2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include "i915_drv.h"
137 #include "i915_perf.h"
138 #include "i915_trace.h"
139 #include "i915_vgpu.h"
140 #include "intel_context.h"
141 #include "intel_engine_pm.h"
142 #include "intel_gt.h"
143 #include "intel_gt_pm.h"
144 #include "intel_gt_requests.h"
145 #include "intel_lrc_reg.h"
146 #include "intel_mocs.h"
147 #include "intel_reset.h"
148 #include "intel_ring.h"
149 #include "intel_workarounds.h"
150 #include "shmem_utils.h"
152 #define RING_EXECLIST_QFULL (1 << 0x2)
153 #define RING_EXECLIST1_VALID (1 << 0x3)
154 #define RING_EXECLIST0_VALID (1 << 0x4)
155 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
156 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
157 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
159 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
160 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
161 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
162 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
163 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
164 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
166 #define GEN8_CTX_STATUS_COMPLETED_MASK \
167 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
169 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
171 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
172 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
173 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
174 #define GEN12_IDLE_CTX_ID 0x7FF
175 #define GEN12_CSB_CTX_VALID(csb_dw) \
176 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
178 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
179 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
181 struct virtual_engine {
182 struct intel_engine_cs base;
183 struct intel_context context;
186 * We allow only a single request through the virtual engine at a time
187 * (each request in the timeline waits for the completion fence of
188 * the previous before being submitted). By restricting ourselves to
189 * only submitting a single request, each request is placed on to a
190 * physical to maximise load spreading (by virtue of the late greedy
191 * scheduling -- each real engine takes the next available request
194 struct i915_request *request;
197 * We keep a rbtree of available virtual engines inside each physical
198 * engine, sorted by priority. Here we preallocate the nodes we need
199 * for the virtual engine, indexed by physical_engine->id.
204 } nodes[I915_NUM_ENGINES];
207 * Keep track of bonded pairs -- restrictions upon on our selection
208 * of physical engines any particular request may be submitted to.
209 * If we receive a submit-fence from a master engine, we will only
210 * use one of sibling_mask physical engines.
213 const struct intel_engine_cs *master;
214 intel_engine_mask_t sibling_mask;
216 unsigned int num_bonds;
218 /* And finally, which physical engines this virtual engine maps onto. */
219 unsigned int num_siblings;
220 struct intel_engine_cs *siblings[];
223 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
225 GEM_BUG_ON(!intel_engine_is_virtual(engine));
226 return container_of(engine, struct virtual_engine, base);
229 static int __execlists_context_alloc(struct intel_context *ce,
230 struct intel_engine_cs *engine);
232 static void execlists_init_reg_state(u32 *reg_state,
233 const struct intel_context *ce,
234 const struct intel_engine_cs *engine,
235 const struct intel_ring *ring,
238 __execlists_update_reg_state(const struct intel_context *ce,
239 const struct intel_engine_cs *engine,
242 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
244 if (INTEL_GEN(engine->i915) >= 12)
246 else if (INTEL_GEN(engine->i915) >= 9)
248 else if (engine->class == RENDER_CLASS)
254 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
256 if (INTEL_GEN(engine->i915) >= 12)
258 else if (INTEL_GEN(engine->i915) >= 9)
260 else if (engine->class == RENDER_CLASS)
266 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
268 if (INTEL_GEN(engine->i915) >= 12)
270 else if (INTEL_GEN(engine->i915) >= 9 || engine->class == RENDER_CLASS)
276 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
280 x = lrc_ring_wa_bb_per_ctx(engine);
287 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
291 x = lrc_ring_indirect_ptr(engine);
298 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
300 if (engine->class != RENDER_CLASS)
303 if (INTEL_GEN(engine->i915) >= 12)
305 else if (INTEL_GEN(engine->i915) >= 11)
312 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
314 switch (INTEL_GEN(engine->i915)) {
316 MISSING_CASE(INTEL_GEN(engine->i915));
319 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
321 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
323 return GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
325 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
327 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
332 lrc_ring_setup_indirect_ctx(u32 *regs,
333 const struct intel_engine_cs *engine,
334 u32 ctx_bb_ggtt_addr,
338 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
339 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
340 regs[lrc_ring_indirect_ptr(engine) + 1] =
341 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
343 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
344 regs[lrc_ring_indirect_offset(engine) + 1] =
345 lrc_ring_indirect_offset_default(engine) << 6;
348 static u32 intel_context_get_runtime(const struct intel_context *ce)
351 * We can use either ppHWSP[16] which is recorded before the context
352 * switch (and so excludes the cost of context switches) or use the
353 * value from the context image itself, which is saved/restored earlier
354 * and so includes the cost of the save.
356 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
359 static void mark_eio(struct i915_request *rq)
361 if (i915_request_completed(rq))
364 GEM_BUG_ON(i915_request_signaled(rq));
366 i915_request_set_error_once(rq, -EIO);
367 i915_request_mark_complete(rq);
370 static struct i915_request *
371 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
373 struct i915_request *active = rq;
376 list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
377 if (i915_request_completed(rq))
387 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
389 return (i915_ggtt_offset(engine->status_page.vma) +
390 I915_GEM_HWS_PREEMPT_ADDR);
394 ring_set_paused(const struct intel_engine_cs *engine, int state)
397 * We inspect HWS_PREEMPT with a semaphore inside
398 * engine->emit_fini_breadcrumb. If the dword is true,
399 * the ring is paused as the semaphore will busywait
400 * until the dword is false.
402 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
407 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
409 return rb_entry(rb, struct i915_priolist, node);
412 static inline int rq_prio(const struct i915_request *rq)
414 return READ_ONCE(rq->sched.attr.priority);
417 static int effective_prio(const struct i915_request *rq)
419 int prio = rq_prio(rq);
422 * If this request is special and must not be interrupted at any
423 * cost, so be it. Note we are only checking the most recent request
424 * in the context and so may be masking an earlier vip request. It
425 * is hoped that under the conditions where nopreempt is used, this
426 * will not matter (i.e. all requests to that context will be
427 * nopreempt for as long as desired).
429 if (i915_request_has_nopreempt(rq))
430 prio = I915_PRIORITY_UNPREEMPTABLE;
435 static int queue_prio(const struct intel_engine_execlists *execlists)
437 struct i915_priolist *p;
440 rb = rb_first_cached(&execlists->queue);
445 * As the priolist[] are inverted, with the highest priority in [0],
446 * we have to flip the index value to become priority.
449 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
452 static inline bool need_preempt(const struct intel_engine_cs *engine,
453 const struct i915_request *rq,
458 if (!intel_engine_has_semaphores(engine))
462 * Check if the current priority hint merits a preemption attempt.
464 * We record the highest value priority we saw during rescheduling
465 * prior to this dequeue, therefore we know that if it is strictly
466 * less than the current tail of ESLP[0], we do not need to force
467 * a preempt-to-idle cycle.
469 * However, the priority hint is a mere hint that we may need to
470 * preempt. If that hint is stale or we may be trying to preempt
471 * ourselves, ignore the request.
473 * More naturally we would write
474 * prio >= max(0, last);
475 * except that we wish to prevent triggering preemption at the same
476 * priority level: the task that is running should remain running
477 * to preserve FIFO ordering of dependencies.
479 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
480 if (engine->execlists.queue_priority_hint <= last_prio)
484 * Check against the first request in ELSP[1], it will, thanks to the
485 * power of PI, be the highest priority of that context.
487 if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
488 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
492 struct virtual_engine *ve =
493 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
494 bool preempt = false;
496 if (engine == ve->siblings[0]) { /* only preempt one sibling */
497 struct i915_request *next;
500 next = READ_ONCE(ve->request);
502 preempt = rq_prio(next) > last_prio;
511 * If the inflight context did not trigger the preemption, then maybe
512 * it was the set of queued requests? Pick the highest priority in
513 * the queue (the first active priolist) and see if it deserves to be
514 * running instead of ELSP[0].
516 * The highest priority request in the queue can not be either
517 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
518 * context, it's priority would not exceed ELSP[0] aka last_prio.
520 return queue_prio(&engine->execlists) > last_prio;
523 __maybe_unused static inline bool
524 assert_priority_queue(const struct i915_request *prev,
525 const struct i915_request *next)
528 * Without preemption, the prev may refer to the still active element
529 * which we refuse to let go.
531 * Even with preemption, there are times when we think it is better not
532 * to preempt and leave an ostensibly lower priority request in flight.
534 if (i915_request_is_active(prev))
537 return rq_prio(prev) >= rq_prio(next);
541 * The context descriptor encodes various attributes of a context,
542 * including its GTT address and some flags. Because it's fairly
543 * expensive to calculate, we'll just do it once and cache the result,
544 * which remains valid until the context is unpinned.
546 * This is what a descriptor looks like, from LSB to MSB::
548 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
549 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
550 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
551 * bits 53-54: mbz, reserved for use by hardware
552 * bits 55-63: group ID, currently unused and set to 0
554 * Starting from Gen11, the upper dword of the descriptor has a new format:
556 * bits 32-36: reserved
557 * bits 37-47: SW context ID
558 * bits 48:53: engine instance
559 * bit 54: mbz, reserved for use by hardware
560 * bits 55-60: SW counter
561 * bits 61-63: engine class
563 * engine info, SW context ID and SW counter need to form a unique number
564 * (Context ID) per lrc.
567 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
571 desc = INTEL_LEGACY_32B_CONTEXT;
572 if (i915_vm_is_4lvl(ce->vm))
573 desc = INTEL_LEGACY_64B_CONTEXT;
574 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
576 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
577 if (IS_GEN(engine->i915, 8))
578 desc |= GEN8_CTX_L3LLC_COHERENT;
580 return i915_ggtt_offset(ce->state) | desc;
583 static inline unsigned int dword_in_page(void *addr)
585 return offset_in_page(addr) / sizeof(u32);
588 static void set_offsets(u32 *regs,
590 const struct intel_engine_cs *engine,
592 #define NOP(x) (BIT(7) | (x))
593 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
594 #define POSTED BIT(0)
595 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
597 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
599 #define END(total_state_size) 0, (total_state_size)
601 const u32 base = engine->mmio_base;
606 if (*data & BIT(7)) { /* skip */
607 count = *data++ & ~BIT(7);
609 memset32(regs, MI_NOOP, count);
614 count = *data & 0x3f;
618 *regs = MI_LOAD_REGISTER_IMM(count);
620 *regs |= MI_LRI_FORCE_POSTED;
621 if (INTEL_GEN(engine->i915) >= 11)
622 *regs |= MI_LRI_LRM_CS_MMIO;
633 offset |= v & ~BIT(7);
634 } while (v & BIT(7));
636 regs[0] = base + (offset << 2);
646 /* Clear past the tail for HW access */
647 GEM_BUG_ON(dword_in_page(regs) > count);
648 memset32(regs, MI_NOOP, count - dword_in_page(regs));
650 /* Close the batch; used mainly by live_lrc_layout() */
651 *regs = MI_BATCH_BUFFER_END;
652 if (INTEL_GEN(engine->i915) >= 10)
657 static const u8 gen8_xcs_offsets[] = {
692 static const u8 gen9_xcs_offsets[] = {
776 static const u8 gen12_xcs_offsets[] = {
808 static const u8 gen8_rcs_offsets[] = {
845 static const u8 gen9_rcs_offsets[] = {
929 static const u8 gen11_rcs_offsets[] = {
970 static const u8 gen12_rcs_offsets[] = {
1072 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
1075 * The gen12+ lists only have the registers we program in the basic
1076 * default state. We rely on the context image using relative
1077 * addressing to automatic fixup the register state between the
1078 * physical engines for virtual engine.
1080 GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
1081 !intel_engine_has_relative_mmio(engine));
1083 if (engine->class == RENDER_CLASS) {
1084 if (INTEL_GEN(engine->i915) >= 12)
1085 return gen12_rcs_offsets;
1086 else if (INTEL_GEN(engine->i915) >= 11)
1087 return gen11_rcs_offsets;
1088 else if (INTEL_GEN(engine->i915) >= 9)
1089 return gen9_rcs_offsets;
1091 return gen8_rcs_offsets;
1093 if (INTEL_GEN(engine->i915) >= 12)
1094 return gen12_xcs_offsets;
1095 else if (INTEL_GEN(engine->i915) >= 9)
1096 return gen9_xcs_offsets;
1098 return gen8_xcs_offsets;
1102 static struct i915_request *
1103 __unwind_incomplete_requests(struct intel_engine_cs *engine)
1105 struct i915_request *rq, *rn, *active = NULL;
1106 struct list_head *uninitialized_var(pl);
1107 int prio = I915_PRIORITY_INVALID;
1109 lockdep_assert_held(&engine->active.lock);
1111 list_for_each_entry_safe_reverse(rq, rn,
1112 &engine->active.requests,
1114 if (i915_request_completed(rq))
1117 __i915_request_unsubmit(rq);
1120 * Push the request back into the queue for later resubmission.
1121 * If this request is not native to this physical engine (i.e.
1122 * it came from a virtual source), push it back onto the virtual
1123 * engine so that it can be moved across onto another physical
1124 * engine as load dictates.
1126 if (likely(rq->execution_mask == engine->mask)) {
1127 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1128 if (rq_prio(rq) != prio) {
1130 pl = i915_sched_lookup_priolist(engine, prio);
1132 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1134 list_move(&rq->sched.link, pl);
1135 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1137 /* Check in case we rollback so far we wrap [size/2] */
1138 if (intel_ring_direction(rq->ring,
1139 intel_ring_wrap(rq->ring,
1141 rq->ring->tail) > 0)
1142 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1146 struct intel_engine_cs *owner = rq->context->engine;
1149 * Decouple the virtual breadcrumb before moving it
1150 * back to the virtual engine -- we don't want the
1151 * request to complete in the background and try
1152 * and cancel the breadcrumb on the virtual engine
1153 * (instead of the old engine where it is linked)!
1155 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1156 &rq->fence.flags)) {
1157 spin_lock_nested(&rq->lock,
1158 SINGLE_DEPTH_NESTING);
1159 i915_request_cancel_breadcrumb(rq);
1160 spin_unlock(&rq->lock);
1162 WRITE_ONCE(rq->engine, owner);
1163 owner->submit_request(rq);
1171 struct i915_request *
1172 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
1174 struct intel_engine_cs *engine =
1175 container_of(execlists, typeof(*engine), execlists);
1177 return __unwind_incomplete_requests(engine);
1181 execlists_context_status_change(struct i915_request *rq, unsigned long status)
1184 * Only used when GVT-g is enabled now. When GVT-g is disabled,
1185 * The compiler should eliminate this function as dead-code.
1187 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
1190 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
1194 static void intel_engine_context_in(struct intel_engine_cs *engine)
1196 unsigned long flags;
1198 if (atomic_add_unless(&engine->stats.active, 1, 0))
1201 write_seqlock_irqsave(&engine->stats.lock, flags);
1202 if (!atomic_add_unless(&engine->stats.active, 1, 0)) {
1203 engine->stats.start = ktime_get();
1204 atomic_inc(&engine->stats.active);
1206 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1209 static void intel_engine_context_out(struct intel_engine_cs *engine)
1211 unsigned long flags;
1213 GEM_BUG_ON(!atomic_read(&engine->stats.active));
1215 if (atomic_add_unless(&engine->stats.active, -1, 1))
1218 write_seqlock_irqsave(&engine->stats.lock, flags);
1219 if (atomic_dec_and_test(&engine->stats.active)) {
1220 engine->stats.total =
1221 ktime_add(engine->stats.total,
1222 ktime_sub(ktime_get(), engine->stats.start));
1224 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1228 execlists_check_context(const struct intel_context *ce,
1229 const struct intel_engine_cs *engine)
1231 const struct intel_ring *ring = ce->ring;
1232 u32 *regs = ce->lrc_reg_state;
1236 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1237 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1239 regs[CTX_RING_START],
1240 i915_ggtt_offset(ring->vma));
1241 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1245 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1246 (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1247 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1250 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1251 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1255 x = lrc_ring_mi_mode(engine);
1256 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1257 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1258 engine->name, regs[x + 1]);
1259 regs[x + 1] &= ~STOP_RING;
1260 regs[x + 1] |= STOP_RING << 16;
1264 WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
1267 static void restore_default_state(struct intel_context *ce,
1268 struct intel_engine_cs *engine)
1272 regs = memset(ce->lrc_reg_state, 0, engine->context_size - PAGE_SIZE);
1273 execlists_init_reg_state(regs, ce, engine, ce->ring, true);
1275 ce->runtime.last = intel_context_get_runtime(ce);
1278 static void reset_active(struct i915_request *rq,
1279 struct intel_engine_cs *engine)
1281 struct intel_context * const ce = rq->context;
1285 * The executing context has been cancelled. We want to prevent
1286 * further execution along this context and propagate the error on
1287 * to anything depending on its results.
1289 * In __i915_request_submit(), we apply the -EIO and remove the
1290 * requests' payloads for any banned requests. But first, we must
1291 * rewind the context back to the start of the incomplete request so
1292 * that we do not jump back into the middle of the batch.
1294 * We preserve the breadcrumbs and semaphores of the incomplete
1295 * requests so that inter-timeline dependencies (i.e other timelines)
1296 * remain correctly ordered. And we defer to __i915_request_submit()
1297 * so that all asynchronous waits are correctly handled.
1299 ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
1300 rq->fence.context, rq->fence.seqno);
1302 /* On resubmission of the active request, payload will be scrubbed */
1303 if (i915_request_completed(rq))
1306 head = active_request(ce->timeline, rq)->head;
1307 head = intel_ring_wrap(ce->ring, head);
1309 /* Scrub the context image to prevent replaying the previous batch */
1310 restore_default_state(ce, engine);
1311 __execlists_update_reg_state(ce, engine, head);
1313 /* We've switched away, so this should be a no-op, but intent matters */
1314 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1317 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
1319 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1320 ce->runtime.num_underflow += dt < 0;
1321 ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
1325 static void intel_context_update_runtime(struct intel_context *ce)
1330 if (intel_context_is_barrier(ce))
1333 old = ce->runtime.last;
1334 ce->runtime.last = intel_context_get_runtime(ce);
1335 dt = ce->runtime.last - old;
1337 if (unlikely(dt <= 0)) {
1338 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1339 old, ce->runtime.last, dt);
1340 st_update_runtime_underflow(ce, dt);
1344 ewma_runtime_add(&ce->runtime.avg, dt);
1345 ce->runtime.total += dt;
1348 static inline struct intel_engine_cs *
1349 __execlists_schedule_in(struct i915_request *rq)
1351 struct intel_engine_cs * const engine = rq->engine;
1352 struct intel_context * const ce = rq->context;
1354 intel_context_get(ce);
1356 if (unlikely(intel_context_is_banned(ce)))
1357 reset_active(rq, engine);
1359 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1360 execlists_check_context(ce, engine);
1363 /* Use a fixed tag for OA and friends */
1364 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
1365 ce->lrc.ccid = ce->tag;
1367 /* We don't need a strict matching tag, just different values */
1368 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
1370 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
1371 clear_bit(tag - 1, &engine->context_tag);
1372 ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32);
1374 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
1377 ce->lrc.ccid |= engine->execlists.ccid;
1379 __intel_gt_pm_get(engine->gt);
1380 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
1381 intel_engine_context_in(engine);
1386 static inline struct i915_request *
1387 execlists_schedule_in(struct i915_request *rq, int idx)
1389 struct intel_context * const ce = rq->context;
1390 struct intel_engine_cs *old;
1392 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1393 trace_i915_request_in(rq, idx);
1395 old = READ_ONCE(ce->inflight);
1398 WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
1401 } while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1403 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
1404 return i915_request_get(rq);
1407 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1409 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1410 struct i915_request *next = READ_ONCE(ve->request);
1412 if (next && next->execution_mask & ~rq->execution_mask)
1413 tasklet_schedule(&ve->base.execlists.tasklet);
1417 __execlists_schedule_out(struct i915_request *rq,
1418 struct intel_engine_cs * const engine,
1421 struct intel_context * const ce = rq->context;
1424 * NB process_csb() is not under the engine->active.lock and hence
1425 * schedule_out can race with schedule_in meaning that we should
1426 * refrain from doing non-trivial work here.
1430 * If we have just completed this context, the engine may now be
1431 * idle and we want to re-enter powersaving.
1433 if (list_is_last_rcu(&rq->link, &ce->timeline->requests) &&
1434 i915_request_completed(rq))
1435 intel_engine_add_retire(engine, ce->timeline);
1437 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
1438 ccid &= GEN12_MAX_CONTEXT_HW_ID;
1439 if (ccid < BITS_PER_LONG) {
1440 GEM_BUG_ON(ccid == 0);
1441 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
1442 set_bit(ccid - 1, &engine->context_tag);
1445 intel_context_update_runtime(ce);
1446 intel_engine_context_out(engine);
1447 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1448 intel_gt_pm_put_async(engine->gt);
1451 * If this is part of a virtual engine, its next request may
1452 * have been blocked waiting for access to the active context.
1453 * We have to kick all the siblings again in case we need to
1454 * switch (e.g. the next request is not runnable on this
1455 * engine). Hopefully, we will already have submitted the next
1456 * request before the tasklet runs and do not need to rebuild
1457 * each virtual tree and kick everyone again.
1459 if (ce->engine != engine)
1460 kick_siblings(rq, ce);
1462 intel_context_put(ce);
1466 execlists_schedule_out(struct i915_request *rq)
1468 struct intel_context * const ce = rq->context;
1469 struct intel_engine_cs *cur, *old;
1472 trace_i915_request_out(rq);
1474 ccid = rq->context->lrc.ccid;
1475 old = READ_ONCE(ce->inflight);
1477 cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
1478 while (!try_cmpxchg(&ce->inflight, &old, cur));
1480 __execlists_schedule_out(rq, old, ccid);
1482 i915_request_put(rq);
1485 static u64 execlists_update_context(struct i915_request *rq)
1487 struct intel_context *ce = rq->context;
1488 u64 desc = ce->lrc.desc;
1492 * WaIdleLiteRestore:bdw,skl
1494 * We should never submit the context with the same RING_TAIL twice
1495 * just in case we submit an empty ring, which confuses the HW.
1497 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
1498 * the normal request to be able to always advance the RING_TAIL on
1499 * subsequent resubmissions (for lite restore). Should that fail us,
1500 * and we try and submit the same tail again, force the context
1503 * If we need to return to a preempted context, we need to skip the
1504 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
1505 * HW has a tendency to ignore us rewinding the TAIL to the end of
1506 * an earlier request.
1508 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
1509 prev = rq->ring->tail;
1510 tail = intel_ring_set_tail(rq->ring, rq->tail);
1511 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1512 desc |= CTX_DESC_FORCE_RESTORE;
1513 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
1514 rq->tail = rq->wa_tail;
1517 * Make sure the context image is complete before we submit it to HW.
1519 * Ostensibly, writes (including the WCB) should be flushed prior to
1520 * an uncached write such as our mmio register access, the empirical
1521 * evidence (esp. on Braswell) suggests that the WC write into memory
1522 * may not be visible to the HW prior to the completion of the UC
1523 * register write and that we may begin execution from the context
1524 * before its image is complete leading to invalid PD chasing.
1528 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
1532 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
1534 if (execlists->ctrl_reg) {
1535 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
1536 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
1538 writel(upper_32_bits(desc), execlists->submit_reg);
1539 writel(lower_32_bits(desc), execlists->submit_reg);
1543 static __maybe_unused char *
1544 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
1549 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
1551 rq->context->lrc.ccid,
1552 rq->fence.context, rq->fence.seqno,
1553 i915_request_completed(rq) ? "!" :
1554 i915_request_started(rq) ? "*" :
1561 static __maybe_unused void
1562 trace_ports(const struct intel_engine_execlists *execlists,
1564 struct i915_request * const *ports)
1566 const struct intel_engine_cs *engine =
1567 container_of(execlists, typeof(*engine), execlists);
1568 char __maybe_unused p0[40], p1[40];
1573 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
1574 dump_port(p0, sizeof(p0), "", ports[0]),
1575 dump_port(p1, sizeof(p1), ", ", ports[1]));
1579 reset_in_progress(const struct intel_engine_execlists *execlists)
1581 return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1584 static __maybe_unused bool
1585 assert_pending_valid(const struct intel_engine_execlists *execlists,
1588 struct intel_engine_cs *engine =
1589 container_of(execlists, typeof(*engine), execlists);
1590 struct i915_request * const *port, *rq;
1591 struct intel_context *ce = NULL;
1592 bool sentinel = false;
1595 trace_ports(execlists, msg, execlists->pending);
1597 /* We may be messing around with the lists during reset, lalala */
1598 if (reset_in_progress(execlists))
1601 if (!execlists->pending[0]) {
1602 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
1607 if (execlists->pending[execlists_num_ports(execlists)]) {
1608 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
1609 engine->name, execlists_num_ports(execlists));
1613 for (port = execlists->pending; (rq = *port); port++) {
1614 unsigned long flags;
1617 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
1618 GEM_BUG_ON(!i915_request_is_active(rq));
1620 if (ce == rq->context) {
1621 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
1623 ce->timeline->fence_context,
1624 port - execlists->pending);
1629 if (ccid == ce->lrc.ccid) {
1630 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
1632 ccid, ce->timeline->fence_context,
1633 port - execlists->pending);
1636 ccid = ce->lrc.ccid;
1639 * Sentinels are supposed to be lonely so they flush the
1640 * current exection off the HW. Check that they are the
1641 * only request in the pending submission.
1644 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
1646 ce->timeline->fence_context,
1647 port - execlists->pending);
1651 sentinel = i915_request_has_sentinel(rq);
1652 if (sentinel && port != execlists->pending) {
1653 GEM_TRACE_ERR("%s: sentinel context:%llx not in prime position[%zd]\n",
1655 ce->timeline->fence_context,
1656 port - execlists->pending);
1660 /* Hold tightly onto the lock to prevent concurrent retires! */
1661 if (!spin_trylock_irqsave(&rq->lock, flags))
1664 if (i915_request_completed(rq))
1667 if (i915_active_is_idle(&ce->active) &&
1668 !intel_context_is_barrier(ce)) {
1669 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
1671 ce->timeline->fence_context,
1672 port - execlists->pending);
1677 if (!i915_vma_is_pinned(ce->state)) {
1678 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
1680 ce->timeline->fence_context,
1681 port - execlists->pending);
1686 if (!i915_vma_is_pinned(ce->ring->vma)) {
1687 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
1689 ce->timeline->fence_context,
1690 port - execlists->pending);
1696 spin_unlock_irqrestore(&rq->lock, flags);
1704 static void execlists_submit_ports(struct intel_engine_cs *engine)
1706 struct intel_engine_execlists *execlists = &engine->execlists;
1709 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
1712 * We can skip acquiring intel_runtime_pm_get() here as it was taken
1713 * on our behalf by the request (see i915_gem_mark_busy()) and it will
1714 * not be relinquished until the device is idle (see
1715 * i915_gem_idle_work_handler()). As a precaution, we make sure
1716 * that all ELSP are drained i.e. we have processed the CSB,
1717 * before allowing ourselves to idle and calling intel_runtime_pm_put().
1719 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1722 * ELSQ note: the submit queue is not cleared after being submitted
1723 * to the HW so we need to make sure we always clean it up. This is
1724 * currently ensured by the fact that we always write the same number
1725 * of elsq entries, keep this in mind before changing the loop below.
1727 for (n = execlists_num_ports(execlists); n--; ) {
1728 struct i915_request *rq = execlists->pending[n];
1730 write_desc(execlists,
1731 rq ? execlists_update_context(rq) : 0,
1735 /* we need to manually load the submit queue */
1736 if (execlists->ctrl_reg)
1737 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1740 static bool ctx_single_port_submission(const struct intel_context *ce)
1742 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1743 intel_context_force_single_submission(ce));
1746 static bool can_merge_ctx(const struct intel_context *prev,
1747 const struct intel_context *next)
1752 if (ctx_single_port_submission(prev))
1758 static unsigned long i915_request_flags(const struct i915_request *rq)
1760 return READ_ONCE(rq->fence.flags);
1763 static bool can_merge_rq(const struct i915_request *prev,
1764 const struct i915_request *next)
1766 GEM_BUG_ON(prev == next);
1767 GEM_BUG_ON(!assert_priority_queue(prev, next));
1770 * We do not submit known completed requests. Therefore if the next
1771 * request is already completed, we can pretend to merge it in
1772 * with the previous context (and we will skip updating the ELSP
1773 * and tracking). Thus hopefully keeping the ELSP full with active
1774 * contexts, despite the best efforts of preempt-to-busy to confuse
1777 if (i915_request_completed(next))
1780 if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) &
1781 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
1782 BIT(I915_FENCE_FLAG_SENTINEL))))
1785 if (!can_merge_ctx(prev->context, next->context))
1788 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
1792 static void virtual_update_register_offsets(u32 *regs,
1793 struct intel_engine_cs *engine)
1795 set_offsets(regs, reg_offsets(engine), engine, false);
1798 static bool virtual_matches(const struct virtual_engine *ve,
1799 const struct i915_request *rq,
1800 const struct intel_engine_cs *engine)
1802 const struct intel_engine_cs *inflight;
1804 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1808 * We track when the HW has completed saving the context image
1809 * (i.e. when we have seen the final CS event switching out of
1810 * the context) and must not overwrite the context image before
1811 * then. This restricts us to only using the active engine
1812 * while the previous virtualized request is inflight (so
1813 * we reuse the register offsets). This is a very small
1814 * hystersis on the greedy seelction algorithm.
1816 inflight = intel_context_inflight(&ve->context);
1817 if (inflight && inflight != engine)
1823 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve)
1826 * All the outstanding signals on ve->siblings[0] must have
1827 * been completed, just pending the interrupt handler. As those
1828 * signals still refer to the old sibling (via rq->engine), we must
1829 * transfer those to the old irq_worker to keep our locking
1832 intel_engine_transfer_stale_breadcrumbs(ve->siblings[0], &ve->context);
1835 #define for_each_waiter(p__, rq__) \
1836 list_for_each_entry_lockless(p__, \
1837 &(rq__)->sched.waiters_list, \
1840 #define for_each_signaler(p__, rq__) \
1841 list_for_each_entry_rcu(p__, \
1842 &(rq__)->sched.signalers_list, \
1845 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1850 * We want to move the interrupted request to the back of
1851 * the round-robin list (i.e. its priority level), but
1852 * in doing so, we must then move all requests that were in
1853 * flight and were waiting for the interrupted request to
1854 * be run after it again.
1857 struct i915_dependency *p;
1859 GEM_BUG_ON(i915_request_is_active(rq));
1860 list_move_tail(&rq->sched.link, pl);
1862 for_each_waiter(p, rq) {
1863 struct i915_request *w =
1864 container_of(p->waiter, typeof(*w), sched);
1866 if (p->flags & I915_DEPENDENCY_WEAK)
1869 /* Leave semaphores spinning on the other engines */
1870 if (w->engine != rq->engine)
1873 /* No waiter should start before its signaler */
1874 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1875 i915_request_started(w) &&
1876 !i915_request_completed(rq));
1878 GEM_BUG_ON(i915_request_is_active(w));
1879 if (!i915_request_is_ready(w))
1882 if (rq_prio(w) < rq_prio(rq))
1885 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1886 list_move_tail(&w->sched.link, &list);
1889 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1893 static void defer_active(struct intel_engine_cs *engine)
1895 struct i915_request *rq;
1897 rq = __unwind_incomplete_requests(engine);
1901 defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1905 need_timeslice(const struct intel_engine_cs *engine,
1906 const struct i915_request *rq,
1907 const struct rb_node *rb)
1911 if (!intel_engine_has_timeslices(engine))
1914 hint = engine->execlists.queue_priority_hint;
1917 const struct virtual_engine *ve =
1918 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1919 const struct intel_engine_cs *inflight =
1920 intel_context_inflight(&ve->context);
1922 if (!inflight || inflight == engine) {
1923 struct i915_request *next;
1926 next = READ_ONCE(ve->request);
1928 hint = max(hint, rq_prio(next));
1933 if (!list_is_last(&rq->sched.link, &engine->active.requests))
1934 hint = max(hint, rq_prio(list_next_entry(rq, sched.link)));
1936 GEM_BUG_ON(hint >= I915_PRIORITY_UNPREEMPTABLE);
1937 return hint >= effective_prio(rq);
1941 timeslice_yield(const struct intel_engine_execlists *el,
1942 const struct i915_request *rq)
1945 * Once bitten, forever smitten!
1947 * If the active context ever busy-waited on a semaphore,
1948 * it will be treated as a hog until the end of its timeslice (i.e.
1949 * until it is scheduled out and replaced by a new submission,
1950 * possibly even its own lite-restore). The HW only sends an interrupt
1951 * on the first miss, and we do know if that semaphore has been
1952 * signaled, or even if it is now stuck on another semaphore. Play
1953 * safe, yield if it might be stuck -- it will be given a fresh
1954 * timeslice in the near future.
1956 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1960 timeslice_expired(const struct intel_engine_execlists *el,
1961 const struct i915_request *rq)
1963 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1967 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
1969 if (list_is_last(&rq->sched.link, &engine->active.requests))
1972 return rq_prio(list_next_entry(rq, sched.link));
1975 static inline unsigned long
1976 timeslice(const struct intel_engine_cs *engine)
1978 return READ_ONCE(engine->props.timeslice_duration_ms);
1981 static unsigned long active_timeslice(const struct intel_engine_cs *engine)
1983 const struct intel_engine_execlists *execlists = &engine->execlists;
1984 const struct i915_request *rq = *execlists->active;
1986 if (!rq || i915_request_completed(rq))
1989 if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq))
1992 return timeslice(engine);
1995 static void set_timeslice(struct intel_engine_cs *engine)
1997 unsigned long duration;
1999 if (!intel_engine_has_timeslices(engine))
2002 duration = active_timeslice(engine);
2003 ENGINE_TRACE(engine, "bump timeslicing, interval:%lu", duration);
2005 set_timer_ms(&engine->execlists.timer, duration);
2008 static void start_timeslice(struct intel_engine_cs *engine, int prio)
2010 struct intel_engine_execlists *execlists = &engine->execlists;
2011 unsigned long duration;
2013 if (!intel_engine_has_timeslices(engine))
2016 WRITE_ONCE(execlists->switch_priority_hint, prio);
2017 if (prio == INT_MIN)
2020 if (timer_pending(&execlists->timer))
2023 duration = timeslice(engine);
2024 ENGINE_TRACE(engine,
2025 "start timeslicing, prio:%d, interval:%lu",
2028 set_timer_ms(&execlists->timer, duration);
2031 static void record_preemption(struct intel_engine_execlists *execlists)
2033 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
2036 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
2037 const struct i915_request *rq)
2042 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
2043 if (unlikely(intel_context_is_banned(rq->context)))
2046 return READ_ONCE(engine->props.preempt_timeout_ms);
2049 static void set_preempt_timeout(struct intel_engine_cs *engine,
2050 const struct i915_request *rq)
2052 if (!intel_engine_has_preempt_reset(engine))
2055 set_timer_ms(&engine->execlists.preempt,
2056 active_preempt_timeout(engine, rq));
2059 static inline void clear_ports(struct i915_request **ports, int count)
2061 memset_p((void **)ports, NULL, count);
2064 static void execlists_dequeue(struct intel_engine_cs *engine)
2066 struct intel_engine_execlists * const execlists = &engine->execlists;
2067 struct i915_request **port = execlists->pending;
2068 struct i915_request ** const last_port = port + execlists->port_mask;
2069 struct i915_request * const *active;
2070 struct i915_request *last;
2072 bool submit = false;
2075 * Hardware submission is through 2 ports. Conceptually each port
2076 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
2077 * static for a context, and unique to each, so we only execute
2078 * requests belonging to a single context from each ring. RING_HEAD
2079 * is maintained by the CS in the context image, it marks the place
2080 * where it got up to last time, and through RING_TAIL we tell the CS
2081 * where we want to execute up to this time.
2083 * In this list the requests are in order of execution. Consecutive
2084 * requests from the same context are adjacent in the ringbuffer. We
2085 * can combine these requests into a single RING_TAIL update:
2087 * RING_HEAD...req1...req2
2089 * since to execute req2 the CS must first execute req1.
2091 * Our goal then is to point each port to the end of a consecutive
2092 * sequence of requests as being the most optimal (fewest wake ups
2093 * and context switches) submission.
2096 for (rb = rb_first_cached(&execlists->virtual); rb; ) {
2097 struct virtual_engine *ve =
2098 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2099 struct i915_request *rq = READ_ONCE(ve->request);
2101 if (!rq) { /* lazily cleanup after another engine handled rq */
2102 rb_erase_cached(rb, &execlists->virtual);
2104 rb = rb_first_cached(&execlists->virtual);
2108 if (!virtual_matches(ve, rq, engine)) {
2117 * If the queue is higher priority than the last
2118 * request in the currently active context, submit afresh.
2119 * We will resubmit again afterwards in case we need to split
2120 * the active context to interject the preemption request,
2121 * i.e. we will retrigger preemption following the ack in case
2124 active = READ_ONCE(execlists->active);
2127 * In theory we can skip over completed contexts that have not
2128 * yet been processed by events (as those events are in flight):
2130 * while ((last = *active) && i915_request_completed(last))
2133 * However, the GPU cannot handle this as it will ultimately
2134 * find itself trying to jump back into a context it has just
2135 * completed and barf.
2138 if ((last = *active)) {
2139 if (need_preempt(engine, last, rb)) {
2140 if (i915_request_completed(last)) {
2141 tasklet_hi_schedule(&execlists->tasklet);
2145 ENGINE_TRACE(engine,
2146 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
2147 last->fence.context,
2149 last->sched.attr.priority,
2150 execlists->queue_priority_hint);
2151 record_preemption(execlists);
2154 * Don't let the RING_HEAD advance past the breadcrumb
2155 * as we unwind (and until we resubmit) so that we do
2156 * not accidentally tell it to go backwards.
2158 ring_set_paused(engine, 1);
2161 * Note that we have not stopped the GPU at this point,
2162 * so we are unwinding the incomplete requests as they
2163 * remain inflight and so by the time we do complete
2164 * the preemption, some of the unwound requests may
2167 __unwind_incomplete_requests(engine);
2170 } else if (need_timeslice(engine, last, rb) &&
2171 timeslice_expired(execlists, last)) {
2172 if (i915_request_completed(last)) {
2173 tasklet_hi_schedule(&execlists->tasklet);
2177 ENGINE_TRACE(engine,
2178 "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
2179 last->fence.context,
2181 last->sched.attr.priority,
2182 execlists->queue_priority_hint,
2183 yesno(timeslice_yield(execlists, last)));
2185 ring_set_paused(engine, 1);
2186 defer_active(engine);
2189 * Unlike for preemption, if we rewind and continue
2190 * executing the same context as previously active,
2191 * the order of execution will remain the same and
2192 * the tail will only advance. We do not need to
2193 * force a full context restore, as a lite-restore
2194 * is sufficient to resample the monotonic TAIL.
2196 * If we switch to any other context, similarly we
2197 * will not rewind TAIL of current context, and
2198 * normal save/restore will preserve state and allow
2199 * us to later continue executing the same request.
2204 * Otherwise if we already have a request pending
2205 * for execution after the current one, we can
2206 * just wait until the next CS event before
2207 * queuing more. In either case we will force a
2208 * lite-restore preemption event, but if we wait
2209 * we hopefully coalesce several updates into a single
2212 if (!list_is_last(&last->sched.link,
2213 &engine->active.requests)) {
2215 * Even if ELSP[1] is occupied and not worthy
2216 * of timeslices, our queue might be.
2218 start_timeslice(engine, queue_prio(execlists));
2224 while (rb) { /* XXX virtual is always taking precedence */
2225 struct virtual_engine *ve =
2226 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2227 struct i915_request *rq;
2229 spin_lock(&ve->base.active.lock);
2232 if (unlikely(!rq)) { /* lost the race to a sibling */
2233 spin_unlock(&ve->base.active.lock);
2234 rb_erase_cached(rb, &execlists->virtual);
2236 rb = rb_first_cached(&execlists->virtual);
2240 GEM_BUG_ON(rq != ve->request);
2241 GEM_BUG_ON(rq->engine != &ve->base);
2242 GEM_BUG_ON(rq->context != &ve->context);
2244 if (rq_prio(rq) >= queue_prio(execlists)) {
2245 if (!virtual_matches(ve, rq, engine)) {
2246 spin_unlock(&ve->base.active.lock);
2251 if (last && !can_merge_rq(last, rq)) {
2252 spin_unlock(&ve->base.active.lock);
2253 start_timeslice(engine, rq_prio(rq));
2254 return; /* leave this for another sibling */
2257 ENGINE_TRACE(engine,
2258 "virtual rq=%llx:%lld%s, new engine? %s\n",
2261 i915_request_completed(rq) ? "!" :
2262 i915_request_started(rq) ? "*" :
2264 yesno(engine != ve->siblings[0]));
2266 WRITE_ONCE(ve->request, NULL);
2267 WRITE_ONCE(ve->base.execlists.queue_priority_hint,
2269 rb_erase_cached(rb, &execlists->virtual);
2272 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2273 WRITE_ONCE(rq->engine, engine);
2275 if (engine != ve->siblings[0]) {
2276 u32 *regs = ve->context.lrc_reg_state;
2279 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
2281 if (!intel_engine_has_relative_mmio(engine))
2282 virtual_update_register_offsets(regs,
2285 if (!list_empty(&ve->context.signals))
2286 virtual_xfer_breadcrumbs(ve);
2289 * Move the bound engine to the top of the list
2290 * for future execution. We then kick this
2291 * tasklet first before checking others, so that
2292 * we preferentially reuse this set of bound
2295 for (n = 1; n < ve->num_siblings; n++) {
2296 if (ve->siblings[n] == engine) {
2297 swap(ve->siblings[n],
2303 GEM_BUG_ON(ve->siblings[0] != engine);
2306 if (__i915_request_submit(rq)) {
2310 i915_request_put(rq);
2313 * Hmm, we have a bunch of virtual engine requests,
2314 * but the first one was already completed (thanks
2315 * preempt-to-busy!). Keep looking at the veng queue
2316 * until we have no more relevant requests (i.e.
2317 * the normal submit queue has higher priority).
2320 spin_unlock(&ve->base.active.lock);
2321 rb = rb_first_cached(&execlists->virtual);
2326 spin_unlock(&ve->base.active.lock);
2330 while ((rb = rb_first_cached(&execlists->queue))) {
2331 struct i915_priolist *p = to_priolist(rb);
2332 struct i915_request *rq, *rn;
2335 priolist_for_each_request_consume(rq, rn, p, i) {
2339 * Can we combine this request with the current port?
2340 * It has to be the same context/ringbuffer and not
2341 * have any exceptions (e.g. GVT saying never to
2342 * combine contexts).
2344 * If we can combine the requests, we can execute both
2345 * by updating the RING_TAIL to point to the end of the
2346 * second request, and so we never need to tell the
2347 * hardware about the first.
2349 if (last && !can_merge_rq(last, rq)) {
2351 * If we are on the second port and cannot
2352 * combine this request with the last, then we
2355 if (port == last_port)
2359 * We must not populate both ELSP[] with the
2360 * same LRCA, i.e. we must submit 2 different
2361 * contexts if we submit 2 ELSP.
2363 if (last->context == rq->context)
2366 if (i915_request_has_sentinel(last))
2370 * If GVT overrides us we only ever submit
2371 * port[0], leaving port[1] empty. Note that we
2372 * also have to be careful that we don't queue
2373 * the same context (even though a different
2374 * request) to the second port.
2376 if (ctx_single_port_submission(last->context) ||
2377 ctx_single_port_submission(rq->context))
2383 if (__i915_request_submit(rq)) {
2385 *port = execlists_schedule_in(last, port - execlists->pending);
2391 !can_merge_ctx(last->context,
2394 i915_seqno_passed(last->fence.seqno,
2402 rb_erase_cached(&p->node, &execlists->queue);
2403 i915_priolist_free(p);
2408 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
2410 * We choose the priority hint such that if we add a request of greater
2411 * priority than this, we kick the submission tasklet to decide on
2412 * the right order of submitting the requests to hardware. We must
2413 * also be prepared to reorder requests as they are in-flight on the
2414 * HW. We derive the priority hint then as the first "hole" in
2415 * the HW submission ports and if there are no available slots,
2416 * the priority of the lowest executing request, i.e. last.
2418 * When we do receive a higher priority request ready to run from the
2419 * user, see queue_request(), the priority hint is bumped to that
2420 * request triggering preemption on the next dequeue (or subsequent
2421 * interrupt for secondary ports).
2423 execlists->queue_priority_hint = queue_prio(execlists);
2426 *port = execlists_schedule_in(last, port - execlists->pending);
2427 execlists->switch_priority_hint =
2428 switch_prio(engine, *execlists->pending);
2431 * Skip if we ended up with exactly the same set of requests,
2432 * e.g. trying to timeslice a pair of ordered contexts
2434 if (!memcmp(active, execlists->pending,
2435 (port - execlists->pending + 1) * sizeof(*port))) {
2437 execlists_schedule_out(fetch_and_zero(port));
2438 while (port-- != execlists->pending);
2442 clear_ports(port + 1, last_port - port);
2444 WRITE_ONCE(execlists->yield, -1);
2445 set_preempt_timeout(engine, *active);
2446 execlists_submit_ports(engine);
2449 ring_set_paused(engine, 0);
2454 cancel_port_requests(struct intel_engine_execlists * const execlists)
2456 struct i915_request * const *port;
2458 for (port = execlists->pending; *port; port++)
2459 execlists_schedule_out(*port);
2460 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2462 /* Mark the end of active before we overwrite *active */
2463 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
2464 execlists_schedule_out(*port);
2465 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
2467 smp_wmb(); /* complete the seqlock for execlists_active() */
2468 WRITE_ONCE(execlists->active, execlists->inflight);
2472 invalidate_csb_entries(const u32 *first, const u32 *last)
2474 clflush((void *)first);
2475 clflush((void *)last);
2479 * Starting with Gen12, the status has a new format:
2481 * bit 0: switched to new queue
2483 * bit 2: semaphore wait mode (poll or signal), only valid when
2484 * switch detail is set to "wait on semaphore"
2485 * bits 3-5: engine class
2486 * bits 6-11: engine instance
2487 * bits 12-14: reserved
2488 * bits 15-25: sw context id of the lrc the GT switched to
2489 * bits 26-31: sw counter of the lrc the GT switched to
2490 * bits 32-35: context switch detail
2492 * - 1: wait on sync flip
2493 * - 2: wait on vblank
2494 * - 3: wait on scanline
2495 * - 4: wait on semaphore
2496 * - 5: context preempted (not on SEMAPHORE_WAIT or
2499 * bits 37-43: wait detail (for switch detail 1 to 4)
2500 * bits 44-46: reserved
2501 * bits 47-57: sw context id of the lrc the GT switched away from
2502 * bits 58-63: sw counter of the lrc the GT switched away from
2505 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2507 u32 lower_dw = csb[0];
2508 u32 upper_dw = csb[1];
2509 bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
2510 bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
2511 bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
2514 * The context switch detail is not guaranteed to be 5 when a preemption
2515 * occurs, so we can't just check for that. The check below works for
2516 * all the cases we care about, including preemptions of WAIT
2517 * instructions and lite-restore. Preempt-to-idle via the CTRL register
2518 * would require some extra handling, but we don't support that.
2520 if (!ctx_away_valid || new_queue) {
2521 GEM_BUG_ON(!ctx_to_valid);
2526 * switch detail = 5 is covered by the case above and we do not expect a
2527 * context switch on an unsuccessful wait instruction since we always
2530 GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
2535 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2537 return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2540 static void process_csb(struct intel_engine_cs *engine)
2542 struct intel_engine_execlists * const execlists = &engine->execlists;
2543 const u32 * const buf = execlists->csb_status;
2544 const u8 num_entries = execlists->csb_size;
2548 * As we modify our execlists state tracking we require exclusive
2549 * access. Either we are inside the tasklet, or the tasklet is disabled
2550 * and we assume that is only inside the reset paths and so serialised.
2552 GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
2553 !reset_in_progress(execlists));
2554 GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2557 * Note that csb_write, csb_status may be either in HWSP or mmio.
2558 * When reading from the csb_write mmio register, we have to be
2559 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
2560 * the low 4bits. As it happens we know the next 4bits are always
2561 * zero and so we can simply masked off the low u8 of the register
2562 * and treat it identically to reading from the HWSP (without having
2563 * to use explicit shifting and masking, and probably bifurcating
2564 * the code to handle the legacy mmio read).
2566 head = execlists->csb_head;
2567 tail = READ_ONCE(*execlists->csb_write);
2568 if (unlikely(head == tail))
2572 * Hopefully paired with a wmb() in HW!
2574 * We must complete the read of the write pointer before any reads
2575 * from the CSB, so that we do not see stale values. Without an rmb
2576 * (lfence) the HW may speculatively perform the CSB[] reads *before*
2577 * we perform the READ_ONCE(*csb_write).
2581 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2585 if (++head == num_entries)
2589 * We are flying near dragons again.
2591 * We hold a reference to the request in execlist_port[]
2592 * but no more than that. We are operating in softirq
2593 * context and so cannot hold any mutex or sleep. That
2594 * prevents us stopping the requests we are processing
2595 * in port[] from being retired simultaneously (the
2596 * breadcrumb will be complete before we see the
2597 * context-switch). As we only hold the reference to the
2598 * request, any pointer chasing underneath the request
2599 * is subject to a potential use-after-free. Thus we
2600 * store all of the bookkeeping within port[] as
2601 * required, and avoid using unguarded pointers beneath
2602 * request itself. The same applies to the atomic
2606 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
2607 head, buf[2 * head + 0], buf[2 * head + 1]);
2609 if (INTEL_GEN(engine->i915) >= 12)
2610 promote = gen12_csb_parse(execlists, buf + 2 * head);
2612 promote = gen8_csb_parse(execlists, buf + 2 * head);
2614 struct i915_request * const *old = execlists->active;
2616 ring_set_paused(engine, 0);
2618 /* Point active to the new ELSP; prevent overwriting */
2619 WRITE_ONCE(execlists->active, execlists->pending);
2620 smp_wmb(); /* notify execlists_active() */
2622 /* cancel old inflight, prepare for switch */
2623 trace_ports(execlists, "preempted", old);
2625 execlists_schedule_out(*old++);
2627 /* switch pending to inflight */
2628 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2629 memcpy(execlists->inflight,
2631 execlists_num_ports(execlists) *
2632 sizeof(*execlists->pending));
2633 smp_wmb(); /* complete the seqlock */
2634 WRITE_ONCE(execlists->active, execlists->inflight);
2636 WRITE_ONCE(execlists->pending[0], NULL);
2638 GEM_BUG_ON(!*execlists->active);
2640 /* port0 completed, advanced to port1 */
2641 trace_ports(execlists, "completed", execlists->active);
2644 * We rely on the hardware being strongly
2645 * ordered, that the breadcrumb write is
2646 * coherent (visible from the CPU) before the
2647 * user interrupt is processed. One might assume
2648 * that the breadcrumb write being before the
2649 * user interrupt and the CS event for the context
2650 * switch would therefore be before the CS event
2653 if (GEM_SHOW_DEBUG() &&
2654 !i915_request_completed(*execlists->active)) {
2655 struct i915_request *rq = *execlists->active;
2656 const u32 *regs __maybe_unused =
2657 rq->context->lrc_reg_state;
2659 ENGINE_TRACE(engine,
2660 "context completed before request!\n");
2661 ENGINE_TRACE(engine,
2662 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
2663 ENGINE_READ(engine, RING_START),
2664 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
2665 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
2666 ENGINE_READ(engine, RING_CTL),
2667 ENGINE_READ(engine, RING_MI_MODE));
2668 ENGINE_TRACE(engine,
2669 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
2670 i915_ggtt_offset(rq->ring->vma),
2673 lower_32_bits(rq->fence.seqno),
2675 ENGINE_TRACE(engine,
2676 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
2677 regs[CTX_RING_START],
2678 regs[CTX_RING_HEAD],
2679 regs[CTX_RING_TAIL]);
2682 execlists_schedule_out(*execlists->active++);
2684 GEM_BUG_ON(execlists->active - execlists->inflight >
2685 execlists_num_ports(execlists));
2687 } while (head != tail);
2689 execlists->csb_head = head;
2690 set_timeslice(engine);
2693 * Gen11 has proven to fail wrt global observation point between
2694 * entry and tail update, failing on the ordering and thus
2695 * we see an old entry in the context status buffer.
2697 * Forcibly evict out entries for the next gpu csb update,
2698 * to increase the odds that we get a fresh entries with non
2699 * working hardware. The cost for doing so comes out mostly with
2700 * the wash as hardware, working or not, will need to do the
2701 * invalidation before.
2703 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2706 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2708 lockdep_assert_held(&engine->active.lock);
2709 if (!READ_ONCE(engine->execlists.pending[0])) {
2710 rcu_read_lock(); /* protect peeking at execlists->active */
2711 execlists_dequeue(engine);
2716 static void __execlists_hold(struct i915_request *rq)
2721 struct i915_dependency *p;
2723 if (i915_request_is_active(rq))
2724 __i915_request_unsubmit(rq);
2726 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2727 list_move_tail(&rq->sched.link, &rq->engine->active.hold);
2728 i915_request_set_hold(rq);
2729 RQ_TRACE(rq, "on hold\n");
2731 for_each_waiter(p, rq) {
2732 struct i915_request *w =
2733 container_of(p->waiter, typeof(*w), sched);
2735 /* Leave semaphores spinning on the other engines */
2736 if (w->engine != rq->engine)
2739 if (!i915_request_is_ready(w))
2742 if (i915_request_completed(w))
2745 if (i915_request_on_hold(w))
2748 list_move_tail(&w->sched.link, &list);
2751 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2755 static bool execlists_hold(struct intel_engine_cs *engine,
2756 struct i915_request *rq)
2758 spin_lock_irq(&engine->active.lock);
2760 if (i915_request_completed(rq)) { /* too late! */
2765 if (rq->engine != engine) { /* preempted virtual engine */
2766 struct virtual_engine *ve = to_virtual_engine(rq->engine);
2769 * intel_context_inflight() is only protected by virtue
2770 * of process_csb() being called only by the tasklet (or
2771 * directly from inside reset while the tasklet is suspended).
2772 * Assert that neither of those are allowed to run while we
2773 * poke at the request queues.
2775 GEM_BUG_ON(!reset_in_progress(&engine->execlists));
2778 * An unsubmitted request along a virtual engine will
2779 * remain on the active (this) engine until we are able
2780 * to process the context switch away (and so mark the
2781 * context as no longer in flight). That cannot have happened
2782 * yet, otherwise we would not be hanging!
2784 spin_lock(&ve->base.active.lock);
2785 GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
2786 GEM_BUG_ON(ve->request != rq);
2788 spin_unlock(&ve->base.active.lock);
2789 i915_request_put(rq);
2791 rq->engine = engine;
2795 * Transfer this request onto the hold queue to prevent it
2796 * being resumbitted to HW (and potentially completed) before we have
2797 * released it. Since we may have already submitted following
2798 * requests, we need to remove those as well.
2800 GEM_BUG_ON(i915_request_on_hold(rq));
2801 GEM_BUG_ON(rq->engine != engine);
2802 __execlists_hold(rq);
2803 GEM_BUG_ON(list_empty(&engine->active.hold));
2806 spin_unlock_irq(&engine->active.lock);
2810 static bool hold_request(const struct i915_request *rq)
2812 struct i915_dependency *p;
2813 bool result = false;
2816 * If one of our ancestors is on hold, we must also be on hold,
2817 * otherwise we will bypass it and execute before it.
2820 for_each_signaler(p, rq) {
2821 const struct i915_request *s =
2822 container_of(p->signaler, typeof(*s), sched);
2824 if (s->engine != rq->engine)
2827 result = i915_request_on_hold(s);
2836 static void __execlists_unhold(struct i915_request *rq)
2841 struct i915_dependency *p;
2843 RQ_TRACE(rq, "hold release\n");
2845 GEM_BUG_ON(!i915_request_on_hold(rq));
2846 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2848 i915_request_clear_hold(rq);
2849 list_move_tail(&rq->sched.link,
2850 i915_sched_lookup_priolist(rq->engine,
2852 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2854 /* Also release any children on this engine that are ready */
2855 for_each_waiter(p, rq) {
2856 struct i915_request *w =
2857 container_of(p->waiter, typeof(*w), sched);
2859 /* Propagate any change in error status */
2860 if (rq->fence.error)
2861 i915_request_set_error_once(w, rq->fence.error);
2863 if (w->engine != rq->engine)
2866 if (!i915_request_on_hold(w))
2869 /* Check that no other parents are also on hold */
2870 if (hold_request(w))
2873 list_move_tail(&w->sched.link, &list);
2876 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2880 static void execlists_unhold(struct intel_engine_cs *engine,
2881 struct i915_request *rq)
2883 spin_lock_irq(&engine->active.lock);
2886 * Move this request back to the priority queue, and all of its
2887 * children and grandchildren that were suspended along with it.
2889 __execlists_unhold(rq);
2891 if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2892 engine->execlists.queue_priority_hint = rq_prio(rq);
2893 tasklet_hi_schedule(&engine->execlists.tasklet);
2896 spin_unlock_irq(&engine->active.lock);
2899 struct execlists_capture {
2900 struct work_struct work;
2901 struct i915_request *rq;
2902 struct i915_gpu_coredump *error;
2905 static void execlists_capture_work(struct work_struct *work)
2907 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2908 const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2909 struct intel_engine_cs *engine = cap->rq->engine;
2910 struct intel_gt_coredump *gt = cap->error->gt;
2911 struct intel_engine_capture_vma *vma;
2913 /* Compress all the objects attached to the request, slow! */
2914 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2916 struct i915_vma_compress *compress =
2917 i915_vma_capture_prepare(gt);
2919 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2920 i915_vma_capture_finish(gt, compress);
2923 gt->simulated = gt->engine->simulated;
2924 cap->error->simulated = gt->simulated;
2926 /* Publish the error state, and announce it to the world */
2927 i915_error_state_store(cap->error);
2928 i915_gpu_coredump_put(cap->error);
2930 /* Return this request and all that depend upon it for signaling */
2931 execlists_unhold(engine, cap->rq);
2932 i915_request_put(cap->rq);
2937 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2939 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2940 struct execlists_capture *cap;
2942 cap = kmalloc(sizeof(*cap), gfp);
2946 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2950 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2951 if (!cap->error->gt)
2954 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2955 if (!cap->error->gt->engine)
2961 kfree(cap->error->gt);
2969 static struct i915_request *
2970 active_context(struct intel_engine_cs *engine, u32 ccid)
2972 const struct intel_engine_execlists * const el = &engine->execlists;
2973 struct i915_request * const *port, *rq;
2976 * Use the most recent result from process_csb(), but just in case
2977 * we trigger an error (via interrupt) before the first CS event has
2978 * been written, peek at the next submission.
2981 for (port = el->active; (rq = *port); port++) {
2982 if (rq->context->lrc.ccid == ccid) {
2983 ENGINE_TRACE(engine,
2984 "ccid found at active:%zd\n",
2990 for (port = el->pending; (rq = *port); port++) {
2991 if (rq->context->lrc.ccid == ccid) {
2992 ENGINE_TRACE(engine,
2993 "ccid found at pending:%zd\n",
2994 port - el->pending);
2999 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
3003 static u32 active_ccid(struct intel_engine_cs *engine)
3005 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
3008 static bool execlists_capture(struct intel_engine_cs *engine)
3010 struct execlists_capture *cap;
3012 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
3016 * We need to _quickly_ capture the engine state before we reset.
3017 * We are inside an atomic section (softirq) here and we are delaying
3018 * the forced preemption event.
3020 cap = capture_regs(engine);
3024 spin_lock_irq(&engine->active.lock);
3025 cap->rq = active_context(engine, active_ccid(engine));
3027 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
3028 cap->rq = i915_request_get_rcu(cap->rq);
3030 spin_unlock_irq(&engine->active.lock);
3035 * Remove the request from the execlists queue, and take ownership
3036 * of the request. We pass it to our worker who will _slowly_ compress
3037 * all the pages the _user_ requested for debugging their batch, after
3038 * which we return it to the queue for signaling.
3040 * By removing them from the execlists queue, we also remove the
3041 * requests from being processed by __unwind_incomplete_requests()
3042 * during the intel_engine_reset(), and so they will *not* be replayed
3045 * Note that because we have not yet reset the engine at this point,
3046 * it is possible for the request that we have identified as being
3047 * guilty, did in fact complete and we will then hit an arbitration
3048 * point allowing the outstanding preemption to succeed. The likelihood
3049 * of that is very low (as capturing of the engine registers should be
3050 * fast enough to run inside an irq-off atomic section!), so we will
3051 * simply hold that request accountable for being non-preemptible
3052 * long enough to force the reset.
3054 if (!execlists_hold(engine, cap->rq))
3057 INIT_WORK(&cap->work, execlists_capture_work);
3058 schedule_work(&cap->work);
3062 i915_request_put(cap->rq);
3064 i915_gpu_coredump_put(cap->error);
3069 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
3071 const unsigned int bit = I915_RESET_ENGINE + engine->id;
3072 unsigned long *lock = &engine->gt->reset.flags;
3074 if (!intel_has_reset_engine(engine->gt))
3077 if (test_and_set_bit(bit, lock))
3080 ENGINE_TRACE(engine, "reset for %s\n", msg);
3082 /* Mark this tasklet as disabled to avoid waiting for it to complete */
3083 tasklet_disable_nosync(&engine->execlists.tasklet);
3085 ring_set_paused(engine, 1); /* Freeze the current request in place */
3086 if (execlists_capture(engine))
3087 intel_engine_reset(engine, msg);
3089 ring_set_paused(engine, 0);
3091 tasklet_enable(&engine->execlists.tasklet);
3092 clear_and_wake_up_bit(bit, lock);
3095 static bool preempt_timeout(const struct intel_engine_cs *const engine)
3097 const struct timer_list *t = &engine->execlists.preempt;
3099 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
3102 if (!timer_expired(t))
3105 return READ_ONCE(engine->execlists.pending[0]);
3109 * Check the unread Context Status Buffers and manage the submission of new
3110 * contexts to the ELSP accordingly.
3112 static void execlists_submission_tasklet(unsigned long data)
3114 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
3115 bool timeout = preempt_timeout(engine);
3117 process_csb(engine);
3119 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
3120 engine->execlists.error_interrupt = 0;
3121 if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */
3122 execlists_reset(engine, "CS error");
3125 if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
3126 unsigned long flags;
3128 spin_lock_irqsave(&engine->active.lock, flags);
3129 __execlists_submission_tasklet(engine);
3130 spin_unlock_irqrestore(&engine->active.lock, flags);
3132 /* Recheck after serialising with direct-submission */
3133 if (unlikely(timeout && preempt_timeout(engine)))
3134 execlists_reset(engine, "preemption time out");
3138 static void __execlists_kick(struct intel_engine_execlists *execlists)
3140 /* Kick the tasklet for some interrupt coalescing and reset handling */
3141 tasklet_hi_schedule(&execlists->tasklet);
3144 #define execlists_kick(t, member) \
3145 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
3147 static void execlists_timeslice(struct timer_list *timer)
3149 execlists_kick(timer, timer);
3152 static void execlists_preempt(struct timer_list *timer)
3154 execlists_kick(timer, preempt);
3157 static void queue_request(struct intel_engine_cs *engine,
3158 struct i915_request *rq)
3160 GEM_BUG_ON(!list_empty(&rq->sched.link));
3161 list_add_tail(&rq->sched.link,
3162 i915_sched_lookup_priolist(engine, rq_prio(rq)));
3163 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3166 static void __submit_queue_imm(struct intel_engine_cs *engine)
3168 struct intel_engine_execlists * const execlists = &engine->execlists;
3170 if (reset_in_progress(execlists))
3171 return; /* defer until we restart the engine following reset */
3173 /* Hopefully we clear execlists->pending[] to let us through */
3174 if (READ_ONCE(execlists->pending[0]) &&
3175 tasklet_trylock(&execlists->tasklet)) {
3176 process_csb(engine);
3177 tasklet_unlock(&execlists->tasklet);
3180 __execlists_submission_tasklet(engine);
3183 static void submit_queue(struct intel_engine_cs *engine,
3184 const struct i915_request *rq)
3186 struct intel_engine_execlists *execlists = &engine->execlists;
3188 if (rq_prio(rq) <= execlists->queue_priority_hint)
3191 execlists->queue_priority_hint = rq_prio(rq);
3192 __submit_queue_imm(engine);
3195 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
3196 const struct i915_request *rq)
3198 GEM_BUG_ON(i915_request_on_hold(rq));
3199 return !list_empty(&engine->active.hold) && hold_request(rq);
3202 static void execlists_submit_request(struct i915_request *request)
3204 struct intel_engine_cs *engine = request->engine;
3205 unsigned long flags;
3207 /* Will be called from irq-context when using foreign fences. */
3208 spin_lock_irqsave(&engine->active.lock, flags);
3210 if (unlikely(ancestor_on_hold(engine, request))) {
3211 RQ_TRACE(request, "ancestor on hold\n");
3212 list_add_tail(&request->sched.link, &engine->active.hold);
3213 i915_request_set_hold(request);
3215 queue_request(engine, request);
3217 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
3218 GEM_BUG_ON(list_empty(&request->sched.link));
3220 submit_queue(engine, request);
3223 spin_unlock_irqrestore(&engine->active.lock, flags);
3226 static void __execlists_context_fini(struct intel_context *ce)
3228 intel_ring_put(ce->ring);
3229 i915_vma_put(ce->state);
3232 static void execlists_context_destroy(struct kref *kref)
3234 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3236 GEM_BUG_ON(!i915_active_is_idle(&ce->active));
3237 GEM_BUG_ON(intel_context_is_pinned(ce));
3240 __execlists_context_fini(ce);
3242 intel_context_fini(ce);
3243 intel_context_free(ce);
3247 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
3249 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3252 vaddr += engine->context_size;
3254 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
3258 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
3260 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3263 vaddr += engine->context_size;
3265 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
3266 drm_err_once(&engine->i915->drm,
3267 "%s context redzone overwritten!\n",
3271 static void execlists_context_unpin(struct intel_context *ce)
3273 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
3276 i915_gem_object_unpin_map(ce->state->obj);
3280 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
3282 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3283 MI_SRM_LRM_GLOBAL_GTT |
3285 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3286 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3287 CTX_TIMESTAMP * sizeof(u32);
3290 *cs++ = MI_LOAD_REGISTER_REG |
3291 MI_LRR_SOURCE_CS_MMIO |
3293 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3294 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3296 *cs++ = MI_LOAD_REGISTER_REG |
3297 MI_LRR_SOURCE_CS_MMIO |
3299 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3300 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3306 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
3308 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
3310 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3311 MI_SRM_LRM_GLOBAL_GTT |
3313 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3314 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3315 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
3322 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
3324 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
3326 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3327 MI_SRM_LRM_GLOBAL_GTT |
3329 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3330 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3331 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
3334 *cs++ = MI_LOAD_REGISTER_REG |
3335 MI_LRR_SOURCE_CS_MMIO |
3337 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3338 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
3344 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
3346 cs = gen12_emit_timestamp_wa(ce, cs);
3347 cs = gen12_emit_cmd_buf_wa(ce, cs);
3348 cs = gen12_emit_restore_scratch(ce, cs);
3354 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
3356 cs = gen12_emit_timestamp_wa(ce, cs);
3357 cs = gen12_emit_restore_scratch(ce, cs);
3362 static inline u32 context_wa_bb_offset(const struct intel_context *ce)
3364 return PAGE_SIZE * ce->wa_bb_page;
3367 static u32 *context_indirect_bb(const struct intel_context *ce)
3371 GEM_BUG_ON(!ce->wa_bb_page);
3373 ptr = ce->lrc_reg_state;
3374 ptr -= LRC_STATE_OFFSET; /* back to start of context image */
3375 ptr += context_wa_bb_offset(ce);
3381 setup_indirect_ctx_bb(const struct intel_context *ce,
3382 const struct intel_engine_cs *engine,
3383 u32 *(*emit)(const struct intel_context *, u32 *))
3385 u32 * const start = context_indirect_bb(ce);
3388 cs = emit(ce, start);
3389 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
3390 while ((unsigned long)cs % CACHELINE_BYTES)
3393 lrc_ring_setup_indirect_ctx(ce->lrc_reg_state, engine,
3394 i915_ggtt_offset(ce->state) +
3395 context_wa_bb_offset(ce),
3396 (cs - start) * sizeof(*cs));
3400 __execlists_update_reg_state(const struct intel_context *ce,
3401 const struct intel_engine_cs *engine,
3404 struct intel_ring *ring = ce->ring;
3405 u32 *regs = ce->lrc_reg_state;
3407 GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
3408 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
3410 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
3411 regs[CTX_RING_HEAD] = head;
3412 regs[CTX_RING_TAIL] = ring->tail;
3413 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
3416 if (engine->class == RENDER_CLASS) {
3417 regs[CTX_R_PWR_CLK_STATE] =
3418 intel_sseu_make_rpcs(engine->i915, &ce->sseu);
3420 i915_oa_init_reg_state(ce, engine);
3423 if (ce->wa_bb_page) {
3424 u32 *(*fn)(const struct intel_context *ce, u32 *cs);
3426 fn = gen12_emit_indirect_ctx_xcs;
3427 if (ce->engine->class == RENDER_CLASS)
3428 fn = gen12_emit_indirect_ctx_rcs;
3430 /* Mutually exclusive wrt to global indirect bb */
3431 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
3432 setup_indirect_ctx_bb(ce, engine, fn);
3437 __execlists_context_pin(struct intel_context *ce,
3438 struct intel_engine_cs *engine)
3442 GEM_BUG_ON(!ce->state);
3443 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3445 vaddr = i915_gem_object_pin_map(ce->state->obj,
3446 i915_coherent_map_type(engine->i915) |
3449 return PTR_ERR(vaddr);
3451 ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
3452 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
3453 __execlists_update_reg_state(ce, engine, ce->ring->tail);
3458 static int execlists_context_pin(struct intel_context *ce)
3460 return __execlists_context_pin(ce, ce->engine);
3463 static int execlists_context_alloc(struct intel_context *ce)
3465 return __execlists_context_alloc(ce, ce->engine);
3468 static void execlists_context_reset(struct intel_context *ce)
3470 CE_TRACE(ce, "reset\n");
3471 GEM_BUG_ON(!intel_context_is_pinned(ce));
3473 intel_ring_reset(ce->ring, ce->ring->emit);
3475 /* Scrub away the garbage */
3476 execlists_init_reg_state(ce->lrc_reg_state,
3477 ce, ce->engine, ce->ring, true);
3478 __execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3480 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
3483 static const struct intel_context_ops execlists_context_ops = {
3484 .alloc = execlists_context_alloc,
3486 .pin = execlists_context_pin,
3487 .unpin = execlists_context_unpin,
3489 .enter = intel_context_enter_engine,
3490 .exit = intel_context_exit_engine,
3492 .reset = execlists_context_reset,
3493 .destroy = execlists_context_destroy,
3496 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
3500 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
3501 if (!i915_request_timeline(rq)->has_initial_breadcrumb)
3504 cs = intel_ring_begin(rq, 6);
3509 * Check if we have been preempted before we even get started.
3511 * After this point i915_request_started() reports true, even if
3512 * we get preempted and so are no longer running.
3514 *cs++ = MI_ARB_CHECK;
3517 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3518 *cs++ = i915_request_timeline(rq)->hwsp_offset;
3520 *cs++ = rq->fence.seqno - 1;
3522 intel_ring_advance(rq, cs);
3524 /* Record the updated position of the request's payload */
3525 rq->infix = intel_ring_offset(rq, cs);
3527 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
3532 static int emit_pdps(struct i915_request *rq)
3534 const struct intel_engine_cs * const engine = rq->engine;
3535 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
3539 GEM_BUG_ON(intel_vgpu_active(rq->i915));
3542 * Beware ye of the dragons, this sequence is magic!
3544 * Small changes to this sequence can cause anything from
3545 * GPU hangs to forcewake errors and machine lockups!
3548 /* Flush any residual operations from the context load */
3549 err = engine->emit_flush(rq, EMIT_FLUSH);
3553 /* Magic required to prevent forcewake errors! */
3554 err = engine->emit_flush(rq, EMIT_INVALIDATE);
3558 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
3562 /* Ensure the LRI have landed before we invalidate & continue */
3563 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
3564 for (i = GEN8_3LVL_PDPES; i--; ) {
3565 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
3566 u32 base = engine->mmio_base;
3568 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
3569 *cs++ = upper_32_bits(pd_daddr);
3570 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
3571 *cs++ = lower_32_bits(pd_daddr);
3575 intel_ring_advance(rq, cs);
3580 static int execlists_request_alloc(struct i915_request *request)
3584 GEM_BUG_ON(!intel_context_is_pinned(request->context));
3587 * Flush enough space to reduce the likelihood of waiting after
3588 * we start building the request - in which case we will just
3589 * have to repeat work.
3591 request->reserved_space += EXECLISTS_REQUEST_SIZE;
3594 * Note that after this point, we have committed to using
3595 * this request as it is being used to both track the
3596 * state of engine initialisation and liveness of the
3597 * golden renderstate above. Think twice before you try
3598 * to cancel/unwind this request now.
3601 if (!i915_vm_is_4lvl(request->context->vm)) {
3602 ret = emit_pdps(request);
3607 /* Unconditionally invalidate GPU caches and TLBs. */
3608 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3612 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
3617 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
3618 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
3619 * but there is a slight complication as this is applied in WA batch where the
3620 * values are only initialized once so we cannot take register value at the
3621 * beginning and reuse it further; hence we save its value to memory, upload a
3622 * constant value with bit21 set and then we restore it back with the saved value.
3623 * To simplify the WA, a constant value is formed by using the default value
3624 * of this register. This shouldn't be a problem because we are only modifying
3625 * it for a short period and this batch in non-premptible. We can ofcourse
3626 * use additional instructions that read the actual value of the register
3627 * at that time and set our bit of interest but it makes the WA complicated.
3629 * This WA is also required for Gen9 so extracting as a function avoids
3633 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3635 /* NB no one else is allowed to scribble over scratch + 256! */
3636 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3637 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3638 *batch++ = intel_gt_scratch_offset(engine->gt,
3639 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3642 *batch++ = MI_LOAD_REGISTER_IMM(1);
3643 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3644 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
3646 batch = gen8_emit_pipe_control(batch,
3647 PIPE_CONTROL_CS_STALL |
3648 PIPE_CONTROL_DC_FLUSH_ENABLE,
3651 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3652 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3653 *batch++ = intel_gt_scratch_offset(engine->gt,
3654 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3661 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
3662 * initialized at the beginning and shared across all contexts but this field
3663 * helps us to have multiple batches at different offsets and select them based
3664 * on a criteria. At the moment this batch always start at the beginning of the page
3665 * and at this point we don't have multiple wa_ctx batch buffers.
3667 * The number of WA applied are not known at the beginning; we use this field
3668 * to return the no of DWORDS written.
3670 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
3671 * so it adds NOOPs as padding to make it cacheline aligned.
3672 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
3673 * makes a complete batch buffer.
3675 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3677 /* WaDisableCtxRestoreArbitration:bdw,chv */
3678 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3680 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3681 if (IS_BROADWELL(engine->i915))
3682 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3684 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
3685 /* Actual scratch location is at 128 bytes offset */
3686 batch = gen8_emit_pipe_control(batch,
3687 PIPE_CONTROL_FLUSH_L3 |
3688 PIPE_CONTROL_STORE_DATA_INDEX |
3689 PIPE_CONTROL_CS_STALL |
3690 PIPE_CONTROL_QW_WRITE,
3691 LRC_PPHWSP_SCRATCH_ADDR);
3693 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3695 /* Pad to end of cacheline */
3696 while ((unsigned long)batch % CACHELINE_BYTES)
3700 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
3701 * execution depends on the length specified in terms of cache lines
3702 * in the register CTX_RCS_INDIRECT_CTX
3713 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3715 GEM_BUG_ON(!count || count > 63);
3717 *batch++ = MI_LOAD_REGISTER_IMM(count);
3719 *batch++ = i915_mmio_reg_offset(lri->reg);
3720 *batch++ = lri->value;
3721 } while (lri++, --count);
3727 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3729 static const struct lri lri[] = {
3730 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
3732 COMMON_SLICE_CHICKEN2,
3733 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
3740 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
3741 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
3747 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
3748 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
3752 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3754 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
3755 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3757 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
3758 batch = gen8_emit_pipe_control(batch,
3759 PIPE_CONTROL_FLUSH_L3 |
3760 PIPE_CONTROL_STORE_DATA_INDEX |
3761 PIPE_CONTROL_CS_STALL |
3762 PIPE_CONTROL_QW_WRITE,
3763 LRC_PPHWSP_SCRATCH_ADDR);
3765 batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3767 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3768 if (HAS_POOLED_EU(engine->i915)) {
3770 * EU pool configuration is setup along with golden context
3771 * during context initialization. This value depends on
3772 * device type (2x6 or 3x6) and needs to be updated based
3773 * on which subslice is disabled especially for 2x6
3774 * devices, however it is safe to load default
3775 * configuration of 3x6 device instead of masking off
3776 * corresponding bits because HW ignores bits of a disabled
3777 * subslice and drops down to appropriate config. Please
3778 * see render_state_setup() in i915_gem_render_state.c for
3779 * possible configurations, to avoid duplication they are
3780 * not shown here again.
3782 *batch++ = GEN9_MEDIA_POOL_STATE;
3783 *batch++ = GEN9_MEDIA_POOL_ENABLE;
3784 *batch++ = 0x00777000;
3790 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3792 /* Pad to end of cacheline */
3793 while ((unsigned long)batch % CACHELINE_BYTES)
3800 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3805 * WaPipeControlBefore3DStateSamplePattern: cnl
3807 * Ensure the engine is idle prior to programming a
3808 * 3DSTATE_SAMPLE_PATTERN during a context restore.
3810 batch = gen8_emit_pipe_control(batch,
3811 PIPE_CONTROL_CS_STALL,
3814 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
3815 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
3816 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
3817 * confusing. Since gen8_emit_pipe_control() already advances the
3818 * batch by 6 dwords, we advance the other 10 here, completing a
3819 * cacheline. It's not clear if the workaround requires this padding
3820 * before other commands, or if it's just the regular padding we would
3821 * already have for the workaround bb, so leave it here for now.
3823 for (i = 0; i < 10; i++)
3826 /* Pad to end of cacheline */
3827 while ((unsigned long)batch % CACHELINE_BYTES)
3833 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
3835 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3837 struct drm_i915_gem_object *obj;
3838 struct i915_vma *vma;
3841 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3843 return PTR_ERR(obj);
3845 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3851 err = i915_ggtt_pin(vma, 0, PIN_HIGH);
3855 engine->wa_ctx.vma = vma;
3859 i915_gem_object_put(obj);
3863 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3865 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3868 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
3870 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3872 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3873 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
3875 wa_bb_func_t wa_bb_fn[2];
3877 void *batch, *batch_ptr;
3881 if (engine->class != RENDER_CLASS)
3884 switch (INTEL_GEN(engine->i915)) {
3889 wa_bb_fn[0] = gen10_init_indirectctx_bb;
3893 wa_bb_fn[0] = gen9_init_indirectctx_bb;
3897 wa_bb_fn[0] = gen8_init_indirectctx_bb;
3901 MISSING_CASE(INTEL_GEN(engine->i915));
3905 ret = lrc_setup_wa_ctx(engine);
3907 drm_dbg(&engine->i915->drm,
3908 "Failed to setup context WA page: %d\n", ret);
3912 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
3913 batch = batch_ptr = kmap_atomic(page);
3916 * Emit the two workaround batch buffers, recording the offset from the
3917 * start of the workaround batch buffer object for each and their
3920 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
3921 wa_bb[i]->offset = batch_ptr - batch;
3922 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
3923 CACHELINE_BYTES))) {
3928 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
3929 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
3932 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
3934 kunmap_atomic(batch);
3936 lrc_destroy_wa_ctx(engine);
3941 static void reset_csb_pointers(struct intel_engine_cs *engine)
3943 struct intel_engine_execlists * const execlists = &engine->execlists;
3944 const unsigned int reset_value = execlists->csb_size - 1;
3946 ring_set_paused(engine, 0);
3949 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
3950 * Bludgeon them with a mmio update to be sure.
3952 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
3953 0xffff << 16 | reset_value << 8 | reset_value);
3954 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
3957 * After a reset, the HW starts writing into CSB entry [0]. We
3958 * therefore have to set our HEAD pointer back one entry so that
3959 * the *first* entry we check is entry 0. To complicate this further,
3960 * as we don't wait for the first interrupt after reset, we have to
3961 * fake the HW write to point back to the last entry so that our
3962 * inline comparison of our cached head position against the last HW
3963 * write works even before the first interrupt.
3965 execlists->csb_head = reset_value;
3966 WRITE_ONCE(*execlists->csb_write, reset_value);
3967 wmb(); /* Make sure this is visible to HW (paranoia?) */
3969 invalidate_csb_entries(&execlists->csb_status[0],
3970 &execlists->csb_status[reset_value]);
3972 /* Once more for luck and our trusty paranoia */
3973 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
3974 0xffff << 16 | reset_value << 8 | reset_value);
3975 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
3977 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
3980 static void execlists_sanitize(struct intel_engine_cs *engine)
3983 * Poison residual state on resume, in case the suspend didn't!
3985 * We have to assume that across suspend/resume (or other loss
3986 * of control) that the contents of our pinned buffers has been
3987 * lost, replaced by garbage. Since this doesn't always happen,
3988 * let's poison such state so that we more quickly spot when
3989 * we falsely assume it has been preserved.
3991 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3992 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3994 reset_csb_pointers(engine);
3997 * The kernel_context HWSP is stored in the status_page. As above,
3998 * that may be lost on resume/initialisation, and so we need to
3999 * reset the value in the HWSP.
4001 intel_timeline_reset_seqno(engine->kernel_context->timeline);
4003 /* And scrub the dirty cachelines for the HWSP */
4004 clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
4007 static void enable_error_interrupt(struct intel_engine_cs *engine)
4011 engine->execlists.error_interrupt = 0;
4012 ENGINE_WRITE(engine, RING_EMR, ~0u);
4013 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
4015 status = ENGINE_READ(engine, RING_ESR);
4016 if (unlikely(status)) {
4017 drm_err(&engine->i915->drm,
4018 "engine '%s' resumed still in error: %08x\n",
4019 engine->name, status);
4020 __intel_gt_reset(engine->gt, engine->mask);
4024 * On current gen8+, we have 2 signals to play with
4026 * - I915_ERROR_INSTUCTION (bit 0)
4028 * Generate an error if the command parser encounters an invalid
4031 * This is a fatal error.
4035 * Generate an error on privilege violation (where the CP replaces
4036 * the instruction with a no-op). This also fires for writes into
4037 * read-only scratch pages.
4039 * This is a non-fatal error, parsing continues.
4041 * * there are a few others defined for odd HW that we do not use
4043 * Since CP_PRIV fires for cases where we have chosen to ignore the
4044 * error (as the HW is validating and suppressing the mistakes), we
4045 * only unmask the instruction error bit.
4047 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
4050 static void enable_execlists(struct intel_engine_cs *engine)
4054 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4056 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4058 if (INTEL_GEN(engine->i915) >= 11)
4059 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
4061 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
4062 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
4064 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4066 ENGINE_WRITE_FW(engine,
4068 i915_ggtt_offset(engine->status_page.vma));
4069 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
4071 enable_error_interrupt(engine);
4073 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
4076 static bool unexpected_starting_state(struct intel_engine_cs *engine)
4078 bool unexpected = false;
4080 if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
4081 drm_dbg(&engine->i915->drm,
4082 "STOP_RING still set in RING_MI_MODE\n");
4089 static int execlists_resume(struct intel_engine_cs *engine)
4091 intel_mocs_init_engine(engine);
4093 intel_engine_reset_breadcrumbs(engine);
4095 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
4096 struct drm_printer p = drm_debug_printer(__func__);
4098 intel_engine_dump(engine, &p, NULL);
4101 enable_execlists(engine);
4106 static void execlists_reset_prepare(struct intel_engine_cs *engine)
4108 struct intel_engine_execlists * const execlists = &engine->execlists;
4109 unsigned long flags;
4111 ENGINE_TRACE(engine, "depth<-%d\n",
4112 atomic_read(&execlists->tasklet.count));
4115 * Prevent request submission to the hardware until we have
4116 * completed the reset in i915_gem_reset_finish(). If a request
4117 * is completed by one engine, it may then queue a request
4118 * to a second via its execlists->tasklet *just* as we are
4119 * calling engine->resume() and also writing the ELSP.
4120 * Turning off the execlists->tasklet until the reset is over
4121 * prevents the race.
4123 __tasklet_disable_sync_once(&execlists->tasklet);
4124 GEM_BUG_ON(!reset_in_progress(execlists));
4126 /* And flush any current direct submission. */
4127 spin_lock_irqsave(&engine->active.lock, flags);
4128 spin_unlock_irqrestore(&engine->active.lock, flags);
4131 * We stop engines, otherwise we might get failed reset and a
4132 * dead gpu (on elk). Also as modern gpu as kbl can suffer
4133 * from system hang if batchbuffer is progressing when
4134 * the reset is issued, regardless of READY_TO_RESET ack.
4135 * Thus assume it is best to stop engines on all gens
4136 * where we have a gpu reset.
4138 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
4140 * FIXME: Wa for more modern gens needs to be validated
4142 ring_set_paused(engine, 1);
4143 intel_engine_stop_cs(engine);
4145 engine->execlists.reset_ccid = active_ccid(engine);
4148 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
4152 x = lrc_ring_mi_mode(engine);
4154 regs[x + 1] &= ~STOP_RING;
4155 regs[x + 1] |= STOP_RING << 16;
4159 static void __execlists_reset_reg_state(const struct intel_context *ce,
4160 const struct intel_engine_cs *engine)
4162 u32 *regs = ce->lrc_reg_state;
4164 __reset_stop_ring(regs, engine);
4167 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
4169 struct intel_engine_execlists * const execlists = &engine->execlists;
4170 struct intel_context *ce;
4171 struct i915_request *rq;
4174 mb(); /* paranoia: read the CSB pointers from after the reset */
4175 clflush(execlists->csb_write);
4178 process_csb(engine); /* drain preemption events */
4180 /* Following the reset, we need to reload the CSB read/write pointers */
4181 reset_csb_pointers(engine);
4184 * Save the currently executing context, even if we completed
4185 * its request, it was still running at the time of the
4186 * reset and will have been clobbered.
4188 rq = active_context(engine, engine->execlists.reset_ccid);
4193 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
4195 if (i915_request_completed(rq)) {
4196 /* Idle context; tidy up the ring so we can restart afresh */
4197 head = intel_ring_wrap(ce->ring, rq->tail);
4201 /* We still have requests in-flight; the engine should be active */
4202 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
4204 /* Context has requests still in-flight; it should not be idle! */
4205 GEM_BUG_ON(i915_active_is_idle(&ce->active));
4207 rq = active_request(ce->timeline, rq);
4208 head = intel_ring_wrap(ce->ring, rq->head);
4209 GEM_BUG_ON(head == ce->ring->tail);
4212 * If this request hasn't started yet, e.g. it is waiting on a
4213 * semaphore, we need to avoid skipping the request or else we
4214 * break the signaling chain. However, if the context is corrupt
4215 * the request will not restart and we will be stuck with a wedged
4216 * device. It is quite often the case that if we issue a reset
4217 * while the GPU is loading the context image, that the context
4218 * image becomes corrupt.
4220 * Otherwise, if we have not started yet, the request should replay
4221 * perfectly and we do not need to flag the result as being erroneous.
4223 if (!i915_request_started(rq))
4227 * If the request was innocent, we leave the request in the ELSP
4228 * and will try to replay it on restarting. The context image may
4229 * have been corrupted by the reset, in which case we may have
4230 * to service a new GPU hang, but more likely we can continue on
4233 * If the request was guilty, we presume the context is corrupt
4234 * and have to at least restore the RING register in the context
4235 * image back to the expected values to skip over the guilty request.
4237 __i915_request_reset(rq, stalled);
4240 * We want a simple context + ring to execute the breadcrumb update.
4241 * We cannot rely on the context being intact across the GPU hang,
4242 * so clear it and rebuild just what we need for the breadcrumb.
4243 * All pending requests for this context will be zapped, and any
4244 * future request will be after userspace has had the opportunity
4245 * to recreate its own state.
4248 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
4249 head, ce->ring->tail);
4250 __execlists_reset_reg_state(ce, engine);
4251 __execlists_update_reg_state(ce, engine, head);
4252 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
4255 /* Push back any incomplete requests for replay after the reset. */
4256 cancel_port_requests(execlists);
4257 __unwind_incomplete_requests(engine);
4260 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
4262 unsigned long flags;
4264 ENGINE_TRACE(engine, "\n");
4266 spin_lock_irqsave(&engine->active.lock, flags);
4268 __execlists_reset(engine, stalled);
4270 spin_unlock_irqrestore(&engine->active.lock, flags);
4273 static void nop_submission_tasklet(unsigned long data)
4275 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
4277 /* The driver is wedged; don't process any more events. */
4278 WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
4281 static void execlists_reset_cancel(struct intel_engine_cs *engine)
4283 struct intel_engine_execlists * const execlists = &engine->execlists;
4284 struct i915_request *rq, *rn;
4286 unsigned long flags;
4288 ENGINE_TRACE(engine, "\n");
4291 * Before we call engine->cancel_requests(), we should have exclusive
4292 * access to the submission state. This is arranged for us by the
4293 * caller disabling the interrupt generation, the tasklet and other
4294 * threads that may then access the same state, giving us a free hand
4295 * to reset state. However, we still need to let lockdep be aware that
4296 * we know this state may be accessed in hardirq context, so we
4297 * disable the irq around this manipulation and we want to keep
4298 * the spinlock focused on its duties and not accidentally conflate
4299 * coverage to the submission's irq state. (Similarly, although we
4300 * shouldn't need to disable irq around the manipulation of the
4301 * submission's irq state, we also wish to remind ourselves that
4304 spin_lock_irqsave(&engine->active.lock, flags);
4306 __execlists_reset(engine, true);
4308 /* Mark all executing requests as skipped. */
4309 list_for_each_entry(rq, &engine->active.requests, sched.link)
4312 /* Flush the queued requests to the timeline list (for retiring). */
4313 while ((rb = rb_first_cached(&execlists->queue))) {
4314 struct i915_priolist *p = to_priolist(rb);
4317 priolist_for_each_request_consume(rq, rn, p, i) {
4319 __i915_request_submit(rq);
4322 rb_erase_cached(&p->node, &execlists->queue);
4323 i915_priolist_free(p);
4326 /* On-hold requests will be flushed to timeline upon their release */
4327 list_for_each_entry(rq, &engine->active.hold, sched.link)
4330 /* Cancel all attached virtual engines */
4331 while ((rb = rb_first_cached(&execlists->virtual))) {
4332 struct virtual_engine *ve =
4333 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4335 rb_erase_cached(rb, &execlists->virtual);
4338 spin_lock(&ve->base.active.lock);
4339 rq = fetch_and_zero(&ve->request);
4343 rq->engine = engine;
4344 __i915_request_submit(rq);
4345 i915_request_put(rq);
4347 ve->base.execlists.queue_priority_hint = INT_MIN;
4349 spin_unlock(&ve->base.active.lock);
4352 /* Remaining _unready_ requests will be nop'ed when submitted */
4354 execlists->queue_priority_hint = INT_MIN;
4355 execlists->queue = RB_ROOT_CACHED;
4357 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
4358 execlists->tasklet.func = nop_submission_tasklet;
4360 spin_unlock_irqrestore(&engine->active.lock, flags);
4363 static void execlists_reset_finish(struct intel_engine_cs *engine)
4365 struct intel_engine_execlists * const execlists = &engine->execlists;
4368 * After a GPU reset, we may have requests to replay. Do so now while
4369 * we still have the forcewake to be sure that the GPU is not allowed
4370 * to sleep before we restart and reload a context.
4372 GEM_BUG_ON(!reset_in_progress(execlists));
4373 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
4374 execlists->tasklet.func(execlists->tasklet.data);
4376 if (__tasklet_enable(&execlists->tasklet))
4377 /* And kick in case we missed a new request submission. */
4378 tasklet_hi_schedule(&execlists->tasklet);
4379 ENGINE_TRACE(engine, "depth->%d\n",
4380 atomic_read(&execlists->tasklet.count));
4383 static int gen8_emit_bb_start_noarb(struct i915_request *rq,
4384 u64 offset, u32 len,
4385 const unsigned int flags)
4389 cs = intel_ring_begin(rq, 4);
4394 * WaDisableCtxRestoreArbitration:bdw,chv
4396 * We don't need to perform MI_ARB_ENABLE as often as we do (in
4397 * particular all the gen that do not need the w/a at all!), if we
4398 * took care to make sure that on every switch into this context
4399 * (both ordinary and for preemption) that arbitrartion was enabled
4400 * we would be fine. However, for gen8 there is another w/a that
4401 * requires us to not preempt inside GPGPU execution, so we keep
4402 * arbitration disabled for gen8 batches. Arbitration will be
4403 * re-enabled before we close the request
4404 * (engine->emit_fini_breadcrumb).
4406 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4408 /* FIXME(BDW+): Address space and security selectors. */
4409 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
4410 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4411 *cs++ = lower_32_bits(offset);
4412 *cs++ = upper_32_bits(offset);
4414 intel_ring_advance(rq, cs);
4419 static int gen8_emit_bb_start(struct i915_request *rq,
4420 u64 offset, u32 len,
4421 const unsigned int flags)
4425 cs = intel_ring_begin(rq, 6);
4429 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4431 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
4432 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4433 *cs++ = lower_32_bits(offset);
4434 *cs++ = upper_32_bits(offset);
4436 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4439 intel_ring_advance(rq, cs);
4444 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
4446 ENGINE_WRITE(engine, RING_IMR,
4447 ~(engine->irq_enable_mask | engine->irq_keep_mask));
4448 ENGINE_POSTING_READ(engine, RING_IMR);
4451 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
4453 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
4456 static int gen8_emit_flush(struct i915_request *request, u32 mode)
4460 cs = intel_ring_begin(request, 4);
4464 cmd = MI_FLUSH_DW + 1;
4466 /* We always require a command barrier so that subsequent
4467 * commands, such as breadcrumb interrupts, are strictly ordered
4468 * wrt the contents of the write cache being flushed to memory
4469 * (and thus being coherent from the CPU).
4471 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4473 if (mode & EMIT_INVALIDATE) {
4474 cmd |= MI_INVALIDATE_TLB;
4475 if (request->engine->class == VIDEO_DECODE_CLASS)
4476 cmd |= MI_INVALIDATE_BSD;
4480 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4481 *cs++ = 0; /* upper addr */
4482 *cs++ = 0; /* value */
4483 intel_ring_advance(request, cs);
4488 static int gen8_emit_flush_render(struct i915_request *request,
4491 bool vf_flush_wa = false, dc_flush_wa = false;
4495 flags |= PIPE_CONTROL_CS_STALL;
4497 if (mode & EMIT_FLUSH) {
4498 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4499 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4500 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4501 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4504 if (mode & EMIT_INVALIDATE) {
4505 flags |= PIPE_CONTROL_TLB_INVALIDATE;
4506 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4507 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4508 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4509 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4510 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4511 flags |= PIPE_CONTROL_QW_WRITE;
4512 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4515 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
4518 if (IS_GEN(request->i915, 9))
4521 /* WaForGAMHang:kbl */
4522 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
4534 cs = intel_ring_begin(request, len);
4539 cs = gen8_emit_pipe_control(cs, 0, 0);
4542 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
4545 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4548 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
4550 intel_ring_advance(request, cs);
4555 static int gen11_emit_flush_render(struct i915_request *request,
4558 if (mode & EMIT_FLUSH) {
4562 flags |= PIPE_CONTROL_CS_STALL;
4564 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4565 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4566 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4567 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4568 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4569 flags |= PIPE_CONTROL_QW_WRITE;
4570 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4572 cs = intel_ring_begin(request, 6);
4576 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4577 intel_ring_advance(request, cs);
4580 if (mode & EMIT_INVALIDATE) {
4584 flags |= PIPE_CONTROL_CS_STALL;
4586 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4587 flags |= PIPE_CONTROL_TLB_INVALIDATE;
4588 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4589 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4590 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4591 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4592 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4593 flags |= PIPE_CONTROL_QW_WRITE;
4594 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4596 cs = intel_ring_begin(request, 6);
4600 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4601 intel_ring_advance(request, cs);
4607 static u32 preparser_disable(bool state)
4609 return MI_ARB_CHECK | 1 << 8 | state;
4612 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
4614 static const i915_reg_t vd[] = {
4621 static const i915_reg_t ve[] = {
4626 if (engine->class == VIDEO_DECODE_CLASS)
4627 return vd[engine->instance];
4629 if (engine->class == VIDEO_ENHANCEMENT_CLASS)
4630 return ve[engine->instance];
4632 GEM_BUG_ON("unknown aux_inv_reg\n");
4634 return INVALID_MMIO_REG;
4638 gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
4640 *cs++ = MI_LOAD_REGISTER_IMM(1);
4641 *cs++ = i915_mmio_reg_offset(inv_reg);
4648 static int gen12_emit_flush_render(struct i915_request *request,
4651 if (mode & EMIT_FLUSH) {
4655 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4656 flags |= PIPE_CONTROL_FLUSH_L3;
4657 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4658 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4659 /* Wa_1409600907:tgl */
4660 flags |= PIPE_CONTROL_DEPTH_STALL;
4661 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4662 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4664 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4665 flags |= PIPE_CONTROL_QW_WRITE;
4667 flags |= PIPE_CONTROL_CS_STALL;
4669 cs = intel_ring_begin(request, 6);
4673 cs = gen12_emit_pipe_control(cs,
4674 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
4675 flags, LRC_PPHWSP_SCRATCH_ADDR);
4676 intel_ring_advance(request, cs);
4679 if (mode & EMIT_INVALIDATE) {
4683 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4684 flags |= PIPE_CONTROL_TLB_INVALIDATE;
4685 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4686 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4687 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4688 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4689 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4691 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4692 flags |= PIPE_CONTROL_QW_WRITE;
4694 flags |= PIPE_CONTROL_CS_STALL;
4696 cs = intel_ring_begin(request, 8 + 4);
4701 * Prevent the pre-parser from skipping past the TLB
4702 * invalidate and loading a stale page for the batch
4703 * buffer / request payload.
4705 *cs++ = preparser_disable(true);
4707 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4709 /* hsdes: 1809175790 */
4710 cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
4712 *cs++ = preparser_disable(false);
4713 intel_ring_advance(request, cs);
4719 static int gen12_emit_flush(struct i915_request *request, u32 mode)
4721 intel_engine_mask_t aux_inv = 0;
4724 if (mode & EMIT_INVALIDATE)
4725 aux_inv = request->engine->mask & ~BIT(BCS0);
4727 cs = intel_ring_begin(request,
4728 4 + (aux_inv ? 2 * hweight8(aux_inv) + 2 : 0));
4732 cmd = MI_FLUSH_DW + 1;
4734 /* We always require a command barrier so that subsequent
4735 * commands, such as breadcrumb interrupts, are strictly ordered
4736 * wrt the contents of the write cache being flushed to memory
4737 * (and thus being coherent from the CPU).
4739 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4741 if (mode & EMIT_INVALIDATE) {
4742 cmd |= MI_INVALIDATE_TLB;
4743 if (request->engine->class == VIDEO_DECODE_CLASS)
4744 cmd |= MI_INVALIDATE_BSD;
4748 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4749 *cs++ = 0; /* upper addr */
4750 *cs++ = 0; /* value */
4752 if (aux_inv) { /* hsdes: 1809175790 */
4753 struct intel_engine_cs *engine;
4756 *cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
4757 for_each_engine_masked(engine, request->engine->gt,
4759 *cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
4764 intel_ring_advance(request, cs);
4769 static void assert_request_valid(struct i915_request *rq)
4771 struct intel_ring *ring __maybe_unused = rq->ring;
4773 /* Can we unwind this request without appearing to go forwards? */
4774 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
4778 * Reserve space for 2 NOOPs at the end of each request to be
4779 * used as a workaround for not being allowed to do lite
4780 * restore with HEAD==TAIL (WaIdleLiteRestore).
4782 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4784 /* Ensure there's always at least one preemption point per-request. */
4785 *cs++ = MI_ARB_CHECK;
4787 request->wa_tail = intel_ring_offset(request, cs);
4789 /* Check that entire request is less than half the ring */
4790 assert_request_valid(request);
4795 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
4797 *cs++ = MI_SEMAPHORE_WAIT |
4798 MI_SEMAPHORE_GLOBAL_GTT |
4800 MI_SEMAPHORE_SAD_EQ_SDD;
4802 *cs++ = intel_hws_preempt_address(request->engine);
4808 static __always_inline u32*
4809 gen8_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4811 *cs++ = MI_USER_INTERRUPT;
4813 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4814 if (intel_engine_has_semaphores(request->engine))
4815 cs = emit_preempt_busywait(request, cs);
4817 request->tail = intel_ring_offset(request, cs);
4818 assert_ring_tail_valid(request->ring, request->tail);
4820 return gen8_emit_wa_tail(request, cs);
4823 static u32 *emit_xcs_breadcrumb(struct i915_request *request, u32 *cs)
4825 u32 addr = i915_request_active_timeline(request)->hwsp_offset;
4827 return gen8_emit_ggtt_write(cs, request->fence.seqno, addr, 0);
4830 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
4832 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4835 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4837 cs = gen8_emit_pipe_control(cs,
4838 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4839 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4840 PIPE_CONTROL_DC_FLUSH_ENABLE,
4843 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4844 cs = gen8_emit_ggtt_write_rcs(cs,
4845 request->fence.seqno,
4846 i915_request_active_timeline(request)->hwsp_offset,
4847 PIPE_CONTROL_FLUSH_ENABLE |
4848 PIPE_CONTROL_CS_STALL);
4850 return gen8_emit_fini_breadcrumb_tail(request, cs);
4854 gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4856 cs = gen8_emit_ggtt_write_rcs(cs,
4857 request->fence.seqno,
4858 i915_request_active_timeline(request)->hwsp_offset,
4859 PIPE_CONTROL_CS_STALL |
4860 PIPE_CONTROL_TILE_CACHE_FLUSH |
4861 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4862 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4863 PIPE_CONTROL_DC_FLUSH_ENABLE |
4864 PIPE_CONTROL_FLUSH_ENABLE);
4866 return gen8_emit_fini_breadcrumb_tail(request, cs);
4870 * Note that the CS instruction pre-parser will not stall on the breadcrumb
4871 * flush and will continue pre-fetching the instructions after it before the
4872 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
4873 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
4874 * of the next request before the memory has been flushed, we're guaranteed that
4875 * we won't access the batch itself too early.
4876 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
4877 * so, if the current request is modifying an instruction in the next request on
4878 * the same intel_context, we might pre-fetch and then execute the pre-update
4879 * instruction. To avoid this, the users of self-modifying code should either
4880 * disable the parser around the code emitting the memory writes, via a new flag
4881 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
4882 * the in-kernel use-cases we've opted to use a separate context, see
4883 * reloc_gpu() as an example.
4884 * All the above applies only to the instructions themselves. Non-inline data
4885 * used by the instructions is not pre-fetched.
4888 static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
4890 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
4891 MI_SEMAPHORE_GLOBAL_GTT |
4893 MI_SEMAPHORE_SAD_EQ_SDD;
4895 *cs++ = intel_hws_preempt_address(request->engine);
4903 static __always_inline u32*
4904 gen12_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4906 *cs++ = MI_USER_INTERRUPT;
4908 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4909 if (intel_engine_has_semaphores(request->engine))
4910 cs = gen12_emit_preempt_busywait(request, cs);
4912 request->tail = intel_ring_offset(request, cs);
4913 assert_ring_tail_valid(request->ring, request->tail);
4915 return gen8_emit_wa_tail(request, cs);
4918 static u32 *gen12_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
4920 return gen12_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4924 gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4926 cs = gen12_emit_ggtt_write_rcs(cs,
4927 request->fence.seqno,
4928 i915_request_active_timeline(request)->hwsp_offset,
4929 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
4930 PIPE_CONTROL_CS_STALL |
4931 PIPE_CONTROL_TILE_CACHE_FLUSH |
4932 PIPE_CONTROL_FLUSH_L3 |
4933 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4934 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4935 /* Wa_1409600907:tgl */
4936 PIPE_CONTROL_DEPTH_STALL |
4937 PIPE_CONTROL_DC_FLUSH_ENABLE |
4938 PIPE_CONTROL_FLUSH_ENABLE);
4940 return gen12_emit_fini_breadcrumb_tail(request, cs);
4943 static void execlists_park(struct intel_engine_cs *engine)
4945 cancel_timer(&engine->execlists.timer);
4946 cancel_timer(&engine->execlists.preempt);
4949 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
4951 engine->submit_request = execlists_submit_request;
4952 engine->schedule = i915_schedule;
4953 engine->execlists.tasklet.func = execlists_submission_tasklet;
4955 engine->reset.prepare = execlists_reset_prepare;
4956 engine->reset.rewind = execlists_reset_rewind;
4957 engine->reset.cancel = execlists_reset_cancel;
4958 engine->reset.finish = execlists_reset_finish;
4960 engine->park = execlists_park;
4961 engine->unpark = NULL;
4963 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4964 if (!intel_vgpu_active(engine->i915)) {
4965 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4966 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
4967 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4968 if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
4969 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4973 if (INTEL_GEN(engine->i915) >= 12)
4974 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
4976 if (intel_engine_has_preemption(engine))
4977 engine->emit_bb_start = gen8_emit_bb_start;
4979 engine->emit_bb_start = gen8_emit_bb_start_noarb;
4982 static void execlists_shutdown(struct intel_engine_cs *engine)
4984 /* Synchronise with residual timers and any softirq they raise */
4985 del_timer_sync(&engine->execlists.timer);
4986 del_timer_sync(&engine->execlists.preempt);
4987 tasklet_kill(&engine->execlists.tasklet);
4990 static void execlists_release(struct intel_engine_cs *engine)
4992 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4994 execlists_shutdown(engine);
4996 intel_engine_cleanup_common(engine);
4997 lrc_destroy_wa_ctx(engine);
5001 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
5003 /* Default vfuncs which can be overriden by each engine. */
5005 engine->resume = execlists_resume;
5007 engine->cops = &execlists_context_ops;
5008 engine->request_alloc = execlists_request_alloc;
5010 engine->emit_flush = gen8_emit_flush;
5011 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
5012 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
5013 if (INTEL_GEN(engine->i915) >= 12) {
5014 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
5015 engine->emit_flush = gen12_emit_flush;
5017 engine->set_default_submission = intel_execlists_set_default_submission;
5019 if (INTEL_GEN(engine->i915) < 11) {
5020 engine->irq_enable = gen8_logical_ring_enable_irq;
5021 engine->irq_disable = gen8_logical_ring_disable_irq;
5024 * TODO: On Gen11 interrupt masks need to be clear
5025 * to allow C6 entry. Keep interrupts enabled at
5026 * and take the hit of generating extra interrupts
5027 * until a more refined solution exists.
5033 logical_ring_default_irqs(struct intel_engine_cs *engine)
5035 unsigned int shift = 0;
5037 if (INTEL_GEN(engine->i915) < 11) {
5038 const u8 irq_shifts[] = {
5039 [RCS0] = GEN8_RCS_IRQ_SHIFT,
5040 [BCS0] = GEN8_BCS_IRQ_SHIFT,
5041 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
5042 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
5043 [VECS0] = GEN8_VECS_IRQ_SHIFT,
5046 shift = irq_shifts[engine->id];
5049 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
5050 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
5051 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
5052 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
5055 static void rcs_submission_override(struct intel_engine_cs *engine)
5057 switch (INTEL_GEN(engine->i915)) {
5059 engine->emit_flush = gen12_emit_flush_render;
5060 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
5063 engine->emit_flush = gen11_emit_flush_render;
5064 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
5067 engine->emit_flush = gen8_emit_flush_render;
5068 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
5073 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
5075 struct intel_engine_execlists * const execlists = &engine->execlists;
5076 struct drm_i915_private *i915 = engine->i915;
5077 struct intel_uncore *uncore = engine->uncore;
5078 u32 base = engine->mmio_base;
5080 tasklet_init(&engine->execlists.tasklet,
5081 execlists_submission_tasklet, (unsigned long)engine);
5082 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
5083 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
5085 logical_ring_default_vfuncs(engine);
5086 logical_ring_default_irqs(engine);
5088 if (engine->class == RENDER_CLASS)
5089 rcs_submission_override(engine);
5091 if (intel_init_workaround_bb(engine))
5093 * We continue even if we fail to initialize WA batch
5094 * because we only expect rare glitches but nothing
5095 * critical to prevent us from using GPU
5097 drm_err(&i915->drm, "WA batch buffer initialization failed\n");
5099 if (HAS_LOGICAL_RING_ELSQ(i915)) {
5100 execlists->submit_reg = uncore->regs +
5101 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
5102 execlists->ctrl_reg = uncore->regs +
5103 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
5105 execlists->submit_reg = uncore->regs +
5106 i915_mmio_reg_offset(RING_ELSP(base));
5109 execlists->csb_status =
5110 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
5112 execlists->csb_write =
5113 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
5115 if (INTEL_GEN(i915) < 11)
5116 execlists->csb_size = GEN8_CSB_ENTRIES;
5118 execlists->csb_size = GEN11_CSB_ENTRIES;
5120 if (INTEL_GEN(engine->i915) >= 11) {
5121 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
5122 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
5125 /* Finally, take ownership and responsibility for cleanup! */
5126 engine->sanitize = execlists_sanitize;
5127 engine->release = execlists_release;
5132 static void init_common_reg_state(u32 * const regs,
5133 const struct intel_engine_cs *engine,
5134 const struct intel_ring *ring,
5139 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
5140 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
5142 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
5143 if (INTEL_GEN(engine->i915) < 11)
5144 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
5145 CTX_CTRL_RS_CTX_ENABLE);
5146 regs[CTX_CONTEXT_CONTROL] = ctl;
5148 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
5149 regs[CTX_TIMESTAMP] = 0;
5152 static void init_wa_bb_reg_state(u32 * const regs,
5153 const struct intel_engine_cs *engine)
5155 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
5157 if (wa_ctx->per_ctx.size) {
5158 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
5160 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
5161 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
5162 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
5165 if (wa_ctx->indirect_ctx.size) {
5166 lrc_ring_setup_indirect_ctx(regs, engine,
5167 i915_ggtt_offset(wa_ctx->vma) +
5168 wa_ctx->indirect_ctx.offset,
5169 wa_ctx->indirect_ctx.size);
5173 static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
5175 if (i915_vm_is_4lvl(&ppgtt->vm)) {
5176 /* 64b PPGTT (48bit canonical)
5177 * PDP0_DESCRIPTOR contains the base address to PML4 and
5178 * other PDP Descriptors are ignored.
5180 ASSIGN_CTX_PML4(ppgtt, regs);
5182 ASSIGN_CTX_PDP(ppgtt, regs, 3);
5183 ASSIGN_CTX_PDP(ppgtt, regs, 2);
5184 ASSIGN_CTX_PDP(ppgtt, regs, 1);
5185 ASSIGN_CTX_PDP(ppgtt, regs, 0);
5189 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
5191 if (i915_is_ggtt(vm))
5192 return i915_vm_to_ggtt(vm)->alias;
5194 return i915_vm_to_ppgtt(vm);
5197 static void execlists_init_reg_state(u32 *regs,
5198 const struct intel_context *ce,
5199 const struct intel_engine_cs *engine,
5200 const struct intel_ring *ring,
5204 * A context is actually a big batch buffer with several
5205 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
5206 * values we are setting here are only for the first context restore:
5207 * on a subsequent save, the GPU will recreate this batchbuffer with new
5208 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
5209 * we are not initializing here).
5211 * Must keep consistent with virtual_update_register_offsets().
5213 set_offsets(regs, reg_offsets(engine), engine, inhibit);
5215 init_common_reg_state(regs, engine, ring, inhibit);
5216 init_ppgtt_reg_state(regs, vm_alias(ce->vm));
5218 init_wa_bb_reg_state(regs, engine);
5220 __reset_stop_ring(regs, engine);
5224 populate_lr_context(struct intel_context *ce,
5225 struct drm_i915_gem_object *ctx_obj,
5226 struct intel_engine_cs *engine,
5227 struct intel_ring *ring)
5229 bool inhibit = true;
5232 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
5233 if (IS_ERR(vaddr)) {
5234 drm_dbg(&engine->i915->drm, "Could not map object pages!\n");
5235 return PTR_ERR(vaddr);
5238 set_redzone(vaddr, engine);
5240 if (engine->default_state) {
5241 shmem_read(engine->default_state, 0,
5242 vaddr, engine->context_size);
5243 __set_bit(CONTEXT_VALID_BIT, &ce->flags);
5247 /* Clear the ppHWSP (inc. per-context counters) */
5248 memset(vaddr, 0, PAGE_SIZE);
5251 * The second page of the context object contains some registers which
5252 * must be set up prior to the first execution.
5254 execlists_init_reg_state(vaddr + LRC_STATE_OFFSET,
5255 ce, engine, ring, inhibit);
5257 __i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
5258 i915_gem_object_unpin_map(ctx_obj);
5262 static int __execlists_context_alloc(struct intel_context *ce,
5263 struct intel_engine_cs *engine)
5265 struct drm_i915_gem_object *ctx_obj;
5266 struct intel_ring *ring;
5267 struct i915_vma *vma;
5271 GEM_BUG_ON(ce->state);
5272 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
5274 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
5275 context_size += I915_GTT_PAGE_SIZE; /* for redzone */
5277 if (INTEL_GEN(engine->i915) == 12) {
5278 ce->wa_bb_page = context_size / PAGE_SIZE;
5279 context_size += PAGE_SIZE;
5282 ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
5283 if (IS_ERR(ctx_obj))
5284 return PTR_ERR(ctx_obj);
5286 vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
5289 goto error_deref_obj;
5292 if (!ce->timeline) {
5293 struct intel_timeline *tl;
5294 struct i915_vma *hwsp;
5297 * Use the static global HWSP for the kernel context, and
5298 * a dynamically allocated cacheline for everyone else.
5301 if (unlikely(intel_context_is_barrier(ce)))
5302 hwsp = engine->status_page.vma;
5304 tl = intel_timeline_create(engine->gt, hwsp);
5307 goto error_deref_obj;
5313 ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
5315 ret = PTR_ERR(ring);
5316 goto error_deref_obj;
5319 ret = populate_lr_context(ce, ctx_obj, engine, ring);
5321 drm_dbg(&engine->i915->drm,
5322 "Failed to populate LRC: %d\n", ret);
5323 goto error_ring_free;
5332 intel_ring_put(ring);
5334 i915_gem_object_put(ctx_obj);
5338 static struct list_head *virtual_queue(struct virtual_engine *ve)
5340 return &ve->base.execlists.default_priolist.requests[0];
5343 static void virtual_context_destroy(struct kref *kref)
5345 struct virtual_engine *ve =
5346 container_of(kref, typeof(*ve), context.ref);
5349 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5350 GEM_BUG_ON(ve->request);
5351 GEM_BUG_ON(ve->context.inflight);
5353 for (n = 0; n < ve->num_siblings; n++) {
5354 struct intel_engine_cs *sibling = ve->siblings[n];
5355 struct rb_node *node = &ve->nodes[sibling->id].rb;
5356 unsigned long flags;
5358 if (RB_EMPTY_NODE(node))
5361 spin_lock_irqsave(&sibling->active.lock, flags);
5363 /* Detachment is lazily performed in the execlists tasklet */
5364 if (!RB_EMPTY_NODE(node))
5365 rb_erase_cached(node, &sibling->execlists.virtual);
5367 spin_unlock_irqrestore(&sibling->active.lock, flags);
5369 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
5371 if (ve->context.state)
5372 __execlists_context_fini(&ve->context);
5373 intel_context_fini(&ve->context);
5375 intel_engine_free_request_pool(&ve->base);
5381 static void virtual_engine_initial_hint(struct virtual_engine *ve)
5386 * Pick a random sibling on starting to help spread the load around.
5388 * New contexts are typically created with exactly the same order
5389 * of siblings, and often started in batches. Due to the way we iterate
5390 * the array of sibling when submitting requests, sibling[0] is
5391 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
5392 * randomised across the system, we also help spread the load by the
5393 * first engine we inspect being different each time.
5395 * NB This does not force us to execute on this engine, it will just
5396 * typically be the first we inspect for submission.
5398 swp = prandom_u32_max(ve->num_siblings);
5402 swap(ve->siblings[swp], ve->siblings[0]);
5403 if (!intel_engine_has_relative_mmio(ve->siblings[0]))
5404 virtual_update_register_offsets(ve->context.lrc_reg_state,
5408 static int virtual_context_alloc(struct intel_context *ce)
5410 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5412 return __execlists_context_alloc(ce, ve->siblings[0]);
5415 static int virtual_context_pin(struct intel_context *ce)
5417 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5420 /* Note: we must use a real engine class for setting up reg state */
5421 err = __execlists_context_pin(ce, ve->siblings[0]);
5425 virtual_engine_initial_hint(ve);
5429 static void virtual_context_enter(struct intel_context *ce)
5431 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5434 for (n = 0; n < ve->num_siblings; n++)
5435 intel_engine_pm_get(ve->siblings[n]);
5437 intel_timeline_enter(ce->timeline);
5440 static void virtual_context_exit(struct intel_context *ce)
5442 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5445 intel_timeline_exit(ce->timeline);
5447 for (n = 0; n < ve->num_siblings; n++)
5448 intel_engine_pm_put(ve->siblings[n]);
5451 static const struct intel_context_ops virtual_context_ops = {
5452 .alloc = virtual_context_alloc,
5454 .pin = virtual_context_pin,
5455 .unpin = execlists_context_unpin,
5457 .enter = virtual_context_enter,
5458 .exit = virtual_context_exit,
5460 .destroy = virtual_context_destroy,
5463 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
5465 struct i915_request *rq;
5466 intel_engine_mask_t mask;
5468 rq = READ_ONCE(ve->request);
5472 /* The rq is ready for submission; rq->execution_mask is now stable. */
5473 mask = rq->execution_mask;
5474 if (unlikely(!mask)) {
5475 /* Invalid selection, submit to a random engine in error */
5476 i915_request_set_error_once(rq, -ENODEV);
5477 mask = ve->siblings[0]->mask;
5480 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
5481 rq->fence.context, rq->fence.seqno,
5482 mask, ve->base.execlists.queue_priority_hint);
5487 static void virtual_submission_tasklet(unsigned long data)
5489 struct virtual_engine * const ve = (struct virtual_engine *)data;
5490 const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
5491 intel_engine_mask_t mask;
5495 mask = virtual_submission_mask(ve);
5497 if (unlikely(!mask))
5500 local_irq_disable();
5501 for (n = 0; n < ve->num_siblings; n++) {
5502 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
5503 struct ve_node * const node = &ve->nodes[sibling->id];
5504 struct rb_node **parent, *rb;
5507 if (!READ_ONCE(ve->request))
5508 break; /* already handled by a sibling's tasklet */
5510 if (unlikely(!(mask & sibling->mask))) {
5511 if (!RB_EMPTY_NODE(&node->rb)) {
5512 spin_lock(&sibling->active.lock);
5513 rb_erase_cached(&node->rb,
5514 &sibling->execlists.virtual);
5515 RB_CLEAR_NODE(&node->rb);
5516 spin_unlock(&sibling->active.lock);
5521 spin_lock(&sibling->active.lock);
5523 if (!RB_EMPTY_NODE(&node->rb)) {
5525 * Cheat and avoid rebalancing the tree if we can
5526 * reuse this node in situ.
5528 first = rb_first_cached(&sibling->execlists.virtual) ==
5530 if (prio == node->prio || (prio > node->prio && first))
5533 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
5538 parent = &sibling->execlists.virtual.rb_root.rb_node;
5540 struct ve_node *other;
5543 other = rb_entry(rb, typeof(*other), rb);
5544 if (prio > other->prio) {
5545 parent = &rb->rb_left;
5547 parent = &rb->rb_right;
5552 rb_link_node(&node->rb, rb, parent);
5553 rb_insert_color_cached(&node->rb,
5554 &sibling->execlists.virtual,
5558 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
5560 if (first && prio > sibling->execlists.queue_priority_hint)
5561 tasklet_hi_schedule(&sibling->execlists.tasklet);
5563 spin_unlock(&sibling->active.lock);
5568 static void virtual_submit_request(struct i915_request *rq)
5570 struct virtual_engine *ve = to_virtual_engine(rq->engine);
5571 struct i915_request *old;
5572 unsigned long flags;
5574 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
5578 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
5580 spin_lock_irqsave(&ve->base.active.lock, flags);
5583 if (old) { /* background completion event from preempt-to-busy */
5584 GEM_BUG_ON(!i915_request_completed(old));
5585 __i915_request_submit(old);
5586 i915_request_put(old);
5589 if (i915_request_completed(rq)) {
5590 __i915_request_submit(rq);
5592 ve->base.execlists.queue_priority_hint = INT_MIN;
5595 ve->base.execlists.queue_priority_hint = rq_prio(rq);
5596 ve->request = i915_request_get(rq);
5598 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5599 list_move_tail(&rq->sched.link, virtual_queue(ve));
5601 tasklet_schedule(&ve->base.execlists.tasklet);
5604 spin_unlock_irqrestore(&ve->base.active.lock, flags);
5607 static struct ve_bond *
5608 virtual_find_bond(struct virtual_engine *ve,
5609 const struct intel_engine_cs *master)
5613 for (i = 0; i < ve->num_bonds; i++) {
5614 if (ve->bonds[i].master == master)
5615 return &ve->bonds[i];
5622 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
5624 struct virtual_engine *ve = to_virtual_engine(rq->engine);
5625 intel_engine_mask_t allowed, exec;
5626 struct ve_bond *bond;
5628 allowed = ~to_request(signal)->engine->mask;
5630 bond = virtual_find_bond(ve, to_request(signal)->engine);
5632 allowed &= bond->sibling_mask;
5634 /* Restrict the bonded request to run on only the available engines */
5635 exec = READ_ONCE(rq->execution_mask);
5636 while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
5639 /* Prevent the master from being re-run on the bonded engines */
5640 to_request(signal)->execution_mask &= ~allowed;
5643 struct intel_context *
5644 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5647 struct virtual_engine *ve;
5652 return ERR_PTR(-EINVAL);
5655 return intel_context_create(siblings[0]);
5657 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
5659 return ERR_PTR(-ENOMEM);
5661 ve->base.i915 = siblings[0]->i915;
5662 ve->base.gt = siblings[0]->gt;
5663 ve->base.uncore = siblings[0]->uncore;
5666 ve->base.class = OTHER_CLASS;
5667 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5668 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5669 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5672 * The decision on whether to submit a request using semaphores
5673 * depends on the saturated state of the engine. We only compute
5674 * this during HW submission of the request, and we need for this
5675 * state to be globally applied to all requests being submitted
5676 * to this engine. Virtual engines encompass more than one physical
5677 * engine and so we cannot accurately tell in advance if one of those
5678 * engines is already saturated and so cannot afford to use a semaphore
5679 * and be pessimized in priority for doing so -- if we are the only
5680 * context using semaphores after all other clients have stopped, we
5681 * will be starved on the saturated system. Such a global switch for
5682 * semaphores is less than ideal, but alas is the current compromise.
5684 ve->base.saturated = ALL_ENGINES;
5686 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5688 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5689 intel_engine_init_breadcrumbs(&ve->base);
5690 intel_engine_init_execlists(&ve->base);
5692 ve->base.cops = &virtual_context_ops;
5693 ve->base.request_alloc = execlists_request_alloc;
5695 ve->base.schedule = i915_schedule;
5696 ve->base.submit_request = virtual_submit_request;
5697 ve->base.bond_execute = virtual_bond_execute;
5699 INIT_LIST_HEAD(virtual_queue(ve));
5700 ve->base.execlists.queue_priority_hint = INT_MIN;
5701 tasklet_init(&ve->base.execlists.tasklet,
5702 virtual_submission_tasklet,
5705 intel_context_init(&ve->context, &ve->base);
5707 for (n = 0; n < count; n++) {
5708 struct intel_engine_cs *sibling = siblings[n];
5710 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5711 if (sibling->mask & ve->base.mask) {
5712 DRM_DEBUG("duplicate %s entry in load balancer\n",
5719 * The virtual engine implementation is tightly coupled to
5720 * the execlists backend -- we push out request directly
5721 * into a tree inside each physical engine. We could support
5722 * layering if we handle cloning of the requests and
5723 * submitting a copy into each backend.
5725 if (sibling->execlists.tasklet.func !=
5726 execlists_submission_tasklet) {
5731 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
5732 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
5734 ve->siblings[ve->num_siblings++] = sibling;
5735 ve->base.mask |= sibling->mask;
5738 * All physical engines must be compatible for their emission
5739 * functions (as we build the instructions during request
5740 * construction and do not alter them before submission
5741 * on the physical engine). We use the engine class as a guide
5742 * here, although that could be refined.
5744 if (ve->base.class != OTHER_CLASS) {
5745 if (ve->base.class != sibling->class) {
5746 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5747 sibling->class, ve->base.class);
5754 ve->base.class = sibling->class;
5755 ve->base.uabi_class = sibling->uabi_class;
5756 snprintf(ve->base.name, sizeof(ve->base.name),
5757 "v%dx%d", ve->base.class, count);
5758 ve->base.context_size = sibling->context_size;
5760 ve->base.emit_bb_start = sibling->emit_bb_start;
5761 ve->base.emit_flush = sibling->emit_flush;
5762 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
5763 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
5764 ve->base.emit_fini_breadcrumb_dw =
5765 sibling->emit_fini_breadcrumb_dw;
5767 ve->base.flags = sibling->flags;
5770 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
5772 return &ve->context;
5775 intel_context_put(&ve->context);
5776 return ERR_PTR(err);
5779 struct intel_context *
5780 intel_execlists_clone_virtual(struct intel_engine_cs *src)
5782 struct virtual_engine *se = to_virtual_engine(src);
5783 struct intel_context *dst;
5785 dst = intel_execlists_create_virtual(se->siblings,
5790 if (se->num_bonds) {
5791 struct virtual_engine *de = to_virtual_engine(dst->engine);
5793 de->bonds = kmemdup(se->bonds,
5794 sizeof(*se->bonds) * se->num_bonds,
5797 intel_context_put(dst);
5798 return ERR_PTR(-ENOMEM);
5801 de->num_bonds = se->num_bonds;
5807 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
5808 const struct intel_engine_cs *master,
5809 const struct intel_engine_cs *sibling)
5811 struct virtual_engine *ve = to_virtual_engine(engine);
5812 struct ve_bond *bond;
5815 /* Sanity check the sibling is part of the virtual engine */
5816 for (n = 0; n < ve->num_siblings; n++)
5817 if (sibling == ve->siblings[n])
5819 if (n == ve->num_siblings)
5822 bond = virtual_find_bond(ve, master);
5824 bond->sibling_mask |= sibling->mask;
5828 bond = krealloc(ve->bonds,
5829 sizeof(*bond) * (ve->num_bonds + 1),
5834 bond[ve->num_bonds].master = master;
5835 bond[ve->num_bonds].sibling_mask = sibling->mask;
5843 struct intel_engine_cs *
5844 intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
5845 unsigned int sibling)
5847 struct virtual_engine *ve = to_virtual_engine(engine);
5849 if (sibling >= ve->num_siblings)
5852 return ve->siblings[sibling];
5855 void intel_execlists_show_requests(struct intel_engine_cs *engine,
5856 struct drm_printer *m,
5857 void (*show_request)(struct drm_printer *m,
5858 struct i915_request *rq,
5859 const char *prefix),
5862 const struct intel_engine_execlists *execlists = &engine->execlists;
5863 struct i915_request *rq, *last;
5864 unsigned long flags;
5868 spin_lock_irqsave(&engine->active.lock, flags);
5872 list_for_each_entry(rq, &engine->active.requests, sched.link) {
5873 if (count++ < max - 1)
5874 show_request(m, rq, "\t\tE ");
5881 "\t\t...skipping %d executing requests...\n",
5884 show_request(m, last, "\t\tE ");
5887 if (execlists->switch_priority_hint != INT_MIN)
5888 drm_printf(m, "\t\tSwitch priority hint: %d\n",
5889 READ_ONCE(execlists->switch_priority_hint));
5890 if (execlists->queue_priority_hint != INT_MIN)
5891 drm_printf(m, "\t\tQueue priority hint: %d\n",
5892 READ_ONCE(execlists->queue_priority_hint));
5896 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
5897 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
5900 priolist_for_each_request(rq, p, i) {
5901 if (count++ < max - 1)
5902 show_request(m, rq, "\t\tQ ");
5910 "\t\t...skipping %d queued requests...\n",
5913 show_request(m, last, "\t\tQ ");
5918 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
5919 struct virtual_engine *ve =
5920 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
5921 struct i915_request *rq = READ_ONCE(ve->request);
5924 if (count++ < max - 1)
5925 show_request(m, rq, "\t\tV ");
5933 "\t\t...skipping %d virtual requests...\n",
5936 show_request(m, last, "\t\tV ");
5939 spin_unlock_irqrestore(&engine->active.lock, flags);
5942 void intel_lr_context_reset(struct intel_engine_cs *engine,
5943 struct intel_context *ce,
5947 GEM_BUG_ON(!intel_context_is_pinned(ce));
5950 * We want a simple context + ring to execute the breadcrumb update.
5951 * We cannot rely on the context being intact across the GPU hang,
5952 * so clear it and rebuild just what we need for the breadcrumb.
5953 * All pending requests for this context will be zapped, and any
5954 * future request will be after userspace has had the opportunity
5955 * to recreate its own state.
5958 restore_default_state(ce, engine);
5960 /* Rerun the request; its payload has been neutered (if guilty). */
5961 __execlists_update_reg_state(ce, engine, head);
5965 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
5967 return engine->set_default_submission ==
5968 intel_execlists_set_default_submission;
5971 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5972 #include "selftest_lrc.c"