Merge branch 'next' into for-linus
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gt / intel_gt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5
6 #include "debugfs_gt.h"
7
8 #include "gem/i915_gem_lmem.h"
9 #include "i915_drv.h"
10 #include "intel_context.h"
11 #include "intel_gt.h"
12 #include "intel_gt_buffer_pool.h"
13 #include "intel_gt_clock_utils.h"
14 #include "intel_gt_pm.h"
15 #include "intel_gt_requests.h"
16 #include "intel_migrate.h"
17 #include "intel_mocs.h"
18 #include "intel_rc6.h"
19 #include "intel_renderstate.h"
20 #include "intel_rps.h"
21 #include "intel_uncore.h"
22 #include "intel_pm.h"
23 #include "shmem_utils.h"
24
25 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
26 {
27         gt->i915 = i915;
28         gt->uncore = &i915->uncore;
29
30         spin_lock_init(&gt->irq_lock);
31
32         INIT_LIST_HEAD(&gt->closed_vma);
33         spin_lock_init(&gt->closed_lock);
34
35         init_llist_head(&gt->watchdog.list);
36         INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
37
38         intel_gt_init_buffer_pool(gt);
39         intel_gt_init_reset(gt);
40         intel_gt_init_requests(gt);
41         intel_gt_init_timelines(gt);
42         intel_gt_pm_init_early(gt);
43
44         intel_uc_init_early(&gt->uc);
45         intel_rps_init_early(&gt->rps);
46 }
47
48 int intel_gt_probe_lmem(struct intel_gt *gt)
49 {
50         struct drm_i915_private *i915 = gt->i915;
51         struct intel_memory_region *mem;
52         int id;
53         int err;
54
55         mem = intel_gt_setup_lmem(gt);
56         if (mem == ERR_PTR(-ENODEV))
57                 mem = intel_gt_setup_fake_lmem(gt);
58         if (IS_ERR(mem)) {
59                 err = PTR_ERR(mem);
60                 if (err == -ENODEV)
61                         return 0;
62
63                 drm_err(&i915->drm,
64                         "Failed to setup region(%d) type=%d\n",
65                         err, INTEL_MEMORY_LOCAL);
66                 return err;
67         }
68
69         id = INTEL_REGION_LMEM;
70
71         mem->id = id;
72
73         intel_memory_region_set_name(mem, "local%u", mem->instance);
74
75         GEM_BUG_ON(!HAS_REGION(i915, id));
76         GEM_BUG_ON(i915->mm.regions[id]);
77         i915->mm.regions[id] = mem;
78
79         return 0;
80 }
81
82 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
83 {
84         gt->ggtt = ggtt;
85 }
86
87 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
88         { 0x00B100, 0x00B3FF },
89         {},
90 };
91
92 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
93         { 0x004000, 0x004AFF },
94         { 0x00C800, 0x00CFFF },
95         { 0x00DD00, 0x00DDFF },
96         { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
97         {},
98 };
99
100 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
101         { 0x00B000, 0x00B0FF },
102         { 0x00D800, 0x00D8FF },
103         {},
104 };
105
106 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
107         { 0x00B000, 0x00B0FF },
108         { 0x00D880, 0x00D8FF },
109         {},
110 };
111
112 static u16 slicemask(struct intel_gt *gt, int count)
113 {
114         u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
115
116         return intel_slicemask_from_dssmask(dss_mask, count);
117 }
118
119 int intel_gt_init_mmio(struct intel_gt *gt)
120 {
121         struct drm_i915_private *i915 = gt->i915;
122
123         intel_gt_init_clock_frequency(gt);
124
125         intel_uc_init_mmio(&gt->uc);
126         intel_sseu_info_init(gt);
127
128         /*
129          * An mslice is unavailable only if both the meml3 for the slice is
130          * disabled *and* all of the DSS in the slice (quadrant) are disabled.
131          */
132         if (HAS_MSLICES(i915))
133                 gt->info.mslice_mask =
134                         slicemask(gt, GEN_DSS_PER_MSLICE) |
135                         (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
136                          GEN12_MEML3_EN_MASK);
137
138         if (IS_DG2(i915)) {
139                 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
140                 gt->steering_table[LNCF] = dg2_lncf_steering_table;
141         } else if (IS_XEHPSDV(i915)) {
142                 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
143                 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
144         } else if (GRAPHICS_VER(i915) >= 11 &&
145                    GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
146                 gt->steering_table[L3BANK] = icl_l3bank_steering_table;
147                 gt->info.l3bank_mask =
148                         ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
149                         GEN10_L3BANK_MASK;
150         } else if (HAS_MSLICES(i915)) {
151                 MISSING_CASE(INTEL_INFO(i915)->platform);
152         }
153
154         return intel_engines_init_mmio(gt);
155 }
156
157 static void init_unused_ring(struct intel_gt *gt, u32 base)
158 {
159         struct intel_uncore *uncore = gt->uncore;
160
161         intel_uncore_write(uncore, RING_CTL(base), 0);
162         intel_uncore_write(uncore, RING_HEAD(base), 0);
163         intel_uncore_write(uncore, RING_TAIL(base), 0);
164         intel_uncore_write(uncore, RING_START(base), 0);
165 }
166
167 static void init_unused_rings(struct intel_gt *gt)
168 {
169         struct drm_i915_private *i915 = gt->i915;
170
171         if (IS_I830(i915)) {
172                 init_unused_ring(gt, PRB1_BASE);
173                 init_unused_ring(gt, SRB0_BASE);
174                 init_unused_ring(gt, SRB1_BASE);
175                 init_unused_ring(gt, SRB2_BASE);
176                 init_unused_ring(gt, SRB3_BASE);
177         } else if (GRAPHICS_VER(i915) == 2) {
178                 init_unused_ring(gt, SRB0_BASE);
179                 init_unused_ring(gt, SRB1_BASE);
180         } else if (GRAPHICS_VER(i915) == 3) {
181                 init_unused_ring(gt, PRB1_BASE);
182                 init_unused_ring(gt, PRB2_BASE);
183         }
184 }
185
186 int intel_gt_init_hw(struct intel_gt *gt)
187 {
188         struct drm_i915_private *i915 = gt->i915;
189         struct intel_uncore *uncore = gt->uncore;
190         int ret;
191
192         gt->last_init_time = ktime_get();
193
194         /* Double layer security blanket, see i915_gem_init() */
195         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
196
197         if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
198                 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
199
200         if (IS_HASWELL(i915))
201                 intel_uncore_write(uncore,
202                                    MI_PREDICATE_RESULT_2,
203                                    IS_HSW_GT3(i915) ?
204                                    LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
205
206         /* Apply the GT workarounds... */
207         intel_gt_apply_workarounds(gt);
208         /* ...and determine whether they are sticking. */
209         intel_gt_verify_workarounds(gt, "init");
210
211         intel_gt_init_swizzling(gt);
212
213         /*
214          * At least 830 can leave some of the unused rings
215          * "active" (ie. head != tail) after resume which
216          * will prevent c3 entry. Makes sure all unused rings
217          * are totally idle.
218          */
219         init_unused_rings(gt);
220
221         ret = i915_ppgtt_init_hw(gt);
222         if (ret) {
223                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
224                 goto out;
225         }
226
227         /* We can't enable contexts until all firmware is loaded */
228         ret = intel_uc_init_hw(&gt->uc);
229         if (ret) {
230                 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
231                 goto out;
232         }
233
234         intel_mocs_init(gt);
235
236 out:
237         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
238         return ret;
239 }
240
241 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
242 {
243         intel_uncore_rmw(uncore, reg, 0, set);
244 }
245
246 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
247 {
248         intel_uncore_rmw(uncore, reg, clr, 0);
249 }
250
251 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
252 {
253         intel_uncore_rmw(uncore, reg, 0, 0);
254 }
255
256 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
257 {
258         GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
259         GEN6_RING_FAULT_REG_POSTING_READ(engine);
260 }
261
262 void
263 intel_gt_clear_error_registers(struct intel_gt *gt,
264                                intel_engine_mask_t engine_mask)
265 {
266         struct drm_i915_private *i915 = gt->i915;
267         struct intel_uncore *uncore = gt->uncore;
268         u32 eir;
269
270         if (GRAPHICS_VER(i915) != 2)
271                 clear_register(uncore, PGTBL_ER);
272
273         if (GRAPHICS_VER(i915) < 4)
274                 clear_register(uncore, IPEIR(RENDER_RING_BASE));
275         else
276                 clear_register(uncore, IPEIR_I965);
277
278         clear_register(uncore, EIR);
279         eir = intel_uncore_read(uncore, EIR);
280         if (eir) {
281                 /*
282                  * some errors might have become stuck,
283                  * mask them.
284                  */
285                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
286                 rmw_set(uncore, EMR, eir);
287                 intel_uncore_write(uncore, GEN2_IIR,
288                                    I915_MASTER_ERROR_INTERRUPT);
289         }
290
291         if (GRAPHICS_VER(i915) >= 12) {
292                 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
293                 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
294         } else if (GRAPHICS_VER(i915) >= 8) {
295                 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
296                 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
297         } else if (GRAPHICS_VER(i915) >= 6) {
298                 struct intel_engine_cs *engine;
299                 enum intel_engine_id id;
300
301                 for_each_engine_masked(engine, gt, engine_mask, id)
302                         gen6_clear_engine_error_register(engine);
303         }
304 }
305
306 static void gen6_check_faults(struct intel_gt *gt)
307 {
308         struct intel_engine_cs *engine;
309         enum intel_engine_id id;
310         u32 fault;
311
312         for_each_engine(engine, gt, id) {
313                 fault = GEN6_RING_FAULT_REG_READ(engine);
314                 if (fault & RING_FAULT_VALID) {
315                         drm_dbg(&engine->i915->drm, "Unexpected fault\n"
316                                 "\tAddr: 0x%08lx\n"
317                                 "\tAddress space: %s\n"
318                                 "\tSource ID: %d\n"
319                                 "\tType: %d\n",
320                                 fault & PAGE_MASK,
321                                 fault & RING_FAULT_GTTSEL_MASK ?
322                                 "GGTT" : "PPGTT",
323                                 RING_FAULT_SRCID(fault),
324                                 RING_FAULT_FAULT_TYPE(fault));
325                 }
326         }
327 }
328
329 static void gen8_check_faults(struct intel_gt *gt)
330 {
331         struct intel_uncore *uncore = gt->uncore;
332         i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
333         u32 fault;
334
335         if (GRAPHICS_VER(gt->i915) >= 12) {
336                 fault_reg = GEN12_RING_FAULT_REG;
337                 fault_data0_reg = GEN12_FAULT_TLB_DATA0;
338                 fault_data1_reg = GEN12_FAULT_TLB_DATA1;
339         } else {
340                 fault_reg = GEN8_RING_FAULT_REG;
341                 fault_data0_reg = GEN8_FAULT_TLB_DATA0;
342                 fault_data1_reg = GEN8_FAULT_TLB_DATA1;
343         }
344
345         fault = intel_uncore_read(uncore, fault_reg);
346         if (fault & RING_FAULT_VALID) {
347                 u32 fault_data0, fault_data1;
348                 u64 fault_addr;
349
350                 fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
351                 fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
352
353                 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
354                              ((u64)fault_data0 << 12);
355
356                 drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
357                         "\tAddr: 0x%08x_%08x\n"
358                         "\tAddress space: %s\n"
359                         "\tEngine ID: %d\n"
360                         "\tSource ID: %d\n"
361                         "\tType: %d\n",
362                         upper_32_bits(fault_addr), lower_32_bits(fault_addr),
363                         fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
364                         GEN8_RING_FAULT_ENGINE_ID(fault),
365                         RING_FAULT_SRCID(fault),
366                         RING_FAULT_FAULT_TYPE(fault));
367         }
368 }
369
370 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
371 {
372         struct drm_i915_private *i915 = gt->i915;
373
374         /* From GEN8 onwards we only have one 'All Engine Fault Register' */
375         if (GRAPHICS_VER(i915) >= 8)
376                 gen8_check_faults(gt);
377         else if (GRAPHICS_VER(i915) >= 6)
378                 gen6_check_faults(gt);
379         else
380                 return;
381
382         intel_gt_clear_error_registers(gt, ALL_ENGINES);
383 }
384
385 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
386 {
387         struct intel_uncore *uncore = gt->uncore;
388         intel_wakeref_t wakeref;
389
390         /*
391          * No actual flushing is required for the GTT write domain for reads
392          * from the GTT domain. Writes to it "immediately" go to main memory
393          * as far as we know, so there's no chipset flush. It also doesn't
394          * land in the GPU render cache.
395          *
396          * However, we do have to enforce the order so that all writes through
397          * the GTT land before any writes to the device, such as updates to
398          * the GATT itself.
399          *
400          * We also have to wait a bit for the writes to land from the GTT.
401          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
402          * timing. This issue has only been observed when switching quickly
403          * between GTT writes and CPU reads from inside the kernel on recent hw,
404          * and it appears to only affect discrete GTT blocks (i.e. on LLC
405          * system agents we cannot reproduce this behaviour, until Cannonlake
406          * that was!).
407          */
408
409         wmb();
410
411         if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
412                 return;
413
414         intel_gt_chipset_flush(gt);
415
416         with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
417                 unsigned long flags;
418
419                 spin_lock_irqsave(&uncore->lock, flags);
420                 intel_uncore_posting_read_fw(uncore,
421                                              RING_HEAD(RENDER_RING_BASE));
422                 spin_unlock_irqrestore(&uncore->lock, flags);
423         }
424 }
425
426 void intel_gt_chipset_flush(struct intel_gt *gt)
427 {
428         wmb();
429         if (GRAPHICS_VER(gt->i915) < 6)
430                 intel_gtt_chipset_flush();
431 }
432
433 void intel_gt_driver_register(struct intel_gt *gt)
434 {
435         intel_rps_driver_register(&gt->rps);
436
437         debugfs_gt_register(gt);
438 }
439
440 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
441 {
442         struct drm_i915_private *i915 = gt->i915;
443         struct drm_i915_gem_object *obj;
444         struct i915_vma *vma;
445         int ret;
446
447         obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
448         if (IS_ERR(obj))
449                 obj = i915_gem_object_create_stolen(i915, size);
450         if (IS_ERR(obj))
451                 obj = i915_gem_object_create_internal(i915, size);
452         if (IS_ERR(obj)) {
453                 drm_err(&i915->drm, "Failed to allocate scratch page\n");
454                 return PTR_ERR(obj);
455         }
456
457         vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
458         if (IS_ERR(vma)) {
459                 ret = PTR_ERR(vma);
460                 goto err_unref;
461         }
462
463         ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
464         if (ret)
465                 goto err_unref;
466
467         gt->scratch = i915_vma_make_unshrinkable(vma);
468
469         return 0;
470
471 err_unref:
472         i915_gem_object_put(obj);
473         return ret;
474 }
475
476 static void intel_gt_fini_scratch(struct intel_gt *gt)
477 {
478         i915_vma_unpin_and_release(&gt->scratch, 0);
479 }
480
481 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
482 {
483         if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
484                 return &i915_ppgtt_create(gt)->vm;
485         else
486                 return i915_vm_get(&gt->ggtt->vm);
487 }
488
489 static int __engines_record_defaults(struct intel_gt *gt)
490 {
491         struct i915_request *requests[I915_NUM_ENGINES] = {};
492         struct intel_engine_cs *engine;
493         enum intel_engine_id id;
494         int err = 0;
495
496         /*
497          * As we reset the gpu during very early sanitisation, the current
498          * register state on the GPU should reflect its defaults values.
499          * We load a context onto the hw (with restore-inhibit), then switch
500          * over to a second context to save that default register state. We
501          * can then prime every new context with that state so they all start
502          * from the same default HW values.
503          */
504
505         for_each_engine(engine, gt, id) {
506                 struct intel_renderstate so;
507                 struct intel_context *ce;
508                 struct i915_request *rq;
509
510                 /* We must be able to switch to something! */
511                 GEM_BUG_ON(!engine->kernel_context);
512
513                 ce = intel_context_create(engine);
514                 if (IS_ERR(ce)) {
515                         err = PTR_ERR(ce);
516                         goto out;
517                 }
518
519                 err = intel_renderstate_init(&so, ce);
520                 if (err)
521                         goto err;
522
523                 rq = i915_request_create(ce);
524                 if (IS_ERR(rq)) {
525                         err = PTR_ERR(rq);
526                         goto err_fini;
527                 }
528
529                 err = intel_engine_emit_ctx_wa(rq);
530                 if (err)
531                         goto err_rq;
532
533                 err = intel_renderstate_emit(&so, rq);
534                 if (err)
535                         goto err_rq;
536
537 err_rq:
538                 requests[id] = i915_request_get(rq);
539                 i915_request_add(rq);
540 err_fini:
541                 intel_renderstate_fini(&so, ce);
542 err:
543                 if (err) {
544                         intel_context_put(ce);
545                         goto out;
546                 }
547         }
548
549         /* Flush the default context image to memory, and enable powersaving. */
550         if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
551                 err = -EIO;
552                 goto out;
553         }
554
555         for (id = 0; id < ARRAY_SIZE(requests); id++) {
556                 struct i915_request *rq;
557                 struct file *state;
558
559                 rq = requests[id];
560                 if (!rq)
561                         continue;
562
563                 if (rq->fence.error) {
564                         err = -EIO;
565                         goto out;
566                 }
567
568                 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
569                 if (!rq->context->state)
570                         continue;
571
572                 /* Keep a copy of the state's backing pages; free the obj */
573                 state = shmem_create_from_object(rq->context->state->obj);
574                 if (IS_ERR(state)) {
575                         err = PTR_ERR(state);
576                         goto out;
577                 }
578                 rq->engine->default_state = state;
579         }
580
581 out:
582         /*
583          * If we have to abandon now, we expect the engines to be idle
584          * and ready to be torn-down. The quickest way we can accomplish
585          * this is by declaring ourselves wedged.
586          */
587         if (err)
588                 intel_gt_set_wedged(gt);
589
590         for (id = 0; id < ARRAY_SIZE(requests); id++) {
591                 struct intel_context *ce;
592                 struct i915_request *rq;
593
594                 rq = requests[id];
595                 if (!rq)
596                         continue;
597
598                 ce = rq->context;
599                 i915_request_put(rq);
600                 intel_context_put(ce);
601         }
602         return err;
603 }
604
605 static int __engines_verify_workarounds(struct intel_gt *gt)
606 {
607         struct intel_engine_cs *engine;
608         enum intel_engine_id id;
609         int err = 0;
610
611         if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
612                 return 0;
613
614         for_each_engine(engine, gt, id) {
615                 if (intel_engine_verify_workarounds(engine, "load"))
616                         err = -EIO;
617         }
618
619         /* Flush and restore the kernel context for safety */
620         if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
621                 err = -EIO;
622
623         return err;
624 }
625
626 static void __intel_gt_disable(struct intel_gt *gt)
627 {
628         intel_gt_set_wedged_on_fini(gt);
629
630         intel_gt_suspend_prepare(gt);
631         intel_gt_suspend_late(gt);
632
633         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
634 }
635
636 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
637 {
638         long remaining_timeout;
639
640         /* If the device is asleep, we have no requests outstanding */
641         if (!intel_gt_pm_is_awake(gt))
642                 return 0;
643
644         while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
645                                                            &remaining_timeout)) > 0) {
646                 cond_resched();
647                 if (signal_pending(current))
648                         return -EINTR;
649         }
650
651         return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
652                                                           remaining_timeout);
653 }
654
655 int intel_gt_init(struct intel_gt *gt)
656 {
657         int err;
658
659         err = i915_inject_probe_error(gt->i915, -ENODEV);
660         if (err)
661                 return err;
662
663         /*
664          * This is just a security blanket to placate dragons.
665          * On some systems, we very sporadically observe that the first TLBs
666          * used by the CS may be stale, despite us poking the TLB reset. If
667          * we hold the forcewake during initialisation these problems
668          * just magically go away.
669          */
670         intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
671
672         err = intel_gt_init_scratch(gt,
673                                     GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
674         if (err)
675                 goto out_fw;
676
677         intel_gt_pm_init(gt);
678
679         gt->vm = kernel_vm(gt);
680         if (!gt->vm) {
681                 err = -ENOMEM;
682                 goto err_pm;
683         }
684
685         err = intel_engines_init(gt);
686         if (err)
687                 goto err_engines;
688
689         err = intel_uc_init(&gt->uc);
690         if (err)
691                 goto err_engines;
692
693         err = intel_gt_resume(gt);
694         if (err)
695                 goto err_uc_init;
696
697         err = __engines_record_defaults(gt);
698         if (err)
699                 goto err_gt;
700
701         err = __engines_verify_workarounds(gt);
702         if (err)
703                 goto err_gt;
704
705         intel_uc_init_late(&gt->uc);
706
707         err = i915_inject_probe_error(gt->i915, -EIO);
708         if (err)
709                 goto err_gt;
710
711         intel_migrate_init(&gt->migrate, gt);
712
713         goto out_fw;
714 err_gt:
715         __intel_gt_disable(gt);
716         intel_uc_fini_hw(&gt->uc);
717 err_uc_init:
718         intel_uc_fini(&gt->uc);
719 err_engines:
720         intel_engines_release(gt);
721         i915_vm_put(fetch_and_zero(&gt->vm));
722 err_pm:
723         intel_gt_pm_fini(gt);
724         intel_gt_fini_scratch(gt);
725 out_fw:
726         if (err)
727                 intel_gt_set_wedged_on_init(gt);
728         intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
729         return err;
730 }
731
732 void intel_gt_driver_remove(struct intel_gt *gt)
733 {
734         __intel_gt_disable(gt);
735
736         intel_migrate_fini(&gt->migrate);
737         intel_uc_driver_remove(&gt->uc);
738
739         intel_engines_release(gt);
740 }
741
742 void intel_gt_driver_unregister(struct intel_gt *gt)
743 {
744         intel_wakeref_t wakeref;
745
746         intel_rps_driver_unregister(&gt->rps);
747
748         /*
749          * Upon unregistering the device to prevent any new users, cancel
750          * all in-flight requests so that we can quickly unbind the active
751          * resources.
752          */
753         intel_gt_set_wedged(gt);
754
755         /* Scrub all HW state upon release */
756         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
757                 __intel_gt_reset(gt, ALL_ENGINES);
758 }
759
760 void intel_gt_driver_release(struct intel_gt *gt)
761 {
762         struct i915_address_space *vm;
763
764         vm = fetch_and_zero(&gt->vm);
765         if (vm) /* FIXME being called twice on error paths :( */
766                 i915_vm_put(vm);
767
768         intel_gt_pm_fini(gt);
769         intel_gt_fini_scratch(gt);
770         intel_gt_fini_buffer_pool(gt);
771 }
772
773 void intel_gt_driver_late_release(struct intel_gt *gt)
774 {
775         /* We need to wait for inflight RCU frees to release their grip */
776         rcu_barrier();
777
778         intel_uc_driver_late_release(&gt->uc);
779         intel_gt_fini_requests(gt);
780         intel_gt_fini_reset(gt);
781         intel_gt_fini_timelines(gt);
782         intel_engines_free(gt);
783 }
784
785 /**
786  * intel_gt_reg_needs_read_steering - determine whether a register read
787  *     requires explicit steering
788  * @gt: GT structure
789  * @reg: the register to check steering requirements for
790  * @type: type of multicast steering to check
791  *
792  * Determines whether @reg needs explicit steering of a specific type for
793  * reads.
794  *
795  * Returns false if @reg does not belong to a register range of the given
796  * steering type, or if the default (subslice-based) steering IDs are suitable
797  * for @type steering too.
798  */
799 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
800                                              i915_reg_t reg,
801                                              enum intel_steering_type type)
802 {
803         const u32 offset = i915_mmio_reg_offset(reg);
804         const struct intel_mmio_range *entry;
805
806         if (likely(!intel_gt_needs_read_steering(gt, type)))
807                 return false;
808
809         for (entry = gt->steering_table[type]; entry->end; entry++) {
810                 if (offset >= entry->start && offset <= entry->end)
811                         return true;
812         }
813
814         return false;
815 }
816
817 /**
818  * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
819  * @gt: GT structure
820  * @type: multicast register type
821  * @sliceid: Slice ID returned
822  * @subsliceid: Subslice ID returned
823  *
824  * Determines sliceid and subsliceid values that will steer reads
825  * of a specific multicast register class to a valid value.
826  */
827 static void intel_gt_get_valid_steering(struct intel_gt *gt,
828                                         enum intel_steering_type type,
829                                         u8 *sliceid, u8 *subsliceid)
830 {
831         switch (type) {
832         case L3BANK:
833                 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
834
835                 *sliceid = 0;           /* unused */
836                 *subsliceid = __ffs(gt->info.l3bank_mask);
837                 break;
838         case MSLICE:
839                 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
840
841                 *sliceid = __ffs(gt->info.mslice_mask);
842                 *subsliceid = 0;        /* unused */
843                 break;
844         case LNCF:
845                 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
846
847                 /*
848                  * An LNCF is always present if its mslice is present, so we
849                  * can safely just steer to LNCF 0 in all cases.
850                  */
851                 *sliceid = __ffs(gt->info.mslice_mask) << 1;
852                 *subsliceid = 0;        /* unused */
853                 break;
854         default:
855                 MISSING_CASE(type);
856                 *sliceid = 0;
857                 *subsliceid = 0;
858         }
859 }
860
861 /**
862  * intel_gt_read_register_fw - reads a GT register with support for multicast
863  * @gt: GT structure
864  * @reg: register to read
865  *
866  * This function will read a GT register.  If the register is a multicast
867  * register, the read will be steered to a valid instance (i.e., one that
868  * isn't fused off or powered down by power gating).
869  *
870  * Returns the value from a valid instance of @reg.
871  */
872 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
873 {
874         int type;
875         u8 sliceid, subsliceid;
876
877         for (type = 0; type < NUM_STEERING_TYPES; type++) {
878                 if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
879                         intel_gt_get_valid_steering(gt, type, &sliceid,
880                                                     &subsliceid);
881                         return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
882                                                                       reg,
883                                                                       sliceid,
884                                                                       subsliceid);
885                 }
886         }
887
888         return intel_uncore_read_fw(gt->uncore, reg);
889 }
890
891 void intel_gt_info_print(const struct intel_gt_info *info,
892                          struct drm_printer *p)
893 {
894         drm_printf(p, "available engines: %x\n", info->engine_mask);
895
896         intel_sseu_dump(&info->sseu, p);
897 }