Merge drm/drm-next into drm-intel-gt-next
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35
36 struct eb_vma {
37         struct i915_vma *vma;
38         unsigned int flags;
39
40         /** This vma's place in the execbuf reservation list */
41         struct drm_i915_gem_exec_object2 *exec;
42         struct list_head bind_link;
43         struct list_head reloc_link;
44
45         struct hlist_node node;
46         u32 handle;
47 };
48
49 enum {
50         FORCE_CPU_RELOC = 1,
51         FORCE_GTT_RELOC,
52         FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64
65 #define __EXEC_HAS_RELOC        BIT(31)
66 #define __EXEC_ENGINE_PINNED    BIT(30)
67 #define __EXEC_USERPTR_USED     BIT(29)
68 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
69 #define UPDATE                  PIN_OFFSET_FIXED
70
71 #define BATCH_OFFSET_BIAS (256*1024)
72
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74         (__I915_EXEC_UNKNOWN_FLAGS | \
75          I915_EXEC_CONSTANTS_MASK  | \
76          I915_EXEC_RESOURCE_STREAMER)
77
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83         22; \
84 })
85 #endif
86
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237
238 struct eb_fence {
239         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240         struct dma_fence *dma_fence;
241         u64 value;
242         struct dma_fence_chain *chain_fence;
243 };
244
245 struct i915_execbuffer {
246         struct drm_i915_private *i915; /** i915 backpointer */
247         struct drm_file *file; /** per-file lookup tables and limits */
248         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250         struct eb_vma *vma;
251
252         struct intel_gt *gt; /* gt for the execbuf */
253         struct intel_context *context; /* logical state for the request */
254         struct i915_gem_context *gem_context; /** caller's context */
255
256         /** our requests to build */
257         struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258         /** identity of the batch obj/vma */
259         struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260         struct i915_vma *trampoline; /** trampoline used for chaining */
261
262         /** used for excl fence in dma_resv objects when > 1 BB submitted */
263         struct dma_fence *composite_fence;
264
265         /** actual size of execobj[] as we may extend it for the cmdparser */
266         unsigned int buffer_count;
267
268         /* number of batches in execbuf IOCTL */
269         unsigned int num_batches;
270
271         /** list of vma not yet bound during reservation phase */
272         struct list_head unbound;
273
274         /** list of vma that have execobj.relocation_count */
275         struct list_head relocs;
276
277         struct i915_gem_ww_ctx ww;
278
279         /**
280          * Track the most recently used object for relocations, as we
281          * frequently have to perform multiple relocations within the same
282          * obj/page
283          */
284         struct reloc_cache {
285                 struct drm_mm_node node; /** temporary GTT binding */
286                 unsigned long vaddr; /** Current kmap address */
287                 unsigned long page; /** Currently mapped page index */
288                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289                 bool use_64bit_reloc : 1;
290                 bool has_llc : 1;
291                 bool has_fence : 1;
292                 bool needs_unfenced : 1;
293         } reloc_cache;
294
295         u64 invalid_flags; /** Set of execobj.flags that are invalid */
296
297         /** Length of batch within object */
298         u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299         u32 batch_start_offset; /** Location within object of batch */
300         u32 batch_flags; /** Flags composed for emit_bb_start() */
301         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302
303         /**
304          * Indicate either the size of the hastable used to resolve
305          * relocation handles, or if negative that we are using a direct
306          * index into the execobj[].
307          */
308         int lut_size;
309         struct hlist_head *buckets; /** ht for relocation handles */
310
311         struct eb_fence *fences;
312         unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314         struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325         return intel_engine_requires_cmd_parser(eb->context->engine) ||
326                 (intel_engine_using_cmd_parser(eb->context->engine) &&
327                  eb->args->batch_len);
328 }
329
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333                 unsigned int size = 1 + ilog2(eb->buffer_count);
334
335                 /*
336                  * Without a 1:1 association between relocation handles and
337                  * the execobject[] index, we instead create a hashtable.
338                  * We size it dynamically based on available memory, starting
339                  * first with 1:1 assocative hash and scaling back until
340                  * the allocation succeeds.
341                  *
342                  * Later on we use a positive lut_size to indicate we are
343                  * using this hashtable, and a negative value to indicate a
344                  * direct lookup.
345                  */
346                 do {
347                         gfp_t flags;
348
349                         /* While we can still reduce the allocation size, don't
350                          * raise a warning and allow the allocation to fail.
351                          * On the last pass though, we want to try as hard
352                          * as possible to perform the allocation and warn
353                          * if it fails.
354                          */
355                         flags = GFP_KERNEL;
356                         if (size > 1)
357                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
358
359                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360                                               flags);
361                         if (eb->buckets)
362                                 break;
363                 } while (--size);
364
365                 if (unlikely(!size))
366                         return -ENOMEM;
367
368                 eb->lut_size = size;
369         } else {
370                 eb->lut_size = -eb->buffer_count;
371         }
372
373         return 0;
374 }
375
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378                  const struct i915_vma *vma,
379                  unsigned int flags)
380 {
381         if (vma->node.size < entry->pad_to_size)
382                 return true;
383
384         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385                 return true;
386
387         if (flags & EXEC_OBJECT_PINNED &&
388             vma->node.start != entry->offset)
389                 return true;
390
391         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392             vma->node.start < BATCH_OFFSET_BIAS)
393                 return true;
394
395         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396             (vma->node.start + vma->node.size + 4095) >> 32)
397                 return true;
398
399         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400             !i915_vma_is_map_and_fenceable(vma))
401                 return true;
402
403         return false;
404 }
405
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407                         unsigned int exec_flags)
408 {
409         u64 pin_flags = 0;
410
411         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412                 pin_flags |= PIN_GLOBAL;
413
414         /*
415          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416          * limit address to the first 4GBs for unflagged objects.
417          */
418         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419                 pin_flags |= PIN_ZONE_4G;
420
421         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422                 pin_flags |= PIN_MAPPABLE;
423
424         if (exec_flags & EXEC_OBJECT_PINNED)
425                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428
429         return pin_flags;
430 }
431
432 static inline int
433 eb_pin_vma(struct i915_execbuffer *eb,
434            const struct drm_i915_gem_exec_object2 *entry,
435            struct eb_vma *ev)
436 {
437         struct i915_vma *vma = ev->vma;
438         u64 pin_flags;
439         int err;
440
441         if (vma->node.size)
442                 pin_flags = vma->node.start;
443         else
444                 pin_flags = entry->offset & PIN_OFFSET_MASK;
445
446         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448                 pin_flags |= PIN_GLOBAL;
449
450         /* Attempt to reuse the current location if available */
451         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452         if (err == -EDEADLK)
453                 return err;
454
455         if (unlikely(err)) {
456                 if (entry->flags & EXEC_OBJECT_PINNED)
457                         return err;
458
459                 /* Failing that pick any _free_ space if suitable */
460                 err = i915_vma_pin_ww(vma, &eb->ww,
461                                              entry->pad_to_size,
462                                              entry->alignment,
463                                              eb_pin_flags(entry, ev->flags) |
464                                              PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
465                 if (unlikely(err))
466                         return err;
467         }
468
469         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470                 err = i915_vma_pin_fence(vma);
471                 if (unlikely(err))
472                         return err;
473
474                 if (vma->fence)
475                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476         }
477
478         ev->flags |= __EXEC_OBJECT_HAS_PIN;
479         if (eb_vma_misplaced(entry, vma, ev->flags))
480                 return -EBADSLT;
481
482         return 0;
483 }
484
485 static inline void
486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489                 __i915_vma_unpin_fence(ev->vma);
490
491         ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496                 struct drm_i915_gem_exec_object2 *entry,
497                 struct i915_vma *vma)
498 {
499         /* Relocations are disallowed for all platforms after TGL-LP.  This
500          * also covers all platforms with local memory.
501          */
502         if (entry->relocation_count &&
503             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504                 return -EINVAL;
505
506         if (unlikely(entry->flags & eb->invalid_flags))
507                 return -EINVAL;
508
509         if (unlikely(entry->alignment &&
510                      !is_power_of_2_u64(entry->alignment)))
511                 return -EINVAL;
512
513         /*
514          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515          * any non-page-aligned or non-canonical addresses.
516          */
517         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519                 return -EINVAL;
520
521         /* pad_to_size was once a reserved field, so sanitize it */
522         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523                 if (unlikely(offset_in_page(entry->pad_to_size)))
524                         return -EINVAL;
525         } else {
526                 entry->pad_to_size = 0;
527         }
528         /*
529          * From drm_mm perspective address space is continuous,
530          * so from this point we're always using non-canonical
531          * form internally.
532          */
533         entry->offset = gen8_noncanonical_addr(entry->offset);
534
535         if (!eb->reloc_cache.has_fence) {
536                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537         } else {
538                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539                      eb->reloc_cache.needs_unfenced) &&
540                     i915_gem_object_is_tiled(vma->obj))
541                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542         }
543
544         return 0;
545 }
546
547 static inline bool
548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549 {
550         return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551                 buffer_idx < eb->num_batches :
552                 buffer_idx >= eb->args->buffer_count - eb->num_batches;
553 }
554
555 static int
556 eb_add_vma(struct i915_execbuffer *eb,
557            unsigned int *current_batch,
558            unsigned int i,
559            struct i915_vma *vma)
560 {
561         struct drm_i915_private *i915 = eb->i915;
562         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563         struct eb_vma *ev = &eb->vma[i];
564
565         ev->vma = vma;
566         ev->exec = entry;
567         ev->flags = entry->flags;
568
569         if (eb->lut_size > 0) {
570                 ev->handle = entry->handle;
571                 hlist_add_head(&ev->node,
572                                &eb->buckets[hash_32(entry->handle,
573                                                     eb->lut_size)]);
574         }
575
576         if (entry->relocation_count)
577                 list_add_tail(&ev->reloc_link, &eb->relocs);
578
579         /*
580          * SNA is doing fancy tricks with compressing batch buffers, which leads
581          * to negative relocation deltas. Usually that works out ok since the
582          * relocate address is still positive, except when the batch is placed
583          * very low in the GTT. Ensure this doesn't happen.
584          *
585          * Note that actual hangs have only been observed on gen7, but for
586          * paranoia do it everywhere.
587          */
588         if (is_batch_buffer(eb, i)) {
589                 if (entry->relocation_count &&
590                     !(ev->flags & EXEC_OBJECT_PINNED))
591                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592                 if (eb->reloc_cache.has_fence)
593                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
594
595                 eb->batches[*current_batch] = ev;
596
597                 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598                         drm_dbg(&i915->drm,
599                                 "Attempting to use self-modifying batch buffer\n");
600                         return -EINVAL;
601                 }
602
603                 if (range_overflows_t(u64,
604                                       eb->batch_start_offset,
605                                       eb->args->batch_len,
606                                       ev->vma->size)) {
607                         drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608                         return -EINVAL;
609                 }
610
611                 if (eb->args->batch_len == 0)
612                         eb->batch_len[*current_batch] = ev->vma->size -
613                                 eb->batch_start_offset;
614                 else
615                         eb->batch_len[*current_batch] = eb->args->batch_len;
616                 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617                         drm_dbg(&i915->drm, "Invalid batch length\n");
618                         return -EINVAL;
619                 }
620
621                 ++*current_batch;
622         }
623
624         return 0;
625 }
626
627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628                                 const struct drm_i915_gem_object *obj)
629 {
630         if (!i915_gem_object_has_struct_page(obj))
631                 return false;
632
633         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634                 return true;
635
636         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637                 return false;
638
639         return (cache->has_llc ||
640                 obj->cache_dirty ||
641                 obj->cache_level != I915_CACHE_NONE);
642 }
643
644 static int eb_reserve_vma(struct i915_execbuffer *eb,
645                           struct eb_vma *ev,
646                           u64 pin_flags)
647 {
648         struct drm_i915_gem_exec_object2 *entry = ev->exec;
649         struct i915_vma *vma = ev->vma;
650         int err;
651
652         if (drm_mm_node_allocated(&vma->node) &&
653             eb_vma_misplaced(entry, vma, ev->flags)) {
654                 err = i915_vma_unbind(vma);
655                 if (err)
656                         return err;
657         }
658
659         err = i915_vma_pin_ww(vma, &eb->ww,
660                            entry->pad_to_size, entry->alignment,
661                            eb_pin_flags(entry, ev->flags) | pin_flags);
662         if (err)
663                 return err;
664
665         if (entry->offset != vma->node.start) {
666                 entry->offset = vma->node.start | UPDATE;
667                 eb->args->flags |= __EXEC_HAS_RELOC;
668         }
669
670         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671                 err = i915_vma_pin_fence(vma);
672                 if (unlikely(err))
673                         return err;
674
675                 if (vma->fence)
676                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
677         }
678
679         ev->flags |= __EXEC_OBJECT_HAS_PIN;
680         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
681
682         return 0;
683 }
684
685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
686 {
687         const unsigned int count = eb->buffer_count;
688         unsigned int i;
689         struct list_head last;
690         bool unpinned = false;
691
692         /* Resort *all* the objects into priority order */
693         INIT_LIST_HEAD(&eb->unbound);
694         INIT_LIST_HEAD(&last);
695
696         for (i = 0; i < count; i++) {
697                 struct eb_vma *ev = &eb->vma[i];
698                 unsigned int flags = ev->flags;
699
700                 if (!force && flags & EXEC_OBJECT_PINNED &&
701                     flags & __EXEC_OBJECT_HAS_PIN)
702                         continue;
703
704                 unpinned = true;
705                 eb_unreserve_vma(ev);
706
707                 if (flags & EXEC_OBJECT_PINNED)
708                         /* Pinned must have their slot */
709                         list_add(&ev->bind_link, &eb->unbound);
710                 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711                         /* Map require the lowest 256MiB (aperture) */
712                         list_add_tail(&ev->bind_link, &eb->unbound);
713                 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714                         /* Prioritise 4GiB region for restricted bo */
715                         list_add(&ev->bind_link, &last);
716                 else
717                         list_add_tail(&ev->bind_link, &last);
718         }
719
720         list_splice_tail(&last, &eb->unbound);
721         return unpinned;
722 }
723
724 static int eb_reserve(struct i915_execbuffer *eb)
725 {
726         struct eb_vma *ev;
727         unsigned int pass;
728         int err = 0;
729         bool unpinned;
730
731         /*
732          * Attempt to pin all of the buffers into the GTT.
733          * This is done in 2 phases:
734          *
735          * 1. Unbind all objects that do not match the GTT constraints for
736          *    the execbuffer (fenceable, mappable, alignment etc).
737          * 2. Bind new objects.
738          *
739          * This avoid unnecessary unbinding of later objects in order to make
740          * room for the earlier objects *unless* we need to defragment.
741          *
742          * Defragmenting is skipped if all objects are pinned at a fixed location.
743          */
744         for (pass = 0; pass <= 2; pass++) {
745                 int pin_flags = PIN_USER | PIN_VALIDATE;
746
747                 if (pass == 0)
748                         pin_flags |= PIN_NONBLOCK;
749
750                 if (pass >= 1)
751                         unpinned = eb_unbind(eb, pass == 2);
752
753                 if (pass == 2) {
754                         err = mutex_lock_interruptible(&eb->context->vm->mutex);
755                         if (!err) {
756                                 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757                                 mutex_unlock(&eb->context->vm->mutex);
758                         }
759                         if (err)
760                                 return err;
761                 }
762
763                 list_for_each_entry(ev, &eb->unbound, bind_link) {
764                         err = eb_reserve_vma(eb, ev, pin_flags);
765                         if (err)
766                                 break;
767                 }
768
769                 if (err != -ENOSPC)
770                         break;
771         }
772
773         return err;
774 }
775
776 static int eb_select_context(struct i915_execbuffer *eb)
777 {
778         struct i915_gem_context *ctx;
779
780         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781         if (unlikely(IS_ERR(ctx)))
782                 return PTR_ERR(ctx);
783
784         eb->gem_context = ctx;
785         if (i915_gem_context_has_full_ppgtt(ctx))
786                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
787
788         return 0;
789 }
790
791 static int __eb_add_lut(struct i915_execbuffer *eb,
792                         u32 handle, struct i915_vma *vma)
793 {
794         struct i915_gem_context *ctx = eb->gem_context;
795         struct i915_lut_handle *lut;
796         int err;
797
798         lut = i915_lut_handle_alloc();
799         if (unlikely(!lut))
800                 return -ENOMEM;
801
802         i915_vma_get(vma);
803         if (!atomic_fetch_inc(&vma->open_count))
804                 i915_vma_reopen(vma);
805         lut->handle = handle;
806         lut->ctx = ctx;
807
808         /* Check that the context hasn't been closed in the meantime */
809         err = -EINTR;
810         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811                 if (likely(!i915_gem_context_is_closed(ctx)))
812                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813                 else
814                         err = -ENOENT;
815                 if (err == 0) { /* And nor has this handle */
816                         struct drm_i915_gem_object *obj = vma->obj;
817
818                         spin_lock(&obj->lut_lock);
819                         if (idr_find(&eb->file->object_idr, handle) == obj) {
820                                 list_add(&lut->obj_link, &obj->lut_list);
821                         } else {
822                                 radix_tree_delete(&ctx->handles_vma, handle);
823                                 err = -ENOENT;
824                         }
825                         spin_unlock(&obj->lut_lock);
826                 }
827                 mutex_unlock(&ctx->lut_mutex);
828         }
829         if (unlikely(err))
830                 goto err;
831
832         return 0;
833
834 err:
835         i915_vma_close(vma);
836         i915_vma_put(vma);
837         i915_lut_handle_free(lut);
838         return err;
839 }
840
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843         struct i915_address_space *vm = eb->context->vm;
844
845         do {
846                 struct drm_i915_gem_object *obj;
847                 struct i915_vma *vma;
848                 int err;
849
850                 rcu_read_lock();
851                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852                 if (likely(vma && vma->vm == vm))
853                         vma = i915_vma_tryget(vma);
854                 rcu_read_unlock();
855                 if (likely(vma))
856                         return vma;
857
858                 obj = i915_gem_object_lookup(eb->file, handle);
859                 if (unlikely(!obj))
860                         return ERR_PTR(-ENOENT);
861
862                 /*
863                  * If the user has opted-in for protected-object tracking, make
864                  * sure the object encryption can be used.
865                  * We only need to do this when the object is first used with
866                  * this context, because the context itself will be banned when
867                  * the protected objects become invalid.
868                  */
869                 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870                     i915_gem_object_is_protected(obj)) {
871                         err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
872                         if (err) {
873                                 i915_gem_object_put(obj);
874                                 return ERR_PTR(err);
875                         }
876                 }
877
878                 vma = i915_vma_instance(obj, vm, NULL);
879                 if (IS_ERR(vma)) {
880                         i915_gem_object_put(obj);
881                         return vma;
882                 }
883
884                 err = __eb_add_lut(eb, handle, vma);
885                 if (likely(!err))
886                         return vma;
887
888                 i915_gem_object_put(obj);
889                 if (err != -EEXIST)
890                         return ERR_PTR(err);
891         } while (1);
892 }
893
894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
895 {
896         unsigned int i, current_batch = 0;
897         int err = 0;
898
899         INIT_LIST_HEAD(&eb->relocs);
900
901         for (i = 0; i < eb->buffer_count; i++) {
902                 struct i915_vma *vma;
903
904                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
905                 if (IS_ERR(vma)) {
906                         err = PTR_ERR(vma);
907                         goto err;
908                 }
909
910                 err = eb_validate_vma(eb, &eb->exec[i], vma);
911                 if (unlikely(err)) {
912                         i915_vma_put(vma);
913                         goto err;
914                 }
915
916                 err = eb_add_vma(eb, &current_batch, i, vma);
917                 if (err)
918                         return err;
919
920                 if (i915_gem_object_is_userptr(vma->obj)) {
921                         err = i915_gem_object_userptr_submit_init(vma->obj);
922                         if (err) {
923                                 if (i + 1 < eb->buffer_count) {
924                                         /*
925                                          * Execbuffer code expects last vma entry to be NULL,
926                                          * since we already initialized this entry,
927                                          * set the next value to NULL or we mess up
928                                          * cleanup handling.
929                                          */
930                                         eb->vma[i + 1].vma = NULL;
931                                 }
932
933                                 return err;
934                         }
935
936                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937                         eb->args->flags |= __EXEC_USERPTR_USED;
938                 }
939         }
940
941         return 0;
942
943 err:
944         eb->vma[i].vma = NULL;
945         return err;
946 }
947
948 static int eb_lock_vmas(struct i915_execbuffer *eb)
949 {
950         unsigned int i;
951         int err;
952
953         for (i = 0; i < eb->buffer_count; i++) {
954                 struct eb_vma *ev = &eb->vma[i];
955                 struct i915_vma *vma = ev->vma;
956
957                 err = i915_gem_object_lock(vma->obj, &eb->ww);
958                 if (err)
959                         return err;
960         }
961
962         return 0;
963 }
964
965 static int eb_validate_vmas(struct i915_execbuffer *eb)
966 {
967         unsigned int i;
968         int err;
969
970         INIT_LIST_HEAD(&eb->unbound);
971
972         err = eb_lock_vmas(eb);
973         if (err)
974                 return err;
975
976         for (i = 0; i < eb->buffer_count; i++) {
977                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978                 struct eb_vma *ev = &eb->vma[i];
979                 struct i915_vma *vma = ev->vma;
980
981                 err = eb_pin_vma(eb, entry, ev);
982                 if (err == -EDEADLK)
983                         return err;
984
985                 if (!err) {
986                         if (entry->offset != vma->node.start) {
987                                 entry->offset = vma->node.start | UPDATE;
988                                 eb->args->flags |= __EXEC_HAS_RELOC;
989                         }
990                 } else {
991                         eb_unreserve_vma(ev);
992
993                         list_add_tail(&ev->bind_link, &eb->unbound);
994                         if (drm_mm_node_allocated(&vma->node)) {
995                                 err = i915_vma_unbind(vma);
996                                 if (err)
997                                         return err;
998                         }
999                 }
1000
1001                 err = dma_resv_reserve_fences(vma->obj->base.resv, 1);
1002                 if (err)
1003                         return err;
1004
1005                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1006                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1007         }
1008
1009         if (!list_empty(&eb->unbound))
1010                 return eb_reserve(eb);
1011
1012         return 0;
1013 }
1014
1015 static struct eb_vma *
1016 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1017 {
1018         if (eb->lut_size < 0) {
1019                 if (handle >= -eb->lut_size)
1020                         return NULL;
1021                 return &eb->vma[handle];
1022         } else {
1023                 struct hlist_head *head;
1024                 struct eb_vma *ev;
1025
1026                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1027                 hlist_for_each_entry(ev, head, node) {
1028                         if (ev->handle == handle)
1029                                 return ev;
1030                 }
1031                 return NULL;
1032         }
1033 }
1034
1035 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1036 {
1037         const unsigned int count = eb->buffer_count;
1038         unsigned int i;
1039
1040         for (i = 0; i < count; i++) {
1041                 struct eb_vma *ev = &eb->vma[i];
1042                 struct i915_vma *vma = ev->vma;
1043
1044                 if (!vma)
1045                         break;
1046
1047                 eb_unreserve_vma(ev);
1048
1049                 if (final)
1050                         i915_vma_put(vma);
1051         }
1052
1053         eb_capture_release(eb);
1054         eb_unpin_engine(eb);
1055 }
1056
1057 static void eb_destroy(const struct i915_execbuffer *eb)
1058 {
1059         if (eb->lut_size > 0)
1060                 kfree(eb->buckets);
1061 }
1062
1063 static inline u64
1064 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1065                   const struct i915_vma *target)
1066 {
1067         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1068 }
1069
1070 static void reloc_cache_init(struct reloc_cache *cache,
1071                              struct drm_i915_private *i915)
1072 {
1073         cache->page = -1;
1074         cache->vaddr = 0;
1075         /* Must be a variable in the struct to allow GCC to unroll. */
1076         cache->graphics_ver = GRAPHICS_VER(i915);
1077         cache->has_llc = HAS_LLC(i915);
1078         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1079         cache->has_fence = cache->graphics_ver < 4;
1080         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1081         cache->node.flags = 0;
1082 }
1083
1084 static inline void *unmask_page(unsigned long p)
1085 {
1086         return (void *)(uintptr_t)(p & PAGE_MASK);
1087 }
1088
1089 static inline unsigned int unmask_flags(unsigned long p)
1090 {
1091         return p & ~PAGE_MASK;
1092 }
1093
1094 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1095
1096 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1097 {
1098         struct drm_i915_private *i915 =
1099                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1100         return to_gt(i915)->ggtt;
1101 }
1102
1103 static void reloc_cache_unmap(struct reloc_cache *cache)
1104 {
1105         void *vaddr;
1106
1107         if (!cache->vaddr)
1108                 return;
1109
1110         vaddr = unmask_page(cache->vaddr);
1111         if (cache->vaddr & KMAP)
1112                 kunmap_atomic(vaddr);
1113         else
1114                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1115 }
1116
1117 static void reloc_cache_remap(struct reloc_cache *cache,
1118                               struct drm_i915_gem_object *obj)
1119 {
1120         void *vaddr;
1121
1122         if (!cache->vaddr)
1123                 return;
1124
1125         if (cache->vaddr & KMAP) {
1126                 struct page *page = i915_gem_object_get_page(obj, cache->page);
1127
1128                 vaddr = kmap_atomic(page);
1129                 cache->vaddr = unmask_flags(cache->vaddr) |
1130                         (unsigned long)vaddr;
1131         } else {
1132                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1133                 unsigned long offset;
1134
1135                 offset = cache->node.start;
1136                 if (!drm_mm_node_allocated(&cache->node))
1137                         offset += cache->page << PAGE_SHIFT;
1138
1139                 cache->vaddr = (unsigned long)
1140                         io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1141         }
1142 }
1143
1144 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1145 {
1146         void *vaddr;
1147
1148         if (!cache->vaddr)
1149                 return;
1150
1151         vaddr = unmask_page(cache->vaddr);
1152         if (cache->vaddr & KMAP) {
1153                 struct drm_i915_gem_object *obj =
1154                         (struct drm_i915_gem_object *)cache->node.mm;
1155                 if (cache->vaddr & CLFLUSH_AFTER)
1156                         mb();
1157
1158                 kunmap_atomic(vaddr);
1159                 i915_gem_object_finish_access(obj);
1160         } else {
1161                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1162
1163                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1164                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1165
1166                 if (drm_mm_node_allocated(&cache->node)) {
1167                         ggtt->vm.clear_range(&ggtt->vm,
1168                                              cache->node.start,
1169                                              cache->node.size);
1170                         mutex_lock(&ggtt->vm.mutex);
1171                         drm_mm_remove_node(&cache->node);
1172                         mutex_unlock(&ggtt->vm.mutex);
1173                 } else {
1174                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1175                 }
1176         }
1177
1178         cache->vaddr = 0;
1179         cache->page = -1;
1180 }
1181
1182 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1183                         struct reloc_cache *cache,
1184                         unsigned long pageno)
1185 {
1186         void *vaddr;
1187         struct page *page;
1188
1189         if (cache->vaddr) {
1190                 kunmap_atomic(unmask_page(cache->vaddr));
1191         } else {
1192                 unsigned int flushes;
1193                 int err;
1194
1195                 err = i915_gem_object_prepare_write(obj, &flushes);
1196                 if (err)
1197                         return ERR_PTR(err);
1198
1199                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1200                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1201
1202                 cache->vaddr = flushes | KMAP;
1203                 cache->node.mm = (void *)obj;
1204                 if (flushes)
1205                         mb();
1206         }
1207
1208         page = i915_gem_object_get_page(obj, pageno);
1209         if (!obj->mm.dirty)
1210                 set_page_dirty(page);
1211
1212         vaddr = kmap_atomic(page);
1213         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1214         cache->page = pageno;
1215
1216         return vaddr;
1217 }
1218
1219 static void *reloc_iomap(struct i915_vma *batch,
1220                          struct i915_execbuffer *eb,
1221                          unsigned long page)
1222 {
1223         struct drm_i915_gem_object *obj = batch->obj;
1224         struct reloc_cache *cache = &eb->reloc_cache;
1225         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1226         unsigned long offset;
1227         void *vaddr;
1228
1229         if (cache->vaddr) {
1230                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1231                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1232         } else {
1233                 struct i915_vma *vma = ERR_PTR(-ENODEV);
1234                 int err;
1235
1236                 if (i915_gem_object_is_tiled(obj))
1237                         return ERR_PTR(-EINVAL);
1238
1239                 if (use_cpu_reloc(cache, obj))
1240                         return NULL;
1241
1242                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1243                 if (err)
1244                         return ERR_PTR(err);
1245
1246                 /*
1247                  * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1248                  * VMA from the object list because we no longer pin.
1249                  *
1250                  * Only attempt to pin the batch buffer to ggtt if the current batch
1251                  * is not inside ggtt, or the batch buffer is not misplaced.
1252                  */
1253                 if (!i915_is_ggtt(batch->vm)) {
1254                         vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1255                                                           PIN_MAPPABLE |
1256                                                           PIN_NONBLOCK /* NOWARN */ |
1257                                                           PIN_NOEVICT);
1258                 } else if (i915_vma_is_map_and_fenceable(batch)) {
1259                         __i915_vma_pin(batch);
1260                         vma = batch;
1261                 }
1262
1263                 if (vma == ERR_PTR(-EDEADLK))
1264                         return vma;
1265
1266                 if (IS_ERR(vma)) {
1267                         memset(&cache->node, 0, sizeof(cache->node));
1268                         mutex_lock(&ggtt->vm.mutex);
1269                         err = drm_mm_insert_node_in_range
1270                                 (&ggtt->vm.mm, &cache->node,
1271                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1272                                  0, ggtt->mappable_end,
1273                                  DRM_MM_INSERT_LOW);
1274                         mutex_unlock(&ggtt->vm.mutex);
1275                         if (err) /* no inactive aperture space, use cpu reloc */
1276                                 return NULL;
1277                 } else {
1278                         cache->node.start = vma->node.start;
1279                         cache->node.mm = (void *)vma;
1280                 }
1281         }
1282
1283         offset = cache->node.start;
1284         if (drm_mm_node_allocated(&cache->node)) {
1285                 ggtt->vm.insert_page(&ggtt->vm,
1286                                      i915_gem_object_get_dma_address(obj, page),
1287                                      offset, I915_CACHE_NONE, 0);
1288         } else {
1289                 offset += page << PAGE_SHIFT;
1290         }
1291
1292         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1293                                                          offset);
1294         cache->page = page;
1295         cache->vaddr = (unsigned long)vaddr;
1296
1297         return vaddr;
1298 }
1299
1300 static void *reloc_vaddr(struct i915_vma *vma,
1301                          struct i915_execbuffer *eb,
1302                          unsigned long page)
1303 {
1304         struct reloc_cache *cache = &eb->reloc_cache;
1305         void *vaddr;
1306
1307         if (cache->page == page) {
1308                 vaddr = unmask_page(cache->vaddr);
1309         } else {
1310                 vaddr = NULL;
1311                 if ((cache->vaddr & KMAP) == 0)
1312                         vaddr = reloc_iomap(vma, eb, page);
1313                 if (!vaddr)
1314                         vaddr = reloc_kmap(vma->obj, cache, page);
1315         }
1316
1317         return vaddr;
1318 }
1319
1320 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1321 {
1322         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1323                 if (flushes & CLFLUSH_BEFORE)
1324                         drm_clflush_virt_range(addr, sizeof(*addr));
1325
1326                 *addr = value;
1327
1328                 /*
1329                  * Writes to the same cacheline are serialised by the CPU
1330                  * (including clflush). On the write path, we only require
1331                  * that it hits memory in an orderly fashion and place
1332                  * mb barriers at the start and end of the relocation phase
1333                  * to ensure ordering of clflush wrt to the system.
1334                  */
1335                 if (flushes & CLFLUSH_AFTER)
1336                         drm_clflush_virt_range(addr, sizeof(*addr));
1337         } else
1338                 *addr = value;
1339 }
1340
1341 static u64
1342 relocate_entry(struct i915_vma *vma,
1343                const struct drm_i915_gem_relocation_entry *reloc,
1344                struct i915_execbuffer *eb,
1345                const struct i915_vma *target)
1346 {
1347         u64 target_addr = relocation_target(reloc, target);
1348         u64 offset = reloc->offset;
1349         bool wide = eb->reloc_cache.use_64bit_reloc;
1350         void *vaddr;
1351
1352 repeat:
1353         vaddr = reloc_vaddr(vma, eb,
1354                             offset >> PAGE_SHIFT);
1355         if (IS_ERR(vaddr))
1356                 return PTR_ERR(vaddr);
1357
1358         GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1359         clflush_write32(vaddr + offset_in_page(offset),
1360                         lower_32_bits(target_addr),
1361                         eb->reloc_cache.vaddr);
1362
1363         if (wide) {
1364                 offset += sizeof(u32);
1365                 target_addr >>= 32;
1366                 wide = false;
1367                 goto repeat;
1368         }
1369
1370         return target->node.start | UPDATE;
1371 }
1372
1373 static u64
1374 eb_relocate_entry(struct i915_execbuffer *eb,
1375                   struct eb_vma *ev,
1376                   const struct drm_i915_gem_relocation_entry *reloc)
1377 {
1378         struct drm_i915_private *i915 = eb->i915;
1379         struct eb_vma *target;
1380         int err;
1381
1382         /* we've already hold a reference to all valid objects */
1383         target = eb_get_vma(eb, reloc->target_handle);
1384         if (unlikely(!target))
1385                 return -ENOENT;
1386
1387         /* Validate that the target is in a valid r/w GPU domain */
1388         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1389                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1390                           "target %d offset %d "
1391                           "read %08x write %08x",
1392                           reloc->target_handle,
1393                           (int) reloc->offset,
1394                           reloc->read_domains,
1395                           reloc->write_domain);
1396                 return -EINVAL;
1397         }
1398         if (unlikely((reloc->write_domain | reloc->read_domains)
1399                      & ~I915_GEM_GPU_DOMAINS)) {
1400                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1401                           "target %d offset %d "
1402                           "read %08x write %08x",
1403                           reloc->target_handle,
1404                           (int) reloc->offset,
1405                           reloc->read_domains,
1406                           reloc->write_domain);
1407                 return -EINVAL;
1408         }
1409
1410         if (reloc->write_domain) {
1411                 target->flags |= EXEC_OBJECT_WRITE;
1412
1413                 /*
1414                  * Sandybridge PPGTT errata: We need a global gtt mapping
1415                  * for MI and pipe_control writes because the gpu doesn't
1416                  * properly redirect them through the ppgtt for non_secure
1417                  * batchbuffers.
1418                  */
1419                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1420                     GRAPHICS_VER(eb->i915) == 6 &&
1421                     !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1422                         struct i915_vma *vma = target->vma;
1423
1424                         reloc_cache_unmap(&eb->reloc_cache);
1425                         mutex_lock(&vma->vm->mutex);
1426                         err = i915_vma_bind(target->vma,
1427                                             target->vma->obj->cache_level,
1428                                             PIN_GLOBAL, NULL, NULL);
1429                         mutex_unlock(&vma->vm->mutex);
1430                         reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1431                         if (err)
1432                                 return err;
1433                 }
1434         }
1435
1436         /*
1437          * If the relocation already has the right value in it, no
1438          * more work needs to be done.
1439          */
1440         if (!DBG_FORCE_RELOC &&
1441             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1442                 return 0;
1443
1444         /* Check that the relocation address is valid... */
1445         if (unlikely(reloc->offset >
1446                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1447                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1448                           "target %d offset %d size %d.\n",
1449                           reloc->target_handle,
1450                           (int)reloc->offset,
1451                           (int)ev->vma->size);
1452                 return -EINVAL;
1453         }
1454         if (unlikely(reloc->offset & 3)) {
1455                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1456                           "target %d offset %d.\n",
1457                           reloc->target_handle,
1458                           (int)reloc->offset);
1459                 return -EINVAL;
1460         }
1461
1462         /*
1463          * If we write into the object, we need to force the synchronisation
1464          * barrier, either with an asynchronous clflush or if we executed the
1465          * patching using the GPU (though that should be serialised by the
1466          * timeline). To be completely sure, and since we are required to
1467          * do relocations we are already stalling, disable the user's opt
1468          * out of our synchronisation.
1469          */
1470         ev->flags &= ~EXEC_OBJECT_ASYNC;
1471
1472         /* and update the user's relocation entry */
1473         return relocate_entry(ev->vma, reloc, eb, target->vma);
1474 }
1475
1476 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1477 {
1478 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1479         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1480         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1481         struct drm_i915_gem_relocation_entry __user *urelocs =
1482                 u64_to_user_ptr(entry->relocs_ptr);
1483         unsigned long remain = entry->relocation_count;
1484
1485         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1486                 return -EINVAL;
1487
1488         /*
1489          * We must check that the entire relocation array is safe
1490          * to read. However, if the array is not writable the user loses
1491          * the updated relocation values.
1492          */
1493         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1494                 return -EFAULT;
1495
1496         do {
1497                 struct drm_i915_gem_relocation_entry *r = stack;
1498                 unsigned int count =
1499                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1500                 unsigned int copied;
1501
1502                 /*
1503                  * This is the fast path and we cannot handle a pagefault
1504                  * whilst holding the struct mutex lest the user pass in the
1505                  * relocations contained within a mmaped bo. For in such a case
1506                  * we, the page fault handler would call i915_gem_fault() and
1507                  * we would try to acquire the struct mutex again. Obviously
1508                  * this is bad and so lockdep complains vehemently.
1509                  */
1510                 pagefault_disable();
1511                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1512                 pagefault_enable();
1513                 if (unlikely(copied)) {
1514                         remain = -EFAULT;
1515                         goto out;
1516                 }
1517
1518                 remain -= count;
1519                 do {
1520                         u64 offset = eb_relocate_entry(eb, ev, r);
1521
1522                         if (likely(offset == 0)) {
1523                         } else if ((s64)offset < 0) {
1524                                 remain = (int)offset;
1525                                 goto out;
1526                         } else {
1527                                 /*
1528                                  * Note that reporting an error now
1529                                  * leaves everything in an inconsistent
1530                                  * state as we have *already* changed
1531                                  * the relocation value inside the
1532                                  * object. As we have not changed the
1533                                  * reloc.presumed_offset or will not
1534                                  * change the execobject.offset, on the
1535                                  * call we may not rewrite the value
1536                                  * inside the object, leaving it
1537                                  * dangling and causing a GPU hang. Unless
1538                                  * userspace dynamically rebuilds the
1539                                  * relocations on each execbuf rather than
1540                                  * presume a static tree.
1541                                  *
1542                                  * We did previously check if the relocations
1543                                  * were writable (access_ok), an error now
1544                                  * would be a strange race with mprotect,
1545                                  * having already demonstrated that we
1546                                  * can read from this userspace address.
1547                                  */
1548                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1549                                 __put_user(offset,
1550                                            &urelocs[r - stack].presumed_offset);
1551                         }
1552                 } while (r++, --count);
1553                 urelocs += ARRAY_SIZE(stack);
1554         } while (remain);
1555 out:
1556         reloc_cache_reset(&eb->reloc_cache, eb);
1557         return remain;
1558 }
1559
1560 static int
1561 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1562 {
1563         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1564         struct drm_i915_gem_relocation_entry *relocs =
1565                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1566         unsigned int i;
1567         int err;
1568
1569         for (i = 0; i < entry->relocation_count; i++) {
1570                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1571
1572                 if ((s64)offset < 0) {
1573                         err = (int)offset;
1574                         goto err;
1575                 }
1576         }
1577         err = 0;
1578 err:
1579         reloc_cache_reset(&eb->reloc_cache, eb);
1580         return err;
1581 }
1582
1583 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1584 {
1585         const char __user *addr, *end;
1586         unsigned long size;
1587         char __maybe_unused c;
1588
1589         size = entry->relocation_count;
1590         if (size == 0)
1591                 return 0;
1592
1593         if (size > N_RELOC(ULONG_MAX))
1594                 return -EINVAL;
1595
1596         addr = u64_to_user_ptr(entry->relocs_ptr);
1597         size *= sizeof(struct drm_i915_gem_relocation_entry);
1598         if (!access_ok(addr, size))
1599                 return -EFAULT;
1600
1601         end = addr + size;
1602         for (; addr < end; addr += PAGE_SIZE) {
1603                 int err = __get_user(c, addr);
1604                 if (err)
1605                         return err;
1606         }
1607         return __get_user(c, end - 1);
1608 }
1609
1610 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1611 {
1612         struct drm_i915_gem_relocation_entry *relocs;
1613         const unsigned int count = eb->buffer_count;
1614         unsigned int i;
1615         int err;
1616
1617         for (i = 0; i < count; i++) {
1618                 const unsigned int nreloc = eb->exec[i].relocation_count;
1619                 struct drm_i915_gem_relocation_entry __user *urelocs;
1620                 unsigned long size;
1621                 unsigned long copied;
1622
1623                 if (nreloc == 0)
1624                         continue;
1625
1626                 err = check_relocations(&eb->exec[i]);
1627                 if (err)
1628                         goto err;
1629
1630                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1631                 size = nreloc * sizeof(*relocs);
1632
1633                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1634                 if (!relocs) {
1635                         err = -ENOMEM;
1636                         goto err;
1637                 }
1638
1639                 /* copy_from_user is limited to < 4GiB */
1640                 copied = 0;
1641                 do {
1642                         unsigned int len =
1643                                 min_t(u64, BIT_ULL(31), size - copied);
1644
1645                         if (__copy_from_user((char *)relocs + copied,
1646                                              (char __user *)urelocs + copied,
1647                                              len))
1648                                 goto end;
1649
1650                         copied += len;
1651                 } while (copied < size);
1652
1653                 /*
1654                  * As we do not update the known relocation offsets after
1655                  * relocating (due to the complexities in lock handling),
1656                  * we need to mark them as invalid now so that we force the
1657                  * relocation processing next time. Just in case the target
1658                  * object is evicted and then rebound into its old
1659                  * presumed_offset before the next execbuffer - if that
1660                  * happened we would make the mistake of assuming that the
1661                  * relocations were valid.
1662                  */
1663                 if (!user_access_begin(urelocs, size))
1664                         goto end;
1665
1666                 for (copied = 0; copied < nreloc; copied++)
1667                         unsafe_put_user(-1,
1668                                         &urelocs[copied].presumed_offset,
1669                                         end_user);
1670                 user_access_end();
1671
1672                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1673         }
1674
1675         return 0;
1676
1677 end_user:
1678         user_access_end();
1679 end:
1680         kvfree(relocs);
1681         err = -EFAULT;
1682 err:
1683         while (i--) {
1684                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1685                 if (eb->exec[i].relocation_count)
1686                         kvfree(relocs);
1687         }
1688         return err;
1689 }
1690
1691 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1692 {
1693         const unsigned int count = eb->buffer_count;
1694         unsigned int i;
1695
1696         for (i = 0; i < count; i++) {
1697                 int err;
1698
1699                 err = check_relocations(&eb->exec[i]);
1700                 if (err)
1701                         return err;
1702         }
1703
1704         return 0;
1705 }
1706
1707 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1708 {
1709         const unsigned int count = eb->buffer_count;
1710         unsigned int i;
1711         int ret;
1712
1713         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1714                 return 0;
1715
1716         for (i = 0; i < count; i++) {
1717                 struct eb_vma *ev = &eb->vma[i];
1718
1719                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1720                         continue;
1721
1722                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1723                 if (ret)
1724                         return ret;
1725
1726                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1727         }
1728
1729         return 0;
1730 }
1731
1732 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1733 {
1734         bool have_copy = false;
1735         struct eb_vma *ev;
1736         int err = 0;
1737
1738 repeat:
1739         if (signal_pending(current)) {
1740                 err = -ERESTARTSYS;
1741                 goto out;
1742         }
1743
1744         /* We may process another execbuffer during the unlock... */
1745         eb_release_vmas(eb, false);
1746         i915_gem_ww_ctx_fini(&eb->ww);
1747
1748         /*
1749          * We take 3 passes through the slowpatch.
1750          *
1751          * 1 - we try to just prefault all the user relocation entries and
1752          * then attempt to reuse the atomic pagefault disabled fast path again.
1753          *
1754          * 2 - we copy the user entries to a local buffer here outside of the
1755          * local and allow ourselves to wait upon any rendering before
1756          * relocations
1757          *
1758          * 3 - we already have a local copy of the relocation entries, but
1759          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1760          */
1761         if (!err) {
1762                 err = eb_prefault_relocations(eb);
1763         } else if (!have_copy) {
1764                 err = eb_copy_relocations(eb);
1765                 have_copy = err == 0;
1766         } else {
1767                 cond_resched();
1768                 err = 0;
1769         }
1770
1771         if (!err)
1772                 err = eb_reinit_userptr(eb);
1773
1774         i915_gem_ww_ctx_init(&eb->ww, true);
1775         if (err)
1776                 goto out;
1777
1778         /* reacquire the objects */
1779 repeat_validate:
1780         err = eb_pin_engine(eb, false);
1781         if (err)
1782                 goto err;
1783
1784         err = eb_validate_vmas(eb);
1785         if (err)
1786                 goto err;
1787
1788         GEM_BUG_ON(!eb->batches[0]);
1789
1790         list_for_each_entry(ev, &eb->relocs, reloc_link) {
1791                 if (!have_copy) {
1792                         err = eb_relocate_vma(eb, ev);
1793                         if (err)
1794                                 break;
1795                 } else {
1796                         err = eb_relocate_vma_slow(eb, ev);
1797                         if (err)
1798                                 break;
1799                 }
1800         }
1801
1802         if (err == -EDEADLK)
1803                 goto err;
1804
1805         if (err && !have_copy)
1806                 goto repeat;
1807
1808         if (err)
1809                 goto err;
1810
1811         /* as last step, parse the command buffer */
1812         err = eb_parse(eb);
1813         if (err)
1814                 goto err;
1815
1816         /*
1817          * Leave the user relocations as are, this is the painfully slow path,
1818          * and we want to avoid the complication of dropping the lock whilst
1819          * having buffers reserved in the aperture and so causing spurious
1820          * ENOSPC for random operations.
1821          */
1822
1823 err:
1824         if (err == -EDEADLK) {
1825                 eb_release_vmas(eb, false);
1826                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1827                 if (!err)
1828                         goto repeat_validate;
1829         }
1830
1831         if (err == -EAGAIN)
1832                 goto repeat;
1833
1834 out:
1835         if (have_copy) {
1836                 const unsigned int count = eb->buffer_count;
1837                 unsigned int i;
1838
1839                 for (i = 0; i < count; i++) {
1840                         const struct drm_i915_gem_exec_object2 *entry =
1841                                 &eb->exec[i];
1842                         struct drm_i915_gem_relocation_entry *relocs;
1843
1844                         if (!entry->relocation_count)
1845                                 continue;
1846
1847                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1848                         kvfree(relocs);
1849                 }
1850         }
1851
1852         return err;
1853 }
1854
1855 static int eb_relocate_parse(struct i915_execbuffer *eb)
1856 {
1857         int err;
1858         bool throttle = true;
1859
1860 retry:
1861         err = eb_pin_engine(eb, throttle);
1862         if (err) {
1863                 if (err != -EDEADLK)
1864                         return err;
1865
1866                 goto err;
1867         }
1868
1869         /* only throttle once, even if we didn't need to throttle */
1870         throttle = false;
1871
1872         err = eb_validate_vmas(eb);
1873         if (err == -EAGAIN)
1874                 goto slow;
1875         else if (err)
1876                 goto err;
1877
1878         /* The objects are in their final locations, apply the relocations. */
1879         if (eb->args->flags & __EXEC_HAS_RELOC) {
1880                 struct eb_vma *ev;
1881
1882                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1883                         err = eb_relocate_vma(eb, ev);
1884                         if (err)
1885                                 break;
1886                 }
1887
1888                 if (err == -EDEADLK)
1889                         goto err;
1890                 else if (err)
1891                         goto slow;
1892         }
1893
1894         if (!err)
1895                 err = eb_parse(eb);
1896
1897 err:
1898         if (err == -EDEADLK) {
1899                 eb_release_vmas(eb, false);
1900                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1901                 if (!err)
1902                         goto retry;
1903         }
1904
1905         return err;
1906
1907 slow:
1908         err = eb_relocate_parse_slow(eb);
1909         if (err)
1910                 /*
1911                  * If the user expects the execobject.offset and
1912                  * reloc.presumed_offset to be an exact match,
1913                  * as for using NO_RELOC, then we cannot update
1914                  * the execobject.offset until we have completed
1915                  * relocation.
1916                  */
1917                 eb->args->flags &= ~__EXEC_HAS_RELOC;
1918
1919         return err;
1920 }
1921
1922 /*
1923  * Using two helper loops for the order of which requests / batches are created
1924  * and added the to backend. Requests are created in order from the parent to
1925  * the last child. Requests are added in the reverse order, from the last child
1926  * to parent. This is done for locking reasons as the timeline lock is acquired
1927  * during request creation and released when the request is added to the
1928  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1929  * the ordering.
1930  */
1931 #define for_each_batch_create_order(_eb, _i) \
1932         for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1933 #define for_each_batch_add_order(_eb, _i) \
1934         BUILD_BUG_ON(!typecheck(int, _i)); \
1935         for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1936
1937 static struct i915_request *
1938 eb_find_first_request_added(struct i915_execbuffer *eb)
1939 {
1940         int i;
1941
1942         for_each_batch_add_order(eb, i)
1943                 if (eb->requests[i])
1944                         return eb->requests[i];
1945
1946         GEM_BUG_ON("Request not found");
1947
1948         return NULL;
1949 }
1950
1951 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1952
1953 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1954 static void eb_capture_stage(struct i915_execbuffer *eb)
1955 {
1956         const unsigned int count = eb->buffer_count;
1957         unsigned int i = count, j;
1958
1959         while (i--) {
1960                 struct eb_vma *ev = &eb->vma[i];
1961                 struct i915_vma *vma = ev->vma;
1962                 unsigned int flags = ev->flags;
1963
1964                 if (!(flags & EXEC_OBJECT_CAPTURE))
1965                         continue;
1966
1967                 for_each_batch_create_order(eb, j) {
1968                         struct i915_capture_list *capture;
1969
1970                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1971                         if (!capture)
1972                                 continue;
1973
1974                         capture->next = eb->capture_lists[j];
1975                         capture->vma_res = i915_vma_resource_get(vma->resource);
1976                         eb->capture_lists[j] = capture;
1977                 }
1978         }
1979 }
1980
1981 /* Commit once we're in the critical path */
1982 static void eb_capture_commit(struct i915_execbuffer *eb)
1983 {
1984         unsigned int j;
1985
1986         for_each_batch_create_order(eb, j) {
1987                 struct i915_request *rq = eb->requests[j];
1988
1989                 if (!rq)
1990                         break;
1991
1992                 rq->capture_list = eb->capture_lists[j];
1993                 eb->capture_lists[j] = NULL;
1994         }
1995 }
1996
1997 /*
1998  * Release anything that didn't get committed due to errors.
1999  * The capture_list will otherwise be freed at request retire.
2000  */
2001 static void eb_capture_release(struct i915_execbuffer *eb)
2002 {
2003         unsigned int j;
2004
2005         for_each_batch_create_order(eb, j) {
2006                 if (eb->capture_lists[j]) {
2007                         i915_request_free_capture_list(eb->capture_lists[j]);
2008                         eb->capture_lists[j] = NULL;
2009                 }
2010         }
2011 }
2012
2013 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2014 {
2015         memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2016 }
2017
2018 #else
2019
2020 static void eb_capture_stage(struct i915_execbuffer *eb)
2021 {
2022 }
2023
2024 static void eb_capture_commit(struct i915_execbuffer *eb)
2025 {
2026 }
2027
2028 static void eb_capture_release(struct i915_execbuffer *eb)
2029 {
2030 }
2031
2032 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2033 {
2034 }
2035
2036 #endif
2037
2038 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2039 {
2040         const unsigned int count = eb->buffer_count;
2041         unsigned int i = count;
2042         int err = 0, j;
2043
2044         while (i--) {
2045                 struct eb_vma *ev = &eb->vma[i];
2046                 struct i915_vma *vma = ev->vma;
2047                 unsigned int flags = ev->flags;
2048                 struct drm_i915_gem_object *obj = vma->obj;
2049
2050                 assert_vma_held(vma);
2051
2052                 /*
2053                  * If the GPU is not _reading_ through the CPU cache, we need
2054                  * to make sure that any writes (both previous GPU writes from
2055                  * before a change in snooping levels and normal CPU writes)
2056                  * caught in that cache are flushed to main memory.
2057                  *
2058                  * We want to say
2059                  *   obj->cache_dirty &&
2060                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2061                  * but gcc's optimiser doesn't handle that as well and emits
2062                  * two jumps instead of one. Maybe one day...
2063                  *
2064                  * FIXME: There is also sync flushing in set_pages(), which
2065                  * serves a different purpose(some of the time at least).
2066                  *
2067                  * We should consider:
2068                  *
2069                  *   1. Rip out the async flush code.
2070                  *
2071                  *   2. Or make the sync flushing use the async clflush path
2072                  *   using mandatory fences underneath. Currently the below
2073                  *   async flush happens after we bind the object.
2074                  */
2075                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2076                         if (i915_gem_clflush_object(obj, 0))
2077                                 flags &= ~EXEC_OBJECT_ASYNC;
2078                 }
2079
2080                 /* We only need to await on the first request */
2081                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2082                         err = i915_request_await_object
2083                                 (eb_find_first_request_added(eb), obj,
2084                                  flags & EXEC_OBJECT_WRITE);
2085                 }
2086
2087                 for_each_batch_add_order(eb, j) {
2088                         if (err)
2089                                 break;
2090                         if (!eb->requests[j])
2091                                 continue;
2092
2093                         err = _i915_vma_move_to_active(vma, eb->requests[j],
2094                                                        j ? NULL :
2095                                                        eb->composite_fence ?
2096                                                        eb->composite_fence :
2097                                                        &eb->requests[j]->fence,
2098                                                        flags | __EXEC_OBJECT_NO_RESERVE);
2099                 }
2100         }
2101
2102 #ifdef CONFIG_MMU_NOTIFIER
2103         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2104                 read_lock(&eb->i915->mm.notifier_lock);
2105
2106                 /*
2107                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2108                  * could not have been set
2109                  */
2110                 for (i = 0; i < count; i++) {
2111                         struct eb_vma *ev = &eb->vma[i];
2112                         struct drm_i915_gem_object *obj = ev->vma->obj;
2113
2114                         if (!i915_gem_object_is_userptr(obj))
2115                                 continue;
2116
2117                         err = i915_gem_object_userptr_submit_done(obj);
2118                         if (err)
2119                                 break;
2120                 }
2121
2122                 read_unlock(&eb->i915->mm.notifier_lock);
2123         }
2124 #endif
2125
2126         if (unlikely(err))
2127                 goto err_skip;
2128
2129         /* Unconditionally flush any chipset caches (for streaming writes). */
2130         intel_gt_chipset_flush(eb->gt);
2131         eb_capture_commit(eb);
2132
2133         return 0;
2134
2135 err_skip:
2136         for_each_batch_create_order(eb, j) {
2137                 if (!eb->requests[j])
2138                         break;
2139
2140                 i915_request_set_error_once(eb->requests[j], err);
2141         }
2142         return err;
2143 }
2144
2145 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2146 {
2147         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2148                 return -EINVAL;
2149
2150         /* Kernel clipping was a DRI1 misfeature */
2151         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2152                              I915_EXEC_USE_EXTENSIONS))) {
2153                 if (exec->num_cliprects || exec->cliprects_ptr)
2154                         return -EINVAL;
2155         }
2156
2157         if (exec->DR4 == 0xffffffff) {
2158                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2159                 exec->DR4 = 0;
2160         }
2161         if (exec->DR1 || exec->DR4)
2162                 return -EINVAL;
2163
2164         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2165                 return -EINVAL;
2166
2167         return 0;
2168 }
2169
2170 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2171 {
2172         u32 *cs;
2173         int i;
2174
2175         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2176                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2177                 return -EINVAL;
2178         }
2179
2180         cs = intel_ring_begin(rq, 4 * 2 + 2);
2181         if (IS_ERR(cs))
2182                 return PTR_ERR(cs);
2183
2184         *cs++ = MI_LOAD_REGISTER_IMM(4);
2185         for (i = 0; i < 4; i++) {
2186                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2187                 *cs++ = 0;
2188         }
2189         *cs++ = MI_NOOP;
2190         intel_ring_advance(rq, cs);
2191
2192         return 0;
2193 }
2194
2195 static struct i915_vma *
2196 shadow_batch_pin(struct i915_execbuffer *eb,
2197                  struct drm_i915_gem_object *obj,
2198                  struct i915_address_space *vm,
2199                  unsigned int flags)
2200 {
2201         struct i915_vma *vma;
2202         int err;
2203
2204         vma = i915_vma_instance(obj, vm, NULL);
2205         if (IS_ERR(vma))
2206                 return vma;
2207
2208         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2209         if (err)
2210                 return ERR_PTR(err);
2211
2212         return vma;
2213 }
2214
2215 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2216 {
2217         /*
2218          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2219          * batch" bit. Hence we need to pin secure batches into the global gtt.
2220          * hsw should have this fixed, but bdw mucks it up again. */
2221         if (eb->batch_flags & I915_DISPATCH_SECURE)
2222                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2223
2224         return NULL;
2225 }
2226
2227 static int eb_parse(struct i915_execbuffer *eb)
2228 {
2229         struct drm_i915_private *i915 = eb->i915;
2230         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2231         struct i915_vma *shadow, *trampoline, *batch;
2232         unsigned long len;
2233         int err;
2234
2235         if (!eb_use_cmdparser(eb)) {
2236                 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2237                 if (IS_ERR(batch))
2238                         return PTR_ERR(batch);
2239
2240                 goto secure_batch;
2241         }
2242
2243         if (intel_context_is_parallel(eb->context))
2244                 return -EINVAL;
2245
2246         len = eb->batch_len[0];
2247         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2248                 /*
2249                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2250                  * post-scan tampering
2251                  */
2252                 if (!eb->context->vm->has_read_only) {
2253                         drm_dbg(&i915->drm,
2254                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2255                         return -EINVAL;
2256                 }
2257         } else {
2258                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2259         }
2260         if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2261                 return -EINVAL;
2262
2263         if (!pool) {
2264                 pool = intel_gt_get_buffer_pool(eb->gt, len,
2265                                                 I915_MAP_WB);
2266                 if (IS_ERR(pool))
2267                         return PTR_ERR(pool);
2268                 eb->batch_pool = pool;
2269         }
2270
2271         err = i915_gem_object_lock(pool->obj, &eb->ww);
2272         if (err)
2273                 return err;
2274
2275         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2276         if (IS_ERR(shadow))
2277                 return PTR_ERR(shadow);
2278
2279         intel_gt_buffer_pool_mark_used(pool);
2280         i915_gem_object_set_readonly(shadow->obj);
2281         shadow->private = pool;
2282
2283         trampoline = NULL;
2284         if (CMDPARSER_USES_GGTT(eb->i915)) {
2285                 trampoline = shadow;
2286
2287                 shadow = shadow_batch_pin(eb, pool->obj,
2288                                           &eb->gt->ggtt->vm,
2289                                           PIN_GLOBAL);
2290                 if (IS_ERR(shadow))
2291                         return PTR_ERR(shadow);
2292
2293                 shadow->private = pool;
2294
2295                 eb->batch_flags |= I915_DISPATCH_SECURE;
2296         }
2297
2298         batch = eb_dispatch_secure(eb, shadow);
2299         if (IS_ERR(batch))
2300                 return PTR_ERR(batch);
2301
2302         err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2303         if (err)
2304                 return err;
2305
2306         err = intel_engine_cmd_parser(eb->context->engine,
2307                                       eb->batches[0]->vma,
2308                                       eb->batch_start_offset,
2309                                       eb->batch_len[0],
2310                                       shadow, trampoline);
2311         if (err)
2312                 return err;
2313
2314         eb->batches[0] = &eb->vma[eb->buffer_count++];
2315         eb->batches[0]->vma = i915_vma_get(shadow);
2316         eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2317
2318         eb->trampoline = trampoline;
2319         eb->batch_start_offset = 0;
2320
2321 secure_batch:
2322         if (batch) {
2323                 if (intel_context_is_parallel(eb->context))
2324                         return -EINVAL;
2325
2326                 eb->batches[0] = &eb->vma[eb->buffer_count++];
2327                 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2328                 eb->batches[0]->vma = i915_vma_get(batch);
2329         }
2330         return 0;
2331 }
2332
2333 static int eb_request_submit(struct i915_execbuffer *eb,
2334                              struct i915_request *rq,
2335                              struct i915_vma *batch,
2336                              u64 batch_len)
2337 {
2338         int err;
2339
2340         if (intel_context_nopreempt(rq->context))
2341                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2342
2343         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2344                 err = i915_reset_gen7_sol_offsets(rq);
2345                 if (err)
2346                         return err;
2347         }
2348
2349         /*
2350          * After we completed waiting for other engines (using HW semaphores)
2351          * then we can signal that this request/batch is ready to run. This
2352          * allows us to determine if the batch is still waiting on the GPU
2353          * or actually running by checking the breadcrumb.
2354          */
2355         if (rq->context->engine->emit_init_breadcrumb) {
2356                 err = rq->context->engine->emit_init_breadcrumb(rq);
2357                 if (err)
2358                         return err;
2359         }
2360
2361         err = rq->context->engine->emit_bb_start(rq,
2362                                                  batch->node.start +
2363                                                  eb->batch_start_offset,
2364                                                  batch_len,
2365                                                  eb->batch_flags);
2366         if (err)
2367                 return err;
2368
2369         if (eb->trampoline) {
2370                 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2371                 GEM_BUG_ON(eb->batch_start_offset);
2372                 err = rq->context->engine->emit_bb_start(rq,
2373                                                          eb->trampoline->node.start +
2374                                                          batch_len, 0, 0);
2375                 if (err)
2376                         return err;
2377         }
2378
2379         return 0;
2380 }
2381
2382 static int eb_submit(struct i915_execbuffer *eb)
2383 {
2384         unsigned int i;
2385         int err;
2386
2387         err = eb_move_to_gpu(eb);
2388
2389         for_each_batch_create_order(eb, i) {
2390                 if (!eb->requests[i])
2391                         break;
2392
2393                 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2394                 if (!err)
2395                         err = eb_request_submit(eb, eb->requests[i],
2396                                                 eb->batches[i]->vma,
2397                                                 eb->batch_len[i]);
2398         }
2399
2400         return err;
2401 }
2402
2403 static int num_vcs_engines(struct drm_i915_private *i915)
2404 {
2405         return hweight_long(VDBOX_MASK(to_gt(i915)));
2406 }
2407
2408 /*
2409  * Find one BSD ring to dispatch the corresponding BSD command.
2410  * The engine index is returned.
2411  */
2412 static unsigned int
2413 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2414                          struct drm_file *file)
2415 {
2416         struct drm_i915_file_private *file_priv = file->driver_priv;
2417
2418         /* Check whether the file_priv has already selected one ring. */
2419         if ((int)file_priv->bsd_engine < 0)
2420                 file_priv->bsd_engine =
2421                         get_random_int() % num_vcs_engines(dev_priv);
2422
2423         return file_priv->bsd_engine;
2424 }
2425
2426 static const enum intel_engine_id user_ring_map[] = {
2427         [I915_EXEC_DEFAULT]     = RCS0,
2428         [I915_EXEC_RENDER]      = RCS0,
2429         [I915_EXEC_BLT]         = BCS0,
2430         [I915_EXEC_BSD]         = VCS0,
2431         [I915_EXEC_VEBOX]       = VECS0
2432 };
2433
2434 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2435 {
2436         struct intel_ring *ring = ce->ring;
2437         struct intel_timeline *tl = ce->timeline;
2438         struct i915_request *rq;
2439
2440         /*
2441          * Completely unscientific finger-in-the-air estimates for suitable
2442          * maximum user request size (to avoid blocking) and then backoff.
2443          */
2444         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2445                 return NULL;
2446
2447         /*
2448          * Find a request that after waiting upon, there will be at least half
2449          * the ring available. The hysteresis allows us to compete for the
2450          * shared ring and should mean that we sleep less often prior to
2451          * claiming our resources, but not so long that the ring completely
2452          * drains before we can submit our next request.
2453          */
2454         list_for_each_entry(rq, &tl->requests, link) {
2455                 if (rq->ring != ring)
2456                         continue;
2457
2458                 if (__intel_ring_space(rq->postfix,
2459                                        ring->emit, ring->size) > ring->size / 2)
2460                         break;
2461         }
2462         if (&rq->link == &tl->requests)
2463                 return NULL; /* weird, we will check again later for real */
2464
2465         return i915_request_get(rq);
2466 }
2467
2468 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2469                            bool throttle)
2470 {
2471         struct intel_timeline *tl;
2472         struct i915_request *rq = NULL;
2473
2474         /*
2475          * Take a local wakeref for preparing to dispatch the execbuf as
2476          * we expect to access the hardware fairly frequently in the
2477          * process, and require the engine to be kept awake between accesses.
2478          * Upon dispatch, we acquire another prolonged wakeref that we hold
2479          * until the timeline is idle, which in turn releases the wakeref
2480          * taken on the engine, and the parent device.
2481          */
2482         tl = intel_context_timeline_lock(ce);
2483         if (IS_ERR(tl))
2484                 return PTR_ERR(tl);
2485
2486         intel_context_enter(ce);
2487         if (throttle)
2488                 rq = eb_throttle(eb, ce);
2489         intel_context_timeline_unlock(tl);
2490
2491         if (rq) {
2492                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2493                 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2494
2495                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2496                                       timeout) < 0) {
2497                         i915_request_put(rq);
2498
2499                         /*
2500                          * Error path, cannot use intel_context_timeline_lock as
2501                          * that is user interruptable and this clean up step
2502                          * must be done.
2503                          */
2504                         mutex_lock(&ce->timeline->mutex);
2505                         intel_context_exit(ce);
2506                         mutex_unlock(&ce->timeline->mutex);
2507
2508                         if (nonblock)
2509                                 return -EWOULDBLOCK;
2510                         else
2511                                 return -EINTR;
2512                 }
2513                 i915_request_put(rq);
2514         }
2515
2516         return 0;
2517 }
2518
2519 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2520 {
2521         struct intel_context *ce = eb->context, *child;
2522         int err;
2523         int i = 0, j = 0;
2524
2525         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2526
2527         if (unlikely(intel_context_is_banned(ce)))
2528                 return -EIO;
2529
2530         /*
2531          * Pinning the contexts may generate requests in order to acquire
2532          * GGTT space, so do this first before we reserve a seqno for
2533          * ourselves.
2534          */
2535         err = intel_context_pin_ww(ce, &eb->ww);
2536         if (err)
2537                 return err;
2538         for_each_child(ce, child) {
2539                 err = intel_context_pin_ww(child, &eb->ww);
2540                 GEM_BUG_ON(err);        /* perma-pinned should incr a counter */
2541         }
2542
2543         for_each_child(ce, child) {
2544                 err = eb_pin_timeline(eb, child, throttle);
2545                 if (err)
2546                         goto unwind;
2547                 ++i;
2548         }
2549         err = eb_pin_timeline(eb, ce, throttle);
2550         if (err)
2551                 goto unwind;
2552
2553         eb->args->flags |= __EXEC_ENGINE_PINNED;
2554         return 0;
2555
2556 unwind:
2557         for_each_child(ce, child) {
2558                 if (j++ < i) {
2559                         mutex_lock(&child->timeline->mutex);
2560                         intel_context_exit(child);
2561                         mutex_unlock(&child->timeline->mutex);
2562                 }
2563         }
2564         for_each_child(ce, child)
2565                 intel_context_unpin(child);
2566         intel_context_unpin(ce);
2567         return err;
2568 }
2569
2570 static void eb_unpin_engine(struct i915_execbuffer *eb)
2571 {
2572         struct intel_context *ce = eb->context, *child;
2573
2574         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2575                 return;
2576
2577         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2578
2579         for_each_child(ce, child) {
2580                 mutex_lock(&child->timeline->mutex);
2581                 intel_context_exit(child);
2582                 mutex_unlock(&child->timeline->mutex);
2583
2584                 intel_context_unpin(child);
2585         }
2586
2587         mutex_lock(&ce->timeline->mutex);
2588         intel_context_exit(ce);
2589         mutex_unlock(&ce->timeline->mutex);
2590
2591         intel_context_unpin(ce);
2592 }
2593
2594 static unsigned int
2595 eb_select_legacy_ring(struct i915_execbuffer *eb)
2596 {
2597         struct drm_i915_private *i915 = eb->i915;
2598         struct drm_i915_gem_execbuffer2 *args = eb->args;
2599         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2600
2601         if (user_ring_id != I915_EXEC_BSD &&
2602             (args->flags & I915_EXEC_BSD_MASK)) {
2603                 drm_dbg(&i915->drm,
2604                         "execbuf with non bsd ring but with invalid "
2605                         "bsd dispatch flags: %d\n", (int)(args->flags));
2606                 return -1;
2607         }
2608
2609         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2610                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2611
2612                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2613                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2614                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2615                            bsd_idx <= I915_EXEC_BSD_RING2) {
2616                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2617                         bsd_idx--;
2618                 } else {
2619                         drm_dbg(&i915->drm,
2620                                 "execbuf with unknown bsd ring: %u\n",
2621                                 bsd_idx);
2622                         return -1;
2623                 }
2624
2625                 return _VCS(bsd_idx);
2626         }
2627
2628         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2629                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2630                         user_ring_id);
2631                 return -1;
2632         }
2633
2634         return user_ring_map[user_ring_id];
2635 }
2636
2637 static int
2638 eb_select_engine(struct i915_execbuffer *eb)
2639 {
2640         struct intel_context *ce, *child;
2641         unsigned int idx;
2642         int err;
2643
2644         if (i915_gem_context_user_engines(eb->gem_context))
2645                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2646         else
2647                 idx = eb_select_legacy_ring(eb);
2648
2649         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2650         if (IS_ERR(ce))
2651                 return PTR_ERR(ce);
2652
2653         if (intel_context_is_parallel(ce)) {
2654                 if (eb->buffer_count < ce->parallel.number_children + 1) {
2655                         intel_context_put(ce);
2656                         return -EINVAL;
2657                 }
2658                 if (eb->batch_start_offset || eb->args->batch_len) {
2659                         intel_context_put(ce);
2660                         return -EINVAL;
2661                 }
2662         }
2663         eb->num_batches = ce->parallel.number_children + 1;
2664
2665         for_each_child(ce, child)
2666                 intel_context_get(child);
2667         intel_gt_pm_get(ce->engine->gt);
2668
2669         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2670                 err = intel_context_alloc_state(ce);
2671                 if (err)
2672                         goto err;
2673         }
2674         for_each_child(ce, child) {
2675                 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2676                         err = intel_context_alloc_state(child);
2677                         if (err)
2678                                 goto err;
2679                 }
2680         }
2681
2682         /*
2683          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2684          * EIO if the GPU is already wedged.
2685          */
2686         err = intel_gt_terminally_wedged(ce->engine->gt);
2687         if (err)
2688                 goto err;
2689
2690         if (!i915_vm_tryget(ce->vm)) {
2691                 err = -ENOENT;
2692                 goto err;
2693         }
2694
2695         eb->context = ce;
2696         eb->gt = ce->engine->gt;
2697
2698         /*
2699          * Make sure engine pool stays alive even if we call intel_context_put
2700          * during ww handling. The pool is destroyed when last pm reference
2701          * is dropped, which breaks our -EDEADLK handling.
2702          */
2703         return err;
2704
2705 err:
2706         intel_gt_pm_put(ce->engine->gt);
2707         for_each_child(ce, child)
2708                 intel_context_put(child);
2709         intel_context_put(ce);
2710         return err;
2711 }
2712
2713 static void
2714 eb_put_engine(struct i915_execbuffer *eb)
2715 {
2716         struct intel_context *child;
2717
2718         i915_vm_put(eb->context->vm);
2719         intel_gt_pm_put(eb->gt);
2720         for_each_child(eb->context, child)
2721                 intel_context_put(child);
2722         intel_context_put(eb->context);
2723 }
2724
2725 static void
2726 __free_fence_array(struct eb_fence *fences, unsigned int n)
2727 {
2728         while (n--) {
2729                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2730                 dma_fence_put(fences[n].dma_fence);
2731                 dma_fence_chain_free(fences[n].chain_fence);
2732         }
2733         kvfree(fences);
2734 }
2735
2736 static int
2737 add_timeline_fence_array(struct i915_execbuffer *eb,
2738                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2739 {
2740         struct drm_i915_gem_exec_fence __user *user_fences;
2741         u64 __user *user_values;
2742         struct eb_fence *f;
2743         u64 nfences;
2744         int err = 0;
2745
2746         nfences = timeline_fences->fence_count;
2747         if (!nfences)
2748                 return 0;
2749
2750         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2751         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2752         if (nfences > min_t(unsigned long,
2753                             ULONG_MAX / sizeof(*user_fences),
2754                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2755                 return -EINVAL;
2756
2757         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2758         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2759                 return -EFAULT;
2760
2761         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2762         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2763                 return -EFAULT;
2764
2765         f = krealloc(eb->fences,
2766                      (eb->num_fences + nfences) * sizeof(*f),
2767                      __GFP_NOWARN | GFP_KERNEL);
2768         if (!f)
2769                 return -ENOMEM;
2770
2771         eb->fences = f;
2772         f += eb->num_fences;
2773
2774         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2775                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2776
2777         while (nfences--) {
2778                 struct drm_i915_gem_exec_fence user_fence;
2779                 struct drm_syncobj *syncobj;
2780                 struct dma_fence *fence = NULL;
2781                 u64 point;
2782
2783                 if (__copy_from_user(&user_fence,
2784                                      user_fences++,
2785                                      sizeof(user_fence)))
2786                         return -EFAULT;
2787
2788                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2789                         return -EINVAL;
2790
2791                 if (__get_user(point, user_values++))
2792                         return -EFAULT;
2793
2794                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2795                 if (!syncobj) {
2796                         DRM_DEBUG("Invalid syncobj handle provided\n");
2797                         return -ENOENT;
2798                 }
2799
2800                 fence = drm_syncobj_fence_get(syncobj);
2801
2802                 if (!fence && user_fence.flags &&
2803                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2804                         DRM_DEBUG("Syncobj handle has no fence\n");
2805                         drm_syncobj_put(syncobj);
2806                         return -EINVAL;
2807                 }
2808
2809                 if (fence)
2810                         err = dma_fence_chain_find_seqno(&fence, point);
2811
2812                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2813                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2814                         dma_fence_put(fence);
2815                         drm_syncobj_put(syncobj);
2816                         return err;
2817                 }
2818
2819                 /*
2820                  * A point might have been signaled already and
2821                  * garbage collected from the timeline. In this case
2822                  * just ignore the point and carry on.
2823                  */
2824                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2825                         drm_syncobj_put(syncobj);
2826                         continue;
2827                 }
2828
2829                 /*
2830                  * For timeline syncobjs we need to preallocate chains for
2831                  * later signaling.
2832                  */
2833                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2834                         /*
2835                          * Waiting and signaling the same point (when point !=
2836                          * 0) would break the timeline.
2837                          */
2838                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2839                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2840                                 dma_fence_put(fence);
2841                                 drm_syncobj_put(syncobj);
2842                                 return -EINVAL;
2843                         }
2844
2845                         f->chain_fence = dma_fence_chain_alloc();
2846                         if (!f->chain_fence) {
2847                                 drm_syncobj_put(syncobj);
2848                                 dma_fence_put(fence);
2849                                 return -ENOMEM;
2850                         }
2851                 } else {
2852                         f->chain_fence = NULL;
2853                 }
2854
2855                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2856                 f->dma_fence = fence;
2857                 f->value = point;
2858                 f++;
2859                 eb->num_fences++;
2860         }
2861
2862         return 0;
2863 }
2864
2865 static int add_fence_array(struct i915_execbuffer *eb)
2866 {
2867         struct drm_i915_gem_execbuffer2 *args = eb->args;
2868         struct drm_i915_gem_exec_fence __user *user;
2869         unsigned long num_fences = args->num_cliprects;
2870         struct eb_fence *f;
2871
2872         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2873                 return 0;
2874
2875         if (!num_fences)
2876                 return 0;
2877
2878         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2879         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2880         if (num_fences > min_t(unsigned long,
2881                                ULONG_MAX / sizeof(*user),
2882                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2883                 return -EINVAL;
2884
2885         user = u64_to_user_ptr(args->cliprects_ptr);
2886         if (!access_ok(user, num_fences * sizeof(*user)))
2887                 return -EFAULT;
2888
2889         f = krealloc(eb->fences,
2890                      (eb->num_fences + num_fences) * sizeof(*f),
2891                      __GFP_NOWARN | GFP_KERNEL);
2892         if (!f)
2893                 return -ENOMEM;
2894
2895         eb->fences = f;
2896         f += eb->num_fences;
2897         while (num_fences--) {
2898                 struct drm_i915_gem_exec_fence user_fence;
2899                 struct drm_syncobj *syncobj;
2900                 struct dma_fence *fence = NULL;
2901
2902                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2903                         return -EFAULT;
2904
2905                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2906                         return -EINVAL;
2907
2908                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2909                 if (!syncobj) {
2910                         DRM_DEBUG("Invalid syncobj handle provided\n");
2911                         return -ENOENT;
2912                 }
2913
2914                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2915                         fence = drm_syncobj_fence_get(syncobj);
2916                         if (!fence) {
2917                                 DRM_DEBUG("Syncobj handle has no fence\n");
2918                                 drm_syncobj_put(syncobj);
2919                                 return -EINVAL;
2920                         }
2921                 }
2922
2923                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2924                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2925
2926                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2927                 f->dma_fence = fence;
2928                 f->value = 0;
2929                 f->chain_fence = NULL;
2930                 f++;
2931                 eb->num_fences++;
2932         }
2933
2934         return 0;
2935 }
2936
2937 static void put_fence_array(struct eb_fence *fences, int num_fences)
2938 {
2939         if (fences)
2940                 __free_fence_array(fences, num_fences);
2941 }
2942
2943 static int
2944 await_fence_array(struct i915_execbuffer *eb,
2945                   struct i915_request *rq)
2946 {
2947         unsigned int n;
2948         int err;
2949
2950         for (n = 0; n < eb->num_fences; n++) {
2951                 struct drm_syncobj *syncobj;
2952                 unsigned int flags;
2953
2954                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2955
2956                 if (!eb->fences[n].dma_fence)
2957                         continue;
2958
2959                 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2960                 if (err < 0)
2961                         return err;
2962         }
2963
2964         return 0;
2965 }
2966
2967 static void signal_fence_array(const struct i915_execbuffer *eb,
2968                                struct dma_fence * const fence)
2969 {
2970         unsigned int n;
2971
2972         for (n = 0; n < eb->num_fences; n++) {
2973                 struct drm_syncobj *syncobj;
2974                 unsigned int flags;
2975
2976                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2977                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2978                         continue;
2979
2980                 if (eb->fences[n].chain_fence) {
2981                         drm_syncobj_add_point(syncobj,
2982                                               eb->fences[n].chain_fence,
2983                                               fence,
2984                                               eb->fences[n].value);
2985                         /*
2986                          * The chain's ownership is transferred to the
2987                          * timeline.
2988                          */
2989                         eb->fences[n].chain_fence = NULL;
2990                 } else {
2991                         drm_syncobj_replace_fence(syncobj, fence);
2992                 }
2993         }
2994 }
2995
2996 static int
2997 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2998 {
2999         struct i915_execbuffer *eb = data;
3000         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3001
3002         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3003                 return -EFAULT;
3004
3005         return add_timeline_fence_array(eb, &timeline_fences);
3006 }
3007
3008 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3009 {
3010         struct i915_request *rq, *rn;
3011
3012         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3013                 if (rq == end || !i915_request_retire(rq))
3014                         break;
3015 }
3016
3017 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3018                           int err, bool last_parallel)
3019 {
3020         struct intel_timeline * const tl = i915_request_timeline(rq);
3021         struct i915_sched_attr attr = {};
3022         struct i915_request *prev;
3023
3024         lockdep_assert_held(&tl->mutex);
3025         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3026
3027         trace_i915_request_add(rq);
3028
3029         prev = __i915_request_commit(rq);
3030
3031         /* Check that the context wasn't destroyed before submission */
3032         if (likely(!intel_context_is_closed(eb->context))) {
3033                 attr = eb->gem_context->sched;
3034         } else {
3035                 /* Serialise with context_close via the add_to_timeline */
3036                 i915_request_set_error_once(rq, -ENOENT);
3037                 __i915_request_skip(rq);
3038                 err = -ENOENT; /* override any transient errors */
3039         }
3040
3041         if (intel_context_is_parallel(eb->context)) {
3042                 if (err) {
3043                         __i915_request_skip(rq);
3044                         set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3045                                 &rq->fence.flags);
3046                 }
3047                 if (last_parallel)
3048                         set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3049                                 &rq->fence.flags);
3050         }
3051
3052         __i915_request_queue(rq, &attr);
3053
3054         /* Try to clean up the client's timeline after submitting the request */
3055         if (prev)
3056                 retire_requests(tl, prev);
3057
3058         mutex_unlock(&tl->mutex);
3059
3060         return err;
3061 }
3062
3063 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3064 {
3065         int i;
3066
3067         /*
3068          * We iterate in reverse order of creation to release timeline mutexes in
3069          * same order.
3070          */
3071         for_each_batch_add_order(eb, i) {
3072                 struct i915_request *rq = eb->requests[i];
3073
3074                 if (!rq)
3075                         continue;
3076                 err |= eb_request_add(eb, rq, err, i == 0);
3077         }
3078
3079         return err;
3080 }
3081
3082 static const i915_user_extension_fn execbuf_extensions[] = {
3083         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3084 };
3085
3086 static int
3087 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3088                           struct i915_execbuffer *eb)
3089 {
3090         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3091                 return 0;
3092
3093         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3094          * have another flag also using it at the same time.
3095          */
3096         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3097                 return -EINVAL;
3098
3099         if (args->num_cliprects != 0)
3100                 return -EINVAL;
3101
3102         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3103                                     execbuf_extensions,
3104                                     ARRAY_SIZE(execbuf_extensions),
3105                                     eb);
3106 }
3107
3108 static void eb_requests_get(struct i915_execbuffer *eb)
3109 {
3110         unsigned int i;
3111
3112         for_each_batch_create_order(eb, i) {
3113                 if (!eb->requests[i])
3114                         break;
3115
3116                 i915_request_get(eb->requests[i]);
3117         }
3118 }
3119
3120 static void eb_requests_put(struct i915_execbuffer *eb)
3121 {
3122         unsigned int i;
3123
3124         for_each_batch_create_order(eb, i) {
3125                 if (!eb->requests[i])
3126                         break;
3127
3128                 i915_request_put(eb->requests[i]);
3129         }
3130 }
3131
3132 static struct sync_file *
3133 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3134 {
3135         struct sync_file *out_fence = NULL;
3136         struct dma_fence_array *fence_array;
3137         struct dma_fence **fences;
3138         unsigned int i;
3139
3140         GEM_BUG_ON(!intel_context_is_parent(eb->context));
3141
3142         fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3143         if (!fences)
3144                 return ERR_PTR(-ENOMEM);
3145
3146         for_each_batch_create_order(eb, i) {
3147                 fences[i] = &eb->requests[i]->fence;
3148                 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3149                           &eb->requests[i]->fence.flags);
3150         }
3151
3152         fence_array = dma_fence_array_create(eb->num_batches,
3153                                              fences,
3154                                              eb->context->parallel.fence_context,
3155                                              eb->context->parallel.seqno++,
3156                                              false);
3157         if (!fence_array) {
3158                 kfree(fences);
3159                 return ERR_PTR(-ENOMEM);
3160         }
3161
3162         /* Move ownership to the dma_fence_array created above */
3163         for_each_batch_create_order(eb, i)
3164                 dma_fence_get(fences[i]);
3165
3166         if (out_fence_fd != -1) {
3167                 out_fence = sync_file_create(&fence_array->base);
3168                 /* sync_file now owns fence_arry, drop creation ref */
3169                 dma_fence_put(&fence_array->base);
3170                 if (!out_fence)
3171                         return ERR_PTR(-ENOMEM);
3172         }
3173
3174         eb->composite_fence = &fence_array->base;
3175
3176         return out_fence;
3177 }
3178
3179 static struct sync_file *
3180 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3181               struct dma_fence *in_fence, int out_fence_fd)
3182 {
3183         struct sync_file *out_fence = NULL;
3184         int err;
3185
3186         if (unlikely(eb->gem_context->syncobj)) {
3187                 struct dma_fence *fence;
3188
3189                 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3190                 err = i915_request_await_dma_fence(rq, fence);
3191                 dma_fence_put(fence);
3192                 if (err)
3193                         return ERR_PTR(err);
3194         }
3195
3196         if (in_fence) {
3197                 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3198                         err = i915_request_await_execution(rq, in_fence);
3199                 else
3200                         err = i915_request_await_dma_fence(rq, in_fence);
3201                 if (err < 0)
3202                         return ERR_PTR(err);
3203         }
3204
3205         if (eb->fences) {
3206                 err = await_fence_array(eb, rq);
3207                 if (err)
3208                         return ERR_PTR(err);
3209         }
3210
3211         if (intel_context_is_parallel(eb->context)) {
3212                 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3213                 if (IS_ERR(out_fence))
3214                         return ERR_PTR(-ENOMEM);
3215         } else if (out_fence_fd != -1) {
3216                 out_fence = sync_file_create(&rq->fence);
3217                 if (!out_fence)
3218                         return ERR_PTR(-ENOMEM);
3219         }
3220
3221         return out_fence;
3222 }
3223
3224 static struct intel_context *
3225 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3226 {
3227         struct intel_context *child;
3228
3229         if (likely(context_number == 0))
3230                 return eb->context;
3231
3232         for_each_child(eb->context, child)
3233                 if (!--context_number)
3234                         return child;
3235
3236         GEM_BUG_ON("Context not found");
3237
3238         return NULL;
3239 }
3240
3241 static struct sync_file *
3242 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3243                    int out_fence_fd)
3244 {
3245         struct sync_file *out_fence = NULL;
3246         unsigned int i;
3247
3248         for_each_batch_create_order(eb, i) {
3249                 /* Allocate a request for this batch buffer nice and early. */
3250                 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3251                 if (IS_ERR(eb->requests[i])) {
3252                         out_fence = ERR_CAST(eb->requests[i]);
3253                         eb->requests[i] = NULL;
3254                         return out_fence;
3255                 }
3256
3257                 /*
3258                  * Only the first request added (committed to backend) has to
3259                  * take the in fences into account as all subsequent requests
3260                  * will have fences inserted inbetween them.
3261                  */
3262                 if (i + 1 == eb->num_batches) {
3263                         out_fence = eb_fences_add(eb, eb->requests[i],
3264                                                   in_fence, out_fence_fd);
3265                         if (IS_ERR(out_fence))
3266                                 return out_fence;
3267                 }
3268
3269                 /*
3270                  * Not really on stack, but we don't want to call
3271                  * kfree on the batch_snapshot when we put it, so use the
3272                  * _onstack interface.
3273                  */
3274                 if (eb->batches[i]->vma)
3275                         eb->requests[i]->batch_res =
3276                                 i915_vma_resource_get(eb->batches[i]->vma->resource);
3277                 if (eb->batch_pool) {
3278                         GEM_BUG_ON(intel_context_is_parallel(eb->context));
3279                         intel_gt_buffer_pool_mark_active(eb->batch_pool,
3280                                                          eb->requests[i]);
3281                 }
3282         }
3283
3284         return out_fence;
3285 }
3286
3287 static int
3288 i915_gem_do_execbuffer(struct drm_device *dev,
3289                        struct drm_file *file,
3290                        struct drm_i915_gem_execbuffer2 *args,
3291                        struct drm_i915_gem_exec_object2 *exec)
3292 {
3293         struct drm_i915_private *i915 = to_i915(dev);
3294         struct i915_execbuffer eb;
3295         struct dma_fence *in_fence = NULL;
3296         struct sync_file *out_fence = NULL;
3297         int out_fence_fd = -1;
3298         int err;
3299
3300         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3301         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3302                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3303
3304         eb.i915 = i915;
3305         eb.file = file;
3306         eb.args = args;
3307         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3308                 args->flags |= __EXEC_HAS_RELOC;
3309
3310         eb.exec = exec;
3311         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3312         eb.vma[0].vma = NULL;
3313         eb.batch_pool = NULL;
3314
3315         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3316         reloc_cache_init(&eb.reloc_cache, eb.i915);
3317
3318         eb.buffer_count = args->buffer_count;
3319         eb.batch_start_offset = args->batch_start_offset;
3320         eb.trampoline = NULL;
3321
3322         eb.fences = NULL;
3323         eb.num_fences = 0;
3324
3325         eb_capture_list_clear(&eb);
3326
3327         memset(eb.requests, 0, sizeof(struct i915_request *) *
3328                ARRAY_SIZE(eb.requests));
3329         eb.composite_fence = NULL;
3330
3331         eb.batch_flags = 0;
3332         if (args->flags & I915_EXEC_SECURE) {
3333                 if (GRAPHICS_VER(i915) >= 11)
3334                         return -ENODEV;
3335
3336                 /* Return -EPERM to trigger fallback code on old binaries. */
3337                 if (!HAS_SECURE_BATCHES(i915))
3338                         return -EPERM;
3339
3340                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3341                         return -EPERM;
3342
3343                 eb.batch_flags |= I915_DISPATCH_SECURE;
3344         }
3345         if (args->flags & I915_EXEC_IS_PINNED)
3346                 eb.batch_flags |= I915_DISPATCH_PINNED;
3347
3348         err = parse_execbuf2_extensions(args, &eb);
3349         if (err)
3350                 goto err_ext;
3351
3352         err = add_fence_array(&eb);
3353         if (err)
3354                 goto err_ext;
3355
3356 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3357         if (args->flags & IN_FENCES) {
3358                 if ((args->flags & IN_FENCES) == IN_FENCES)
3359                         return -EINVAL;
3360
3361                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3362                 if (!in_fence) {
3363                         err = -EINVAL;
3364                         goto err_ext;
3365                 }
3366         }
3367 #undef IN_FENCES
3368
3369         if (args->flags & I915_EXEC_FENCE_OUT) {
3370                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3371                 if (out_fence_fd < 0) {
3372                         err = out_fence_fd;
3373                         goto err_in_fence;
3374                 }
3375         }
3376
3377         err = eb_create(&eb);
3378         if (err)
3379                 goto err_out_fence;
3380
3381         GEM_BUG_ON(!eb.lut_size);
3382
3383         err = eb_select_context(&eb);
3384         if (unlikely(err))
3385                 goto err_destroy;
3386
3387         err = eb_select_engine(&eb);
3388         if (unlikely(err))
3389                 goto err_context;
3390
3391         err = eb_lookup_vmas(&eb);
3392         if (err) {
3393                 eb_release_vmas(&eb, true);
3394                 goto err_engine;
3395         }
3396
3397         i915_gem_ww_ctx_init(&eb.ww, true);
3398
3399         err = eb_relocate_parse(&eb);
3400         if (err) {
3401                 /*
3402                  * If the user expects the execobject.offset and
3403                  * reloc.presumed_offset to be an exact match,
3404                  * as for using NO_RELOC, then we cannot update
3405                  * the execobject.offset until we have completed
3406                  * relocation.
3407                  */
3408                 args->flags &= ~__EXEC_HAS_RELOC;
3409                 goto err_vma;
3410         }
3411
3412         ww_acquire_done(&eb.ww.ctx);
3413         eb_capture_stage(&eb);
3414
3415         out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3416         if (IS_ERR(out_fence)) {
3417                 err = PTR_ERR(out_fence);
3418                 out_fence = NULL;
3419                 if (eb.requests[0])
3420                         goto err_request;
3421                 else
3422                         goto err_vma;
3423         }
3424
3425         err = eb_submit(&eb);
3426
3427 err_request:
3428         eb_requests_get(&eb);
3429         err = eb_requests_add(&eb, err);
3430
3431         if (eb.fences)
3432                 signal_fence_array(&eb, eb.composite_fence ?
3433                                    eb.composite_fence :
3434                                    &eb.requests[0]->fence);
3435
3436         if (out_fence) {
3437                 if (err == 0) {
3438                         fd_install(out_fence_fd, out_fence->file);
3439                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3440                         args->rsvd2 |= (u64)out_fence_fd << 32;
3441                         out_fence_fd = -1;
3442                 } else {
3443                         fput(out_fence->file);
3444                 }
3445         }
3446
3447         if (unlikely(eb.gem_context->syncobj)) {
3448                 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3449                                           eb.composite_fence ?
3450                                           eb.composite_fence :
3451                                           &eb.requests[0]->fence);
3452         }
3453
3454         if (!out_fence && eb.composite_fence)
3455                 dma_fence_put(eb.composite_fence);
3456
3457         eb_requests_put(&eb);
3458
3459 err_vma:
3460         eb_release_vmas(&eb, true);
3461         WARN_ON(err == -EDEADLK);
3462         i915_gem_ww_ctx_fini(&eb.ww);
3463
3464         if (eb.batch_pool)
3465                 intel_gt_buffer_pool_put(eb.batch_pool);
3466 err_engine:
3467         eb_put_engine(&eb);
3468 err_context:
3469         i915_gem_context_put(eb.gem_context);
3470 err_destroy:
3471         eb_destroy(&eb);
3472 err_out_fence:
3473         if (out_fence_fd != -1)
3474                 put_unused_fd(out_fence_fd);
3475 err_in_fence:
3476         dma_fence_put(in_fence);
3477 err_ext:
3478         put_fence_array(eb.fences, eb.num_fences);
3479         return err;
3480 }
3481
3482 static size_t eb_element_size(void)
3483 {
3484         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3485 }
3486
3487 static bool check_buffer_count(size_t count)
3488 {
3489         const size_t sz = eb_element_size();
3490
3491         /*
3492          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3493          * array size (see eb_create()). Otherwise, we can accept an array as
3494          * large as can be addressed (though use large arrays at your peril)!
3495          */
3496
3497         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3498 }
3499
3500 int
3501 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3502                            struct drm_file *file)
3503 {
3504         struct drm_i915_private *i915 = to_i915(dev);
3505         struct drm_i915_gem_execbuffer2 *args = data;
3506         struct drm_i915_gem_exec_object2 *exec2_list;
3507         const size_t count = args->buffer_count;
3508         int err;
3509
3510         if (!check_buffer_count(count)) {
3511                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3512                 return -EINVAL;
3513         }
3514
3515         err = i915_gem_check_execbuffer(args);
3516         if (err)
3517                 return err;
3518
3519         /* Allocate extra slots for use by the command parser */
3520         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3521                                     __GFP_NOWARN | GFP_KERNEL);
3522         if (exec2_list == NULL) {
3523                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3524                         count);
3525                 return -ENOMEM;
3526         }
3527         if (copy_from_user(exec2_list,
3528                            u64_to_user_ptr(args->buffers_ptr),
3529                            sizeof(*exec2_list) * count)) {
3530                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3531                 kvfree(exec2_list);
3532                 return -EFAULT;
3533         }
3534
3535         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3536
3537         /*
3538          * Now that we have begun execution of the batchbuffer, we ignore
3539          * any new error after this point. Also given that we have already
3540          * updated the associated relocations, we try to write out the current
3541          * object locations irrespective of any error.
3542          */
3543         if (args->flags & __EXEC_HAS_RELOC) {
3544                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3545                         u64_to_user_ptr(args->buffers_ptr);
3546                 unsigned int i;
3547
3548                 /* Copy the new buffer offsets back to the user's exec list. */
3549                 /*
3550                  * Note: count * sizeof(*user_exec_list) does not overflow,
3551                  * because we checked 'count' in check_buffer_count().
3552                  *
3553                  * And this range already got effectively checked earlier
3554                  * when we did the "copy_from_user()" above.
3555                  */
3556                 if (!user_write_access_begin(user_exec_list,
3557                                              count * sizeof(*user_exec_list)))
3558                         goto end;
3559
3560                 for (i = 0; i < args->buffer_count; i++) {
3561                         if (!(exec2_list[i].offset & UPDATE))
3562                                 continue;
3563
3564                         exec2_list[i].offset =
3565                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3566                         unsafe_put_user(exec2_list[i].offset,
3567                                         &user_exec_list[i].offset,
3568                                         end_user);
3569                 }
3570 end_user:
3571                 user_write_access_end();
3572 end:;
3573         }
3574
3575         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3576         kvfree(exec2_list);
3577         return err;
3578 }