\n",
5172                                                    get_children_join_value(ce, i));
5173                         }
5174
5175                         for_each_child(ce, child)
5176                                 guc_log_context(p, child);
5177                 }
5178         }
5179         xa_unlock_irqrestore(&guc->context_lookup, flags);
5180 }
5181
5182 static inline u32 get_children_go_addr(struct intel_context *ce)
5183 {
5184         GEM_BUG_ON(!intel_context_is_parent(ce));
5185
5186         return i915_ggtt_offset(ce->state) +
5187                 __get_parent_scratch_offset(ce) +
5188                 offsetof(struct parent_scratch, go.semaphore);
5189 }
5190
5191 static inline u32 get_children_join_addr(struct intel_context *ce,
5192                                          u8 child_index)
5193 {
5194         GEM_BUG_ON(!intel_context_is_parent(ce));
5195
5196         return i915_ggtt_offset(ce->state) +
5197                 __get_parent_scratch_offset(ce) +
5198                 offsetof(struct parent_scratch, join[child_index].semaphore);
5199 }
5200
5201 #define PARENT_GO_BB                    1
5202 #define PARENT_GO_FINI_BREADCRUMB       0
5203 #define CHILD_GO_BB                     1
5204 #define CHILD_GO_FINI_BREADCRUMB        0
5205 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5206                                                      u64 offset, u32 len,
5207                                                      const unsigned int flags)
5208 {
5209         struct intel_context *ce = rq->context;
5210         u32 *cs;
5211         u8 i;
5212
5213         GEM_BUG_ON(!intel_context_is_parent(ce));
5214
5215         cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5216         if (IS_ERR(cs))
5217                 return PTR_ERR(cs);
5218
5219         /* Wait on children */
5220         for (i = 0; i < ce->parallel.number_children; ++i) {
5221                 *cs++ = (MI_SEMAPHORE_WAIT |
5222                          MI_SEMAPHORE_GLOBAL_GTT |
5223                          MI_SEMAPHORE_POLL |
5224                          MI_SEMAPHORE_SAD_EQ_SDD);
5225                 *cs++ = PARENT_GO_BB;
5226                 *cs++ = get_children_join_addr(ce, i);
5227                 *cs++ = 0;
5228         }
5229
5230         /* Turn off preemption */
5231         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5232         *cs++ = MI_NOOP;
5233
5234         /* Tell children go */
5235         cs = gen8_emit_ggtt_write(cs,
5236                                   CHILD_GO_BB,
5237                                   get_children_go_addr(ce),
5238                                   0);
5239
5240         /* Jump to batch */
5241         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5242                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5243         *cs++ = lower_32_bits(offset);
5244         *cs++ = upper_32_bits(offset);
5245         *cs++ = MI_NOOP;
5246
5247         intel_ring_advance(rq, cs);
5248
5249         return 0;
5250 }
5251
5252 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5253                                                     u64 offset, u32 len,
5254                                                     const unsigned int flags)
5255 {
5256         struct intel_context *ce = rq->context;
5257         struct intel_context *parent = intel_context_to_parent(ce);
5258         u32 *cs;
5259
5260         GEM_BUG_ON(!intel_context_is_child(ce));
5261
5262         cs = intel_ring_begin(rq, 12);
5263         if (IS_ERR(cs))
5264                 return PTR_ERR(cs);
5265
5266         /* Signal parent */
5267         cs = gen8_emit_ggtt_write(cs,
5268                                   PARENT_GO_BB,
5269                                   get_children_join_addr(parent,
5270                                                          ce->parallel.child_index),
5271                                   0);
5272
5273         /* Wait on parent for go */
5274         *cs++ = (MI_SEMAPHORE_WAIT |
5275                  MI_SEMAPHORE_GLOBAL_GTT |
5276                  MI_SEMAPHORE_POLL |
5277                  MI_SEMAPHORE_SAD_EQ_SDD);
5278         *cs++ = CHILD_GO_BB;
5279         *cs++ = get_children_go_addr(parent);
5280         *cs++ = 0;
5281
5282         /* Turn off preemption */
5283         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5284
5285         /* Jump to batch */
5286         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5287                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5288         *cs++ = lower_32_bits(offset);
5289         *cs++ = upper_32_bits(offset);
5290
5291         intel_ring_advance(rq, cs);
5292
5293         return 0;
5294 }
5295
5296 static u32 *
5297 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5298                                                    u32 *cs)
5299 {
5300         struct intel_context *ce = rq->context;
5301         u8 i;
5302
5303         GEM_BUG_ON(!intel_context_is_parent(ce));
5304
5305         /* Wait on children */
5306         for (i = 0; i < ce->parallel.number_children; ++i) {
5307                 *cs++ = (MI_SEMAPHORE_WAIT |
5308                          MI_SEMAPHORE_GLOBAL_GTT |
5309                          MI_SEMAPHORE_POLL |
5310                          MI_SEMAPHORE_SAD_EQ_SDD);
5311                 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5312                 *cs++ = get_children_join_addr(ce, i);
5313                 *cs++ = 0;
5314         }
5315
5316         /* Turn on preemption */
5317         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5318         *cs++ = MI_NOOP;
5319
5320         /* Tell children go */
5321         cs = gen8_emit_ggtt_write(cs,
5322                                   CHILD_GO_FINI_BREADCRUMB,
5323                                   get_children_go_addr(ce),
5324                                   0);
5325
5326         return cs;
5327 }
5328
5329 /*
5330  * If this true, a submission of multi-lrc requests had an error and the
5331  * requests need to be skipped. The front end (execuf IOCTL) should've called
5332  * i915_request_skip which squashes the BB but we still need to emit the fini
5333  * breadrcrumbs seqno write. At this point we don't know how many of the
5334  * requests in the multi-lrc submission were generated so we can't do the
5335  * handshake between the parent and children (e.g. if 4 requests should be
5336  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5337  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5338  * has occurred on any of the requests in submission / relationship.
5339  */
5340 static inline bool skip_handshake(struct i915_request *rq)
5341 {
5342         return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5343 }
5344
5345 #define NON_SKIP_LEN    6
5346 static u32 *
5347 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5348                                                  u32 *cs)
5349 {
5350         struct intel_context *ce = rq->context;
5351         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5352         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5353
5354         GEM_BUG_ON(!intel_context_is_parent(ce));
5355
5356         if (unlikely(skip_handshake(rq))) {
5357                 /*
5358                  * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5359                  * the NON_SKIP_LEN comes from the length of the emits below.
5360                  */
5361                 memset(cs, 0, sizeof(u32) *
5362                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5363                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5364         } else {
5365                 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5366         }
5367
5368         /* Emit fini breadcrumb */
5369         before_fini_breadcrumb_user_interrupt_cs = cs;
5370         cs = gen8_emit_ggtt_write(cs,
5371                                   rq->fence.seqno,
5372                                   i915_request_active_timeline(rq)->hwsp_offset,
5373                                   0);
5374
5375         /* User interrupt */
5376         *cs++ = MI_USER_INTERRUPT;
5377         *cs++ = MI_NOOP;
5378
5379         /* Ensure our math for skip + emit is correct */
5380         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5381                    cs);
5382         GEM_BUG_ON(start_fini_breadcrumb_cs +
5383                    ce->engine->emit_fini_breadcrumb_dw != cs);
5384
5385         rq->tail = intel_ring_offset(rq, cs);
5386
5387         return cs;
5388 }
5389
5390 static u32 *
5391 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5392                                                   u32 *cs)
5393 {
5394         struct intel_context *ce = rq->context;
5395         struct intel_context *parent = intel_context_to_parent(ce);
5396
5397         GEM_BUG_ON(!intel_context_is_child(ce));
5398
5399         /* Turn on preemption */
5400         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5401         *cs++ = MI_NOOP;
5402
5403         /* Signal parent */
5404         cs = gen8_emit_ggtt_write(cs,
5405                                   PARENT_GO_FINI_BREADCRUMB,
5406                                   get_children_join_addr(parent,
5407                                                          ce->parallel.child_index),
5408                                   0);
5409
5410         /* Wait parent on for go */
5411         *cs++ = (MI_SEMAPHORE_WAIT |
5412                  MI_SEMAPHORE_GLOBAL_GTT |
5413                  MI_SEMAPHORE_POLL |
5414                  MI_SEMAPHORE_SAD_EQ_SDD);
5415         *cs++ = CHILD_GO_FINI_BREADCRUMB;
5416         *cs++ = get_children_go_addr(parent);
5417         *cs++ = 0;
5418
5419         return cs;
5420 }
5421
5422 static u32 *
5423 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5424                                                 u32 *cs)
5425 {
5426         struct intel_context *ce = rq->context;
5427         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5428         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5429
5430         GEM_BUG_ON(!intel_context_is_child(ce));
5431
5432         if (unlikely(skip_handshake(rq))) {
5433                 /*
5434                  * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5435                  * the NON_SKIP_LEN comes from the length of the emits below.
5436                  */
5437                 memset(cs, 0, sizeof(u32) *
5438                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5439                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5440         } else {
5441                 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5442         }
5443
5444         /* Emit fini breadcrumb */
5445         before_fini_breadcrumb_user_interrupt_cs = cs;
5446         cs = gen8_emit_ggtt_write(cs,
5447                                   rq->fence.seqno,
5448                                   i915_request_active_timeline(rq)->hwsp_offset,
5449                                   0);
5450
5451         /* User interrupt */
5452         *cs++ = MI_USER_INTERRUPT;
5453         *cs++ = MI_NOOP;
5454
5455         /* Ensure our math for skip + emit is correct */
5456         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5457                    cs);
5458         GEM_BUG_ON(start_fini_breadcrumb_cs +
5459                    ce->engine->emit_fini_breadcrumb_dw != cs);
5460
5461         rq->tail = intel_ring_offset(rq, cs);
5462
5463         return cs;
5464 }
5465
5466 #undef NON_SKIP_LEN
5467
5468 static struct intel_context *
5469 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5470                    unsigned long flags)
5471 {
5472         struct guc_virtual_engine *ve;
5473         struct intel_guc *guc;
5474         unsigned int n;
5475         int err;
5476
5477         ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5478         if (!ve)
5479                 return ERR_PTR(-ENOMEM);
5480
5481         guc = &siblings[0]->gt->uc.guc;
5482
5483         ve->base.i915 = siblings[0]->i915;
5484         ve->base.gt = siblings[0]->gt;
5485         ve->base.uncore = siblings[0]->uncore;
5486         ve->base.id = -1;
5487
5488         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5489         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5490         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5491         ve->base.saturated = ALL_ENGINES;
5492
5493         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5494
5495         ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5496
5497         ve->base.cops = &virtual_guc_context_ops;
5498         ve->base.request_alloc = guc_request_alloc;
5499         ve->base.bump_serial = virtual_guc_bump_serial;
5500
5501         ve->base.submit_request = guc_submit_request;
5502
5503         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5504
5505         BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5506         ve->base.mask = VIRTUAL_ENGINES;
5507
5508         intel_context_init(&ve->context, &ve->base);
5509
5510         for (n = 0; n < count; n++) {
5511                 struct intel_engine_cs *sibling = siblings[n];
5512
5513                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5514                 if (sibling->mask & ve->base.mask) {
5515                         guc_dbg(guc, "duplicate %s entry in load balancer\n",
5516                                 sibling->name);
5517                         err = -EINVAL;
5518                         goto err_put;
5519                 }
5520
5521                 ve->base.mask |= sibling->mask;
5522                 ve->base.logical_mask |= sibling->logical_mask;
5523
5524                 if (n != 0 && ve->base.class != sibling->class) {
5525                         guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5526                                 sibling->class, ve->base.class);
5527                         err = -EINVAL;
5528                         goto err_put;
5529                 } else if (n == 0) {
5530                         ve->base.class = sibling->class;
5531                         ve->base.uabi_class = sibling->uabi_class;
5532                         snprintf(ve->base.name, sizeof(ve->base.name),
5533                                  "v%dx%d", ve->base.class, count);
5534                         ve->base.context_size = sibling->context_size;
5535
5536                         ve->base.add_active_request =
5537                                 sibling->add_active_request;
5538                         ve->base.remove_active_request =
5539                                 sibling->remove_active_request;
5540                         ve->base.emit_bb_start = sibling->emit_bb_start;
5541                         ve->base.emit_flush = sibling->emit_flush;
5542                         ve->base.emit_init_breadcrumb =
5543                                 sibling->emit_init_breadcrumb;
5544                         ve->base.emit_fini_breadcrumb =
5545                                 sibling->emit_fini_breadcrumb;
5546                         ve->base.emit_fini_breadcrumb_dw =
5547                                 sibling->emit_fini_breadcrumb_dw;
5548                         ve->base.breadcrumbs =
5549                                 intel_breadcrumbs_get(sibling->breadcrumbs);
5550
5551                         ve->base.flags |= sibling->flags;
5552
5553                         ve->base.props.timeslice_duration_ms =
5554                                 sibling->props.timeslice_duration_ms;
5555                         ve->base.props.preempt_timeout_ms =
5556                                 sibling->props.preempt_timeout_ms;
5557                 }
5558         }
5559
5560         return &ve->context;
5561
5562 err_put:
5563         intel_context_put(&ve->context);
5564         return ERR_PTR(err);
5565 }
5566
5567 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5568 {
5569         struct intel_engine_cs *engine;
5570         intel_engine_mask_t tmp, mask = ve->mask;
5571
5572         for_each_engine_masked(engine, ve->gt, mask, tmp)
5573                 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5574                         return true;
5575
5576         return false;
5577 }
5578
5579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5580 #include "selftest_guc.c"
5581 #include "selftest_guc_multi_lrc.c"
5582 #include "selftest_guc_hangcheck.c"
5583 #endif