cfd7929587d8fa7709806c13c2291bc3071e0e87
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_reg.h"
34 #include "i915_trace.h"
35 #include "i915_user_extensions.h"
36
37 struct eb_vma {
38         struct i915_vma *vma;
39         unsigned int flags;
40
41         /** This vma's place in the execbuf reservation list */
42         struct drm_i915_gem_exec_object2 *exec;
43         struct list_head bind_link;
44         struct list_head reloc_link;
45
46         struct hlist_node node;
47         u32 handle;
48 };
49
50 enum {
51         FORCE_CPU_RELOC = 1,
52         FORCE_GTT_RELOC,
53         FORCE_GPU_RELOC,
54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 };
56
57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
58 #define __EXEC_OBJECT_HAS_PIN           BIT(29)
59 #define __EXEC_OBJECT_HAS_FENCE         BIT(28)
60 #define __EXEC_OBJECT_USERPTR_INIT      BIT(27)
61 #define __EXEC_OBJECT_NEEDS_MAP         BIT(26)
62 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(25)
63 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 25) /* all of the above + */
64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65
66 #define __EXEC_HAS_RELOC        BIT(31)
67 #define __EXEC_ENGINE_PINNED    BIT(30)
68 #define __EXEC_USERPTR_USED     BIT(29)
69 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
70 #define UPDATE                  PIN_OFFSET_FIXED
71
72 #define BATCH_OFFSET_BIAS (256*1024)
73
74 #define __I915_EXEC_ILLEGAL_FLAGS \
75         (__I915_EXEC_UNKNOWN_FLAGS | \
76          I915_EXEC_CONSTANTS_MASK  | \
77          I915_EXEC_RESOURCE_STREAMER)
78
79 /* Catch emission of unexpected errors for CI! */
80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81 #undef EINVAL
82 #define EINVAL ({ \
83         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84         22; \
85 })
86 #endif
87
88 /**
89  * DOC: User command execution
90  *
91  * Userspace submits commands to be executed on the GPU as an instruction
92  * stream within a GEM object we call a batchbuffer. This instructions may
93  * refer to other GEM objects containing auxiliary state such as kernels,
94  * samplers, render targets and even secondary batchbuffers. Userspace does
95  * not know where in the GPU memory these objects reside and so before the
96  * batchbuffer is passed to the GPU for execution, those addresses in the
97  * batchbuffer and auxiliary objects are updated. This is known as relocation,
98  * or patching. To try and avoid having to relocate each object on the next
99  * execution, userspace is told the location of those objects in this pass,
100  * but this remains just a hint as the kernel may choose a new location for
101  * any object in the future.
102  *
103  * At the level of talking to the hardware, submitting a batchbuffer for the
104  * GPU to execute is to add content to a buffer from which the HW
105  * command streamer is reading.
106  *
107  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108  *    Execlists, this command is not placed on the same buffer as the
109  *    remaining items.
110  *
111  * 2. Add a command to invalidate caches to the buffer.
112  *
113  * 3. Add a batchbuffer start command to the buffer; the start command is
114  *    essentially a token together with the GPU address of the batchbuffer
115  *    to be executed.
116  *
117  * 4. Add a pipeline flush to the buffer.
118  *
119  * 5. Add a memory write command to the buffer to record when the GPU
120  *    is done executing the batchbuffer. The memory write writes the
121  *    global sequence number of the request, ``i915_request::global_seqno``;
122  *    the i915 driver uses the current value in the register to determine
123  *    if the GPU has completed the batchbuffer.
124  *
125  * 6. Add a user interrupt command to the buffer. This command instructs
126  *    the GPU to issue an interrupt when the command, pipeline flush and
127  *    memory write are completed.
128  *
129  * 7. Inform the hardware of the additional commands added to the buffer
130  *    (by updating the tail pointer).
131  *
132  * Processing an execbuf ioctl is conceptually split up into a few phases.
133  *
134  * 1. Validation - Ensure all the pointers, handles and flags are valid.
135  * 2. Reservation - Assign GPU address space for every object
136  * 3. Relocation - Update any addresses to point to the final locations
137  * 4. Serialisation - Order the request with respect to its dependencies
138  * 5. Construction - Construct a request to execute the batchbuffer
139  * 6. Submission (at some point in the future execution)
140  *
141  * Reserving resources for the execbuf is the most complicated phase. We
142  * neither want to have to migrate the object in the address space, nor do
143  * we want to have to update any relocations pointing to this object. Ideally,
144  * we want to leave the object where it is and for all the existing relocations
145  * to match. If the object is given a new address, or if userspace thinks the
146  * object is elsewhere, we have to parse all the relocation entries and update
147  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148  * all the target addresses in all of its objects match the value in the
149  * relocation entries and that they all match the presumed offsets given by the
150  * list of execbuffer objects. Using this knowledge, we know that if we haven't
151  * moved any buffers, all the relocation entries are valid and we can skip
152  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154  *
155  *      The addresses written in the objects must match the corresponding
156  *      reloc.presumed_offset which in turn must match the corresponding
157  *      execobject.offset.
158  *
159  *      Any render targets written to in the batch must be flagged with
160  *      EXEC_OBJECT_WRITE.
161  *
162  *      To avoid stalling, execobject.offset should match the current
163  *      address of that object within the active context.
164  *
165  * The reservation is done is multiple phases. First we try and keep any
166  * object already bound in its current location - so as long as meets the
167  * constraints imposed by the new execbuffer. Any object left unbound after the
168  * first pass is then fitted into any available idle space. If an object does
169  * not fit, all objects are removed from the reservation and the process rerun
170  * after sorting the objects into a priority order (more difficult to fit
171  * objects are tried first). Failing that, the entire VM is cleared and we try
172  * to fit the execbuf once last time before concluding that it simply will not
173  * fit.
174  *
175  * A small complication to all of this is that we allow userspace not only to
176  * specify an alignment and a size for the object in the address space, but
177  * we also allow userspace to specify the exact offset. This objects are
178  * simpler to place (the location is known a priori) all we have to do is make
179  * sure the space is available.
180  *
181  * Once all the objects are in place, patching up the buried pointers to point
182  * to the final locations is a fairly simple job of walking over the relocation
183  * entry arrays, looking up the right address and rewriting the value into
184  * the object. Simple! ... The relocation entries are stored in user memory
185  * and so to access them we have to copy them into a local buffer. That copy
186  * has to avoid taking any pagefaults as they may lead back to a GEM object
187  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188  * the relocation into multiple passes. First we try to do everything within an
189  * atomic context (avoid the pagefaults) which requires that we never wait. If
190  * we detect that we may wait, or if we need to fault, then we have to fallback
191  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192  * bells yet?) Dropping the mutex means that we lose all the state we have
193  * built up so far for the execbuf and we must reset any global data. However,
194  * we do leave the objects pinned in their final locations - which is a
195  * potential issue for concurrent execbufs. Once we have left the mutex, we can
196  * allocate and copy all the relocation entries into a large array at our
197  * leisure, reacquire the mutex, reclaim all the objects and other state and
198  * then proceed to update any incorrect addresses with the objects.
199  *
200  * As we process the relocation entries, we maintain a record of whether the
201  * object is being written to. Using NORELOC, we expect userspace to provide
202  * this information instead. We also check whether we can skip the relocation
203  * by comparing the expected value inside the relocation entry with the target's
204  * final address. If they differ, we have to map the current object and rewrite
205  * the 4 or 8 byte pointer within.
206  *
207  * Serialising an execbuf is quite simple according to the rules of the GEM
208  * ABI. Execution within each context is ordered by the order of submission.
209  * Writes to any GEM object are in order of submission and are exclusive. Reads
210  * from a GEM object are unordered with respect to other reads, but ordered by
211  * writes. A write submitted after a read cannot occur before the read, and
212  * similarly any read submitted after a write cannot occur before the write.
213  * Writes are ordered between engines such that only one write occurs at any
214  * time (completing any reads beforehand) - using semaphores where available
215  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217  * reads before starting, and any read (either using set-domain or pread) must
218  * flush all GPU writes before starting. (Note we only employ a barrier before,
219  * we currently rely on userspace not concurrently starting a new execution
220  * whilst reading or writing to an object. This may be an advantage or not
221  * depending on how much you trust userspace not to shoot themselves in the
222  * foot.) Serialisation may just result in the request being inserted into
223  * a DAG awaiting its turn, but most simple is to wait on the CPU until
224  * all dependencies are resolved.
225  *
226  * After all of that, is just a matter of closing the request and handing it to
227  * the hardware (well, leaving it in a queue to be executed). However, we also
228  * offer the ability for batchbuffers to be run with elevated privileges so
229  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230  * Before any batch is given extra privileges we first must check that it
231  * contains no nefarious instructions, we check that each instruction is from
232  * our whitelist and all registers are also from an allowed list. We first
233  * copy the user's batchbuffer to a shadow (so that the user doesn't have
234  * access to it, either by the CPU or GPU as we scan it) and then parse each
235  * instruction. If everything is ok, we set a flag telling the hardware to run
236  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237  */
238
239 struct eb_fence {
240         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241         struct dma_fence *dma_fence;
242         u64 value;
243         struct dma_fence_chain *chain_fence;
244 };
245
246 struct i915_execbuffer {
247         struct drm_i915_private *i915; /** i915 backpointer */
248         struct drm_file *file; /** per-file lookup tables and limits */
249         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
251         struct eb_vma *vma;
252
253         struct intel_gt *gt; /* gt for the execbuf */
254         struct intel_context *context; /* logical state for the request */
255         struct i915_gem_context *gem_context; /** caller's context */
256
257         /** our requests to build */
258         struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259         /** identity of the batch obj/vma */
260         struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
261         struct i915_vma *trampoline; /** trampoline used for chaining */
262
263         /** used for excl fence in dma_resv objects when > 1 BB submitted */
264         struct dma_fence *composite_fence;
265
266         /** actual size of execobj[] as we may extend it for the cmdparser */
267         unsigned int buffer_count;
268
269         /* number of batches in execbuf IOCTL */
270         unsigned int num_batches;
271
272         /** list of vma not yet bound during reservation phase */
273         struct list_head unbound;
274
275         /** list of vma that have execobj.relocation_count */
276         struct list_head relocs;
277
278         struct i915_gem_ww_ctx ww;
279
280         /**
281          * Track the most recently used object for relocations, as we
282          * frequently have to perform multiple relocations within the same
283          * obj/page
284          */
285         struct reloc_cache {
286                 struct drm_mm_node node; /** temporary GTT binding */
287                 unsigned long vaddr; /** Current kmap address */
288                 unsigned long page; /** Currently mapped page index */
289                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
290                 bool use_64bit_reloc : 1;
291                 bool has_llc : 1;
292                 bool has_fence : 1;
293                 bool needs_unfenced : 1;
294         } reloc_cache;
295
296         u64 invalid_flags; /** Set of execobj.flags that are invalid */
297
298         /** Length of batch within object */
299         u64 batch_len[MAX_ENGINE_INSTANCE + 1];
300         u32 batch_start_offset; /** Location within object of batch */
301         u32 batch_flags; /** Flags composed for emit_bb_start() */
302         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
303
304         /**
305          * Indicate either the size of the hastable used to resolve
306          * relocation handles, or if negative that we are using a direct
307          * index into the execobj[].
308          */
309         int lut_size;
310         struct hlist_head *buckets; /** ht for relocation handles */
311
312         struct eb_fence *fences;
313         unsigned long num_fences;
314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315         struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316 #endif
317 };
318
319 static int eb_parse(struct i915_execbuffer *eb);
320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
321 static void eb_unpin_engine(struct i915_execbuffer *eb);
322 static void eb_capture_release(struct i915_execbuffer *eb);
323
324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 {
326         return intel_engine_requires_cmd_parser(eb->context->engine) ||
327                 (intel_engine_using_cmd_parser(eb->context->engine) &&
328                  eb->args->batch_len);
329 }
330
331 static int eb_create(struct i915_execbuffer *eb)
332 {
333         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334                 unsigned int size = 1 + ilog2(eb->buffer_count);
335
336                 /*
337                  * Without a 1:1 association between relocation handles and
338                  * the execobject[] index, we instead create a hashtable.
339                  * We size it dynamically based on available memory, starting
340                  * first with 1:1 assocative hash and scaling back until
341                  * the allocation succeeds.
342                  *
343                  * Later on we use a positive lut_size to indicate we are
344                  * using this hashtable, and a negative value to indicate a
345                  * direct lookup.
346                  */
347                 do {
348                         gfp_t flags;
349
350                         /* While we can still reduce the allocation size, don't
351                          * raise a warning and allow the allocation to fail.
352                          * On the last pass though, we want to try as hard
353                          * as possible to perform the allocation and warn
354                          * if it fails.
355                          */
356                         flags = GFP_KERNEL;
357                         if (size > 1)
358                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
359
360                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
361                                               flags);
362                         if (eb->buckets)
363                                 break;
364                 } while (--size);
365
366                 if (unlikely(!size))
367                         return -ENOMEM;
368
369                 eb->lut_size = size;
370         } else {
371                 eb->lut_size = -eb->buffer_count;
372         }
373
374         return 0;
375 }
376
377 static bool
378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
379                  const struct i915_vma *vma,
380                  unsigned int flags)
381 {
382         const u64 start = i915_vma_offset(vma);
383         const u64 size = i915_vma_size(vma);
384
385         if (size < entry->pad_to_size)
386                 return true;
387
388         if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
389                 return true;
390
391         if (flags & EXEC_OBJECT_PINNED &&
392             start != entry->offset)
393                 return true;
394
395         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
396             start < BATCH_OFFSET_BIAS)
397                 return true;
398
399         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
400             (start + size + 4095) >> 32)
401                 return true;
402
403         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
404             !i915_vma_is_map_and_fenceable(vma))
405                 return true;
406
407         return false;
408 }
409
410 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
411                         unsigned int exec_flags)
412 {
413         u64 pin_flags = 0;
414
415         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
416                 pin_flags |= PIN_GLOBAL;
417
418         /*
419          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
420          * limit address to the first 4GBs for unflagged objects.
421          */
422         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
423                 pin_flags |= PIN_ZONE_4G;
424
425         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
426                 pin_flags |= PIN_MAPPABLE;
427
428         if (exec_flags & EXEC_OBJECT_PINNED)
429                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
430         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
431                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
432
433         return pin_flags;
434 }
435
436 static inline int
437 eb_pin_vma(struct i915_execbuffer *eb,
438            const struct drm_i915_gem_exec_object2 *entry,
439            struct eb_vma *ev)
440 {
441         struct i915_vma *vma = ev->vma;
442         u64 pin_flags;
443         int err;
444
445         if (vma->node.size)
446                 pin_flags =  __i915_vma_offset(vma);
447         else
448                 pin_flags = entry->offset & PIN_OFFSET_MASK;
449
450         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
451         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
452                 pin_flags |= PIN_GLOBAL;
453
454         /* Attempt to reuse the current location if available */
455         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
456         if (err == -EDEADLK)
457                 return err;
458
459         if (unlikely(err)) {
460                 if (entry->flags & EXEC_OBJECT_PINNED)
461                         return err;
462
463                 /* Failing that pick any _free_ space if suitable */
464                 err = i915_vma_pin_ww(vma, &eb->ww,
465                                              entry->pad_to_size,
466                                              entry->alignment,
467                                              eb_pin_flags(entry, ev->flags) |
468                                              PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
469                 if (unlikely(err))
470                         return err;
471         }
472
473         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
474                 err = i915_vma_pin_fence(vma);
475                 if (unlikely(err))
476                         return err;
477
478                 if (vma->fence)
479                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
480         }
481
482         ev->flags |= __EXEC_OBJECT_HAS_PIN;
483         if (eb_vma_misplaced(entry, vma, ev->flags))
484                 return -EBADSLT;
485
486         return 0;
487 }
488
489 static inline void
490 eb_unreserve_vma(struct eb_vma *ev)
491 {
492         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
493                 __i915_vma_unpin_fence(ev->vma);
494
495         ev->flags &= ~__EXEC_OBJECT_RESERVED;
496 }
497
498 static int
499 eb_validate_vma(struct i915_execbuffer *eb,
500                 struct drm_i915_gem_exec_object2 *entry,
501                 struct i915_vma *vma)
502 {
503         /* Relocations are disallowed for all platforms after TGL-LP.  This
504          * also covers all platforms with local memory.
505          */
506         if (entry->relocation_count &&
507             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
508                 return -EINVAL;
509
510         if (unlikely(entry->flags & eb->invalid_flags))
511                 return -EINVAL;
512
513         if (unlikely(entry->alignment &&
514                      !is_power_of_2_u64(entry->alignment)))
515                 return -EINVAL;
516
517         /*
518          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519          * any non-page-aligned or non-canonical addresses.
520          */
521         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523                 return -EINVAL;
524
525         /* pad_to_size was once a reserved field, so sanitize it */
526         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527                 if (unlikely(offset_in_page(entry->pad_to_size)))
528                         return -EINVAL;
529         } else {
530                 entry->pad_to_size = 0;
531         }
532         /*
533          * From drm_mm perspective address space is continuous,
534          * so from this point we're always using non-canonical
535          * form internally.
536          */
537         entry->offset = gen8_noncanonical_addr(entry->offset);
538
539         if (!eb->reloc_cache.has_fence) {
540                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541         } else {
542                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543                      eb->reloc_cache.needs_unfenced) &&
544                     i915_gem_object_is_tiled(vma->obj))
545                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546         }
547
548         return 0;
549 }
550
551 static inline bool
552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
553 {
554         return eb->args->flags & I915_EXEC_BATCH_FIRST ?
555                 buffer_idx < eb->num_batches :
556                 buffer_idx >= eb->args->buffer_count - eb->num_batches;
557 }
558
559 static int
560 eb_add_vma(struct i915_execbuffer *eb,
561            unsigned int *current_batch,
562            unsigned int i,
563            struct i915_vma *vma)
564 {
565         struct drm_i915_private *i915 = eb->i915;
566         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
567         struct eb_vma *ev = &eb->vma[i];
568
569         ev->vma = vma;
570         ev->exec = entry;
571         ev->flags = entry->flags;
572
573         if (eb->lut_size > 0) {
574                 ev->handle = entry->handle;
575                 hlist_add_head(&ev->node,
576                                &eb->buckets[hash_32(entry->handle,
577                                                     eb->lut_size)]);
578         }
579
580         if (entry->relocation_count)
581                 list_add_tail(&ev->reloc_link, &eb->relocs);
582
583         /*
584          * SNA is doing fancy tricks with compressing batch buffers, which leads
585          * to negative relocation deltas. Usually that works out ok since the
586          * relocate address is still positive, except when the batch is placed
587          * very low in the GTT. Ensure this doesn't happen.
588          *
589          * Note that actual hangs have only been observed on gen7, but for
590          * paranoia do it everywhere.
591          */
592         if (is_batch_buffer(eb, i)) {
593                 if (entry->relocation_count &&
594                     !(ev->flags & EXEC_OBJECT_PINNED))
595                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
596                 if (eb->reloc_cache.has_fence)
597                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
598
599                 eb->batches[*current_batch] = ev;
600
601                 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
602                         drm_dbg(&i915->drm,
603                                 "Attempting to use self-modifying batch buffer\n");
604                         return -EINVAL;
605                 }
606
607                 if (range_overflows_t(u64,
608                                       eb->batch_start_offset,
609                                       eb->args->batch_len,
610                                       ev->vma->size)) {
611                         drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
612                         return -EINVAL;
613                 }
614
615                 if (eb->args->batch_len == 0)
616                         eb->batch_len[*current_batch] = ev->vma->size -
617                                 eb->batch_start_offset;
618                 else
619                         eb->batch_len[*current_batch] = eb->args->batch_len;
620                 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
621                         drm_dbg(&i915->drm, "Invalid batch length\n");
622                         return -EINVAL;
623                 }
624
625                 ++*current_batch;
626         }
627
628         return 0;
629 }
630
631 static inline int use_cpu_reloc(const struct reloc_cache *cache,
632                                 const struct drm_i915_gem_object *obj)
633 {
634         if (!i915_gem_object_has_struct_page(obj))
635                 return false;
636
637         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
638                 return true;
639
640         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
641                 return false;
642
643         /*
644          * For objects created by userspace through GEM_CREATE with pat_index
645          * set by set_pat extension, i915_gem_object_has_cache_level() always
646          * return true, otherwise the call would fall back to checking whether
647          * the object is un-cached.
648          */
649         return (cache->has_llc ||
650                 obj->cache_dirty ||
651                 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
652 }
653
654 static int eb_reserve_vma(struct i915_execbuffer *eb,
655                           struct eb_vma *ev,
656                           u64 pin_flags)
657 {
658         struct drm_i915_gem_exec_object2 *entry = ev->exec;
659         struct i915_vma *vma = ev->vma;
660         int err;
661
662         if (drm_mm_node_allocated(&vma->node) &&
663             eb_vma_misplaced(entry, vma, ev->flags)) {
664                 err = i915_vma_unbind(vma);
665                 if (err)
666                         return err;
667         }
668
669         err = i915_vma_pin_ww(vma, &eb->ww,
670                            entry->pad_to_size, entry->alignment,
671                            eb_pin_flags(entry, ev->flags) | pin_flags);
672         if (err)
673                 return err;
674
675         if (entry->offset != i915_vma_offset(vma)) {
676                 entry->offset = i915_vma_offset(vma) | UPDATE;
677                 eb->args->flags |= __EXEC_HAS_RELOC;
678         }
679
680         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
681                 err = i915_vma_pin_fence(vma);
682                 if (unlikely(err))
683                         return err;
684
685                 if (vma->fence)
686                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
687         }
688
689         ev->flags |= __EXEC_OBJECT_HAS_PIN;
690         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
691
692         return 0;
693 }
694
695 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
696 {
697         const unsigned int count = eb->buffer_count;
698         unsigned int i;
699         struct list_head last;
700         bool unpinned = false;
701
702         /* Resort *all* the objects into priority order */
703         INIT_LIST_HEAD(&eb->unbound);
704         INIT_LIST_HEAD(&last);
705
706         for (i = 0; i < count; i++) {
707                 struct eb_vma *ev = &eb->vma[i];
708                 unsigned int flags = ev->flags;
709
710                 if (!force && flags & EXEC_OBJECT_PINNED &&
711                     flags & __EXEC_OBJECT_HAS_PIN)
712                         continue;
713
714                 unpinned = true;
715                 eb_unreserve_vma(ev);
716
717                 if (flags & EXEC_OBJECT_PINNED)
718                         /* Pinned must have their slot */
719                         list_add(&ev->bind_link, &eb->unbound);
720                 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
721                         /* Map require the lowest 256MiB (aperture) */
722                         list_add_tail(&ev->bind_link, &eb->unbound);
723                 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
724                         /* Prioritise 4GiB region for restricted bo */
725                         list_add(&ev->bind_link, &last);
726                 else
727                         list_add_tail(&ev->bind_link, &last);
728         }
729
730         list_splice_tail(&last, &eb->unbound);
731         return unpinned;
732 }
733
734 static int eb_reserve(struct i915_execbuffer *eb)
735 {
736         struct eb_vma *ev;
737         unsigned int pass;
738         int err = 0;
739
740         /*
741          * We have one more buffers that we couldn't bind, which could be due to
742          * various reasons. To resolve this we have 4 passes, with every next
743          * level turning the screws tighter:
744          *
745          * 0. Unbind all objects that do not match the GTT constraints for the
746          * execbuffer (fenceable, mappable, alignment etc). Bind all new
747          * objects.  This avoids unnecessary unbinding of later objects in order
748          * to make room for the earlier objects *unless* we need to defragment.
749          *
750          * 1. Reorder the buffers, where objects with the most restrictive
751          * placement requirements go first (ignoring fixed location buffers for
752          * now).  For example, objects needing the mappable aperture (the first
753          * 256M of GTT), should go first vs objects that can be placed just
754          * about anywhere. Repeat the previous pass.
755          *
756          * 2. Consider buffers that are pinned at a fixed location. Also try to
757          * evict the entire VM this time, leaving only objects that we were
758          * unable to lock. Try again to bind the buffers. (still using the new
759          * buffer order).
760          *
761          * 3. We likely have object lock contention for one or more stubborn
762          * objects in the VM, for which we need to evict to make forward
763          * progress (perhaps we are fighting the shrinker?). When evicting the
764          * VM this time around, anything that we can't lock we now track using
765          * the busy_bo, using the full lock (after dropping the vm->mutex to
766          * prevent deadlocks), instead of trylock. We then continue to evict the
767          * VM, this time with the stubborn object locked, which we can now
768          * hopefully unbind (if still bound in the VM). Repeat until the VM is
769          * evicted. Finally we should be able bind everything.
770          */
771         for (pass = 0; pass <= 3; pass++) {
772                 int pin_flags = PIN_USER | PIN_VALIDATE;
773
774                 if (pass == 0)
775                         pin_flags |= PIN_NONBLOCK;
776
777                 if (pass >= 1)
778                         eb_unbind(eb, pass >= 2);
779
780                 if (pass == 2) {
781                         err = mutex_lock_interruptible(&eb->context->vm->mutex);
782                         if (!err) {
783                                 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
784                                 mutex_unlock(&eb->context->vm->mutex);
785                         }
786                         if (err)
787                                 return err;
788                 }
789
790                 if (pass == 3) {
791 retry:
792                         err = mutex_lock_interruptible(&eb->context->vm->mutex);
793                         if (!err) {
794                                 struct drm_i915_gem_object *busy_bo = NULL;
795
796                                 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
797                                 mutex_unlock(&eb->context->vm->mutex);
798                                 if (err && busy_bo) {
799                                         err = i915_gem_object_lock(busy_bo, &eb->ww);
800                                         i915_gem_object_put(busy_bo);
801                                         if (!err)
802                                                 goto retry;
803                                 }
804                         }
805                         if (err)
806                                 return err;
807                 }
808
809                 list_for_each_entry(ev, &eb->unbound, bind_link) {
810                         err = eb_reserve_vma(eb, ev, pin_flags);
811                         if (err)
812                                 break;
813                 }
814
815                 if (err != -ENOSPC)
816                         break;
817         }
818
819         return err;
820 }
821
822 static int eb_select_context(struct i915_execbuffer *eb)
823 {
824         struct i915_gem_context *ctx;
825
826         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
827         if (unlikely(IS_ERR(ctx)))
828                 return PTR_ERR(ctx);
829
830         eb->gem_context = ctx;
831         if (i915_gem_context_has_full_ppgtt(ctx))
832                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
833
834         return 0;
835 }
836
837 static int __eb_add_lut(struct i915_execbuffer *eb,
838                         u32 handle, struct i915_vma *vma)
839 {
840         struct i915_gem_context *ctx = eb->gem_context;
841         struct i915_lut_handle *lut;
842         int err;
843
844         lut = i915_lut_handle_alloc();
845         if (unlikely(!lut))
846                 return -ENOMEM;
847
848         i915_vma_get(vma);
849         if (!atomic_fetch_inc(&vma->open_count))
850                 i915_vma_reopen(vma);
851         lut->handle = handle;
852         lut->ctx = ctx;
853
854         /* Check that the context hasn't been closed in the meantime */
855         err = -EINTR;
856         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
857                 if (likely(!i915_gem_context_is_closed(ctx)))
858                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
859                 else
860                         err = -ENOENT;
861                 if (err == 0) { /* And nor has this handle */
862                         struct drm_i915_gem_object *obj = vma->obj;
863
864                         spin_lock(&obj->lut_lock);
865                         if (idr_find(&eb->file->object_idr, handle) == obj) {
866                                 list_add(&lut->obj_link, &obj->lut_list);
867                         } else {
868                                 radix_tree_delete(&ctx->handles_vma, handle);
869                                 err = -ENOENT;
870                         }
871                         spin_unlock(&obj->lut_lock);
872                 }
873                 mutex_unlock(&ctx->lut_mutex);
874         }
875         if (unlikely(err))
876                 goto err;
877
878         return 0;
879
880 err:
881         i915_vma_close(vma);
882         i915_vma_put(vma);
883         i915_lut_handle_free(lut);
884         return err;
885 }
886
887 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
888 {
889         struct i915_address_space *vm = eb->context->vm;
890
891         do {
892                 struct drm_i915_gem_object *obj;
893                 struct i915_vma *vma;
894                 int err;
895
896                 rcu_read_lock();
897                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
898                 if (likely(vma && vma->vm == vm))
899                         vma = i915_vma_tryget(vma);
900                 rcu_read_unlock();
901                 if (likely(vma))
902                         return vma;
903
904                 obj = i915_gem_object_lookup(eb->file, handle);
905                 if (unlikely(!obj))
906                         return ERR_PTR(-ENOENT);
907
908                 /*
909                  * If the user has opted-in for protected-object tracking, make
910                  * sure the object encryption can be used.
911                  * We only need to do this when the object is first used with
912                  * this context, because the context itself will be banned when
913                  * the protected objects become invalid.
914                  */
915                 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
916                     i915_gem_object_is_protected(obj)) {
917                         err = intel_pxp_key_check(eb->i915->pxp, obj, true);
918                         if (err) {
919                                 i915_gem_object_put(obj);
920                                 return ERR_PTR(err);
921                         }
922                 }
923
924                 vma = i915_vma_instance(obj, vm, NULL);
925                 if (IS_ERR(vma)) {
926                         i915_gem_object_put(obj);
927                         return vma;
928                 }
929
930                 err = __eb_add_lut(eb, handle, vma);
931                 if (likely(!err))
932                         return vma;
933
934                 i915_gem_object_put(obj);
935                 if (err != -EEXIST)
936                         return ERR_PTR(err);
937         } while (1);
938 }
939
940 static int eb_lookup_vmas(struct i915_execbuffer *eb)
941 {
942         unsigned int i, current_batch = 0;
943         int err = 0;
944
945         INIT_LIST_HEAD(&eb->relocs);
946
947         for (i = 0; i < eb->buffer_count; i++) {
948                 struct i915_vma *vma;
949
950                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
951                 if (IS_ERR(vma)) {
952                         err = PTR_ERR(vma);
953                         goto err;
954                 }
955
956                 err = eb_validate_vma(eb, &eb->exec[i], vma);
957                 if (unlikely(err)) {
958                         i915_vma_put(vma);
959                         goto err;
960                 }
961
962                 err = eb_add_vma(eb, &current_batch, i, vma);
963                 if (err)
964                         return err;
965
966                 if (i915_gem_object_is_userptr(vma->obj)) {
967                         err = i915_gem_object_userptr_submit_init(vma->obj);
968                         if (err) {
969                                 if (i + 1 < eb->buffer_count) {
970                                         /*
971                                          * Execbuffer code expects last vma entry to be NULL,
972                                          * since we already initialized this entry,
973                                          * set the next value to NULL or we mess up
974                                          * cleanup handling.
975                                          */
976                                         eb->vma[i + 1].vma = NULL;
977                                 }
978
979                                 return err;
980                         }
981
982                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
983                         eb->args->flags |= __EXEC_USERPTR_USED;
984                 }
985         }
986
987         return 0;
988
989 err:
990         eb->vma[i].vma = NULL;
991         return err;
992 }
993
994 static int eb_lock_vmas(struct i915_execbuffer *eb)
995 {
996         unsigned int i;
997         int err;
998
999         for (i = 0; i < eb->buffer_count; i++) {
1000                 struct eb_vma *ev = &eb->vma[i];
1001                 struct i915_vma *vma = ev->vma;
1002
1003                 err = i915_gem_object_lock(vma->obj, &eb->ww);
1004                 if (err)
1005                         return err;
1006         }
1007
1008         return 0;
1009 }
1010
1011 static int eb_validate_vmas(struct i915_execbuffer *eb)
1012 {
1013         unsigned int i;
1014         int err;
1015
1016         INIT_LIST_HEAD(&eb->unbound);
1017
1018         err = eb_lock_vmas(eb);
1019         if (err)
1020                 return err;
1021
1022         for (i = 0; i < eb->buffer_count; i++) {
1023                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1024                 struct eb_vma *ev = &eb->vma[i];
1025                 struct i915_vma *vma = ev->vma;
1026
1027                 err = eb_pin_vma(eb, entry, ev);
1028                 if (err == -EDEADLK)
1029                         return err;
1030
1031                 if (!err) {
1032                         if (entry->offset != i915_vma_offset(vma)) {
1033                                 entry->offset = i915_vma_offset(vma) | UPDATE;
1034                                 eb->args->flags |= __EXEC_HAS_RELOC;
1035                         }
1036                 } else {
1037                         eb_unreserve_vma(ev);
1038
1039                         list_add_tail(&ev->bind_link, &eb->unbound);
1040                         if (drm_mm_node_allocated(&vma->node)) {
1041                                 err = i915_vma_unbind(vma);
1042                                 if (err)
1043                                         return err;
1044                         }
1045                 }
1046
1047                 /* Reserve enough slots to accommodate composite fences */
1048                 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1049                 if (err)
1050                         return err;
1051
1052                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1053                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1054         }
1055
1056         if (!list_empty(&eb->unbound))
1057                 return eb_reserve(eb);
1058
1059         return 0;
1060 }
1061
1062 static struct eb_vma *
1063 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1064 {
1065         if (eb->lut_size < 0) {
1066                 if (handle >= -eb->lut_size)
1067                         return NULL;
1068                 return &eb->vma[handle];
1069         } else {
1070                 struct hlist_head *head;
1071                 struct eb_vma *ev;
1072
1073                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1074                 hlist_for_each_entry(ev, head, node) {
1075                         if (ev->handle == handle)
1076                                 return ev;
1077                 }
1078                 return NULL;
1079         }
1080 }
1081
1082 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1083 {
1084         const unsigned int count = eb->buffer_count;
1085         unsigned int i;
1086
1087         for (i = 0; i < count; i++) {
1088                 struct eb_vma *ev = &eb->vma[i];
1089                 struct i915_vma *vma = ev->vma;
1090
1091                 if (!vma)
1092                         break;
1093
1094                 eb_unreserve_vma(ev);
1095
1096                 if (final)
1097                         i915_vma_put(vma);
1098         }
1099
1100         eb_capture_release(eb);
1101         eb_unpin_engine(eb);
1102 }
1103
1104 static void eb_destroy(const struct i915_execbuffer *eb)
1105 {
1106         if (eb->lut_size > 0)
1107                 kfree(eb->buckets);
1108 }
1109
1110 static inline u64
1111 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1112                   const struct i915_vma *target)
1113 {
1114         return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1115 }
1116
1117 static void reloc_cache_init(struct reloc_cache *cache,
1118                              struct drm_i915_private *i915)
1119 {
1120         cache->page = -1;
1121         cache->vaddr = 0;
1122         /* Must be a variable in the struct to allow GCC to unroll. */
1123         cache->graphics_ver = GRAPHICS_VER(i915);
1124         cache->has_llc = HAS_LLC(i915);
1125         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1126         cache->has_fence = cache->graphics_ver < 4;
1127         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1128         cache->node.flags = 0;
1129 }
1130
1131 static inline void *unmask_page(unsigned long p)
1132 {
1133         return (void *)(uintptr_t)(p & PAGE_MASK);
1134 }
1135
1136 static inline unsigned int unmask_flags(unsigned long p)
1137 {
1138         return p & ~PAGE_MASK;
1139 }
1140
1141 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1142
1143 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1144 {
1145         struct drm_i915_private *i915 =
1146                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1147         return to_gt(i915)->ggtt;
1148 }
1149
1150 static void reloc_cache_unmap(struct reloc_cache *cache)
1151 {
1152         void *vaddr;
1153
1154         if (!cache->vaddr)
1155                 return;
1156
1157         vaddr = unmask_page(cache->vaddr);
1158         if (cache->vaddr & KMAP)
1159                 kunmap_atomic(vaddr);
1160         else
1161                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1162 }
1163
1164 static void reloc_cache_remap(struct reloc_cache *cache,
1165                               struct drm_i915_gem_object *obj)
1166 {
1167         void *vaddr;
1168
1169         if (!cache->vaddr)
1170                 return;
1171
1172         if (cache->vaddr & KMAP) {
1173                 struct page *page = i915_gem_object_get_page(obj, cache->page);
1174
1175                 vaddr = kmap_atomic(page);
1176                 cache->vaddr = unmask_flags(cache->vaddr) |
1177                         (unsigned long)vaddr;
1178         } else {
1179                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1180                 unsigned long offset;
1181
1182                 offset = cache->node.start;
1183                 if (!drm_mm_node_allocated(&cache->node))
1184                         offset += cache->page << PAGE_SHIFT;
1185
1186                 cache->vaddr = (unsigned long)
1187                         io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1188         }
1189 }
1190
1191 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1192 {
1193         void *vaddr;
1194
1195         if (!cache->vaddr)
1196                 return;
1197
1198         vaddr = unmask_page(cache->vaddr);
1199         if (cache->vaddr & KMAP) {
1200                 struct drm_i915_gem_object *obj =
1201                         (struct drm_i915_gem_object *)cache->node.mm;
1202                 if (cache->vaddr & CLFLUSH_AFTER)
1203                         mb();
1204
1205                 kunmap_atomic(vaddr);
1206                 i915_gem_object_finish_access(obj);
1207         } else {
1208                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1209
1210                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1211                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1212
1213                 if (drm_mm_node_allocated(&cache->node)) {
1214                         ggtt->vm.clear_range(&ggtt->vm,
1215                                              cache->node.start,
1216                                              cache->node.size);
1217                         mutex_lock(&ggtt->vm.mutex);
1218                         drm_mm_remove_node(&cache->node);
1219                         mutex_unlock(&ggtt->vm.mutex);
1220                 } else {
1221                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1222                 }
1223         }
1224
1225         cache->vaddr = 0;
1226         cache->page = -1;
1227 }
1228
1229 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1230                         struct reloc_cache *cache,
1231                         unsigned long pageno)
1232 {
1233         void *vaddr;
1234         struct page *page;
1235
1236         if (cache->vaddr) {
1237                 kunmap_atomic(unmask_page(cache->vaddr));
1238         } else {
1239                 unsigned int flushes;
1240                 int err;
1241
1242                 err = i915_gem_object_prepare_write(obj, &flushes);
1243                 if (err)
1244                         return ERR_PTR(err);
1245
1246                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1247                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1248
1249                 cache->vaddr = flushes | KMAP;
1250                 cache->node.mm = (void *)obj;
1251                 if (flushes)
1252                         mb();
1253         }
1254
1255         page = i915_gem_object_get_page(obj, pageno);
1256         if (!obj->mm.dirty)
1257                 set_page_dirty(page);
1258
1259         vaddr = kmap_atomic(page);
1260         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1261         cache->page = pageno;
1262
1263         return vaddr;
1264 }
1265
1266 static void *reloc_iomap(struct i915_vma *batch,
1267                          struct i915_execbuffer *eb,
1268                          unsigned long page)
1269 {
1270         struct drm_i915_gem_object *obj = batch->obj;
1271         struct reloc_cache *cache = &eb->reloc_cache;
1272         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1273         unsigned long offset;
1274         void *vaddr;
1275
1276         if (cache->vaddr) {
1277                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1278                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1279         } else {
1280                 struct i915_vma *vma = ERR_PTR(-ENODEV);
1281                 int err;
1282
1283                 if (i915_gem_object_is_tiled(obj))
1284                         return ERR_PTR(-EINVAL);
1285
1286                 if (use_cpu_reloc(cache, obj))
1287                         return NULL;
1288
1289                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1290                 if (err)
1291                         return ERR_PTR(err);
1292
1293                 /*
1294                  * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1295                  * VMA from the object list because we no longer pin.
1296                  *
1297                  * Only attempt to pin the batch buffer to ggtt if the current batch
1298                  * is not inside ggtt, or the batch buffer is not misplaced.
1299                  */
1300                 if (!i915_is_ggtt(batch->vm) ||
1301                     !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1302                         vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1303                                                           PIN_MAPPABLE |
1304                                                           PIN_NONBLOCK /* NOWARN */ |
1305                                                           PIN_NOEVICT);
1306                 }
1307
1308                 if (vma == ERR_PTR(-EDEADLK))
1309                         return vma;
1310
1311                 if (IS_ERR(vma)) {
1312                         memset(&cache->node, 0, sizeof(cache->node));
1313                         mutex_lock(&ggtt->vm.mutex);
1314                         err = drm_mm_insert_node_in_range
1315                                 (&ggtt->vm.mm, &cache->node,
1316                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1317                                  0, ggtt->mappable_end,
1318                                  DRM_MM_INSERT_LOW);
1319                         mutex_unlock(&ggtt->vm.mutex);
1320                         if (err) /* no inactive aperture space, use cpu reloc */
1321                                 return NULL;
1322                 } else {
1323                         cache->node.start = i915_ggtt_offset(vma);
1324                         cache->node.mm = (void *)vma;
1325                 }
1326         }
1327
1328         offset = cache->node.start;
1329         if (drm_mm_node_allocated(&cache->node)) {
1330                 ggtt->vm.insert_page(&ggtt->vm,
1331                                      i915_gem_object_get_dma_address(obj, page),
1332                                      offset,
1333                                      i915_gem_get_pat_index(ggtt->vm.i915,
1334                                                             I915_CACHE_NONE),
1335                                      0);
1336         } else {
1337                 offset += page << PAGE_SHIFT;
1338         }
1339
1340         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1341                                                          offset);
1342         cache->page = page;
1343         cache->vaddr = (unsigned long)vaddr;
1344
1345         return vaddr;
1346 }
1347
1348 static void *reloc_vaddr(struct i915_vma *vma,
1349                          struct i915_execbuffer *eb,
1350                          unsigned long page)
1351 {
1352         struct reloc_cache *cache = &eb->reloc_cache;
1353         void *vaddr;
1354
1355         if (cache->page == page) {
1356                 vaddr = unmask_page(cache->vaddr);
1357         } else {
1358                 vaddr = NULL;
1359                 if ((cache->vaddr & KMAP) == 0)
1360                         vaddr = reloc_iomap(vma, eb, page);
1361                 if (!vaddr)
1362                         vaddr = reloc_kmap(vma->obj, cache, page);
1363         }
1364
1365         return vaddr;
1366 }
1367
1368 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1369 {
1370         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1371                 if (flushes & CLFLUSH_BEFORE)
1372                         drm_clflush_virt_range(addr, sizeof(*addr));
1373
1374                 *addr = value;
1375
1376                 /*
1377                  * Writes to the same cacheline are serialised by the CPU
1378                  * (including clflush). On the write path, we only require
1379                  * that it hits memory in an orderly fashion and place
1380                  * mb barriers at the start and end of the relocation phase
1381                  * to ensure ordering of clflush wrt to the system.
1382                  */
1383                 if (flushes & CLFLUSH_AFTER)
1384                         drm_clflush_virt_range(addr, sizeof(*addr));
1385         } else
1386                 *addr = value;
1387 }
1388
1389 static u64
1390 relocate_entry(struct i915_vma *vma,
1391                const struct drm_i915_gem_relocation_entry *reloc,
1392                struct i915_execbuffer *eb,
1393                const struct i915_vma *target)
1394 {
1395         u64 target_addr = relocation_target(reloc, target);
1396         u64 offset = reloc->offset;
1397         bool wide = eb->reloc_cache.use_64bit_reloc;
1398         void *vaddr;
1399
1400 repeat:
1401         vaddr = reloc_vaddr(vma, eb,
1402                             offset >> PAGE_SHIFT);
1403         if (IS_ERR(vaddr))
1404                 return PTR_ERR(vaddr);
1405
1406         GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1407         clflush_write32(vaddr + offset_in_page(offset),
1408                         lower_32_bits(target_addr),
1409                         eb->reloc_cache.vaddr);
1410
1411         if (wide) {
1412                 offset += sizeof(u32);
1413                 target_addr >>= 32;
1414                 wide = false;
1415                 goto repeat;
1416         }
1417
1418         return target->node.start | UPDATE;
1419 }
1420
1421 static u64
1422 eb_relocate_entry(struct i915_execbuffer *eb,
1423                   struct eb_vma *ev,
1424                   const struct drm_i915_gem_relocation_entry *reloc)
1425 {
1426         struct drm_i915_private *i915 = eb->i915;
1427         struct eb_vma *target;
1428         int err;
1429
1430         /* we've already hold a reference to all valid objects */
1431         target = eb_get_vma(eb, reloc->target_handle);
1432         if (unlikely(!target))
1433                 return -ENOENT;
1434
1435         /* Validate that the target is in a valid r/w GPU domain */
1436         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1437                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1438                           "target %d offset %d "
1439                           "read %08x write %08x",
1440                           reloc->target_handle,
1441                           (int) reloc->offset,
1442                           reloc->read_domains,
1443                           reloc->write_domain);
1444                 return -EINVAL;
1445         }
1446         if (unlikely((reloc->write_domain | reloc->read_domains)
1447                      & ~I915_GEM_GPU_DOMAINS)) {
1448                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1449                           "target %d offset %d "
1450                           "read %08x write %08x",
1451                           reloc->target_handle,
1452                           (int) reloc->offset,
1453                           reloc->read_domains,
1454                           reloc->write_domain);
1455                 return -EINVAL;
1456         }
1457
1458         if (reloc->write_domain) {
1459                 target->flags |= EXEC_OBJECT_WRITE;
1460
1461                 /*
1462                  * Sandybridge PPGTT errata: We need a global gtt mapping
1463                  * for MI and pipe_control writes because the gpu doesn't
1464                  * properly redirect them through the ppgtt for non_secure
1465                  * batchbuffers.
1466                  */
1467                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1468                     GRAPHICS_VER(eb->i915) == 6 &&
1469                     !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1470                         struct i915_vma *vma = target->vma;
1471
1472                         reloc_cache_unmap(&eb->reloc_cache);
1473                         mutex_lock(&vma->vm->mutex);
1474                         err = i915_vma_bind(target->vma,
1475                                             target->vma->obj->pat_index,
1476                                             PIN_GLOBAL, NULL, NULL);
1477                         mutex_unlock(&vma->vm->mutex);
1478                         reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1479                         if (err)
1480                                 return err;
1481                 }
1482         }
1483
1484         /*
1485          * If the relocation already has the right value in it, no
1486          * more work needs to be done.
1487          */
1488         if (!DBG_FORCE_RELOC &&
1489             gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1490                 return 0;
1491
1492         /* Check that the relocation address is valid... */
1493         if (unlikely(reloc->offset >
1494                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1495                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1496                           "target %d offset %d size %d.\n",
1497                           reloc->target_handle,
1498                           (int)reloc->offset,
1499                           (int)ev->vma->size);
1500                 return -EINVAL;
1501         }
1502         if (unlikely(reloc->offset & 3)) {
1503                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1504                           "target %d offset %d.\n",
1505                           reloc->target_handle,
1506                           (int)reloc->offset);
1507                 return -EINVAL;
1508         }
1509
1510         /*
1511          * If we write into the object, we need to force the synchronisation
1512          * barrier, either with an asynchronous clflush or if we executed the
1513          * patching using the GPU (though that should be serialised by the
1514          * timeline). To be completely sure, and since we are required to
1515          * do relocations we are already stalling, disable the user's opt
1516          * out of our synchronisation.
1517          */
1518         ev->flags &= ~EXEC_OBJECT_ASYNC;
1519
1520         /* and update the user's relocation entry */
1521         return relocate_entry(ev->vma, reloc, eb, target->vma);
1522 }
1523
1524 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1525 {
1526 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1527         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1528         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1529         struct drm_i915_gem_relocation_entry __user *urelocs =
1530                 u64_to_user_ptr(entry->relocs_ptr);
1531         unsigned long remain = entry->relocation_count;
1532
1533         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1534                 return -EINVAL;
1535
1536         /*
1537          * We must check that the entire relocation array is safe
1538          * to read. However, if the array is not writable the user loses
1539          * the updated relocation values.
1540          */
1541         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1542                 return -EFAULT;
1543
1544         do {
1545                 struct drm_i915_gem_relocation_entry *r = stack;
1546                 unsigned int count =
1547                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1548                 unsigned int copied;
1549
1550                 /*
1551                  * This is the fast path and we cannot handle a pagefault
1552                  * whilst holding the struct mutex lest the user pass in the
1553                  * relocations contained within a mmaped bo. For in such a case
1554                  * we, the page fault handler would call i915_gem_fault() and
1555                  * we would try to acquire the struct mutex again. Obviously
1556                  * this is bad and so lockdep complains vehemently.
1557                  */
1558                 pagefault_disable();
1559                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1560                 pagefault_enable();
1561                 if (unlikely(copied)) {
1562                         remain = -EFAULT;
1563                         goto out;
1564                 }
1565
1566                 remain -= count;
1567                 do {
1568                         u64 offset = eb_relocate_entry(eb, ev, r);
1569
1570                         if (likely(offset == 0)) {
1571                         } else if ((s64)offset < 0) {
1572                                 remain = (int)offset;
1573                                 goto out;
1574                         } else {
1575                                 /*
1576                                  * Note that reporting an error now
1577                                  * leaves everything in an inconsistent
1578                                  * state as we have *already* changed
1579                                  * the relocation value inside the
1580                                  * object. As we have not changed the
1581                                  * reloc.presumed_offset or will not
1582                                  * change the execobject.offset, on the
1583                                  * call we may not rewrite the value
1584                                  * inside the object, leaving it
1585                                  * dangling and causing a GPU hang. Unless
1586                                  * userspace dynamically rebuilds the
1587                                  * relocations on each execbuf rather than
1588                                  * presume a static tree.
1589                                  *
1590                                  * We did previously check if the relocations
1591                                  * were writable (access_ok), an error now
1592                                  * would be a strange race with mprotect,
1593                                  * having already demonstrated that we
1594                                  * can read from this userspace address.
1595                                  */
1596                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1597                                 __put_user(offset,
1598                                            &urelocs[r - stack].presumed_offset);
1599                         }
1600                 } while (r++, --count);
1601                 urelocs += ARRAY_SIZE(stack);
1602         } while (remain);
1603 out:
1604         reloc_cache_reset(&eb->reloc_cache, eb);
1605         return remain;
1606 }
1607
1608 static int
1609 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1610 {
1611         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1612         struct drm_i915_gem_relocation_entry *relocs =
1613                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1614         unsigned int i;
1615         int err;
1616
1617         for (i = 0; i < entry->relocation_count; i++) {
1618                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1619
1620                 if ((s64)offset < 0) {
1621                         err = (int)offset;
1622                         goto err;
1623                 }
1624         }
1625         err = 0;
1626 err:
1627         reloc_cache_reset(&eb->reloc_cache, eb);
1628         return err;
1629 }
1630
1631 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1632 {
1633         const char __user *addr, *end;
1634         unsigned long size;
1635         char __maybe_unused c;
1636
1637         size = entry->relocation_count;
1638         if (size == 0)
1639                 return 0;
1640
1641         if (size > N_RELOC(ULONG_MAX))
1642                 return -EINVAL;
1643
1644         addr = u64_to_user_ptr(entry->relocs_ptr);
1645         size *= sizeof(struct drm_i915_gem_relocation_entry);
1646         if (!access_ok(addr, size))
1647                 return -EFAULT;
1648
1649         end = addr + size;
1650         for (; addr < end; addr += PAGE_SIZE) {
1651                 int err = __get_user(c, addr);
1652                 if (err)
1653                         return err;
1654         }
1655         return __get_user(c, end - 1);
1656 }
1657
1658 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1659 {
1660         struct drm_i915_gem_relocation_entry *relocs;
1661         const unsigned int count = eb->buffer_count;
1662         unsigned int i;
1663         int err;
1664
1665         for (i = 0; i < count; i++) {
1666                 const unsigned int nreloc = eb->exec[i].relocation_count;
1667                 struct drm_i915_gem_relocation_entry __user *urelocs;
1668                 unsigned long size;
1669                 unsigned long copied;
1670
1671                 if (nreloc == 0)
1672                         continue;
1673
1674                 err = check_relocations(&eb->exec[i]);
1675                 if (err)
1676                         goto err;
1677
1678                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1679                 size = nreloc * sizeof(*relocs);
1680
1681                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1682                 if (!relocs) {
1683                         err = -ENOMEM;
1684                         goto err;
1685                 }
1686
1687                 /* copy_from_user is limited to < 4GiB */
1688                 copied = 0;
1689                 do {
1690                         unsigned int len =
1691                                 min_t(u64, BIT_ULL(31), size - copied);
1692
1693                         if (__copy_from_user((char *)relocs + copied,
1694                                              (char __user *)urelocs + copied,
1695                                              len))
1696                                 goto end;
1697
1698                         copied += len;
1699                 } while (copied < size);
1700
1701                 /*
1702                  * As we do not update the known relocation offsets after
1703                  * relocating (due to the complexities in lock handling),
1704                  * we need to mark them as invalid now so that we force the
1705                  * relocation processing next time. Just in case the target
1706                  * object is evicted and then rebound into its old
1707                  * presumed_offset before the next execbuffer - if that
1708                  * happened we would make the mistake of assuming that the
1709                  * relocations were valid.
1710                  */
1711                 if (!user_access_begin(urelocs, size))
1712                         goto end;
1713
1714                 for (copied = 0; copied < nreloc; copied++)
1715                         unsafe_put_user(-1,
1716                                         &urelocs[copied].presumed_offset,
1717                                         end_user);
1718                 user_access_end();
1719
1720                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1721         }
1722
1723         return 0;
1724
1725 end_user:
1726         user_access_end();
1727 end:
1728         kvfree(relocs);
1729         err = -EFAULT;
1730 err:
1731         while (i--) {
1732                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1733                 if (eb->exec[i].relocation_count)
1734                         kvfree(relocs);
1735         }
1736         return err;
1737 }
1738
1739 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1740 {
1741         const unsigned int count = eb->buffer_count;
1742         unsigned int i;
1743
1744         for (i = 0; i < count; i++) {
1745                 int err;
1746
1747                 err = check_relocations(&eb->exec[i]);
1748                 if (err)
1749                         return err;
1750         }
1751
1752         return 0;
1753 }
1754
1755 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1756 {
1757         const unsigned int count = eb->buffer_count;
1758         unsigned int i;
1759         int ret;
1760
1761         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1762                 return 0;
1763
1764         for (i = 0; i < count; i++) {
1765                 struct eb_vma *ev = &eb->vma[i];
1766
1767                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1768                         continue;
1769
1770                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1771                 if (ret)
1772                         return ret;
1773
1774                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1775         }
1776
1777         return 0;
1778 }
1779
1780 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1781 {
1782         bool have_copy = false;
1783         struct eb_vma *ev;
1784         int err = 0;
1785
1786 repeat:
1787         if (signal_pending(current)) {
1788                 err = -ERESTARTSYS;
1789                 goto out;
1790         }
1791
1792         /* We may process another execbuffer during the unlock... */
1793         eb_release_vmas(eb, false);
1794         i915_gem_ww_ctx_fini(&eb->ww);
1795
1796         /*
1797          * We take 3 passes through the slowpatch.
1798          *
1799          * 1 - we try to just prefault all the user relocation entries and
1800          * then attempt to reuse the atomic pagefault disabled fast path again.
1801          *
1802          * 2 - we copy the user entries to a local buffer here outside of the
1803          * local and allow ourselves to wait upon any rendering before
1804          * relocations
1805          *
1806          * 3 - we already have a local copy of the relocation entries, but
1807          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1808          */
1809         if (!err) {
1810                 err = eb_prefault_relocations(eb);
1811         } else if (!have_copy) {
1812                 err = eb_copy_relocations(eb);
1813                 have_copy = err == 0;
1814         } else {
1815                 cond_resched();
1816                 err = 0;
1817         }
1818
1819         if (!err)
1820                 err = eb_reinit_userptr(eb);
1821
1822         i915_gem_ww_ctx_init(&eb->ww, true);
1823         if (err)
1824                 goto out;
1825
1826         /* reacquire the objects */
1827 repeat_validate:
1828         err = eb_pin_engine(eb, false);
1829         if (err)
1830                 goto err;
1831
1832         err = eb_validate_vmas(eb);
1833         if (err)
1834                 goto err;
1835
1836         GEM_BUG_ON(!eb->batches[0]);
1837
1838         list_for_each_entry(ev, &eb->relocs, reloc_link) {
1839                 if (!have_copy) {
1840                         err = eb_relocate_vma(eb, ev);
1841                         if (err)
1842                                 break;
1843                 } else {
1844                         err = eb_relocate_vma_slow(eb, ev);
1845                         if (err)
1846                                 break;
1847                 }
1848         }
1849
1850         if (err == -EDEADLK)
1851                 goto err;
1852
1853         if (err && !have_copy)
1854                 goto repeat;
1855
1856         if (err)
1857                 goto err;
1858
1859         /* as last step, parse the command buffer */
1860         err = eb_parse(eb);
1861         if (err)
1862                 goto err;
1863
1864         /*
1865          * Leave the user relocations as are, this is the painfully slow path,
1866          * and we want to avoid the complication of dropping the lock whilst
1867          * having buffers reserved in the aperture and so causing spurious
1868          * ENOSPC for random operations.
1869          */
1870
1871 err:
1872         if (err == -EDEADLK) {
1873                 eb_release_vmas(eb, false);
1874                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1875                 if (!err)
1876                         goto repeat_validate;
1877         }
1878
1879         if (err == -EAGAIN)
1880                 goto repeat;
1881
1882 out:
1883         if (have_copy) {
1884                 const unsigned int count = eb->buffer_count;
1885                 unsigned int i;
1886
1887                 for (i = 0; i < count; i++) {
1888                         const struct drm_i915_gem_exec_object2 *entry =
1889                                 &eb->exec[i];
1890                         struct drm_i915_gem_relocation_entry *relocs;
1891
1892                         if (!entry->relocation_count)
1893                                 continue;
1894
1895                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1896                         kvfree(relocs);
1897                 }
1898         }
1899
1900         return err;
1901 }
1902
1903 static int eb_relocate_parse(struct i915_execbuffer *eb)
1904 {
1905         int err;
1906         bool throttle = true;
1907
1908 retry:
1909         err = eb_pin_engine(eb, throttle);
1910         if (err) {
1911                 if (err != -EDEADLK)
1912                         return err;
1913
1914                 goto err;
1915         }
1916
1917         /* only throttle once, even if we didn't need to throttle */
1918         throttle = false;
1919
1920         err = eb_validate_vmas(eb);
1921         if (err == -EAGAIN)
1922                 goto slow;
1923         else if (err)
1924                 goto err;
1925
1926         /* The objects are in their final locations, apply the relocations. */
1927         if (eb->args->flags & __EXEC_HAS_RELOC) {
1928                 struct eb_vma *ev;
1929
1930                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1931                         err = eb_relocate_vma(eb, ev);
1932                         if (err)
1933                                 break;
1934                 }
1935
1936                 if (err == -EDEADLK)
1937                         goto err;
1938                 else if (err)
1939                         goto slow;
1940         }
1941
1942         if (!err)
1943                 err = eb_parse(eb);
1944
1945 err:
1946         if (err == -EDEADLK) {
1947                 eb_release_vmas(eb, false);
1948                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1949                 if (!err)
1950                         goto retry;
1951         }
1952
1953         return err;
1954
1955 slow:
1956         err = eb_relocate_parse_slow(eb);
1957         if (err)
1958                 /*
1959                  * If the user expects the execobject.offset and
1960                  * reloc.presumed_offset to be an exact match,
1961                  * as for using NO_RELOC, then we cannot update
1962                  * the execobject.offset until we have completed
1963                  * relocation.
1964                  */
1965                 eb->args->flags &= ~__EXEC_HAS_RELOC;
1966
1967         return err;
1968 }
1969
1970 /*
1971  * Using two helper loops for the order of which requests / batches are created
1972  * and added the to backend. Requests are created in order from the parent to
1973  * the last child. Requests are added in the reverse order, from the last child
1974  * to parent. This is done for locking reasons as the timeline lock is acquired
1975  * during request creation and released when the request is added to the
1976  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1977  * the ordering.
1978  */
1979 #define for_each_batch_create_order(_eb, _i) \
1980         for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1981 #define for_each_batch_add_order(_eb, _i) \
1982         BUILD_BUG_ON(!typecheck(int, _i)); \
1983         for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1984
1985 static struct i915_request *
1986 eb_find_first_request_added(struct i915_execbuffer *eb)
1987 {
1988         int i;
1989
1990         for_each_batch_add_order(eb, i)
1991                 if (eb->requests[i])
1992                         return eb->requests[i];
1993
1994         GEM_BUG_ON("Request not found");
1995
1996         return NULL;
1997 }
1998
1999 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2000
2001 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2002 static int eb_capture_stage(struct i915_execbuffer *eb)
2003 {
2004         const unsigned int count = eb->buffer_count;
2005         unsigned int i = count, j;
2006
2007         while (i--) {
2008                 struct eb_vma *ev = &eb->vma[i];
2009                 struct i915_vma *vma = ev->vma;
2010                 unsigned int flags = ev->flags;
2011
2012                 if (!(flags & EXEC_OBJECT_CAPTURE))
2013                         continue;
2014
2015                 if (i915_gem_context_is_recoverable(eb->gem_context) &&
2016                     (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2017                         return -EINVAL;
2018
2019                 for_each_batch_create_order(eb, j) {
2020                         struct i915_capture_list *capture;
2021
2022                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2023                         if (!capture)
2024                                 continue;
2025
2026                         capture->next = eb->capture_lists[j];
2027                         capture->vma_res = i915_vma_resource_get(vma->resource);
2028                         eb->capture_lists[j] = capture;
2029                 }
2030         }
2031
2032         return 0;
2033 }
2034
2035 /* Commit once we're in the critical path */
2036 static void eb_capture_commit(struct i915_execbuffer *eb)
2037 {
2038         unsigned int j;
2039
2040         for_each_batch_create_order(eb, j) {
2041                 struct i915_request *rq = eb->requests[j];
2042
2043                 if (!rq)
2044                         break;
2045
2046                 rq->capture_list = eb->capture_lists[j];
2047                 eb->capture_lists[j] = NULL;
2048         }
2049 }
2050
2051 /*
2052  * Release anything that didn't get committed due to errors.
2053  * The capture_list will otherwise be freed at request retire.
2054  */
2055 static void eb_capture_release(struct i915_execbuffer *eb)
2056 {
2057         unsigned int j;
2058
2059         for_each_batch_create_order(eb, j) {
2060                 if (eb->capture_lists[j]) {
2061                         i915_request_free_capture_list(eb->capture_lists[j]);
2062                         eb->capture_lists[j] = NULL;
2063                 }
2064         }
2065 }
2066
2067 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2068 {
2069         memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2070 }
2071
2072 #else
2073
2074 static int eb_capture_stage(struct i915_execbuffer *eb)
2075 {
2076         return 0;
2077 }
2078
2079 static void eb_capture_commit(struct i915_execbuffer *eb)
2080 {
2081 }
2082
2083 static void eb_capture_release(struct i915_execbuffer *eb)
2084 {
2085 }
2086
2087 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2088 {
2089 }
2090
2091 #endif
2092
2093 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2094 {
2095         const unsigned int count = eb->buffer_count;
2096         unsigned int i = count;
2097         int err = 0, j;
2098
2099         while (i--) {
2100                 struct eb_vma *ev = &eb->vma[i];
2101                 struct i915_vma *vma = ev->vma;
2102                 unsigned int flags = ev->flags;
2103                 struct drm_i915_gem_object *obj = vma->obj;
2104
2105                 assert_vma_held(vma);
2106
2107                 /*
2108                  * If the GPU is not _reading_ through the CPU cache, we need
2109                  * to make sure that any writes (both previous GPU writes from
2110                  * before a change in snooping levels and normal CPU writes)
2111                  * caught in that cache are flushed to main memory.
2112                  *
2113                  * We want to say
2114                  *   obj->cache_dirty &&
2115                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2116                  * but gcc's optimiser doesn't handle that as well and emits
2117                  * two jumps instead of one. Maybe one day...
2118                  *
2119                  * FIXME: There is also sync flushing in set_pages(), which
2120                  * serves a different purpose(some of the time at least).
2121                  *
2122                  * We should consider:
2123                  *
2124                  *   1. Rip out the async flush code.
2125                  *
2126                  *   2. Or make the sync flushing use the async clflush path
2127                  *   using mandatory fences underneath. Currently the below
2128                  *   async flush happens after we bind the object.
2129                  */
2130                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2131                         if (i915_gem_clflush_object(obj, 0))
2132                                 flags &= ~EXEC_OBJECT_ASYNC;
2133                 }
2134
2135                 /* We only need to await on the first request */
2136                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2137                         err = i915_request_await_object
2138                                 (eb_find_first_request_added(eb), obj,
2139                                  flags & EXEC_OBJECT_WRITE);
2140                 }
2141
2142                 for_each_batch_add_order(eb, j) {
2143                         if (err)
2144                                 break;
2145                         if (!eb->requests[j])
2146                                 continue;
2147
2148                         err = _i915_vma_move_to_active(vma, eb->requests[j],
2149                                                        j ? NULL :
2150                                                        eb->composite_fence ?
2151                                                        eb->composite_fence :
2152                                                        &eb->requests[j]->fence,
2153                                                        flags | __EXEC_OBJECT_NO_RESERVE |
2154                                                        __EXEC_OBJECT_NO_REQUEST_AWAIT);
2155                 }
2156         }
2157
2158 #ifdef CONFIG_MMU_NOTIFIER
2159         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2160                 read_lock(&eb->i915->mm.notifier_lock);
2161
2162                 /*
2163                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2164                  * could not have been set
2165                  */
2166                 for (i = 0; i < count; i++) {
2167                         struct eb_vma *ev = &eb->vma[i];
2168                         struct drm_i915_gem_object *obj = ev->vma->obj;
2169
2170                         if (!i915_gem_object_is_userptr(obj))
2171                                 continue;
2172
2173                         err = i915_gem_object_userptr_submit_done(obj);
2174                         if (err)
2175                                 break;
2176                 }
2177
2178                 read_unlock(&eb->i915->mm.notifier_lock);
2179         }
2180 #endif
2181
2182         if (unlikely(err))
2183                 goto err_skip;
2184
2185         /* Unconditionally flush any chipset caches (for streaming writes). */
2186         intel_gt_chipset_flush(eb->gt);
2187         eb_capture_commit(eb);
2188
2189         return 0;
2190
2191 err_skip:
2192         for_each_batch_create_order(eb, j) {
2193                 if (!eb->requests[j])
2194                         break;
2195
2196                 i915_request_set_error_once(eb->requests[j], err);
2197         }
2198         return err;
2199 }
2200
2201 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2202                                      struct drm_i915_gem_execbuffer2 *exec)
2203 {
2204         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2205                 return -EINVAL;
2206
2207         /* Kernel clipping was a DRI1 misfeature */
2208         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2209                              I915_EXEC_USE_EXTENSIONS))) {
2210                 if (exec->num_cliprects || exec->cliprects_ptr)
2211                         return -EINVAL;
2212         }
2213
2214         if (exec->DR4 == 0xffffffff) {
2215                 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2216                 exec->DR4 = 0;
2217         }
2218         if (exec->DR1 || exec->DR4)
2219                 return -EINVAL;
2220
2221         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2222                 return -EINVAL;
2223
2224         return 0;
2225 }
2226
2227 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2228 {
2229         u32 *cs;
2230         int i;
2231
2232         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2233                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2234                 return -EINVAL;
2235         }
2236
2237         cs = intel_ring_begin(rq, 4 * 2 + 2);
2238         if (IS_ERR(cs))
2239                 return PTR_ERR(cs);
2240
2241         *cs++ = MI_LOAD_REGISTER_IMM(4);
2242         for (i = 0; i < 4; i++) {
2243                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2244                 *cs++ = 0;
2245         }
2246         *cs++ = MI_NOOP;
2247         intel_ring_advance(rq, cs);
2248
2249         return 0;
2250 }
2251
2252 static struct i915_vma *
2253 shadow_batch_pin(struct i915_execbuffer *eb,
2254                  struct drm_i915_gem_object *obj,
2255                  struct i915_address_space *vm,
2256                  unsigned int flags)
2257 {
2258         struct i915_vma *vma;
2259         int err;
2260
2261         vma = i915_vma_instance(obj, vm, NULL);
2262         if (IS_ERR(vma))
2263                 return vma;
2264
2265         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2266         if (err)
2267                 return ERR_PTR(err);
2268
2269         return vma;
2270 }
2271
2272 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2273 {
2274         /*
2275          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2276          * batch" bit. Hence we need to pin secure batches into the global gtt.
2277          * hsw should have this fixed, but bdw mucks it up again. */
2278         if (eb->batch_flags & I915_DISPATCH_SECURE)
2279                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2280
2281         return NULL;
2282 }
2283
2284 static int eb_parse(struct i915_execbuffer *eb)
2285 {
2286         struct drm_i915_private *i915 = eb->i915;
2287         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2288         struct i915_vma *shadow, *trampoline, *batch;
2289         unsigned long len;
2290         int err;
2291
2292         if (!eb_use_cmdparser(eb)) {
2293                 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2294                 if (IS_ERR(batch))
2295                         return PTR_ERR(batch);
2296
2297                 goto secure_batch;
2298         }
2299
2300         if (intel_context_is_parallel(eb->context))
2301                 return -EINVAL;
2302
2303         len = eb->batch_len[0];
2304         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2305                 /*
2306                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2307                  * post-scan tampering
2308                  */
2309                 if (!eb->context->vm->has_read_only) {
2310                         drm_dbg(&i915->drm,
2311                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2312                         return -EINVAL;
2313                 }
2314         } else {
2315                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2316         }
2317         if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2318                 return -EINVAL;
2319
2320         if (!pool) {
2321                 pool = intel_gt_get_buffer_pool(eb->gt, len,
2322                                                 I915_MAP_WB);
2323                 if (IS_ERR(pool))
2324                         return PTR_ERR(pool);
2325                 eb->batch_pool = pool;
2326         }
2327
2328         err = i915_gem_object_lock(pool->obj, &eb->ww);
2329         if (err)
2330                 return err;
2331
2332         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2333         if (IS_ERR(shadow))
2334                 return PTR_ERR(shadow);
2335
2336         intel_gt_buffer_pool_mark_used(pool);
2337         i915_gem_object_set_readonly(shadow->obj);
2338         shadow->private = pool;
2339
2340         trampoline = NULL;
2341         if (CMDPARSER_USES_GGTT(eb->i915)) {
2342                 trampoline = shadow;
2343
2344                 shadow = shadow_batch_pin(eb, pool->obj,
2345                                           &eb->gt->ggtt->vm,
2346                                           PIN_GLOBAL);
2347                 if (IS_ERR(shadow))
2348                         return PTR_ERR(shadow);
2349
2350                 shadow->private = pool;
2351
2352                 eb->batch_flags |= I915_DISPATCH_SECURE;
2353         }
2354
2355         batch = eb_dispatch_secure(eb, shadow);
2356         if (IS_ERR(batch))
2357                 return PTR_ERR(batch);
2358
2359         err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2360         if (err)
2361                 return err;
2362
2363         err = intel_engine_cmd_parser(eb->context->engine,
2364                                       eb->batches[0]->vma,
2365                                       eb->batch_start_offset,
2366                                       eb->batch_len[0],
2367                                       shadow, trampoline);
2368         if (err)
2369                 return err;
2370
2371         eb->batches[0] = &eb->vma[eb->buffer_count++];
2372         eb->batches[0]->vma = i915_vma_get(shadow);
2373         eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2374
2375         eb->trampoline = trampoline;
2376         eb->batch_start_offset = 0;
2377
2378 secure_batch:
2379         if (batch) {
2380                 if (intel_context_is_parallel(eb->context))
2381                         return -EINVAL;
2382
2383                 eb->batches[0] = &eb->vma[eb->buffer_count++];
2384                 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2385                 eb->batches[0]->vma = i915_vma_get(batch);
2386         }
2387         return 0;
2388 }
2389
2390 static int eb_request_submit(struct i915_execbuffer *eb,
2391                              struct i915_request *rq,
2392                              struct i915_vma *batch,
2393                              u64 batch_len)
2394 {
2395         int err;
2396
2397         if (intel_context_nopreempt(rq->context))
2398                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2399
2400         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2401                 err = i915_reset_gen7_sol_offsets(rq);
2402                 if (err)
2403                         return err;
2404         }
2405
2406         /*
2407          * After we completed waiting for other engines (using HW semaphores)
2408          * then we can signal that this request/batch is ready to run. This
2409          * allows us to determine if the batch is still waiting on the GPU
2410          * or actually running by checking the breadcrumb.
2411          */
2412         if (rq->context->engine->emit_init_breadcrumb) {
2413                 err = rq->context->engine->emit_init_breadcrumb(rq);
2414                 if (err)
2415                         return err;
2416         }
2417
2418         err = rq->context->engine->emit_bb_start(rq,
2419                                                  i915_vma_offset(batch) +
2420                                                  eb->batch_start_offset,
2421                                                  batch_len,
2422                                                  eb->batch_flags);
2423         if (err)
2424                 return err;
2425
2426         if (eb->trampoline) {
2427                 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2428                 GEM_BUG_ON(eb->batch_start_offset);
2429                 err = rq->context->engine->emit_bb_start(rq,
2430                                                          i915_vma_offset(eb->trampoline) +
2431                                                          batch_len, 0, 0);
2432                 if (err)
2433                         return err;
2434         }
2435
2436         return 0;
2437 }
2438
2439 static int eb_submit(struct i915_execbuffer *eb)
2440 {
2441         unsigned int i;
2442         int err;
2443
2444         err = eb_move_to_gpu(eb);
2445
2446         for_each_batch_create_order(eb, i) {
2447                 if (!eb->requests[i])
2448                         break;
2449
2450                 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2451                 if (!err)
2452                         err = eb_request_submit(eb, eb->requests[i],
2453                                                 eb->batches[i]->vma,
2454                                                 eb->batch_len[i]);
2455         }
2456
2457         return err;
2458 }
2459
2460 /*
2461  * Find one BSD ring to dispatch the corresponding BSD command.
2462  * The engine index is returned.
2463  */
2464 static unsigned int
2465 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2466                          struct drm_file *file)
2467 {
2468         struct drm_i915_file_private *file_priv = file->driver_priv;
2469
2470         /* Check whether the file_priv has already selected one ring. */
2471         if ((int)file_priv->bsd_engine < 0)
2472                 file_priv->bsd_engine =
2473                         get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2474
2475         return file_priv->bsd_engine;
2476 }
2477
2478 static const enum intel_engine_id user_ring_map[] = {
2479         [I915_EXEC_DEFAULT]     = RCS0,
2480         [I915_EXEC_RENDER]      = RCS0,
2481         [I915_EXEC_BLT]         = BCS0,
2482         [I915_EXEC_BSD]         = VCS0,
2483         [I915_EXEC_VEBOX]       = VECS0
2484 };
2485
2486 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2487 {
2488         struct intel_ring *ring = ce->ring;
2489         struct intel_timeline *tl = ce->timeline;
2490         struct i915_request *rq;
2491
2492         /*
2493          * Completely unscientific finger-in-the-air estimates for suitable
2494          * maximum user request size (to avoid blocking) and then backoff.
2495          */
2496         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2497                 return NULL;
2498
2499         /*
2500          * Find a request that after waiting upon, there will be at least half
2501          * the ring available. The hysteresis allows us to compete for the
2502          * shared ring and should mean that we sleep less often prior to
2503          * claiming our resources, but not so long that the ring completely
2504          * drains before we can submit our next request.
2505          */
2506         list_for_each_entry(rq, &tl->requests, link) {
2507                 if (rq->ring != ring)
2508                         continue;
2509
2510                 if (__intel_ring_space(rq->postfix,
2511                                        ring->emit, ring->size) > ring->size / 2)
2512                         break;
2513         }
2514         if (&rq->link == &tl->requests)
2515                 return NULL; /* weird, we will check again later for real */
2516
2517         return i915_request_get(rq);
2518 }
2519
2520 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2521                            bool throttle)
2522 {
2523         struct intel_timeline *tl;
2524         struct i915_request *rq = NULL;
2525
2526         /*
2527          * Take a local wakeref for preparing to dispatch the execbuf as
2528          * we expect to access the hardware fairly frequently in the
2529          * process, and require the engine to be kept awake between accesses.
2530          * Upon dispatch, we acquire another prolonged wakeref that we hold
2531          * until the timeline is idle, which in turn releases the wakeref
2532          * taken on the engine, and the parent device.
2533          */
2534         tl = intel_context_timeline_lock(ce);
2535         if (IS_ERR(tl))
2536                 return PTR_ERR(tl);
2537
2538         intel_context_enter(ce);
2539         if (throttle)
2540                 rq = eb_throttle(eb, ce);
2541         intel_context_timeline_unlock(tl);
2542
2543         if (rq) {
2544                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2545                 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2546
2547                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2548                                       timeout) < 0) {
2549                         i915_request_put(rq);
2550
2551                         /*
2552                          * Error path, cannot use intel_context_timeline_lock as
2553                          * that is user interruptable and this clean up step
2554                          * must be done.
2555                          */
2556                         mutex_lock(&ce->timeline->mutex);
2557                         intel_context_exit(ce);
2558                         mutex_unlock(&ce->timeline->mutex);
2559
2560                         if (nonblock)
2561                                 return -EWOULDBLOCK;
2562                         else
2563                                 return -EINTR;
2564                 }
2565                 i915_request_put(rq);
2566         }
2567
2568         return 0;
2569 }
2570
2571 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2572 {
2573         struct intel_context *ce = eb->context, *child;
2574         int err;
2575         int i = 0, j = 0;
2576
2577         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2578
2579         if (unlikely(intel_context_is_banned(ce)))
2580                 return -EIO;
2581
2582         /*
2583          * Pinning the contexts may generate requests in order to acquire
2584          * GGTT space, so do this first before we reserve a seqno for
2585          * ourselves.
2586          */
2587         err = intel_context_pin_ww(ce, &eb->ww);
2588         if (err)
2589                 return err;
2590         for_each_child(ce, child) {
2591                 err = intel_context_pin_ww(child, &eb->ww);
2592                 GEM_BUG_ON(err);        /* perma-pinned should incr a counter */
2593         }
2594
2595         for_each_child(ce, child) {
2596                 err = eb_pin_timeline(eb, child, throttle);
2597                 if (err)
2598                         goto unwind;
2599                 ++i;
2600         }
2601         err = eb_pin_timeline(eb, ce, throttle);
2602         if (err)
2603                 goto unwind;
2604
2605         eb->args->flags |= __EXEC_ENGINE_PINNED;
2606         return 0;
2607
2608 unwind:
2609         for_each_child(ce, child) {
2610                 if (j++ < i) {
2611                         mutex_lock(&child->timeline->mutex);
2612                         intel_context_exit(child);
2613                         mutex_unlock(&child->timeline->mutex);
2614                 }
2615         }
2616         for_each_child(ce, child)
2617                 intel_context_unpin(child);
2618         intel_context_unpin(ce);
2619         return err;
2620 }
2621
2622 static void eb_unpin_engine(struct i915_execbuffer *eb)
2623 {
2624         struct intel_context *ce = eb->context, *child;
2625
2626         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2627                 return;
2628
2629         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2630
2631         for_each_child(ce, child) {
2632                 mutex_lock(&child->timeline->mutex);
2633                 intel_context_exit(child);
2634                 mutex_unlock(&child->timeline->mutex);
2635
2636                 intel_context_unpin(child);
2637         }
2638
2639         mutex_lock(&ce->timeline->mutex);
2640         intel_context_exit(ce);
2641         mutex_unlock(&ce->timeline->mutex);
2642
2643         intel_context_unpin(ce);
2644 }
2645
2646 static unsigned int
2647 eb_select_legacy_ring(struct i915_execbuffer *eb)
2648 {
2649         struct drm_i915_private *i915 = eb->i915;
2650         struct drm_i915_gem_execbuffer2 *args = eb->args;
2651         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2652
2653         if (user_ring_id != I915_EXEC_BSD &&
2654             (args->flags & I915_EXEC_BSD_MASK)) {
2655                 drm_dbg(&i915->drm,
2656                         "execbuf with non bsd ring but with invalid "
2657                         "bsd dispatch flags: %d\n", (int)(args->flags));
2658                 return -1;
2659         }
2660
2661         if (user_ring_id == I915_EXEC_BSD &&
2662             i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2663                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2664
2665                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2666                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2667                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2668                            bsd_idx <= I915_EXEC_BSD_RING2) {
2669                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2670                         bsd_idx--;
2671                 } else {
2672                         drm_dbg(&i915->drm,
2673                                 "execbuf with unknown bsd ring: %u\n",
2674                                 bsd_idx);
2675                         return -1;
2676                 }
2677
2678                 return _VCS(bsd_idx);
2679         }
2680
2681         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2682                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2683                         user_ring_id);
2684                 return -1;
2685         }
2686
2687         return user_ring_map[user_ring_id];
2688 }
2689
2690 static int
2691 eb_select_engine(struct i915_execbuffer *eb)
2692 {
2693         struct intel_context *ce, *child;
2694         unsigned int idx;
2695         int err;
2696
2697         if (i915_gem_context_user_engines(eb->gem_context))
2698                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2699         else
2700                 idx = eb_select_legacy_ring(eb);
2701
2702         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2703         if (IS_ERR(ce))
2704                 return PTR_ERR(ce);
2705
2706         if (intel_context_is_parallel(ce)) {
2707                 if (eb->buffer_count < ce->parallel.number_children + 1) {
2708                         intel_context_put(ce);
2709                         return -EINVAL;
2710                 }
2711                 if (eb->batch_start_offset || eb->args->batch_len) {
2712                         intel_context_put(ce);
2713                         return -EINVAL;
2714                 }
2715         }
2716         eb->num_batches = ce->parallel.number_children + 1;
2717
2718         for_each_child(ce, child)
2719                 intel_context_get(child);
2720         intel_gt_pm_get(ce->engine->gt);
2721
2722         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2723                 err = intel_context_alloc_state(ce);
2724                 if (err)
2725                         goto err;
2726         }
2727         for_each_child(ce, child) {
2728                 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2729                         err = intel_context_alloc_state(child);
2730                         if (err)
2731                                 goto err;
2732                 }
2733         }
2734
2735         /*
2736          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2737          * EIO if the GPU is already wedged.
2738          */
2739         err = intel_gt_terminally_wedged(ce->engine->gt);
2740         if (err)
2741                 goto err;
2742
2743         if (!i915_vm_tryget(ce->vm)) {
2744                 err = -ENOENT;
2745                 goto err;
2746         }
2747
2748         eb->context = ce;
2749         eb->gt = ce->engine->gt;
2750
2751         /*
2752          * Make sure engine pool stays alive even if we call intel_context_put
2753          * during ww handling. The pool is destroyed when last pm reference
2754          * is dropped, which breaks our -EDEADLK handling.
2755          */
2756         return err;
2757
2758 err:
2759         intel_gt_pm_put(ce->engine->gt);
2760         for_each_child(ce, child)
2761                 intel_context_put(child);
2762         intel_context_put(ce);
2763         return err;
2764 }
2765
2766 static void
2767 eb_put_engine(struct i915_execbuffer *eb)
2768 {
2769         struct intel_context *child;
2770
2771         i915_vm_put(eb->context->vm);
2772         intel_gt_pm_put(eb->gt);
2773         for_each_child(eb->context, child)
2774                 intel_context_put(child);
2775         intel_context_put(eb->context);
2776 }
2777
2778 static void
2779 __free_fence_array(struct eb_fence *fences, unsigned int n)
2780 {
2781         while (n--) {
2782                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2783                 dma_fence_put(fences[n].dma_fence);
2784                 dma_fence_chain_free(fences[n].chain_fence);
2785         }
2786         kvfree(fences);
2787 }
2788
2789 static int
2790 add_timeline_fence_array(struct i915_execbuffer *eb,
2791                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2792 {
2793         struct drm_i915_gem_exec_fence __user *user_fences;
2794         u64 __user *user_values;
2795         struct eb_fence *f;
2796         u64 nfences;
2797         int err = 0;
2798
2799         nfences = timeline_fences->fence_count;
2800         if (!nfences)
2801                 return 0;
2802
2803         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2804         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2805         if (nfences > min_t(unsigned long,
2806                             ULONG_MAX / sizeof(*user_fences),
2807                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2808                 return -EINVAL;
2809
2810         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2811         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2812                 return -EFAULT;
2813
2814         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2815         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2816                 return -EFAULT;
2817
2818         f = krealloc(eb->fences,
2819                      (eb->num_fences + nfences) * sizeof(*f),
2820                      __GFP_NOWARN | GFP_KERNEL);
2821         if (!f)
2822                 return -ENOMEM;
2823
2824         eb->fences = f;
2825         f += eb->num_fences;
2826
2827         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2828                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2829
2830         while (nfences--) {
2831                 struct drm_i915_gem_exec_fence user_fence;
2832                 struct drm_syncobj *syncobj;
2833                 struct dma_fence *fence = NULL;
2834                 u64 point;
2835
2836                 if (__copy_from_user(&user_fence,
2837                                      user_fences++,
2838                                      sizeof(user_fence)))
2839                         return -EFAULT;
2840
2841                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2842                         return -EINVAL;
2843
2844                 if (__get_user(point, user_values++))
2845                         return -EFAULT;
2846
2847                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2848                 if (!syncobj) {
2849                         drm_dbg(&eb->i915->drm,
2850                                 "Invalid syncobj handle provided\n");
2851                         return -ENOENT;
2852                 }
2853
2854                 fence = drm_syncobj_fence_get(syncobj);
2855
2856                 if (!fence && user_fence.flags &&
2857                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2858                         drm_dbg(&eb->i915->drm,
2859                                 "Syncobj handle has no fence\n");
2860                         drm_syncobj_put(syncobj);
2861                         return -EINVAL;
2862                 }
2863
2864                 if (fence)
2865                         err = dma_fence_chain_find_seqno(&fence, point);
2866
2867                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2868                         drm_dbg(&eb->i915->drm,
2869                                 "Syncobj handle missing requested point %llu\n",
2870                                 point);
2871                         dma_fence_put(fence);
2872                         drm_syncobj_put(syncobj);
2873                         return err;
2874                 }
2875
2876                 /*
2877                  * A point might have been signaled already and
2878                  * garbage collected from the timeline. In this case
2879                  * just ignore the point and carry on.
2880                  */
2881                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2882                         drm_syncobj_put(syncobj);
2883                         continue;
2884                 }
2885
2886                 /*
2887                  * For timeline syncobjs we need to preallocate chains for
2888                  * later signaling.
2889                  */
2890                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2891                         /*
2892                          * Waiting and signaling the same point (when point !=
2893                          * 0) would break the timeline.
2894                          */
2895                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2896                                 drm_dbg(&eb->i915->drm,
2897                                         "Trying to wait & signal the same timeline point.\n");
2898                                 dma_fence_put(fence);
2899                                 drm_syncobj_put(syncobj);
2900                                 return -EINVAL;
2901                         }
2902
2903                         f->chain_fence = dma_fence_chain_alloc();
2904                         if (!f->chain_fence) {
2905                                 drm_syncobj_put(syncobj);
2906                                 dma_fence_put(fence);
2907                                 return -ENOMEM;
2908                         }
2909                 } else {
2910                         f->chain_fence = NULL;
2911                 }
2912
2913                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2914                 f->dma_fence = fence;
2915                 f->value = point;
2916                 f++;
2917                 eb->num_fences++;
2918         }
2919
2920         return 0;
2921 }
2922
2923 static int add_fence_array(struct i915_execbuffer *eb)
2924 {
2925         struct drm_i915_gem_execbuffer2 *args = eb->args;
2926         struct drm_i915_gem_exec_fence __user *user;
2927         unsigned long num_fences = args->num_cliprects;
2928         struct eb_fence *f;
2929
2930         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2931                 return 0;
2932
2933         if (!num_fences)
2934                 return 0;
2935
2936         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2937         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2938         if (num_fences > min_t(unsigned long,
2939                                ULONG_MAX / sizeof(*user),
2940                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2941                 return -EINVAL;
2942
2943         user = u64_to_user_ptr(args->cliprects_ptr);
2944         if (!access_ok(user, num_fences * sizeof(*user)))
2945                 return -EFAULT;
2946
2947         f = krealloc(eb->fences,
2948                      (eb->num_fences + num_fences) * sizeof(*f),
2949                      __GFP_NOWARN | GFP_KERNEL);
2950         if (!f)
2951                 return -ENOMEM;
2952
2953         eb->fences = f;
2954         f += eb->num_fences;
2955         while (num_fences--) {
2956                 struct drm_i915_gem_exec_fence user_fence;
2957                 struct drm_syncobj *syncobj;
2958                 struct dma_fence *fence = NULL;
2959
2960                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2961                         return -EFAULT;
2962
2963                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2964                         return -EINVAL;
2965
2966                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2967                 if (!syncobj) {
2968                         drm_dbg(&eb->i915->drm,
2969                                 "Invalid syncobj handle provided\n");
2970                         return -ENOENT;
2971                 }
2972
2973                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2974                         fence = drm_syncobj_fence_get(syncobj);
2975                         if (!fence) {
2976                                 drm_dbg(&eb->i915->drm,
2977                                         "Syncobj handle has no fence\n");
2978                                 drm_syncobj_put(syncobj);
2979                                 return -EINVAL;
2980                         }
2981                 }
2982
2983                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2984                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2985
2986                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2987                 f->dma_fence = fence;
2988                 f->value = 0;
2989                 f->chain_fence = NULL;
2990                 f++;
2991                 eb->num_fences++;
2992         }
2993
2994         return 0;
2995 }
2996
2997 static void put_fence_array(struct eb_fence *fences, int num_fences)
2998 {
2999         if (fences)
3000                 __free_fence_array(fences, num_fences);
3001 }
3002
3003 static int
3004 await_fence_array(struct i915_execbuffer *eb,
3005                   struct i915_request *rq)
3006 {
3007         unsigned int n;
3008         int err;
3009
3010         for (n = 0; n < eb->num_fences; n++) {
3011                 if (!eb->fences[n].dma_fence)
3012                         continue;
3013
3014                 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3015                 if (err < 0)
3016                         return err;
3017         }
3018
3019         return 0;
3020 }
3021
3022 static void signal_fence_array(const struct i915_execbuffer *eb,
3023                                struct dma_fence * const fence)
3024 {
3025         unsigned int n;
3026
3027         for (n = 0; n < eb->num_fences; n++) {
3028                 struct drm_syncobj *syncobj;
3029                 unsigned int flags;
3030
3031                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3032                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3033                         continue;
3034
3035                 if (eb->fences[n].chain_fence) {
3036                         drm_syncobj_add_point(syncobj,
3037                                               eb->fences[n].chain_fence,
3038                                               fence,
3039                                               eb->fences[n].value);
3040                         /*
3041                          * The chain's ownership is transferred to the
3042                          * timeline.
3043                          */
3044                         eb->fences[n].chain_fence = NULL;
3045                 } else {
3046                         drm_syncobj_replace_fence(syncobj, fence);
3047                 }
3048         }
3049 }
3050
3051 static int
3052 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3053 {
3054         struct i915_execbuffer *eb = data;
3055         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3056
3057         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3058                 return -EFAULT;
3059
3060         return add_timeline_fence_array(eb, &timeline_fences);
3061 }
3062
3063 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3064 {
3065         struct i915_request *rq, *rn;
3066
3067         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3068                 if (rq == end || !i915_request_retire(rq))
3069                         break;
3070 }
3071
3072 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3073                           int err, bool last_parallel)
3074 {
3075         struct intel_timeline * const tl = i915_request_timeline(rq);
3076         struct i915_sched_attr attr = {};
3077         struct i915_request *prev;
3078
3079         lockdep_assert_held(&tl->mutex);
3080         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3081
3082         trace_i915_request_add(rq);
3083
3084         prev = __i915_request_commit(rq);
3085
3086         /* Check that the context wasn't destroyed before submission */
3087         if (likely(!intel_context_is_closed(eb->context))) {
3088                 attr = eb->gem_context->sched;
3089         } else {
3090                 /* Serialise with context_close via the add_to_timeline */
3091                 i915_request_set_error_once(rq, -ENOENT);
3092                 __i915_request_skip(rq);
3093                 err = -ENOENT; /* override any transient errors */
3094         }
3095
3096         if (intel_context_is_parallel(eb->context)) {
3097                 if (err) {
3098                         __i915_request_skip(rq);
3099                         set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3100                                 &rq->fence.flags);
3101                 }
3102                 if (last_parallel)
3103                         set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3104                                 &rq->fence.flags);
3105         }
3106
3107         __i915_request_queue(rq, &attr);
3108
3109         /* Try to clean up the client's timeline after submitting the request */
3110         if (prev)
3111                 retire_requests(tl, prev);
3112
3113         mutex_unlock(&tl->mutex);
3114
3115         return err;
3116 }
3117
3118 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3119 {
3120         int i;
3121
3122         /*
3123          * We iterate in reverse order of creation to release timeline mutexes in
3124          * same order.
3125          */
3126         for_each_batch_add_order(eb, i) {
3127                 struct i915_request *rq = eb->requests[i];
3128
3129                 if (!rq)
3130                         continue;
3131                 err |= eb_request_add(eb, rq, err, i == 0);
3132         }
3133
3134         return err;
3135 }
3136
3137 static const i915_user_extension_fn execbuf_extensions[] = {
3138         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3139 };
3140
3141 static int
3142 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3143                           struct i915_execbuffer *eb)
3144 {
3145         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3146                 return 0;
3147
3148         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3149          * have another flag also using it at the same time.
3150          */
3151         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3152                 return -EINVAL;
3153
3154         if (args->num_cliprects != 0)
3155                 return -EINVAL;
3156
3157         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3158                                     execbuf_extensions,
3159                                     ARRAY_SIZE(execbuf_extensions),
3160                                     eb);
3161 }
3162
3163 static void eb_requests_get(struct i915_execbuffer *eb)
3164 {
3165         unsigned int i;
3166
3167         for_each_batch_create_order(eb, i) {
3168                 if (!eb->requests[i])
3169                         break;
3170
3171                 i915_request_get(eb->requests[i]);
3172         }
3173 }
3174
3175 static void eb_requests_put(struct i915_execbuffer *eb)
3176 {
3177         unsigned int i;
3178
3179         for_each_batch_create_order(eb, i) {
3180                 if (!eb->requests[i])
3181                         break;
3182
3183                 i915_request_put(eb->requests[i]);
3184         }
3185 }
3186
3187 static struct sync_file *
3188 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3189 {
3190         struct sync_file *out_fence = NULL;
3191         struct dma_fence_array *fence_array;
3192         struct dma_fence **fences;
3193         unsigned int i;
3194
3195         GEM_BUG_ON(!intel_context_is_parent(eb->context));
3196
3197         fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3198         if (!fences)
3199                 return ERR_PTR(-ENOMEM);
3200
3201         for_each_batch_create_order(eb, i) {
3202                 fences[i] = &eb->requests[i]->fence;
3203                 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3204                           &eb->requests[i]->fence.flags);
3205         }
3206
3207         fence_array = dma_fence_array_create(eb->num_batches,
3208                                              fences,
3209                                              eb->context->parallel.fence_context,
3210                                              eb->context->parallel.seqno++,
3211                                              false);
3212         if (!fence_array) {
3213                 kfree(fences);
3214                 return ERR_PTR(-ENOMEM);
3215         }
3216
3217         /* Move ownership to the dma_fence_array created above */
3218         for_each_batch_create_order(eb, i)
3219                 dma_fence_get(fences[i]);
3220
3221         if (out_fence_fd != -1) {
3222                 out_fence = sync_file_create(&fence_array->base);
3223                 /* sync_file now owns fence_arry, drop creation ref */
3224                 dma_fence_put(&fence_array->base);
3225                 if (!out_fence)
3226                         return ERR_PTR(-ENOMEM);
3227         }
3228
3229         eb->composite_fence = &fence_array->base;
3230
3231         return out_fence;
3232 }
3233
3234 static struct sync_file *
3235 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3236               struct dma_fence *in_fence, int out_fence_fd)
3237 {
3238         struct sync_file *out_fence = NULL;
3239         int err;
3240
3241         if (unlikely(eb->gem_context->syncobj)) {
3242                 struct dma_fence *fence;
3243
3244                 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3245                 err = i915_request_await_dma_fence(rq, fence);
3246                 dma_fence_put(fence);
3247                 if (err)
3248                         return ERR_PTR(err);
3249         }
3250
3251         if (in_fence) {
3252                 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3253                         err = i915_request_await_execution(rq, in_fence);
3254                 else
3255                         err = i915_request_await_dma_fence(rq, in_fence);
3256                 if (err < 0)
3257                         return ERR_PTR(err);
3258         }
3259
3260         if (eb->fences) {
3261                 err = await_fence_array(eb, rq);
3262                 if (err)
3263                         return ERR_PTR(err);
3264         }
3265
3266         if (intel_context_is_parallel(eb->context)) {
3267                 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3268                 if (IS_ERR(out_fence))
3269                         return ERR_PTR(-ENOMEM);
3270         } else if (out_fence_fd != -1) {
3271                 out_fence = sync_file_create(&rq->fence);
3272                 if (!out_fence)
3273                         return ERR_PTR(-ENOMEM);
3274         }
3275
3276         return out_fence;
3277 }
3278
3279 static struct intel_context *
3280 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3281 {
3282         struct intel_context *child;
3283
3284         if (likely(context_number == 0))
3285                 return eb->context;
3286
3287         for_each_child(eb->context, child)
3288                 if (!--context_number)
3289                         return child;
3290
3291         GEM_BUG_ON("Context not found");
3292
3293         return NULL;
3294 }
3295
3296 static struct sync_file *
3297 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3298                    int out_fence_fd)
3299 {
3300         struct sync_file *out_fence = NULL;
3301         unsigned int i;
3302
3303         for_each_batch_create_order(eb, i) {
3304                 /* Allocate a request for this batch buffer nice and early. */
3305                 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3306                 if (IS_ERR(eb->requests[i])) {
3307                         out_fence = ERR_CAST(eb->requests[i]);
3308                         eb->requests[i] = NULL;
3309                         return out_fence;
3310                 }
3311
3312                 /*
3313                  * Only the first request added (committed to backend) has to
3314                  * take the in fences into account as all subsequent requests
3315                  * will have fences inserted inbetween them.
3316                  */
3317                 if (i + 1 == eb->num_batches) {
3318                         out_fence = eb_fences_add(eb, eb->requests[i],
3319                                                   in_fence, out_fence_fd);
3320                         if (IS_ERR(out_fence))
3321                                 return out_fence;
3322                 }
3323
3324                 /*
3325                  * Not really on stack, but we don't want to call
3326                  * kfree on the batch_snapshot when we put it, so use the
3327                  * _onstack interface.
3328                  */
3329                 if (eb->batches[i]->vma)
3330                         eb->requests[i]->batch_res =
3331                                 i915_vma_resource_get(eb->batches[i]->vma->resource);
3332                 if (eb->batch_pool) {
3333                         GEM_BUG_ON(intel_context_is_parallel(eb->context));
3334                         intel_gt_buffer_pool_mark_active(eb->batch_pool,
3335                                                          eb->requests[i]);
3336                 }
3337         }
3338
3339         return out_fence;
3340 }
3341
3342 static int
3343 i915_gem_do_execbuffer(struct drm_device *dev,
3344                        struct drm_file *file,
3345                        struct drm_i915_gem_execbuffer2 *args,
3346                        struct drm_i915_gem_exec_object2 *exec)
3347 {
3348         struct drm_i915_private *i915 = to_i915(dev);
3349         struct i915_execbuffer eb;
3350         struct dma_fence *in_fence = NULL;
3351         struct sync_file *out_fence = NULL;
3352         int out_fence_fd = -1;
3353         int err;
3354
3355         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3356         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3357                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3358
3359         eb.i915 = i915;
3360         eb.file = file;
3361         eb.args = args;
3362         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3363                 args->flags |= __EXEC_HAS_RELOC;
3364
3365         eb.exec = exec;
3366         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3367         eb.vma[0].vma = NULL;
3368         eb.batch_pool = NULL;
3369
3370         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3371         reloc_cache_init(&eb.reloc_cache, eb.i915);
3372
3373         eb.buffer_count = args->buffer_count;
3374         eb.batch_start_offset = args->batch_start_offset;
3375         eb.trampoline = NULL;
3376
3377         eb.fences = NULL;
3378         eb.num_fences = 0;
3379
3380         eb_capture_list_clear(&eb);
3381
3382         memset(eb.requests, 0, sizeof(struct i915_request *) *
3383                ARRAY_SIZE(eb.requests));
3384         eb.composite_fence = NULL;
3385
3386         eb.batch_flags = 0;
3387         if (args->flags & I915_EXEC_SECURE) {
3388                 if (GRAPHICS_VER(i915) >= 11)
3389                         return -ENODEV;
3390
3391                 /* Return -EPERM to trigger fallback code on old binaries. */
3392                 if (!HAS_SECURE_BATCHES(i915))
3393                         return -EPERM;
3394
3395                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3396                         return -EPERM;
3397
3398                 eb.batch_flags |= I915_DISPATCH_SECURE;
3399         }
3400         if (args->flags & I915_EXEC_IS_PINNED)
3401                 eb.batch_flags |= I915_DISPATCH_PINNED;
3402
3403         err = parse_execbuf2_extensions(args, &eb);
3404         if (err)
3405                 goto err_ext;
3406
3407         err = add_fence_array(&eb);
3408         if (err)
3409                 goto err_ext;
3410
3411 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3412         if (args->flags & IN_FENCES) {
3413                 if ((args->flags & IN_FENCES) == IN_FENCES)
3414                         return -EINVAL;
3415
3416                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3417                 if (!in_fence) {
3418                         err = -EINVAL;
3419                         goto err_ext;
3420                 }
3421         }
3422 #undef IN_FENCES
3423
3424         if (args->flags & I915_EXEC_FENCE_OUT) {
3425                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3426                 if (out_fence_fd < 0) {
3427                         err = out_fence_fd;
3428                         goto err_in_fence;
3429                 }
3430         }
3431
3432         err = eb_create(&eb);
3433         if (err)
3434                 goto err_out_fence;
3435
3436         GEM_BUG_ON(!eb.lut_size);
3437
3438         err = eb_select_context(&eb);
3439         if (unlikely(err))
3440                 goto err_destroy;
3441
3442         err = eb_select_engine(&eb);
3443         if (unlikely(err))
3444                 goto err_context;
3445
3446         err = eb_lookup_vmas(&eb);
3447         if (err) {
3448                 eb_release_vmas(&eb, true);
3449                 goto err_engine;
3450         }
3451
3452         i915_gem_ww_ctx_init(&eb.ww, true);
3453
3454         err = eb_relocate_parse(&eb);
3455         if (err) {
3456                 /*
3457                  * If the user expects the execobject.offset and
3458                  * reloc.presumed_offset to be an exact match,
3459                  * as for using NO_RELOC, then we cannot update
3460                  * the execobject.offset until we have completed
3461                  * relocation.
3462                  */
3463                 args->flags &= ~__EXEC_HAS_RELOC;
3464                 goto err_vma;
3465         }
3466
3467         ww_acquire_done(&eb.ww.ctx);
3468         err = eb_capture_stage(&eb);
3469         if (err)
3470                 goto err_vma;
3471
3472         out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3473         if (IS_ERR(out_fence)) {
3474                 err = PTR_ERR(out_fence);
3475                 out_fence = NULL;
3476                 if (eb.requests[0])
3477                         goto err_request;
3478                 else
3479                         goto err_vma;
3480         }
3481
3482         err = eb_submit(&eb);
3483
3484 err_request:
3485         eb_requests_get(&eb);
3486         err = eb_requests_add(&eb, err);
3487
3488         if (eb.fences)
3489                 signal_fence_array(&eb, eb.composite_fence ?
3490                                    eb.composite_fence :
3491                                    &eb.requests[0]->fence);
3492
3493         if (unlikely(eb.gem_context->syncobj)) {
3494                 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3495                                           eb.composite_fence ?
3496                                           eb.composite_fence :
3497                                           &eb.requests[0]->fence);
3498         }
3499
3500         if (out_fence) {
3501                 if (err == 0) {
3502                         fd_install(out_fence_fd, out_fence->file);
3503                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3504                         args->rsvd2 |= (u64)out_fence_fd << 32;
3505                         out_fence_fd = -1;
3506                 } else {
3507                         fput(out_fence->file);
3508                 }
3509         }
3510
3511         if (!out_fence && eb.composite_fence)
3512                 dma_fence_put(eb.composite_fence);
3513
3514         eb_requests_put(&eb);
3515
3516 err_vma:
3517         eb_release_vmas(&eb, true);
3518         WARN_ON(err == -EDEADLK);
3519         i915_gem_ww_ctx_fini(&eb.ww);
3520
3521         if (eb.batch_pool)
3522                 intel_gt_buffer_pool_put(eb.batch_pool);
3523 err_engine:
3524         eb_put_engine(&eb);
3525 err_context:
3526         i915_gem_context_put(eb.gem_context);
3527 err_destroy:
3528         eb_destroy(&eb);
3529 err_out_fence:
3530         if (out_fence_fd != -1)
3531                 put_unused_fd(out_fence_fd);
3532 err_in_fence:
3533         dma_fence_put(in_fence);
3534 err_ext:
3535         put_fence_array(eb.fences, eb.num_fences);
3536         return err;
3537 }
3538
3539 static size_t eb_element_size(void)
3540 {
3541         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3542 }
3543
3544 static bool check_buffer_count(size_t count)
3545 {
3546         const size_t sz = eb_element_size();
3547
3548         /*
3549          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3550          * array size (see eb_create()). Otherwise, we can accept an array as
3551          * large as can be addressed (though use large arrays at your peril)!
3552          */
3553
3554         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3555 }
3556
3557 int
3558 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3559                            struct drm_file *file)
3560 {
3561         struct drm_i915_private *i915 = to_i915(dev);
3562         struct drm_i915_gem_execbuffer2 *args = data;
3563         struct drm_i915_gem_exec_object2 *exec2_list;
3564         const size_t count = args->buffer_count;
3565         int err;
3566
3567         if (!check_buffer_count(count)) {
3568                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3569                 return -EINVAL;
3570         }
3571
3572         err = i915_gem_check_execbuffer(i915, args);
3573         if (err)
3574                 return err;
3575
3576         /* Allocate extra slots for use by the command parser */
3577         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3578                                     __GFP_NOWARN | GFP_KERNEL);
3579         if (exec2_list == NULL) {
3580                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3581                         count);
3582                 return -ENOMEM;
3583         }
3584         if (copy_from_user(exec2_list,
3585                            u64_to_user_ptr(args->buffers_ptr),
3586                            sizeof(*exec2_list) * count)) {
3587                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3588                 kvfree(exec2_list);
3589                 return -EFAULT;
3590         }
3591
3592         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3593
3594         /*
3595          * Now that we have begun execution of the batchbuffer, we ignore
3596          * any new error after this point. Also given that we have already
3597          * updated the associated relocations, we try to write out the current
3598          * object locations irrespective of any error.
3599          */
3600         if (args->flags & __EXEC_HAS_RELOC) {
3601                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3602                         u64_to_user_ptr(args->buffers_ptr);
3603                 unsigned int i;
3604
3605                 /* Copy the new buffer offsets back to the user's exec list. */
3606                 /*
3607                  * Note: count * sizeof(*user_exec_list) does not overflow,
3608                  * because we checked 'count' in check_buffer_count().
3609                  *
3610                  * And this range already got effectively checked earlier
3611                  * when we did the "copy_from_user()" above.
3612                  */
3613                 if (!user_write_access_begin(user_exec_list,
3614                                              count * sizeof(*user_exec_list)))
3615                         goto end;
3616
3617                 for (i = 0; i < args->buffer_count; i++) {
3618                         if (!(exec2_list[i].offset & UPDATE))
3619                                 continue;
3620
3621                         exec2_list[i].offset =
3622                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3623                         unsafe_put_user(exec2_list[i].offset,
3624                                         &user_exec_list[i].offset,
3625                                         end_user);
3626                 }
3627 end_user:
3628                 user_write_access_end();
3629 end:;
3630         }
3631
3632         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3633         kvfree(exec2_list);
3634         return err;
3635 }