Linux 5.15.57
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <eric@anholt.net>
26  *      Jesse Barnes <jesse.barnes@intel.com>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55
56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58         return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60
61 static void
62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65         u32 enabled_bits;
66
67         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68
69         drm_WARN(&dev_priv->drm,
70                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71                  "HDMI port enabled, expecting disabled\n");
72 }
73
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76                                      enum transcoder cpu_transcoder)
77 {
78         drm_WARN(&dev_priv->drm,
79                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80                  TRANS_DDI_FUNC_ENABLE,
81                  "HDMI transcoder function enabled, expecting disabled\n");
82 }
83
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86         switch (type) {
87         case HDMI_PACKET_TYPE_GAMUT_METADATA:
88                 return VIDEO_DIP_SELECT_GAMUT;
89         case HDMI_INFOFRAME_TYPE_AVI:
90                 return VIDEO_DIP_SELECT_AVI;
91         case HDMI_INFOFRAME_TYPE_SPD:
92                 return VIDEO_DIP_SELECT_SPD;
93         case HDMI_INFOFRAME_TYPE_VENDOR:
94                 return VIDEO_DIP_SELECT_VENDOR;
95         default:
96                 MISSING_CASE(type);
97                 return 0;
98         }
99 }
100
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103         switch (type) {
104         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105                 return VIDEO_DIP_ENABLE_GCP;
106         case HDMI_PACKET_TYPE_GAMUT_METADATA:
107                 return VIDEO_DIP_ENABLE_GAMUT;
108         case DP_SDP_VSC:
109                 return 0;
110         case HDMI_INFOFRAME_TYPE_AVI:
111                 return VIDEO_DIP_ENABLE_AVI;
112         case HDMI_INFOFRAME_TYPE_SPD:
113                 return VIDEO_DIP_ENABLE_SPD;
114         case HDMI_INFOFRAME_TYPE_VENDOR:
115                 return VIDEO_DIP_ENABLE_VENDOR;
116         case HDMI_INFOFRAME_TYPE_DRM:
117                 return 0;
118         default:
119                 MISSING_CASE(type);
120                 return 0;
121         }
122 }
123
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126         switch (type) {
127         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128                 return VIDEO_DIP_ENABLE_GCP_HSW;
129         case HDMI_PACKET_TYPE_GAMUT_METADATA:
130                 return VIDEO_DIP_ENABLE_GMP_HSW;
131         case DP_SDP_VSC:
132                 return VIDEO_DIP_ENABLE_VSC_HSW;
133         case DP_SDP_PPS:
134                 return VDIP_ENABLE_PPS;
135         case HDMI_INFOFRAME_TYPE_AVI:
136                 return VIDEO_DIP_ENABLE_AVI_HSW;
137         case HDMI_INFOFRAME_TYPE_SPD:
138                 return VIDEO_DIP_ENABLE_SPD_HSW;
139         case HDMI_INFOFRAME_TYPE_VENDOR:
140                 return VIDEO_DIP_ENABLE_VS_HSW;
141         case HDMI_INFOFRAME_TYPE_DRM:
142                 return VIDEO_DIP_ENABLE_DRM_GLK;
143         default:
144                 MISSING_CASE(type);
145                 return 0;
146         }
147 }
148
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151                  enum transcoder cpu_transcoder,
152                  unsigned int type,
153                  int i)
154 {
155         switch (type) {
156         case HDMI_PACKET_TYPE_GAMUT_METADATA:
157                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158         case DP_SDP_VSC:
159                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160         case DP_SDP_PPS:
161                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162         case HDMI_INFOFRAME_TYPE_AVI:
163                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164         case HDMI_INFOFRAME_TYPE_SPD:
165                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166         case HDMI_INFOFRAME_TYPE_VENDOR:
167                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168         case HDMI_INFOFRAME_TYPE_DRM:
169                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170         default:
171                 MISSING_CASE(type);
172                 return INVALID_MMIO_REG;
173         }
174 }
175
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177                              unsigned int type)
178 {
179         switch (type) {
180         case DP_SDP_VSC:
181                 return VIDEO_DIP_VSC_DATA_SIZE;
182         case DP_SDP_PPS:
183                 return VIDEO_DIP_PPS_DATA_SIZE;
184         case HDMI_PACKET_TYPE_GAMUT_METADATA:
185                 if (DISPLAY_VER(dev_priv) >= 11)
186                         return VIDEO_DIP_GMP_DATA_SIZE;
187                 else
188                         return VIDEO_DIP_DATA_SIZE;
189         default:
190                 return VIDEO_DIP_DATA_SIZE;
191         }
192 }
193
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195                                 const struct intel_crtc_state *crtc_state,
196                                 unsigned int type,
197                                 const void *frame, ssize_t len)
198 {
199         const u32 *data = frame;
200         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202         int i;
203
204         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205                  "Writing DIP with CTL reg disabled\n");
206
207         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208         val |= g4x_infoframe_index(type);
209
210         val &= ~g4x_infoframe_enable(type);
211
212         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213
214         for (i = 0; i < len; i += 4) {
215                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216                 data++;
217         }
218         /* Write every possible data byte to force correct ECC calculation. */
219         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221
222         val |= g4x_infoframe_enable(type);
223         val &= ~VIDEO_DIP_FREQ_MASK;
224         val |= VIDEO_DIP_FREQ_VSYNC;
225
226         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231                                const struct intel_crtc_state *crtc_state,
232                                unsigned int type,
233                                void *frame, ssize_t len)
234 {
235         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236         u32 val, *data = frame;
237         int i;
238
239         val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240
241         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242         val |= g4x_infoframe_index(type);
243
244         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245
246         for (i = 0; i < len; i += 4)
247                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251                                   const struct intel_crtc_state *pipe_config)
252 {
253         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255
256         if ((val & VIDEO_DIP_ENABLE) == 0)
257                 return 0;
258
259         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260                 return 0;
261
262         return val & (VIDEO_DIP_ENABLE_AVI |
263                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267                                 const struct intel_crtc_state *crtc_state,
268                                 unsigned int type,
269                                 const void *frame, ssize_t len)
270 {
271         const u32 *data = frame;
272         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275         u32 val = intel_de_read(dev_priv, reg);
276         int i;
277
278         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279                  "Writing DIP with CTL reg disabled\n");
280
281         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282         val |= g4x_infoframe_index(type);
283
284         val &= ~g4x_infoframe_enable(type);
285
286         intel_de_write(dev_priv, reg, val);
287
288         for (i = 0; i < len; i += 4) {
289                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290                                *data);
291                 data++;
292         }
293         /* Write every possible data byte to force correct ECC calculation. */
294         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296
297         val |= g4x_infoframe_enable(type);
298         val &= ~VIDEO_DIP_FREQ_MASK;
299         val |= VIDEO_DIP_FREQ_VSYNC;
300
301         intel_de_write(dev_priv, reg, val);
302         intel_de_posting_read(dev_priv, reg);
303 }
304
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306                                const struct intel_crtc_state *crtc_state,
307                                unsigned int type,
308                                void *frame, ssize_t len)
309 {
310         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312         u32 val, *data = frame;
313         int i;
314
315         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316
317         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318         val |= g4x_infoframe_index(type);
319
320         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321
322         for (i = 0; i < len; i += 4)
323                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327                                   const struct intel_crtc_state *pipe_config)
328 {
329         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332         u32 val = intel_de_read(dev_priv, reg);
333
334         if ((val & VIDEO_DIP_ENABLE) == 0)
335                 return 0;
336
337         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338                 return 0;
339
340         return val & (VIDEO_DIP_ENABLE_AVI |
341                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346                                 const struct intel_crtc_state *crtc_state,
347                                 unsigned int type,
348                                 const void *frame, ssize_t len)
349 {
350         const u32 *data = frame;
351         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354         u32 val = intel_de_read(dev_priv, reg);
355         int i;
356
357         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358                  "Writing DIP with CTL reg disabled\n");
359
360         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361         val |= g4x_infoframe_index(type);
362
363         /* The DIP control register spec says that we need to update the AVI
364          * infoframe without clearing its enable bit */
365         if (type != HDMI_INFOFRAME_TYPE_AVI)
366                 val &= ~g4x_infoframe_enable(type);
367
368         intel_de_write(dev_priv, reg, val);
369
370         for (i = 0; i < len; i += 4) {
371                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372                                *data);
373                 data++;
374         }
375         /* Write every possible data byte to force correct ECC calculation. */
376         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378
379         val |= g4x_infoframe_enable(type);
380         val &= ~VIDEO_DIP_FREQ_MASK;
381         val |= VIDEO_DIP_FREQ_VSYNC;
382
383         intel_de_write(dev_priv, reg, val);
384         intel_de_posting_read(dev_priv, reg);
385 }
386
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388                                const struct intel_crtc_state *crtc_state,
389                                unsigned int type,
390                                void *frame, ssize_t len)
391 {
392         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394         u32 val, *data = frame;
395         int i;
396
397         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398
399         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400         val |= g4x_infoframe_index(type);
401
402         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403
404         for (i = 0; i < len; i += 4)
405                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409                                   const struct intel_crtc_state *pipe_config)
410 {
411         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414
415         if ((val & VIDEO_DIP_ENABLE) == 0)
416                 return 0;
417
418         return val & (VIDEO_DIP_ENABLE_AVI |
419                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424                                 const struct intel_crtc_state *crtc_state,
425                                 unsigned int type,
426                                 const void *frame, ssize_t len)
427 {
428         const u32 *data = frame;
429         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432         u32 val = intel_de_read(dev_priv, reg);
433         int i;
434
435         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436                  "Writing DIP with CTL reg disabled\n");
437
438         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439         val |= g4x_infoframe_index(type);
440
441         val &= ~g4x_infoframe_enable(type);
442
443         intel_de_write(dev_priv, reg, val);
444
445         for (i = 0; i < len; i += 4) {
446                 intel_de_write(dev_priv,
447                                VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448                 data++;
449         }
450         /* Write every possible data byte to force correct ECC calculation. */
451         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452                 intel_de_write(dev_priv,
453                                VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454
455         val |= g4x_infoframe_enable(type);
456         val &= ~VIDEO_DIP_FREQ_MASK;
457         val |= VIDEO_DIP_FREQ_VSYNC;
458
459         intel_de_write(dev_priv, reg, val);
460         intel_de_posting_read(dev_priv, reg);
461 }
462
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464                                const struct intel_crtc_state *crtc_state,
465                                unsigned int type,
466                                void *frame, ssize_t len)
467 {
468         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470         u32 val, *data = frame;
471         int i;
472
473         val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474
475         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476         val |= g4x_infoframe_index(type);
477
478         intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479
480         for (i = 0; i < len; i += 4)
481                 *data++ = intel_de_read(dev_priv,
482                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486                                   const struct intel_crtc_state *pipe_config)
487 {
488         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491
492         if ((val & VIDEO_DIP_ENABLE) == 0)
493                 return 0;
494
495         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496                 return 0;
497
498         return val & (VIDEO_DIP_ENABLE_AVI |
499                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504                          const struct intel_crtc_state *crtc_state,
505                          unsigned int type,
506                          const void *frame, ssize_t len)
507 {
508         const u32 *data = frame;
509         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512         int data_size;
513         int i;
514         u32 val = intel_de_read(dev_priv, ctl_reg);
515
516         data_size = hsw_dip_data_size(dev_priv, type);
517
518         drm_WARN_ON(&dev_priv->drm, len > data_size);
519
520         val &= ~hsw_infoframe_enable(type);
521         intel_de_write(dev_priv, ctl_reg, val);
522
523         for (i = 0; i < len; i += 4) {
524                 intel_de_write(dev_priv,
525                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526                                *data);
527                 data++;
528         }
529         /* Write every possible data byte to force correct ECC calculation. */
530         for (; i < data_size; i += 4)
531                 intel_de_write(dev_priv,
532                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533                                0);
534
535         /* Wa_14013475917 */
536         if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537             type == DP_SDP_VSC)
538                 return;
539
540         val |= hsw_infoframe_enable(type);
541         intel_de_write(dev_priv, ctl_reg, val);
542         intel_de_posting_read(dev_priv, ctl_reg);
543 }
544
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546                         const struct intel_crtc_state *crtc_state,
547                         unsigned int type, void *frame, ssize_t len)
548 {
549         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551         u32 *data = frame;
552         int i;
553
554         for (i = 0; i < len; i += 4)
555                 *data++ = intel_de_read(dev_priv,
556                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560                                   const struct intel_crtc_state *pipe_config)
561 {
562         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563         u32 val = intel_de_read(dev_priv,
564                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565         u32 mask;
566
567         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570
571         if (DISPLAY_VER(dev_priv) >= 10)
572                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573
574         return val & mask;
575 }
576
577 static const u8 infoframe_type_to_idx[] = {
578         HDMI_PACKET_TYPE_GENERAL_CONTROL,
579         HDMI_PACKET_TYPE_GAMUT_METADATA,
580         DP_SDP_VSC,
581         HDMI_INFOFRAME_TYPE_AVI,
582         HDMI_INFOFRAME_TYPE_SPD,
583         HDMI_INFOFRAME_TYPE_VENDOR,
584         HDMI_INFOFRAME_TYPE_DRM,
585 };
586
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592                 if (infoframe_type_to_idx[i] == type)
593                         return BIT(i);
594         }
595
596         return 0;
597 }
598
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600                                   const struct intel_crtc_state *crtc_state)
601 {
602         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604         u32 val, ret = 0;
605         int i;
606
607         val = dig_port->infoframes_enabled(encoder, crtc_state);
608
609         /* map from hardware bits to dip idx */
610         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611                 unsigned int type = infoframe_type_to_idx[i];
612
613                 if (HAS_DDI(dev_priv)) {
614                         if (val & hsw_infoframe_enable(type))
615                                 ret |= BIT(i);
616                 } else {
617                         if (val & g4x_infoframe_enable(type))
618                                 ret |= BIT(i);
619                 }
620         }
621
622         return ret;
623 }
624
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643                                   const struct intel_crtc_state *crtc_state,
644                                   enum hdmi_infoframe_type type,
645                                   const union hdmi_infoframe *frame)
646 {
647         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648         u8 buffer[VIDEO_DIP_DATA_SIZE];
649         ssize_t len;
650
651         if ((crtc_state->infoframes.enable &
652              intel_hdmi_infoframe_enable(type)) == 0)
653                 return;
654
655         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656                 return;
657
658         /* see comment above for the reason for this offset */
659         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660         if (drm_WARN_ON(encoder->base.dev, len < 0))
661                 return;
662
663         /* Insert the 'hole' (see big comment above) at position 3 */
664         memmove(&buffer[0], &buffer[1], 3);
665         buffer[3] = 0;
666         len++;
667
668         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670
671 void intel_read_infoframe(struct intel_encoder *encoder,
672                           const struct intel_crtc_state *crtc_state,
673                           enum hdmi_infoframe_type type,
674                           union hdmi_infoframe *frame)
675 {
676         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677         u8 buffer[VIDEO_DIP_DATA_SIZE];
678         int ret;
679
680         if ((crtc_state->infoframes.enable &
681              intel_hdmi_infoframe_enable(type)) == 0)
682                 return;
683
684         dig_port->read_infoframe(encoder, crtc_state,
685                                        type, buffer, sizeof(buffer));
686
687         /* Fill the 'hole' (see big comment above) at position 3 */
688         memmove(&buffer[1], &buffer[0], 3);
689
690         /* see comment above for the reason for this offset */
691         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692         if (ret) {
693                 drm_dbg_kms(encoder->base.dev,
694                             "Failed to unpack infoframe type 0x%02x\n", type);
695                 return;
696         }
697
698         if (frame->any.type != type)
699                 drm_dbg_kms(encoder->base.dev,
700                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701                             frame->any.type, type);
702 }
703
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706                                  struct intel_crtc_state *crtc_state,
707                                  struct drm_connector_state *conn_state)
708 {
709         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710         const struct drm_display_mode *adjusted_mode =
711                 &crtc_state->hw.adjusted_mode;
712         struct drm_connector *connector = conn_state->connector;
713         int ret;
714
715         if (!crtc_state->has_infoframe)
716                 return true;
717
718         crtc_state->infoframes.enable |=
719                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720
721         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722                                                        adjusted_mode);
723         if (ret)
724                 return false;
725
726         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727                 frame->colorspace = HDMI_COLORSPACE_YUV420;
728         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729                 frame->colorspace = HDMI_COLORSPACE_YUV444;
730         else
731                 frame->colorspace = HDMI_COLORSPACE_RGB;
732
733         drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734
735         /* nonsense combination */
736         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738
739         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
741                                                    adjusted_mode,
742                                                    crtc_state->limited_color_range ?
743                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
744                                                    HDMI_QUANTIZATION_RANGE_FULL);
745         } else {
746                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748         }
749
750         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751
752         /* TODO: handle pixel repetition for YCBCR420 outputs */
753
754         ret = hdmi_avi_infoframe_check(frame);
755         if (drm_WARN_ON(encoder->base.dev, ret))
756                 return false;
757
758         return true;
759 }
760
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763                                  struct intel_crtc_state *crtc_state,
764                                  struct drm_connector_state *conn_state)
765 {
766         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767         int ret;
768
769         if (!crtc_state->has_infoframe)
770                 return true;
771
772         crtc_state->infoframes.enable |=
773                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774
775         ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776         if (drm_WARN_ON(encoder->base.dev, ret))
777                 return false;
778
779         frame->sdi = HDMI_SPD_SDI_PC;
780
781         ret = hdmi_spd_infoframe_check(frame);
782         if (drm_WARN_ON(encoder->base.dev, ret))
783                 return false;
784
785         return true;
786 }
787
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790                                   struct intel_crtc_state *crtc_state,
791                                   struct drm_connector_state *conn_state)
792 {
793         struct hdmi_vendor_infoframe *frame =
794                 &crtc_state->infoframes.hdmi.vendor.hdmi;
795         const struct drm_display_info *info =
796                 &conn_state->connector->display_info;
797         int ret;
798
799         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800                 return true;
801
802         crtc_state->infoframes.enable |=
803                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804
805         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806                                                           conn_state->connector,
807                                                           &crtc_state->hw.adjusted_mode);
808         if (drm_WARN_ON(encoder->base.dev, ret))
809                 return false;
810
811         ret = hdmi_vendor_infoframe_check(frame);
812         if (drm_WARN_ON(encoder->base.dev, ret))
813                 return false;
814
815         return true;
816 }
817
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820                                  struct intel_crtc_state *crtc_state,
821                                  struct drm_connector_state *conn_state)
822 {
823         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825         int ret;
826
827         if (DISPLAY_VER(dev_priv) < 10)
828                 return true;
829
830         if (!crtc_state->has_infoframe)
831                 return true;
832
833         if (!conn_state->hdr_output_metadata)
834                 return true;
835
836         crtc_state->infoframes.enable |=
837                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838
839         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840         if (ret < 0) {
841                 drm_dbg_kms(&dev_priv->drm,
842                             "couldn't set HDR metadata in infoframe\n");
843                 return false;
844         }
845
846         ret = hdmi_drm_infoframe_check(frame);
847         if (drm_WARN_ON(&dev_priv->drm, ret))
848                 return false;
849
850         return true;
851 }
852
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854                                bool enable,
855                                const struct intel_crtc_state *crtc_state,
856                                const struct drm_connector_state *conn_state)
857 {
858         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861         i915_reg_t reg = VIDEO_DIP_CTL;
862         u32 val = intel_de_read(dev_priv, reg);
863         u32 port = VIDEO_DIP_PORT(encoder->port);
864
865         assert_hdmi_port_disabled(intel_hdmi);
866
867         /* If the registers were not initialized yet, they might be zeroes,
868          * which means we're selecting the AVI DIP and we're setting its
869          * frequency to once. This seems to really confuse the HW and make
870          * things stop working (the register spec says the AVI always needs to
871          * be sent every VSync). So here we avoid writing to the register more
872          * than we need and also explicitly select the AVI DIP and explicitly
873          * set its frequency to every VSync. Avoiding to write it twice seems to
874          * be enough to solve the problem, but being defensive shouldn't hurt us
875          * either. */
876         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877
878         if (!enable) {
879                 if (!(val & VIDEO_DIP_ENABLE))
880                         return;
881                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
882                         drm_dbg_kms(&dev_priv->drm,
883                                     "video DIP still enabled on port %c\n",
884                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
885                         return;
886                 }
887                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889                 intel_de_write(dev_priv, reg, val);
890                 intel_de_posting_read(dev_priv, reg);
891                 return;
892         }
893
894         if (port != (val & VIDEO_DIP_PORT_MASK)) {
895                 if (val & VIDEO_DIP_ENABLE) {
896                         drm_dbg_kms(&dev_priv->drm,
897                                     "video DIP already enabled on port %c\n",
898                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
899                         return;
900                 }
901                 val &= ~VIDEO_DIP_PORT_MASK;
902                 val |= port;
903         }
904
905         val |= VIDEO_DIP_ENABLE;
906         val &= ~(VIDEO_DIP_ENABLE_AVI |
907                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908
909         intel_de_write(dev_priv, reg, val);
910         intel_de_posting_read(dev_priv, reg);
911
912         intel_write_infoframe(encoder, crtc_state,
913                               HDMI_INFOFRAME_TYPE_AVI,
914                               &crtc_state->infoframes.avi);
915         intel_write_infoframe(encoder, crtc_state,
916                               HDMI_INFOFRAME_TYPE_SPD,
917                               &crtc_state->infoframes.spd);
918         intel_write_infoframe(encoder, crtc_state,
919                               HDMI_INFOFRAME_TYPE_VENDOR,
920                               &crtc_state->infoframes.hdmi);
921 }
922
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934                                        const struct drm_display_mode *mode)
935 {
936         unsigned int pixels_per_group;
937
938         switch (pipe_bpp) {
939         case 30:
940                 /* 4 pixels in 5 clocks */
941                 pixels_per_group = 4;
942                 break;
943         case 36:
944                 /* 2 pixels in 3 clocks */
945                 pixels_per_group = 2;
946                 break;
947         case 48:
948                 /* 1 pixel in 2 clocks */
949                 pixels_per_group = 1;
950                 break;
951         default:
952                 /* phase information not relevant for 8bpc */
953                 return false;
954         }
955
956         return mode->crtc_hdisplay % pixels_per_group == 0 &&
957                 mode->crtc_htotal % pixels_per_group == 0 &&
958                 mode->crtc_hblank_start % pixels_per_group == 0 &&
959                 mode->crtc_hblank_end % pixels_per_group == 0 &&
960                 mode->crtc_hsync_start % pixels_per_group == 0 &&
961                 mode->crtc_hsync_end % pixels_per_group == 0 &&
962                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963                  mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967                                          const struct intel_crtc_state *crtc_state,
968                                          const struct drm_connector_state *conn_state)
969 {
970         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972         i915_reg_t reg;
973
974         if ((crtc_state->infoframes.enable &
975              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976                 return false;
977
978         if (HAS_DDI(dev_priv))
979                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982         else if (HAS_PCH_SPLIT(dev_priv))
983                 reg = TVIDEO_DIP_GCP(crtc->pipe);
984         else
985                 return false;
986
987         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988
989         return true;
990 }
991
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993                                    struct intel_crtc_state *crtc_state)
994 {
995         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997         i915_reg_t reg;
998
999         if ((crtc_state->infoframes.enable &
1000              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001                 return;
1002
1003         if (HAS_DDI(dev_priv))
1004                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007         else if (HAS_PCH_SPLIT(dev_priv))
1008                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1009         else
1010                 return;
1011
1012         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016                                              struct intel_crtc_state *crtc_state,
1017                                              struct drm_connector_state *conn_state)
1018 {
1019         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022                 return;
1023
1024         crtc_state->infoframes.enable |=
1025                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027         /* Indicate color indication for deep color mode */
1028         if (crtc_state->pipe_bpp > 24)
1029                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031         /* Enable default_phase whenever the display mode is suitably aligned */
1032         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033                                        &crtc_state->hw.adjusted_mode))
1034                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038                                bool enable,
1039                                const struct intel_crtc_state *crtc_state,
1040                                const struct drm_connector_state *conn_state)
1041 {
1042         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047         u32 val = intel_de_read(dev_priv, reg);
1048         u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050         assert_hdmi_port_disabled(intel_hdmi);
1051
1052         /* See the big comment in g4x_set_infoframes() */
1053         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055         if (!enable) {
1056                 if (!(val & VIDEO_DIP_ENABLE))
1057                         return;
1058                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061                 intel_de_write(dev_priv, reg, val);
1062                 intel_de_posting_read(dev_priv, reg);
1063                 return;
1064         }
1065
1066         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068                          "DIP already enabled on port %c\n",
1069                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1070                 val &= ~VIDEO_DIP_PORT_MASK;
1071                 val |= port;
1072         }
1073
1074         val |= VIDEO_DIP_ENABLE;
1075         val &= ~(VIDEO_DIP_ENABLE_AVI |
1076                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080                 val |= VIDEO_DIP_ENABLE_GCP;
1081
1082         intel_de_write(dev_priv, reg, val);
1083         intel_de_posting_read(dev_priv, reg);
1084
1085         intel_write_infoframe(encoder, crtc_state,
1086                               HDMI_INFOFRAME_TYPE_AVI,
1087                               &crtc_state->infoframes.avi);
1088         intel_write_infoframe(encoder, crtc_state,
1089                               HDMI_INFOFRAME_TYPE_SPD,
1090                               &crtc_state->infoframes.spd);
1091         intel_write_infoframe(encoder, crtc_state,
1092                               HDMI_INFOFRAME_TYPE_VENDOR,
1093                               &crtc_state->infoframes.hdmi);
1094 }
1095
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097                                bool enable,
1098                                const struct intel_crtc_state *crtc_state,
1099                                const struct drm_connector_state *conn_state)
1100 {
1101         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105         u32 val = intel_de_read(dev_priv, reg);
1106
1107         assert_hdmi_port_disabled(intel_hdmi);
1108
1109         /* See the big comment in g4x_set_infoframes() */
1110         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112         if (!enable) {
1113                 if (!(val & VIDEO_DIP_ENABLE))
1114                         return;
1115                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118                 intel_de_write(dev_priv, reg, val);
1119                 intel_de_posting_read(dev_priv, reg);
1120                 return;
1121         }
1122
1123         /* Set both together, unset both together: see the spec. */
1124         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129                 val |= VIDEO_DIP_ENABLE_GCP;
1130
1131         intel_de_write(dev_priv, reg, val);
1132         intel_de_posting_read(dev_priv, reg);
1133
1134         intel_write_infoframe(encoder, crtc_state,
1135                               HDMI_INFOFRAME_TYPE_AVI,
1136                               &crtc_state->infoframes.avi);
1137         intel_write_infoframe(encoder, crtc_state,
1138                               HDMI_INFOFRAME_TYPE_SPD,
1139                               &crtc_state->infoframes.spd);
1140         intel_write_infoframe(encoder, crtc_state,
1141                               HDMI_INFOFRAME_TYPE_VENDOR,
1142                               &crtc_state->infoframes.hdmi);
1143 }
1144
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146                                bool enable,
1147                                const struct intel_crtc_state *crtc_state,
1148                                const struct drm_connector_state *conn_state)
1149 {
1150         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154         u32 val = intel_de_read(dev_priv, reg);
1155         u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157         assert_hdmi_port_disabled(intel_hdmi);
1158
1159         /* See the big comment in g4x_set_infoframes() */
1160         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162         if (!enable) {
1163                 if (!(val & VIDEO_DIP_ENABLE))
1164                         return;
1165                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168                 intel_de_write(dev_priv, reg, val);
1169                 intel_de_posting_read(dev_priv, reg);
1170                 return;
1171         }
1172
1173         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175                          "DIP already enabled on port %c\n",
1176                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1177                 val &= ~VIDEO_DIP_PORT_MASK;
1178                 val |= port;
1179         }
1180
1181         val |= VIDEO_DIP_ENABLE;
1182         val &= ~(VIDEO_DIP_ENABLE_AVI |
1183                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187                 val |= VIDEO_DIP_ENABLE_GCP;
1188
1189         intel_de_write(dev_priv, reg, val);
1190         intel_de_posting_read(dev_priv, reg);
1191
1192         intel_write_infoframe(encoder, crtc_state,
1193                               HDMI_INFOFRAME_TYPE_AVI,
1194                               &crtc_state->infoframes.avi);
1195         intel_write_infoframe(encoder, crtc_state,
1196                               HDMI_INFOFRAME_TYPE_SPD,
1197                               &crtc_state->infoframes.spd);
1198         intel_write_infoframe(encoder, crtc_state,
1199                               HDMI_INFOFRAME_TYPE_VENDOR,
1200                               &crtc_state->infoframes.hdmi);
1201 }
1202
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204                                bool enable,
1205                                const struct intel_crtc_state *crtc_state,
1206                                const struct drm_connector_state *conn_state)
1207 {
1208         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210         u32 val = intel_de_read(dev_priv, reg);
1211
1212         assert_hdmi_transcoder_func_disabled(dev_priv,
1213                                              crtc_state->cpu_transcoder);
1214
1215         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218                  VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220         if (!enable) {
1221                 intel_de_write(dev_priv, reg, val);
1222                 intel_de_posting_read(dev_priv, reg);
1223                 return;
1224         }
1225
1226         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229         intel_de_write(dev_priv, reg, val);
1230         intel_de_posting_read(dev_priv, reg);
1231
1232         intel_write_infoframe(encoder, crtc_state,
1233                               HDMI_INFOFRAME_TYPE_AVI,
1234                               &crtc_state->infoframes.avi);
1235         intel_write_infoframe(encoder, crtc_state,
1236                               HDMI_INFOFRAME_TYPE_SPD,
1237                               &crtc_state->infoframes.spd);
1238         intel_write_infoframe(encoder, crtc_state,
1239                               HDMI_INFOFRAME_TYPE_VENDOR,
1240                               &crtc_state->infoframes.hdmi);
1241         intel_write_infoframe(encoder, crtc_state,
1242                               HDMI_INFOFRAME_TYPE_DRM,
1243                               &crtc_state->infoframes.drm);
1244 }
1245
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249         struct i2c_adapter *adapter;
1250
1251         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1252                 return;
1253
1254         adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1255
1256         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1257                     enable ? "Enabling" : "Disabling");
1258
1259         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1260 }
1261
1262 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1263                                 unsigned int offset, void *buffer, size_t size)
1264 {
1265         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1266         struct intel_hdmi *hdmi = &dig_port->hdmi;
1267         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1268                                                               hdmi->ddc_bus);
1269         int ret;
1270         u8 start = offset & 0xff;
1271         struct i2c_msg msgs[] = {
1272                 {
1273                         .addr = DRM_HDCP_DDC_ADDR,
1274                         .flags = 0,
1275                         .len = 1,
1276                         .buf = &start,
1277                 },
1278                 {
1279                         .addr = DRM_HDCP_DDC_ADDR,
1280                         .flags = I2C_M_RD,
1281                         .len = size,
1282                         .buf = buffer
1283                 }
1284         };
1285         ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1286         if (ret == ARRAY_SIZE(msgs))
1287                 return 0;
1288         return ret >= 0 ? -EIO : ret;
1289 }
1290
1291 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1292                                  unsigned int offset, void *buffer, size_t size)
1293 {
1294         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1295         struct intel_hdmi *hdmi = &dig_port->hdmi;
1296         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1297                                                               hdmi->ddc_bus);
1298         int ret;
1299         u8 *write_buf;
1300         struct i2c_msg msg;
1301
1302         write_buf = kzalloc(size + 1, GFP_KERNEL);
1303         if (!write_buf)
1304                 return -ENOMEM;
1305
1306         write_buf[0] = offset & 0xff;
1307         memcpy(&write_buf[1], buffer, size);
1308
1309         msg.addr = DRM_HDCP_DDC_ADDR;
1310         msg.flags = 0,
1311         msg.len = size + 1,
1312         msg.buf = write_buf;
1313
1314         ret = i2c_transfer(adapter, &msg, 1);
1315         if (ret == 1)
1316                 ret = 0;
1317         else if (ret >= 0)
1318                 ret = -EIO;
1319
1320         kfree(write_buf);
1321         return ret;
1322 }
1323
1324 static
1325 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1326                                   u8 *an)
1327 {
1328         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1329         struct intel_hdmi *hdmi = &dig_port->hdmi;
1330         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1331                                                               hdmi->ddc_bus);
1332         int ret;
1333
1334         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1335                                     DRM_HDCP_AN_LEN);
1336         if (ret) {
1337                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1338                             ret);
1339                 return ret;
1340         }
1341
1342         ret = intel_gmbus_output_aksv(adapter);
1343         if (ret < 0) {
1344                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1345                 return ret;
1346         }
1347         return 0;
1348 }
1349
1350 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1351                                      u8 *bksv)
1352 {
1353         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1354
1355         int ret;
1356         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1357                                    DRM_HDCP_KSV_LEN);
1358         if (ret)
1359                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1360                             ret);
1361         return ret;
1362 }
1363
1364 static
1365 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1366                                  u8 *bstatus)
1367 {
1368         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1369
1370         int ret;
1371         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1372                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1373         if (ret)
1374                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1375                             ret);
1376         return ret;
1377 }
1378
1379 static
1380 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1381                                      bool *repeater_present)
1382 {
1383         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1384         int ret;
1385         u8 val;
1386
1387         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1388         if (ret) {
1389                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1390                             ret);
1391                 return ret;
1392         }
1393         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1394         return 0;
1395 }
1396
1397 static
1398 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1399                                   u8 *ri_prime)
1400 {
1401         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1402
1403         int ret;
1404         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1405                                    ri_prime, DRM_HDCP_RI_LEN);
1406         if (ret)
1407                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1408                             ret);
1409         return ret;
1410 }
1411
1412 static
1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1414                                    bool *ksv_ready)
1415 {
1416         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1417         int ret;
1418         u8 val;
1419
1420         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421         if (ret) {
1422                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1423                             ret);
1424                 return ret;
1425         }
1426         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1427         return 0;
1428 }
1429
1430 static
1431 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1432                                   int num_downstream, u8 *ksv_fifo)
1433 {
1434         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1435         int ret;
1436         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1437                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1438         if (ret) {
1439                 drm_dbg_kms(&i915->drm,
1440                             "Read ksv fifo over DDC failed (%d)\n", ret);
1441                 return ret;
1442         }
1443         return 0;
1444 }
1445
1446 static
1447 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1448                                       int i, u32 *part)
1449 {
1450         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1451         int ret;
1452
1453         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1454                 return -EINVAL;
1455
1456         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1457                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1458         if (ret)
1459                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1460                             i, ret);
1461         return ret;
1462 }
1463
1464 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1465                                            enum transcoder cpu_transcoder)
1466 {
1467         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1468         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469         struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1470         u32 scanline;
1471         int ret;
1472
1473         for (;;) {
1474                 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1475                 if (scanline > 100 && scanline < 200)
1476                         break;
1477                 usleep_range(25, 50);
1478         }
1479
1480         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1481                                          false, TRANS_DDI_HDCP_SIGNALLING);
1482         if (ret) {
1483                 drm_err(&dev_priv->drm,
1484                         "Disable HDCP signalling failed (%d)\n", ret);
1485                 return ret;
1486         }
1487
1488         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1489                                          true, TRANS_DDI_HDCP_SIGNALLING);
1490         if (ret) {
1491                 drm_err(&dev_priv->drm,
1492                         "Enable HDCP signalling failed (%d)\n", ret);
1493                 return ret;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static
1500 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1501                                       enum transcoder cpu_transcoder,
1502                                       bool enable)
1503 {
1504         struct intel_hdmi *hdmi = &dig_port->hdmi;
1505         struct intel_connector *connector = hdmi->attached_connector;
1506         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1507         int ret;
1508
1509         if (!enable)
1510                 usleep_range(6, 60); /* Bspec says >= 6us */
1511
1512         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1513                                          cpu_transcoder, enable,
1514                                          TRANS_DDI_HDCP_SIGNALLING);
1515         if (ret) {
1516                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1517                         enable ? "Enable" : "Disable", ret);
1518                 return ret;
1519         }
1520
1521         /*
1522          * WA: To fix incorrect positioning of the window of
1523          * opportunity and enc_en signalling in KABYLAKE.
1524          */
1525         if (IS_KABYLAKE(dev_priv) && enable)
1526                 return kbl_repositioning_enc_en_signal(connector,
1527                                                        cpu_transcoder);
1528
1529         return 0;
1530 }
1531
1532 static
1533 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1534                                      struct intel_connector *connector)
1535 {
1536         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1537         enum port port = dig_port->base.port;
1538         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1539         int ret;
1540         union {
1541                 u32 reg;
1542                 u8 shim[DRM_HDCP_RI_LEN];
1543         } ri;
1544
1545         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1546         if (ret)
1547                 return false;
1548
1549         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1550
1551         /* Wait for Ri prime match */
1552         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1553                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1554                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1555                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1556                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1557                                                         port)));
1558                 return false;
1559         }
1560         return true;
1561 }
1562
1563 static
1564 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1565                                 struct intel_connector *connector)
1566 {
1567         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1568         int retry;
1569
1570         for (retry = 0; retry < 3; retry++)
1571                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1572                         return true;
1573
1574         drm_err(&i915->drm, "Link check failed\n");
1575         return false;
1576 }
1577
1578 struct hdcp2_hdmi_msg_timeout {
1579         u8 msg_id;
1580         u16 timeout;
1581 };
1582
1583 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1584         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1585         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1586         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1587         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1588         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1589 };
1590
1591 static
1592 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1593                                     u8 *rx_status)
1594 {
1595         return intel_hdmi_hdcp_read(dig_port,
1596                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1597                                     rx_status,
1598                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1599 }
1600
1601 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1602 {
1603         int i;
1604
1605         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1606                 if (is_paired)
1607                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1608                 else
1609                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1610         }
1611
1612         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1613                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1614                         return hdcp2_msg_timeout[i].timeout;
1615         }
1616
1617         return -EINVAL;
1618 }
1619
1620 static int
1621 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1622                               u8 msg_id, bool *msg_ready,
1623                               ssize_t *msg_sz)
1624 {
1625         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1626         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1627         int ret;
1628
1629         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1630         if (ret < 0) {
1631                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1632                             ret);
1633                 return ret;
1634         }
1635
1636         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1637                   rx_status[0]);
1638
1639         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1640                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1641                              *msg_sz);
1642         else
1643                 *msg_ready = *msg_sz;
1644
1645         return 0;
1646 }
1647
1648 static ssize_t
1649 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1650                               u8 msg_id, bool paired)
1651 {
1652         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1653         bool msg_ready = false;
1654         int timeout, ret;
1655         ssize_t msg_sz = 0;
1656
1657         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1658         if (timeout < 0)
1659                 return timeout;
1660
1661         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1662                                                              msg_id, &msg_ready,
1663                                                              &msg_sz),
1664                          !ret && msg_ready && msg_sz, timeout * 1000,
1665                          1000, 5 * 1000);
1666         if (ret)
1667                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1668                             msg_id, ret, timeout);
1669
1670         return ret ? ret : msg_sz;
1671 }
1672
1673 static
1674 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1675                                void *buf, size_t size)
1676 {
1677         unsigned int offset;
1678
1679         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1680         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1681 }
1682
1683 static
1684 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1685                               u8 msg_id, void *buf, size_t size)
1686 {
1687         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1688         struct intel_hdmi *hdmi = &dig_port->hdmi;
1689         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1690         unsigned int offset;
1691         ssize_t ret;
1692
1693         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1694                                             hdcp->is_paired);
1695         if (ret < 0)
1696                 return ret;
1697
1698         /*
1699          * Available msg size should be equal to or lesser than the
1700          * available buffer.
1701          */
1702         if (ret > size) {
1703                 drm_dbg_kms(&i915->drm,
1704                             "msg_sz(%zd) is more than exp size(%zu)\n",
1705                             ret, size);
1706                 return -1;
1707         }
1708
1709         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1710         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1711         if (ret)
1712                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1713                             msg_id, ret);
1714
1715         return ret;
1716 }
1717
1718 static
1719 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1720                                 struct intel_connector *connector)
1721 {
1722         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1723         int ret;
1724
1725         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1726         if (ret)
1727                 return ret;
1728
1729         /*
1730          * Re-auth request and Link Integrity Failures are represented by
1731          * same bit. i.e reauth_req.
1732          */
1733         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1734                 ret = HDCP_REAUTH_REQUEST;
1735         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1736                 ret = HDCP_TOPOLOGY_CHANGE;
1737
1738         return ret;
1739 }
1740
1741 static
1742 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1743                              bool *capable)
1744 {
1745         u8 hdcp2_version;
1746         int ret;
1747
1748         *capable = false;
1749         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1750                                    &hdcp2_version, sizeof(hdcp2_version));
1751         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1752                 *capable = true;
1753
1754         return ret;
1755 }
1756
1757 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1758         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1759         .read_bksv = intel_hdmi_hdcp_read_bksv,
1760         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1761         .repeater_present = intel_hdmi_hdcp_repeater_present,
1762         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1763         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1764         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1765         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1766         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1767         .check_link = intel_hdmi_hdcp_check_link,
1768         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1769         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1770         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1771         .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1772         .protocol = HDCP_PROTOCOL_HDMI,
1773 };
1774
1775 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1776 {
1777         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1778         int max_tmds_clock, vbt_max_tmds_clock;
1779
1780         if (DISPLAY_VER(dev_priv) >= 10)
1781                 max_tmds_clock = 594000;
1782         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1783                 max_tmds_clock = 300000;
1784         else if (DISPLAY_VER(dev_priv) >= 5)
1785                 max_tmds_clock = 225000;
1786         else
1787                 max_tmds_clock = 165000;
1788
1789         vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1790         if (vbt_max_tmds_clock)
1791                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1792
1793         return max_tmds_clock;
1794 }
1795
1796 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1797                                 const struct drm_connector_state *conn_state)
1798 {
1799         return hdmi->has_hdmi_sink &&
1800                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1801 }
1802
1803 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1804                                  bool respect_downstream_limits,
1805                                  bool has_hdmi_sink)
1806 {
1807         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1808         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1809
1810         if (respect_downstream_limits) {
1811                 struct intel_connector *connector = hdmi->attached_connector;
1812                 const struct drm_display_info *info = &connector->base.display_info;
1813
1814                 if (hdmi->dp_dual_mode.max_tmds_clock)
1815                         max_tmds_clock = min(max_tmds_clock,
1816                                              hdmi->dp_dual_mode.max_tmds_clock);
1817
1818                 if (info->max_tmds_clock)
1819                         max_tmds_clock = min(max_tmds_clock,
1820                                              info->max_tmds_clock);
1821                 else if (!has_hdmi_sink)
1822                         max_tmds_clock = min(max_tmds_clock, 165000);
1823         }
1824
1825         return max_tmds_clock;
1826 }
1827
1828 static enum drm_mode_status
1829 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1830                       int clock, bool respect_downstream_limits,
1831                       bool has_hdmi_sink)
1832 {
1833         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1834         enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1835
1836         if (clock < 25000)
1837                 return MODE_CLOCK_LOW;
1838         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839                                           has_hdmi_sink))
1840                 return MODE_CLOCK_HIGH;
1841
1842         /* GLK DPLL can't generate 446-480 MHz */
1843         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844                 return MODE_CLOCK_RANGE;
1845
1846         /* BXT/GLK DPLL can't generate 223-240 MHz */
1847         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848             clock > 223333 && clock < 240000)
1849                 return MODE_CLOCK_RANGE;
1850
1851         /* CHV DPLL can't generate 216-240 MHz */
1852         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853                 return MODE_CLOCK_RANGE;
1854
1855         /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1856         if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1857                 return MODE_CLOCK_RANGE;
1858
1859         /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1860         if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1861                 return MODE_CLOCK_RANGE;
1862
1863         /*
1864          * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1865          * set of link rates.
1866          *
1867          * FIXME: We will hopefully get an algorithmic way of programming
1868          * the MPLLB for HDMI in the future.
1869          */
1870         if (IS_DG2(dev_priv))
1871                 return intel_snps_phy_check_hdmi_link_rate(clock);
1872
1873         return MODE_OK;
1874 }
1875
1876 static int intel_hdmi_port_clock(int clock, int bpc)
1877 {
1878         /*
1879          * Need to adjust the port link by:
1880          *  1.5x for 12bpc
1881          *  1.25x for 10bpc
1882          */
1883         return clock * bpc / 8;
1884 }
1885
1886 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1887                                     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1888 {
1889         struct drm_i915_private *i915 = to_i915(connector->dev);
1890         const struct drm_display_info *info = &connector->display_info;
1891         const struct drm_hdmi_info *hdmi = &info->hdmi;
1892
1893         switch (bpc) {
1894         case 12:
1895                 if (HAS_GMCH(i915))
1896                         return false;
1897
1898                 if (!has_hdmi_sink)
1899                         return false;
1900
1901                 if (ycbcr420_output)
1902                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1903                 else
1904                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1905         case 10:
1906                 if (DISPLAY_VER(i915) < 11)
1907                         return false;
1908
1909                 if (!has_hdmi_sink)
1910                         return false;
1911
1912                 if (ycbcr420_output)
1913                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1914                 else
1915                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1916         case 8:
1917                 return true;
1918         default:
1919                 MISSING_CASE(bpc);
1920                 return false;
1921         }
1922 }
1923
1924 static enum drm_mode_status
1925 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1926                             bool has_hdmi_sink, bool ycbcr420_output)
1927 {
1928         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1929         enum drm_mode_status status;
1930
1931         if (ycbcr420_output)
1932                 clock /= 2;
1933
1934         /* check if we can do 8bpc */
1935         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1936                                        true, has_hdmi_sink);
1937
1938         /* if we can't do 8bpc we may still be able to do 12bpc */
1939         if (status != MODE_OK &&
1940             intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1941                 status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1942                                                true, has_hdmi_sink);
1943
1944         /* if we can't do 8,12bpc we may still be able to do 10bpc */
1945         if (status != MODE_OK &&
1946             intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1947                 status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1948                                                true, has_hdmi_sink);
1949
1950         return status;
1951 }
1952
1953 static enum drm_mode_status
1954 intel_hdmi_mode_valid(struct drm_connector *connector,
1955                       struct drm_display_mode *mode)
1956 {
1957         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1958         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1959         enum drm_mode_status status;
1960         int clock = mode->clock;
1961         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1962         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1963         bool ycbcr_420_only;
1964
1965         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1966                 return MODE_NO_DBLESCAN;
1967
1968         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1969                 clock *= 2;
1970
1971         if (clock > max_dotclk)
1972                 return MODE_CLOCK_HIGH;
1973
1974         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1975                 if (!has_hdmi_sink)
1976                         return MODE_CLOCK_LOW;
1977                 clock *= 2;
1978         }
1979
1980         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1981
1982         status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1983         if (status != MODE_OK) {
1984                 if (ycbcr_420_only ||
1985                     !connector->ycbcr_420_allowed ||
1986                     !drm_mode_is_420_also(&connector->display_info, mode))
1987                         return status;
1988
1989                 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1990                 if (status != MODE_OK)
1991                         return status;
1992         }
1993
1994         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1995 }
1996
1997 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1998                                     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1999 {
2000         struct drm_atomic_state *state = crtc_state->uapi.state;
2001         struct drm_connector_state *connector_state;
2002         struct drm_connector *connector;
2003         int i;
2004
2005         if (crtc_state->pipe_bpp < bpc * 3)
2006                 return false;
2007
2008         for_each_new_connector_in_state(state, connector, connector_state, i) {
2009                 if (connector_state->crtc != crtc_state->uapi.crtc)
2010                         continue;
2011
2012                 if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2013                         return false;
2014         }
2015
2016         return true;
2017 }
2018
2019 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2020                                      int bpc)
2021 {
2022         struct drm_i915_private *dev_priv =
2023                 to_i915(crtc_state->uapi.crtc->dev);
2024         const struct drm_display_mode *adjusted_mode =
2025                 &crtc_state->hw.adjusted_mode;
2026
2027         /*
2028          * HDMI deep color affects the clocks, so it's only possible
2029          * when not cloning with other encoder types.
2030          */
2031         if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2032                 return false;
2033
2034         /* Display Wa_1405510057:icl,ehl */
2035         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2036             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2037             (adjusted_mode->crtc_hblank_end -
2038              adjusted_mode->crtc_hblank_start) % 8 == 2)
2039                 return false;
2040
2041         return intel_hdmi_deep_color_possible(crtc_state, bpc,
2042                                               crtc_state->has_hdmi_sink,
2043                                               crtc_state->output_format ==
2044                                               INTEL_OUTPUT_FORMAT_YCBCR420);
2045 }
2046
2047 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2048                                   struct intel_crtc_state *crtc_state,
2049                                   int clock)
2050 {
2051         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2052         int bpc;
2053
2054         for (bpc = 12; bpc >= 10; bpc -= 2) {
2055                 if (hdmi_deep_color_possible(crtc_state, bpc) &&
2056                     hdmi_port_clock_valid(intel_hdmi,
2057                                           intel_hdmi_port_clock(clock, bpc),
2058                                           true, crtc_state->has_hdmi_sink) == MODE_OK)
2059                         return bpc;
2060         }
2061
2062         return 8;
2063 }
2064
2065 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2066                                     struct intel_crtc_state *crtc_state)
2067 {
2068         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2069         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2070         const struct drm_display_mode *adjusted_mode =
2071                 &crtc_state->hw.adjusted_mode;
2072         int bpc, clock = adjusted_mode->crtc_clock;
2073
2074         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2075                 clock *= 2;
2076
2077         /* YCBCR420 TMDS rate requirement is half the pixel clock */
2078         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2079                 clock /= 2;
2080
2081         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2082
2083         crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2084
2085         /*
2086          * pipe_bpp could already be below 8bpc due to
2087          * FDI bandwidth constraints. We shouldn't bump it
2088          * back up to 8bpc in that case.
2089          */
2090         if (crtc_state->pipe_bpp > bpc * 3)
2091                 crtc_state->pipe_bpp = bpc * 3;
2092
2093         drm_dbg_kms(&i915->drm,
2094                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2095                     bpc, crtc_state->pipe_bpp);
2096
2097         if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2098                                   false, crtc_state->has_hdmi_sink) != MODE_OK) {
2099                 drm_dbg_kms(&i915->drm,
2100                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2101                             crtc_state->port_clock);
2102                 return -EINVAL;
2103         }
2104
2105         return 0;
2106 }
2107
2108 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2109                                     const struct drm_connector_state *conn_state)
2110 {
2111         const struct intel_digital_connector_state *intel_conn_state =
2112                 to_intel_digital_connector_state(conn_state);
2113         const struct drm_display_mode *adjusted_mode =
2114                 &crtc_state->hw.adjusted_mode;
2115
2116         /*
2117          * Our YCbCr output is always limited range.
2118          * crtc_state->limited_color_range only applies to RGB,
2119          * and it must never be set for YCbCr or we risk setting
2120          * some conflicting bits in PIPECONF which will mess up
2121          * the colors on the monitor.
2122          */
2123         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2124                 return false;
2125
2126         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2127                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2128                 return crtc_state->has_hdmi_sink &&
2129                         drm_default_rgb_quant_range(adjusted_mode) ==
2130                         HDMI_QUANTIZATION_RANGE_LIMITED;
2131         } else {
2132                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2133         }
2134 }
2135
2136 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2137                                  const struct intel_crtc_state *crtc_state,
2138                                  const struct drm_connector_state *conn_state)
2139 {
2140         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2141         const struct intel_digital_connector_state *intel_conn_state =
2142                 to_intel_digital_connector_state(conn_state);
2143
2144         if (!crtc_state->has_hdmi_sink)
2145                 return false;
2146
2147         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2148                 return intel_hdmi->has_audio;
2149         else
2150                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2151 }
2152
2153 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2154                                             struct intel_crtc_state *crtc_state,
2155                                             const struct drm_connector_state *conn_state)
2156 {
2157         struct drm_connector *connector = conn_state->connector;
2158         struct drm_i915_private *i915 = to_i915(connector->dev);
2159         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2160         int ret;
2161         bool ycbcr_420_only;
2162
2163         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2164         if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2165                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2166         } else {
2167                 if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2168                         drm_dbg_kms(&i915->drm,
2169                                     "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2170                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2171         }
2172
2173         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2174         if (ret) {
2175                 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2176                     connector->ycbcr_420_allowed &&
2177                     drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2178                         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2179                         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2180                 }
2181         }
2182
2183         return ret;
2184 }
2185
2186 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2187                               struct intel_crtc_state *pipe_config,
2188                               struct drm_connector_state *conn_state)
2189 {
2190         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2191         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2192         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2193         struct drm_connector *connector = conn_state->connector;
2194         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2195         int ret;
2196
2197         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2198                 return -EINVAL;
2199
2200         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2201         pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2202                                                          conn_state);
2203
2204         if (pipe_config->has_hdmi_sink)
2205                 pipe_config->has_infoframe = true;
2206
2207         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2208                 pipe_config->pixel_multiplier = 2;
2209
2210         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2211                 pipe_config->has_pch_encoder = true;
2212
2213         pipe_config->has_audio =
2214                 intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2215
2216         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2217         if (ret)
2218                 return ret;
2219
2220         if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2221                 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2222                 if (ret)
2223                         return ret;
2224         }
2225
2226         pipe_config->limited_color_range =
2227                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2228
2229         if (conn_state->picture_aspect_ratio)
2230                 adjusted_mode->picture_aspect_ratio =
2231                         conn_state->picture_aspect_ratio;
2232
2233         pipe_config->lane_count = 4;
2234
2235         if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2236                 if (scdc->scrambling.low_rates)
2237                         pipe_config->hdmi_scrambling = true;
2238
2239                 if (pipe_config->port_clock > 340000) {
2240                         pipe_config->hdmi_scrambling = true;
2241                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2242                 }
2243         }
2244
2245         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2246                                          conn_state);
2247
2248         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2249                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2250                 return -EINVAL;
2251         }
2252
2253         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2254                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2255                 return -EINVAL;
2256         }
2257
2258         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2259                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2260                 return -EINVAL;
2261         }
2262
2263         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2264                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2265                 return -EINVAL;
2266         }
2267
2268         return 0;
2269 }
2270
2271 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2272 {
2273         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2274
2275         /*
2276          * Give a hand to buggy BIOSen which forget to turn
2277          * the TMDS output buffers back on after a reboot.
2278          */
2279         intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2280 }
2281
2282 static void
2283 intel_hdmi_unset_edid(struct drm_connector *connector)
2284 {
2285         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2286
2287         intel_hdmi->has_hdmi_sink = false;
2288         intel_hdmi->has_audio = false;
2289
2290         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2291         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2292
2293         kfree(to_intel_connector(connector)->detect_edid);
2294         to_intel_connector(connector)->detect_edid = NULL;
2295 }
2296
2297 static void
2298 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2299 {
2300         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2301         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2302         enum port port = hdmi_to_dig_port(hdmi)->base.port;
2303         struct i2c_adapter *adapter =
2304                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2305         enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2306
2307         /*
2308          * Type 1 DVI adaptors are not required to implement any
2309          * registers, so we can't always detect their presence.
2310          * Ideally we should be able to check the state of the
2311          * CONFIG1 pin, but no such luck on our hardware.
2312          *
2313          * The only method left to us is to check the VBT to see
2314          * if the port is a dual mode capable DP port. But let's
2315          * only do that when we sucesfully read the EDID, to avoid
2316          * confusing log messages about DP dual mode adaptors when
2317          * there's nothing connected to the port.
2318          */
2319         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2320                 /* An overridden EDID imply that we want this port for testing.
2321                  * Make sure not to set limits for that port.
2322                  */
2323                 if (has_edid && !connector->override_edid &&
2324                     intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2325                         drm_dbg_kms(&dev_priv->drm,
2326                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2327                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2328                 } else {
2329                         type = DRM_DP_DUAL_MODE_NONE;
2330                 }
2331         }
2332
2333         if (type == DRM_DP_DUAL_MODE_NONE)
2334                 return;
2335
2336         hdmi->dp_dual_mode.type = type;
2337         hdmi->dp_dual_mode.max_tmds_clock =
2338                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2339
2340         drm_dbg_kms(&dev_priv->drm,
2341                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2342                     drm_dp_get_dual_mode_type_name(type),
2343                     hdmi->dp_dual_mode.max_tmds_clock);
2344 }
2345
2346 static bool
2347 intel_hdmi_set_edid(struct drm_connector *connector)
2348 {
2349         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2350         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2351         intel_wakeref_t wakeref;
2352         struct edid *edid;
2353         bool connected = false;
2354         struct i2c_adapter *i2c;
2355
2356         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2357
2358         i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2359
2360         edid = drm_get_edid(connector, i2c);
2361
2362         if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2363                 drm_dbg_kms(&dev_priv->drm,
2364                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2365                 intel_gmbus_force_bit(i2c, true);
2366                 edid = drm_get_edid(connector, i2c);
2367                 intel_gmbus_force_bit(i2c, false);
2368         }
2369
2370         intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2371
2372         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2373
2374         to_intel_connector(connector)->detect_edid = edid;
2375         if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2376                 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2377                 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2378
2379                 connected = true;
2380         }
2381
2382         cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2383
2384         return connected;
2385 }
2386
2387 static enum drm_connector_status
2388 intel_hdmi_detect(struct drm_connector *connector, bool force)
2389 {
2390         enum drm_connector_status status = connector_status_disconnected;
2391         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2392         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2393         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2394         intel_wakeref_t wakeref;
2395
2396         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2397                     connector->base.id, connector->name);
2398
2399         if (!INTEL_DISPLAY_ENABLED(dev_priv))
2400                 return connector_status_disconnected;
2401
2402         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2403
2404         if (DISPLAY_VER(dev_priv) >= 11 &&
2405             !intel_digital_port_connected(encoder))
2406                 goto out;
2407
2408         intel_hdmi_unset_edid(connector);
2409
2410         if (intel_hdmi_set_edid(connector))
2411                 status = connector_status_connected;
2412
2413 out:
2414         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2415
2416         if (status != connector_status_connected)
2417                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2418
2419         /*
2420          * Make sure the refs for power wells enabled during detect are
2421          * dropped to avoid a new detect cycle triggered by HPD polling.
2422          */
2423         intel_display_power_flush_work(dev_priv);
2424
2425         return status;
2426 }
2427
2428 static void
2429 intel_hdmi_force(struct drm_connector *connector)
2430 {
2431         struct drm_i915_private *i915 = to_i915(connector->dev);
2432
2433         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2434                     connector->base.id, connector->name);
2435
2436         intel_hdmi_unset_edid(connector);
2437
2438         if (connector->status != connector_status_connected)
2439                 return;
2440
2441         intel_hdmi_set_edid(connector);
2442 }
2443
2444 static int intel_hdmi_get_modes(struct drm_connector *connector)
2445 {
2446         struct edid *edid;
2447
2448         edid = to_intel_connector(connector)->detect_edid;
2449         if (edid == NULL)
2450                 return 0;
2451
2452         return intel_connector_update_modes(connector, edid);
2453 }
2454
2455 static struct i2c_adapter *
2456 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2457 {
2458         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2459         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2460
2461         return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2462 }
2463
2464 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2465 {
2466         struct drm_i915_private *i915 = to_i915(connector->dev);
2467         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2468         struct kobject *i2c_kobj = &adapter->dev.kobj;
2469         struct kobject *connector_kobj = &connector->kdev->kobj;
2470         int ret;
2471
2472         ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2473         if (ret)
2474                 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2475 }
2476
2477 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2478 {
2479         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2480         struct kobject *i2c_kobj = &adapter->dev.kobj;
2481         struct kobject *connector_kobj = &connector->kdev->kobj;
2482
2483         sysfs_remove_link(connector_kobj, i2c_kobj->name);
2484 }
2485
2486 static int
2487 intel_hdmi_connector_register(struct drm_connector *connector)
2488 {
2489         int ret;
2490
2491         ret = intel_connector_register(connector);
2492         if (ret)
2493                 return ret;
2494
2495         intel_hdmi_create_i2c_symlink(connector);
2496
2497         return ret;
2498 }
2499
2500 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2501 {
2502         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2503
2504         cec_notifier_conn_unregister(n);
2505
2506         intel_hdmi_remove_i2c_symlink(connector);
2507         intel_connector_unregister(connector);
2508 }
2509
2510 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2511         .detect = intel_hdmi_detect,
2512         .force = intel_hdmi_force,
2513         .fill_modes = drm_helper_probe_single_connector_modes,
2514         .atomic_get_property = intel_digital_connector_atomic_get_property,
2515         .atomic_set_property = intel_digital_connector_atomic_set_property,
2516         .late_register = intel_hdmi_connector_register,
2517         .early_unregister = intel_hdmi_connector_unregister,
2518         .destroy = intel_connector_destroy,
2519         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2520         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2521 };
2522
2523 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2524         .get_modes = intel_hdmi_get_modes,
2525         .mode_valid = intel_hdmi_mode_valid,
2526         .atomic_check = intel_digital_connector_atomic_check,
2527 };
2528
2529 static void
2530 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2531 {
2532         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2533
2534         intel_attach_force_audio_property(connector);
2535         intel_attach_broadcast_rgb_property(connector);
2536         intel_attach_aspect_ratio_property(connector);
2537
2538         intel_attach_hdmi_colorspace_property(connector);
2539         drm_connector_attach_content_type_property(connector);
2540
2541         if (DISPLAY_VER(dev_priv) >= 10)
2542                 drm_connector_attach_hdr_output_metadata_property(connector);
2543
2544         if (!HAS_GMCH(dev_priv))
2545                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2546 }
2547
2548 /*
2549  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2550  * @encoder: intel_encoder
2551  * @connector: drm_connector
2552  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2553  *  or reset the high tmds clock ratio for scrambling
2554  * @scrambling: bool to Indicate if the function needs to set or reset
2555  *  sink scrambling
2556  *
2557  * This function handles scrambling on HDMI 2.0 capable sinks.
2558  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2559  * it enables scrambling. This should be called before enabling the HDMI
2560  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2561  * detect a scrambled clock within 100 ms.
2562  *
2563  * Returns:
2564  * True on success, false on failure.
2565  */
2566 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2567                                        struct drm_connector *connector,
2568                                        bool high_tmds_clock_ratio,
2569                                        bool scrambling)
2570 {
2571         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2572         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2573         struct drm_scrambling *sink_scrambling =
2574                 &connector->display_info.hdmi.scdc.scrambling;
2575         struct i2c_adapter *adapter =
2576                 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2577
2578         if (!sink_scrambling->supported)
2579                 return true;
2580
2581         drm_dbg_kms(&dev_priv->drm,
2582                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2583                     connector->base.id, connector->name,
2584                     yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2585
2586         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2587         return drm_scdc_set_high_tmds_clock_ratio(adapter,
2588                                                   high_tmds_clock_ratio) &&
2589                 drm_scdc_set_scrambling(adapter, scrambling);
2590 }
2591
2592 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2593 {
2594         u8 ddc_pin;
2595
2596         switch (port) {
2597         case PORT_B:
2598                 ddc_pin = GMBUS_PIN_DPB;
2599                 break;
2600         case PORT_C:
2601                 ddc_pin = GMBUS_PIN_DPC;
2602                 break;
2603         case PORT_D:
2604                 ddc_pin = GMBUS_PIN_DPD_CHV;
2605                 break;
2606         default:
2607                 MISSING_CASE(port);
2608                 ddc_pin = GMBUS_PIN_DPB;
2609                 break;
2610         }
2611         return ddc_pin;
2612 }
2613
2614 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2615 {
2616         u8 ddc_pin;
2617
2618         switch (port) {
2619         case PORT_B:
2620                 ddc_pin = GMBUS_PIN_1_BXT;
2621                 break;
2622         case PORT_C:
2623                 ddc_pin = GMBUS_PIN_2_BXT;
2624                 break;
2625         default:
2626                 MISSING_CASE(port);
2627                 ddc_pin = GMBUS_PIN_1_BXT;
2628                 break;
2629         }
2630         return ddc_pin;
2631 }
2632
2633 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2634                               enum port port)
2635 {
2636         u8 ddc_pin;
2637
2638         switch (port) {
2639         case PORT_B:
2640                 ddc_pin = GMBUS_PIN_1_BXT;
2641                 break;
2642         case PORT_C:
2643                 ddc_pin = GMBUS_PIN_2_BXT;
2644                 break;
2645         case PORT_D:
2646                 ddc_pin = GMBUS_PIN_4_CNP;
2647                 break;
2648         case PORT_F:
2649                 ddc_pin = GMBUS_PIN_3_BXT;
2650                 break;
2651         default:
2652                 MISSING_CASE(port);
2653                 ddc_pin = GMBUS_PIN_1_BXT;
2654                 break;
2655         }
2656         return ddc_pin;
2657 }
2658
2659 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2660 {
2661         enum phy phy = intel_port_to_phy(dev_priv, port);
2662
2663         if (intel_phy_is_combo(dev_priv, phy))
2664                 return GMBUS_PIN_1_BXT + port;
2665         else if (intel_phy_is_tc(dev_priv, phy))
2666                 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2667
2668         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2669         return GMBUS_PIN_2_BXT;
2670 }
2671
2672 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2673 {
2674         enum phy phy = intel_port_to_phy(dev_priv, port);
2675         u8 ddc_pin;
2676
2677         switch (phy) {
2678         case PHY_A:
2679                 ddc_pin = GMBUS_PIN_1_BXT;
2680                 break;
2681         case PHY_B:
2682                 ddc_pin = GMBUS_PIN_2_BXT;
2683                 break;
2684         case PHY_C:
2685                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2686                 break;
2687         default:
2688                 MISSING_CASE(phy);
2689                 ddc_pin = GMBUS_PIN_1_BXT;
2690                 break;
2691         }
2692         return ddc_pin;
2693 }
2694
2695 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2696 {
2697         enum phy phy = intel_port_to_phy(dev_priv, port);
2698
2699         WARN_ON(port == PORT_C);
2700
2701         /*
2702          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2703          * final two outputs use type-c pins, even though they're actually
2704          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2705          * all outputs.
2706          */
2707         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2708                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2709
2710         return GMBUS_PIN_1_BXT + phy;
2711 }
2712
2713 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2714 {
2715         enum phy phy = intel_port_to_phy(i915, port);
2716
2717         drm_WARN_ON(&i915->drm, port == PORT_A);
2718
2719         /*
2720          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2721          * final two outputs use type-c pins, even though they're actually
2722          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2723          * all outputs.
2724          */
2725         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2726                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2727
2728         return GMBUS_PIN_1_BXT + phy;
2729 }
2730
2731 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2732 {
2733         return intel_port_to_phy(dev_priv, port) + 1;
2734 }
2735
2736 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2737 {
2738         enum phy phy = intel_port_to_phy(dev_priv, port);
2739
2740         WARN_ON(port == PORT_B || port == PORT_C);
2741
2742         /*
2743          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2744          * except first combo output.
2745          */
2746         if (phy == PHY_A)
2747                 return GMBUS_PIN_1_BXT;
2748
2749         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2750 }
2751
2752 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2753                               enum port port)
2754 {
2755         u8 ddc_pin;
2756
2757         switch (port) {
2758         case PORT_B:
2759                 ddc_pin = GMBUS_PIN_DPB;
2760                 break;
2761         case PORT_C:
2762                 ddc_pin = GMBUS_PIN_DPC;
2763                 break;
2764         case PORT_D:
2765                 ddc_pin = GMBUS_PIN_DPD;
2766                 break;
2767         default:
2768                 MISSING_CASE(port);
2769                 ddc_pin = GMBUS_PIN_DPB;
2770                 break;
2771         }
2772         return ddc_pin;
2773 }
2774
2775 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2776 {
2777         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2778         enum port port = encoder->port;
2779         u8 ddc_pin;
2780
2781         ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2782         if (ddc_pin) {
2783                 drm_dbg_kms(&dev_priv->drm,
2784                             "Using DDC pin 0x%x for port %c (VBT)\n",
2785                             ddc_pin, port_name(port));
2786                 return ddc_pin;
2787         }
2788
2789         if (IS_ALDERLAKE_S(dev_priv))
2790                 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2791         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2792                 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2793         else if (IS_ROCKETLAKE(dev_priv))
2794                 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2795         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2796                 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2797         else if (HAS_PCH_MCC(dev_priv))
2798                 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2799         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2800                 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2801         else if (HAS_PCH_CNP(dev_priv))
2802                 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2803         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2804                 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2805         else if (IS_CHERRYVIEW(dev_priv))
2806                 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2807         else
2808                 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2809
2810         drm_dbg_kms(&dev_priv->drm,
2811                     "Using DDC pin 0x%x for port %c (platform default)\n",
2812                     ddc_pin, port_name(port));
2813
2814         return ddc_pin;
2815 }
2816
2817 void intel_infoframe_init(struct intel_digital_port *dig_port)
2818 {
2819         struct drm_i915_private *dev_priv =
2820                 to_i915(dig_port->base.base.dev);
2821
2822         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2823                 dig_port->write_infoframe = vlv_write_infoframe;
2824                 dig_port->read_infoframe = vlv_read_infoframe;
2825                 dig_port->set_infoframes = vlv_set_infoframes;
2826                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2827         } else if (IS_G4X(dev_priv)) {
2828                 dig_port->write_infoframe = g4x_write_infoframe;
2829                 dig_port->read_infoframe = g4x_read_infoframe;
2830                 dig_port->set_infoframes = g4x_set_infoframes;
2831                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2832         } else if (HAS_DDI(dev_priv)) {
2833                 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2834                         dig_port->write_infoframe = lspcon_write_infoframe;
2835                         dig_port->read_infoframe = lspcon_read_infoframe;
2836                         dig_port->set_infoframes = lspcon_set_infoframes;
2837                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2838                 } else {
2839                         dig_port->write_infoframe = hsw_write_infoframe;
2840                         dig_port->read_infoframe = hsw_read_infoframe;
2841                         dig_port->set_infoframes = hsw_set_infoframes;
2842                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2843                 }
2844         } else if (HAS_PCH_IBX(dev_priv)) {
2845                 dig_port->write_infoframe = ibx_write_infoframe;
2846                 dig_port->read_infoframe = ibx_read_infoframe;
2847                 dig_port->set_infoframes = ibx_set_infoframes;
2848                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2849         } else {
2850                 dig_port->write_infoframe = cpt_write_infoframe;
2851                 dig_port->read_infoframe = cpt_read_infoframe;
2852                 dig_port->set_infoframes = cpt_set_infoframes;
2853                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2854         }
2855 }
2856
2857 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2858                                struct intel_connector *intel_connector)
2859 {
2860         struct drm_connector *connector = &intel_connector->base;
2861         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2862         struct intel_encoder *intel_encoder = &dig_port->base;
2863         struct drm_device *dev = intel_encoder->base.dev;
2864         struct drm_i915_private *dev_priv = to_i915(dev);
2865         struct i2c_adapter *ddc;
2866         enum port port = intel_encoder->port;
2867         struct cec_connector_info conn_info;
2868
2869         drm_dbg_kms(&dev_priv->drm,
2870                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
2871                     intel_encoder->base.base.id, intel_encoder->base.name);
2872
2873         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2874                 return;
2875
2876         if (drm_WARN(dev, dig_port->max_lanes < 4,
2877                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2878                      dig_port->max_lanes, intel_encoder->base.base.id,
2879                      intel_encoder->base.name))
2880                 return;
2881
2882         intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2883         ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2884
2885         drm_connector_init_with_ddc(dev, connector,
2886                                     &intel_hdmi_connector_funcs,
2887                                     DRM_MODE_CONNECTOR_HDMIA,
2888                                     ddc);
2889         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2890
2891         connector->interlace_allowed = 1;
2892         connector->doublescan_allowed = 0;
2893         connector->stereo_allowed = 1;
2894
2895         if (DISPLAY_VER(dev_priv) >= 10)
2896                 connector->ycbcr_420_allowed = true;
2897
2898         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2899
2900         if (HAS_DDI(dev_priv))
2901                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2902         else
2903                 intel_connector->get_hw_state = intel_connector_get_hw_state;
2904
2905         intel_hdmi_add_properties(intel_hdmi, connector);
2906
2907         intel_connector_attach_encoder(intel_connector, intel_encoder);
2908         intel_hdmi->attached_connector = intel_connector;
2909
2910         if (is_hdcp_supported(dev_priv, port)) {
2911                 int ret = intel_hdcp_init(intel_connector, dig_port,
2912                                           &intel_hdmi_hdcp_shim);
2913                 if (ret)
2914                         drm_dbg_kms(&dev_priv->drm,
2915                                     "HDCP init failed, skipping.\n");
2916         }
2917
2918         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2919          * 0xd.  Failure to do so will result in spurious interrupts being
2920          * generated on the port when a cable is not attached.
2921          */
2922         if (IS_G45(dev_priv)) {
2923                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2924                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2925                                (temp & ~0xf) | 0xd);
2926         }
2927
2928         cec_fill_conn_info_from_drm(&conn_info, connector);
2929
2930         intel_hdmi->cec_notifier =
2931                 cec_notifier_conn_register(dev->dev, port_identifier(port),
2932                                            &conn_info);
2933         if (!intel_hdmi->cec_notifier)
2934                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2935 }
2936
2937 /*
2938  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2939  * @vactive: Vactive of a display mode
2940  *
2941  * @return: appropriate dsc slice height for a given mode.
2942  */
2943 int intel_hdmi_dsc_get_slice_height(int vactive)
2944 {
2945         int slice_height;
2946
2947         /*
2948          * Slice Height determination : HDMI2.1 Section 7.7.5.2
2949          * Select smallest slice height >=96, that results in a valid PPS and
2950          * requires minimum padding lines required for final slice.
2951          *
2952          * Assumption : Vactive is even.
2953          */
2954         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2955                 if (vactive % slice_height == 0)
2956                         return slice_height;
2957
2958         return 0;
2959 }
2960
2961 /*
2962  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2963  * and dsc decoder capabilities
2964  *
2965  * @crtc_state: intel crtc_state
2966  * @src_max_slices: maximum slices supported by the DSC encoder
2967  * @src_max_slice_width: maximum slice width supported by DSC encoder
2968  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2969  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2970  *
2971  * @return: num of dsc slices that can be supported by the dsc encoder
2972  * and decoder.
2973  */
2974 int
2975 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2976                               int src_max_slices, int src_max_slice_width,
2977                               int hdmi_max_slices, int hdmi_throughput)
2978 {
2979 /* Pixel rates in KPixels/sec */
2980 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
2981 /*
2982  * Rates at which the source and sink are required to process pixels in each
2983  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2984  */
2985 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
2986 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
2987
2988 /* Spec limits the slice width to 2720 pixels */
2989 #define MAX_HDMI_SLICE_WIDTH                    2720
2990         int kslice_adjust;
2991         int adjusted_clk_khz;
2992         int min_slices;
2993         int target_slices;
2994         int max_throughput; /* max clock freq. in khz per slice */
2995         int max_slice_width;
2996         int slice_width;
2997         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2998
2999         if (!hdmi_throughput)
3000                 return 0;
3001
3002         /*
3003          * Slice Width determination : HDMI2.1 Section 7.7.5.1
3004          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3005          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3006          * dividing adjusted clock value by 10.
3007          */
3008         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3009             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3010                 kslice_adjust = 10;
3011         else
3012                 kslice_adjust = 5;
3013
3014         /*
3015          * As per spec, the rate at which the source and the sink process
3016          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3017          * This depends upon the pixel clock rate and output formats
3018          * (kslice adjust).
3019          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3020          * at max 340MHz, otherwise they can be processed at max 400MHz.
3021          */
3022
3023         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3024
3025         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3026                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3027         else
3028                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3029
3030         /*
3031          * Taking into account the sink's capability for maximum
3032          * clock per slice (in MHz) as read from HF-VSDB.
3033          */
3034         max_throughput = min(max_throughput, hdmi_throughput * 1000);
3035
3036         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3037         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3038
3039         /*
3040          * Keep on increasing the num of slices/line, starting from min_slices
3041          * per line till we get such a number, for which the slice_width is
3042          * just less than max_slice_width. The slices/line selected should be
3043          * less than or equal to the max horizontal slices that the combination
3044          * of PCON encoder and HDMI decoder can support.
3045          */
3046         slice_width = max_slice_width;
3047
3048         do {
3049                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3050                         target_slices = 1;
3051                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3052                         target_slices = 2;
3053                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3054                         target_slices = 4;
3055                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3056                         target_slices = 8;
3057                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3058                         target_slices = 12;
3059                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3060                         target_slices = 16;
3061                 else
3062                         return 0;
3063
3064                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3065                 if (slice_width >= max_slice_width)
3066                         min_slices = target_slices + 1;
3067         } while (slice_width >= max_slice_width);
3068
3069         return target_slices;
3070 }
3071
3072 /*
3073  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3074  * source and sink capabilities.
3075  *
3076  * @src_fraction_bpp: fractional bpp supported by the source
3077  * @slice_width: dsc slice width supported by the source and sink
3078  * @num_slices: num of slices supported by the source and sink
3079  * @output_format: video output format
3080  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3081  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3082  *
3083  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3084  */
3085 int
3086 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3087                        int output_format, bool hdmi_all_bpp,
3088                        int hdmi_max_chunk_bytes)
3089 {
3090         int max_dsc_bpp, min_dsc_bpp;
3091         int target_bytes;
3092         bool bpp_found = false;
3093         int bpp_decrement_x16;
3094         int bpp_target;
3095         int bpp_target_x16;
3096
3097         /*
3098          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3099          * Start with the max bpp and keep on decrementing with
3100          * fractional bpp, if supported by PCON DSC encoder
3101          *
3102          * for each bpp we check if no of bytes can be supported by HDMI sink
3103          */
3104
3105         /* Assuming: bpc as 8*/
3106         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3107                 min_dsc_bpp = 6;
3108                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3109         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3110                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3111                 min_dsc_bpp = 8;
3112                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3113         } else {
3114                 /* Assuming 4:2:2 encoding */
3115                 min_dsc_bpp = 7;
3116                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3117         }
3118
3119         /*
3120          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3121          * Section 7.7.34 : Source shall not enable compressed Video
3122          * Transport with bpp_target settings above 12 bpp unless
3123          * DSC_all_bpp is set to 1.
3124          */
3125         if (!hdmi_all_bpp)
3126                 max_dsc_bpp = min(max_dsc_bpp, 12);
3127
3128         /*
3129          * The Sink has a limit of compressed data in bytes for a scanline,
3130          * as described in max_chunk_bytes field in HFVSDB block of edid.
3131          * The no. of bytes depend on the target bits per pixel that the
3132          * source configures. So we start with the max_bpp and calculate
3133          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3134          * till we get the target_chunk_bytes just less than what the sink's
3135          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3136          *
3137          * The decrement is according to the fractional support from PCON DSC
3138          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3139          *
3140          * bpp_target_x16 = bpp_target * 16
3141          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3142          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3143          */
3144
3145         bpp_target = max_dsc_bpp;
3146
3147         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3148         if (!src_fractional_bpp)
3149                 src_fractional_bpp = 1;
3150         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3151         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3152
3153         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3154                 int bpp;
3155
3156                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3157                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3158                 if (target_bytes <= hdmi_max_chunk_bytes) {
3159                         bpp_found = true;
3160                         break;
3161                 }
3162                 bpp_target_x16 -= bpp_decrement_x16;
3163         }
3164         if (bpp_found)
3165                 return bpp_target_x16;
3166
3167         return 0;
3168 }