1 // SPDX-License-Identifier: MIT
3 * Copyright © 2021 Intel Corporation
6 #include <drm/ttm/ttm_bo_driver.h>
7 #include <drm/ttm/ttm_placement.h>
10 #include "intel_memory_region.h"
11 #include "intel_region_ttm.h"
13 #include "gem/i915_gem_object.h"
14 #include "gem/i915_gem_region.h"
15 #include "gem/i915_gem_ttm.h"
16 #include "gem/i915_gem_mman.h"
18 #include "gt/intel_migrate.h"
19 #include "gt/intel_engine_pm.h"
21 #define I915_PL_LMEM0 TTM_PL_PRIV
22 #define I915_PL_SYSTEM TTM_PL_SYSTEM
23 #define I915_PL_STOLEN TTM_PL_VRAM
24 #define I915_PL_GGTT TTM_PL_TT
26 #define I915_TTM_PRIO_PURGE 0
27 #define I915_TTM_PRIO_NO_PAGES 1
28 #define I915_TTM_PRIO_HAS_PAGES 2
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_st: The cached scatter-gather table.
41 * Note that DMA may be going on right up to the point where the page-
42 * vector is unpopulated in delayed destroy. Hence keep the
43 * scatter-gather table mapped and cached up to that point. This is
44 * different from the cached gem object io scatter-gather table which
45 * doesn't have an associated dma mapping.
50 struct sg_table *cached_st;
53 static const struct ttm_place sys_placement_flags = {
56 .mem_type = I915_PL_SYSTEM,
60 static struct ttm_placement i915_sys_placement = {
62 .placement = &sys_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &sys_placement_flags,
67 static int i915_ttm_err_to_gem(int err)
76 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
77 * restart the operation, since we don't record the contending
78 * lock. We use -EAGAIN to restart.
83 * Memory type / region is full, and we can't evict.
84 * Except possibly system, that returns -ENOMEM;
94 static bool gpu_binds_iomem(struct ttm_resource *mem)
96 return mem->mem_type != TTM_PL_SYSTEM;
99 static bool cpu_maps_iomem(struct ttm_resource *mem)
101 /* Once / if we support GGTT, this is also false for cached ttm_tts */
102 return mem->mem_type != TTM_PL_SYSTEM;
105 static enum i915_cache_level
106 i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
109 return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && !gpu_binds_iomem(res) &&
110 ttm->caching == ttm_cached) ? I915_CACHE_LLC :
114 static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj);
116 static enum ttm_caching
117 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
120 * Objects only allowed in system get cached cpu-mappings.
121 * Other objects get WC mapping for now. Even if in system.
123 if (obj->mm.region->type == INTEL_MEMORY_SYSTEM &&
124 obj->mm.n_placements <= 1)
127 return ttm_write_combined;
131 i915_ttm_place_from_region(const struct intel_memory_region *mr,
132 struct ttm_place *place,
135 memset(place, 0, sizeof(*place));
136 place->mem_type = intel_region_to_ttm_type(mr);
138 if (flags & I915_BO_ALLOC_CONTIGUOUS)
139 place->flags = TTM_PL_FLAG_CONTIGUOUS;
143 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
144 struct ttm_place *requested,
145 struct ttm_place *busy,
146 struct ttm_placement *placement)
148 unsigned int num_allowed = obj->mm.n_placements;
149 unsigned int flags = obj->flags;
152 placement->num_placement = 1;
153 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
154 obj->mm.region, requested, flags);
156 /* Cache this on object? */
157 placement->num_busy_placement = num_allowed;
158 for (i = 0; i < placement->num_busy_placement; ++i)
159 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, flags);
161 if (num_allowed == 0) {
163 placement->num_busy_placement = 1;
166 placement->placement = requested;
167 placement->busy_placement = busy;
170 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
173 struct ttm_resource_manager *man =
174 ttm_manager_type(bo->bdev, bo->resource->mem_type);
175 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
176 struct i915_ttm_tt *i915_tt;
179 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
183 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
185 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
187 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags,
188 i915_ttm_select_tt_caching(obj));
194 i915_tt->dev = obj->base.dev->dev;
196 return &i915_tt->ttm;
199 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
201 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
203 if (i915_tt->cached_st) {
204 dma_unmap_sgtable(i915_tt->dev, i915_tt->cached_st,
205 DMA_BIDIRECTIONAL, 0);
206 sg_free_table(i915_tt->cached_st);
207 kfree(i915_tt->cached_st);
208 i915_tt->cached_st = NULL;
210 ttm_pool_free(&bdev->pool, ttm);
213 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
215 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
217 ttm_tt_destroy_common(bdev, ttm);
222 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
223 const struct ttm_place *place)
225 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
227 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
228 return i915_gem_object_evictable(obj);
231 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
232 struct ttm_placement *placement)
234 *placement = i915_sys_placement;
237 static int i915_ttm_move_notify(struct ttm_buffer_object *bo)
239 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
242 ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
246 ret = __i915_gem_object_put_pages(obj);
253 static void i915_ttm_free_cached_io_st(struct drm_i915_gem_object *obj)
255 struct radix_tree_iter iter;
258 if (!obj->ttm.cached_io_st)
262 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
263 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
266 sg_free_table(obj->ttm.cached_io_st);
267 kfree(obj->ttm.cached_io_st);
268 obj->ttm.cached_io_st = NULL;
272 i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
274 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
276 if (cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
277 obj->write_domain = I915_GEM_DOMAIN_WC;
278 obj->read_domains = I915_GEM_DOMAIN_WC;
280 obj->write_domain = I915_GEM_DOMAIN_CPU;
281 obj->read_domains = I915_GEM_DOMAIN_CPU;
285 static void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
287 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
288 unsigned int cache_level;
292 * If object was moved to an allowable region, update the object
293 * region to consider it migrated. Note that if it's currently not
294 * in an allowable region, it's evicted and we don't update the
297 if (intel_region_to_ttm_type(obj->mm.region) != bo->resource->mem_type) {
298 for (i = 0; i < obj->mm.n_placements; ++i) {
299 struct intel_memory_region *mr = obj->mm.placements[i];
301 if (intel_region_to_ttm_type(mr) == bo->resource->mem_type &&
302 mr != obj->mm.region) {
303 i915_gem_object_release_memory_region(obj);
304 i915_gem_object_init_memory_region(obj, mr);
310 obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);
312 obj->mem_flags |= cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
313 I915_BO_FLAG_STRUCT_PAGE;
315 cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
317 i915_gem_object_set_cache_coherency(obj, cache_level);
320 static void i915_ttm_purge(struct drm_i915_gem_object *obj)
322 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
323 struct ttm_operation_ctx ctx = {
324 .interruptible = true,
325 .no_wait_gpu = false,
327 struct ttm_placement place = {};
330 if (obj->mm.madv == __I915_MADV_PURGED)
333 /* TTM's purge interface. Note that we might be reentering. */
334 ret = ttm_bo_validate(bo, &place, &ctx);
336 obj->write_domain = 0;
337 obj->read_domains = 0;
338 i915_ttm_adjust_gem_after_move(obj);
339 i915_ttm_free_cached_io_st(obj);
340 obj->mm.madv = __I915_MADV_PURGED;
344 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
346 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
347 int ret = i915_ttm_move_notify(bo);
350 GEM_WARN_ON(obj->ttm.cached_io_st);
351 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
355 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
357 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
360 /* This releases all gem object bindings to the backend. */
361 i915_ttm_free_cached_io_st(obj);
362 __i915_gem_free_object(obj);
366 static struct intel_memory_region *
367 i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
369 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
371 /* There's some room for optimization here... */
372 GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
373 ttm_mem_type < I915_PL_LMEM0);
374 if (ttm_mem_type == I915_PL_SYSTEM)
375 return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
378 return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
379 ttm_mem_type - I915_PL_LMEM0);
382 static struct sg_table *i915_ttm_tt_get_st(struct ttm_tt *ttm)
384 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
388 if (i915_tt->cached_st)
389 return i915_tt->cached_st;
391 st = kzalloc(sizeof(*st), GFP_KERNEL);
393 return ERR_PTR(-ENOMEM);
395 ret = sg_alloc_table_from_pages_segment(st,
396 ttm->pages, ttm->num_pages,
397 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
398 i915_sg_segment_size(), GFP_KERNEL);
404 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
411 i915_tt->cached_st = st;
415 static struct sg_table *
416 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
417 struct ttm_resource *res)
419 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
421 if (!gpu_binds_iomem(res))
422 return i915_ttm_tt_get_st(bo->ttm);
425 * If CPU mapping differs, we need to add the ttm_tt pages to
426 * the resulting st. Might make sense for GGTT.
428 GEM_WARN_ON(!cpu_maps_iomem(res));
429 return intel_region_ttm_resource_to_st(obj->mm.region, res);
432 static int i915_ttm_accel_move(struct ttm_buffer_object *bo,
433 struct ttm_resource *dst_mem,
434 struct sg_table *dst_st)
436 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
438 struct ttm_resource_manager *src_man =
439 ttm_manager_type(bo->bdev, bo->resource->mem_type);
440 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
441 struct sg_table *src_st;
442 struct i915_request *rq;
443 struct ttm_tt *ttm = bo->ttm;
444 enum i915_cache_level src_level, dst_level;
447 if (!i915->gt.migrate.context)
450 dst_level = i915_ttm_cache_level(i915, dst_mem, ttm);
451 if (!ttm || !ttm_tt_is_populated(ttm)) {
452 if (bo->type == ttm_bo_type_kernel)
455 if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
458 intel_engine_pm_get(i915->gt.migrate.context->engine);
459 ret = intel_context_migrate_clear(i915->gt.migrate.context, NULL,
460 dst_st->sgl, dst_level,
461 gpu_binds_iomem(dst_mem),
465 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
466 i915_request_put(rq);
468 intel_engine_pm_put(i915->gt.migrate.context->engine);
470 src_st = src_man->use_tt ? i915_ttm_tt_get_st(ttm) :
471 obj->ttm.cached_io_st;
473 src_level = i915_ttm_cache_level(i915, bo->resource, ttm);
474 intel_engine_pm_get(i915->gt.migrate.context->engine);
475 ret = intel_context_migrate_copy(i915->gt.migrate.context,
476 NULL, src_st->sgl, src_level,
477 gpu_binds_iomem(bo->resource),
478 dst_st->sgl, dst_level,
479 gpu_binds_iomem(dst_mem),
482 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
483 i915_request_put(rq);
485 intel_engine_pm_put(i915->gt.migrate.context->engine);
491 static int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
492 struct ttm_operation_ctx *ctx,
493 struct ttm_resource *dst_mem,
494 struct ttm_place *hop)
496 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
497 struct ttm_resource_manager *dst_man =
498 ttm_manager_type(bo->bdev, dst_mem->mem_type);
499 struct intel_memory_region *dst_reg, *src_reg;
501 struct ttm_kmap_iter_tt tt;
502 struct ttm_kmap_iter_iomap io;
503 } _dst_iter, _src_iter;
504 struct ttm_kmap_iter *dst_iter, *src_iter;
505 struct sg_table *dst_st;
508 dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
509 src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
510 GEM_BUG_ON(!dst_reg || !src_reg);
512 /* Sync for now. We could do the actual copy async. */
513 ret = ttm_bo_wait_ctx(bo, ctx);
517 ret = i915_ttm_move_notify(bo);
521 if (obj->mm.madv != I915_MADV_WILLNEED) {
523 ttm_resource_free(bo, &dst_mem);
527 /* Populate ttm with pages if needed. Typically system memory. */
528 if (bo->ttm && (dst_man->use_tt ||
529 (bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED))) {
530 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
535 dst_st = i915_ttm_resource_get_st(obj, dst_mem);
537 return PTR_ERR(dst_st);
539 ret = i915_ttm_accel_move(bo, dst_mem, dst_st);
541 /* If we start mapping GGTT, we can no longer use man::use_tt here. */
542 dst_iter = !cpu_maps_iomem(dst_mem) ?
543 ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm) :
544 ttm_kmap_iter_iomap_init(&_dst_iter.io, &dst_reg->iomap,
545 dst_st, dst_reg->region.start);
547 src_iter = !cpu_maps_iomem(bo->resource) ?
548 ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm) :
549 ttm_kmap_iter_iomap_init(&_src_iter.io, &src_reg->iomap,
550 obj->ttm.cached_io_st,
551 src_reg->region.start);
553 ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
555 /* Below dst_mem becomes bo->resource. */
556 ttm_bo_move_sync_cleanup(bo, dst_mem);
557 i915_ttm_adjust_domains_after_move(obj);
558 i915_ttm_free_cached_io_st(obj);
560 if (gpu_binds_iomem(dst_mem) || cpu_maps_iomem(dst_mem)) {
561 obj->ttm.cached_io_st = dst_st;
562 obj->ttm.get_io_page.sg_pos = dst_st->sgl;
563 obj->ttm.get_io_page.sg_idx = 0;
566 i915_ttm_adjust_gem_after_move(obj);
570 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
572 if (!cpu_maps_iomem(mem))
575 mem->bus.caching = ttm_write_combined;
576 mem->bus.is_iomem = true;
581 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
582 unsigned long page_offset)
584 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
585 unsigned long base = obj->mm.region->iomap.base - obj->mm.region->region.start;
586 struct scatterlist *sg;
589 GEM_WARN_ON(bo->ttm);
591 sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
593 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
596 static struct ttm_device_funcs i915_ttm_bo_driver = {
597 .ttm_tt_create = i915_ttm_tt_create,
598 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
599 .ttm_tt_destroy = i915_ttm_tt_destroy,
600 .eviction_valuable = i915_ttm_eviction_valuable,
601 .evict_flags = i915_ttm_evict_flags,
602 .move = i915_ttm_move,
603 .swap_notify = i915_ttm_swap_notify,
604 .delete_mem_notify = i915_ttm_delete_mem_notify,
605 .io_mem_reserve = i915_ttm_io_mem_reserve,
606 .io_mem_pfn = i915_ttm_io_mem_pfn,
610 * i915_ttm_driver - Return a pointer to the TTM device funcs
612 * Return: Pointer to statically allocated TTM device funcs.
614 struct ttm_device_funcs *i915_ttm_driver(void)
616 return &i915_ttm_bo_driver;
619 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
620 struct ttm_placement *placement)
622 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
623 struct ttm_operation_ctx ctx = {
624 .interruptible = true,
625 .no_wait_gpu = false,
631 /* First try only the requested placement. No eviction. */
632 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
633 ret = ttm_bo_validate(bo, placement, &ctx);
635 ret = i915_ttm_err_to_gem(ret);
637 * Anything that wants to restart the operation gets to
640 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
645 * If the initial attempt fails, allow all accepted placements,
646 * evicting if necessary.
648 placement->num_busy_placement = real_num_busy;
649 ret = ttm_bo_validate(bo, placement, &ctx);
651 return i915_ttm_err_to_gem(ret);
654 i915_ttm_adjust_lru(obj);
655 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
656 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
660 i915_ttm_adjust_domains_after_move(obj);
661 i915_ttm_adjust_gem_after_move(obj);
664 if (!i915_gem_object_has_pages(obj)) {
665 /* Object either has a page vector or is an iomem object */
666 st = bo->ttm ? i915_ttm_tt_get_st(bo->ttm) : obj->ttm.cached_io_st;
670 __i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
676 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
678 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
679 struct ttm_placement placement;
681 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
683 /* Move to the requested placement. */
684 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
686 return __i915_ttm_get_pages(obj, &placement);
690 * DOC: Migration vs eviction
692 * GEM migration may not be the same as TTM migration / eviction. If
693 * the TTM core decides to evict an object it may be evicted to a
694 * TTM memory type that is not in the object's allowable GEM regions, or
695 * in fact theoretically to a TTM memory type that doesn't correspond to
696 * a GEM memory region. In that case the object's GEM region is not
697 * updated, and the data is migrated back to the GEM region at
698 * get_pages time. TTM may however set up CPU ptes to the object even
699 * when it is evicted.
700 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
701 * to regions that are not in the object's list of allowable placements.
703 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
704 struct intel_memory_region *mr)
706 struct ttm_place requested;
707 struct ttm_placement placement;
710 i915_ttm_place_from_region(mr, &requested, obj->flags);
711 placement.num_placement = 1;
712 placement.num_busy_placement = 1;
713 placement.placement = &requested;
714 placement.busy_placement = &requested;
716 ret = __i915_ttm_get_pages(obj, &placement);
721 * Reinitialize the region bindings. This is primarily
722 * required for objects where the new region is not in
723 * its allowable placements.
725 if (obj->mm.region != mr) {
726 i915_gem_object_release_memory_region(obj);
727 i915_gem_object_init_memory_region(obj, mr);
733 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
737 * We're currently not called from a shrinker, so put_pages()
738 * typically means the object is about to destroyed, or called
739 * from move_notify(). So just avoid doing much for now.
740 * If the object is not destroyed next, The TTM eviction logic
741 * and shrinkers will move it out if needed.
744 i915_ttm_adjust_lru(obj);
747 static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
749 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
752 * Don't manipulate the TTM LRUs while in TTM bo destruction.
753 * We're called through i915_ttm_delete_mem_notify().
755 if (!kref_read(&bo->kref))
759 * Put on the correct LRU list depending on the MADV status
761 spin_lock(&bo->bdev->lru_lock);
762 if (obj->mm.madv != I915_MADV_WILLNEED) {
763 bo->priority = I915_TTM_PRIO_PURGE;
764 } else if (!i915_gem_object_has_pages(obj)) {
765 if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
766 bo->priority = I915_TTM_PRIO_HAS_PAGES;
768 if (bo->priority > I915_TTM_PRIO_NO_PAGES)
769 bo->priority = I915_TTM_PRIO_NO_PAGES;
772 ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
773 spin_unlock(&bo->bdev->lru_lock);
777 * TTM-backed gem object destruction requires some clarification.
778 * Basically we have two possibilities here. We can either rely on the
779 * i915 delayed destruction and put the TTM object when the object
780 * is idle. This would be detected by TTM which would bypass the
781 * TTM delayed destroy handling. The other approach is to put the TTM
782 * object early and rely on the TTM destroyed handling, and then free
783 * the leftover parts of the GEM object once TTM's destroyed list handling is
784 * complete. For now, we rely on the latter for two reasons:
785 * a) TTM can evict an object even when it's on the delayed destroy list,
786 * which in theory allows for complete eviction.
787 * b) There is work going on in TTM to allow freeing an object even when
788 * it's not idle, and using the TTM destroyed list handling could help us
791 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
793 if (obj->ttm.created) {
794 ttm_bo_put(i915_gem_to_ttm(obj));
796 __i915_gem_free_object(obj);
797 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
801 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
803 struct vm_area_struct *area = vmf->vma;
804 struct drm_i915_gem_object *obj =
805 i915_ttm_to_gem(area->vm_private_data);
807 /* Sanity check that we allow writing into this object */
808 if (unlikely(i915_gem_object_is_readonly(obj) &&
809 area->vm_flags & VM_WRITE))
810 return VM_FAULT_SIGBUS;
812 return ttm_bo_vm_fault(vmf);
816 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
817 void *buf, int len, int write)
819 struct drm_i915_gem_object *obj =
820 i915_ttm_to_gem(area->vm_private_data);
822 if (i915_gem_object_is_readonly(obj) && write)
825 return ttm_bo_vm_access(area, addr, buf, len, write);
828 static void ttm_vm_open(struct vm_area_struct *vma)
830 struct drm_i915_gem_object *obj =
831 i915_ttm_to_gem(vma->vm_private_data);
834 i915_gem_object_get(obj);
837 static void ttm_vm_close(struct vm_area_struct *vma)
839 struct drm_i915_gem_object *obj =
840 i915_ttm_to_gem(vma->vm_private_data);
843 i915_gem_object_put(obj);
846 static const struct vm_operations_struct vm_ops_ttm = {
847 .fault = vm_fault_ttm,
848 .access = vm_access_ttm,
850 .close = ttm_vm_close,
853 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
855 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
856 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
858 return drm_vma_node_offset_addr(&obj->base.vma_node);
861 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
862 .name = "i915_gem_object_ttm",
864 .get_pages = i915_ttm_get_pages,
865 .put_pages = i915_ttm_put_pages,
866 .truncate = i915_ttm_purge,
867 .adjust_lru = i915_ttm_adjust_lru,
868 .delayed_free = i915_ttm_delayed_free,
869 .migrate = i915_ttm_migrate,
870 .mmap_offset = i915_ttm_mmap_offset,
871 .mmap_ops = &vm_ops_ttm,
874 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
876 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
878 i915_gem_object_release_memory_region(obj);
879 mutex_destroy(&obj->ttm.get_io_page.lock);
880 if (obj->ttm.created)
881 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
885 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
886 * @mem: The initial memory region for the object.
887 * @obj: The gem object.
888 * @size: Object size in bytes.
889 * @flags: gem object flags.
891 * Return: 0 on success, negative error code on failure.
893 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
894 struct drm_i915_gem_object *obj,
895 resource_size_t size,
896 resource_size_t page_size,
899 static struct lock_class_key lock_class;
900 struct drm_i915_private *i915 = mem->i915;
901 struct ttm_operation_ctx ctx = {
902 .interruptible = true,
903 .no_wait_gpu = false,
905 enum ttm_bo_type bo_type;
908 drm_gem_private_object_init(&i915->drm, &obj->base, size);
909 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
910 i915_gem_object_init_memory_region(obj, mem);
911 i915_gem_object_make_unshrinkable(obj);
912 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
913 mutex_init(&obj->ttm.get_io_page.lock);
914 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
917 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
919 /* Forcing the page size is kernel internal only */
920 GEM_BUG_ON(page_size && obj->mm.n_placements);
923 * If this function fails, it will call the destructor, but
924 * our caller still owns the object. So no freeing in the
925 * destructor until obj->ttm.created is true.
926 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
927 * until successful initialization.
929 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
930 bo_type, &i915_sys_placement,
931 page_size >> PAGE_SHIFT,
932 &ctx, NULL, NULL, i915_ttm_bo_destroy);
934 return i915_ttm_err_to_gem(ret);
936 obj->ttm.created = true;
937 i915_ttm_adjust_domains_after_move(obj);
938 i915_ttm_adjust_gem_after_move(obj);
939 i915_gem_object_unlock(obj);
944 static const struct intel_memory_region_ops ttm_system_region_ops = {
945 .init_object = __i915_gem_ttm_object_init,
948 struct intel_memory_region *
949 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
950 u16 type, u16 instance)
952 struct intel_memory_region *mr;
954 mr = intel_memory_region_create(i915, 0,
955 totalram_pages() << PAGE_SHIFT,
958 &ttm_system_region_ops);
962 intel_memory_region_set_name(mr, "system-ttm");