1 // SPDX-License-Identifier: MIT
3 * Copyright © 2021 Intel Corporation
6 #include <linux/shmem_fs.h>
8 #include <drm/ttm/ttm_bo_driver.h>
9 #include <drm/ttm/ttm_placement.h>
10 #include <drm/drm_buddy.h>
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
24 #define I915_TTM_PRIO_PURGE 0
25 #define I915_TTM_PRIO_NO_PAGES 1
26 #define I915_TTM_PRIO_HAS_PAGES 2
27 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
30 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
35 * struct i915_ttm_tt - TTM page vector with additional private information
36 * @ttm: The base TTM page vector.
37 * @dev: The struct device used for dma mapping and unmapping.
38 * @cached_rsgt: The cached scatter-gather table.
39 * @is_shmem: Set if using shmem.
40 * @filp: The shmem file, if using shmem backend.
42 * Note that DMA may be going on right up to the point where the page-
43 * vector is unpopulated in delayed destroy. Hence keep the
44 * scatter-gather table mapped and cached up to that point. This is
45 * different from the cached gem object io scatter-gather table which
46 * doesn't have an associated dma mapping.
51 struct i915_refct_sgt cached_rsgt;
57 static const struct ttm_place sys_placement_flags = {
60 .mem_type = I915_PL_SYSTEM,
64 static struct ttm_placement i915_sys_placement = {
66 .placement = &sys_placement_flags,
67 .num_busy_placement = 1,
68 .busy_placement = &sys_placement_flags,
72 * i915_ttm_sys_placement - Return the struct ttm_placement to be
73 * used for an object in system memory.
75 * Rather than making the struct extern, use this
78 * Return: A pointer to a static variable for sys placement.
80 struct ttm_placement *i915_ttm_sys_placement(void)
82 return &i915_sys_placement;
85 static int i915_ttm_err_to_gem(int err)
94 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
95 * restart the operation, since we don't record the contending
96 * lock. We use -EAGAIN to restart.
101 * Memory type / region is full, and we can't evict.
102 * Except possibly system, that returns -ENOMEM;
112 static enum ttm_caching
113 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
116 * Objects only allowed in system get cached cpu-mappings, or when
117 * evicting lmem-only buffers to system for swapping. Other objects get
118 * WC mapping for now. Even if in system.
120 if (obj->mm.n_placements <= 1)
123 return ttm_write_combined;
127 i915_ttm_place_from_region(const struct intel_memory_region *mr,
128 struct ttm_place *place,
129 resource_size_t offset,
130 resource_size_t size,
133 memset(place, 0, sizeof(*place));
134 place->mem_type = intel_region_to_ttm_type(mr);
136 if (mr->type == INTEL_MEMORY_SYSTEM)
139 if (flags & I915_BO_ALLOC_CONTIGUOUS)
140 place->flags |= TTM_PL_FLAG_CONTIGUOUS;
141 if (offset != I915_BO_INVALID_OFFSET) {
142 place->fpfn = offset >> PAGE_SHIFT;
143 place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
144 } else if (mr->io_size && mr->io_size < mr->total) {
145 if (flags & I915_BO_ALLOC_GPU_ONLY) {
146 place->flags |= TTM_PL_FLAG_TOPDOWN;
149 place->lpfn = mr->io_size >> PAGE_SHIFT;
155 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
156 struct ttm_place *requested,
157 struct ttm_place *busy,
158 struct ttm_placement *placement)
160 unsigned int num_allowed = obj->mm.n_placements;
161 unsigned int flags = obj->flags;
164 placement->num_placement = 1;
165 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
166 obj->mm.region, requested, obj->bo_offset,
167 obj->base.size, flags);
169 /* Cache this on object? */
170 placement->num_busy_placement = num_allowed;
171 for (i = 0; i < placement->num_busy_placement; ++i)
172 i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
173 obj->bo_offset, obj->base.size, flags);
175 if (num_allowed == 0) {
177 placement->num_busy_placement = 1;
180 placement->placement = requested;
181 placement->busy_placement = busy;
184 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
186 struct ttm_operation_ctx *ctx)
188 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
189 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
190 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
191 const unsigned int max_segment = i915_sg_segment_size();
192 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
193 struct file *filp = i915_tt->filp;
194 struct sgt_iter sgt_iter;
201 struct address_space *mapping;
204 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
206 return PTR_ERR(filp);
208 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
210 mapping = filp->f_mapping;
211 mapping_set_gfp_mask(mapping, mask);
212 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
214 i915_tt->filp = filp;
217 st = &i915_tt->cached_rsgt.table;
218 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
223 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
224 DMA_ATTR_SKIP_CPU_SYNC);
229 for_each_sgt_page(page, sgt_iter, st)
230 ttm->pages[i++] = page;
232 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
233 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
238 shmem_sg_free_table(st, filp->f_mapping, false, false);
243 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
245 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
246 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
247 struct sg_table *st = &i915_tt->cached_rsgt.table;
249 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
253 static void i915_ttm_tt_release(struct kref *ref)
255 struct i915_ttm_tt *i915_tt =
256 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
257 struct sg_table *st = &i915_tt->cached_rsgt.table;
259 GEM_WARN_ON(st->sgl);
264 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
265 .release = i915_ttm_tt_release
268 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
271 struct ttm_resource_manager *man =
272 ttm_manager_type(bo->bdev, bo->resource->mem_type);
273 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
274 enum ttm_caching caching;
275 struct i915_ttm_tt *i915_tt;
281 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
285 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
287 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
289 caching = i915_ttm_select_tt_caching(obj);
290 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
291 page_flags |= TTM_TT_FLAG_EXTERNAL |
292 TTM_TT_FLAG_EXTERNAL_MAPPABLE;
293 i915_tt->is_shmem = true;
296 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, 0);
300 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
303 i915_tt->dev = obj->base.dev->dev;
305 return &i915_tt->ttm;
312 static int i915_ttm_tt_populate(struct ttm_device *bdev,
314 struct ttm_operation_ctx *ctx)
316 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
318 if (i915_tt->is_shmem)
319 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
321 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
324 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
326 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
327 struct sg_table *st = &i915_tt->cached_rsgt.table;
330 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
332 if (i915_tt->is_shmem) {
333 i915_ttm_tt_shmem_unpopulate(ttm);
336 ttm_pool_free(&bdev->pool, ttm);
340 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
342 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
348 i915_refct_sgt_put(&i915_tt->cached_rsgt);
351 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
352 const struct ttm_place *place)
354 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
355 struct ttm_resource *res = bo->resource;
361 * EXTERNAL objects should never be swapped out by TTM, instead we need
362 * to handle that ourselves. TTM will already skip such objects for us,
363 * but we would like to avoid grabbing locks for no good reason.
365 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
368 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
369 if (!i915_gem_object_evictable(obj))
372 switch (res->mem_type) {
373 case I915_PL_LMEM0: {
374 struct ttm_resource_manager *man =
375 ttm_manager_type(bo->bdev, res->mem_type);
376 struct i915_ttm_buddy_resource *bman_res =
377 to_ttm_buddy_resource(res);
378 struct drm_buddy *mm = bman_res->mm;
379 struct drm_buddy_block *block;
381 if (!place->fpfn && !place->lpfn)
384 GEM_BUG_ON(!place->lpfn);
387 * If we just want something mappable then we can quickly check
388 * if the current victim resource is using any of the CPU
392 place->lpfn == i915_ttm_buddy_man_visible_size(man))
393 return bman_res->used_visible_size > 0;
395 /* Real range allocation */
396 list_for_each_entry(block, &bman_res->blocks, link) {
398 drm_buddy_block_offset(block) >> PAGE_SHIFT;
399 unsigned long lpfn = fpfn +
400 (drm_buddy_block_size(mm, block) >> PAGE_SHIFT);
402 if (place->fpfn < lpfn && place->lpfn > fpfn)
413 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
414 struct ttm_placement *placement)
416 *placement = i915_sys_placement;
420 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
421 * @obj: The GEM object
422 * This function frees any LMEM-related information that is cached on
423 * the object. For example the radix tree for fast page lookup and the
424 * cached refcounted sg-table
426 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
428 struct radix_tree_iter iter;
431 if (!obj->ttm.cached_io_rsgt)
435 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
436 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
439 i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
440 obj->ttm.cached_io_rsgt = NULL;
444 * i915_ttm_purge - Clear an object of its memory
447 * This function is called to clear an object of it's memory when it is
448 * marked as not needed anymore.
450 * Return: 0 on success, negative error code on failure.
452 int i915_ttm_purge(struct drm_i915_gem_object *obj)
454 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
455 struct i915_ttm_tt *i915_tt =
456 container_of(bo->ttm, typeof(*i915_tt), ttm);
457 struct ttm_operation_ctx ctx = {
458 .interruptible = true,
459 .no_wait_gpu = false,
461 struct ttm_placement place = {};
464 if (obj->mm.madv == __I915_MADV_PURGED)
467 ret = ttm_bo_validate(bo, &place, &ctx);
471 if (bo->ttm && i915_tt->filp) {
473 * The below fput(which eventually calls shmem_truncate) might
474 * be delayed by worker, so when directly called to purge the
475 * pages(like by the shrinker) we should try to be more
476 * aggressive and release the pages immediately.
478 shmem_truncate_range(file_inode(i915_tt->filp),
480 fput(fetch_and_zero(&i915_tt->filp));
483 obj->write_domain = 0;
484 obj->read_domains = 0;
485 i915_ttm_adjust_gem_after_move(obj);
486 i915_ttm_free_cached_io_rsgt(obj);
487 obj->mm.madv = __I915_MADV_PURGED;
492 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
494 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
495 struct i915_ttm_tt *i915_tt =
496 container_of(bo->ttm, typeof(*i915_tt), ttm);
497 struct ttm_operation_ctx ctx = {
498 .interruptible = true,
499 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
501 struct ttm_placement place = {};
504 if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
507 GEM_BUG_ON(!i915_tt->is_shmem);
512 ret = ttm_bo_wait_ctx(bo, &ctx);
516 switch (obj->mm.madv) {
517 case I915_MADV_DONTNEED:
518 return i915_ttm_purge(obj);
519 case __I915_MADV_PURGED:
523 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
526 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
527 ret = ttm_bo_validate(bo, &place, &ctx);
529 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
533 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
534 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
539 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
541 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
544 __i915_gem_object_pages_fini(obj);
545 i915_ttm_free_cached_io_rsgt(obj);
549 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
551 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
555 if (i915_tt->cached_rsgt.table.sgl)
556 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
558 st = &i915_tt->cached_rsgt.table;
559 ret = sg_alloc_table_from_pages_segment(st,
560 ttm->pages, ttm->num_pages,
561 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
562 i915_sg_segment_size(), GFP_KERNEL);
568 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
574 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
578 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
580 * @obj: The GEM object used for sg-table caching
581 * @res: The struct ttm_resource for which an sg-table is requested.
583 * This function returns a refcounted sg-table representing the memory
584 * pointed to by @res. If @res is the object's current resource it may also
585 * cache the sg_table on the object or attempt to access an already cached
586 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
588 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
591 struct i915_refct_sgt *
592 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
593 struct ttm_resource *res)
595 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
597 if (!i915_ttm_gtt_binds_lmem(res))
598 return i915_ttm_tt_get_st(bo->ttm);
601 * If CPU mapping differs, we need to add the ttm_tt pages to
602 * the resulting st. Might make sense for GGTT.
604 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
605 if (bo->resource == res) {
606 if (!obj->ttm.cached_io_rsgt) {
607 struct i915_refct_sgt *rsgt;
609 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
614 obj->ttm.cached_io_rsgt = rsgt;
616 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
619 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res);
622 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
624 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
627 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
629 err = i915_ttm_move_notify(bo);
633 return i915_ttm_purge(obj);
636 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
638 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
644 ret = i915_ttm_move_notify(bo);
646 GEM_WARN_ON(obj->ttm.cached_io_rsgt);
647 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
651 static bool i915_ttm_resource_mappable(struct ttm_resource *res)
653 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
655 if (!i915_ttm_cpu_maps_iomem(res))
658 return bman_res->used_visible_size == bman_res->base.num_pages;
661 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
663 if (!i915_ttm_cpu_maps_iomem(mem))
666 if (!i915_ttm_resource_mappable(mem))
669 mem->bus.caching = ttm_write_combined;
670 mem->bus.is_iomem = true;
675 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
676 unsigned long page_offset)
678 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
679 struct scatterlist *sg;
684 GEM_WARN_ON(bo->ttm);
686 base = obj->mm.region->iomap.base - obj->mm.region->region.start;
687 sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
689 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
693 * All callbacks need to take care not to downcast a struct ttm_buffer_object
694 * without checking its subclass, since it might be a TTM ghost object.
696 static struct ttm_device_funcs i915_ttm_bo_driver = {
697 .ttm_tt_create = i915_ttm_tt_create,
698 .ttm_tt_populate = i915_ttm_tt_populate,
699 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
700 .ttm_tt_destroy = i915_ttm_tt_destroy,
701 .eviction_valuable = i915_ttm_eviction_valuable,
702 .evict_flags = i915_ttm_evict_flags,
703 .move = i915_ttm_move,
704 .swap_notify = i915_ttm_swap_notify,
705 .delete_mem_notify = i915_ttm_delete_mem_notify,
706 .io_mem_reserve = i915_ttm_io_mem_reserve,
707 .io_mem_pfn = i915_ttm_io_mem_pfn,
711 * i915_ttm_driver - Return a pointer to the TTM device funcs
713 * Return: Pointer to statically allocated TTM device funcs.
715 struct ttm_device_funcs *i915_ttm_driver(void)
717 return &i915_ttm_bo_driver;
720 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
721 struct ttm_placement *placement)
723 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
724 struct ttm_operation_ctx ctx = {
725 .interruptible = true,
726 .no_wait_gpu = false,
731 /* First try only the requested placement. No eviction. */
732 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
733 ret = ttm_bo_validate(bo, placement, &ctx);
735 ret = i915_ttm_err_to_gem(ret);
737 * Anything that wants to restart the operation gets to
740 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
745 * If the initial attempt fails, allow all accepted placements,
746 * evicting if necessary.
748 placement->num_busy_placement = real_num_busy;
749 ret = ttm_bo_validate(bo, placement, &ctx);
751 return i915_ttm_err_to_gem(ret);
754 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
755 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
759 i915_ttm_adjust_domains_after_move(obj);
760 i915_ttm_adjust_gem_after_move(obj);
763 if (!i915_gem_object_has_pages(obj)) {
764 struct i915_refct_sgt *rsgt =
765 i915_ttm_resource_get_st(obj, bo->resource);
768 return PTR_ERR(rsgt);
770 GEM_BUG_ON(obj->mm.rsgt);
772 __i915_gem_object_set_pages(obj, &rsgt->table,
773 i915_sg_dma_sizes(rsgt->table.sgl));
776 i915_ttm_adjust_lru(obj);
780 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
782 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
783 struct ttm_placement placement;
785 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
787 /* Move to the requested placement. */
788 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
790 return __i915_ttm_get_pages(obj, &placement);
794 * DOC: Migration vs eviction
796 * GEM migration may not be the same as TTM migration / eviction. If
797 * the TTM core decides to evict an object it may be evicted to a
798 * TTM memory type that is not in the object's allowable GEM regions, or
799 * in fact theoretically to a TTM memory type that doesn't correspond to
800 * a GEM memory region. In that case the object's GEM region is not
801 * updated, and the data is migrated back to the GEM region at
802 * get_pages time. TTM may however set up CPU ptes to the object even
803 * when it is evicted.
804 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
805 * to regions that are not in the object's list of allowable placements.
807 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
808 struct intel_memory_region *mr,
811 struct ttm_place requested;
812 struct ttm_placement placement;
815 i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
816 obj->base.size, flags);
817 placement.num_placement = 1;
818 placement.num_busy_placement = 1;
819 placement.placement = &requested;
820 placement.busy_placement = &requested;
822 ret = __i915_ttm_get_pages(obj, &placement);
827 * Reinitialize the region bindings. This is primarily
828 * required for objects where the new region is not in
829 * its allowable placements.
831 if (obj->mm.region != mr) {
832 i915_gem_object_release_memory_region(obj);
833 i915_gem_object_init_memory_region(obj, mr);
839 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
840 struct intel_memory_region *mr)
842 return __i915_ttm_migrate(obj, mr, obj->flags);
845 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
849 * We're currently not called from a shrinker, so put_pages()
850 * typically means the object is about to destroyed, or called
851 * from move_notify(). So just avoid doing much for now.
852 * If the object is not destroyed next, The TTM eviction logic
853 * and shrinkers will move it out if needed.
857 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
861 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
864 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
866 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
867 struct i915_ttm_tt *i915_tt =
868 container_of(bo->ttm, typeof(*i915_tt), ttm);
870 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
873 * Don't manipulate the TTM LRUs while in TTM bo destruction.
874 * We're called through i915_ttm_delete_mem_notify().
876 if (!kref_read(&bo->kref))
880 * We skip managing the shrinker LRU in set_pages() and just manage
881 * everything here. This does at least solve the issue with having
882 * temporary shmem mappings(like with evicted lmem) not being visible to
883 * the shrinker. Only our shmem objects are shrinkable, everything else
884 * we keep as unshrinkable.
886 * To make sure everything plays nice we keep an extra shrink pin in TTM
887 * if the underlying pages are not currently shrinkable. Once we release
888 * our pin, like when the pages are moved to shmem, the pages will then
889 * be added to the shrinker LRU, assuming the caller isn't also holding
892 * TODO: consider maybe also bumping the shrinker list here when we have
893 * already unpinned it, which should give us something more like an LRU.
895 * TODO: There is a small window of opportunity for this function to
896 * get called from eviction after we've dropped the last GEM refcount,
897 * but before the TTM deleted flag is set on the object. Avoid
898 * adjusting the shrinker list in such cases, since the object is
899 * not available to the shrinker anyway due to its zero refcount.
900 * To fix this properly we should move to a TTM shrinker LRU list for
903 if (kref_get_unless_zero(&obj->base.refcount)) {
904 if (shrinkable != obj->mm.ttm_shrinkable) {
906 if (obj->mm.madv == I915_MADV_WILLNEED)
907 __i915_gem_object_make_shrinkable(obj);
909 __i915_gem_object_make_purgeable(obj);
911 i915_gem_object_make_unshrinkable(obj);
914 obj->mm.ttm_shrinkable = shrinkable;
916 i915_gem_object_put(obj);
920 * Put on the correct LRU list depending on the MADV status
922 spin_lock(&bo->bdev->lru_lock);
924 /* Try to keep shmem_tt from being considered for shrinking. */
925 bo->priority = TTM_MAX_BO_PRIORITY - 1;
926 } else if (obj->mm.madv != I915_MADV_WILLNEED) {
927 bo->priority = I915_TTM_PRIO_PURGE;
928 } else if (!i915_gem_object_has_pages(obj)) {
929 bo->priority = I915_TTM_PRIO_NO_PAGES;
931 struct ttm_resource_manager *man =
932 ttm_manager_type(bo->bdev, bo->resource->mem_type);
935 * If we need to place an LMEM resource which doesn't need CPU
936 * access then we should try not to victimize mappable objects
937 * first, since we likely end up stealing more of the mappable
938 * portion. And likewise when we try to find space for a mappble
939 * object, we know not to ever victimize objects that don't
940 * occupy any mappable pages.
942 if (i915_ttm_cpu_maps_iomem(bo->resource) &&
943 i915_ttm_buddy_man_visible_size(man) < man->size &&
944 !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
945 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
947 bo->priority = I915_TTM_PRIO_HAS_PAGES;
950 ttm_bo_move_to_lru_tail(bo);
951 spin_unlock(&bo->bdev->lru_lock);
955 * TTM-backed gem object destruction requires some clarification.
956 * Basically we have two possibilities here. We can either rely on the
957 * i915 delayed destruction and put the TTM object when the object
958 * is idle. This would be detected by TTM which would bypass the
959 * TTM delayed destroy handling. The other approach is to put the TTM
960 * object early and rely on the TTM destroyed handling, and then free
961 * the leftover parts of the GEM object once TTM's destroyed list handling is
962 * complete. For now, we rely on the latter for two reasons:
963 * a) TTM can evict an object even when it's on the delayed destroy list,
964 * which in theory allows for complete eviction.
965 * b) There is work going on in TTM to allow freeing an object even when
966 * it's not idle, and using the TTM destroyed list handling could help us
969 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
971 GEM_BUG_ON(!obj->ttm.created);
973 ttm_bo_put(i915_gem_to_ttm(obj));
976 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
978 struct vm_area_struct *area = vmf->vma;
979 struct ttm_buffer_object *bo = area->vm_private_data;
980 struct drm_device *dev = bo->base.dev;
981 struct drm_i915_gem_object *obj;
985 obj = i915_ttm_to_gem(bo);
987 return VM_FAULT_SIGBUS;
989 /* Sanity check that we allow writing into this object */
990 if (unlikely(i915_gem_object_is_readonly(obj) &&
991 area->vm_flags & VM_WRITE))
992 return VM_FAULT_SIGBUS;
994 ret = ttm_bo_vm_reserve(bo, vmf);
998 if (obj->mm.madv != I915_MADV_WILLNEED) {
999 dma_resv_unlock(bo->base.resv);
1000 return VM_FAULT_SIGBUS;
1003 if (!i915_ttm_resource_mappable(bo->resource)) {
1007 for (i = 0; i < obj->mm.n_placements; i++) {
1008 struct intel_memory_region *mr = obj->mm.placements[i];
1011 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1015 flags &= ~I915_BO_ALLOC_GPU_ONLY;
1016 err = __i915_ttm_migrate(obj, mr, flags);
1022 drm_dbg(dev, "Unable to make resource CPU accessible\n");
1023 dma_resv_unlock(bo->base.resv);
1024 return VM_FAULT_SIGBUS;
1028 if (drm_dev_enter(dev, &idx)) {
1029 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1030 TTM_BO_VM_NUM_PREFAULT);
1033 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1035 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1038 i915_ttm_adjust_lru(obj);
1040 dma_resv_unlock(bo->base.resv);
1045 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1046 void *buf, int len, int write)
1048 struct drm_i915_gem_object *obj =
1049 i915_ttm_to_gem(area->vm_private_data);
1051 if (i915_gem_object_is_readonly(obj) && write)
1054 return ttm_bo_vm_access(area, addr, buf, len, write);
1057 static void ttm_vm_open(struct vm_area_struct *vma)
1059 struct drm_i915_gem_object *obj =
1060 i915_ttm_to_gem(vma->vm_private_data);
1063 i915_gem_object_get(obj);
1066 static void ttm_vm_close(struct vm_area_struct *vma)
1068 struct drm_i915_gem_object *obj =
1069 i915_ttm_to_gem(vma->vm_private_data);
1072 i915_gem_object_put(obj);
1075 static const struct vm_operations_struct vm_ops_ttm = {
1076 .fault = vm_fault_ttm,
1077 .access = vm_access_ttm,
1078 .open = ttm_vm_open,
1079 .close = ttm_vm_close,
1082 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1084 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1085 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1087 return drm_vma_node_offset_addr(&obj->base.vma_node);
1090 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1092 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1095 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1096 .name = "i915_gem_object_ttm",
1097 .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1098 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1100 .get_pages = i915_ttm_get_pages,
1101 .put_pages = i915_ttm_put_pages,
1102 .truncate = i915_ttm_truncate,
1103 .shrink = i915_ttm_shrink,
1105 .adjust_lru = i915_ttm_adjust_lru,
1106 .delayed_free = i915_ttm_delayed_free,
1107 .migrate = i915_ttm_migrate,
1109 .mmap_offset = i915_ttm_mmap_offset,
1110 .unmap_virtual = i915_ttm_unmap_virtual,
1111 .mmap_ops = &vm_ops_ttm,
1114 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1116 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1118 i915_gem_object_release_memory_region(obj);
1119 mutex_destroy(&obj->ttm.get_io_page.lock);
1121 if (obj->ttm.created) {
1123 * We freely manage the shrinker LRU outide of the mm.pages life
1124 * cycle. As a result when destroying the object we should be
1125 * extra paranoid and ensure we remove it from the LRU, before
1126 * we free the object.
1128 * Touching the ttm_shrinkable outside of the object lock here
1129 * should be safe now that the last GEM object ref was dropped.
1131 if (obj->mm.ttm_shrinkable)
1132 i915_gem_object_make_unshrinkable(obj);
1134 i915_ttm_backup_free(obj);
1136 /* This releases all gem object bindings to the backend. */
1137 __i915_gem_free_object(obj);
1139 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1141 __i915_gem_object_fini(obj);
1146 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1147 * @mem: The initial memory region for the object.
1148 * @obj: The gem object.
1149 * @size: Object size in bytes.
1150 * @flags: gem object flags.
1152 * Return: 0 on success, negative error code on failure.
1154 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1155 struct drm_i915_gem_object *obj,
1156 resource_size_t offset,
1157 resource_size_t size,
1158 resource_size_t page_size,
1161 static struct lock_class_key lock_class;
1162 struct drm_i915_private *i915 = mem->i915;
1163 struct ttm_operation_ctx ctx = {
1164 .interruptible = true,
1165 .no_wait_gpu = false,
1167 enum ttm_bo_type bo_type;
1170 drm_gem_private_object_init(&i915->drm, &obj->base, size);
1171 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1173 obj->bo_offset = offset;
1175 /* Don't put on a region list until we're either locked or fully initialized. */
1176 obj->mm.region = mem;
1177 INIT_LIST_HEAD(&obj->mm.region_link);
1179 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1180 mutex_init(&obj->ttm.get_io_page.lock);
1181 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1184 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1186 /* Forcing the page size is kernel internal only */
1187 GEM_BUG_ON(page_size && obj->mm.n_placements);
1190 * Keep an extra shrink pin to prevent the object from being made
1191 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1192 * drop the pin. The TTM backend manages the shrinker LRU itself,
1193 * outside of the normal mm.pages life cycle.
1195 i915_gem_object_make_unshrinkable(obj);
1198 * If this function fails, it will call the destructor, but
1199 * our caller still owns the object. So no freeing in the
1200 * destructor until obj->ttm.created is true.
1201 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1202 * until successful initialization.
1204 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
1205 bo_type, &i915_sys_placement,
1206 page_size >> PAGE_SHIFT,
1207 &ctx, NULL, NULL, i915_ttm_bo_destroy);
1209 return i915_ttm_err_to_gem(ret);
1211 obj->ttm.created = true;
1212 i915_gem_object_release_memory_region(obj);
1213 i915_gem_object_init_memory_region(obj, mem);
1214 i915_ttm_adjust_domains_after_move(obj);
1215 i915_ttm_adjust_gem_after_move(obj);
1216 i915_gem_object_unlock(obj);
1221 static const struct intel_memory_region_ops ttm_system_region_ops = {
1222 .init_object = __i915_gem_ttm_object_init,
1223 .release = intel_region_ttm_fini,
1226 struct intel_memory_region *
1227 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1228 u16 type, u16 instance)
1230 struct intel_memory_region *mr;
1232 mr = intel_memory_region_create(i915, 0,
1233 totalram_pages() << PAGE_SHIFT,
1236 &ttm_system_region_ops);
1240 intel_memory_region_set_name(mr, "system-ttm");