0aff5bb13c538ea28d0673220141e5b4cfb7a2f8
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         drm_dbg(&gt->i915->drm,
320                                 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321                                 GRAPHICS_VER(gt->i915), cxt_size * 64,
322                                 cxt_size - 1);
323                         return round_up(cxt_size * 64, PAGE_SIZE);
324                 case 3:
325                 case 2:
326                 /* For the special day when i810 gets merged. */
327                 case 1:
328                         return 0;
329                 }
330                 break;
331         default:
332                 MISSING_CASE(class);
333                 fallthrough;
334         case VIDEO_DECODE_CLASS:
335         case VIDEO_ENHANCEMENT_CLASS:
336         case COPY_ENGINE_CLASS:
337         case OTHER_CLASS:
338                 if (GRAPHICS_VER(gt->i915) < 8)
339                         return 0;
340                 return GEN8_LR_CONTEXT_OTHER_SIZE;
341         }
342 }
343
344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345                               const struct engine_mmio_base *bases)
346 {
347         int i;
348
349         for (i = 0; i < MAX_MMIO_BASES; i++)
350                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351                         break;
352
353         GEM_BUG_ON(i == MAX_MMIO_BASES);
354         GEM_BUG_ON(!bases[i].base);
355
356         return bases[i].base;
357 }
358
359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361         /*
362          * Before we know what the uABI name for this engine will be,
363          * we still would like to keep track of this engine in the debug logs.
364          * We throw in a ' here as a reminder that this isn't its final name.
365          */
366         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367                              intel_engine_class_repr(engine->class),
368                              engine->instance) >= sizeof(engine->name));
369 }
370
371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373         /*
374          * Though they added more rings on g4x/ilk, they did not add
375          * per-engine HWSTAM until gen6.
376          */
377         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378                 return;
379
380         if (GRAPHICS_VER(engine->i915) >= 3)
381                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382         else
383                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385
386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388         /* Mask off all writes into the unknown HWSP */
389         intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391
392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394         GEM_DEBUG_WARN_ON(iir);
395 }
396
397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399         u32 reset_domain;
400
401         if (ver >= 11) {
402                 static const u32 engine_reset_domains[] = {
403                         [RCS0]  = GEN11_GRDOM_RENDER,
404                         [BCS0]  = GEN11_GRDOM_BLT,
405                         [BCS1]  = XEHPC_GRDOM_BLT1,
406                         [BCS2]  = XEHPC_GRDOM_BLT2,
407                         [BCS3]  = XEHPC_GRDOM_BLT3,
408                         [BCS4]  = XEHPC_GRDOM_BLT4,
409                         [BCS5]  = XEHPC_GRDOM_BLT5,
410                         [BCS6]  = XEHPC_GRDOM_BLT6,
411                         [BCS7]  = XEHPC_GRDOM_BLT7,
412                         [BCS8]  = XEHPC_GRDOM_BLT8,
413                         [VCS0]  = GEN11_GRDOM_MEDIA,
414                         [VCS1]  = GEN11_GRDOM_MEDIA2,
415                         [VCS2]  = GEN11_GRDOM_MEDIA3,
416                         [VCS3]  = GEN11_GRDOM_MEDIA4,
417                         [VCS4]  = GEN11_GRDOM_MEDIA5,
418                         [VCS5]  = GEN11_GRDOM_MEDIA6,
419                         [VCS6]  = GEN11_GRDOM_MEDIA7,
420                         [VCS7]  = GEN11_GRDOM_MEDIA8,
421                         [VECS0] = GEN11_GRDOM_VECS,
422                         [VECS1] = GEN11_GRDOM_VECS2,
423                         [VECS2] = GEN11_GRDOM_VECS3,
424                         [VECS3] = GEN11_GRDOM_VECS4,
425                         [CCS0]  = GEN11_GRDOM_RENDER,
426                         [CCS1]  = GEN11_GRDOM_RENDER,
427                         [CCS2]  = GEN11_GRDOM_RENDER,
428                         [CCS3]  = GEN11_GRDOM_RENDER,
429                         [GSC0]  = GEN12_GRDOM_GSC,
430                 };
431                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432                            !engine_reset_domains[id]);
433                 reset_domain = engine_reset_domains[id];
434         } else {
435                 static const u32 engine_reset_domains[] = {
436                         [RCS0]  = GEN6_GRDOM_RENDER,
437                         [BCS0]  = GEN6_GRDOM_BLT,
438                         [VCS0]  = GEN6_GRDOM_MEDIA,
439                         [VCS1]  = GEN8_GRDOM_MEDIA2,
440                         [VECS0] = GEN6_GRDOM_VECS,
441                 };
442                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443                            !engine_reset_domains[id]);
444                 reset_domain = engine_reset_domains[id];
445         }
446
447         return reset_domain;
448 }
449
450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451                               u8 logical_instance)
452 {
453         const struct engine_info *info = &intel_engines[id];
454         struct drm_i915_private *i915 = gt->i915;
455         struct intel_engine_cs *engine;
456         u8 guc_class;
457
458         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462
463         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464                 return -EINVAL;
465
466         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467                 return -EINVAL;
468
469         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470                 return -EINVAL;
471
472         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473                 return -EINVAL;
474
475         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476         if (!engine)
477                 return -ENOMEM;
478
479         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480
481         INIT_LIST_HEAD(&engine->pinned_contexts_list);
482         engine->id = id;
483         engine->legacy_idx = INVALID_ENGINE;
484         engine->mask = BIT(id);
485         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486                                                 id);
487         engine->i915 = i915;
488         engine->gt = gt;
489         engine->uncore = gt->uncore;
490         guc_class = engine_class_to_guc_class(info->class);
491         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493
494         engine->irq_handler = nop_irq_handler;
495
496         engine->class = info->class;
497         engine->instance = info->instance;
498         engine->logical_mask = BIT(logical_instance);
499         __sprint_engine_name(engine);
500
501         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503              engine->class == RENDER_CLASS)
504                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505
506         /* features common between engines sharing EUs */
507         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510         }
511
512         engine->props.heartbeat_interval_ms =
513                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514         engine->props.max_busywait_duration_ns =
515                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516         engine->props.preempt_timeout_ms =
517                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518         engine->props.stop_timeout_ms =
519                 CONFIG_DRM_I915_STOP_TIMEOUT;
520         engine->props.timeslice_duration_ms =
521                 CONFIG_DRM_I915_TIMESLICE_DURATION;
522
523         /*
524          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525          * some compute workloads run quite long threads. That means they get
526          * reset due to not pre-empting in a timely manner. So, bump the
527          * pre-emption timeout value to be much higher for compute engines.
528          */
529         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531
532         /* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534         do { \
535                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536                 if (clamp != engine->props.field) { \
537                         drm_notice(&engine->i915->drm, \
538                                    "Warning, clamping %s to %lld to prevent overflow\n", \
539                                    #field, clamp); \
540                         engine->props.field = clamp; \
541                 } \
542         } while (0)
543
544         CLAMP_PROP(heartbeat_interval_ms);
545         CLAMP_PROP(max_busywait_duration_ns);
546         CLAMP_PROP(preempt_timeout_ms);
547         CLAMP_PROP(stop_timeout_ms);
548         CLAMP_PROP(timeslice_duration_ms);
549
550 #undef CLAMP_PROP
551
552         engine->defaults = engine->props; /* never to change again */
553
554         engine->context_size = intel_engine_context_size(gt, engine->class);
555         if (WARN_ON(engine->context_size > BIT(20)))
556                 engine->context_size = 0;
557         if (engine->context_size)
558                 DRIVER_CAPS(i915)->has_logical_contexts = true;
559
560         ewma__engine_latency_init(&engine->latency);
561         seqcount_init(&engine->stats.execlists.lock);
562
563         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
564
565         /* Scrub mmio state on takeover */
566         intel_engine_sanitize_mmio(engine);
567
568         gt->engine_class[info->class][info->instance] = engine;
569         gt->engine[id] = engine;
570
571         return 0;
572 }
573
574 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
575 {
576         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
577
578         return value;
579 }
580
581 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
582 {
583         value = min(value, jiffies_to_nsecs(2));
584
585         return value;
586 }
587
588 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
589 {
590         /*
591          * NB: The GuC API only supports 32bit values. However, the limit is further
592          * reduced due to internal calculations which would otherwise overflow.
593          */
594         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
595                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
596
597         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
598
599         return value;
600 }
601
602 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
603 {
604         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
605
606         return value;
607 }
608
609 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
610 {
611         /*
612          * NB: The GuC API only supports 32bit values. However, the limit is further
613          * reduced due to internal calculations which would otherwise overflow.
614          */
615         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
616                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
617
618         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
619
620         return value;
621 }
622
623 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
624 {
625         struct drm_i915_private *i915 = engine->i915;
626
627         if (engine->class == VIDEO_DECODE_CLASS) {
628                 /*
629                  * HEVC support is present on first engine instance
630                  * before Gen11 and on all instances afterwards.
631                  */
632                 if (GRAPHICS_VER(i915) >= 11 ||
633                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
634                         engine->uabi_capabilities |=
635                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
636
637                 /*
638                  * SFC block is present only on even logical engine
639                  * instances.
640                  */
641                 if ((GRAPHICS_VER(i915) >= 11 &&
642                      (engine->gt->info.vdbox_sfc_access &
643                       BIT(engine->instance))) ||
644                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
645                         engine->uabi_capabilities |=
646                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
647         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
648                 if (GRAPHICS_VER(i915) >= 9 &&
649                     engine->gt->info.sfc_mask & BIT(engine->instance))
650                         engine->uabi_capabilities |=
651                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
652         }
653 }
654
655 static void intel_setup_engine_capabilities(struct intel_gt *gt)
656 {
657         struct intel_engine_cs *engine;
658         enum intel_engine_id id;
659
660         for_each_engine(engine, gt, id)
661                 __setup_engine_capabilities(engine);
662 }
663
664 /**
665  * intel_engines_release() - free the resources allocated for Command Streamers
666  * @gt: pointer to struct intel_gt
667  */
668 void intel_engines_release(struct intel_gt *gt)
669 {
670         struct intel_engine_cs *engine;
671         enum intel_engine_id id;
672
673         /*
674          * Before we release the resources held by engine, we must be certain
675          * that the HW is no longer accessing them -- having the GPU scribble
676          * to or read from a page being used for something else causes no end
677          * of fun.
678          *
679          * The GPU should be reset by this point, but assume the worst just
680          * in case we aborted before completely initialising the engines.
681          */
682         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
683         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
684                 __intel_gt_reset(gt, ALL_ENGINES);
685
686         /* Decouple the backend; but keep the layout for late GPU resets */
687         for_each_engine(engine, gt, id) {
688                 if (!engine->release)
689                         continue;
690
691                 intel_wakeref_wait_for_idle(&engine->wakeref);
692                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
693
694                 engine->release(engine);
695                 engine->release = NULL;
696
697                 memset(&engine->reset, 0, sizeof(engine->reset));
698         }
699 }
700
701 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
702 {
703         if (!engine->request_pool)
704                 return;
705
706         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 }
708
709 void intel_engines_free(struct intel_gt *gt)
710 {
711         struct intel_engine_cs *engine;
712         enum intel_engine_id id;
713
714         /* Free the requests! dma-resv keeps fences around for an eternity */
715         rcu_barrier();
716
717         for_each_engine(engine, gt, id) {
718                 intel_engine_free_request_pool(engine);
719                 kfree(engine);
720                 gt->engine[id] = NULL;
721         }
722 }
723
724 static
725 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
726                          unsigned int physical_vdbox,
727                          unsigned int logical_vdbox, u16 vdbox_mask)
728 {
729         struct drm_i915_private *i915 = gt->i915;
730
731         /*
732          * In Gen11, only even numbered logical VDBOXes are hooked
733          * up to an SFC (Scaler & Format Converter) unit.
734          * In Gen12, Even numbered physical instance always are connected
735          * to an SFC. Odd numbered physical instances have SFC only if
736          * previous even instance is fused off.
737          *
738          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
739          * in the fuse register that tells us whether a specific SFC is present.
740          */
741         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
742                 return false;
743         else if (MEDIA_VER(i915) >= 12)
744                 return (physical_vdbox % 2 == 0) ||
745                         !(BIT(physical_vdbox - 1) & vdbox_mask);
746         else if (MEDIA_VER(i915) == 11)
747                 return logical_vdbox % 2 == 0;
748
749         return false;
750 }
751
752 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
753 {
754         struct drm_i915_private *i915 = gt->i915;
755         unsigned int logical_vdbox = 0;
756         unsigned int i;
757         u32 media_fuse, fuse1;
758         u16 vdbox_mask;
759         u16 vebox_mask;
760
761         if (MEDIA_VER(gt->i915) < 11)
762                 return;
763
764         /*
765          * On newer platforms the fusing register is called 'enable' and has
766          * enable semantics, while on older platforms it is called 'disable'
767          * and bits have disable semantices.
768          */
769         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
770         if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
771                 media_fuse = ~media_fuse;
772
773         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
774         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
775                       GEN11_GT_VEBOX_DISABLE_SHIFT;
776
777         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
778                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
779                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
780         } else {
781                 gt->info.sfc_mask = ~0;
782         }
783
784         for (i = 0; i < I915_MAX_VCS; i++) {
785                 if (!HAS_ENGINE(gt, _VCS(i))) {
786                         vdbox_mask &= ~BIT(i);
787                         continue;
788                 }
789
790                 if (!(BIT(i) & vdbox_mask)) {
791                         gt->info.engine_mask &= ~BIT(_VCS(i));
792                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
793                         continue;
794                 }
795
796                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
797                         gt->info.vdbox_sfc_access |= BIT(i);
798                 logical_vdbox++;
799         }
800         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
801                 vdbox_mask, VDBOX_MASK(gt));
802         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
803
804         for (i = 0; i < I915_MAX_VECS; i++) {
805                 if (!HAS_ENGINE(gt, _VECS(i))) {
806                         vebox_mask &= ~BIT(i);
807                         continue;
808                 }
809
810                 if (!(BIT(i) & vebox_mask)) {
811                         gt->info.engine_mask &= ~BIT(_VECS(i));
812                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
813                 }
814         }
815         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
816                 vebox_mask, VEBOX_MASK(gt));
817         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
818 }
819
820 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
821 {
822         struct drm_i915_private *i915 = gt->i915;
823         struct intel_gt_info *info = &gt->info;
824         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
825         unsigned long ccs_mask;
826         unsigned int i;
827
828         if (GRAPHICS_VER(i915) < 11)
829                 return;
830
831         if (hweight32(CCS_MASK(gt)) <= 1)
832                 return;
833
834         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
835                                                      ss_per_ccs);
836         /*
837          * If all DSS in a quadrant are fused off, the corresponding CCS
838          * engine is not available for use.
839          */
840         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
841                 info->engine_mask &= ~BIT(_CCS(i));
842                 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
843         }
844 }
845
846 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
847 {
848         struct drm_i915_private *i915 = gt->i915;
849         struct intel_gt_info *info = &gt->info;
850         unsigned long meml3_mask;
851         unsigned long quad;
852
853         if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
854               GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
855                 return;
856
857         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
858         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
859
860         /*
861          * Link Copy engines may be fused off according to meml3_mask. Each
862          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
863          */
864         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
865                 unsigned int instance = quad * 2 + 1;
866                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
867                                                    _BCS(instance));
868
869                 if (mask & info->engine_mask) {
870                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
871                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
872
873                         info->engine_mask &= ~mask;
874                 }
875         }
876 }
877
878 /*
879  * Determine which engines are fused off in our particular hardware.
880  * Note that we have a catch-22 situation where we need to be able to access
881  * the blitter forcewake domain to read the engine fuses, but at the same time
882  * we need to know which engines are available on the system to know which
883  * forcewake domains are present. We solve this by intializing the forcewake
884  * domains based on the full engine mask in the platform capabilities before
885  * calling this function and pruning the domains for fused-off engines
886  * afterwards.
887  */
888 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
889 {
890         struct intel_gt_info *info = &gt->info;
891
892         GEM_BUG_ON(!info->engine_mask);
893
894         engine_mask_apply_media_fuses(gt);
895         engine_mask_apply_compute_fuses(gt);
896         engine_mask_apply_copy_fuses(gt);
897
898         /*
899          * The only use of the GSC CS is to load and communicate with the GSC
900          * FW, so we have no use for it if we don't have the FW.
901          *
902          * IMPORTANT: in cases where we don't have the GSC FW, we have a
903          * catch-22 situation that breaks media C6 due to 2 requirements:
904          * 1) once turned on, the GSC power well will not go to sleep unless the
905          *    GSC FW is loaded.
906          * 2) to enable idling (which is required for media C6) we need to
907          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
908          *    submission, which will wake up the GSC power well.
909          */
910         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
911                 drm_notice(&gt->i915->drm,
912                            "No GSC FW selected, disabling GSC CS and media C6\n");
913                 info->engine_mask &= ~BIT(GSC0);
914         }
915
916         return info->engine_mask;
917 }
918
919 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
920                                  u8 class, const u8 *map, u8 num_instances)
921 {
922         int i, j;
923         u8 current_logical_id = 0;
924
925         for (j = 0; j < num_instances; ++j) {
926                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
927                         if (!HAS_ENGINE(gt, i) ||
928                             intel_engines[i].class != class)
929                                 continue;
930
931                         if (intel_engines[i].instance == map[j]) {
932                                 logical_ids[intel_engines[i].instance] =
933                                         current_logical_id++;
934                                 break;
935                         }
936                 }
937         }
938 }
939
940 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
941 {
942         /*
943          * Logical to physical mapping is needed for proper support
944          * to split-frame feature.
945          */
946         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
947                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
948
949                 populate_logical_ids(gt, logical_ids, class,
950                                      map, ARRAY_SIZE(map));
951         } else {
952                 int i;
953                 u8 map[MAX_ENGINE_INSTANCE + 1];
954
955                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
956                         map[i] = i;
957                 populate_logical_ids(gt, logical_ids, class,
958                                      map, ARRAY_SIZE(map));
959         }
960 }
961
962 /**
963  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
964  * @gt: pointer to struct intel_gt
965  *
966  * Return: non-zero if the initialization failed.
967  */
968 int intel_engines_init_mmio(struct intel_gt *gt)
969 {
970         struct drm_i915_private *i915 = gt->i915;
971         const unsigned int engine_mask = init_engine_mask(gt);
972         unsigned int mask = 0;
973         unsigned int i, class;
974         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
975         int err;
976
977         drm_WARN_ON(&i915->drm, engine_mask == 0);
978         drm_WARN_ON(&i915->drm, engine_mask &
979                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
980
981         if (i915_inject_probe_failure(i915))
982                 return -ENODEV;
983
984         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
985                 setup_logical_ids(gt, logical_ids, class);
986
987                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
988                         u8 instance = intel_engines[i].instance;
989
990                         if (intel_engines[i].class != class ||
991                             !HAS_ENGINE(gt, i))
992                                 continue;
993
994                         err = intel_engine_setup(gt, i,
995                                                  logical_ids[instance]);
996                         if (err)
997                                 goto cleanup;
998
999                         mask |= BIT(i);
1000                 }
1001         }
1002
1003         /*
1004          * Catch failures to update intel_engines table when the new engines
1005          * are added to the driver by a warning and disabling the forgotten
1006          * engines.
1007          */
1008         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1009                 gt->info.engine_mask = mask;
1010
1011         gt->info.num_engines = hweight32(mask);
1012
1013         intel_gt_check_and_clear_faults(gt);
1014
1015         intel_setup_engine_capabilities(gt);
1016
1017         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1018
1019         return 0;
1020
1021 cleanup:
1022         intel_engines_free(gt);
1023         return err;
1024 }
1025
1026 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1027 {
1028         struct intel_engine_execlists * const execlists = &engine->execlists;
1029
1030         execlists->port_mask = 1;
1031         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1032         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1033
1034         memset(execlists->pending, 0, sizeof(execlists->pending));
1035         execlists->active =
1036                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1037 }
1038
1039 static void cleanup_status_page(struct intel_engine_cs *engine)
1040 {
1041         struct i915_vma *vma;
1042
1043         /* Prevent writes into HWSP after returning the page to the system */
1044         intel_engine_set_hwsp_writemask(engine, ~0u);
1045
1046         vma = fetch_and_zero(&engine->status_page.vma);
1047         if (!vma)
1048                 return;
1049
1050         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1051                 i915_vma_unpin(vma);
1052
1053         i915_gem_object_unpin_map(vma->obj);
1054         i915_gem_object_put(vma->obj);
1055 }
1056
1057 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1058                                 struct i915_gem_ww_ctx *ww,
1059                                 struct i915_vma *vma)
1060 {
1061         unsigned int flags;
1062
1063         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1064                 /*
1065                  * On g33, we cannot place HWS above 256MiB, so
1066                  * restrict its pinning to the low mappable arena.
1067                  * Though this restriction is not documented for
1068                  * gen4, gen5, or byt, they also behave similarly
1069                  * and hang if the HWS is placed at the top of the
1070                  * GTT. To generalise, it appears that all !llc
1071                  * platforms have issues with us placing the HWS
1072                  * above the mappable region (even though we never
1073                  * actually map it).
1074                  */
1075                 flags = PIN_MAPPABLE;
1076         else
1077                 flags = PIN_HIGH;
1078
1079         return i915_ggtt_pin(vma, ww, 0, flags);
1080 }
1081
1082 static int init_status_page(struct intel_engine_cs *engine)
1083 {
1084         struct drm_i915_gem_object *obj;
1085         struct i915_gem_ww_ctx ww;
1086         struct i915_vma *vma;
1087         void *vaddr;
1088         int ret;
1089
1090         INIT_LIST_HEAD(&engine->status_page.timelines);
1091
1092         /*
1093          * Though the HWS register does support 36bit addresses, historically
1094          * we have had hangs and corruption reported due to wild writes if
1095          * the HWS is placed above 4G. We only allow objects to be allocated
1096          * in GFP_DMA32 for i965, and no earlier physical address users had
1097          * access to more than 4G.
1098          */
1099         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1100         if (IS_ERR(obj)) {
1101                 drm_err(&engine->i915->drm,
1102                         "Failed to allocate status page\n");
1103                 return PTR_ERR(obj);
1104         }
1105
1106         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1107
1108         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1109         if (IS_ERR(vma)) {
1110                 ret = PTR_ERR(vma);
1111                 goto err_put;
1112         }
1113
1114         i915_gem_ww_ctx_init(&ww, true);
1115 retry:
1116         ret = i915_gem_object_lock(obj, &ww);
1117         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1118                 ret = pin_ggtt_status_page(engine, &ww, vma);
1119         if (ret)
1120                 goto err;
1121
1122         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1123         if (IS_ERR(vaddr)) {
1124                 ret = PTR_ERR(vaddr);
1125                 goto err_unpin;
1126         }
1127
1128         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1129         engine->status_page.vma = vma;
1130
1131 err_unpin:
1132         if (ret)
1133                 i915_vma_unpin(vma);
1134 err:
1135         if (ret == -EDEADLK) {
1136                 ret = i915_gem_ww_ctx_backoff(&ww);
1137                 if (!ret)
1138                         goto retry;
1139         }
1140         i915_gem_ww_ctx_fini(&ww);
1141 err_put:
1142         if (ret)
1143                 i915_gem_object_put(obj);
1144         return ret;
1145 }
1146
1147 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1148 {
1149         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1150                 [RENDER_CLASS].reg              = GEN8_RTCR,
1151                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1152                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1153                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1154         };
1155         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1156                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1157                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1158                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1159                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1160                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1161         };
1162         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1163                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1164                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1165                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1166                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1167                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1168         };
1169         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1170                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1171                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1172                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1173         };
1174         struct drm_i915_private *i915 = engine->i915;
1175         const unsigned int instance = engine->instance;
1176         const unsigned int class = engine->class;
1177         const union intel_engine_tlb_inv_reg *regs;
1178         union intel_engine_tlb_inv_reg reg;
1179         unsigned int num = 0;
1180         u32 val;
1181
1182         /*
1183          * New platforms should not be added with catch-all-newer (>=)
1184          * condition so that any later platform added triggers the below warning
1185          * and in turn mandates a human cross-check of whether the invalidation
1186          * flows have compatible semantics.
1187          *
1188          * For instance with the 11.00 -> 12.00 transition three out of five
1189          * respective engine registers were moved to masked type. Then after the
1190          * 12.00 -> 12.50 transition multi cast handling is required too.
1191          */
1192
1193         if (engine->gt->type == GT_MEDIA) {
1194                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1195                         regs = xelpmp_regs;
1196                         num = ARRAY_SIZE(xelpmp_regs);
1197                 }
1198         } else {
1199                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1200                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1201                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1202                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1203                         regs = xehp_regs;
1204                         num = ARRAY_SIZE(xehp_regs);
1205                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1206                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1207                         regs = gen12_regs;
1208                         num = ARRAY_SIZE(gen12_regs);
1209                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1210                         regs = gen8_regs;
1211                         num = ARRAY_SIZE(gen8_regs);
1212                 } else if (GRAPHICS_VER(i915) < 8) {
1213                         return 0;
1214                 }
1215         }
1216
1217         if (gt_WARN_ONCE(engine->gt, !num,
1218                          "Platform does not implement TLB invalidation!"))
1219                 return -ENODEV;
1220
1221         if (gt_WARN_ON_ONCE(engine->gt,
1222                             class >= num ||
1223                             (!regs[class].reg.reg &&
1224                              !regs[class].mcr_reg.reg)))
1225                 return -ERANGE;
1226
1227         reg = regs[class];
1228
1229         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1230                 /*
1231                  * There's only a single GSC instance, but it uses register bit
1232                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1233                  */
1234                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1235                 val = 1;
1236         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1237                 reg.reg = GEN8_M2TCR;
1238                 val = 0;
1239         } else {
1240                 val = instance;
1241         }
1242
1243         val = BIT(val);
1244
1245         engine->tlb_inv.mcr = regs == xehp_regs;
1246         engine->tlb_inv.reg = reg;
1247         engine->tlb_inv.done = val;
1248
1249         if (GRAPHICS_VER(i915) >= 12 &&
1250             (engine->class == VIDEO_DECODE_CLASS ||
1251              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1252              engine->class == COMPUTE_CLASS ||
1253              engine->class == OTHER_CLASS))
1254                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1255         else
1256                 engine->tlb_inv.request = val;
1257
1258         return 0;
1259 }
1260
1261 static int engine_setup_common(struct intel_engine_cs *engine)
1262 {
1263         int err;
1264
1265         init_llist_head(&engine->barrier_tasks);
1266
1267         err = intel_engine_init_tlb_invalidation(engine);
1268         if (err)
1269                 return err;
1270
1271         err = init_status_page(engine);
1272         if (err)
1273                 return err;
1274
1275         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1276         if (!engine->breadcrumbs) {
1277                 err = -ENOMEM;
1278                 goto err_status;
1279         }
1280
1281         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1282         if (!engine->sched_engine) {
1283                 err = -ENOMEM;
1284                 goto err_sched_engine;
1285         }
1286         engine->sched_engine->private_data = engine;
1287
1288         err = intel_engine_init_cmd_parser(engine);
1289         if (err)
1290                 goto err_cmd_parser;
1291
1292         intel_engine_init_execlists(engine);
1293         intel_engine_init__pm(engine);
1294         intel_engine_init_retire(engine);
1295
1296         /* Use the whole device by default */
1297         engine->sseu =
1298                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1299
1300         intel_engine_init_workarounds(engine);
1301         intel_engine_init_whitelist(engine);
1302         intel_engine_init_ctx_wa(engine);
1303
1304         if (GRAPHICS_VER(engine->i915) >= 12)
1305                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1306
1307         return 0;
1308
1309 err_cmd_parser:
1310         i915_sched_engine_put(engine->sched_engine);
1311 err_sched_engine:
1312         intel_breadcrumbs_put(engine->breadcrumbs);
1313 err_status:
1314         cleanup_status_page(engine);
1315         return err;
1316 }
1317
1318 struct measure_breadcrumb {
1319         struct i915_request rq;
1320         struct intel_ring ring;
1321         u32 cs[2048];
1322 };
1323
1324 static int measure_breadcrumb_dw(struct intel_context *ce)
1325 {
1326         struct intel_engine_cs *engine = ce->engine;
1327         struct measure_breadcrumb *frame;
1328         int dw;
1329
1330         GEM_BUG_ON(!engine->gt->scratch);
1331
1332         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1333         if (!frame)
1334                 return -ENOMEM;
1335
1336         frame->rq.engine = engine;
1337         frame->rq.context = ce;
1338         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1339         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1340
1341         frame->ring.vaddr = frame->cs;
1342         frame->ring.size = sizeof(frame->cs);
1343         frame->ring.wrap =
1344                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1345         frame->ring.effective_size = frame->ring.size;
1346         intel_ring_update_space(&frame->ring);
1347         frame->rq.ring = &frame->ring;
1348
1349         mutex_lock(&ce->timeline->mutex);
1350         spin_lock_irq(&engine->sched_engine->lock);
1351
1352         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1353
1354         spin_unlock_irq(&engine->sched_engine->lock);
1355         mutex_unlock(&ce->timeline->mutex);
1356
1357         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1358
1359         kfree(frame);
1360         return dw;
1361 }
1362
1363 struct intel_context *
1364 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1365                                    struct i915_address_space *vm,
1366                                    unsigned int ring_size,
1367                                    unsigned int hwsp,
1368                                    struct lock_class_key *key,
1369                                    const char *name)
1370 {
1371         struct intel_context *ce;
1372         int err;
1373
1374         ce = intel_context_create(engine);
1375         if (IS_ERR(ce))
1376                 return ce;
1377
1378         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1379         ce->timeline = page_pack_bits(NULL, hwsp);
1380         ce->ring = NULL;
1381         ce->ring_size = ring_size;
1382
1383         i915_vm_put(ce->vm);
1384         ce->vm = i915_vm_get(vm);
1385
1386         err = intel_context_pin(ce); /* perma-pin so it is always available */
1387         if (err) {
1388                 intel_context_put(ce);
1389                 return ERR_PTR(err);
1390         }
1391
1392         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1393
1394         /*
1395          * Give our perma-pinned kernel timelines a separate lockdep class,
1396          * so that we can use them from within the normal user timelines
1397          * should we need to inject GPU operations during their request
1398          * construction.
1399          */
1400         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1401
1402         return ce;
1403 }
1404
1405 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1406 {
1407         struct intel_engine_cs *engine = ce->engine;
1408         struct i915_vma *hwsp = engine->status_page.vma;
1409
1410         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1411
1412         mutex_lock(&hwsp->vm->mutex);
1413         list_del(&ce->timeline->engine_link);
1414         mutex_unlock(&hwsp->vm->mutex);
1415
1416         list_del(&ce->pinned_contexts_link);
1417         intel_context_unpin(ce);
1418         intel_context_put(ce);
1419 }
1420
1421 static struct intel_context *
1422 create_kernel_context(struct intel_engine_cs *engine)
1423 {
1424         static struct lock_class_key kernel;
1425
1426         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1427                                                   I915_GEM_HWS_SEQNO_ADDR,
1428                                                   &kernel, "kernel_context");
1429 }
1430
1431 /*
1432  * engine_init_common - initialize engine state which might require hw access
1433  * @engine: Engine to initialize.
1434  *
1435  * Initializes @engine@ structure members shared between legacy and execlists
1436  * submission modes which do require hardware access.
1437  *
1438  * Typcally done at later stages of submission mode specific engine setup.
1439  *
1440  * Returns zero on success or an error code on failure.
1441  */
1442 static int engine_init_common(struct intel_engine_cs *engine)
1443 {
1444         struct intel_context *ce;
1445         int ret;
1446
1447         engine->set_default_submission(engine);
1448
1449         /*
1450          * We may need to do things with the shrinker which
1451          * require us to immediately switch back to the default
1452          * context. This can cause a problem as pinning the
1453          * default context also requires GTT space which may not
1454          * be available. To avoid this we always pin the default
1455          * context.
1456          */
1457         ce = create_kernel_context(engine);
1458         if (IS_ERR(ce))
1459                 return PTR_ERR(ce);
1460
1461         ret = measure_breadcrumb_dw(ce);
1462         if (ret < 0)
1463                 goto err_context;
1464
1465         engine->emit_fini_breadcrumb_dw = ret;
1466         engine->kernel_context = ce;
1467
1468         return 0;
1469
1470 err_context:
1471         intel_engine_destroy_pinned_context(ce);
1472         return ret;
1473 }
1474
1475 int intel_engines_init(struct intel_gt *gt)
1476 {
1477         int (*setup)(struct intel_engine_cs *engine);
1478         struct intel_engine_cs *engine;
1479         enum intel_engine_id id;
1480         int err;
1481
1482         if (intel_uc_uses_guc_submission(&gt->uc)) {
1483                 gt->submission_method = INTEL_SUBMISSION_GUC;
1484                 setup = intel_guc_submission_setup;
1485         } else if (HAS_EXECLISTS(gt->i915)) {
1486                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1487                 setup = intel_execlists_submission_setup;
1488         } else {
1489                 gt->submission_method = INTEL_SUBMISSION_RING;
1490                 setup = intel_ring_submission_setup;
1491         }
1492
1493         for_each_engine(engine, gt, id) {
1494                 err = engine_setup_common(engine);
1495                 if (err)
1496                         return err;
1497
1498                 err = setup(engine);
1499                 if (err) {
1500                         intel_engine_cleanup_common(engine);
1501                         return err;
1502                 }
1503
1504                 /* The backend should now be responsible for cleanup */
1505                 GEM_BUG_ON(engine->release == NULL);
1506
1507                 err = engine_init_common(engine);
1508                 if (err)
1509                         return err;
1510
1511                 intel_engine_add_user(engine);
1512         }
1513
1514         return 0;
1515 }
1516
1517 /**
1518  * intel_engine_cleanup_common - cleans up the engine state created by
1519  *                                the common initiailizers.
1520  * @engine: Engine to cleanup.
1521  *
1522  * This cleans up everything created by the common helpers.
1523  */
1524 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1525 {
1526         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1527
1528         i915_sched_engine_put(engine->sched_engine);
1529         intel_breadcrumbs_put(engine->breadcrumbs);
1530
1531         intel_engine_fini_retire(engine);
1532         intel_engine_cleanup_cmd_parser(engine);
1533
1534         if (engine->default_state)
1535                 fput(engine->default_state);
1536
1537         if (engine->kernel_context)
1538                 intel_engine_destroy_pinned_context(engine->kernel_context);
1539
1540         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1541         cleanup_status_page(engine);
1542
1543         intel_wa_list_free(&engine->ctx_wa_list);
1544         intel_wa_list_free(&engine->wa_list);
1545         intel_wa_list_free(&engine->whitelist);
1546 }
1547
1548 /**
1549  * intel_engine_resume - re-initializes the HW state of the engine
1550  * @engine: Engine to resume.
1551  *
1552  * Returns zero on success or an error code on failure.
1553  */
1554 int intel_engine_resume(struct intel_engine_cs *engine)
1555 {
1556         intel_engine_apply_workarounds(engine);
1557         intel_engine_apply_whitelist(engine);
1558
1559         return engine->resume(engine);
1560 }
1561
1562 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1563 {
1564         struct drm_i915_private *i915 = engine->i915;
1565
1566         u64 acthd;
1567
1568         if (GRAPHICS_VER(i915) >= 8)
1569                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1570         else if (GRAPHICS_VER(i915) >= 4)
1571                 acthd = ENGINE_READ(engine, RING_ACTHD);
1572         else
1573                 acthd = ENGINE_READ(engine, ACTHD);
1574
1575         return acthd;
1576 }
1577
1578 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1579 {
1580         u64 bbaddr;
1581
1582         if (GRAPHICS_VER(engine->i915) >= 8)
1583                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1584         else
1585                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1586
1587         return bbaddr;
1588 }
1589
1590 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1591 {
1592         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1593                 return 0;
1594
1595         /*
1596          * If we are doing a normal GPU reset, we can take our time and allow
1597          * the engine to quiesce. We've stopped submission to the engine, and
1598          * if we wait long enough an innocent context should complete and
1599          * leave the engine idle. So they should not be caught unaware by
1600          * the forthcoming GPU reset (which usually follows the stop_cs)!
1601          */
1602         return READ_ONCE(engine->props.stop_timeout_ms);
1603 }
1604
1605 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1606                                   int fast_timeout_us,
1607                                   int slow_timeout_ms)
1608 {
1609         struct intel_uncore *uncore = engine->uncore;
1610         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1611         int err;
1612
1613         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1614
1615         /*
1616          * Wa_22011802037: Prior to doing a reset, ensure CS is
1617          * stopped, set ring stop bit and prefetch disable bit to halt CS
1618          */
1619         if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1620             (GRAPHICS_VER(engine->i915) >= 11 &&
1621             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1622                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1623                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1624
1625         err = __intel_wait_for_register_fw(engine->uncore, mode,
1626                                            MODE_IDLE, MODE_IDLE,
1627                                            fast_timeout_us,
1628                                            slow_timeout_ms,
1629                                            NULL);
1630
1631         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1632         intel_uncore_posting_read_fw(uncore, mode);
1633         return err;
1634 }
1635
1636 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1637 {
1638         int err = 0;
1639
1640         if (GRAPHICS_VER(engine->i915) < 3)
1641                 return -ENODEV;
1642
1643         ENGINE_TRACE(engine, "\n");
1644         /*
1645          * TODO: Find out why occasionally stopping the CS times out. Seen
1646          * especially with gem_eio tests.
1647          *
1648          * Occasionally trying to stop the cs times out, but does not adversely
1649          * affect functionality. The timeout is set as a config parameter that
1650          * defaults to 100ms. In most cases the follow up operation is to wait
1651          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1652          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1653          * caused, the caller must check and handle the return from this
1654          * function.
1655          */
1656         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1657                 ENGINE_TRACE(engine,
1658                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1659                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1660                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1661
1662                 /*
1663                  * Sometimes we observe that the idle flag is not
1664                  * set even though the ring is empty. So double
1665                  * check before giving up.
1666                  */
1667                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1668                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1669                         err = -ETIMEDOUT;
1670         }
1671
1672         return err;
1673 }
1674
1675 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1676 {
1677         ENGINE_TRACE(engine, "\n");
1678
1679         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1680 }
1681
1682 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1683 {
1684         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1685                 [RCS0] = MSG_IDLE_CS,
1686                 [BCS0] = MSG_IDLE_BCS,
1687                 [VCS0] = MSG_IDLE_VCS0,
1688                 [VCS1] = MSG_IDLE_VCS1,
1689                 [VCS2] = MSG_IDLE_VCS2,
1690                 [VCS3] = MSG_IDLE_VCS3,
1691                 [VCS4] = MSG_IDLE_VCS4,
1692                 [VCS5] = MSG_IDLE_VCS5,
1693                 [VCS6] = MSG_IDLE_VCS6,
1694                 [VCS7] = MSG_IDLE_VCS7,
1695                 [VECS0] = MSG_IDLE_VECS0,
1696                 [VECS1] = MSG_IDLE_VECS1,
1697                 [VECS2] = MSG_IDLE_VECS2,
1698                 [VECS3] = MSG_IDLE_VECS3,
1699                 [CCS0] = MSG_IDLE_CS,
1700                 [CCS1] = MSG_IDLE_CS,
1701                 [CCS2] = MSG_IDLE_CS,
1702                 [CCS3] = MSG_IDLE_CS,
1703         };
1704         u32 val;
1705
1706         if (!_reg[engine->id].reg)
1707                 return 0;
1708
1709         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1710
1711         /* bits[29:25] & bits[13:9] >> shift */
1712         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1713 }
1714
1715 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1716 {
1717         int ret;
1718
1719         /* Ensure GPM receives fw up/down after CS is stopped */
1720         udelay(1);
1721
1722         /* Wait for forcewake request to complete in GPM */
1723         ret =  __intel_wait_for_register_fw(gt->uncore,
1724                                             GEN9_PWRGT_DOMAIN_STATUS,
1725                                             fw_mask, fw_mask, 5000, 0, NULL);
1726
1727         /* Ensure CS receives fw ack from GPM */
1728         udelay(1);
1729
1730         if (ret)
1731                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1732 }
1733
1734 /*
1735  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1736  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1737  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1738  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1739  * are concerned only with the gt reset here, we use a logical OR of pending
1740  * forcewakeups from all reset domains and then wait for them to complete by
1741  * querying PWRGT_DOMAIN_STATUS.
1742  */
1743 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1744 {
1745         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1746
1747         if (fw_pending)
1748                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1749 }
1750
1751 /* NB: please notice the memset */
1752 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1753                                struct intel_instdone *instdone)
1754 {
1755         struct drm_i915_private *i915 = engine->i915;
1756         struct intel_uncore *uncore = engine->uncore;
1757         u32 mmio_base = engine->mmio_base;
1758         int slice;
1759         int subslice;
1760         int iter;
1761
1762         memset(instdone, 0, sizeof(*instdone));
1763
1764         if (GRAPHICS_VER(i915) >= 8) {
1765                 instdone->instdone =
1766                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1767
1768                 if (engine->id != RCS0)
1769                         return;
1770
1771                 instdone->slice_common =
1772                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1773                 if (GRAPHICS_VER(i915) >= 12) {
1774                         instdone->slice_common_extra[0] =
1775                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1776                         instdone->slice_common_extra[1] =
1777                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1778                 }
1779
1780                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1781                         instdone->sampler[slice][subslice] =
1782                                 intel_gt_mcr_read(engine->gt,
1783                                                   GEN8_SAMPLER_INSTDONE,
1784                                                   slice, subslice);
1785                         instdone->row[slice][subslice] =
1786                                 intel_gt_mcr_read(engine->gt,
1787                                                   GEN8_ROW_INSTDONE,
1788                                                   slice, subslice);
1789                 }
1790
1791                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1792                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1793                                 instdone->geom_svg[slice][subslice] =
1794                                         intel_gt_mcr_read(engine->gt,
1795                                                           XEHPG_INSTDONE_GEOM_SVG,
1796                                                           slice, subslice);
1797                 }
1798         } else if (GRAPHICS_VER(i915) >= 7) {
1799                 instdone->instdone =
1800                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1801
1802                 if (engine->id != RCS0)
1803                         return;
1804
1805                 instdone->slice_common =
1806                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1807                 instdone->sampler[0][0] =
1808                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1809                 instdone->row[0][0] =
1810                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1811         } else if (GRAPHICS_VER(i915) >= 4) {
1812                 instdone->instdone =
1813                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1814                 if (engine->id == RCS0)
1815                         /* HACK: Using the wrong struct member */
1816                         instdone->slice_common =
1817                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1818         } else {
1819                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1820         }
1821 }
1822
1823 static bool ring_is_idle(struct intel_engine_cs *engine)
1824 {
1825         bool idle = true;
1826
1827         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1828                 return true;
1829
1830         if (!intel_engine_pm_get_if_awake(engine))
1831                 return true;
1832
1833         /* First check that no commands are left in the ring */
1834         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1835             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1836                 idle = false;
1837
1838         /* No bit for gen2, so assume the CS parser is idle */
1839         if (GRAPHICS_VER(engine->i915) > 2 &&
1840             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1841                 idle = false;
1842
1843         intel_engine_pm_put(engine);
1844
1845         return idle;
1846 }
1847
1848 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1849 {
1850         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1851
1852         if (!t->callback)
1853                 return;
1854
1855         local_bh_disable();
1856         if (tasklet_trylock(t)) {
1857                 /* Must wait for any GPU reset in progress. */
1858                 if (__tasklet_is_enabled(t))
1859                         t->callback(t);
1860                 tasklet_unlock(t);
1861         }
1862         local_bh_enable();
1863
1864         /* Synchronise and wait for the tasklet on another CPU */
1865         if (sync)
1866                 tasklet_unlock_wait(t);
1867 }
1868
1869 /**
1870  * intel_engine_is_idle() - Report if the engine has finished process all work
1871  * @engine: the intel_engine_cs
1872  *
1873  * Return true if there are no requests pending, nothing left to be submitted
1874  * to hardware, and that the engine is idle.
1875  */
1876 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1877 {
1878         /* More white lies, if wedged, hw state is inconsistent */
1879         if (intel_gt_is_wedged(engine->gt))
1880                 return true;
1881
1882         if (!intel_engine_pm_is_awake(engine))
1883                 return true;
1884
1885         /* Waiting to drain ELSP? */
1886         intel_synchronize_hardirq(engine->i915);
1887         intel_engine_flush_submission(engine);
1888
1889         /* ELSP is empty, but there are ready requests? E.g. after reset */
1890         if (!i915_sched_engine_is_empty(engine->sched_engine))
1891                 return false;
1892
1893         /* Ring stopped? */
1894         return ring_is_idle(engine);
1895 }
1896
1897 bool intel_engines_are_idle(struct intel_gt *gt)
1898 {
1899         struct intel_engine_cs *engine;
1900         enum intel_engine_id id;
1901
1902         /*
1903          * If the driver is wedged, HW state may be very inconsistent and
1904          * report that it is still busy, even though we have stopped using it.
1905          */
1906         if (intel_gt_is_wedged(gt))
1907                 return true;
1908
1909         /* Already parked (and passed an idleness test); must still be idle */
1910         if (!READ_ONCE(gt->awake))
1911                 return true;
1912
1913         for_each_engine(engine, gt, id) {
1914                 if (!intel_engine_is_idle(engine))
1915                         return false;
1916         }
1917
1918         return true;
1919 }
1920
1921 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1922 {
1923         if (!engine->irq_enable)
1924                 return false;
1925
1926         /* Caller disables interrupts */
1927         spin_lock(engine->gt->irq_lock);
1928         engine->irq_enable(engine);
1929         spin_unlock(engine->gt->irq_lock);
1930
1931         return true;
1932 }
1933
1934 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1935 {
1936         if (!engine->irq_disable)
1937                 return;
1938
1939         /* Caller disables interrupts */
1940         spin_lock(engine->gt->irq_lock);
1941         engine->irq_disable(engine);
1942         spin_unlock(engine->gt->irq_lock);
1943 }
1944
1945 void intel_engines_reset_default_submission(struct intel_gt *gt)
1946 {
1947         struct intel_engine_cs *engine;
1948         enum intel_engine_id id;
1949
1950         for_each_engine(engine, gt, id) {
1951                 if (engine->sanitize)
1952                         engine->sanitize(engine);
1953
1954                 engine->set_default_submission(engine);
1955         }
1956 }
1957
1958 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1959 {
1960         switch (GRAPHICS_VER(engine->i915)) {
1961         case 2:
1962                 return false; /* uses physical not virtual addresses */
1963         case 3:
1964                 /* maybe only uses physical not virtual addresses */
1965                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1966         case 4:
1967                 return !IS_I965G(engine->i915); /* who knows! */
1968         case 6:
1969                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1970         default:
1971                 return true;
1972         }
1973 }
1974
1975 static struct intel_timeline *get_timeline(struct i915_request *rq)
1976 {
1977         struct intel_timeline *tl;
1978
1979         /*
1980          * Even though we are holding the engine->sched_engine->lock here, there
1981          * is no control over the submission queue per-se and we are
1982          * inspecting the active state at a random point in time, with an
1983          * unknown queue. Play safe and make sure the timeline remains valid.
1984          * (Only being used for pretty printing, one extra kref shouldn't
1985          * cause a camel stampede!)
1986          */
1987         rcu_read_lock();
1988         tl = rcu_dereference(rq->timeline);
1989         if (!kref_get_unless_zero(&tl->kref))
1990                 tl = NULL;
1991         rcu_read_unlock();
1992
1993         return tl;
1994 }
1995
1996 static int print_ring(char *buf, int sz, struct i915_request *rq)
1997 {
1998         int len = 0;
1999
2000         if (!i915_request_signaled(rq)) {
2001                 struct intel_timeline *tl = get_timeline(rq);
2002
2003                 len = scnprintf(buf, sz,
2004                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2005                                 i915_ggtt_offset(rq->ring->vma),
2006                                 tl ? tl->hwsp_offset : 0,
2007                                 hwsp_seqno(rq),
2008                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2009                                                       1000 * 1000));
2010
2011                 if (tl)
2012                         intel_timeline_put(tl);
2013         }
2014
2015         return len;
2016 }
2017
2018 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2019 {
2020         const size_t rowsize = 8 * sizeof(u32);
2021         const void *prev = NULL;
2022         bool skip = false;
2023         size_t pos;
2024
2025         for (pos = 0; pos < len; pos += rowsize) {
2026                 char line[128];
2027
2028                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2029                         if (!skip) {
2030                                 drm_printf(m, "*\n");
2031                                 skip = true;
2032                         }
2033                         continue;
2034                 }
2035
2036                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2037                                                 rowsize, sizeof(u32),
2038                                                 line, sizeof(line),
2039                                                 false) >= sizeof(line));
2040                 drm_printf(m, "[%04zx] %s\n", pos, line);
2041
2042                 prev = buf + pos;
2043                 skip = false;
2044         }
2045 }
2046
2047 static const char *repr_timer(const struct timer_list *t)
2048 {
2049         if (!READ_ONCE(t->expires))
2050                 return "inactive";
2051
2052         if (timer_pending(t))
2053                 return "active";
2054
2055         return "expired";
2056 }
2057
2058 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2059                                          struct drm_printer *m)
2060 {
2061         struct drm_i915_private *i915 = engine->i915;
2062         struct intel_engine_execlists * const execlists = &engine->execlists;
2063         u64 addr;
2064
2065         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2066                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2067         if (HAS_EXECLISTS(i915)) {
2068                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2069                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2070                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2071                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2072         }
2073         drm_printf(m, "\tRING_START: 0x%08x\n",
2074                    ENGINE_READ(engine, RING_START));
2075         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2076                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2077         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2078                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2079         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2080                    ENGINE_READ(engine, RING_CTL),
2081                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2082         if (GRAPHICS_VER(engine->i915) > 2) {
2083                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2084                            ENGINE_READ(engine, RING_MI_MODE),
2085                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2086         }
2087
2088         if (GRAPHICS_VER(i915) >= 6) {
2089                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2090                            ENGINE_READ(engine, RING_IMR));
2091                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2092                            ENGINE_READ(engine, RING_ESR));
2093                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2094                            ENGINE_READ(engine, RING_EMR));
2095                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2096                            ENGINE_READ(engine, RING_EIR));
2097         }
2098
2099         addr = intel_engine_get_active_head(engine);
2100         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2101                    upper_32_bits(addr), lower_32_bits(addr));
2102         addr = intel_engine_get_last_batch_head(engine);
2103         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2104                    upper_32_bits(addr), lower_32_bits(addr));
2105         if (GRAPHICS_VER(i915) >= 8)
2106                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2107         else if (GRAPHICS_VER(i915) >= 4)
2108                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2109         else
2110                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2111         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2112                    upper_32_bits(addr), lower_32_bits(addr));
2113         if (GRAPHICS_VER(i915) >= 4) {
2114                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2115                            ENGINE_READ(engine, RING_IPEIR));
2116                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2117                            ENGINE_READ(engine, RING_IPEHR));
2118         } else {
2119                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2120                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2121         }
2122
2123         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2124                 struct i915_request * const *port, *rq;
2125                 const u32 *hws =
2126                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2127                 const u8 num_entries = execlists->csb_size;
2128                 unsigned int idx;
2129                 u8 read, write;
2130
2131                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2132                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2133                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2134                            repr_timer(&engine->execlists.preempt),
2135                            repr_timer(&engine->execlists.timer));
2136
2137                 read = execlists->csb_head;
2138                 write = READ_ONCE(*execlists->csb_write);
2139
2140                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2141                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2142                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2143                            read, write, num_entries);
2144
2145                 if (read >= num_entries)
2146                         read = 0;
2147                 if (write >= num_entries)
2148                         write = 0;
2149                 if (read > write)
2150                         write += num_entries;
2151                 while (read < write) {
2152                         idx = ++read % num_entries;
2153                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2154                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2155                 }
2156
2157                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2158                 rcu_read_lock();
2159                 for (port = execlists->active; (rq = *port); port++) {
2160                         char hdr[160];
2161                         int len;
2162
2163                         len = scnprintf(hdr, sizeof(hdr),
2164                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2165                                         (int)(port - execlists->active),
2166                                         rq->context->lrc.ccid,
2167                                         intel_context_is_closed(rq->context) ? "!" : "",
2168                                         intel_context_is_banned(rq->context) ? "*" : "");
2169                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2170                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2171                         i915_request_show(m, rq, hdr, 0);
2172                 }
2173                 for (port = execlists->pending; (rq = *port); port++) {
2174                         char hdr[160];
2175                         int len;
2176
2177                         len = scnprintf(hdr, sizeof(hdr),
2178                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2179                                         (int)(port - execlists->pending),
2180                                         rq->context->lrc.ccid,
2181                                         intel_context_is_closed(rq->context) ? "!" : "",
2182                                         intel_context_is_banned(rq->context) ? "*" : "");
2183                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2184                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2185                         i915_request_show(m, rq, hdr, 0);
2186                 }
2187                 rcu_read_unlock();
2188                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2189         } else if (GRAPHICS_VER(i915) > 6) {
2190                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2191                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2192                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2193                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2194                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2195                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2196         }
2197 }
2198
2199 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2200 {
2201         struct i915_vma_resource *vma_res = rq->batch_res;
2202         void *ring;
2203         int size;
2204
2205         drm_printf(m,
2206                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2207                    rq->head, rq->postfix, rq->tail,
2208                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2209                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2210
2211         size = rq->tail - rq->head;
2212         if (rq->tail < rq->head)
2213                 size += rq->ring->size;
2214
2215         ring = kmalloc(size, GFP_ATOMIC);
2216         if (ring) {
2217                 const void *vaddr = rq->ring->vaddr;
2218                 unsigned int head = rq->head;
2219                 unsigned int len = 0;
2220
2221                 if (rq->tail < head) {
2222                         len = rq->ring->size - head;
2223                         memcpy(ring, vaddr + head, len);
2224                         head = 0;
2225                 }
2226                 memcpy(ring + len, vaddr + head, size - len);
2227
2228                 hexdump(m, ring, size);
2229                 kfree(ring);
2230         }
2231 }
2232
2233 static unsigned long read_ul(void *p, size_t x)
2234 {
2235         return *(unsigned long *)(p + x);
2236 }
2237
2238 static void print_properties(struct intel_engine_cs *engine,
2239                              struct drm_printer *m)
2240 {
2241         static const struct pmap {
2242                 size_t offset;
2243                 const char *name;
2244         } props[] = {
2245 #define P(x) { \
2246         .offset = offsetof(typeof(engine->props), x), \
2247         .name = #x \
2248 }
2249                 P(heartbeat_interval_ms),
2250                 P(max_busywait_duration_ns),
2251                 P(preempt_timeout_ms),
2252                 P(stop_timeout_ms),
2253                 P(timeslice_duration_ms),
2254
2255                 {},
2256 #undef P
2257         };
2258         const struct pmap *p;
2259
2260         drm_printf(m, "\tProperties:\n");
2261         for (p = props; p->name; p++)
2262                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2263                            p->name,
2264                            read_ul(&engine->props, p->offset),
2265                            read_ul(&engine->defaults, p->offset));
2266 }
2267
2268 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2269 {
2270         struct intel_timeline *tl = get_timeline(rq);
2271
2272         i915_request_show(m, rq, msg, 0);
2273
2274         drm_printf(m, "\t\tring->start:  0x%08x\n",
2275                    i915_ggtt_offset(rq->ring->vma));
2276         drm_printf(m, "\t\tring->head:   0x%08x\n",
2277                    rq->ring->head);
2278         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2279                    rq->ring->tail);
2280         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2281                    rq->ring->emit);
2282         drm_printf(m, "\t\tring->space:  0x%08x\n",
2283                    rq->ring->space);
2284
2285         if (tl) {
2286                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2287                            tl->hwsp_offset);
2288                 intel_timeline_put(tl);
2289         }
2290
2291         print_request_ring(m, rq);
2292
2293         if (rq->context->lrc_reg_state) {
2294                 drm_printf(m, "Logical Ring Context:\n");
2295                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2296         }
2297 }
2298
2299 void intel_engine_dump_active_requests(struct list_head *requests,
2300                                        struct i915_request *hung_rq,
2301                                        struct drm_printer *m)
2302 {
2303         struct i915_request *rq;
2304         const char *msg;
2305         enum i915_request_state state;
2306
2307         list_for_each_entry(rq, requests, sched.link) {
2308                 if (rq == hung_rq)
2309                         continue;
2310
2311                 state = i915_test_request_state(rq);
2312                 if (state < I915_REQUEST_QUEUED)
2313                         continue;
2314
2315                 if (state == I915_REQUEST_ACTIVE)
2316                         msg = "\t\tactive on engine";
2317                 else
2318                         msg = "\t\tactive in queue";
2319
2320                 engine_dump_request(rq, m, msg);
2321         }
2322 }
2323
2324 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2325                                         struct drm_printer *m)
2326 {
2327         struct intel_context *hung_ce = NULL;
2328         struct i915_request *hung_rq = NULL;
2329
2330         /*
2331          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2332          * The GPU is still running so requests are still executing and any
2333          * hardware reads will be out of date by the time they are reported.
2334          * But the intention here is just to report an instantaneous snapshot
2335          * so that's fine.
2336          */
2337         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2338
2339         drm_printf(m, "\tRequests:\n");
2340
2341         if (hung_rq)
2342                 engine_dump_request(hung_rq, m, "\t\thung");
2343         else if (hung_ce)
2344                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2345
2346         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2347                 intel_guc_dump_active_requests(engine, hung_rq, m);
2348         else
2349                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2350
2351         if (hung_rq)
2352                 i915_request_put(hung_rq);
2353 }
2354
2355 void intel_engine_dump(struct intel_engine_cs *engine,
2356                        struct drm_printer *m,
2357                        const char *header, ...)
2358 {
2359         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2360         struct i915_request *rq;
2361         intel_wakeref_t wakeref;
2362         ktime_t dummy;
2363
2364         if (header) {
2365                 va_list ap;
2366
2367                 va_start(ap, header);
2368                 drm_vprintf(m, header, &ap);
2369                 va_end(ap);
2370         }
2371
2372         if (intel_gt_is_wedged(engine->gt))
2373                 drm_printf(m, "*** WEDGED ***\n");
2374
2375         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2376         drm_printf(m, "\tBarriers?: %s\n",
2377                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2378         drm_printf(m, "\tLatency: %luus\n",
2379                    ewma__engine_latency_read(&engine->latency));
2380         if (intel_engine_supports_stats(engine))
2381                 drm_printf(m, "\tRuntime: %llums\n",
2382                            ktime_to_ms(intel_engine_get_busy_time(engine,
2383                                                                   &dummy)));
2384         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2385                    engine->fw_domain, READ_ONCE(engine->fw_active));
2386
2387         rcu_read_lock();
2388         rq = READ_ONCE(engine->heartbeat.systole);
2389         if (rq)
2390                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2391                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2392         rcu_read_unlock();
2393         drm_printf(m, "\tReset count: %d (global %d)\n",
2394                    i915_reset_engine_count(error, engine),
2395                    i915_reset_count(error));
2396         print_properties(engine, m);
2397
2398         engine_dump_active_requests(engine, m);
2399
2400         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2401         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2402         if (wakeref) {
2403                 intel_engine_print_registers(engine, m);
2404                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2405         } else {
2406                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2407         }
2408
2409         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2410
2411         drm_printf(m, "HWSP:\n");
2412         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2413
2414         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2415
2416         intel_engine_print_breadcrumbs(engine, m);
2417 }
2418
2419 /**
2420  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2421  * @engine: engine to report on
2422  * @now: monotonic timestamp of sampling
2423  *
2424  * Returns accumulated time @engine was busy since engine stats were enabled.
2425  */
2426 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2427 {
2428         return engine->busyness(engine, now);
2429 }
2430
2431 struct intel_context *
2432 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2433                             unsigned int count, unsigned long flags)
2434 {
2435         if (count == 0)
2436                 return ERR_PTR(-EINVAL);
2437
2438         if (count == 1 && !(flags & FORCE_VIRTUAL))
2439                 return intel_context_create(siblings[0]);
2440
2441         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2442         return siblings[0]->cops->create_virtual(siblings, count, flags);
2443 }
2444
2445 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2446 {
2447         struct i915_request *request, *active = NULL;
2448
2449         /*
2450          * This search does not work in GuC submission mode. However, the GuC
2451          * will report the hanging context directly to the driver itself. So
2452          * the driver should never get here when in GuC mode.
2453          */
2454         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2455
2456         /*
2457          * We are called by the error capture, reset and to dump engine
2458          * state at random points in time. In particular, note that neither is
2459          * crucially ordered with an interrupt. After a hang, the GPU is dead
2460          * and we assume that no more writes can happen (we waited long enough
2461          * for all writes that were in transaction to be flushed) - adding an
2462          * extra delay for a recent interrupt is pointless. Hence, we do
2463          * not need an engine->irq_seqno_barrier() before the seqno reads.
2464          * At all other times, we must assume the GPU is still running, but
2465          * we only care about the snapshot of this moment.
2466          */
2467         lockdep_assert_held(&engine->sched_engine->lock);
2468
2469         rcu_read_lock();
2470         request = execlists_active(&engine->execlists);
2471         if (request) {
2472                 struct intel_timeline *tl = request->context->timeline;
2473
2474                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2475                         if (__i915_request_is_complete(request))
2476                                 break;
2477
2478                         active = request;
2479                 }
2480         }
2481         rcu_read_unlock();
2482         if (active)
2483                 return active;
2484
2485         list_for_each_entry(request, &engine->sched_engine->requests,
2486                             sched.link) {
2487                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2488                         continue;
2489
2490                 active = request;
2491                 break;
2492         }
2493
2494         return active;
2495 }
2496
2497 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2498                                   struct intel_context **ce, struct i915_request **rq)
2499 {
2500         unsigned long flags;
2501
2502         *ce = intel_engine_get_hung_context(engine);
2503         if (*ce) {
2504                 intel_engine_clear_hung_context(engine);
2505
2506                 *rq = intel_context_get_active_request(*ce);
2507                 return;
2508         }
2509
2510         /*
2511          * Getting here with GuC enabled means it is a forced error capture
2512          * with no actual hang. So, no need to attempt the execlist search.
2513          */
2514         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2515                 return;
2516
2517         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2518         *rq = engine_execlist_find_hung_request(engine);
2519         if (*rq)
2520                 *rq = i915_request_get_rcu(*rq);
2521         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2522 }
2523
2524 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2525 {
2526         /*
2527          * If there are any non-fused-off CCS engines, we need to enable CCS
2528          * support in the RCU_MODE register.  This only needs to be done once,
2529          * so for simplicity we'll take care of this in the RCS engine's
2530          * resume handler; since the RCS and all CCS engines belong to the
2531          * same reset domain and are reset together, this will also take care
2532          * of re-applying the setting after i915-triggered resets.
2533          */
2534         if (!CCS_MASK(engine->gt))
2535                 return;
2536
2537         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2538                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2539 }
2540
2541 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2542 #include "mock_engine.c"
2543 #include "selftest_engine.c"
2544 #include "selftest_engine_cs.c"
2545 #endif