2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
46 #include "drm_crtc_internal.h"
48 static int oui(u8 first, u8 second, u8 third)
50 return (first << 16) | (second << 8) | third;
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
58 * EDID blocks out in the wild have a variety of bugs, try to collect
59 * them here (note that userspace may work around broken monitors first,
60 * but fixes should make their way here so that the kernel "just works"
61 * on as many displays as possible).
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73 * maximum size and use that.
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
81 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
83 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
85 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
87 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP (1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
93 #define MICROSOFT_IEEE_OUI 0xca125c
95 struct detailed_mode_closure {
96 struct drm_connector *connector;
97 const struct drm_edid *drm_edid;
107 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
109 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
114 static const struct edid_quirk {
117 } edid_quirk_list[] = {
119 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
121 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
123 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
124 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
126 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
127 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
129 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
130 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
132 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
135 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
138 /* Belinea 10 15 55 */
139 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
140 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
142 /* Envision Peripherals, Inc. EN-7100e */
143 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
144 /* Envision EN2028 */
145 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
147 /* Funai Electronics PM36B */
148 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
149 EDID_QUIRK_DETAILED_IN_CM),
152 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
155 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
157 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
158 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
160 /* LG Philips LCD LP154W01-A5 */
161 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
162 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
164 /* Samsung SyncMaster 205BW. Note: irony */
165 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
166 /* Samsung SyncMaster 22[5-6]BW */
167 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
168 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
170 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
171 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
173 /* ViewSonic VA2026w */
174 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
176 /* Medion MD 30217 PG */
177 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
180 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
182 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
183 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
185 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
186 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
188 /* Valve Index Headset */
189 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
190 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
191 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
192 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
193 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
194 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
195 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
207 /* HTC Vive and Vive Pro VR Headsets */
208 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
209 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
211 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
212 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
213 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
214 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
217 /* Windows Mixed Reality Headsets */
218 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
219 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
222 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
223 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
225 /* Sony PlayStation VR Headset */
226 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
228 /* Sensics VR Headsets */
229 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
231 /* OSVR HDK and HDK2 VR Headsets */
232 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 * Autogenerated from the DMT spec.
237 * This table is copied from xfree86/modes/xf86EdidModes.c.
239 static const struct drm_display_mode drm_dmt_modes[] = {
240 /* 0x01 - 640x350@85Hz */
241 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
242 736, 832, 0, 350, 382, 385, 445, 0,
243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
244 /* 0x02 - 640x400@85Hz */
245 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
246 736, 832, 0, 400, 401, 404, 445, 0,
247 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
248 /* 0x03 - 720x400@85Hz */
249 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
250 828, 936, 0, 400, 401, 404, 446, 0,
251 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 /* 0x04 - 640x480@60Hz */
253 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
254 752, 800, 0, 480, 490, 492, 525, 0,
255 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
256 /* 0x05 - 640x480@72Hz */
257 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
258 704, 832, 0, 480, 489, 492, 520, 0,
259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 /* 0x06 - 640x480@75Hz */
261 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
262 720, 840, 0, 480, 481, 484, 500, 0,
263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
264 /* 0x07 - 640x480@85Hz */
265 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
266 752, 832, 0, 480, 481, 484, 509, 0,
267 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 /* 0x08 - 800x600@56Hz */
269 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
270 896, 1024, 0, 600, 601, 603, 625, 0,
271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 0x09 - 800x600@60Hz */
273 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
274 968, 1056, 0, 600, 601, 605, 628, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 /* 0x0a - 800x600@72Hz */
277 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
278 976, 1040, 0, 600, 637, 643, 666, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 /* 0x0b - 800x600@75Hz */
281 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
282 896, 1056, 0, 600, 601, 604, 625, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 /* 0x0c - 800x600@85Hz */
285 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
286 896, 1048, 0, 600, 601, 604, 631, 0,
287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 0x0d - 800x600@120Hz RB */
289 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
290 880, 960, 0, 600, 603, 607, 636, 0,
291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
292 /* 0x0e - 848x480@60Hz */
293 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
294 976, 1088, 0, 480, 486, 494, 517, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
296 /* 0x0f - 1024x768@43Hz, interlace */
297 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
298 1208, 1264, 0, 768, 768, 776, 817, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
300 DRM_MODE_FLAG_INTERLACE) },
301 /* 0x10 - 1024x768@60Hz */
302 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
303 1184, 1344, 0, 768, 771, 777, 806, 0,
304 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
305 /* 0x11 - 1024x768@70Hz */
306 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
307 1184, 1328, 0, 768, 771, 777, 806, 0,
308 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
309 /* 0x12 - 1024x768@75Hz */
310 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
311 1136, 1312, 0, 768, 769, 772, 800, 0,
312 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
313 /* 0x13 - 1024x768@85Hz */
314 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
315 1168, 1376, 0, 768, 769, 772, 808, 0,
316 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
317 /* 0x14 - 1024x768@120Hz RB */
318 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
319 1104, 1184, 0, 768, 771, 775, 813, 0,
320 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
321 /* 0x15 - 1152x864@75Hz */
322 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
323 1344, 1600, 0, 864, 865, 868, 900, 0,
324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
325 /* 0x55 - 1280x720@60Hz */
326 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
327 1430, 1650, 0, 720, 725, 730, 750, 0,
328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 /* 0x16 - 1280x768@60Hz RB */
330 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
331 1360, 1440, 0, 768, 771, 778, 790, 0,
332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
333 /* 0x17 - 1280x768@60Hz */
334 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
335 1472, 1664, 0, 768, 771, 778, 798, 0,
336 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
337 /* 0x18 - 1280x768@75Hz */
338 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
339 1488, 1696, 0, 768, 771, 778, 805, 0,
340 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 /* 0x19 - 1280x768@85Hz */
342 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
343 1496, 1712, 0, 768, 771, 778, 809, 0,
344 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 /* 0x1a - 1280x768@120Hz RB */
346 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
347 1360, 1440, 0, 768, 771, 778, 813, 0,
348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
349 /* 0x1b - 1280x800@60Hz RB */
350 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
351 1360, 1440, 0, 800, 803, 809, 823, 0,
352 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
353 /* 0x1c - 1280x800@60Hz */
354 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
355 1480, 1680, 0, 800, 803, 809, 831, 0,
356 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 /* 0x1d - 1280x800@75Hz */
358 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
359 1488, 1696, 0, 800, 803, 809, 838, 0,
360 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 /* 0x1e - 1280x800@85Hz */
362 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
363 1496, 1712, 0, 800, 803, 809, 843, 0,
364 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
365 /* 0x1f - 1280x800@120Hz RB */
366 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
367 1360, 1440, 0, 800, 803, 809, 847, 0,
368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
369 /* 0x20 - 1280x960@60Hz */
370 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
371 1488, 1800, 0, 960, 961, 964, 1000, 0,
372 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 /* 0x21 - 1280x960@85Hz */
374 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
375 1504, 1728, 0, 960, 961, 964, 1011, 0,
376 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 /* 0x22 - 1280x960@120Hz RB */
378 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
379 1360, 1440, 0, 960, 963, 967, 1017, 0,
380 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
381 /* 0x23 - 1280x1024@60Hz */
382 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
383 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
385 /* 0x24 - 1280x1024@75Hz */
386 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
387 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 /* 0x25 - 1280x1024@85Hz */
390 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
391 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
392 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 /* 0x26 - 1280x1024@120Hz RB */
394 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
395 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
396 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
397 /* 0x27 - 1360x768@60Hz */
398 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
399 1536, 1792, 0, 768, 771, 777, 795, 0,
400 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
401 /* 0x28 - 1360x768@120Hz RB */
402 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
403 1440, 1520, 0, 768, 771, 776, 813, 0,
404 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
405 /* 0x51 - 1366x768@60Hz */
406 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
407 1579, 1792, 0, 768, 771, 774, 798, 0,
408 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 /* 0x56 - 1366x768@60Hz */
410 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
411 1436, 1500, 0, 768, 769, 772, 800, 0,
412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
413 /* 0x29 - 1400x1050@60Hz RB */
414 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
415 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
417 /* 0x2a - 1400x1050@60Hz */
418 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
419 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
420 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
421 /* 0x2b - 1400x1050@75Hz */
422 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
423 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
424 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 /* 0x2c - 1400x1050@85Hz */
426 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
427 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
428 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 /* 0x2d - 1400x1050@120Hz RB */
430 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
431 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
433 /* 0x2e - 1440x900@60Hz RB */
434 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
435 1520, 1600, 0, 900, 903, 909, 926, 0,
436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 /* 0x2f - 1440x900@60Hz */
438 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
439 1672, 1904, 0, 900, 903, 909, 934, 0,
440 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
441 /* 0x30 - 1440x900@75Hz */
442 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
443 1688, 1936, 0, 900, 903, 909, 942, 0,
444 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 /* 0x31 - 1440x900@85Hz */
446 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
447 1696, 1952, 0, 900, 903, 909, 948, 0,
448 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 /* 0x32 - 1440x900@120Hz RB */
450 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
451 1520, 1600, 0, 900, 903, 909, 953, 0,
452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
453 /* 0x53 - 1600x900@60Hz */
454 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
455 1704, 1800, 0, 900, 901, 904, 1000, 0,
456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
457 /* 0x33 - 1600x1200@60Hz */
458 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
459 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
460 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 /* 0x34 - 1600x1200@65Hz */
462 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
463 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
464 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 /* 0x35 - 1600x1200@70Hz */
466 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
467 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
468 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 /* 0x36 - 1600x1200@75Hz */
470 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
471 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 /* 0x37 - 1600x1200@85Hz */
474 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
475 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 /* 0x38 - 1600x1200@120Hz RB */
478 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
479 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
480 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
481 /* 0x39 - 1680x1050@60Hz RB */
482 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
483 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
485 /* 0x3a - 1680x1050@60Hz */
486 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
487 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
488 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 /* 0x3b - 1680x1050@75Hz */
490 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
491 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
492 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 /* 0x3c - 1680x1050@85Hz */
494 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
495 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
496 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
497 /* 0x3d - 1680x1050@120Hz RB */
498 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
499 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
500 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
501 /* 0x3e - 1792x1344@60Hz */
502 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
503 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
504 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
505 /* 0x3f - 1792x1344@75Hz */
506 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
507 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 /* 0x40 - 1792x1344@120Hz RB */
510 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
511 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
513 /* 0x41 - 1856x1392@60Hz */
514 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
515 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
516 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
517 /* 0x42 - 1856x1392@75Hz */
518 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
519 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
520 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 /* 0x43 - 1856x1392@120Hz RB */
522 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
523 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
524 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
525 /* 0x52 - 1920x1080@60Hz */
526 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
527 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
528 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
529 /* 0x44 - 1920x1200@60Hz RB */
530 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
531 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
533 /* 0x45 - 1920x1200@60Hz */
534 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
535 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
536 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
537 /* 0x46 - 1920x1200@75Hz */
538 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
539 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
541 /* 0x47 - 1920x1200@85Hz */
542 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
543 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
544 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
545 /* 0x48 - 1920x1200@120Hz RB */
546 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
547 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
548 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
549 /* 0x49 - 1920x1440@60Hz */
550 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
551 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
552 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
553 /* 0x4a - 1920x1440@75Hz */
554 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
555 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
556 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 /* 0x4b - 1920x1440@120Hz RB */
558 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
559 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
560 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
561 /* 0x54 - 2048x1152@60Hz */
562 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
563 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
565 /* 0x4c - 2560x1600@60Hz RB */
566 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
567 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
569 /* 0x4d - 2560x1600@60Hz */
570 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
571 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
572 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
573 /* 0x4e - 2560x1600@75Hz */
574 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
575 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
576 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
577 /* 0x4f - 2560x1600@85Hz */
578 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
579 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
580 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
581 /* 0x50 - 2560x1600@120Hz RB */
582 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
583 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
584 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
585 /* 0x57 - 4096x2160@60Hz RB */
586 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
587 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
588 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
589 /* 0x58 - 4096x2160@59.94Hz RB */
590 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
591 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
592 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 * These more or less come from the DMT spec. The 720x400 modes are
597 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
598 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
599 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
602 * The DMT modes have been fact-checked; the rest are mild guesses.
604 static const struct drm_display_mode edid_est_modes[] = {
605 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
606 968, 1056, 0, 600, 601, 605, 628, 0,
607 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
608 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
609 896, 1024, 0, 600, 601, 603, 625, 0,
610 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
611 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
612 720, 840, 0, 480, 481, 484, 500, 0,
613 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
614 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
615 704, 832, 0, 480, 489, 492, 520, 0,
616 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
617 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
618 768, 864, 0, 480, 483, 486, 525, 0,
619 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
620 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
621 752, 800, 0, 480, 490, 492, 525, 0,
622 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
623 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
624 846, 900, 0, 400, 421, 423, 449, 0,
625 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
626 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
627 846, 900, 0, 400, 412, 414, 449, 0,
628 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
629 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
630 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
631 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
632 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
633 1136, 1312, 0, 768, 769, 772, 800, 0,
634 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
635 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
636 1184, 1328, 0, 768, 771, 777, 806, 0,
637 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
638 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
639 1184, 1344, 0, 768, 771, 777, 806, 0,
640 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
641 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
642 1208, 1264, 0, 768, 768, 776, 817, 0,
643 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
644 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
645 928, 1152, 0, 624, 625, 628, 667, 0,
646 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
647 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
648 896, 1056, 0, 600, 601, 604, 625, 0,
649 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
650 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
651 976, 1040, 0, 600, 637, 643, 666, 0,
652 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
653 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
654 1344, 1600, 0, 864, 865, 868, 900, 0,
655 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
665 static const struct minimode est3_modes[] = {
673 { 1024, 768, 85, 0 },
674 { 1152, 864, 75, 0 },
676 { 1280, 768, 60, 1 },
677 { 1280, 768, 60, 0 },
678 { 1280, 768, 75, 0 },
679 { 1280, 768, 85, 0 },
680 { 1280, 960, 60, 0 },
681 { 1280, 960, 85, 0 },
682 { 1280, 1024, 60, 0 },
683 { 1280, 1024, 85, 0 },
685 { 1360, 768, 60, 0 },
686 { 1440, 900, 60, 1 },
687 { 1440, 900, 60, 0 },
688 { 1440, 900, 75, 0 },
689 { 1440, 900, 85, 0 },
690 { 1400, 1050, 60, 1 },
691 { 1400, 1050, 60, 0 },
692 { 1400, 1050, 75, 0 },
694 { 1400, 1050, 85, 0 },
695 { 1680, 1050, 60, 1 },
696 { 1680, 1050, 60, 0 },
697 { 1680, 1050, 75, 0 },
698 { 1680, 1050, 85, 0 },
699 { 1600, 1200, 60, 0 },
700 { 1600, 1200, 65, 0 },
701 { 1600, 1200, 70, 0 },
703 { 1600, 1200, 75, 0 },
704 { 1600, 1200, 85, 0 },
705 { 1792, 1344, 60, 0 },
706 { 1792, 1344, 75, 0 },
707 { 1856, 1392, 60, 0 },
708 { 1856, 1392, 75, 0 },
709 { 1920, 1200, 60, 1 },
710 { 1920, 1200, 60, 0 },
712 { 1920, 1200, 75, 0 },
713 { 1920, 1200, 85, 0 },
714 { 1920, 1440, 60, 0 },
715 { 1920, 1440, 75, 0 },
718 static const struct minimode extra_modes[] = {
719 { 1024, 576, 60, 0 },
720 { 1366, 768, 60, 0 },
721 { 1600, 900, 60, 0 },
722 { 1680, 945, 60, 0 },
723 { 1920, 1080, 60, 0 },
724 { 2048, 1152, 60, 0 },
725 { 2048, 1536, 60, 0 },
729 * From CEA/CTA-861 spec.
731 * Do not access directly, instead always use cea_mode_for_vic().
733 static const struct drm_display_mode edid_cea_modes_1[] = {
734 /* 1 - 640x480@60Hz 4:3 */
735 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
736 752, 800, 0, 480, 490, 492, 525, 0,
737 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
739 /* 2 - 720x480@60Hz 4:3 */
740 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
741 798, 858, 0, 480, 489, 495, 525, 0,
742 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
744 /* 3 - 720x480@60Hz 16:9 */
745 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
746 798, 858, 0, 480, 489, 495, 525, 0,
747 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
749 /* 4 - 1280x720@60Hz 16:9 */
750 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
751 1430, 1650, 0, 720, 725, 730, 750, 0,
752 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
753 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
754 /* 5 - 1920x1080i@60Hz 16:9 */
755 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
756 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
757 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
758 DRM_MODE_FLAG_INTERLACE),
759 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
760 /* 6 - 720(1440)x480i@60Hz 4:3 */
761 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
762 801, 858, 0, 480, 488, 494, 525, 0,
763 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
764 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
765 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
766 /* 7 - 720(1440)x480i@60Hz 16:9 */
767 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
768 801, 858, 0, 480, 488, 494, 525, 0,
769 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
770 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
771 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 /* 8 - 720(1440)x240@60Hz 4:3 */
773 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
774 801, 858, 0, 240, 244, 247, 262, 0,
775 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
776 DRM_MODE_FLAG_DBLCLK),
777 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
778 /* 9 - 720(1440)x240@60Hz 16:9 */
779 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
780 801, 858, 0, 240, 244, 247, 262, 0,
781 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 DRM_MODE_FLAG_DBLCLK),
783 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
784 /* 10 - 2880x480i@60Hz 4:3 */
785 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
786 3204, 3432, 0, 480, 488, 494, 525, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 DRM_MODE_FLAG_INTERLACE),
789 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
790 /* 11 - 2880x480i@60Hz 16:9 */
791 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
792 3204, 3432, 0, 480, 488, 494, 525, 0,
793 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
794 DRM_MODE_FLAG_INTERLACE),
795 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796 /* 12 - 2880x240@60Hz 4:3 */
797 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
798 3204, 3432, 0, 240, 244, 247, 262, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
801 /* 13 - 2880x240@60Hz 16:9 */
802 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
803 3204, 3432, 0, 240, 244, 247, 262, 0,
804 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806 /* 14 - 1440x480@60Hz 4:3 */
807 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
808 1596, 1716, 0, 480, 489, 495, 525, 0,
809 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
810 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
811 /* 15 - 1440x480@60Hz 16:9 */
812 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
813 1596, 1716, 0, 480, 489, 495, 525, 0,
814 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816 /* 16 - 1920x1080@60Hz 16:9 */
817 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
818 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
819 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 /* 17 - 720x576@50Hz 4:3 */
822 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
823 796, 864, 0, 576, 581, 586, 625, 0,
824 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
825 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
826 /* 18 - 720x576@50Hz 16:9 */
827 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
828 796, 864, 0, 576, 581, 586, 625, 0,
829 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
830 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
831 /* 19 - 1280x720@50Hz 16:9 */
832 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
833 1760, 1980, 0, 720, 725, 730, 750, 0,
834 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
835 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 /* 20 - 1920x1080i@50Hz 16:9 */
837 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
838 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
839 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
840 DRM_MODE_FLAG_INTERLACE),
841 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
842 /* 21 - 720(1440)x576i@50Hz 4:3 */
843 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
844 795, 864, 0, 576, 580, 586, 625, 0,
845 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
846 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
847 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
848 /* 22 - 720(1440)x576i@50Hz 16:9 */
849 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
850 795, 864, 0, 576, 580, 586, 625, 0,
851 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
852 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
853 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 /* 23 - 720(1440)x288@50Hz 4:3 */
855 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
856 795, 864, 0, 288, 290, 293, 312, 0,
857 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
858 DRM_MODE_FLAG_DBLCLK),
859 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
860 /* 24 - 720(1440)x288@50Hz 16:9 */
861 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
862 795, 864, 0, 288, 290, 293, 312, 0,
863 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
864 DRM_MODE_FLAG_DBLCLK),
865 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
866 /* 25 - 2880x576i@50Hz 4:3 */
867 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
868 3180, 3456, 0, 576, 580, 586, 625, 0,
869 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
870 DRM_MODE_FLAG_INTERLACE),
871 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
872 /* 26 - 2880x576i@50Hz 16:9 */
873 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
874 3180, 3456, 0, 576, 580, 586, 625, 0,
875 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
876 DRM_MODE_FLAG_INTERLACE),
877 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
878 /* 27 - 2880x288@50Hz 4:3 */
879 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
880 3180, 3456, 0, 288, 290, 293, 312, 0,
881 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
882 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
883 /* 28 - 2880x288@50Hz 16:9 */
884 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
885 3180, 3456, 0, 288, 290, 293, 312, 0,
886 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
887 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
888 /* 29 - 1440x576@50Hz 4:3 */
889 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
890 1592, 1728, 0, 576, 581, 586, 625, 0,
891 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
892 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
893 /* 30 - 1440x576@50Hz 16:9 */
894 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
895 1592, 1728, 0, 576, 581, 586, 625, 0,
896 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
897 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
898 /* 31 - 1920x1080@50Hz 16:9 */
899 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
900 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
901 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
902 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
903 /* 32 - 1920x1080@24Hz 16:9 */
904 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
905 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
906 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
907 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
908 /* 33 - 1920x1080@25Hz 16:9 */
909 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
910 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
911 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
912 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 /* 34 - 1920x1080@30Hz 16:9 */
914 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
915 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
916 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
917 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 /* 35 - 2880x480@60Hz 4:3 */
919 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
920 3192, 3432, 0, 480, 489, 495, 525, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
923 /* 36 - 2880x480@60Hz 16:9 */
924 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
925 3192, 3432, 0, 480, 489, 495, 525, 0,
926 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928 /* 37 - 2880x576@50Hz 4:3 */
929 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
930 3184, 3456, 0, 576, 581, 586, 625, 0,
931 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
932 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
933 /* 38 - 2880x576@50Hz 16:9 */
934 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
935 3184, 3456, 0, 576, 581, 586, 625, 0,
936 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
937 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
938 /* 39 - 1920x1080i@50Hz 16:9 */
939 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
940 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
941 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
942 DRM_MODE_FLAG_INTERLACE),
943 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 /* 40 - 1920x1080i@100Hz 16:9 */
945 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
946 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
947 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
948 DRM_MODE_FLAG_INTERLACE),
949 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 /* 41 - 1280x720@100Hz 16:9 */
951 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
952 1760, 1980, 0, 720, 725, 730, 750, 0,
953 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
954 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 /* 42 - 720x576@100Hz 4:3 */
956 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
957 796, 864, 0, 576, 581, 586, 625, 0,
958 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
959 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 /* 43 - 720x576@100Hz 16:9 */
961 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
962 796, 864, 0, 576, 581, 586, 625, 0,
963 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
964 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
965 /* 44 - 720(1440)x576i@100Hz 4:3 */
966 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
967 795, 864, 0, 576, 580, 586, 625, 0,
968 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
969 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
970 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
971 /* 45 - 720(1440)x576i@100Hz 16:9 */
972 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
973 795, 864, 0, 576, 580, 586, 625, 0,
974 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
975 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
976 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 /* 46 - 1920x1080i@120Hz 16:9 */
978 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
979 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
980 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
981 DRM_MODE_FLAG_INTERLACE),
982 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
983 /* 47 - 1280x720@120Hz 16:9 */
984 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
985 1430, 1650, 0, 720, 725, 730, 750, 0,
986 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
987 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
988 /* 48 - 720x480@120Hz 4:3 */
989 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
990 798, 858, 0, 480, 489, 495, 525, 0,
991 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
992 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
993 /* 49 - 720x480@120Hz 16:9 */
994 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
995 798, 858, 0, 480, 489, 495, 525, 0,
996 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
997 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
998 /* 50 - 720(1440)x480i@120Hz 4:3 */
999 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1000 801, 858, 0, 480, 488, 494, 525, 0,
1001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1002 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1003 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1004 /* 51 - 720(1440)x480i@120Hz 16:9 */
1005 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1006 801, 858, 0, 480, 488, 494, 525, 0,
1007 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1008 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1009 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 /* 52 - 720x576@200Hz 4:3 */
1011 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1012 796, 864, 0, 576, 581, 586, 625, 0,
1013 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1014 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1015 /* 53 - 720x576@200Hz 16:9 */
1016 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1017 796, 864, 0, 576, 581, 586, 625, 0,
1018 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1019 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1020 /* 54 - 720(1440)x576i@200Hz 4:3 */
1021 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1022 795, 864, 0, 576, 580, 586, 625, 0,
1023 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1026 /* 55 - 720(1440)x576i@200Hz 16:9 */
1027 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1028 795, 864, 0, 576, 580, 586, 625, 0,
1029 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1030 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1031 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1032 /* 56 - 720x480@240Hz 4:3 */
1033 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1034 798, 858, 0, 480, 489, 495, 525, 0,
1035 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1036 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1037 /* 57 - 720x480@240Hz 16:9 */
1038 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1039 798, 858, 0, 480, 489, 495, 525, 0,
1040 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1041 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1042 /* 58 - 720(1440)x480i@240Hz 4:3 */
1043 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1044 801, 858, 0, 480, 488, 494, 525, 0,
1045 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1048 /* 59 - 720(1440)x480i@240Hz 16:9 */
1049 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1050 801, 858, 0, 480, 488, 494, 525, 0,
1051 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1052 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1053 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1054 /* 60 - 1280x720@24Hz 16:9 */
1055 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1056 3080, 3300, 0, 720, 725, 730, 750, 0,
1057 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1058 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059 /* 61 - 1280x720@25Hz 16:9 */
1060 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1061 3740, 3960, 0, 720, 725, 730, 750, 0,
1062 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1064 /* 62 - 1280x720@30Hz 16:9 */
1065 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1066 3080, 3300, 0, 720, 725, 730, 750, 0,
1067 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1069 /* 63 - 1920x1080@120Hz 16:9 */
1070 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1071 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1072 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1074 /* 64 - 1920x1080@100Hz 16:9 */
1075 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1076 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1077 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1079 /* 65 - 1280x720@24Hz 64:27 */
1080 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1081 3080, 3300, 0, 720, 725, 730, 750, 0,
1082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1084 /* 66 - 1280x720@25Hz 64:27 */
1085 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1086 3740, 3960, 0, 720, 725, 730, 750, 0,
1087 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089 /* 67 - 1280x720@30Hz 64:27 */
1090 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1091 3080, 3300, 0, 720, 725, 730, 750, 0,
1092 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094 /* 68 - 1280x720@50Hz 64:27 */
1095 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1096 1760, 1980, 0, 720, 725, 730, 750, 0,
1097 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099 /* 69 - 1280x720@60Hz 64:27 */
1100 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1101 1430, 1650, 0, 720, 725, 730, 750, 0,
1102 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104 /* 70 - 1280x720@100Hz 64:27 */
1105 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1106 1760, 1980, 0, 720, 725, 730, 750, 0,
1107 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109 /* 71 - 1280x720@120Hz 64:27 */
1110 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1111 1430, 1650, 0, 720, 725, 730, 750, 0,
1112 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114 /* 72 - 1920x1080@24Hz 64:27 */
1115 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1116 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1117 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119 /* 73 - 1920x1080@25Hz 64:27 */
1120 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1121 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1122 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124 /* 74 - 1920x1080@30Hz 64:27 */
1125 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1126 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1127 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129 /* 75 - 1920x1080@50Hz 64:27 */
1130 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1131 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1132 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134 /* 76 - 1920x1080@60Hz 64:27 */
1135 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1136 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1137 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139 /* 77 - 1920x1080@100Hz 64:27 */
1140 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1141 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1142 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144 /* 78 - 1920x1080@120Hz 64:27 */
1145 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1146 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1147 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149 /* 79 - 1680x720@24Hz 64:27 */
1150 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1151 3080, 3300, 0, 720, 725, 730, 750, 0,
1152 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154 /* 80 - 1680x720@25Hz 64:27 */
1155 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1156 2948, 3168, 0, 720, 725, 730, 750, 0,
1157 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1159 /* 81 - 1680x720@30Hz 64:27 */
1160 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1161 2420, 2640, 0, 720, 725, 730, 750, 0,
1162 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1164 /* 82 - 1680x720@50Hz 64:27 */
1165 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1166 1980, 2200, 0, 720, 725, 730, 750, 0,
1167 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1169 /* 83 - 1680x720@60Hz 64:27 */
1170 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1171 1980, 2200, 0, 720, 725, 730, 750, 0,
1172 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1174 /* 84 - 1680x720@100Hz 64:27 */
1175 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1176 1780, 2000, 0, 720, 725, 730, 825, 0,
1177 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1179 /* 85 - 1680x720@120Hz 64:27 */
1180 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1181 1780, 2000, 0, 720, 725, 730, 825, 0,
1182 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1184 /* 86 - 2560x1080@24Hz 64:27 */
1185 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1186 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1187 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1189 /* 87 - 2560x1080@25Hz 64:27 */
1190 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1191 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1192 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1194 /* 88 - 2560x1080@30Hz 64:27 */
1195 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1196 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1197 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1199 /* 89 - 2560x1080@50Hz 64:27 */
1200 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1201 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1204 /* 90 - 2560x1080@60Hz 64:27 */
1205 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1206 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1207 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1209 /* 91 - 2560x1080@100Hz 64:27 */
1210 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1211 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1212 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1214 /* 92 - 2560x1080@120Hz 64:27 */
1215 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1216 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1217 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1219 /* 93 - 3840x2160@24Hz 16:9 */
1220 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1221 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1222 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1224 /* 94 - 3840x2160@25Hz 16:9 */
1225 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1226 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1229 /* 95 - 3840x2160@30Hz 16:9 */
1230 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1231 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1232 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1233 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1234 /* 96 - 3840x2160@50Hz 16:9 */
1235 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1236 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1237 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1238 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1239 /* 97 - 3840x2160@60Hz 16:9 */
1240 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1241 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1243 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1244 /* 98 - 4096x2160@24Hz 256:135 */
1245 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1246 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1249 /* 99 - 4096x2160@25Hz 256:135 */
1250 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1251 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1252 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1253 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1254 /* 100 - 4096x2160@30Hz 256:135 */
1255 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1256 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1257 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1258 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1259 /* 101 - 4096x2160@50Hz 256:135 */
1260 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1261 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1262 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1264 /* 102 - 4096x2160@60Hz 256:135 */
1265 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1266 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1268 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1269 /* 103 - 3840x2160@24Hz 64:27 */
1270 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1271 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1274 /* 104 - 3840x2160@25Hz 64:27 */
1275 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1276 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1277 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1278 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1279 /* 105 - 3840x2160@30Hz 64:27 */
1280 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1281 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1283 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1284 /* 106 - 3840x2160@50Hz 64:27 */
1285 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1286 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1288 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1289 /* 107 - 3840x2160@60Hz 64:27 */
1290 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1291 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1292 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1293 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1294 /* 108 - 1280x720@48Hz 16:9 */
1295 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1296 2280, 2500, 0, 720, 725, 730, 750, 0,
1297 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1298 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1299 /* 109 - 1280x720@48Hz 64:27 */
1300 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1301 2280, 2500, 0, 720, 725, 730, 750, 0,
1302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1303 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1304 /* 110 - 1680x720@48Hz 64:27 */
1305 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1306 2530, 2750, 0, 720, 725, 730, 750, 0,
1307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1308 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1309 /* 111 - 1920x1080@48Hz 16:9 */
1310 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1311 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1312 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1313 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1314 /* 112 - 1920x1080@48Hz 64:27 */
1315 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1316 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1318 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1319 /* 113 - 2560x1080@48Hz 64:27 */
1320 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1321 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1323 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1324 /* 114 - 3840x2160@48Hz 16:9 */
1325 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1326 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1328 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1329 /* 115 - 4096x2160@48Hz 256:135 */
1330 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1331 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1333 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1334 /* 116 - 3840x2160@48Hz 64:27 */
1335 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1336 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1337 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1338 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1339 /* 117 - 3840x2160@100Hz 16:9 */
1340 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1341 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1342 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1343 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1344 /* 118 - 3840x2160@120Hz 16:9 */
1345 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1346 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1348 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1349 /* 119 - 3840x2160@100Hz 64:27 */
1350 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1351 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1352 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1353 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1354 /* 120 - 3840x2160@120Hz 64:27 */
1355 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1356 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1357 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1358 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1359 /* 121 - 5120x2160@24Hz 64:27 */
1360 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1361 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1362 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1363 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1364 /* 122 - 5120x2160@25Hz 64:27 */
1365 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1366 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1368 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1369 /* 123 - 5120x2160@30Hz 64:27 */
1370 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1371 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1372 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1373 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1374 /* 124 - 5120x2160@48Hz 64:27 */
1375 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1376 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1378 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1379 /* 125 - 5120x2160@50Hz 64:27 */
1380 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1381 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1382 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1383 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1384 /* 126 - 5120x2160@60Hz 64:27 */
1385 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1386 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1388 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1389 /* 127 - 5120x2160@100Hz 64:27 */
1390 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1391 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1392 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1393 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1397 * From CEA/CTA-861 spec.
1399 * Do not access directly, instead always use cea_mode_for_vic().
1401 static const struct drm_display_mode edid_cea_modes_193[] = {
1402 /* 193 - 5120x2160@120Hz 64:27 */
1403 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1404 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1406 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1407 /* 194 - 7680x4320@24Hz 16:9 */
1408 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1409 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1410 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1411 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1412 /* 195 - 7680x4320@25Hz 16:9 */
1413 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1414 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1416 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1417 /* 196 - 7680x4320@30Hz 16:9 */
1418 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1419 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1420 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1421 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1422 /* 197 - 7680x4320@48Hz 16:9 */
1423 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1424 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1425 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1426 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1427 /* 198 - 7680x4320@50Hz 16:9 */
1428 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1429 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1430 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1431 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1432 /* 199 - 7680x4320@60Hz 16:9 */
1433 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1434 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1435 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1436 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1437 /* 200 - 7680x4320@100Hz 16:9 */
1438 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1439 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1440 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1441 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1442 /* 201 - 7680x4320@120Hz 16:9 */
1443 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1444 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1445 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1446 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1447 /* 202 - 7680x4320@24Hz 64:27 */
1448 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1449 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1450 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1451 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1452 /* 203 - 7680x4320@25Hz 64:27 */
1453 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1454 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1455 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1456 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1457 /* 204 - 7680x4320@30Hz 64:27 */
1458 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1459 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1460 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1461 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1462 /* 205 - 7680x4320@48Hz 64:27 */
1463 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1464 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1466 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1467 /* 206 - 7680x4320@50Hz 64:27 */
1468 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1469 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1470 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1471 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1472 /* 207 - 7680x4320@60Hz 64:27 */
1473 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1474 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1476 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1477 /* 208 - 7680x4320@100Hz 64:27 */
1478 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1479 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1480 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1481 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1482 /* 209 - 7680x4320@120Hz 64:27 */
1483 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1484 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1486 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1487 /* 210 - 10240x4320@24Hz 64:27 */
1488 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1489 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1490 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1491 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1492 /* 211 - 10240x4320@25Hz 64:27 */
1493 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1494 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1495 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1496 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1497 /* 212 - 10240x4320@30Hz 64:27 */
1498 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1499 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1500 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1501 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1502 /* 213 - 10240x4320@48Hz 64:27 */
1503 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1504 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1506 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1507 /* 214 - 10240x4320@50Hz 64:27 */
1508 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1509 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1510 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1512 /* 215 - 10240x4320@60Hz 64:27 */
1513 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1514 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1515 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1517 /* 216 - 10240x4320@100Hz 64:27 */
1518 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1519 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1520 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1522 /* 217 - 10240x4320@120Hz 64:27 */
1523 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1524 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1526 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1527 /* 218 - 4096x2160@100Hz 256:135 */
1528 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1529 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1530 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1531 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1532 /* 219 - 4096x2160@120Hz 256:135 */
1533 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1534 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1535 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1536 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1540 * HDMI 1.4 4k modes. Index using the VIC.
1542 static const struct drm_display_mode edid_4k_modes[] = {
1543 /* 0 - dummy, VICs start at 1 */
1545 /* 1 - 3840x2160@30Hz */
1546 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1547 3840, 4016, 4104, 4400, 0,
1548 2160, 2168, 2178, 2250, 0,
1549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1550 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1551 /* 2 - 3840x2160@25Hz */
1552 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1553 3840, 4896, 4984, 5280, 0,
1554 2160, 2168, 2178, 2250, 0,
1555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1556 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1557 /* 3 - 3840x2160@24Hz */
1558 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1559 3840, 5116, 5204, 5500, 0,
1560 2160, 2168, 2178, 2250, 0,
1561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1562 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1563 /* 4 - 4096x2160@24Hz (SMPTE) */
1564 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1565 4096, 5116, 5204, 5500, 0,
1566 2160, 2168, 2178, 2250, 0,
1567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1568 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1571 /*** DDC fetch and block validation ***/
1574 * The opaque EDID type, internal to drm_edid.c.
1577 /* Size allocated for edid */
1579 const struct edid *edid;
1582 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584 static int edid_hfeeodb_block_count(const struct edid *edid)
1586 int eeodb = edid_hfeeodb_extension_block_count(edid);
1588 return eeodb ? eeodb + 1 : 0;
1591 static int edid_extension_block_count(const struct edid *edid)
1593 return edid->extensions;
1596 static int edid_block_count(const struct edid *edid)
1598 return edid_extension_block_count(edid) + 1;
1601 static int edid_size_by_blocks(int num_blocks)
1603 return num_blocks * EDID_LENGTH;
1606 static int edid_size(const struct edid *edid)
1608 return edid_size_by_blocks(edid_block_count(edid));
1611 static const void *edid_block_data(const struct edid *edid, int index)
1613 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615 return edid + index;
1618 static const void *edid_extension_block_data(const struct edid *edid, int index)
1620 return edid_block_data(edid, index + 1);
1623 /* EDID block count indicated in EDID, may exceed allocated size */
1624 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1628 /* Starting point */
1629 num_blocks = edid_block_count(drm_edid->edid);
1631 /* HF-EEODB override */
1632 if (drm_edid->size >= edid_size_by_blocks(2)) {
1636 * Note: HF-EEODB may specify a smaller extension count than the
1637 * regular one. Unlike in buffer allocation, here we can use it.
1639 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 /* EDID block count, limited by allocated size */
1648 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650 /* Limit by allocated size */
1651 return min(__drm_edid_block_count(drm_edid),
1652 (int)drm_edid->size / EDID_LENGTH);
1655 /* EDID extension block count, limited by allocated size */
1656 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658 return drm_edid_block_count(drm_edid) - 1;
1661 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663 return edid_block_data(drm_edid->edid, index);
1666 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1669 return edid_extension_block_data(drm_edid->edid, index);
1673 * Initializer helper for legacy interfaces, where we have no choice but to
1674 * trust edid size. Not for general purpose use.
1676 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1677 const struct edid *edid)
1682 memset(drm_edid, 0, sizeof(*drm_edid));
1684 drm_edid->edid = edid;
1685 drm_edid->size = edid_size(edid);
1691 * EDID base and extension block iterator.
1693 * struct drm_edid_iter iter;
1696 * drm_edid_iter_begin(drm_edid, &iter);
1697 * drm_edid_iter_for_each(block, &iter) {
1698 * // do stuff with block
1700 * drm_edid_iter_end(&iter);
1702 struct drm_edid_iter {
1703 const struct drm_edid *drm_edid;
1705 /* Current block index. */
1709 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1710 struct drm_edid_iter *iter)
1712 memset(iter, 0, sizeof(*iter));
1714 iter->drm_edid = drm_edid;
1717 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719 const void *block = NULL;
1721 if (!iter->drm_edid)
1724 if (iter->index < drm_edid_block_count(iter->drm_edid))
1725 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1730 #define drm_edid_iter_for_each(__block, __iter) \
1731 while (((__block) = __drm_edid_iter_next(__iter)))
1733 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735 memset(iter, 0, sizeof(*iter));
1738 static const u8 edid_header[] = {
1739 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1742 static void edid_header_fix(void *edid)
1744 memcpy(edid, edid_header, sizeof(edid_header));
1748 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1749 * @_edid: pointer to raw base EDID block
1751 * Sanity check the header of the base EDID block.
1753 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755 int drm_edid_header_is_valid(const void *_edid)
1757 const struct edid *edid = _edid;
1760 for (i = 0; i < sizeof(edid_header); i++) {
1761 if (edid->header[i] == edid_header[i])
1767 EXPORT_SYMBOL(drm_edid_header_is_valid);
1769 static int edid_fixup __read_mostly = 6;
1770 module_param_named(edid_fixup, edid_fixup, int, 0400);
1771 MODULE_PARM_DESC(edid_fixup,
1772 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774 static int edid_block_compute_checksum(const void *_block)
1776 const u8 *block = _block;
1778 u8 csum = 0, crc = 0;
1780 for (i = 0; i < EDID_LENGTH - 1; i++)
1788 static int edid_block_get_checksum(const void *_block)
1790 const struct edid *block = _block;
1792 return block->checksum;
1795 static int edid_block_tag(const void *_block)
1797 const u8 *block = _block;
1802 static bool edid_block_is_zero(const void *edid)
1804 return !memchr_inv(edid, 0, EDID_LENGTH);
1808 * drm_edid_are_equal - compare two edid blobs.
1809 * @edid1: pointer to first blob
1810 * @edid2: pointer to second blob
1811 * This helper can be used during probing to determine if
1814 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816 int edid1_len, edid2_len;
1817 bool edid1_present = edid1 != NULL;
1818 bool edid2_present = edid2 != NULL;
1820 if (edid1_present != edid2_present)
1824 edid1_len = edid_size(edid1);
1825 edid2_len = edid_size(edid2);
1827 if (edid1_len != edid2_len)
1830 if (memcmp(edid1, edid2, edid1_len))
1836 EXPORT_SYMBOL(drm_edid_are_equal);
1838 enum edid_block_status {
1840 EDID_BLOCK_READ_FAIL,
1843 EDID_BLOCK_HEADER_CORRUPT,
1844 EDID_BLOCK_HEADER_REPAIR,
1845 EDID_BLOCK_HEADER_FIXED,
1846 EDID_BLOCK_CHECKSUM,
1850 static enum edid_block_status edid_block_check(const void *_block,
1853 const struct edid *block = _block;
1856 return EDID_BLOCK_NULL;
1858 if (is_base_block) {
1859 int score = drm_edid_header_is_valid(block);
1861 if (score < clamp(edid_fixup, 0, 8)) {
1862 if (edid_block_is_zero(block))
1863 return EDID_BLOCK_ZERO;
1865 return EDID_BLOCK_HEADER_CORRUPT;
1869 return EDID_BLOCK_HEADER_REPAIR;
1872 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1873 if (edid_block_is_zero(block))
1874 return EDID_BLOCK_ZERO;
1876 return EDID_BLOCK_CHECKSUM;
1879 if (is_base_block) {
1880 if (block->version != 1)
1881 return EDID_BLOCK_VERSION;
1884 return EDID_BLOCK_OK;
1887 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889 return status == EDID_BLOCK_OK ||
1890 status == EDID_BLOCK_HEADER_FIXED ||
1891 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1894 static bool edid_block_valid(const void *block, bool base)
1896 return edid_block_status_valid(edid_block_check(block, base),
1897 edid_block_tag(block));
1900 static void edid_block_status_print(enum edid_block_status status,
1901 const struct edid *block,
1907 case EDID_BLOCK_READ_FAIL:
1908 pr_debug("EDID block %d read failed\n", block_num);
1910 case EDID_BLOCK_NULL:
1911 pr_debug("EDID block %d pointer is NULL\n", block_num);
1913 case EDID_BLOCK_ZERO:
1914 pr_notice("EDID block %d is all zeroes\n", block_num);
1916 case EDID_BLOCK_HEADER_CORRUPT:
1917 pr_notice("EDID has corrupt header\n");
1919 case EDID_BLOCK_HEADER_REPAIR:
1920 pr_debug("EDID corrupt header needs repair\n");
1922 case EDID_BLOCK_HEADER_FIXED:
1923 pr_debug("EDID corrupt header fixed\n");
1925 case EDID_BLOCK_CHECKSUM:
1926 if (edid_block_status_valid(status, edid_block_tag(block))) {
1927 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1928 block_num, edid_block_tag(block),
1929 edid_block_compute_checksum(block));
1931 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1932 block_num, edid_block_tag(block),
1933 edid_block_compute_checksum(block));
1936 case EDID_BLOCK_VERSION:
1937 pr_notice("EDID has major version %d, instead of 1\n",
1941 WARN(1, "EDID block %d unknown edid block status code %d\n",
1947 static void edid_block_dump(const char *level, const void *block, int block_num)
1949 enum edid_block_status status;
1952 status = edid_block_check(block, block_num == 0);
1953 if (status == EDID_BLOCK_ZERO)
1954 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1955 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1956 sprintf(prefix, "\t[%02x] BAD ", block_num);
1958 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1961 block, EDID_LENGTH, false);
1965 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1966 * @_block: pointer to raw EDID block
1967 * @block_num: type of block to validate (0 for base, extension otherwise)
1968 * @print_bad_edid: if true, dump bad EDID blocks to the console
1969 * @edid_corrupt: if true, the header or checksum is invalid
1971 * Validate a base or extension EDID block and optionally dump bad blocks to
1974 * Return: True if the block is valid, false otherwise.
1976 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1979 struct edid *block = (struct edid *)_block;
1980 enum edid_block_status status;
1981 bool is_base_block = block_num == 0;
1984 if (WARN_ON(!block))
1987 status = edid_block_check(block, is_base_block);
1988 if (status == EDID_BLOCK_HEADER_REPAIR) {
1989 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1990 edid_header_fix(block);
1992 /* Retry with fixed header, update status if that worked. */
1993 status = edid_block_check(block, is_base_block);
1994 if (status == EDID_BLOCK_OK)
1995 status = EDID_BLOCK_HEADER_FIXED;
2000 * Unknown major version isn't corrupt but we can't use it. Only
2001 * the base block can reset edid_corrupt to false.
2003 if (is_base_block &&
2004 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2005 *edid_corrupt = false;
2006 else if (status != EDID_BLOCK_OK)
2007 *edid_corrupt = true;
2010 edid_block_status_print(status, block, block_num);
2012 /* Determine whether we can use this block with this status. */
2013 valid = edid_block_status_valid(status, edid_block_tag(block));
2015 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2016 pr_notice("Raw EDID:\n");
2017 edid_block_dump(KERN_NOTICE, block, block_num);
2022 EXPORT_SYMBOL(drm_edid_block_valid);
2025 * drm_edid_is_valid - sanity check EDID data
2028 * Sanity-check an entire EDID record (including extensions)
2030 * Return: True if the EDID data is valid, false otherwise.
2032 bool drm_edid_is_valid(struct edid *edid)
2039 for (i = 0; i < edid_block_count(edid); i++) {
2040 void *block = (void *)edid_block_data(edid, i);
2042 if (!drm_edid_block_valid(block, i, true, NULL))
2048 EXPORT_SYMBOL(drm_edid_is_valid);
2051 * drm_edid_valid - sanity check EDID data
2052 * @drm_edid: EDID data
2054 * Sanity check an EDID. Cross check block count against allocated size and
2055 * checksum the blocks.
2057 * Return: True if the EDID data is valid, false otherwise.
2059 bool drm_edid_valid(const struct drm_edid *drm_edid)
2066 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2069 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2070 const void *block = drm_edid_block_data(drm_edid, i);
2072 if (!edid_block_valid(block, i == 0))
2078 EXPORT_SYMBOL(drm_edid_valid);
2080 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2084 int i, valid_blocks = 0;
2087 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2088 * back to regular extension count here. We don't want to start
2089 * modifying the HF-EEODB extension too.
2091 for (i = 0; i < edid_block_count(edid); i++) {
2092 const void *src_block = edid_block_data(edid, i);
2094 if (edid_block_valid(src_block, i == 0)) {
2095 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097 memmove(dst_block, src_block, EDID_LENGTH);
2102 /* We already trusted the base block to be valid here... */
2103 if (WARN_ON(!valid_blocks)) {
2108 edid->extensions = valid_blocks - 1;
2109 edid->checksum = edid_block_compute_checksum(edid);
2111 *alloc_size = edid_size_by_blocks(valid_blocks);
2113 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2120 #define DDC_SEGMENT_ADDR 0x30
2122 * drm_do_probe_ddc_edid() - get EDID information via I2C
2123 * @data: I2C device adapter
2124 * @buf: EDID data buffer to be filled
2125 * @block: 128 byte EDID block to start fetching from
2126 * @len: EDID data buffer length to fetch
2128 * Try to fetch EDID information by calling I2C driver functions.
2130 * Return: 0 on success or -1 on failure.
2133 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135 struct i2c_adapter *adapter = data;
2136 unsigned char start = block * EDID_LENGTH;
2137 unsigned char segment = block >> 1;
2138 unsigned char xfers = segment ? 3 : 2;
2139 int ret, retries = 5;
2142 * The core I2C driver will automatically retry the transfer if the
2143 * adapter reports EAGAIN. However, we find that bit-banging transfers
2144 * are susceptible to errors under a heavily loaded machine and
2145 * generate spurious NAKs and timeouts. Retrying the transfer
2146 * of the individual block a few times seems to overcome this.
2149 struct i2c_msg msgs[] = {
2151 .addr = DDC_SEGMENT_ADDR,
2169 * Avoid sending the segment addr to not upset non-compliant
2172 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174 if (ret == -ENXIO) {
2175 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2179 } while (ret != xfers && --retries);
2181 return ret == xfers ? 0 : -1;
2184 static void connector_bad_edid(struct drm_connector *connector,
2185 const struct edid *edid, int num_blocks)
2191 * 0x7e in the EDID is the number of extension blocks. The EDID
2192 * is 1 (base block) + num_ext_blocks big. That means we can think
2193 * of 0x7e in the EDID of the _index_ of the last block in the
2194 * combined chunk of memory.
2196 last_block = edid->extensions;
2198 /* Calculate real checksum for the last edid extension block data */
2199 if (last_block < num_blocks)
2200 connector->real_edid_checksum =
2201 edid_block_compute_checksum(edid + last_block);
2203 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2206 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2207 connector->base.id, connector->name);
2208 for (i = 0; i < num_blocks; i++)
2209 edid_block_dump(KERN_DEBUG, edid + i, i);
2212 /* Get override or firmware EDID */
2213 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215 const struct drm_edid *override = NULL;
2217 mutex_lock(&connector->edid_override_mutex);
2219 if (connector->edid_override)
2220 override = drm_edid_dup(connector->edid_override);
2222 mutex_unlock(&connector->edid_override_mutex);
2225 override = drm_edid_load_firmware(connector);
2227 return IS_ERR(override) ? NULL : override;
2230 /* For debugfs edid_override implementation */
2231 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233 const struct drm_edid *drm_edid;
2235 mutex_lock(&connector->edid_override_mutex);
2237 drm_edid = connector->edid_override;
2239 seq_write(m, drm_edid->edid, drm_edid->size);
2241 mutex_unlock(&connector->edid_override_mutex);
2246 /* For debugfs edid_override implementation */
2247 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2250 const struct drm_edid *drm_edid;
2252 drm_edid = drm_edid_alloc(edid, size);
2253 if (!drm_edid_valid(drm_edid)) {
2254 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2255 connector->base.id, connector->name);
2256 drm_edid_free(drm_edid);
2260 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2261 connector->base.id, connector->name);
2263 mutex_lock(&connector->edid_override_mutex);
2265 drm_edid_free(connector->edid_override);
2266 connector->edid_override = drm_edid;
2268 mutex_unlock(&connector->edid_override_mutex);
2273 /* For debugfs edid_override implementation */
2274 int drm_edid_override_reset(struct drm_connector *connector)
2276 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2277 connector->base.id, connector->name);
2279 mutex_lock(&connector->edid_override_mutex);
2281 drm_edid_free(connector->edid_override);
2282 connector->edid_override = NULL;
2284 mutex_unlock(&connector->edid_override_mutex);
2290 * drm_edid_override_connector_update - add modes from override/firmware EDID
2291 * @connector: connector we're probing
2293 * Add modes from the override/firmware EDID, if available. Only to be used from
2294 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2295 * failed during drm_get_edid() and caused the override/firmware EDID to be
2298 * Return: The number of modes added or 0 if we couldn't find any.
2300 int drm_edid_override_connector_update(struct drm_connector *connector)
2302 const struct drm_edid *override;
2305 override = drm_edid_override_get(connector);
2307 num_modes = drm_edid_connector_update(connector, override);
2309 drm_edid_free(override);
2311 drm_dbg_kms(connector->dev,
2312 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2313 connector->base.id, connector->name, num_modes);
2318 EXPORT_SYMBOL(drm_edid_override_connector_update);
2320 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2323 read_block_fn read_block,
2326 enum edid_block_status status;
2327 bool is_base_block = block_num == 0;
2330 for (try = 0; try < 4; try++) {
2331 if (read_block(context, block, block_num, EDID_LENGTH))
2332 return EDID_BLOCK_READ_FAIL;
2334 status = edid_block_check(block, is_base_block);
2335 if (status == EDID_BLOCK_HEADER_REPAIR) {
2336 edid_header_fix(block);
2338 /* Retry with fixed header, update status if that worked. */
2339 status = edid_block_check(block, is_base_block);
2340 if (status == EDID_BLOCK_OK)
2341 status = EDID_BLOCK_HEADER_FIXED;
2344 if (edid_block_status_valid(status, edid_block_tag(block)))
2347 /* Fail early for unrepairable base block all zeros. */
2348 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2355 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2356 read_block_fn read_block, void *context,
2359 enum edid_block_status status;
2360 int i, num_blocks, invalid_blocks = 0;
2361 const struct drm_edid *override;
2362 struct edid *edid, *new;
2363 size_t alloc_size = EDID_LENGTH;
2365 override = drm_edid_override_get(connector);
2367 alloc_size = override->size;
2368 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2369 drm_edid_free(override);
2375 edid = kmalloc(alloc_size, GFP_KERNEL);
2379 status = edid_block_read(edid, 0, read_block, context);
2381 edid_block_status_print(status, edid, 0);
2383 if (status == EDID_BLOCK_READ_FAIL)
2386 /* FIXME: Clarify what a corrupt EDID actually means. */
2387 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2388 connector->edid_corrupt = false;
2390 connector->edid_corrupt = true;
2392 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2393 if (status == EDID_BLOCK_ZERO)
2394 connector->null_edid_counter++;
2396 connector_bad_edid(connector, edid, 1);
2400 if (!edid_extension_block_count(edid))
2403 alloc_size = edid_size(edid);
2404 new = krealloc(edid, alloc_size, GFP_KERNEL);
2409 num_blocks = edid_block_count(edid);
2410 for (i = 1; i < num_blocks; i++) {
2411 void *block = (void *)edid_block_data(edid, i);
2413 status = edid_block_read(block, i, read_block, context);
2415 edid_block_status_print(status, block, i);
2417 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2418 if (status == EDID_BLOCK_READ_FAIL)
2421 } else if (i == 1) {
2423 * If the first EDID extension is a CTA extension, and
2424 * the first Data Block is HF-EEODB, override the
2425 * extension block count.
2427 * Note: HF-EEODB could specify a smaller extension
2428 * count too, but we can't risk allocating a smaller
2431 int eeodb = edid_hfeeodb_block_count(edid);
2433 if (eeodb > num_blocks) {
2435 alloc_size = edid_size_by_blocks(num_blocks);
2436 new = krealloc(edid, alloc_size, GFP_KERNEL);
2444 if (invalid_blocks) {
2445 connector_bad_edid(connector, edid, num_blocks);
2447 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2462 * drm_do_get_edid - get EDID data using a custom EDID block read function
2463 * @connector: connector we're probing
2464 * @read_block: EDID block read function
2465 * @context: private data passed to the block read function
2467 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2468 * exposes a different interface to read EDID blocks this function can be used
2469 * to get EDID data using a custom block read function.
2471 * As in the general case the DDC bus is accessible by the kernel at the I2C
2472 * level, drivers must make all reasonable efforts to expose it as an I2C
2473 * adapter and use drm_get_edid() instead of abusing this function.
2475 * The EDID may be overridden using debugfs override_edid or firmware EDID
2476 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2477 * order. Having either of them bypasses actual EDID reads.
2479 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481 struct edid *drm_do_get_edid(struct drm_connector *connector,
2482 read_block_fn read_block,
2485 return _drm_do_get_edid(connector, read_block, context, NULL);
2487 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2490 * drm_edid_raw - Get a pointer to the raw EDID data.
2491 * @drm_edid: drm_edid container
2493 * Get a pointer to the raw EDID data.
2495 * This is for transition only. Avoid using this like the plague.
2497 * Return: Pointer to raw EDID data.
2499 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501 if (!drm_edid || !drm_edid->size)
2505 * Do not return pointers where relying on EDID extension count would
2506 * lead to buffer overflow.
2508 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2511 return drm_edid->edid;
2513 EXPORT_SYMBOL(drm_edid_raw);
2515 /* Allocate struct drm_edid container *without* duplicating the edid data */
2516 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518 struct drm_edid *drm_edid;
2520 if (!edid || !size || size < EDID_LENGTH)
2523 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525 drm_edid->edid = edid;
2526 drm_edid->size = size;
2533 * drm_edid_alloc - Allocate a new drm_edid container
2534 * @edid: Pointer to raw EDID data
2535 * @size: Size of memory allocated for EDID
2537 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2538 * the actual size that has been allocated for the data. There is no validation
2539 * of the raw EDID data against the size, but at least the EDID base block must
2540 * fit in the buffer.
2542 * The returned pointer must be freed using drm_edid_free().
2544 * Return: drm_edid container, or NULL on errors
2546 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548 const struct drm_edid *drm_edid;
2550 if (!edid || !size || size < EDID_LENGTH)
2553 edid = kmemdup(edid, size, GFP_KERNEL);
2557 drm_edid = _drm_edid_alloc(edid, size);
2563 EXPORT_SYMBOL(drm_edid_alloc);
2566 * drm_edid_dup - Duplicate a drm_edid container
2567 * @drm_edid: EDID to duplicate
2569 * The returned pointer must be freed using drm_edid_free().
2571 * Returns: drm_edid container copy, or NULL on errors
2573 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2578 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580 EXPORT_SYMBOL(drm_edid_dup);
2583 * drm_edid_free - Free the drm_edid container
2584 * @drm_edid: EDID to free
2586 void drm_edid_free(const struct drm_edid *drm_edid)
2591 kfree(drm_edid->edid);
2594 EXPORT_SYMBOL(drm_edid_free);
2597 * drm_probe_ddc() - probe DDC presence
2598 * @adapter: I2C adapter to probe
2600 * Return: True on success, false on failure.
2603 drm_probe_ddc(struct i2c_adapter *adapter)
2607 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609 EXPORT_SYMBOL(drm_probe_ddc);
2612 * drm_get_edid - get EDID data, if available
2613 * @connector: connector we're probing
2614 * @adapter: I2C adapter to use for DDC
2616 * Poke the given I2C channel to grab EDID data if possible. If found,
2617 * attach it to the connector.
2619 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621 struct edid *drm_get_edid(struct drm_connector *connector,
2622 struct i2c_adapter *adapter)
2626 if (connector->force == DRM_FORCE_OFF)
2629 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2632 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2633 drm_connector_update_edid_property(connector, edid);
2636 EXPORT_SYMBOL(drm_get_edid);
2639 * drm_edid_read_custom - Read EDID data using given EDID block read function
2640 * @connector: Connector to use
2641 * @read_block: EDID block read function
2642 * @context: Private data passed to the block read function
2644 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2645 * exposes a different interface to read EDID blocks this function can be used
2646 * to get EDID data using a custom block read function.
2648 * As in the general case the DDC bus is accessible by the kernel at the I2C
2649 * level, drivers must make all reasonable efforts to expose it as an I2C
2650 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2653 * The EDID may be overridden using debugfs override_edid or firmware EDID
2654 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2655 * order. Having either of them bypasses actual EDID reads.
2657 * The returned pointer must be freed using drm_edid_free().
2659 * Return: Pointer to EDID, or NULL if probe/read failed.
2661 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2662 read_block_fn read_block,
2665 const struct drm_edid *drm_edid;
2669 edid = _drm_do_get_edid(connector, read_block, context, &size);
2673 /* Sanity check for now */
2674 drm_WARN_ON(connector->dev, !size);
2676 drm_edid = _drm_edid_alloc(edid, size);
2682 EXPORT_SYMBOL(drm_edid_read_custom);
2685 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2686 * @connector: Connector to use
2687 * @adapter: I2C adapter to use for DDC
2689 * Read EDID using the given I2C adapter.
2691 * The EDID may be overridden using debugfs override_edid or firmware EDID
2692 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2693 * order. Having either of them bypasses actual EDID reads.
2695 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2696 * using drm_edid_read() instead of this function.
2698 * The returned pointer must be freed using drm_edid_free().
2700 * Return: Pointer to EDID, or NULL if probe/read failed.
2702 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2703 struct i2c_adapter *adapter)
2705 const struct drm_edid *drm_edid;
2707 if (connector->force == DRM_FORCE_OFF)
2710 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2713 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715 /* Note: Do *not* call connector updates here. */
2719 EXPORT_SYMBOL(drm_edid_read_ddc);
2722 * drm_edid_read - Read EDID data using connector's I2C adapter
2723 * @connector: Connector to use
2725 * Read EDID using the connector's I2C adapter.
2727 * The EDID may be overridden using debugfs override_edid or firmware EDID
2728 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2729 * order. Having either of them bypasses actual EDID reads.
2731 * The returned pointer must be freed using drm_edid_free().
2733 * Return: Pointer to EDID, or NULL if probe/read failed.
2735 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737 if (drm_WARN_ON(connector->dev, !connector->ddc))
2740 return drm_edid_read_ddc(connector, connector->ddc);
2742 EXPORT_SYMBOL(drm_edid_read);
2744 static u32 edid_extract_panel_id(const struct edid *edid)
2747 * We represent the ID as a 32-bit number so it can easily be compared
2750 * NOTE that we deal with endianness differently for the top half
2751 * of this ID than for the bottom half. The bottom half (the product
2752 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2753 * that's how everyone seems to interpret it. The top half (the mfg_id)
2754 * gets stored as big endian because that makes
2755 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2756 * to write (it's easier to extract the ASCII). It doesn't really
2757 * matter, though, as long as the number here is unique.
2759 return (u32)edid->mfg_id[0] << 24 |
2760 (u32)edid->mfg_id[1] << 16 |
2761 (u32)EDID_PRODUCT_ID(edid);
2765 * drm_edid_get_panel_id - Get a panel's ID through DDC
2766 * @adapter: I2C adapter to use for DDC
2768 * This function reads the first block of the EDID of a panel and (assuming
2769 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2770 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2771 * supposed to be different for each different modem of panel.
2773 * This function is intended to be used during early probing on devices where
2774 * more than one panel might be present. Because of its intended use it must
2775 * assume that the EDID of the panel is correct, at least as far as the ID
2776 * is concerned (in other words, we don't process any overrides here).
2778 * NOTE: it's expected that this function and drm_do_get_edid() will both
2779 * be read the EDID, but there is no caching between them. Since we're only
2780 * reading the first block, hopefully this extra overhead won't be too big.
2782 * Return: A 32-bit ID that should be different for each make/model of panel.
2783 * See the functions drm_edid_encode_panel_id() and
2784 * drm_edid_decode_panel_id() for some details on the structure of this
2788 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790 enum edid_block_status status;
2795 * There are no manufacturer IDs of 0, so if there is a problem reading
2796 * the EDID then we'll just return 0.
2799 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2803 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805 edid_block_status_print(status, base_block, 0);
2807 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2808 panel_id = edid_extract_panel_id(base_block);
2810 edid_block_dump(KERN_NOTICE, base_block, 0);
2816 EXPORT_SYMBOL(drm_edid_get_panel_id);
2819 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2820 * @connector: connector we're probing
2821 * @adapter: I2C adapter to use for DDC
2823 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2824 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2825 * switch DDC to the GPU which is retrieving EDID.
2827 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2830 struct i2c_adapter *adapter)
2832 struct drm_device *dev = connector->dev;
2833 struct pci_dev *pdev = to_pci_dev(dev->dev);
2836 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2839 vga_switcheroo_lock_ddc(pdev);
2840 edid = drm_get_edid(connector, adapter);
2841 vga_switcheroo_unlock_ddc(pdev);
2845 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2848 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2849 * @connector: connector we're probing
2850 * @adapter: I2C adapter to use for DDC
2852 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2853 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2854 * temporarily switch DDC to the GPU which is retrieving EDID.
2856 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2858 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2859 struct i2c_adapter *adapter)
2861 struct drm_device *dev = connector->dev;
2862 struct pci_dev *pdev = to_pci_dev(dev->dev);
2863 const struct drm_edid *drm_edid;
2865 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2868 vga_switcheroo_lock_ddc(pdev);
2869 drm_edid = drm_edid_read_ddc(connector, adapter);
2870 vga_switcheroo_unlock_ddc(pdev);
2874 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2877 * drm_edid_duplicate - duplicate an EDID and the extensions
2878 * @edid: EDID to duplicate
2880 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2882 struct edid *drm_edid_duplicate(const struct edid *edid)
2884 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2886 EXPORT_SYMBOL(drm_edid_duplicate);
2888 /*** EDID parsing ***/
2891 * edid_get_quirks - return quirk flags for a given EDID
2892 * @drm_edid: EDID to process
2894 * This tells subsequent routines what fixes they need to apply.
2896 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2898 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2899 const struct edid_quirk *quirk;
2902 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2903 quirk = &edid_quirk_list[i];
2904 if (quirk->panel_id == panel_id)
2905 return quirk->quirks;
2911 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2912 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2915 * Walk the mode list for connector, clearing the preferred status on existing
2916 * modes and setting it anew for the right mode ala quirks.
2918 static void edid_fixup_preferred(struct drm_connector *connector)
2920 const struct drm_display_info *info = &connector->display_info;
2921 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2922 int target_refresh = 0;
2923 int cur_vrefresh, preferred_vrefresh;
2925 if (list_empty(&connector->probed_modes))
2928 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2929 target_refresh = 60;
2930 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2931 target_refresh = 75;
2933 preferred_mode = list_first_entry(&connector->probed_modes,
2934 struct drm_display_mode, head);
2936 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2937 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2939 if (cur_mode == preferred_mode)
2942 /* Largest mode is preferred */
2943 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2944 preferred_mode = cur_mode;
2946 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2947 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2948 /* At a given size, try to get closest to target refresh */
2949 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2950 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2951 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2952 preferred_mode = cur_mode;
2956 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2960 mode_is_rb(const struct drm_display_mode *mode)
2962 return (mode->htotal - mode->hdisplay == 160) &&
2963 (mode->hsync_end - mode->hdisplay == 80) &&
2964 (mode->hsync_end - mode->hsync_start == 32) &&
2965 (mode->vsync_start - mode->vdisplay == 3);
2969 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2970 * @dev: Device to duplicate against
2971 * @hsize: Mode width
2972 * @vsize: Mode height
2973 * @fresh: Mode refresh rate
2974 * @rb: Mode reduced-blanking-ness
2976 * Walk the DMT mode list looking for a match for the given parameters.
2978 * Return: A newly allocated copy of the mode, or NULL if not found.
2980 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2981 int hsize, int vsize, int fresh,
2986 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2987 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2989 if (hsize != ptr->hdisplay)
2991 if (vsize != ptr->vdisplay)
2993 if (fresh != drm_mode_vrefresh(ptr))
2995 if (rb != mode_is_rb(ptr))
2998 return drm_mode_duplicate(dev, ptr);
3003 EXPORT_SYMBOL(drm_mode_find_dmt);
3005 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3007 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3008 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3009 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3011 return descriptor->pixel_clock == 0 &&
3012 descriptor->data.other_data.pad1 == 0 &&
3013 descriptor->data.other_data.type == type;
3016 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3020 return descriptor->pixel_clock != 0;
3023 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3026 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3030 const u8 *det_base = ext + d;
3032 if (d < 4 || d > 127)
3036 for (i = 0; i < n; i++)
3037 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3041 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3043 unsigned int i, n = min((int)ext[0x02], 6);
3044 const u8 *det_base = ext + 5;
3047 return; /* unknown version */
3049 for (i = 0; i < n; i++)
3050 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3053 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3054 detailed_cb *cb, void *closure)
3056 struct drm_edid_iter edid_iter;
3063 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3064 cb(&drm_edid->edid->detailed_timings[i], closure);
3066 drm_edid_iter_begin(drm_edid, &edid_iter);
3067 drm_edid_iter_for_each(ext, &edid_iter) {
3070 cea_for_each_detailed_block(ext, cb, closure);
3073 vtb_for_each_detailed_block(ext, cb, closure);
3079 drm_edid_iter_end(&edid_iter);
3083 is_rb(const struct detailed_timing *descriptor, void *data)
3087 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3090 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3091 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3093 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3094 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3098 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3100 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3102 if (drm_edid->edid->revision >= 4) {
3105 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3109 return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3113 find_gtf2(const struct detailed_timing *descriptor, void *data)
3115 const struct detailed_timing **res = data;
3117 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3120 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3122 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3126 /* Secondary GTF curve kicks in above some break frequency */
3128 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3130 const struct detailed_timing *descriptor = NULL;
3132 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3134 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3136 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3140 drm_gtf2_2c(const struct drm_edid *drm_edid)
3142 const struct detailed_timing *descriptor = NULL;
3144 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3146 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3148 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3152 drm_gtf2_m(const struct drm_edid *drm_edid)
3154 const struct detailed_timing *descriptor = NULL;
3156 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3158 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3160 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3164 drm_gtf2_k(const struct drm_edid *drm_edid)
3166 const struct detailed_timing *descriptor = NULL;
3168 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3170 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3172 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3176 drm_gtf2_2j(const struct drm_edid *drm_edid)
3178 const struct detailed_timing *descriptor = NULL;
3180 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3182 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3184 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3188 get_timing_level(const struct detailed_timing *descriptor, void *data)
3192 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3195 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3197 switch (descriptor->data.other_data.data.range.flags) {
3198 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3201 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3204 case DRM_EDID_CVT_SUPPORT_FLAG:
3212 /* Get standard timing level (CVT/GTF/DMT). */
3213 static int standard_timing_level(const struct drm_edid *drm_edid)
3215 const struct edid *edid = drm_edid->edid;
3217 if (edid->revision >= 4) {
3219 * If the range descriptor doesn't
3220 * indicate otherwise default to CVT
3222 int ret = LEVEL_CVT;
3224 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3227 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3229 } else if (edid->revision >= 2) {
3237 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3238 * monitors fill with ascii space (0x20) instead.
3241 bad_std_timing(u8 a, u8 b)
3243 return (a == 0x00 && b == 0x00) ||
3244 (a == 0x01 && b == 0x01) ||
3245 (a == 0x20 && b == 0x20);
3248 static int drm_mode_hsync(const struct drm_display_mode *mode)
3250 if (mode->htotal <= 0)
3253 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3256 static struct drm_display_mode *
3257 drm_gtf2_mode(struct drm_device *dev,
3258 const struct drm_edid *drm_edid,
3259 int hsize, int vsize, int vrefresh_rate)
3261 struct drm_display_mode *mode;
3264 * This is potentially wrong if there's ever a monitor with
3265 * more than one ranges section, each claiming a different
3266 * secondary GTF curve. Please don't do that.
3268 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3272 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3273 drm_mode_destroy(dev, mode);
3274 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3275 vrefresh_rate, 0, 0,
3276 drm_gtf2_m(drm_edid),
3277 drm_gtf2_2c(drm_edid),
3278 drm_gtf2_k(drm_edid),
3279 drm_gtf2_2j(drm_edid));
3286 * Take the standard timing params (in this case width, aspect, and refresh)
3287 * and convert them into a real mode using CVT/GTF/DMT.
3289 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3290 const struct drm_edid *drm_edid,
3291 const struct std_timing *t)
3293 struct drm_device *dev = connector->dev;
3294 struct drm_display_mode *m, *mode = NULL;
3297 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3298 >> EDID_TIMING_ASPECT_SHIFT;
3299 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3300 >> EDID_TIMING_VFREQ_SHIFT;
3301 int timing_level = standard_timing_level(drm_edid);
3303 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3306 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3307 hsize = t->hsize * 8 + 248;
3308 /* vrefresh_rate = vfreq + 60 */
3309 vrefresh_rate = vfreq + 60;
3310 /* the vdisplay is calculated based on the aspect ratio */
3311 if (aspect_ratio == 0) {
3312 if (drm_edid->edid->revision < 3)
3315 vsize = (hsize * 10) / 16;
3316 } else if (aspect_ratio == 1)
3317 vsize = (hsize * 3) / 4;
3318 else if (aspect_ratio == 2)
3319 vsize = (hsize * 4) / 5;
3321 vsize = (hsize * 9) / 16;
3323 /* HDTV hack, part 1 */
3324 if (vrefresh_rate == 60 &&
3325 ((hsize == 1360 && vsize == 765) ||
3326 (hsize == 1368 && vsize == 769))) {
3332 * If this connector already has a mode for this size and refresh
3333 * rate (because it came from detailed or CVT info), use that
3334 * instead. This way we don't have to guess at interlace or
3337 list_for_each_entry(m, &connector->probed_modes, head)
3338 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3339 drm_mode_vrefresh(m) == vrefresh_rate)
3342 /* HDTV hack, part 2 */
3343 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3344 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3348 mode->hdisplay = 1366;
3349 mode->hsync_start = mode->hsync_start - 1;
3350 mode->hsync_end = mode->hsync_end - 1;
3354 /* check whether it can be found in default mode table */
3355 if (drm_monitor_supports_rb(drm_edid)) {
3356 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3361 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3365 /* okay, generate it */
3366 switch (timing_level) {
3370 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3373 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3376 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3384 * EDID is delightfully ambiguous about how interlaced modes are to be
3385 * encoded. Our internal representation is of frame height, but some
3386 * HDTV detailed timings are encoded as field height.
3388 * The format list here is from CEA, in frame size. Technically we
3389 * should be checking refresh rate too. Whatever.
3392 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3393 const struct detailed_pixel_timing *pt)
3396 static const struct {
3398 } cea_interlaced[] = {
3408 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3411 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3412 if ((mode->hdisplay == cea_interlaced[i].w) &&
3413 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3414 mode->vdisplay *= 2;
3415 mode->vsync_start *= 2;
3416 mode->vsync_end *= 2;
3422 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3426 * Create a new mode from an EDID detailed timing section. An EDID detailed
3427 * timing block contains enough info for us to create and return a new struct
3430 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3431 const struct drm_edid *drm_edid,
3432 const struct detailed_timing *timing)
3434 const struct drm_display_info *info = &connector->display_info;
3435 struct drm_device *dev = connector->dev;
3436 struct drm_display_mode *mode;
3437 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3438 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3439 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3440 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3441 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3442 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3443 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3444 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3445 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3447 /* ignore tiny modes */
3448 if (hactive < 64 || vactive < 64)
3451 if (pt->misc & DRM_EDID_PT_STEREO) {
3452 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3453 connector->base.id, connector->name);
3457 /* it is incorrect if hsync/vsync width is zero */
3458 if (!hsync_pulse_width || !vsync_pulse_width) {
3459 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3460 connector->base.id, connector->name);
3464 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3465 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3472 mode = drm_mode_create(dev);
3476 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3477 mode->clock = 1088 * 10;
3479 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3481 mode->hdisplay = hactive;
3482 mode->hsync_start = mode->hdisplay + hsync_offset;
3483 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3484 mode->htotal = mode->hdisplay + hblank;
3486 mode->vdisplay = vactive;
3487 mode->vsync_start = mode->vdisplay + vsync_offset;
3488 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3489 mode->vtotal = mode->vdisplay + vblank;
3491 /* Some EDIDs have bogus h/vtotal values */
3492 if (mode->hsync_end > mode->htotal)
3493 mode->htotal = mode->hsync_end + 1;
3494 if (mode->vsync_end > mode->vtotal)
3495 mode->vtotal = mode->vsync_end + 1;
3497 drm_mode_do_interlace_quirk(mode, pt);
3499 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3500 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3502 switch (pt->misc & DRM_EDID_PT_SYNC_MASK) {
3503 case DRM_EDID_PT_ANALOG_CSYNC:
3504 case DRM_EDID_PT_BIPOLAR_ANALOG_CSYNC:
3505 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Analog composite sync!\n",
3506 connector->base.id, connector->name);
3507 mode->flags |= DRM_MODE_FLAG_CSYNC | DRM_MODE_FLAG_NCSYNC;
3509 case DRM_EDID_PT_DIGITAL_CSYNC:
3510 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Digital composite sync!\n",
3511 connector->base.id, connector->name);
3512 mode->flags |= DRM_MODE_FLAG_CSYNC;
3513 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3514 DRM_MODE_FLAG_PCSYNC : DRM_MODE_FLAG_NCSYNC;
3516 case DRM_EDID_PT_DIGITAL_SEPARATE_SYNC:
3517 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3518 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3519 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3520 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3526 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3527 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3529 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3530 mode->width_mm *= 10;
3531 mode->height_mm *= 10;
3534 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3535 mode->width_mm = drm_edid->edid->width_cm * 10;
3536 mode->height_mm = drm_edid->edid->height_cm * 10;
3539 mode->type = DRM_MODE_TYPE_DRIVER;
3540 drm_mode_set_name(mode);
3546 mode_in_hsync_range(const struct drm_display_mode *mode,
3547 const struct edid *edid, const u8 *t)
3549 int hsync, hmin, hmax;
3552 if (edid->revision >= 4)
3553 hmin += ((t[4] & 0x04) ? 255 : 0);
3555 if (edid->revision >= 4)
3556 hmax += ((t[4] & 0x08) ? 255 : 0);
3557 hsync = drm_mode_hsync(mode);
3559 return (hsync <= hmax && hsync >= hmin);
3563 mode_in_vsync_range(const struct drm_display_mode *mode,
3564 const struct edid *edid, const u8 *t)
3566 int vsync, vmin, vmax;
3569 if (edid->revision >= 4)
3570 vmin += ((t[4] & 0x01) ? 255 : 0);
3572 if (edid->revision >= 4)
3573 vmax += ((t[4] & 0x02) ? 255 : 0);
3574 vsync = drm_mode_vrefresh(mode);
3576 return (vsync <= vmax && vsync >= vmin);
3580 range_pixel_clock(const struct edid *edid, const u8 *t)
3583 if (t[9] == 0 || t[9] == 255)
3586 /* 1.4 with CVT support gives us real precision, yay */
3587 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3588 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3590 /* 1.3 is pathetic, so fuzz up a bit */
3591 return t[9] * 10000 + 5001;
3594 static bool mode_in_range(const struct drm_display_mode *mode,
3595 const struct drm_edid *drm_edid,
3596 const struct detailed_timing *timing)
3598 const struct edid *edid = drm_edid->edid;
3600 const u8 *t = (const u8 *)timing;
3602 if (!mode_in_hsync_range(mode, edid, t))
3605 if (!mode_in_vsync_range(mode, edid, t))
3608 if ((max_clock = range_pixel_clock(edid, t)))
3609 if (mode->clock > max_clock)
3612 /* 1.4 max horizontal check */
3613 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3614 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3617 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3623 static bool valid_inferred_mode(const struct drm_connector *connector,
3624 const struct drm_display_mode *mode)
3626 const struct drm_display_mode *m;
3629 list_for_each_entry(m, &connector->probed_modes, head) {
3630 if (mode->hdisplay == m->hdisplay &&
3631 mode->vdisplay == m->vdisplay &&
3632 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3633 return false; /* duplicated */
3634 if (mode->hdisplay <= m->hdisplay &&
3635 mode->vdisplay <= m->vdisplay)
3641 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3642 const struct drm_edid *drm_edid,
3643 const struct detailed_timing *timing)
3646 struct drm_display_mode *newmode;
3647 struct drm_device *dev = connector->dev;
3649 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3650 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3651 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3652 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3654 drm_mode_probed_add(connector, newmode);
3663 /* fix up 1366x768 mode from 1368x768;
3664 * GFT/CVT can't express 1366 width which isn't dividable by 8
3666 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3668 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3669 mode->hdisplay = 1366;
3670 mode->hsync_start--;
3672 drm_mode_set_name(mode);
3676 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3677 const struct drm_edid *drm_edid,
3678 const struct detailed_timing *timing)
3681 struct drm_display_mode *newmode;
3682 struct drm_device *dev = connector->dev;
3684 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3685 const struct minimode *m = &extra_modes[i];
3687 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3691 drm_mode_fixup_1366x768(newmode);
3692 if (!mode_in_range(newmode, drm_edid, timing) ||
3693 !valid_inferred_mode(connector, newmode)) {
3694 drm_mode_destroy(dev, newmode);
3698 drm_mode_probed_add(connector, newmode);
3705 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3706 const struct drm_edid *drm_edid,
3707 const struct detailed_timing *timing)
3710 struct drm_display_mode *newmode;
3711 struct drm_device *dev = connector->dev;
3713 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3714 const struct minimode *m = &extra_modes[i];
3716 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3720 drm_mode_fixup_1366x768(newmode);
3721 if (!mode_in_range(newmode, drm_edid, timing) ||
3722 !valid_inferred_mode(connector, newmode)) {
3723 drm_mode_destroy(dev, newmode);
3727 drm_mode_probed_add(connector, newmode);
3734 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3735 const struct drm_edid *drm_edid,
3736 const struct detailed_timing *timing)
3739 struct drm_display_mode *newmode;
3740 struct drm_device *dev = connector->dev;
3741 bool rb = drm_monitor_supports_rb(drm_edid);
3743 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3744 const struct minimode *m = &extra_modes[i];
3746 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3750 drm_mode_fixup_1366x768(newmode);
3751 if (!mode_in_range(newmode, drm_edid, timing) ||
3752 !valid_inferred_mode(connector, newmode)) {
3753 drm_mode_destroy(dev, newmode);
3757 drm_mode_probed_add(connector, newmode);
3765 do_inferred_modes(const struct detailed_timing *timing, void *c)
3767 struct detailed_mode_closure *closure = c;
3768 const struct detailed_non_pixel *data = &timing->data.other_data;
3769 const struct detailed_data_monitor_range *range = &data->data.range;
3771 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3774 closure->modes += drm_dmt_modes_for_range(closure->connector,
3778 if (closure->drm_edid->edid->revision < 2)
3779 return; /* GTF not defined yet */
3781 switch (range->flags) {
3782 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3783 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3787 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3788 closure->modes += drm_gtf_modes_for_range(closure->connector,
3792 case DRM_EDID_CVT_SUPPORT_FLAG:
3793 if (closure->drm_edid->edid->revision < 4)
3796 closure->modes += drm_cvt_modes_for_range(closure->connector,
3800 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3806 static int add_inferred_modes(struct drm_connector *connector,
3807 const struct drm_edid *drm_edid)
3809 struct detailed_mode_closure closure = {
3810 .connector = connector,
3811 .drm_edid = drm_edid,
3814 if (drm_edid->edid->revision >= 1)
3815 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3817 return closure.modes;
3821 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3823 int i, j, m, modes = 0;
3824 struct drm_display_mode *mode;
3825 const u8 *est = ((const u8 *)timing) + 6;
3827 for (i = 0; i < 6; i++) {
3828 for (j = 7; j >= 0; j--) {
3829 m = (i * 8) + (7 - j);
3830 if (m >= ARRAY_SIZE(est3_modes))
3832 if (est[i] & (1 << j)) {
3833 mode = drm_mode_find_dmt(connector->dev,
3839 drm_mode_probed_add(connector, mode);
3850 do_established_modes(const struct detailed_timing *timing, void *c)
3852 struct detailed_mode_closure *closure = c;
3854 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3857 closure->modes += drm_est3_modes(closure->connector, timing);
3861 * Get established modes from EDID and add them. Each EDID block contains a
3862 * bitmap of the supported "established modes" list (defined above). Tease them
3863 * out and add them to the global modes list.
3865 static int add_established_modes(struct drm_connector *connector,
3866 const struct drm_edid *drm_edid)
3868 struct drm_device *dev = connector->dev;
3869 const struct edid *edid = drm_edid->edid;
3870 unsigned long est_bits = edid->established_timings.t1 |
3871 (edid->established_timings.t2 << 8) |
3872 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3874 struct detailed_mode_closure closure = {
3875 .connector = connector,
3876 .drm_edid = drm_edid,
3879 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3880 if (est_bits & (1<<i)) {
3881 struct drm_display_mode *newmode;
3883 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3885 drm_mode_probed_add(connector, newmode);
3891 if (edid->revision >= 1)
3892 drm_for_each_detailed_block(drm_edid, do_established_modes,
3895 return modes + closure.modes;
3899 do_standard_modes(const struct detailed_timing *timing, void *c)
3901 struct detailed_mode_closure *closure = c;
3902 const struct detailed_non_pixel *data = &timing->data.other_data;
3903 struct drm_connector *connector = closure->connector;
3906 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3909 for (i = 0; i < 6; i++) {
3910 const struct std_timing *std = &data->data.timings[i];
3911 struct drm_display_mode *newmode;
3913 newmode = drm_mode_std(connector, closure->drm_edid, std);
3915 drm_mode_probed_add(connector, newmode);
3922 * Get standard modes from EDID and add them. Standard modes can be calculated
3923 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3924 * add them to the list.
3926 static int add_standard_modes(struct drm_connector *connector,
3927 const struct drm_edid *drm_edid)
3930 struct detailed_mode_closure closure = {
3931 .connector = connector,
3932 .drm_edid = drm_edid,
3935 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3936 struct drm_display_mode *newmode;
3938 newmode = drm_mode_std(connector, drm_edid,
3939 &drm_edid->edid->standard_timings[i]);
3941 drm_mode_probed_add(connector, newmode);
3946 if (drm_edid->edid->revision >= 1)
3947 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3950 /* XXX should also look for standard codes in VTB blocks */
3952 return modes + closure.modes;
3955 static int drm_cvt_modes(struct drm_connector *connector,
3956 const struct detailed_timing *timing)
3958 int i, j, modes = 0;
3959 struct drm_display_mode *newmode;
3960 struct drm_device *dev = connector->dev;
3961 const struct cvt_timing *cvt;
3962 const int rates[] = { 60, 85, 75, 60, 50 };
3963 const u8 empty[3] = { 0, 0, 0 };
3965 for (i = 0; i < 4; i++) {
3968 cvt = &(timing->data.other_data.data.cvt[i]);
3970 if (!memcmp(cvt->code, empty, 3))
3973 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3974 switch (cvt->code[1] & 0x0c) {
3975 /* default - because compiler doesn't see that we've enumerated all cases */
3978 width = height * 4 / 3;
3981 width = height * 16 / 9;
3984 width = height * 16 / 10;
3987 width = height * 15 / 9;
3991 for (j = 1; j < 5; j++) {
3992 if (cvt->code[2] & (1 << j)) {
3993 newmode = drm_cvt_mode(dev, width, height,
3997 drm_mode_probed_add(connector, newmode);
4008 do_cvt_mode(const struct detailed_timing *timing, void *c)
4010 struct detailed_mode_closure *closure = c;
4012 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4015 closure->modes += drm_cvt_modes(closure->connector, timing);
4019 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4021 struct detailed_mode_closure closure = {
4022 .connector = connector,
4023 .drm_edid = drm_edid,
4026 if (drm_edid->edid->revision >= 3)
4027 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4029 /* XXX should also look for CVT codes in VTB blocks */
4031 return closure.modes;
4034 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4035 struct drm_display_mode *mode);
4038 do_detailed_mode(const struct detailed_timing *timing, void *c)
4040 struct detailed_mode_closure *closure = c;
4041 struct drm_display_mode *newmode;
4043 if (!is_detailed_timing_descriptor(timing))
4046 newmode = drm_mode_detailed(closure->connector,
4047 closure->drm_edid, timing);
4051 if (closure->preferred)
4052 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4055 * Detailed modes are limited to 10kHz pixel clock resolution,
4056 * so fix up anything that looks like CEA/HDMI mode, but the clock
4057 * is just slightly off.
4059 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4061 drm_mode_probed_add(closure->connector, newmode);
4063 closure->preferred = false;
4067 * add_detailed_modes - Add modes from detailed timings
4068 * @connector: attached connector
4069 * @drm_edid: EDID block to scan
4071 static int add_detailed_modes(struct drm_connector *connector,
4072 const struct drm_edid *drm_edid)
4074 struct detailed_mode_closure closure = {
4075 .connector = connector,
4076 .drm_edid = drm_edid,
4079 if (drm_edid->edid->revision >= 4)
4080 closure.preferred = true; /* first detailed timing is always preferred */
4083 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4085 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4087 return closure.modes;
4090 /* CTA-861-H Table 60 - CTA Tag Codes */
4091 #define CTA_DB_AUDIO 1
4092 #define CTA_DB_VIDEO 2
4093 #define CTA_DB_VENDOR 3
4094 #define CTA_DB_SPEAKER 4
4095 #define CTA_DB_EXTENDED_TAG 7
4097 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4098 #define CTA_EXT_DB_VIDEO_CAP 0
4099 #define CTA_EXT_DB_VENDOR 1
4100 #define CTA_EXT_DB_HDR_STATIC_METADATA 6
4101 #define CTA_EXT_DB_420_VIDEO_DATA 14
4102 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4103 #define CTA_EXT_DB_HF_EEODB 0x78
4104 #define CTA_EXT_DB_HF_SCDB 0x79
4106 #define EDID_BASIC_AUDIO (1 << 6)
4107 #define EDID_CEA_YCRCB444 (1 << 5)
4108 #define EDID_CEA_YCRCB422 (1 << 4)
4109 #define EDID_CEA_VCDB_QS (1 << 6)
4112 * Search EDID for CEA extension block.
4114 * FIXME: Prefer not returning pointers to raw EDID data.
4116 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4117 int ext_id, int *ext_index)
4119 const u8 *edid_ext = NULL;
4122 /* No EDID or EDID extensions */
4123 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4126 /* Find CEA extension */
4127 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4128 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4129 if (edid_block_tag(edid_ext) == ext_id)
4133 if (i >= drm_edid_extension_block_count(drm_edid))
4141 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4142 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4144 const struct displayid_block *block;
4145 struct displayid_iter iter;
4149 /* Look for a top level CEA extension block */
4150 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4153 /* CEA blocks can also be found embedded in a DisplayID block */
4154 displayid_iter_edid_begin(drm_edid, &iter);
4155 displayid_iter_for_each(block, &iter) {
4156 if (block->tag == DATA_BLOCK_CTA) {
4161 displayid_iter_end(&iter);
4166 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4168 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4169 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4171 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4172 return &edid_cea_modes_1[vic - 1];
4173 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4174 return &edid_cea_modes_193[vic - 193];
4178 static u8 cea_num_vics(void)
4180 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4183 static u8 cea_next_vic(u8 vic)
4185 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4191 * Calculate the alternate clock for the CEA mode
4192 * (60Hz vs. 59.94Hz etc.)
4195 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4197 unsigned int clock = cea_mode->clock;
4199 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4203 * edid_cea_modes contains the 59.94Hz
4204 * variant for 240 and 480 line modes,
4205 * and the 60Hz variant otherwise.
4207 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4208 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4210 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4216 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4219 * For certain VICs the spec allows the vertical
4220 * front porch to vary by one or two lines.
4222 * cea_modes[] stores the variant with the shortest
4223 * vertical front porch. We can adjust the mode to
4224 * get the other variants by simply increasing the
4225 * vertical front porch length.
4227 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4228 cea_mode_for_vic(9)->vtotal != 262 ||
4229 cea_mode_for_vic(12)->vtotal != 262 ||
4230 cea_mode_for_vic(13)->vtotal != 262 ||
4231 cea_mode_for_vic(23)->vtotal != 312 ||
4232 cea_mode_for_vic(24)->vtotal != 312 ||
4233 cea_mode_for_vic(27)->vtotal != 312 ||
4234 cea_mode_for_vic(28)->vtotal != 312);
4236 if (((vic == 8 || vic == 9 ||
4237 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4238 ((vic == 23 || vic == 24 ||
4239 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4240 mode->vsync_start++;
4250 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4251 unsigned int clock_tolerance)
4253 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4256 if (!to_match->clock)
4259 if (to_match->picture_aspect_ratio)
4260 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4262 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4263 struct drm_display_mode cea_mode;
4264 unsigned int clock1, clock2;
4266 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4268 /* Check both 60Hz and 59.94Hz */
4269 clock1 = cea_mode.clock;
4270 clock2 = cea_mode_alternate_clock(&cea_mode);
4272 if (abs(to_match->clock - clock1) > clock_tolerance &&
4273 abs(to_match->clock - clock2) > clock_tolerance)
4277 if (drm_mode_match(to_match, &cea_mode, match_flags))
4279 } while (cea_mode_alternate_timings(vic, &cea_mode));
4286 * drm_match_cea_mode - look for a CEA mode matching given mode
4287 * @to_match: display mode
4289 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4292 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4294 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4297 if (!to_match->clock)
4300 if (to_match->picture_aspect_ratio)
4301 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4303 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4304 struct drm_display_mode cea_mode;
4305 unsigned int clock1, clock2;
4307 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4309 /* Check both 60Hz and 59.94Hz */
4310 clock1 = cea_mode.clock;
4311 clock2 = cea_mode_alternate_clock(&cea_mode);
4313 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4314 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4318 if (drm_mode_match(to_match, &cea_mode, match_flags))
4320 } while (cea_mode_alternate_timings(vic, &cea_mode));
4325 EXPORT_SYMBOL(drm_match_cea_mode);
4327 static bool drm_valid_cea_vic(u8 vic)
4329 return cea_mode_for_vic(vic) != NULL;
4332 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4334 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4337 return mode->picture_aspect_ratio;
4339 return HDMI_PICTURE_ASPECT_NONE;
4342 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4344 return edid_4k_modes[video_code].picture_aspect_ratio;
4348 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4352 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4354 return cea_mode_alternate_clock(hdmi_mode);
4357 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4358 unsigned int clock_tolerance)
4360 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4363 if (!to_match->clock)
4366 if (to_match->picture_aspect_ratio)
4367 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4369 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371 unsigned int clock1, clock2;
4373 /* Make sure to also match alternate clocks */
4374 clock1 = hdmi_mode->clock;
4375 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4377 if (abs(to_match->clock - clock1) > clock_tolerance &&
4378 abs(to_match->clock - clock2) > clock_tolerance)
4381 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4389 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4390 * @to_match: display mode
4392 * An HDMI mode is one defined in the HDMI vendor specific block.
4394 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4396 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4398 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4401 if (!to_match->clock)
4404 if (to_match->picture_aspect_ratio)
4405 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4407 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4408 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4409 unsigned int clock1, clock2;
4411 /* Make sure to also match alternate clocks */
4412 clock1 = hdmi_mode->clock;
4413 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4415 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4416 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4417 drm_mode_match(to_match, hdmi_mode, match_flags))
4423 static bool drm_valid_hdmi_vic(u8 vic)
4425 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4428 static int add_alternate_cea_modes(struct drm_connector *connector,
4429 const struct drm_edid *drm_edid)
4431 struct drm_device *dev = connector->dev;
4432 struct drm_display_mode *mode, *tmp;
4436 /* Don't add CTA modes if the CTA extension block is missing */
4437 if (!drm_edid_has_cta_extension(drm_edid))
4441 * Go through all probed modes and create a new mode
4442 * with the alternate clock for certain CEA modes.
4444 list_for_each_entry(mode, &connector->probed_modes, head) {
4445 const struct drm_display_mode *cea_mode = NULL;
4446 struct drm_display_mode *newmode;
4447 u8 vic = drm_match_cea_mode(mode);
4448 unsigned int clock1, clock2;
4450 if (drm_valid_cea_vic(vic)) {
4451 cea_mode = cea_mode_for_vic(vic);
4452 clock2 = cea_mode_alternate_clock(cea_mode);
4454 vic = drm_match_hdmi_mode(mode);
4455 if (drm_valid_hdmi_vic(vic)) {
4456 cea_mode = &edid_4k_modes[vic];
4457 clock2 = hdmi_mode_alternate_clock(cea_mode);
4464 clock1 = cea_mode->clock;
4466 if (clock1 == clock2)
4469 if (mode->clock != clock1 && mode->clock != clock2)
4472 newmode = drm_mode_duplicate(dev, cea_mode);
4476 /* Carry over the stereo flags */
4477 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4480 * The current mode could be either variant. Make
4481 * sure to pick the "other" clock for the new mode.
4483 if (mode->clock != clock1)
4484 newmode->clock = clock1;
4486 newmode->clock = clock2;
4488 list_add_tail(&newmode->head, &list);
4491 list_for_each_entry_safe(mode, tmp, &list, head) {
4492 list_del(&mode->head);
4493 drm_mode_probed_add(connector, mode);
4500 static u8 svd_to_vic(u8 svd)
4502 /* 0-6 bit vic, 7th bit native mode indicator */
4503 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4510 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4511 * the EDID, or NULL on errors.
4513 static struct drm_display_mode *
4514 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4516 const struct drm_display_info *info = &connector->display_info;
4517 struct drm_device *dev = connector->dev;
4519 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4522 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4526 * do_y420vdb_modes - Parse YCBCR 420 only modes
4527 * @connector: connector corresponding to the HDMI sink
4528 * @svds: start of the data block of CEA YCBCR 420 VDB
4529 * @len: length of the CEA YCBCR 420 VDB
4531 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4532 * which contains modes which can be supported in YCBCR 420
4533 * output format only.
4535 static int do_y420vdb_modes(struct drm_connector *connector,
4536 const u8 *svds, u8 svds_len)
4538 struct drm_device *dev = connector->dev;
4541 for (i = 0; i < svds_len; i++) {
4542 u8 vic = svd_to_vic(svds[i]);
4543 struct drm_display_mode *newmode;
4545 if (!drm_valid_cea_vic(vic))
4548 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4551 drm_mode_probed_add(connector, newmode);
4559 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4561 * @video_code: CEA VIC of the mode
4563 * Creates a new mode matching the specified CEA VIC.
4565 * Returns: A new drm_display_mode on success or NULL on failure
4567 struct drm_display_mode *
4568 drm_display_mode_from_cea_vic(struct drm_device *dev,
4571 const struct drm_display_mode *cea_mode;
4572 struct drm_display_mode *newmode;
4574 cea_mode = cea_mode_for_vic(video_code);
4578 newmode = drm_mode_duplicate(dev, cea_mode);
4584 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4586 /* Add modes based on VICs parsed in parse_cta_vdb() */
4587 static int add_cta_vdb_modes(struct drm_connector *connector)
4589 const struct drm_display_info *info = &connector->display_info;
4595 for (i = 0; i < info->vics_len; i++) {
4596 struct drm_display_mode *mode;
4598 mode = drm_display_mode_from_vic_index(connector, i);
4600 drm_mode_probed_add(connector, mode);
4608 struct stereo_mandatory_mode {
4609 int width, height, vrefresh;
4613 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4614 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4615 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4617 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4619 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4620 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4623 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627 stereo_match_mandatory(const struct drm_display_mode *mode,
4628 const struct stereo_mandatory_mode *stereo_mode)
4630 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4632 return mode->hdisplay == stereo_mode->width &&
4633 mode->vdisplay == stereo_mode->height &&
4634 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4635 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4638 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4640 struct drm_device *dev = connector->dev;
4641 const struct drm_display_mode *mode;
4642 struct list_head stereo_modes;
4645 INIT_LIST_HEAD(&stereo_modes);
4647 list_for_each_entry(mode, &connector->probed_modes, head) {
4648 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4649 const struct stereo_mandatory_mode *mandatory;
4650 struct drm_display_mode *new_mode;
4652 if (!stereo_match_mandatory(mode,
4653 &stereo_mandatory_modes[i]))
4656 mandatory = &stereo_mandatory_modes[i];
4657 new_mode = drm_mode_duplicate(dev, mode);
4661 new_mode->flags |= mandatory->flags;
4662 list_add_tail(&new_mode->head, &stereo_modes);
4667 list_splice_tail(&stereo_modes, &connector->probed_modes);
4672 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4674 struct drm_device *dev = connector->dev;
4675 struct drm_display_mode *newmode;
4677 if (!drm_valid_hdmi_vic(vic)) {
4678 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4679 connector->base.id, connector->name, vic);
4683 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 drm_mode_probed_add(connector, newmode);
4692 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4695 struct drm_display_mode *newmode;
4698 if (structure & (1 << 0)) {
4699 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4701 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4702 drm_mode_probed_add(connector, newmode);
4706 if (structure & (1 << 6)) {
4707 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4709 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4710 drm_mode_probed_add(connector, newmode);
4714 if (structure & (1 << 8)) {
4715 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4717 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4718 drm_mode_probed_add(connector, newmode);
4726 static bool hdmi_vsdb_latency_present(const u8 *db)
4728 return db[8] & BIT(7);
4731 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4733 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4736 static int hdmi_vsdb_latency_length(const u8 *db)
4738 if (hdmi_vsdb_i_latency_present(db))
4740 else if (hdmi_vsdb_latency_present(db))
4747 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4748 * @connector: connector corresponding to the HDMI sink
4749 * @db: start of the CEA vendor specific block
4750 * @len: length of the CEA block payload, ie. one can access up to db[len]
4752 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4753 * also adds the stereo 3d modes when applicable.
4756 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4758 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4759 u8 vic_len, hdmi_3d_len = 0;
4766 /* no HDMI_Video_Present */
4767 if (!(db[8] & (1 << 5)))
4770 offset += hdmi_vsdb_latency_length(db);
4772 /* the declared length is not long enough for the 2 first bytes
4773 * of additional video format capabilities */
4774 if (len < (8 + offset + 2))
4779 if (db[8 + offset] & (1 << 7)) {
4780 modes += add_hdmi_mandatory_stereo_modes(connector);
4782 /* 3D_Multi_present */
4783 multi_present = (db[8 + offset] & 0x60) >> 5;
4787 vic_len = db[8 + offset] >> 5;
4788 hdmi_3d_len = db[8 + offset] & 0x1f;
4790 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4793 vic = db[9 + offset + i];
4794 modes += add_hdmi_mode(connector, vic);
4796 offset += 1 + vic_len;
4798 if (multi_present == 1)
4800 else if (multi_present == 2)
4805 if (len < (8 + offset + hdmi_3d_len - 1))
4808 if (hdmi_3d_len < multi_len)
4811 if (multi_present == 1 || multi_present == 2) {
4812 /* 3D_Structure_ALL */
4813 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4815 /* check if 3D_MASK is present */
4816 if (multi_present == 2)
4817 mask = (db[10 + offset] << 8) | db[11 + offset];
4821 for (i = 0; i < 16; i++) {
4822 if (mask & (1 << i))
4823 modes += add_3d_struct_modes(connector,
4828 offset += multi_len;
4830 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4832 struct drm_display_mode *newmode = NULL;
4833 unsigned int newflag = 0;
4834 bool detail_present;
4836 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4838 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4841 /* 2D_VIC_order_X */
4842 vic_index = db[8 + offset + i] >> 4;
4844 /* 3D_Structure_X */
4845 switch (db[8 + offset + i] & 0x0f) {
4847 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4850 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4854 if ((db[9 + offset + i] >> 4) == 1)
4855 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4860 newmode = drm_display_mode_from_vic_index(connector,
4864 newmode->flags |= newflag;
4865 drm_mode_probed_add(connector, newmode);
4879 cea_revision(const u8 *cea)
4882 * FIXME is this correct for the DispID variant?
4883 * The DispID spec doesn't really specify whether
4884 * this is the revision of the CEA extension or
4885 * the DispID CEA data block. And the only value
4886 * given as an example is 0.
4892 * CTA Data Block iterator.
4894 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4897 * struct cea_db *db:
4898 * struct cea_db_iter iter;
4900 * cea_db_iter_edid_begin(edid, &iter);
4901 * cea_db_iter_for_each(db, &iter) {
4902 * // do stuff with db
4904 * cea_db_iter_end(&iter);
4906 struct cea_db_iter {
4907 struct drm_edid_iter edid_iter;
4908 struct displayid_iter displayid_iter;
4910 /* Current Data Block Collection. */
4911 const u8 *collection;
4913 /* Current Data Block index in current collection. */
4916 /* End index in current collection. */
4920 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4926 static int cea_db_tag(const struct cea_db *db)
4928 return db->tag_length >> 5;
4931 static int cea_db_payload_len(const void *_db)
4933 /* FIXME: Transition to passing struct cea_db * everywhere. */
4934 const struct cea_db *db = _db;
4936 return db->tag_length & 0x1f;
4939 static const void *cea_db_data(const struct cea_db *db)
4944 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4946 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4947 cea_db_payload_len(db) >= 1 &&
4951 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4953 const u8 *data = cea_db_data(db);
4955 return cea_db_tag(db) == CTA_DB_VENDOR &&
4956 cea_db_payload_len(db) >= 3 &&
4957 oui(data[2], data[1], data[0]) == vendor_oui;
4960 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4961 struct cea_db_iter *iter)
4963 memset(iter, 0, sizeof(*iter));
4965 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4966 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4969 static const struct cea_db *
4970 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4972 const struct cea_db *db;
4974 if (!iter->collection)
4977 db = (const struct cea_db *)&iter->collection[iter->index];
4979 if (iter->index + sizeof(*db) <= iter->end &&
4980 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4988 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4990 static int cea_db_collection_size(const u8 *cta)
4994 if (d < 4 || d > 127)
5002 * - VESA E-EDID v1.4
5003 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5005 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5012 /* Only support CTA Extension revision 3+ */
5013 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5016 size = cea_db_collection_size(ext);
5021 iter->end = iter->index + size;
5031 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5032 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5034 * Note that the above do not specify any connection between DisplayID Data
5035 * Block revision and CTA Extension versions.
5037 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5039 const struct displayid_block *block;
5041 displayid_iter_for_each(block, &iter->displayid_iter) {
5042 if (block->tag != DATA_BLOCK_CTA)
5046 * The displayid iterator has already verified the block bounds
5047 * in displayid_iter_block().
5049 iter->index = sizeof(*block);
5050 iter->end = iter->index + block->num_bytes;
5058 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5060 const struct cea_db *db;
5062 if (iter->collection) {
5063 /* Current collection should always be valid. */
5064 db = __cea_db_iter_current_block(iter);
5066 iter->collection = NULL;
5070 /* Next block in CTA Data Block Collection */
5071 iter->index += sizeof(*db) + cea_db_payload_len(db);
5073 db = __cea_db_iter_current_block(iter);
5080 * Find the next CTA Data Block Collection. First iterate all
5081 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5083 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5084 * Extension, it's recommended that DisplayID extensions are
5085 * exposed after all of the CTA Extensions.
5087 iter->collection = __cea_db_iter_edid_next(iter);
5088 if (!iter->collection)
5089 iter->collection = __cea_db_iter_displayid_next(iter);
5091 if (!iter->collection)
5094 db = __cea_db_iter_current_block(iter);
5100 #define cea_db_iter_for_each(__db, __iter) \
5101 while (((__db) = __cea_db_iter_next(__iter)))
5103 static void cea_db_iter_end(struct cea_db_iter *iter)
5105 displayid_iter_end(&iter->displayid_iter);
5106 drm_edid_iter_end(&iter->edid_iter);
5108 memset(iter, 0, sizeof(*iter));
5111 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5113 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5114 cea_db_payload_len(db) >= 5;
5117 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5119 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5120 cea_db_payload_len(db) >= 7;
5123 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5125 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5126 cea_db_payload_len(db) >= 2;
5129 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5131 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5132 cea_db_payload_len(db) == 21;
5135 static bool cea_db_is_vcdb(const struct cea_db *db)
5137 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5138 cea_db_payload_len(db) == 2;
5141 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5143 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5144 cea_db_payload_len(db) >= 7;
5147 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5149 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5152 static bool cea_db_is_y420vdb(const struct cea_db *db)
5154 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5157 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5159 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5160 cea_db_payload_len(db) >= 3;
5164 * Get the HF-EEODB override extension block count from EDID.
5166 * The passed in EDID may be partially read, as long as it has at least two
5167 * blocks (base block and one extension block) if EDID extension count is > 0.
5169 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5170 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5171 * iterators instead.
5174 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5176 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180 /* No extensions according to base block, no HF-EEODB. */
5181 if (!edid_extension_block_count(edid))
5184 /* HF-EEODB is always in the first EDID extension block only */
5185 cta = edid_extension_block_data(edid, 0);
5186 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5189 /* Need to have the data block collection, and at least 3 bytes. */
5190 if (cea_db_collection_size(cta) < 3)
5194 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5195 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5196 * through 6 of Block 1 of the E-EDID.
5198 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5207 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5208 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5209 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5210 * support YCBCR420 output too.
5212 static void parse_cta_y420cmdb(struct drm_connector *connector,
5213 const struct cea_db *db, u64 *y420cmdb_map)
5215 struct drm_display_info *info = &connector->display_info;
5216 int i, map_len = cea_db_payload_len(db) - 1;
5217 const u8 *data = cea_db_data(db) + 1;
5221 /* All CEA modes support ycbcr420 sampling also.*/
5227 * This map indicates which of the existing CEA block modes
5228 * from VDB can support YCBCR420 output too. So if bit=0 is
5229 * set, first mode from VDB can support YCBCR420 output too.
5230 * We will parse and keep this map, before parsing VDB itself
5231 * to avoid going through the same block again and again.
5233 * Spec is not clear about max possible size of this block.
5234 * Clamping max bitmap block size at 8 bytes. Every byte can
5235 * address 8 CEA modes, in this way this map can address
5236 * 8*8 = first 64 SVDs.
5238 if (WARN_ON_ONCE(map_len > 8))
5241 for (i = 0; i < map_len; i++)
5242 map |= (u64)data[i] << (8 * i);
5246 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5248 *y420cmdb_map = map;
5251 static int add_cea_modes(struct drm_connector *connector,
5252 const struct drm_edid *drm_edid)
5254 const struct cea_db *db;
5255 struct cea_db_iter iter;
5258 /* CTA VDB block VICs parsed earlier */
5259 modes = add_cta_vdb_modes(connector);
5261 cea_db_iter_edid_begin(drm_edid, &iter);
5262 cea_db_iter_for_each(db, &iter) {
5263 if (cea_db_is_hdmi_vsdb(db)) {
5264 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5265 cea_db_payload_len(db));
5266 } else if (cea_db_is_y420vdb(db)) {
5267 const u8 *vdb420 = cea_db_data(db) + 1;
5269 /* Add 4:2:0(only) modes present in EDID */
5270 modes += do_y420vdb_modes(connector, vdb420,
5271 cea_db_payload_len(db) - 1);
5274 cea_db_iter_end(&iter);
5279 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5280 struct drm_display_mode *mode)
5282 const struct drm_display_mode *cea_mode;
5283 int clock1, clock2, clock;
5288 * allow 5kHz clock difference either way to account for
5289 * the 10kHz clock resolution limit of detailed timings.
5291 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5292 if (drm_valid_cea_vic(vic)) {
5294 cea_mode = cea_mode_for_vic(vic);
5295 clock1 = cea_mode->clock;
5296 clock2 = cea_mode_alternate_clock(cea_mode);
5298 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5299 if (drm_valid_hdmi_vic(vic)) {
5301 cea_mode = &edid_4k_modes[vic];
5302 clock1 = cea_mode->clock;
5303 clock2 = hdmi_mode_alternate_clock(cea_mode);
5309 /* pick whichever is closest */
5310 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5315 if (mode->clock == clock)
5318 drm_dbg_kms(connector->dev,
5319 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5320 connector->base.id, connector->name,
5321 type, vic, mode->clock, clock);
5322 mode->clock = clock;
5325 static void drm_calculate_luminance_range(struct drm_connector *connector)
5327 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5328 struct drm_luminance_range_info *luminance_range =
5329 &connector->display_info.luminance_range;
5330 static const u8 pre_computed_values[] = {
5331 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5332 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5334 u32 max_avg, min_cll, max, min, q, r;
5336 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5339 max_avg = hdr_metadata->max_fall;
5340 min_cll = hdr_metadata->min_cll;
5343 * From the specification (CTA-861-G), for calculating the maximum
5344 * luminance we need to use:
5345 * Luminance = 50*2**(CV/32)
5346 * Where CV is a one-byte value.
5347 * For calculating this expression we may need float point precision;
5348 * to avoid this complexity level, we take advantage that CV is divided
5349 * by a constant. From the Euclids division algorithm, we know that CV
5350 * can be written as: CV = 32*q + r. Next, we replace CV in the
5351 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5352 * need to pre-compute the value of r/32. For pre-computing the values
5353 * We just used the following Ruby line:
5354 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5355 * The results of the above expressions can be verified at
5356 * pre_computed_values.
5360 max = (1 << q) * pre_computed_values[r];
5362 /* min luminance: maxLum * (CV/255)^2 / 100 */
5363 q = DIV_ROUND_CLOSEST(min_cll, 255);
5364 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5366 luminance_range->min_luminance = min;
5367 luminance_range->max_luminance = max;
5370 static uint8_t eotf_supported(const u8 *edid_ext)
5372 return edid_ext[2] &
5373 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5374 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5375 BIT(HDMI_EOTF_SMPTE_ST2084) |
5376 BIT(HDMI_EOTF_BT_2100_HLG));
5379 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5381 return edid_ext[3] &
5382 BIT(HDMI_STATIC_METADATA_TYPE1);
5386 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5390 len = cea_db_payload_len(db);
5392 connector->hdr_sink_metadata.hdmi_type1.eotf =
5394 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5395 hdr_metadata_type(db);
5398 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5400 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5402 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5404 /* Calculate only when all values are available */
5405 drm_calculate_luminance_range(connector);
5409 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5411 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5413 u8 len = cea_db_payload_len(db);
5415 if (len >= 6 && (db[6] & (1 << 7)))
5416 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5418 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5419 connector->latency_present[0] = true;
5420 connector->video_latency[0] = db[9];
5421 connector->audio_latency[0] = db[10];
5424 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5425 connector->latency_present[1] = true;
5426 connector->video_latency[1] = db[11];
5427 connector->audio_latency[1] = db[12];
5430 drm_dbg_kms(connector->dev,
5431 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5432 connector->base.id, connector->name,
5433 connector->latency_present[0], connector->latency_present[1],
5434 connector->video_latency[0], connector->video_latency[1],
5435 connector->audio_latency[0], connector->audio_latency[1]);
5439 monitor_name(const struct detailed_timing *timing, void *data)
5441 const char **res = data;
5443 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5446 *res = timing->data.other_data.data.str.str;
5449 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5451 const char *edid_name = NULL;
5454 if (!drm_edid || !name)
5457 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5458 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5459 if (edid_name[mnl] == 0x0a)
5462 name[mnl] = edid_name[mnl];
5469 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5470 * @edid: monitor EDID information
5471 * @name: pointer to a character array to hold the name of the monitor
5472 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5475 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5477 int name_length = 0;
5484 struct drm_edid drm_edid = {
5486 .size = edid_size(edid),
5489 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5490 memcpy(name, buf, name_length);
5493 name[name_length] = '\0';
5495 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5497 static void clear_eld(struct drm_connector *connector)
5499 memset(connector->eld, 0, sizeof(connector->eld));
5501 connector->latency_present[0] = false;
5502 connector->latency_present[1] = false;
5503 connector->video_latency[0] = 0;
5504 connector->audio_latency[0] = 0;
5505 connector->video_latency[1] = 0;
5506 connector->audio_latency[1] = 0;
5510 * drm_edid_to_eld - build ELD from EDID
5511 * @connector: connector corresponding to the HDMI/DP sink
5512 * @drm_edid: EDID to parse
5514 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5515 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5517 static void drm_edid_to_eld(struct drm_connector *connector,
5518 const struct drm_edid *drm_edid)
5520 const struct drm_display_info *info = &connector->display_info;
5521 const struct cea_db *db;
5522 struct cea_db_iter iter;
5523 uint8_t *eld = connector->eld;
5524 int total_sad_count = 0;
5530 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5531 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5532 connector->base.id, connector->name,
5533 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5535 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5536 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5538 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5540 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5541 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5542 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5543 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5545 cea_db_iter_edid_begin(drm_edid, &iter);
5546 cea_db_iter_for_each(db, &iter) {
5547 const u8 *data = cea_db_data(db);
5548 int len = cea_db_payload_len(db);
5551 switch (cea_db_tag(db)) {
5553 /* Audio Data Block, contains SADs */
5554 sad_count = min(len / 3, 15 - total_sad_count);
5556 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5557 data, sad_count * 3);
5558 total_sad_count += sad_count;
5560 case CTA_DB_SPEAKER:
5561 /* Speaker Allocation Data Block */
5563 eld[DRM_ELD_SPEAKER] = data[0];
5566 /* HDMI Vendor-Specific Data Block */
5567 if (cea_db_is_hdmi_vsdb(db))
5568 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5574 cea_db_iter_end(&iter);
5576 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5578 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5579 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5580 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5582 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5584 eld[DRM_ELD_BASELINE_ELD_LEN] =
5585 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5587 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5588 connector->base.id, connector->name,
5589 drm_eld_size(eld), total_sad_count);
5592 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5593 struct cea_sad **sads)
5595 const struct cea_db *db;
5596 struct cea_db_iter iter;
5599 cea_db_iter_edid_begin(drm_edid, &iter);
5600 cea_db_iter_for_each(db, &iter) {
5601 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5604 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5605 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5608 for (j = 0; j < count; j++) {
5609 const u8 *sad = &db->data[j * 3];
5611 (*sads)[j].format = (sad[0] & 0x78) >> 3;
5612 (*sads)[j].channels = sad[0] & 0x7;
5613 (*sads)[j].freq = sad[1] & 0x7F;
5614 (*sads)[j].byte2 = sad[2];
5619 cea_db_iter_end(&iter);
5621 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5627 * drm_edid_to_sad - extracts SADs from EDID
5628 * @edid: EDID to parse
5629 * @sads: pointer that will be set to the extracted SADs
5631 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5633 * Note: The returned pointer needs to be freed using kfree().
5635 * Return: The number of found SADs or negative number on error.
5637 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5639 struct drm_edid drm_edid;
5641 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5643 EXPORT_SYMBOL(drm_edid_to_sad);
5645 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5648 const struct cea_db *db;
5649 struct cea_db_iter iter;
5652 cea_db_iter_edid_begin(drm_edid, &iter);
5653 cea_db_iter_for_each(db, &iter) {
5654 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5655 cea_db_payload_len(db) == 3) {
5656 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5660 count = cea_db_payload_len(db);
5664 cea_db_iter_end(&iter);
5666 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5672 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5673 * @edid: EDID to parse
5674 * @sadb: pointer to the speaker block
5676 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5678 * Note: The returned pointer needs to be freed using kfree().
5680 * Return: The number of found Speaker Allocation Blocks or negative number on
5683 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5685 struct drm_edid drm_edid;
5687 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5690 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5693 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5694 * @connector: connector associated with the HDMI/DP sink
5695 * @mode: the display mode
5697 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5698 * the sink doesn't support audio or video.
5700 int drm_av_sync_delay(struct drm_connector *connector,
5701 const struct drm_display_mode *mode)
5703 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5706 if (!connector->latency_present[0])
5708 if (!connector->latency_present[1])
5711 a = connector->audio_latency[i];
5712 v = connector->video_latency[i];
5715 * HDMI/DP sink doesn't support audio or video?
5717 if (a == 255 || v == 255)
5721 * Convert raw EDID values to millisecond.
5722 * Treat unknown latency as 0ms.
5725 a = min(2 * (a - 1), 500);
5727 v = min(2 * (v - 1), 500);
5729 return max(v - a, 0);
5731 EXPORT_SYMBOL(drm_av_sync_delay);
5733 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5735 const struct cea_db *db;
5736 struct cea_db_iter iter;
5740 * Because HDMI identifier is in Vendor Specific Block,
5741 * search it from all data blocks of CEA extension.
5743 cea_db_iter_edid_begin(drm_edid, &iter);
5744 cea_db_iter_for_each(db, &iter) {
5745 if (cea_db_is_hdmi_vsdb(db)) {
5750 cea_db_iter_end(&iter);
5756 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5757 * @edid: monitor EDID information
5759 * Parse the CEA extension according to CEA-861-B.
5761 * Drivers that have added the modes parsed from EDID to drm_display_info
5762 * should use &drm_display_info.is_hdmi instead of calling this function.
5764 * Return: True if the monitor is HDMI, false if not or unknown.
5766 bool drm_detect_hdmi_monitor(const struct edid *edid)
5768 struct drm_edid drm_edid;
5770 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5772 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5774 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5776 struct drm_edid_iter edid_iter;
5777 const struct cea_db *db;
5778 struct cea_db_iter iter;
5780 bool has_audio = false;
5782 drm_edid_iter_begin(drm_edid, &edid_iter);
5783 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5784 if (edid_ext[0] == CEA_EXT) {
5785 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5790 drm_edid_iter_end(&edid_iter);
5793 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5797 cea_db_iter_edid_begin(drm_edid, &iter);
5798 cea_db_iter_for_each(db, &iter) {
5799 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5800 const u8 *data = cea_db_data(db);
5803 for (i = 0; i < cea_db_payload_len(db); i += 3)
5804 DRM_DEBUG_KMS("CEA audio format %d\n",
5805 (data[i] >> 3) & 0xf);
5810 cea_db_iter_end(&iter);
5817 * drm_detect_monitor_audio - check monitor audio capability
5818 * @edid: EDID block to scan
5820 * Monitor should have CEA extension block.
5821 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5822 * audio' only. If there is any audio extension block and supported
5823 * audio format, assume at least 'basic audio' support, even if 'basic
5824 * audio' is not defined in EDID.
5826 * Return: True if the monitor supports audio, false otherwise.
5828 bool drm_detect_monitor_audio(const struct edid *edid)
5830 struct drm_edid drm_edid;
5832 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5834 EXPORT_SYMBOL(drm_detect_monitor_audio);
5838 * drm_default_rgb_quant_range - default RGB quantization range
5839 * @mode: display mode
5841 * Determine the default RGB quantization range for the mode,
5842 * as specified in CEA-861.
5844 * Return: The default RGB quantization range for the mode
5846 enum hdmi_quantization_range
5847 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5849 /* All CEA modes other than VIC 1 use limited quantization range. */
5850 return drm_match_cea_mode(mode) > 1 ?
5851 HDMI_QUANTIZATION_RANGE_LIMITED :
5852 HDMI_QUANTIZATION_RANGE_FULL;
5854 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5856 /* CTA-861 Video Data Block (CTA VDB) */
5857 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5859 struct drm_display_info *info = &connector->display_info;
5860 int i, vic_index, len = cea_db_payload_len(db);
5861 const u8 *svds = cea_db_data(db);
5867 /* Gracefully handle multiple VDBs, however unlikely that is */
5868 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5872 vic_index = info->vics_len;
5873 info->vics_len += len;
5876 for (i = 0; i < len; i++) {
5877 u8 vic = svd_to_vic(svds[i]);
5879 if (!drm_valid_cea_vic(vic))
5882 info->vics[vic_index++] = vic;
5887 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5889 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5890 * using the VICs themselves.
5892 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5894 struct drm_display_info *info = &connector->display_info;
5895 struct drm_hdmi_info *hdmi = &info->hdmi;
5896 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5898 for (i = 0; i < len; i++) {
5899 u8 vic = info->vics[i];
5901 if (vic && y420cmdb_map & BIT_ULL(i))
5902 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5906 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5908 const struct drm_display_info *info = &connector->display_info;
5911 if (!vic || !info->vics)
5914 for (i = 0; i < info->vics_len; i++) {
5915 if (info->vics[i] == vic)
5922 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5923 static void parse_cta_y420vdb(struct drm_connector *connector,
5924 const struct cea_db *db)
5926 struct drm_display_info *info = &connector->display_info;
5927 struct drm_hdmi_info *hdmi = &info->hdmi;
5928 const u8 *svds = cea_db_data(db) + 1;
5931 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5932 u8 vic = svd_to_vic(svds[i]);
5934 if (!drm_valid_cea_vic(vic))
5937 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5938 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5942 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5944 struct drm_display_info *info = &connector->display_info;
5946 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5947 connector->base.id, connector->name, db[2]);
5949 if (db[2] & EDID_CEA_VCDB_QS)
5950 info->rgb_quant_range_selectable = true;
5954 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5956 switch (max_frl_rate) {
5959 *max_rate_per_lane = 3;
5963 *max_rate_per_lane = 6;
5967 *max_rate_per_lane = 6;
5971 *max_rate_per_lane = 8;
5975 *max_rate_per_lane = 10;
5979 *max_rate_per_lane = 12;
5984 *max_rate_per_lane = 0;
5988 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5992 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5994 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5995 hdmi->y420_dc_modes = dc_mask;
5998 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6001 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6003 if (!hdmi_dsc->v_1p2)
6006 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6007 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6009 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6010 hdmi_dsc->bpc_supported = 16;
6011 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6012 hdmi_dsc->bpc_supported = 12;
6013 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6014 hdmi_dsc->bpc_supported = 10;
6016 /* Supports min 8 BPC if DSC 1.2 is supported*/
6017 hdmi_dsc->bpc_supported = 8;
6019 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6021 u8 dsc_max_frl_rate;
6023 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6024 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6025 &hdmi_dsc->max_frl_rate_per_lane);
6027 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6029 switch (dsc_max_slices) {
6031 hdmi_dsc->max_slices = 1;
6032 hdmi_dsc->clk_per_slice = 340;
6035 hdmi_dsc->max_slices = 2;
6036 hdmi_dsc->clk_per_slice = 340;
6039 hdmi_dsc->max_slices = 4;
6040 hdmi_dsc->clk_per_slice = 340;
6043 hdmi_dsc->max_slices = 8;
6044 hdmi_dsc->clk_per_slice = 340;
6047 hdmi_dsc->max_slices = 8;
6048 hdmi_dsc->clk_per_slice = 400;
6051 hdmi_dsc->max_slices = 12;
6052 hdmi_dsc->clk_per_slice = 400;
6055 hdmi_dsc->max_slices = 16;
6056 hdmi_dsc->clk_per_slice = 400;
6060 hdmi_dsc->max_slices = 0;
6061 hdmi_dsc->clk_per_slice = 0;
6065 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6066 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6069 /* Sink Capability Data Structure */
6070 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6073 struct drm_display_info *info = &connector->display_info;
6074 struct drm_hdmi_info *hdmi = &info->hdmi;
6075 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6076 int max_tmds_clock = 0;
6077 u8 max_frl_rate = 0;
6078 bool dsc_support = false;
6080 info->has_hdmi_infoframe = true;
6082 if (hf_scds[6] & 0x80) {
6083 hdmi->scdc.supported = true;
6084 if (hf_scds[6] & 0x40)
6085 hdmi->scdc.read_request = true;
6089 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6090 * And as per the spec, three factors confirm this:
6091 * * Availability of a HF-VSDB block in EDID (check)
6092 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6093 * * SCDC support available (let's check)
6094 * Lets check it out.
6098 struct drm_scdc *scdc = &hdmi->scdc;
6100 /* max clock is 5000 KHz times block value */
6101 max_tmds_clock = hf_scds[5] * 5000;
6103 if (max_tmds_clock > 340000) {
6104 info->max_tmds_clock = max_tmds_clock;
6107 if (scdc->supported) {
6108 scdc->scrambling.supported = true;
6110 /* Few sinks support scrambling for clocks < 340M */
6111 if ((hf_scds[6] & 0x8))
6112 scdc->scrambling.low_rates = true;
6117 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6118 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6119 &hdmi->max_frl_rate_per_lane);
6122 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6124 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6125 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6129 drm_dbg_kms(connector->dev,
6130 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6131 connector->base.id, connector->name,
6132 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6135 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6138 struct drm_display_info *info = &connector->display_info;
6139 unsigned int dc_bpc = 0;
6141 /* HDMI supports at least 8 bpc */
6144 if (cea_db_payload_len(hdmi) < 6)
6147 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6149 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6150 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6151 connector->base.id, connector->name);
6154 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6156 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6157 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6158 connector->base.id, connector->name);
6161 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6163 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6164 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6165 connector->base.id, connector->name);
6169 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6170 connector->base.id, connector->name);
6174 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6175 connector->base.id, connector->name, dc_bpc);
6178 /* YCRCB444 is optional according to spec. */
6179 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6180 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6181 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6182 connector->base.id, connector->name);
6186 * Spec says that if any deep color mode is supported at all,
6187 * then deep color 36 bit must be supported.
6189 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6190 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6191 connector->base.id, connector->name);
6195 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6197 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6199 struct drm_display_info *info = &connector->display_info;
6200 u8 len = cea_db_payload_len(db);
6202 info->is_hdmi = true;
6205 info->dvi_dual = db[6] & 1;
6207 info->max_tmds_clock = db[7] * 5000;
6210 * Try to infer whether the sink supports HDMI infoframes.
6212 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6213 * supports infoframes if HDMI_Video_present is set.
6215 if (len >= 8 && db[8] & BIT(5))
6216 info->has_hdmi_infoframe = true;
6218 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6219 connector->base.id, connector->name,
6220 info->dvi_dual, info->max_tmds_clock);
6222 drm_parse_hdmi_deep_color_info(connector, db);
6226 * See EDID extension for head-mounted and specialized monitors, specified at:
6227 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6229 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6232 struct drm_display_info *info = &connector->display_info;
6234 bool desktop_usage = db[5] & BIT(6);
6236 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6237 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6238 info->non_desktop = true;
6240 drm_dbg_kms(connector->dev,
6241 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6242 connector->base.id, connector->name, version, db[5]);
6245 static void drm_parse_cea_ext(struct drm_connector *connector,
6246 const struct drm_edid *drm_edid)
6248 struct drm_display_info *info = &connector->display_info;
6249 struct drm_edid_iter edid_iter;
6250 const struct cea_db *db;
6251 struct cea_db_iter iter;
6253 u64 y420cmdb_map = 0;
6255 drm_edid_iter_begin(drm_edid, &edid_iter);
6256 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6257 if (edid_ext[0] != CEA_EXT)
6261 info->cea_rev = edid_ext[1];
6263 if (info->cea_rev != edid_ext[1])
6264 drm_dbg_kms(connector->dev,
6265 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6266 connector->base.id, connector->name,
6267 info->cea_rev, edid_ext[1]);
6269 /* The existence of a CTA extension should imply RGB support */
6270 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6271 if (edid_ext[3] & EDID_CEA_YCRCB444)
6272 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6273 if (edid_ext[3] & EDID_CEA_YCRCB422)
6274 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6275 if (edid_ext[3] & EDID_BASIC_AUDIO)
6276 info->has_audio = true;
6279 drm_edid_iter_end(&edid_iter);
6281 cea_db_iter_edid_begin(drm_edid, &iter);
6282 cea_db_iter_for_each(db, &iter) {
6283 /* FIXME: convert parsers to use struct cea_db */
6284 const u8 *data = (const u8 *)db;
6286 if (cea_db_is_hdmi_vsdb(db))
6287 drm_parse_hdmi_vsdb_video(connector, data);
6288 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6289 cea_db_is_hdmi_forum_scdb(db))
6290 drm_parse_hdmi_forum_scds(connector, data);
6291 else if (cea_db_is_microsoft_vsdb(db))
6292 drm_parse_microsoft_vsdb(connector, data);
6293 else if (cea_db_is_y420cmdb(db))
6294 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6295 else if (cea_db_is_y420vdb(db))
6296 parse_cta_y420vdb(connector, db);
6297 else if (cea_db_is_vcdb(db))
6298 drm_parse_vcdb(connector, data);
6299 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6300 drm_parse_hdr_metadata_block(connector, data);
6301 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6302 parse_cta_vdb(connector, db);
6303 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6304 info->has_audio = true;
6306 cea_db_iter_end(&iter);
6309 update_cta_y420cmdb(connector, y420cmdb_map);
6313 void get_monitor_range(const struct detailed_timing *timing, void *c)
6315 struct detailed_mode_closure *closure = c;
6316 struct drm_display_info *info = &closure->connector->display_info;
6317 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6318 const struct detailed_non_pixel *data = &timing->data.other_data;
6319 const struct detailed_data_monitor_range *range = &data->data.range;
6320 const struct edid *edid = closure->drm_edid->edid;
6322 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6326 * These limits are used to determine the VRR refresh
6327 * rate range. Only the "range limits only" variant
6328 * of the range descriptor seems to guarantee that
6329 * any and all timings are accepted by the sink, as
6330 * opposed to just timings conforming to the indicated
6331 * formula (GTF/GTF2/CVT). Thus other variants of the
6332 * range descriptor are not accepted here.
6334 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6337 monitor_range->min_vfreq = range->min_vfreq;
6338 monitor_range->max_vfreq = range->max_vfreq;
6340 if (edid->revision >= 4) {
6341 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6342 monitor_range->min_vfreq += 255;
6343 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6344 monitor_range->max_vfreq += 255;
6348 static void drm_get_monitor_range(struct drm_connector *connector,
6349 const struct drm_edid *drm_edid)
6351 const struct drm_display_info *info = &connector->display_info;
6352 struct detailed_mode_closure closure = {
6353 .connector = connector,
6354 .drm_edid = drm_edid,
6357 if (drm_edid->edid->revision < 4)
6360 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6363 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6365 drm_dbg_kms(connector->dev,
6366 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6367 connector->base.id, connector->name,
6368 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6371 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6372 const struct displayid_block *block)
6374 struct displayid_vesa_vendor_specific_block *vesa =
6375 (struct displayid_vesa_vendor_specific_block *)block;
6376 struct drm_display_info *info = &connector->display_info;
6378 if (block->num_bytes < 3) {
6379 drm_dbg_kms(connector->dev,
6380 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6381 connector->base.id, connector->name, block->num_bytes);
6385 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6388 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6389 drm_dbg_kms(connector->dev,
6390 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6391 connector->base.id, connector->name);
6395 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6397 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6398 connector->base.id, connector->name);
6401 info->mso_stream_count = 0;
6404 info->mso_stream_count = 2; /* 2 or 4 links */
6407 info->mso_stream_count = 4; /* 4 links */
6411 if (!info->mso_stream_count) {
6412 info->mso_pixel_overlap = 0;
6416 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6417 if (info->mso_pixel_overlap > 8) {
6418 drm_dbg_kms(connector->dev,
6419 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6420 connector->base.id, connector->name,
6421 info->mso_pixel_overlap);
6422 info->mso_pixel_overlap = 8;
6425 drm_dbg_kms(connector->dev,
6426 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6427 connector->base.id, connector->name,
6428 info->mso_stream_count, info->mso_pixel_overlap);
6431 static void drm_update_mso(struct drm_connector *connector,
6432 const struct drm_edid *drm_edid)
6434 const struct displayid_block *block;
6435 struct displayid_iter iter;
6437 displayid_iter_edid_begin(drm_edid, &iter);
6438 displayid_iter_for_each(block, &iter) {
6439 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6440 drm_parse_vesa_mso_data(connector, block);
6442 displayid_iter_end(&iter);
6445 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6446 * all of the values which would have been set from EDID
6448 static void drm_reset_display_info(struct drm_connector *connector)
6450 struct drm_display_info *info = &connector->display_info;
6453 info->height_mm = 0;
6456 info->color_formats = 0;
6458 info->max_tmds_clock = 0;
6459 info->dvi_dual = false;
6460 info->is_hdmi = false;
6461 info->has_audio = false;
6462 info->has_hdmi_infoframe = false;
6463 info->rgb_quant_range_selectable = false;
6464 memset(&info->hdmi, 0, sizeof(info->hdmi));
6466 info->edid_hdmi_rgb444_dc_modes = 0;
6467 info->edid_hdmi_ycbcr444_dc_modes = 0;
6469 info->non_desktop = 0;
6470 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6471 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6473 info->mso_stream_count = 0;
6474 info->mso_pixel_overlap = 0;
6475 info->max_dsc_bpp = 0;
6484 static void update_displayid_info(struct drm_connector *connector,
6485 const struct drm_edid *drm_edid)
6487 struct drm_display_info *info = &connector->display_info;
6488 const struct displayid_block *block;
6489 struct displayid_iter iter;
6491 displayid_iter_edid_begin(drm_edid, &iter);
6492 displayid_iter_for_each(block, &iter) {
6493 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6494 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6495 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6496 info->non_desktop = true;
6499 * We're only interested in the base section here, no need to
6504 displayid_iter_end(&iter);
6507 static void update_display_info(struct drm_connector *connector,
6508 const struct drm_edid *drm_edid)
6510 struct drm_display_info *info = &connector->display_info;
6511 const struct edid *edid;
6513 drm_reset_display_info(connector);
6514 clear_eld(connector);
6519 edid = drm_edid->edid;
6521 info->quirks = edid_get_quirks(drm_edid);
6523 info->width_mm = edid->width_cm * 10;
6524 info->height_mm = edid->height_cm * 10;
6526 drm_get_monitor_range(connector, drm_edid);
6528 if (edid->revision < 3)
6531 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6534 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6535 drm_parse_cea_ext(connector, drm_edid);
6537 update_displayid_info(connector, drm_edid);
6540 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6542 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6543 * tells us to assume 8 bpc color depth if the EDID doesn't have
6544 * extensions which tell otherwise.
6546 if (info->bpc == 0 && edid->revision == 3 &&
6547 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6549 drm_dbg_kms(connector->dev,
6550 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6551 connector->base.id, connector->name, info->bpc);
6554 /* Only defined for 1.4 with digital displays */
6555 if (edid->revision < 4)
6558 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6559 case DRM_EDID_DIGITAL_DEPTH_6:
6562 case DRM_EDID_DIGITAL_DEPTH_8:
6565 case DRM_EDID_DIGITAL_DEPTH_10:
6568 case DRM_EDID_DIGITAL_DEPTH_12:
6571 case DRM_EDID_DIGITAL_DEPTH_14:
6574 case DRM_EDID_DIGITAL_DEPTH_16:
6577 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6583 drm_dbg_kms(connector->dev,
6584 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6585 connector->base.id, connector->name, info->bpc);
6587 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6588 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6589 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6590 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6592 drm_update_mso(connector, drm_edid);
6595 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6596 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6597 connector->base.id, connector->name,
6598 info->non_desktop ? " (redundant quirk)" : "");
6599 info->non_desktop = true;
6602 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6603 info->max_dsc_bpp = 15;
6605 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6608 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6611 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6614 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6617 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6618 drm_edid_to_eld(connector, drm_edid);
6621 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6622 struct displayid_detailed_timings_1 *timings,
6625 struct drm_display_mode *mode;
6626 unsigned pixel_clock = (timings->pixel_clock[0] |
6627 (timings->pixel_clock[1] << 8) |
6628 (timings->pixel_clock[2] << 16)) + 1;
6629 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6630 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6631 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6632 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6633 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6634 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6635 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6636 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6637 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6638 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6640 mode = drm_mode_create(dev);
6644 /* resolution is kHz for type VII, and 10 kHz for type I */
6645 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6646 mode->hdisplay = hactive;
6647 mode->hsync_start = mode->hdisplay + hsync;
6648 mode->hsync_end = mode->hsync_start + hsync_width;
6649 mode->htotal = mode->hdisplay + hblank;
6651 mode->vdisplay = vactive;
6652 mode->vsync_start = mode->vdisplay + vsync;
6653 mode->vsync_end = mode->vsync_start + vsync_width;
6654 mode->vtotal = mode->vdisplay + vblank;
6657 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6658 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6659 mode->type = DRM_MODE_TYPE_DRIVER;
6661 if (timings->flags & 0x80)
6662 mode->type |= DRM_MODE_TYPE_PREFERRED;
6663 drm_mode_set_name(mode);
6668 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6669 const struct displayid_block *block)
6671 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6674 struct drm_display_mode *newmode;
6676 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6677 /* blocks must be multiple of 20 bytes length */
6678 if (block->num_bytes % 20)
6681 num_timings = block->num_bytes / 20;
6682 for (i = 0; i < num_timings; i++) {
6683 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6685 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6689 drm_mode_probed_add(connector, newmode);
6695 static int add_displayid_detailed_modes(struct drm_connector *connector,
6696 const struct drm_edid *drm_edid)
6698 const struct displayid_block *block;
6699 struct displayid_iter iter;
6702 displayid_iter_edid_begin(drm_edid, &iter);
6703 displayid_iter_for_each(block, &iter) {
6704 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6705 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6706 num_modes += add_displayid_detailed_1_modes(connector, block);
6708 displayid_iter_end(&iter);
6713 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6714 const struct drm_edid *drm_edid)
6716 const struct drm_display_info *info = &connector->display_info;
6723 * EDID spec says modes should be preferred in this order:
6724 * - preferred detailed mode
6725 * - other detailed modes from base block
6726 * - detailed modes from extension blocks
6727 * - CVT 3-byte code modes
6728 * - standard timing codes
6729 * - established timing codes
6730 * - modes inferred from GTF or CVT range information
6732 * We get this pretty much right.
6734 * XXX order for additional mode types in extension blocks?
6736 num_modes += add_detailed_modes(connector, drm_edid);
6737 num_modes += add_cvt_modes(connector, drm_edid);
6738 num_modes += add_standard_modes(connector, drm_edid);
6739 num_modes += add_established_modes(connector, drm_edid);
6740 num_modes += add_cea_modes(connector, drm_edid);
6741 num_modes += add_alternate_cea_modes(connector, drm_edid);
6742 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6743 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6744 num_modes += add_inferred_modes(connector, drm_edid);
6746 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6747 edid_fixup_preferred(connector);
6752 static void _drm_update_tile_info(struct drm_connector *connector,
6753 const struct drm_edid *drm_edid);
6755 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6756 const struct drm_edid *drm_edid)
6758 struct drm_device *dev = connector->dev;
6761 if (connector->edid_blob_ptr) {
6762 const struct edid *old_edid = connector->edid_blob_ptr->data;
6765 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6766 connector->epoch_counter++;
6767 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6768 connector->base.id, connector->name,
6769 connector->epoch_counter);
6774 ret = drm_property_replace_global_blob(dev,
6775 &connector->edid_blob_ptr,
6776 drm_edid ? drm_edid->size : 0,
6777 drm_edid ? drm_edid->edid : NULL,
6779 dev->mode_config.edid_property);
6781 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6782 connector->base.id, connector->name, ret);
6786 ret = drm_object_property_set_value(&connector->base,
6787 dev->mode_config.non_desktop_property,
6788 connector->display_info.non_desktop);
6790 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6791 connector->base.id, connector->name, ret);
6795 ret = drm_connector_set_tile_property(connector);
6797 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6798 connector->base.id, connector->name, ret);
6807 * drm_edid_connector_update - Update connector information from EDID
6808 * @connector: Connector
6811 * Update the connector display info, ELD, HDR metadata, relevant properties,
6812 * etc. from the passed in EDID.
6814 * If EDID is NULL, reset the information.
6816 * Must be called before calling drm_edid_connector_add_modes().
6818 * Return: 0 on success, negative error on errors.
6820 int drm_edid_connector_update(struct drm_connector *connector,
6821 const struct drm_edid *drm_edid)
6823 update_display_info(connector, drm_edid);
6825 _drm_update_tile_info(connector, drm_edid);
6827 return _drm_edid_connector_property_update(connector, drm_edid);
6829 EXPORT_SYMBOL(drm_edid_connector_update);
6832 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6833 * @connector: Connector
6835 * Add the modes from the previously updated EDID property to the connector
6836 * probed modes list.
6838 * drm_edid_connector_update() must have been called before this to update the
6841 * Return: The number of modes added, or 0 if we couldn't find any.
6843 int drm_edid_connector_add_modes(struct drm_connector *connector)
6845 const struct drm_edid *drm_edid = NULL;
6848 if (connector->edid_blob_ptr)
6849 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6850 connector->edid_blob_ptr->length);
6852 count = _drm_edid_connector_add_modes(connector, drm_edid);
6854 drm_edid_free(drm_edid);
6858 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6861 * drm_connector_update_edid_property - update the edid property of a connector
6862 * @connector: drm connector
6863 * @edid: new value of the edid property
6865 * This function creates a new blob modeset object and assigns its id to the
6866 * connector's edid property.
6867 * Since we also parse tile information from EDID's displayID block, we also
6868 * set the connector's tile property here. See drm_connector_set_tile_property()
6871 * This function is deprecated. Use drm_edid_connector_update() instead.
6874 * Zero on success, negative errno on failure.
6876 int drm_connector_update_edid_property(struct drm_connector *connector,
6877 const struct edid *edid)
6879 struct drm_edid drm_edid;
6881 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6883 EXPORT_SYMBOL(drm_connector_update_edid_property);
6886 * drm_add_edid_modes - add modes from EDID data, if available
6887 * @connector: connector we're probing
6890 * Add the specified modes to the connector's mode list. Also fills out the
6891 * &drm_display_info structure and ELD in @connector with any information which
6892 * can be derived from the edid.
6894 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6896 * Return: The number of modes added or 0 if we couldn't find any.
6898 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6900 struct drm_edid _drm_edid;
6901 const struct drm_edid *drm_edid;
6903 if (edid && !drm_edid_is_valid(edid)) {
6904 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6905 connector->base.id, connector->name);
6909 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6911 update_display_info(connector, drm_edid);
6913 return _drm_edid_connector_add_modes(connector, drm_edid);
6915 EXPORT_SYMBOL(drm_add_edid_modes);
6918 * drm_add_modes_noedid - add modes for the connectors without EDID
6919 * @connector: connector we're probing
6920 * @hdisplay: the horizontal display limit
6921 * @vdisplay: the vertical display limit
6923 * Add the specified modes to the connector's mode list. Only when the
6924 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6926 * Return: The number of modes added or 0 if we couldn't find any.
6928 int drm_add_modes_noedid(struct drm_connector *connector,
6929 int hdisplay, int vdisplay)
6931 int i, count, num_modes = 0;
6932 struct drm_display_mode *mode;
6933 struct drm_device *dev = connector->dev;
6935 count = ARRAY_SIZE(drm_dmt_modes);
6941 for (i = 0; i < count; i++) {
6942 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6944 if (hdisplay && vdisplay) {
6946 * Only when two are valid, they will be used to check
6947 * whether the mode should be added to the mode list of
6950 if (ptr->hdisplay > hdisplay ||
6951 ptr->vdisplay > vdisplay)
6954 if (drm_mode_vrefresh(ptr) > 61)
6956 mode = drm_mode_duplicate(dev, ptr);
6958 drm_mode_probed_add(connector, mode);
6964 EXPORT_SYMBOL(drm_add_modes_noedid);
6967 * drm_set_preferred_mode - Sets the preferred mode of a connector
6968 * @connector: connector whose mode list should be processed
6969 * @hpref: horizontal resolution of preferred mode
6970 * @vpref: vertical resolution of preferred mode
6972 * Marks a mode as preferred if it matches the resolution specified by @hpref
6975 void drm_set_preferred_mode(struct drm_connector *connector,
6976 int hpref, int vpref)
6978 struct drm_display_mode *mode;
6980 list_for_each_entry(mode, &connector->probed_modes, head) {
6981 if (mode->hdisplay == hpref &&
6982 mode->vdisplay == vpref)
6983 mode->type |= DRM_MODE_TYPE_PREFERRED;
6986 EXPORT_SYMBOL(drm_set_preferred_mode);
6988 static bool is_hdmi2_sink(const struct drm_connector *connector)
6991 * FIXME: sil-sii8620 doesn't have a connector around when
6992 * we need one, so we have to be prepared for a NULL connector.
6997 return connector->display_info.hdmi.scdc.supported ||
6998 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7001 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7002 const struct drm_display_mode *mode)
7004 bool has_hdmi_infoframe = connector ?
7005 connector->display_info.has_hdmi_infoframe : false;
7007 if (!has_hdmi_infoframe)
7010 /* No HDMI VIC when signalling 3D video format */
7011 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7014 return drm_match_hdmi_mode(mode);
7017 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7018 const struct drm_display_mode *mode)
7021 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7022 * we should send its VIC in vendor infoframes, else send the
7023 * VIC in AVI infoframes. Lets check if this mode is present in
7024 * HDMI 1.4b 4K modes
7026 if (drm_mode_hdmi_vic(connector, mode))
7029 return drm_match_cea_mode(mode);
7033 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7034 * conform to HDMI 1.4.
7036 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7037 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7039 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7042 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7044 if (!is_hdmi2_sink(connector) && vic > 64 &&
7045 !cta_vdb_has_vic(connector, vic))
7052 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7053 * data from a DRM display mode
7054 * @frame: HDMI AVI infoframe
7055 * @connector: the connector
7056 * @mode: DRM display mode
7058 * Return: 0 on success or a negative error code on failure.
7061 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7062 const struct drm_connector *connector,
7063 const struct drm_display_mode *mode)
7065 enum hdmi_picture_aspect picture_aspect;
7068 if (!frame || !mode)
7071 hdmi_avi_infoframe_init(frame);
7073 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7074 frame->pixel_repeat = 1;
7076 vic = drm_mode_cea_vic(connector, mode);
7077 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7079 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7082 * As some drivers don't support atomic, we can't use connector state.
7083 * So just initialize the frame with default values, just the same way
7084 * as it's done with other properties here.
7086 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7090 * Populate picture aspect ratio from either
7091 * user input (if specified) or from the CEA/HDMI mode lists.
7093 picture_aspect = mode->picture_aspect_ratio;
7094 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7096 picture_aspect = drm_get_cea_aspect_ratio(vic);
7098 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7102 * The infoframe can't convey anything but none, 4:3
7103 * and 16:9, so if the user has asked for anything else
7104 * we can only satisfy it by specifying the right VIC.
7106 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7108 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7110 } else if (hdmi_vic) {
7111 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7117 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7120 frame->video_code = vic_for_avi_infoframe(connector, vic);
7121 frame->picture_aspect = picture_aspect;
7122 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7123 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7127 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7130 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7131 * quantization range information
7132 * @frame: HDMI AVI infoframe
7133 * @connector: the connector
7134 * @mode: DRM display mode
7135 * @rgb_quant_range: RGB quantization range (Q)
7138 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7139 const struct drm_connector *connector,
7140 const struct drm_display_mode *mode,
7141 enum hdmi_quantization_range rgb_quant_range)
7143 const struct drm_display_info *info = &connector->display_info;
7147 * "A Source shall not send a non-zero Q value that does not correspond
7148 * to the default RGB Quantization Range for the transmitted Picture
7149 * unless the Sink indicates support for the Q bit in a Video
7150 * Capabilities Data Block."
7152 * HDMI 2.0 recommends sending non-zero Q when it does match the
7153 * default RGB quantization range for the mode, even when QS=0.
7155 if (info->rgb_quant_range_selectable ||
7156 rgb_quant_range == drm_default_rgb_quant_range(mode))
7157 frame->quantization_range = rgb_quant_range;
7159 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7163 * "When transmitting any RGB colorimetry, the Source should set the
7164 * YQ-field to match the RGB Quantization Range being transmitted
7165 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7166 * set YQ=1) and the Sink shall ignore the YQ-field."
7168 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7169 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7170 * good way to tell which version of CEA-861 the sink supports, so
7171 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7174 if (!is_hdmi2_sink(connector) ||
7175 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7176 frame->ycc_quantization_range =
7177 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7179 frame->ycc_quantization_range =
7180 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7182 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7184 static enum hdmi_3d_structure
7185 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7187 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7190 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7191 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7192 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7193 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7194 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7195 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7196 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7197 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7198 case DRM_MODE_FLAG_3D_L_DEPTH:
7199 return HDMI_3D_STRUCTURE_L_DEPTH;
7200 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7201 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7202 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7203 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7204 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7205 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7207 return HDMI_3D_STRUCTURE_INVALID;
7212 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7213 * data from a DRM display mode
7214 * @frame: HDMI vendor infoframe
7215 * @connector: the connector
7216 * @mode: DRM display mode
7218 * Note that there's is a need to send HDMI vendor infoframes only when using a
7219 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7220 * function will return -EINVAL, error that can be safely ignored.
7222 * Return: 0 on success or a negative error code on failure.
7225 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7226 const struct drm_connector *connector,
7227 const struct drm_display_mode *mode)
7230 * FIXME: sil-sii8620 doesn't have a connector around when
7231 * we need one, so we have to be prepared for a NULL connector.
7233 bool has_hdmi_infoframe = connector ?
7234 connector->display_info.has_hdmi_infoframe : false;
7237 if (!frame || !mode)
7240 if (!has_hdmi_infoframe)
7243 err = hdmi_vendor_infoframe_init(frame);
7248 * Even if it's not absolutely necessary to send the infoframe
7249 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7250 * know that the sink can handle it. This is based on a
7251 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7252 * have trouble realizing that they should switch from 3D to 2D
7253 * mode if the source simply stops sending the infoframe when
7254 * it wants to switch from 3D to 2D.
7256 frame->vic = drm_mode_hdmi_vic(connector, mode);
7257 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7261 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7263 static void drm_parse_tiled_block(struct drm_connector *connector,
7264 const struct displayid_block *block)
7266 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7268 u8 tile_v_loc, tile_h_loc;
7269 u8 num_v_tile, num_h_tile;
7270 struct drm_tile_group *tg;
7272 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7273 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7275 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7276 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7277 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7278 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7280 connector->has_tile = true;
7281 if (tile->tile_cap & 0x80)
7282 connector->tile_is_single_monitor = true;
7284 connector->num_h_tile = num_h_tile + 1;
7285 connector->num_v_tile = num_v_tile + 1;
7286 connector->tile_h_loc = tile_h_loc;
7287 connector->tile_v_loc = tile_v_loc;
7288 connector->tile_h_size = w + 1;
7289 connector->tile_v_size = h + 1;
7291 drm_dbg_kms(connector->dev,
7292 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7293 connector->base.id, connector->name,
7295 connector->tile_h_size, connector->tile_v_size,
7296 connector->num_h_tile, connector->num_v_tile,
7297 connector->tile_h_loc, connector->tile_v_loc,
7298 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7300 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7302 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7306 if (connector->tile_group != tg) {
7307 /* if we haven't got a pointer,
7308 take the reference, drop ref to old tile group */
7309 if (connector->tile_group)
7310 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7311 connector->tile_group = tg;
7313 /* if same tile group, then release the ref we just took. */
7314 drm_mode_put_tile_group(connector->dev, tg);
7318 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7319 const struct displayid_block *block)
7321 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7322 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7323 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7324 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7327 static void _drm_update_tile_info(struct drm_connector *connector,
7328 const struct drm_edid *drm_edid)
7330 const struct displayid_block *block;
7331 struct displayid_iter iter;
7333 connector->has_tile = false;
7335 displayid_iter_edid_begin(drm_edid, &iter);
7336 displayid_iter_for_each(block, &iter) {
7337 if (displayid_is_tiled_block(&iter, block))
7338 drm_parse_tiled_block(connector, block);
7340 displayid_iter_end(&iter);
7342 if (!connector->has_tile && connector->tile_group) {
7343 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7344 connector->tile_group = NULL;