Merge drm/drm-next into drm-intel-next
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_execlists_submission.h"
37 #include "intel_gt.h"
38 #include "intel_gt_requests.h"
39 #include "intel_gt_pm.h"
40 #include "intel_lrc_reg.h"
41 #include "intel_reset.h"
42 #include "intel_ring.h"
43 #include "uc/intel_guc_submission.h"
44
45 /* Haswell does have the CXT_SIZE register however it does not appear to be
46  * valid. Now, docs explain in dwords what is in the context object. The full
47  * size is 70720 bytes, however, the power context and execlist context will
48  * never be saved (power context is stored elsewhere, and execlists don't work
49  * on HSW) - so the final size, including the extra state required for the
50  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
51  */
52 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
53
54 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
55 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
56 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
57 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
58 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
59
60 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
61
62 #define MAX_MMIO_BASES 3
63 struct engine_info {
64         unsigned int hw_id;
65         u8 class;
66         u8 instance;
67         /* mmio bases table *must* be sorted in reverse gen order */
68         struct engine_mmio_base {
69                 u32 gen : 8;
70                 u32 base : 24;
71         } mmio_bases[MAX_MMIO_BASES];
72 };
73
74 static const struct engine_info intel_engines[] = {
75         [RCS0] = {
76                 .hw_id = RCS0_HW,
77                 .class = RENDER_CLASS,
78                 .instance = 0,
79                 .mmio_bases = {
80                         { .gen = 1, .base = RENDER_RING_BASE }
81                 },
82         },
83         [BCS0] = {
84                 .hw_id = BCS0_HW,
85                 .class = COPY_ENGINE_CLASS,
86                 .instance = 0,
87                 .mmio_bases = {
88                         { .gen = 6, .base = BLT_RING_BASE }
89                 },
90         },
91         [VCS0] = {
92                 .hw_id = VCS0_HW,
93                 .class = VIDEO_DECODE_CLASS,
94                 .instance = 0,
95                 .mmio_bases = {
96                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
97                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
98                         { .gen = 4, .base = BSD_RING_BASE }
99                 },
100         },
101         [VCS1] = {
102                 .hw_id = VCS1_HW,
103                 .class = VIDEO_DECODE_CLASS,
104                 .instance = 1,
105                 .mmio_bases = {
106                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
107                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
108                 },
109         },
110         [VCS2] = {
111                 .hw_id = VCS2_HW,
112                 .class = VIDEO_DECODE_CLASS,
113                 .instance = 2,
114                 .mmio_bases = {
115                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
116                 },
117         },
118         [VCS3] = {
119                 .hw_id = VCS3_HW,
120                 .class = VIDEO_DECODE_CLASS,
121                 .instance = 3,
122                 .mmio_bases = {
123                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
124                 },
125         },
126         [VECS0] = {
127                 .hw_id = VECS0_HW,
128                 .class = VIDEO_ENHANCEMENT_CLASS,
129                 .instance = 0,
130                 .mmio_bases = {
131                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
132                         { .gen = 7, .base = VEBOX_RING_BASE }
133                 },
134         },
135         [VECS1] = {
136                 .hw_id = VECS1_HW,
137                 .class = VIDEO_ENHANCEMENT_CLASS,
138                 .instance = 1,
139                 .mmio_bases = {
140                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
141                 },
142         },
143 };
144
145 /**
146  * intel_engine_context_size() - return the size of the context for an engine
147  * @gt: the gt
148  * @class: engine class
149  *
150  * Each engine class may require a different amount of space for a context
151  * image.
152  *
153  * Return: size (in bytes) of an engine class specific context image
154  *
155  * Note: this size includes the HWSP, which is part of the context image
156  * in LRC mode, but does not include the "shared data page" used with
157  * GuC submission. The caller should account for this if using the GuC.
158  */
159 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
160 {
161         struct intel_uncore *uncore = gt->uncore;
162         u32 cxt_size;
163
164         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
165
166         switch (class) {
167         case RENDER_CLASS:
168                 switch (INTEL_GEN(gt->i915)) {
169                 default:
170                         MISSING_CASE(INTEL_GEN(gt->i915));
171                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
172                 case 12:
173                 case 11:
174                         return GEN11_LR_CONTEXT_RENDER_SIZE;
175                 case 10:
176                         return GEN10_LR_CONTEXT_RENDER_SIZE;
177                 case 9:
178                         return GEN9_LR_CONTEXT_RENDER_SIZE;
179                 case 8:
180                         return GEN8_LR_CONTEXT_RENDER_SIZE;
181                 case 7:
182                         if (IS_HASWELL(gt->i915))
183                                 return HSW_CXT_TOTAL_SIZE;
184
185                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
186                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
187                                         PAGE_SIZE);
188                 case 6:
189                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
190                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
191                                         PAGE_SIZE);
192                 case 5:
193                 case 4:
194                         /*
195                          * There is a discrepancy here between the size reported
196                          * by the register and the size of the context layout
197                          * in the docs. Both are described as authorative!
198                          *
199                          * The discrepancy is on the order of a few cachelines,
200                          * but the total is under one page (4k), which is our
201                          * minimum allocation anyway so it should all come
202                          * out in the wash.
203                          */
204                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
205                         drm_dbg(&gt->i915->drm,
206                                 "gen%d CXT_SIZE = %d bytes [0x%08x]\n",
207                                 INTEL_GEN(gt->i915), cxt_size * 64,
208                                 cxt_size - 1);
209                         return round_up(cxt_size * 64, PAGE_SIZE);
210                 case 3:
211                 case 2:
212                 /* For the special day when i810 gets merged. */
213                 case 1:
214                         return 0;
215                 }
216                 break;
217         default:
218                 MISSING_CASE(class);
219                 fallthrough;
220         case VIDEO_DECODE_CLASS:
221         case VIDEO_ENHANCEMENT_CLASS:
222         case COPY_ENGINE_CLASS:
223                 if (INTEL_GEN(gt->i915) < 8)
224                         return 0;
225                 return GEN8_LR_CONTEXT_OTHER_SIZE;
226         }
227 }
228
229 static u32 __engine_mmio_base(struct drm_i915_private *i915,
230                               const struct engine_mmio_base *bases)
231 {
232         int i;
233
234         for (i = 0; i < MAX_MMIO_BASES; i++)
235                 if (INTEL_GEN(i915) >= bases[i].gen)
236                         break;
237
238         GEM_BUG_ON(i == MAX_MMIO_BASES);
239         GEM_BUG_ON(!bases[i].base);
240
241         return bases[i].base;
242 }
243
244 static void __sprint_engine_name(struct intel_engine_cs *engine)
245 {
246         /*
247          * Before we know what the uABI name for this engine will be,
248          * we still would like to keep track of this engine in the debug logs.
249          * We throw in a ' here as a reminder that this isn't its final name.
250          */
251         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
252                              intel_engine_class_repr(engine->class),
253                              engine->instance) >= sizeof(engine->name));
254 }
255
256 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
257 {
258         /*
259          * Though they added more rings on g4x/ilk, they did not add
260          * per-engine HWSTAM until gen6.
261          */
262         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
263                 return;
264
265         if (INTEL_GEN(engine->i915) >= 3)
266                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
267         else
268                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
269 }
270
271 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
272 {
273         /* Mask off all writes into the unknown HWSP */
274         intel_engine_set_hwsp_writemask(engine, ~0u);
275 }
276
277 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
278 {
279         const struct engine_info *info = &intel_engines[id];
280         struct drm_i915_private *i915 = gt->i915;
281         struct intel_engine_cs *engine;
282
283         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
284         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
285
286         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
287                 return -EINVAL;
288
289         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
290                 return -EINVAL;
291
292         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
293                 return -EINVAL;
294
295         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
296                 return -EINVAL;
297
298         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
299         if (!engine)
300                 return -ENOMEM;
301
302         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
303
304         engine->id = id;
305         engine->legacy_idx = INVALID_ENGINE;
306         engine->mask = BIT(id);
307         engine->i915 = i915;
308         engine->gt = gt;
309         engine->uncore = gt->uncore;
310         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
311         engine->hw_id = info->hw_id;
312         engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
313
314         engine->class = info->class;
315         engine->instance = info->instance;
316         __sprint_engine_name(engine);
317
318         engine->props.heartbeat_interval_ms =
319                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
320         engine->props.max_busywait_duration_ns =
321                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
322         engine->props.preempt_timeout_ms =
323                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
324         engine->props.stop_timeout_ms =
325                 CONFIG_DRM_I915_STOP_TIMEOUT;
326         engine->props.timeslice_duration_ms =
327                 CONFIG_DRM_I915_TIMESLICE_DURATION;
328
329         /* Override to uninterruptible for OpenCL workloads. */
330         if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
331                 engine->props.preempt_timeout_ms = 0;
332
333         engine->defaults = engine->props; /* never to change again */
334
335         engine->context_size = intel_engine_context_size(gt, engine->class);
336         if (WARN_ON(engine->context_size > BIT(20)))
337                 engine->context_size = 0;
338         if (engine->context_size)
339                 DRIVER_CAPS(i915)->has_logical_contexts = true;
340
341         /* Nothing to do here, execute in order of dependencies */
342         engine->schedule = NULL;
343
344         ewma__engine_latency_init(&engine->latency);
345         seqcount_init(&engine->stats.lock);
346
347         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
348
349         /* Scrub mmio state on takeover */
350         intel_engine_sanitize_mmio(engine);
351
352         gt->engine_class[info->class][info->instance] = engine;
353         gt->engine[id] = engine;
354
355         return 0;
356 }
357
358 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
359 {
360         struct drm_i915_private *i915 = engine->i915;
361
362         if (engine->class == VIDEO_DECODE_CLASS) {
363                 /*
364                  * HEVC support is present on first engine instance
365                  * before Gen11 and on all instances afterwards.
366                  */
367                 if (INTEL_GEN(i915) >= 11 ||
368                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
369                         engine->uabi_capabilities |=
370                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
371
372                 /*
373                  * SFC block is present only on even logical engine
374                  * instances.
375                  */
376                 if ((INTEL_GEN(i915) >= 11 &&
377                      (engine->gt->info.vdbox_sfc_access &
378                       BIT(engine->instance))) ||
379                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
380                         engine->uabi_capabilities |=
381                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
382         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
383                 if (INTEL_GEN(i915) >= 9)
384                         engine->uabi_capabilities |=
385                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
386         }
387 }
388
389 static void intel_setup_engine_capabilities(struct intel_gt *gt)
390 {
391         struct intel_engine_cs *engine;
392         enum intel_engine_id id;
393
394         for_each_engine(engine, gt, id)
395                 __setup_engine_capabilities(engine);
396 }
397
398 /**
399  * intel_engines_release() - free the resources allocated for Command Streamers
400  * @gt: pointer to struct intel_gt
401  */
402 void intel_engines_release(struct intel_gt *gt)
403 {
404         struct intel_engine_cs *engine;
405         enum intel_engine_id id;
406
407         /*
408          * Before we release the resources held by engine, we must be certain
409          * that the HW is no longer accessing them -- having the GPU scribble
410          * to or read from a page being used for something else causes no end
411          * of fun.
412          *
413          * The GPU should be reset by this point, but assume the worst just
414          * in case we aborted before completely initialising the engines.
415          */
416         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
417         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
418                 __intel_gt_reset(gt, ALL_ENGINES);
419
420         /* Decouple the backend; but keep the layout for late GPU resets */
421         for_each_engine(engine, gt, id) {
422                 if (!engine->release)
423                         continue;
424
425                 intel_wakeref_wait_for_idle(&engine->wakeref);
426                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
427
428                 engine->release(engine);
429                 engine->release = NULL;
430
431                 memset(&engine->reset, 0, sizeof(engine->reset));
432         }
433 }
434
435 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
436 {
437         if (!engine->request_pool)
438                 return;
439
440         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
441 }
442
443 void intel_engines_free(struct intel_gt *gt)
444 {
445         struct intel_engine_cs *engine;
446         enum intel_engine_id id;
447
448         /* Free the requests! dma-resv keeps fences around for an eternity */
449         rcu_barrier();
450
451         for_each_engine(engine, gt, id) {
452                 intel_engine_free_request_pool(engine);
453                 kfree(engine);
454                 gt->engine[id] = NULL;
455         }
456 }
457
458 /*
459  * Determine which engines are fused off in our particular hardware.
460  * Note that we have a catch-22 situation where we need to be able to access
461  * the blitter forcewake domain to read the engine fuses, but at the same time
462  * we need to know which engines are available on the system to know which
463  * forcewake domains are present. We solve this by intializing the forcewake
464  * domains based on the full engine mask in the platform capabilities before
465  * calling this function and pruning the domains for fused-off engines
466  * afterwards.
467  */
468 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
469 {
470         struct drm_i915_private *i915 = gt->i915;
471         struct intel_gt_info *info = &gt->info;
472         struct intel_uncore *uncore = gt->uncore;
473         unsigned int logical_vdbox = 0;
474         unsigned int i;
475         u32 media_fuse;
476         u16 vdbox_mask;
477         u16 vebox_mask;
478
479         info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
480
481         if (INTEL_GEN(i915) < 11)
482                 return info->engine_mask;
483
484         media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
485
486         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
487         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
488                       GEN11_GT_VEBOX_DISABLE_SHIFT;
489
490         for (i = 0; i < I915_MAX_VCS; i++) {
491                 if (!HAS_ENGINE(gt, _VCS(i))) {
492                         vdbox_mask &= ~BIT(i);
493                         continue;
494                 }
495
496                 if (!(BIT(i) & vdbox_mask)) {
497                         info->engine_mask &= ~BIT(_VCS(i));
498                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
499                         continue;
500                 }
501
502                 /*
503                  * In Gen11, only even numbered logical VDBOXes are
504                  * hooked up to an SFC (Scaler & Format Converter) unit.
505                  * In TGL each VDBOX has access to an SFC.
506                  */
507                 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
508                         gt->info.vdbox_sfc_access |= BIT(i);
509         }
510         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
511                 vdbox_mask, VDBOX_MASK(gt));
512         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
513
514         for (i = 0; i < I915_MAX_VECS; i++) {
515                 if (!HAS_ENGINE(gt, _VECS(i))) {
516                         vebox_mask &= ~BIT(i);
517                         continue;
518                 }
519
520                 if (!(BIT(i) & vebox_mask)) {
521                         info->engine_mask &= ~BIT(_VECS(i));
522                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
523                 }
524         }
525         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
526                 vebox_mask, VEBOX_MASK(gt));
527         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
528
529         return info->engine_mask;
530 }
531
532 /**
533  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
534  * @gt: pointer to struct intel_gt
535  *
536  * Return: non-zero if the initialization failed.
537  */
538 int intel_engines_init_mmio(struct intel_gt *gt)
539 {
540         struct drm_i915_private *i915 = gt->i915;
541         const unsigned int engine_mask = init_engine_mask(gt);
542         unsigned int mask = 0;
543         unsigned int i;
544         int err;
545
546         drm_WARN_ON(&i915->drm, engine_mask == 0);
547         drm_WARN_ON(&i915->drm, engine_mask &
548                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
549
550         if (i915_inject_probe_failure(i915))
551                 return -ENODEV;
552
553         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
554                 if (!HAS_ENGINE(gt, i))
555                         continue;
556
557                 err = intel_engine_setup(gt, i);
558                 if (err)
559                         goto cleanup;
560
561                 mask |= BIT(i);
562         }
563
564         /*
565          * Catch failures to update intel_engines table when the new engines
566          * are added to the driver by a warning and disabling the forgotten
567          * engines.
568          */
569         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
570                 gt->info.engine_mask = mask;
571
572         gt->info.num_engines = hweight32(mask);
573
574         intel_gt_check_and_clear_faults(gt);
575
576         intel_setup_engine_capabilities(gt);
577
578         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
579
580         return 0;
581
582 cleanup:
583         intel_engines_free(gt);
584         return err;
585 }
586
587 void intel_engine_init_execlists(struct intel_engine_cs *engine)
588 {
589         struct intel_engine_execlists * const execlists = &engine->execlists;
590
591         execlists->port_mask = 1;
592         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
593         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
594
595         memset(execlists->pending, 0, sizeof(execlists->pending));
596         execlists->active =
597                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
598
599         execlists->queue_priority_hint = INT_MIN;
600         execlists->queue = RB_ROOT_CACHED;
601 }
602
603 static void cleanup_status_page(struct intel_engine_cs *engine)
604 {
605         struct i915_vma *vma;
606
607         /* Prevent writes into HWSP after returning the page to the system */
608         intel_engine_set_hwsp_writemask(engine, ~0u);
609
610         vma = fetch_and_zero(&engine->status_page.vma);
611         if (!vma)
612                 return;
613
614         if (!HWS_NEEDS_PHYSICAL(engine->i915))
615                 i915_vma_unpin(vma);
616
617         i915_gem_object_unpin_map(vma->obj);
618         i915_gem_object_put(vma->obj);
619 }
620
621 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
622                                 struct i915_vma *vma)
623 {
624         unsigned int flags;
625
626         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
627                 /*
628                  * On g33, we cannot place HWS above 256MiB, so
629                  * restrict its pinning to the low mappable arena.
630                  * Though this restriction is not documented for
631                  * gen4, gen5, or byt, they also behave similarly
632                  * and hang if the HWS is placed at the top of the
633                  * GTT. To generalise, it appears that all !llc
634                  * platforms have issues with us placing the HWS
635                  * above the mappable region (even though we never
636                  * actually map it).
637                  */
638                 flags = PIN_MAPPABLE;
639         else
640                 flags = PIN_HIGH;
641
642         return i915_ggtt_pin(vma, NULL, 0, flags);
643 }
644
645 static int init_status_page(struct intel_engine_cs *engine)
646 {
647         struct drm_i915_gem_object *obj;
648         struct i915_vma *vma;
649         void *vaddr;
650         int ret;
651
652         INIT_LIST_HEAD(&engine->status_page.timelines);
653
654         /*
655          * Though the HWS register does support 36bit addresses, historically
656          * we have had hangs and corruption reported due to wild writes if
657          * the HWS is placed above 4G. We only allow objects to be allocated
658          * in GFP_DMA32 for i965, and no earlier physical address users had
659          * access to more than 4G.
660          */
661         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
662         if (IS_ERR(obj)) {
663                 drm_err(&engine->i915->drm,
664                         "Failed to allocate status page\n");
665                 return PTR_ERR(obj);
666         }
667
668         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
669
670         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
671         if (IS_ERR(vma)) {
672                 ret = PTR_ERR(vma);
673                 goto err;
674         }
675
676         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
677         if (IS_ERR(vaddr)) {
678                 ret = PTR_ERR(vaddr);
679                 goto err;
680         }
681
682         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683         engine->status_page.vma = vma;
684
685         if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
686                 ret = pin_ggtt_status_page(engine, vma);
687                 if (ret)
688                         goto err_unpin;
689         }
690
691         return 0;
692
693 err_unpin:
694         i915_gem_object_unpin_map(obj);
695 err:
696         i915_gem_object_put(obj);
697         return ret;
698 }
699
700 static int engine_setup_common(struct intel_engine_cs *engine)
701 {
702         int err;
703
704         init_llist_head(&engine->barrier_tasks);
705
706         err = init_status_page(engine);
707         if (err)
708                 return err;
709
710         engine->breadcrumbs = intel_breadcrumbs_create(engine);
711         if (!engine->breadcrumbs) {
712                 err = -ENOMEM;
713                 goto err_status;
714         }
715
716         intel_engine_init_active(engine, ENGINE_PHYSICAL);
717         intel_engine_init_execlists(engine);
718         intel_engine_init_cmd_parser(engine);
719         intel_engine_init__pm(engine);
720         intel_engine_init_retire(engine);
721
722         /* Use the whole device by default */
723         engine->sseu =
724                 intel_sseu_from_device_info(&engine->gt->info.sseu);
725
726         intel_engine_init_workarounds(engine);
727         intel_engine_init_whitelist(engine);
728         intel_engine_init_ctx_wa(engine);
729
730         if (INTEL_GEN(engine->i915) >= 12)
731                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
732
733         return 0;
734
735 err_status:
736         cleanup_status_page(engine);
737         return err;
738 }
739
740 struct measure_breadcrumb {
741         struct i915_request rq;
742         struct intel_ring ring;
743         u32 cs[2048];
744 };
745
746 static int measure_breadcrumb_dw(struct intel_context *ce)
747 {
748         struct intel_engine_cs *engine = ce->engine;
749         struct measure_breadcrumb *frame;
750         int dw;
751
752         GEM_BUG_ON(!engine->gt->scratch);
753
754         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
755         if (!frame)
756                 return -ENOMEM;
757
758         frame->rq.engine = engine;
759         frame->rq.context = ce;
760         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
761
762         frame->ring.vaddr = frame->cs;
763         frame->ring.size = sizeof(frame->cs);
764         frame->ring.wrap =
765                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
766         frame->ring.effective_size = frame->ring.size;
767         intel_ring_update_space(&frame->ring);
768         frame->rq.ring = &frame->ring;
769
770         mutex_lock(&ce->timeline->mutex);
771         spin_lock_irq(&engine->active.lock);
772
773         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
774
775         spin_unlock_irq(&engine->active.lock);
776         mutex_unlock(&ce->timeline->mutex);
777
778         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
779
780         kfree(frame);
781         return dw;
782 }
783
784 void
785 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
786 {
787         INIT_LIST_HEAD(&engine->active.requests);
788         INIT_LIST_HEAD(&engine->active.hold);
789
790         spin_lock_init(&engine->active.lock);
791         lockdep_set_subclass(&engine->active.lock, subclass);
792
793         /*
794          * Due to an interesting quirk in lockdep's internal debug tracking,
795          * after setting a subclass we must ensure the lock is used. Otherwise,
796          * nr_unused_locks is incremented once too often.
797          */
798 #ifdef CONFIG_DEBUG_LOCK_ALLOC
799         local_irq_disable();
800         lock_map_acquire(&engine->active.lock.dep_map);
801         lock_map_release(&engine->active.lock.dep_map);
802         local_irq_enable();
803 #endif
804 }
805
806 static struct intel_context *
807 create_pinned_context(struct intel_engine_cs *engine,
808                       unsigned int hwsp,
809                       struct lock_class_key *key,
810                       const char *name)
811 {
812         struct intel_context *ce;
813         int err;
814
815         ce = intel_context_create(engine);
816         if (IS_ERR(ce))
817                 return ce;
818
819         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
820         ce->timeline = page_pack_bits(NULL, hwsp);
821
822         err = intel_context_pin(ce); /* perma-pin so it is always available */
823         if (err) {
824                 intel_context_put(ce);
825                 return ERR_PTR(err);
826         }
827
828         /*
829          * Give our perma-pinned kernel timelines a separate lockdep class,
830          * so that we can use them from within the normal user timelines
831          * should we need to inject GPU operations during their request
832          * construction.
833          */
834         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
835
836         return ce;
837 }
838
839 static void destroy_pinned_context(struct intel_context *ce)
840 {
841         struct intel_engine_cs *engine = ce->engine;
842         struct i915_vma *hwsp = engine->status_page.vma;
843
844         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
845
846         mutex_lock(&hwsp->vm->mutex);
847         list_del(&ce->timeline->engine_link);
848         mutex_unlock(&hwsp->vm->mutex);
849
850         intel_context_unpin(ce);
851         intel_context_put(ce);
852 }
853
854 static struct intel_context *
855 create_kernel_context(struct intel_engine_cs *engine)
856 {
857         static struct lock_class_key kernel;
858
859         return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
860                                      &kernel, "kernel_context");
861 }
862
863 /**
864  * intel_engines_init_common - initialize cengine state which might require hw access
865  * @engine: Engine to initialize.
866  *
867  * Initializes @engine@ structure members shared between legacy and execlists
868  * submission modes which do require hardware access.
869  *
870  * Typcally done at later stages of submission mode specific engine setup.
871  *
872  * Returns zero on success or an error code on failure.
873  */
874 static int engine_init_common(struct intel_engine_cs *engine)
875 {
876         struct intel_context *ce;
877         int ret;
878
879         engine->set_default_submission(engine);
880
881         /*
882          * We may need to do things with the shrinker which
883          * require us to immediately switch back to the default
884          * context. This can cause a problem as pinning the
885          * default context also requires GTT space which may not
886          * be available. To avoid this we always pin the default
887          * context.
888          */
889         ce = create_kernel_context(engine);
890         if (IS_ERR(ce))
891                 return PTR_ERR(ce);
892
893         ret = measure_breadcrumb_dw(ce);
894         if (ret < 0)
895                 goto err_context;
896
897         engine->emit_fini_breadcrumb_dw = ret;
898         engine->kernel_context = ce;
899
900         return 0;
901
902 err_context:
903         intel_context_put(ce);
904         return ret;
905 }
906
907 int intel_engines_init(struct intel_gt *gt)
908 {
909         int (*setup)(struct intel_engine_cs *engine);
910         struct intel_engine_cs *engine;
911         enum intel_engine_id id;
912         int err;
913
914         if (intel_uc_uses_guc_submission(&gt->uc))
915                 setup = intel_guc_submission_setup;
916         else if (HAS_EXECLISTS(gt->i915))
917                 setup = intel_execlists_submission_setup;
918         else
919                 setup = intel_ring_submission_setup;
920
921         for_each_engine(engine, gt, id) {
922                 err = engine_setup_common(engine);
923                 if (err)
924                         return err;
925
926                 err = setup(engine);
927                 if (err)
928                         return err;
929
930                 err = engine_init_common(engine);
931                 if (err)
932                         return err;
933
934                 intel_engine_add_user(engine);
935         }
936
937         return 0;
938 }
939
940 /**
941  * intel_engines_cleanup_common - cleans up the engine state created by
942  *                                the common initiailizers.
943  * @engine: Engine to cleanup.
944  *
945  * This cleans up everything created by the common helpers.
946  */
947 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
948 {
949         GEM_BUG_ON(!list_empty(&engine->active.requests));
950         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
951
952         intel_breadcrumbs_free(engine->breadcrumbs);
953
954         intel_engine_fini_retire(engine);
955         intel_engine_cleanup_cmd_parser(engine);
956
957         if (engine->default_state)
958                 fput(engine->default_state);
959
960         if (engine->kernel_context)
961                 destroy_pinned_context(engine->kernel_context);
962
963         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
964         cleanup_status_page(engine);
965
966         intel_wa_list_free(&engine->ctx_wa_list);
967         intel_wa_list_free(&engine->wa_list);
968         intel_wa_list_free(&engine->whitelist);
969 }
970
971 /**
972  * intel_engine_resume - re-initializes the HW state of the engine
973  * @engine: Engine to resume.
974  *
975  * Returns zero on success or an error code on failure.
976  */
977 int intel_engine_resume(struct intel_engine_cs *engine)
978 {
979         intel_engine_apply_workarounds(engine);
980         intel_engine_apply_whitelist(engine);
981
982         return engine->resume(engine);
983 }
984
985 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
986 {
987         struct drm_i915_private *i915 = engine->i915;
988
989         u64 acthd;
990
991         if (INTEL_GEN(i915) >= 8)
992                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
993         else if (INTEL_GEN(i915) >= 4)
994                 acthd = ENGINE_READ(engine, RING_ACTHD);
995         else
996                 acthd = ENGINE_READ(engine, ACTHD);
997
998         return acthd;
999 }
1000
1001 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1002 {
1003         u64 bbaddr;
1004
1005         if (INTEL_GEN(engine->i915) >= 8)
1006                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1007         else
1008                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1009
1010         return bbaddr;
1011 }
1012
1013 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1014 {
1015         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1016                 return 0;
1017
1018         /*
1019          * If we are doing a normal GPU reset, we can take our time and allow
1020          * the engine to quiesce. We've stopped submission to the engine, and
1021          * if we wait long enough an innocent context should complete and
1022          * leave the engine idle. So they should not be caught unaware by
1023          * the forthcoming GPU reset (which usually follows the stop_cs)!
1024          */
1025         return READ_ONCE(engine->props.stop_timeout_ms);
1026 }
1027
1028 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1029                                   int fast_timeout_us,
1030                                   int slow_timeout_ms)
1031 {
1032         struct intel_uncore *uncore = engine->uncore;
1033         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1034         int err;
1035
1036         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1037         err = __intel_wait_for_register_fw(engine->uncore, mode,
1038                                            MODE_IDLE, MODE_IDLE,
1039                                            fast_timeout_us,
1040                                            slow_timeout_ms,
1041                                            NULL);
1042
1043         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1044         intel_uncore_posting_read_fw(uncore, mode);
1045         return err;
1046 }
1047
1048 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1049 {
1050         int err = 0;
1051
1052         if (INTEL_GEN(engine->i915) < 3)
1053                 return -ENODEV;
1054
1055         ENGINE_TRACE(engine, "\n");
1056         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1057                 ENGINE_TRACE(engine,
1058                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1059                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1060                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1061
1062                 /*
1063                  * Sometimes we observe that the idle flag is not
1064                  * set even though the ring is empty. So double
1065                  * check before giving up.
1066                  */
1067                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1068                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1069                         err = -ETIMEDOUT;
1070         }
1071
1072         return err;
1073 }
1074
1075 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1076 {
1077         ENGINE_TRACE(engine, "\n");
1078
1079         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1080 }
1081
1082 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1083 {
1084         switch (type) {
1085         case I915_CACHE_NONE: return " uncached";
1086         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1087         case I915_CACHE_L3_LLC: return " L3+LLC";
1088         case I915_CACHE_WT: return " WT";
1089         default: return "";
1090         }
1091 }
1092
1093 static u32
1094 read_subslice_reg(const struct intel_engine_cs *engine,
1095                   int slice, int subslice, i915_reg_t reg)
1096 {
1097         struct drm_i915_private *i915 = engine->i915;
1098         struct intel_uncore *uncore = engine->uncore;
1099         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1100         enum forcewake_domains fw_domains;
1101
1102         if (INTEL_GEN(i915) >= 11) {
1103                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1104                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1105         } else {
1106                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1107                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1108         }
1109
1110         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1111                                                     FW_REG_READ);
1112         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1113                                                      GEN8_MCR_SELECTOR,
1114                                                      FW_REG_READ | FW_REG_WRITE);
1115
1116         spin_lock_irq(&uncore->lock);
1117         intel_uncore_forcewake_get__locked(uncore, fw_domains);
1118
1119         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1120
1121         mcr &= ~mcr_mask;
1122         mcr |= mcr_ss;
1123         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1124
1125         val = intel_uncore_read_fw(uncore, reg);
1126
1127         mcr &= ~mcr_mask;
1128         mcr |= old_mcr & mcr_mask;
1129
1130         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1131
1132         intel_uncore_forcewake_put__locked(uncore, fw_domains);
1133         spin_unlock_irq(&uncore->lock);
1134
1135         return val;
1136 }
1137
1138 /* NB: please notice the memset */
1139 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1140                                struct intel_instdone *instdone)
1141 {
1142         struct drm_i915_private *i915 = engine->i915;
1143         const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1144         struct intel_uncore *uncore = engine->uncore;
1145         u32 mmio_base = engine->mmio_base;
1146         int slice;
1147         int subslice;
1148
1149         memset(instdone, 0, sizeof(*instdone));
1150
1151         switch (INTEL_GEN(i915)) {
1152         default:
1153                 instdone->instdone =
1154                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155
1156                 if (engine->id != RCS0)
1157                         break;
1158
1159                 instdone->slice_common =
1160                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1161                 if (INTEL_GEN(i915) >= 12) {
1162                         instdone->slice_common_extra[0] =
1163                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1164                         instdone->slice_common_extra[1] =
1165                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1166                 }
1167                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1168                         instdone->sampler[slice][subslice] =
1169                                 read_subslice_reg(engine, slice, subslice,
1170                                                   GEN7_SAMPLER_INSTDONE);
1171                         instdone->row[slice][subslice] =
1172                                 read_subslice_reg(engine, slice, subslice,
1173                                                   GEN7_ROW_INSTDONE);
1174                 }
1175                 break;
1176         case 7:
1177                 instdone->instdone =
1178                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1179
1180                 if (engine->id != RCS0)
1181                         break;
1182
1183                 instdone->slice_common =
1184                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1185                 instdone->sampler[0][0] =
1186                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1187                 instdone->row[0][0] =
1188                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1189
1190                 break;
1191         case 6:
1192         case 5:
1193         case 4:
1194                 instdone->instdone =
1195                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1196                 if (engine->id == RCS0)
1197                         /* HACK: Using the wrong struct member */
1198                         instdone->slice_common =
1199                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1200                 break;
1201         case 3:
1202         case 2:
1203                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1204                 break;
1205         }
1206 }
1207
1208 static bool ring_is_idle(struct intel_engine_cs *engine)
1209 {
1210         bool idle = true;
1211
1212         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1213                 return true;
1214
1215         if (!intel_engine_pm_get_if_awake(engine))
1216                 return true;
1217
1218         /* First check that no commands are left in the ring */
1219         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1220             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1221                 idle = false;
1222
1223         /* No bit for gen2, so assume the CS parser is idle */
1224         if (INTEL_GEN(engine->i915) > 2 &&
1225             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1226                 idle = false;
1227
1228         intel_engine_pm_put(engine);
1229
1230         return idle;
1231 }
1232
1233 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1234 {
1235         struct tasklet_struct *t = &engine->execlists.tasklet;
1236
1237         if (!t->func)
1238                 return;
1239
1240         local_bh_disable();
1241         if (tasklet_trylock(t)) {
1242                 /* Must wait for any GPU reset in progress. */
1243                 if (__tasklet_is_enabled(t))
1244                         t->func(t->data);
1245                 tasklet_unlock(t);
1246         }
1247         local_bh_enable();
1248
1249         /* Synchronise and wait for the tasklet on another CPU */
1250         if (sync)
1251                 tasklet_unlock_wait(t);
1252 }
1253
1254 /**
1255  * intel_engine_is_idle() - Report if the engine has finished process all work
1256  * @engine: the intel_engine_cs
1257  *
1258  * Return true if there are no requests pending, nothing left to be submitted
1259  * to hardware, and that the engine is idle.
1260  */
1261 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1262 {
1263         /* More white lies, if wedged, hw state is inconsistent */
1264         if (intel_gt_is_wedged(engine->gt))
1265                 return true;
1266
1267         if (!intel_engine_pm_is_awake(engine))
1268                 return true;
1269
1270         /* Waiting to drain ELSP? */
1271         if (execlists_active(&engine->execlists)) {
1272                 synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
1273
1274                 intel_engine_flush_submission(engine);
1275
1276                 if (execlists_active(&engine->execlists))
1277                         return false;
1278         }
1279
1280         /* ELSP is empty, but there are ready requests? E.g. after reset */
1281         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1282                 return false;
1283
1284         /* Ring stopped? */
1285         return ring_is_idle(engine);
1286 }
1287
1288 bool intel_engines_are_idle(struct intel_gt *gt)
1289 {
1290         struct intel_engine_cs *engine;
1291         enum intel_engine_id id;
1292
1293         /*
1294          * If the driver is wedged, HW state may be very inconsistent and
1295          * report that it is still busy, even though we have stopped using it.
1296          */
1297         if (intel_gt_is_wedged(gt))
1298                 return true;
1299
1300         /* Already parked (and passed an idleness test); must still be idle */
1301         if (!READ_ONCE(gt->awake))
1302                 return true;
1303
1304         for_each_engine(engine, gt, id) {
1305                 if (!intel_engine_is_idle(engine))
1306                         return false;
1307         }
1308
1309         return true;
1310 }
1311
1312 void intel_engines_reset_default_submission(struct intel_gt *gt)
1313 {
1314         struct intel_engine_cs *engine;
1315         enum intel_engine_id id;
1316
1317         for_each_engine(engine, gt, id) {
1318                 if (engine->sanitize)
1319                         engine->sanitize(engine);
1320
1321                 engine->set_default_submission(engine);
1322         }
1323 }
1324
1325 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1326 {
1327         switch (INTEL_GEN(engine->i915)) {
1328         case 2:
1329                 return false; /* uses physical not virtual addresses */
1330         case 3:
1331                 /* maybe only uses physical not virtual addresses */
1332                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1333         case 4:
1334                 return !IS_I965G(engine->i915); /* who knows! */
1335         case 6:
1336                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1337         default:
1338                 return true;
1339         }
1340 }
1341
1342 static struct intel_timeline *get_timeline(struct i915_request *rq)
1343 {
1344         struct intel_timeline *tl;
1345
1346         /*
1347          * Even though we are holding the engine->active.lock here, there
1348          * is no control over the submission queue per-se and we are
1349          * inspecting the active state at a random point in time, with an
1350          * unknown queue. Play safe and make sure the timeline remains valid.
1351          * (Only being used for pretty printing, one extra kref shouldn't
1352          * cause a camel stampede!)
1353          */
1354         rcu_read_lock();
1355         tl = rcu_dereference(rq->timeline);
1356         if (!kref_get_unless_zero(&tl->kref))
1357                 tl = NULL;
1358         rcu_read_unlock();
1359
1360         return tl;
1361 }
1362
1363 static int print_ring(char *buf, int sz, struct i915_request *rq)
1364 {
1365         int len = 0;
1366
1367         if (!i915_request_signaled(rq)) {
1368                 struct intel_timeline *tl = get_timeline(rq);
1369
1370                 len = scnprintf(buf, sz,
1371                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1372                                 i915_ggtt_offset(rq->ring->vma),
1373                                 tl ? tl->hwsp_offset : 0,
1374                                 hwsp_seqno(rq),
1375                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1376                                                       1000 * 1000));
1377
1378                 if (tl)
1379                         intel_timeline_put(tl);
1380         }
1381
1382         return len;
1383 }
1384
1385 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1386 {
1387         const size_t rowsize = 8 * sizeof(u32);
1388         const void *prev = NULL;
1389         bool skip = false;
1390         size_t pos;
1391
1392         for (pos = 0; pos < len; pos += rowsize) {
1393                 char line[128];
1394
1395                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1396                         if (!skip) {
1397                                 drm_printf(m, "*\n");
1398                                 skip = true;
1399                         }
1400                         continue;
1401                 }
1402
1403                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1404                                                 rowsize, sizeof(u32),
1405                                                 line, sizeof(line),
1406                                                 false) >= sizeof(line));
1407                 drm_printf(m, "[%04zx] %s\n", pos, line);
1408
1409                 prev = buf + pos;
1410                 skip = false;
1411         }
1412 }
1413
1414 static const char *repr_timer(const struct timer_list *t)
1415 {
1416         if (!READ_ONCE(t->expires))
1417                 return "inactive";
1418
1419         if (timer_pending(t))
1420                 return "active";
1421
1422         return "expired";
1423 }
1424
1425 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1426                                          struct drm_printer *m)
1427 {
1428         struct drm_i915_private *dev_priv = engine->i915;
1429         struct intel_engine_execlists * const execlists = &engine->execlists;
1430         u64 addr;
1431
1432         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1433                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1434         if (HAS_EXECLISTS(dev_priv)) {
1435                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1436                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1437                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1438                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1439         }
1440         drm_printf(m, "\tRING_START: 0x%08x\n",
1441                    ENGINE_READ(engine, RING_START));
1442         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1443                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1444         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1445                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1446         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1447                    ENGINE_READ(engine, RING_CTL),
1448                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1449         if (INTEL_GEN(engine->i915) > 2) {
1450                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1451                            ENGINE_READ(engine, RING_MI_MODE),
1452                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1453         }
1454
1455         if (INTEL_GEN(dev_priv) >= 6) {
1456                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
1457                            ENGINE_READ(engine, RING_IMR));
1458                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
1459                            ENGINE_READ(engine, RING_ESR));
1460                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
1461                            ENGINE_READ(engine, RING_EMR));
1462                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
1463                            ENGINE_READ(engine, RING_EIR));
1464         }
1465
1466         addr = intel_engine_get_active_head(engine);
1467         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1468                    upper_32_bits(addr), lower_32_bits(addr));
1469         addr = intel_engine_get_last_batch_head(engine);
1470         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1471                    upper_32_bits(addr), lower_32_bits(addr));
1472         if (INTEL_GEN(dev_priv) >= 8)
1473                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1474         else if (INTEL_GEN(dev_priv) >= 4)
1475                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1476         else
1477                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1478         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1479                    upper_32_bits(addr), lower_32_bits(addr));
1480         if (INTEL_GEN(dev_priv) >= 4) {
1481                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1482                            ENGINE_READ(engine, RING_IPEIR));
1483                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1484                            ENGINE_READ(engine, RING_IPEHR));
1485         } else {
1486                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1487                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1488         }
1489
1490         if (intel_engine_in_guc_submission_mode(engine)) {
1491                 /* nothing to print yet */
1492         } else if (HAS_EXECLISTS(dev_priv)) {
1493                 struct i915_request * const *port, *rq;
1494                 const u32 *hws =
1495                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1496                 const u8 num_entries = execlists->csb_size;
1497                 unsigned int idx;
1498                 u8 read, write;
1499
1500                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1501                            yesno(test_bit(TASKLET_STATE_SCHED,
1502                                           &engine->execlists.tasklet.state)),
1503                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1504                            repr_timer(&engine->execlists.preempt),
1505                            repr_timer(&engine->execlists.timer));
1506
1507                 read = execlists->csb_head;
1508                 write = READ_ONCE(*execlists->csb_write);
1509
1510                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1511                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1512                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1513                            read, write, num_entries);
1514
1515                 if (read >= num_entries)
1516                         read = 0;
1517                 if (write >= num_entries)
1518                         write = 0;
1519                 if (read > write)
1520                         write += num_entries;
1521                 while (read < write) {
1522                         idx = ++read % num_entries;
1523                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1524                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1525                 }
1526
1527                 execlists_active_lock_bh(execlists);
1528                 rcu_read_lock();
1529                 for (port = execlists->active; (rq = *port); port++) {
1530                         char hdr[160];
1531                         int len;
1532
1533                         len = scnprintf(hdr, sizeof(hdr),
1534                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
1535                                         (int)(port - execlists->active),
1536                                         rq->context->lrc.ccid,
1537                                         intel_context_is_closed(rq->context) ? "!" : "",
1538                                         intel_context_is_banned(rq->context) ? "*" : "");
1539                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1540                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1541                         i915_request_show(m, rq, hdr, 0);
1542                 }
1543                 for (port = execlists->pending; (rq = *port); port++) {
1544                         char hdr[160];
1545                         int len;
1546
1547                         len = scnprintf(hdr, sizeof(hdr),
1548                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
1549                                         (int)(port - execlists->pending),
1550                                         rq->context->lrc.ccid,
1551                                         intel_context_is_closed(rq->context) ? "!" : "",
1552                                         intel_context_is_banned(rq->context) ? "*" : "");
1553                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1554                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1555                         i915_request_show(m, rq, hdr, 0);
1556                 }
1557                 rcu_read_unlock();
1558                 execlists_active_unlock_bh(execlists);
1559         } else if (INTEL_GEN(dev_priv) > 6) {
1560                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1561                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1562                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1563                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1564                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1565                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1566         }
1567 }
1568
1569 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1570 {
1571         void *ring;
1572         int size;
1573
1574         drm_printf(m,
1575                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1576                    rq->head, rq->postfix, rq->tail,
1577                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1578                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1579
1580         size = rq->tail - rq->head;
1581         if (rq->tail < rq->head)
1582                 size += rq->ring->size;
1583
1584         ring = kmalloc(size, GFP_ATOMIC);
1585         if (ring) {
1586                 const void *vaddr = rq->ring->vaddr;
1587                 unsigned int head = rq->head;
1588                 unsigned int len = 0;
1589
1590                 if (rq->tail < head) {
1591                         len = rq->ring->size - head;
1592                         memcpy(ring, vaddr + head, len);
1593                         head = 0;
1594                 }
1595                 memcpy(ring + len, vaddr + head, size - len);
1596
1597                 hexdump(m, ring, size);
1598                 kfree(ring);
1599         }
1600 }
1601
1602 static unsigned long list_count(struct list_head *list)
1603 {
1604         struct list_head *pos;
1605         unsigned long count = 0;
1606
1607         list_for_each(pos, list)
1608                 count++;
1609
1610         return count;
1611 }
1612
1613 static unsigned long read_ul(void *p, size_t x)
1614 {
1615         return *(unsigned long *)(p + x);
1616 }
1617
1618 static void print_properties(struct intel_engine_cs *engine,
1619                              struct drm_printer *m)
1620 {
1621         static const struct pmap {
1622                 size_t offset;
1623                 const char *name;
1624         } props[] = {
1625 #define P(x) { \
1626         .offset = offsetof(typeof(engine->props), x), \
1627         .name = #x \
1628 }
1629                 P(heartbeat_interval_ms),
1630                 P(max_busywait_duration_ns),
1631                 P(preempt_timeout_ms),
1632                 P(stop_timeout_ms),
1633                 P(timeslice_duration_ms),
1634
1635                 {},
1636 #undef P
1637         };
1638         const struct pmap *p;
1639
1640         drm_printf(m, "\tProperties:\n");
1641         for (p = props; p->name; p++)
1642                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1643                            p->name,
1644                            read_ul(&engine->props, p->offset),
1645                            read_ul(&engine->defaults, p->offset));
1646 }
1647
1648 void intel_engine_dump(struct intel_engine_cs *engine,
1649                        struct drm_printer *m,
1650                        const char *header, ...)
1651 {
1652         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1653         struct i915_request *rq;
1654         intel_wakeref_t wakeref;
1655         unsigned long flags;
1656         ktime_t dummy;
1657
1658         if (header) {
1659                 va_list ap;
1660
1661                 va_start(ap, header);
1662                 drm_vprintf(m, header, &ap);
1663                 va_end(ap);
1664         }
1665
1666         if (intel_gt_is_wedged(engine->gt))
1667                 drm_printf(m, "*** WEDGED ***\n");
1668
1669         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1670         drm_printf(m, "\tBarriers?: %s\n",
1671                    yesno(!llist_empty(&engine->barrier_tasks)));
1672         drm_printf(m, "\tLatency: %luus\n",
1673                    ewma__engine_latency_read(&engine->latency));
1674         if (intel_engine_supports_stats(engine))
1675                 drm_printf(m, "\tRuntime: %llums\n",
1676                            ktime_to_ms(intel_engine_get_busy_time(engine,
1677                                                                   &dummy)));
1678         drm_printf(m, "\tForcewake: %x domains, %d active\n",
1679                    engine->fw_domain, READ_ONCE(engine->fw_active));
1680
1681         rcu_read_lock();
1682         rq = READ_ONCE(engine->heartbeat.systole);
1683         if (rq)
1684                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1685                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1686         rcu_read_unlock();
1687         drm_printf(m, "\tReset count: %d (global %d)\n",
1688                    i915_reset_engine_count(error, engine),
1689                    i915_reset_count(error));
1690         print_properties(engine, m);
1691
1692         drm_printf(m, "\tRequests:\n");
1693
1694         spin_lock_irqsave(&engine->active.lock, flags);
1695         rq = intel_engine_find_active_request(engine);
1696         if (rq) {
1697                 struct intel_timeline *tl = get_timeline(rq);
1698
1699                 i915_request_show(m, rq, "\t\tactive ", 0);
1700
1701                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1702                            i915_ggtt_offset(rq->ring->vma));
1703                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1704                            rq->ring->head);
1705                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1706                            rq->ring->tail);
1707                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1708                            rq->ring->emit);
1709                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1710                            rq->ring->space);
1711
1712                 if (tl) {
1713                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1714                                    tl->hwsp_offset);
1715                         intel_timeline_put(tl);
1716                 }
1717
1718                 print_request_ring(m, rq);
1719
1720                 if (rq->context->lrc_reg_state) {
1721                         drm_printf(m, "Logical Ring Context:\n");
1722                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1723                 }
1724         }
1725         drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1726         spin_unlock_irqrestore(&engine->active.lock, flags);
1727
1728         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1729         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1730         if (wakeref) {
1731                 intel_engine_print_registers(engine, m);
1732                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1733         } else {
1734                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1735         }
1736
1737         intel_execlists_show_requests(engine, m, i915_request_show, 8);
1738
1739         drm_printf(m, "HWSP:\n");
1740         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1741
1742         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1743
1744         intel_engine_print_breadcrumbs(engine, m);
1745 }
1746
1747 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1748                                             ktime_t *now)
1749 {
1750         ktime_t total = engine->stats.total;
1751
1752         /*
1753          * If the engine is executing something at the moment
1754          * add it to the total.
1755          */
1756         *now = ktime_get();
1757         if (READ_ONCE(engine->stats.active))
1758                 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1759
1760         return total;
1761 }
1762
1763 /**
1764  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1765  * @engine: engine to report on
1766  * @now: monotonic timestamp of sampling
1767  *
1768  * Returns accumulated time @engine was busy since engine stats were enabled.
1769  */
1770 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1771 {
1772         unsigned int seq;
1773         ktime_t total;
1774
1775         do {
1776                 seq = read_seqcount_begin(&engine->stats.lock);
1777                 total = __intel_engine_get_busy_time(engine, now);
1778         } while (read_seqcount_retry(&engine->stats.lock, seq));
1779
1780         return total;
1781 }
1782
1783 static bool match_ring(struct i915_request *rq)
1784 {
1785         u32 ring = ENGINE_READ(rq->engine, RING_START);
1786
1787         return ring == i915_ggtt_offset(rq->ring->vma);
1788 }
1789
1790 struct i915_request *
1791 intel_engine_find_active_request(struct intel_engine_cs *engine)
1792 {
1793         struct i915_request *request, *active = NULL;
1794
1795         /*
1796          * We are called by the error capture, reset and to dump engine
1797          * state at random points in time. In particular, note that neither is
1798          * crucially ordered with an interrupt. After a hang, the GPU is dead
1799          * and we assume that no more writes can happen (we waited long enough
1800          * for all writes that were in transaction to be flushed) - adding an
1801          * extra delay for a recent interrupt is pointless. Hence, we do
1802          * not need an engine->irq_seqno_barrier() before the seqno reads.
1803          * At all other times, we must assume the GPU is still running, but
1804          * we only care about the snapshot of this moment.
1805          */
1806         lockdep_assert_held(&engine->active.lock);
1807
1808         rcu_read_lock();
1809         request = execlists_active(&engine->execlists);
1810         if (request) {
1811                 struct intel_timeline *tl = request->context->timeline;
1812
1813                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1814                         if (__i915_request_is_complete(request))
1815                                 break;
1816
1817                         active = request;
1818                 }
1819         }
1820         rcu_read_unlock();
1821         if (active)
1822                 return active;
1823
1824         list_for_each_entry(request, &engine->active.requests, sched.link) {
1825                 if (__i915_request_is_complete(request))
1826                         continue;
1827
1828                 if (!__i915_request_has_started(request))
1829                         continue;
1830
1831                 /* More than one preemptible request may match! */
1832                 if (!match_ring(request))
1833                         continue;
1834
1835                 active = request;
1836                 break;
1837         }
1838
1839         return active;
1840 }
1841
1842 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1843 #include "mock_engine.c"
1844 #include "selftest_engine.c"
1845 #include "selftest_engine_cs.c"
1846 #endif