1 // SPDX-License-Identifier: MIT
3 * Copyright 2022 Advanced Micro Devices, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
36 #define DC_LOGGER_INIT(logger)
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
42 {.width = 3840, .height = 2160, },
43 {.width = 3440, .height = 1440, },
44 {.width = 2560, .height = 1440, }},
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
49 .gpuvm_max_page_table_levels = 4,
51 .rob_buffer_size_kbytes = 128,
52 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 .config_return_buffer_size_in_kbytes = 1280,
54 .compressed_buffer_segment_size_in_kbytes = 64,
55 .meta_fifo_size_in_kentries = 22,
56 .zero_size_buffer_entries = 512,
57 .compbuf_reserved_space_64b = 256,
58 .compbuf_reserved_space_zs = 64,
59 .dpp_output_buffer_pixels = 2560,
60 .opp_output_buffer_lines = 1,
61 .pixel_chunk_size_kbytes = 8,
62 .alpha_pixel_chunk_size_kbytes = 4,
63 .min_pixel_chunk_size_bytes = 1024,
64 .dcc_meta_buffer_size_bytes = 6272,
65 .meta_chunk_size_kbytes = 2,
66 .min_meta_chunk_size_bytes = 256,
67 .writeback_chunk_size_kbytes = 8,
68 .ptoi_supported = false,
70 .maximum_dsc_bits_per_component = 12,
71 .maximum_pixels_per_line_per_dsc_unit = 6016,
72 .dsc422_native_support = true,
73 .is_line_buffer_bpp_fixed = true,
74 .line_buffer_fixed_bpp = 57,
75 .line_buffer_size_bits = 1171920,
76 .max_line_buffer_lines = 32,
77 .writeback_interface_buffer_size_kbytes = 90,
80 .max_num_hdmi_frl_outputs = 1,
82 .max_dchub_pscl_bw_pix_per_clk = 4,
83 .max_pscl_lb_bw_pix_per_clk = 2,
84 .max_lb_vscl_bw_pix_per_clk = 4,
85 .max_vscl_hscl_bw_pix_per_clk = 4,
90 .dpte_buffer_size_in_pte_reqs_luma = 64,
91 .dpte_buffer_size_in_pte_reqs_chroma = 34,
92 .dispclk_ramp_margin_percent = 1,
93 .max_inter_dcn_tile_repeaters = 8,
94 .cursor_buffer_size = 16,
95 .cursor_chunk_size = 2,
96 .writeback_line_buffer_buffer_size = 0,
97 .writeback_min_hscl_ratio = 1,
98 .writeback_min_vscl_ratio = 1,
99 .writeback_max_hscl_ratio = 1,
100 .writeback_max_vscl_ratio = 1,
101 .writeback_max_hscl_taps = 1,
102 .writeback_max_vscl_taps = 1,
103 .dppclk_delay_subtotal = 47,
104 .dppclk_delay_scl = 50,
105 .dppclk_delay_scl_lb_only = 16,
106 .dppclk_delay_cnvc_formatter = 28,
107 .dppclk_delay_cnvc_cursor = 6,
108 .dispclk_delay_subtotal = 125,
109 .dynamic_metadata_vm_enabled = false,
110 .odm_combine_4to1_supported = false,
111 .dcc_supported = true,
112 .max_num_dp2p0_outputs = 2,
113 .max_num_dp2p0_streams = 4,
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
120 .dcfclk_mhz = 1564.0,
121 .fabricclk_mhz = 2500.0,
122 .dispclk_mhz = 2150.0,
123 .dppclk_mhz = 2150.0,
125 .phyclk_d18_mhz = 667.0,
126 .phyclk_d32_mhz = 625.0,
127 .socclk_mhz = 1200.0,
128 .dscclk_mhz = 716.667,
129 .dram_speed_mts = 18000.0,
130 .dtbclk_mhz = 1564.0,
134 .sr_exit_time_us = 42.97,
135 .sr_enter_plus_exit_time_us = 49.94,
136 .sr_exit_z8_time_us = 285.0,
137 .sr_enter_plus_exit_z8_time_us = 320,
138 .writeback_latency_us = 12.0,
139 .round_trip_ping_latency_dcfclk_cycles = 263,
140 .urgent_latency_pixel_data_only_us = 4.0,
141 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 .urgent_latency_vm_data_only_us = 4.0,
143 .fclk_change_latency_us = 25,
144 .usr_retraining_latency_us = 2,
146 .mall_allocated_for_dcn_mbytes = 64,
147 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 .pct_ideal_sdp_bw_after_urgent = 90.0,
151 .pct_ideal_fabric_bw_after_urgent = 67.0,
152 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 .max_avg_sdp_bw_use_normal_percent = 80.0,
157 .max_avg_fabric_bw_use_normal_percent = 60.0,
158 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 .max_avg_dram_bw_use_normal_percent = 15.0,
161 .dram_channel_width_bytes = 2,
162 .fabric_datapath_to_dcn_data_return_bytes = 64,
163 .return_bus_width_bytes = 64,
164 .downspread_percent = 0.38,
165 .dcn_downspread_percent = 0.5,
166 .dram_clock_change_latency_us = 400,
167 .dispclk_dppclk_vco_speed_mhz = 4300.0,
168 .do_urgent_latency_adjustment = true,
169 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
176 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 /* For min clocks use as reported by PM FW and report those as min */
181 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
184 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
186 dc_assert_fp_enabled();
188 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 if (dcfclk_mhz_for_the_second_state)
190 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
192 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
194 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
197 /* Set A - Normal - default values */
198 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
209 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
220 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
242 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
257 * Finds dummy_latency_index when MCLK switching using firmware based
258 * vblank stretch is enabled. This function will iterate through the
259 * table of dummy pstate latencies until the lowest value that allows
260 * dm_allow_self_refresh_and_mclk_switch to happen is found
262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 struct dc_state *context,
264 display_e2e_pipe_params_st *pipes,
268 const int max_latency_table_entries = 4;
269 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 int dummy_latency_index = 0;
271 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
273 dc_assert_fp_enabled();
275 while (dummy_latency_index < max_latency_table_entries) {
276 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
282 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 dcn32_subvp_in_use(dc, context))
285 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
287 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
291 dummy_latency_index++;
294 if (dummy_latency_index == max_latency_table_entries) {
295 ASSERT(dummy_latency_index != max_latency_table_entries);
296 /* If the execution gets here, it means dummy p_states are
297 * not possible. This should never happen and would mean
298 * something is severely wrong.
299 * Here we reset dummy_latency_index to 3, because it is
300 * better to have underflows than system crashes.
302 dummy_latency_index = max_latency_table_entries - 1;
305 return dummy_latency_index;
309 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310 * and populate pipe_ctx with those params.
311 * @dc: [in] current dc state
312 * @context: [in] new dc state
313 * @pipes: [in] DML pipe params array
314 * @pipe_cnt: [in] DML pipe count
316 * This function must be called AFTER the phantom pipes are added to context
317 * and run through DML (so that the DLG params for the phantom pipes can be
318 * populated), and BEFORE we program the timing for the phantom pipes.
320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 struct dc_state *context,
322 display_e2e_pipe_params_st *pipes,
325 uint32_t i, pipe_idx;
327 dc_assert_fp_enabled();
329 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
335 if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 pipes[pipe_idx].pipe.dest.vstartup_start =
337 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 pipes[pipe_idx].pipe.dest.vupdate_offset =
339 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 pipes[pipe_idx].pipe.dest.vupdate_width =
341 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 pipes[pipe_idx].pipe.dest.vready_offset =
343 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
351 * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352 * @context: [in] New DC state to be programmed
353 * @pipe_e2e: [in] DML pipe end to end context
355 * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356 * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357 * determined by DPPClk requirements
359 * This function follows the same policy as DML:
360 * - Check for ODM combine requirements / policy first
361 * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
364 * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 display_e2e_pipe_params_st *pipe_e2e)
369 double pscl_throughput;
370 double pscl_throughput_chroma;
371 double dpp_clk_single_dpp, clock;
372 double clk_frequency = 0.0;
373 double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 bool total_available_pipes_support = false;
375 uint32_t number_of_dpp = 0;
376 enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 double req_dispclk_per_surface = 0;
378 uint8_t num_splits = 0;
380 dc_assert_fp_enabled();
382 dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 pipe_e2e->pipe.dest.hactive,
384 pipe_e2e->dout.output_format,
385 pipe_e2e->dout.output_type,
386 pipe_e2e->pipe.dest.odm_combine_policy,
387 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 pipe_e2e->dout.dsc_enable != 0,
390 0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 context->bw_ctx.dml.ip.max_num_dpp,
392 pipe_e2e->pipe.dest.pixel_rate_mhz,
393 context->bw_ctx.dml.soc.dcn_downspread_percent,
394 context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 pipe_e2e->dout.dsc_slices,
398 &total_available_pipes_support,
401 &req_dispclk_per_surface);
403 dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 pipe_e2e->pipe.dest.pixel_rate_mhz,
410 pipe_e2e->pipe.src.source_format,
411 pipe_e2e->pipe.scale_taps.htaps,
412 pipe_e2e->pipe.scale_taps.htaps_c,
413 pipe_e2e->pipe.scale_taps.vtaps,
414 pipe_e2e->pipe.scale_taps.vtaps_c,
416 &pscl_throughput, &pscl_throughput_chroma,
417 &dpp_clk_single_dpp);
419 clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
422 clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
424 if (odm_mode == dm_odm_combine_mode_2to1)
426 else if (odm_mode == dm_odm_combine_mode_4to1)
428 else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
436 float memory_bw_kbytes_sec;
437 float fabric_bw_kbytes_sec;
438 float sdp_bw_kbytes_sec;
439 float limiting_bw_kbytes_sec;
441 memory_bw_kbytes_sec = entry->dram_speed_mts *
442 dcn3_2_soc.num_chans *
443 dcn3_2_soc.dram_channel_width_bytes *
444 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
446 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 dcn3_2_soc.return_bus_width_bytes *
448 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
450 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 dcn3_2_soc.return_bus_width_bytes *
452 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
454 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
456 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
459 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
462 return limiting_bw_kbytes_sec;
465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
467 if (entry->dcfclk_mhz > 0) {
468 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
470 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 } else if (entry->fabricclk_mhz > 0) {
474 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
476 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 } else if (entry->dram_speed_mts > 0) {
480 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
483 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
488 void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 unsigned int *num_entries,
490 struct _vcs_dpi_voltage_scaling_st *entry)
494 float net_bw_of_new_state = 0;
496 dc_assert_fp_enabled();
498 get_optimal_ntuple(entry);
500 if (*num_entries == 0) {
504 net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
505 while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
507 if (index >= *num_entries)
511 for (i = *num_entries; i > index; i--)
512 table[i] = table[i - 1];
514 table[index] = *entry;
520 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
521 * @dc: current dc state
522 * @context: new dc state
523 * @ref_pipe: Main pipe for the phantom stream
524 * @phantom_stream: target phantom stream state
525 * @pipes: DML pipe params
526 * @pipe_cnt: number of DML pipes
527 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
529 * Set timing params of the phantom stream based on calculated output from DML.
530 * This function first gets the DML pipe index using the DC pipe index, then
531 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
532 * lines required for SubVP MCLK switching and assigns to the phantom stream
535 * - The number of SubVP lines calculated in DML does not take into account
536 * FW processing delays and required pstate allow width, so we must include
539 * - Set phantom backporch = vstartup of main pipe
541 void dcn32_set_phantom_stream_timing(struct dc *dc,
542 struct dc_state *context,
543 struct pipe_ctx *ref_pipe,
544 struct dc_stream_state *phantom_stream,
545 display_e2e_pipe_params_st *pipes,
546 unsigned int pipe_cnt,
547 unsigned int dc_pipe_idx)
549 unsigned int i, pipe_idx;
550 struct pipe_ctx *pipe;
551 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
552 unsigned int num_dpp;
553 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
554 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
555 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
556 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
557 struct dc_stream_state *main_stream = ref_pipe->stream;
559 dc_assert_fp_enabled();
561 // Find DML pipe index (pipe_idx) using dc_pipe_idx
562 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
563 pipe = &context->res_ctx.pipe_ctx[i];
568 if (i == dc_pipe_idx)
574 // Calculate lines required for pstate allow width and FW processing delays
575 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
576 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
577 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
578 (double)ref_pipe->stream->timing.h_total;
580 // Update clks_cfg for calling into recalculate
581 pipes[0].clks_cfg.voltage = vlevel;
582 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
583 pipes[0].clks_cfg.socclk_mhz = socclk;
585 // DML calculation for MALL region doesn't take into account FW delay
586 // and required pstate allow width for multi-display cases
587 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
588 * to 2 swaths (i.e. 16 lines)
590 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
591 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
593 // W/A for DCC corruption with certain high resolution timings.
594 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
595 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
596 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
598 /* dc->debug.subvp_extra_lines 0 by default*/
599 phantom_vactive += dc->debug.subvp_extra_lines;
601 // For backporch of phantom pipe, use vstartup of the main pipe
602 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
604 phantom_stream->dst.y = 0;
605 phantom_stream->dst.height = phantom_vactive;
606 /* When scaling, DML provides the end to end required number of lines for MALL.
607 * dst.height is always correct for this case, but src.height is not which causes a
608 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
609 * phantom for this case.
611 phantom_stream->src.y = 0;
612 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
614 phantom_stream->timing.v_addressable = phantom_vactive;
615 phantom_stream->timing.v_front_porch = 1;
616 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
617 phantom_stream->timing.v_front_porch +
618 phantom_stream->timing.v_sync_width +
620 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
624 * dcn32_get_num_free_pipes - Calculate number of free pipes
625 * @dc: current dc state
626 * @context: new dc state
628 * This function assumes that a "used" pipe is a pipe that has
629 * both a stream and a plane assigned to it.
631 * Return: Number of free pipes available in the context
633 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
636 unsigned int free_pipes = 0;
637 unsigned int num_pipes = 0;
639 for (i = 0; i < dc->res_pool->pipe_count; i++) {
640 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
642 if (pipe->stream && !pipe->top_pipe) {
645 pipe = pipe->bottom_pipe;
650 free_pipes = dc->res_pool->pipe_count - num_pipes;
655 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
656 * @dc: current dc state
657 * @context: new dc state
658 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
660 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
661 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
662 * we are forcing SubVP P-State switching on the current config.
664 * The number of pipes used for the chosen surface must be less than or equal to the
665 * number of free pipes available.
667 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
668 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
669 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
670 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
672 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
674 static bool dcn32_assign_subvp_pipe(struct dc *dc,
675 struct dc_state *context,
678 unsigned int i, pipe_idx;
679 unsigned int max_frame_time = 0;
680 bool valid_assignment_found = false;
681 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
682 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
684 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
685 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
686 unsigned int num_pipes = 0;
687 unsigned int refresh_rate = 0;
693 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
694 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
695 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
696 /* SubVP pipe candidate requirements:
697 * - Refresh rate < 120hz
698 * - Not able to switch in vactive naturally (switching in active means the
699 * DET provides enough buffer to hide the P-State switch latency -- trying
700 * to combine this with SubVP can cause issues with the scheduling).
703 if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
704 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
705 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
706 pipe->stream->mall_stream_config.type == SUBVP_NONE &&
707 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
708 !pipe->plane_state->address.tmz_surface &&
709 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
710 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
711 dcn32_allow_subvp_with_active_margin(pipe)))) {
714 pipe = pipe->bottom_pipe;
717 pipe = &context->res_ctx.pipe_ctx[i];
718 if (num_pipes <= free_pipes) {
719 struct dc_stream_state *stream = pipe->stream;
720 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
721 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
722 if (frame_us > max_frame_time) {
724 max_frame_time = frame_us;
725 valid_assignment_found = true;
731 return valid_assignment_found;
735 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
736 * @dc: current dc state
737 * @context: new dc state
739 * This function returns true if there are enough free pipes
740 * to create the required phantom pipes for any given stream
741 * (that does not already have phantom pipe assigned).
743 * e.g. For a 2 stream config where the first stream uses one
744 * pipe and the second stream uses 2 pipes (i.e. pipe split),
745 * this function will return true because there is 1 remaining
746 * pipe which can be used as the phantom pipe for the non pipe
750 * True if there are enough free pipes to assign phantom pipes to at least one
751 * stream that does not already have phantom pipes assigned. Otherwise false.
753 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
755 unsigned int i, split_cnt, free_pipes;
756 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
757 bool subvp_possible = false;
759 for (i = 0; i < dc->res_pool->pipe_count; i++) {
760 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
762 // Find the minimum pipe split count for non SubVP pipes
763 if (pipe->stream && !pipe->top_pipe &&
764 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
768 pipe = pipe->bottom_pipe;
771 if (split_cnt < min_pipe_split)
772 min_pipe_split = split_cnt;
776 free_pipes = dcn32_get_num_free_pipes(dc, context);
778 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
779 // should not equal to the pipe_count)
780 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
781 subvp_possible = true;
783 return subvp_possible;
787 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
788 * @dc: current dc state
789 * @context: new dc state
791 * High level algorithm:
792 * 1. Find longest microschedule length (in us) between the two SubVP pipes
793 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
794 * pipes still allows for the maximum microschedule to fit in the active
795 * region for both pipes.
797 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
799 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
801 struct pipe_ctx *subvp_pipes[2];
802 struct dc_stream_state *phantom = NULL;
803 uint32_t microschedule_lines = 0;
806 uint32_t max_microschedule_us = 0;
807 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
809 for (i = 0; i < dc->res_pool->pipe_count; i++) {
810 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
811 uint32_t time_us = 0;
813 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
814 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
816 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
817 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
818 phantom = pipe->stream->mall_stream_config.paired_stream;
819 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
820 phantom->timing.v_addressable;
822 // Round up when calculating microschedule time (+ 1 at the end)
823 time_us = (microschedule_lines * phantom->timing.h_total) /
824 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
825 dc->caps.subvp_prefetch_end_to_mall_start_us +
826 dc->caps.subvp_fw_processing_delay_us + 1;
827 if (time_us > max_microschedule_us)
828 max_microschedule_us = time_us;
830 subvp_pipes[index] = pipe;
833 // Maximum 2 SubVP pipes
838 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
839 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
840 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
841 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
842 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
843 subvp_pipes[0]->stream->timing.h_total) /
844 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
845 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
846 subvp_pipes[1]->stream->timing.h_total) /
847 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
849 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
850 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
857 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
858 * @dc: current dc state
859 * @context: new dc state
861 * High level algorithm:
862 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
863 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
864 * (the margin is equal to the MALL region + DRR margin (500us))
865 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
866 * then report the configuration as supported
868 * Return: True if the SubVP + DRR config is schedulable, false otherwise
870 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
872 bool schedulable = false;
874 struct pipe_ctx *pipe = NULL;
875 struct pipe_ctx *drr_pipe = NULL;
876 struct dc_crtc_timing *main_timing = NULL;
877 struct dc_crtc_timing *phantom_timing = NULL;
878 struct dc_crtc_timing *drr_timing = NULL;
879 int16_t prefetch_us = 0;
880 int16_t mall_region_us = 0;
881 int16_t drr_frame_us = 0; // nominal frame time
882 int16_t subvp_active_us = 0;
883 int16_t stretched_drr_us = 0;
884 int16_t drr_stretched_vblank_us = 0;
885 int16_t max_vblank_mallregion = 0;
888 for (i = 0; i < dc->res_pool->pipe_count; i++) {
889 pipe = &context->res_ctx.pipe_ctx[i];
891 // We check for master pipe, but it shouldn't matter since we only need
892 // the pipe for timing info (stream should be same for any pipe splits)
893 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
896 // Find the SubVP pipe
897 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
902 for (i = 0; i < dc->res_pool->pipe_count; i++) {
903 drr_pipe = &context->res_ctx.pipe_ctx[i];
905 // We check for master pipe only
906 if (!drr_pipe->stream || !drr_pipe->plane_state || drr_pipe->top_pipe || drr_pipe->prev_odm_pipe)
909 if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
910 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
914 main_timing = &pipe->stream->timing;
915 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
916 drr_timing = &drr_pipe->stream->timing;
917 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
918 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
919 dc->caps.subvp_prefetch_end_to_mall_start_us;
920 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
921 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
922 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
923 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
924 // P-State allow width and FW delays already included phantom_timing->v_addressable
925 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
926 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
927 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
928 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
929 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
930 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
932 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
933 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
934 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
935 * and the max of (VBLANK blanking time, MALL region)).
937 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
938 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
946 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
947 * @dc: current dc state
948 * @context: new dc state
950 * High level algorithm:
951 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
952 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
953 * then report the configuration as supported
954 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
956 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
958 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
960 struct pipe_ctx *pipe = NULL;
961 struct pipe_ctx *subvp_pipe = NULL;
963 bool schedulable = false;
965 uint8_t vblank_index = 0;
966 uint16_t prefetch_us = 0;
967 uint16_t mall_region_us = 0;
968 uint16_t vblank_frame_us = 0;
969 uint16_t subvp_active_us = 0;
970 uint16_t vblank_blank_us = 0;
971 uint16_t max_vblank_mallregion = 0;
972 struct dc_crtc_timing *main_timing = NULL;
973 struct dc_crtc_timing *phantom_timing = NULL;
974 struct dc_crtc_timing *vblank_timing = NULL;
976 /* For SubVP + VBLANK/DRR cases, we assume there can only be
977 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
978 * is supported, it is either a single VBLANK case or two VBLANK
979 * displays which are synchronized (in which case they have identical
982 for (i = 0; i < dc->res_pool->pipe_count; i++) {
983 pipe = &context->res_ctx.pipe_ctx[i];
985 // We check for master pipe, but it shouldn't matter since we only need
986 // the pipe for timing info (stream should be same for any pipe splits)
987 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
990 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
991 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
996 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1000 main_timing = &subvp_pipe->stream->timing;
1001 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1002 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1003 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1004 // Also include the prefetch end to mallstart delay time
1005 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1006 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1007 dc->caps.subvp_prefetch_end_to_mall_start_us;
1008 // P-State allow width and FW delays already included phantom_timing->v_addressable
1009 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1010 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1011 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1012 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1013 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1014 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1015 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1016 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
1017 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1019 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1020 // and the max of (VBLANK blanking time, MALL region)
1021 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1022 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1029 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1031 * @dc: Current DC state
1032 * @context: New DC state to be programmed
1034 * SubVP + SubVP is admissible under the following conditions:
1035 * - All SubVP pipes are < 120Hz OR
1036 * - All SubVP pipes are >= 120hz
1038 * Return: True if admissible, false otherwise
1040 static bool subvp_subvp_admissable(struct dc *dc,
1041 struct dc_state *context)
1043 bool result = false;
1045 uint8_t subvp_count = 0;
1046 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1047 uint32_t refresh_rate = 0;
1049 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1050 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1055 if (pipe->plane_state && !pipe->top_pipe &&
1056 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1057 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
1058 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
1059 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
1060 if (refresh_rate < min_refresh)
1061 min_refresh = refresh_rate;
1062 if (refresh_rate > max_refresh)
1063 max_refresh = refresh_rate;
1068 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1069 (min_refresh >= 120 && max_refresh >= 120)))
1076 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1077 * and handle static analysis based on the case.
1078 * @dc: current dc state
1079 * @context: new dc state
1080 * @vlevel: Voltage level calculated by DML
1084 * 2. SubVP + VBLANK (DRR checked internally)
1085 * 3. SubVP + VACTIVE (currently unsupported)
1087 * Return: True if statically schedulable, false otherwise
1089 static bool subvp_validate_static_schedulability(struct dc *dc,
1090 struct dc_state *context,
1093 bool schedulable = false;
1094 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1095 uint32_t i, pipe_idx;
1096 uint8_t subvp_count = 0;
1097 uint8_t vactive_count = 0;
1098 uint8_t non_subvp_pipes = 0;
1100 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1101 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1106 if (pipe->plane_state && !pipe->top_pipe) {
1107 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1109 if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1114 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1115 // switching (SubVP + VACTIVE unsupported). In situations where we force
1116 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1117 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1118 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1124 if (subvp_count == 2) {
1125 // Static schedulability check for SubVP + SubVP case
1126 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1127 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1128 // Single SubVP configs will be supported by default as long as it's suppported by DML
1130 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1131 if (dcn32_subvp_drr_admissable(dc, context))
1132 schedulable = subvp_drr_schedulable(dc, context);
1133 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1134 schedulable = subvp_vblank_schedulable(dc, context);
1135 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1136 vactive_count > 0) {
1137 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1138 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1139 // SubVP + VACTIVE currently unsupported
1140 schedulable = false;
1145 static void dcn32_full_validate_bw_helper(struct dc *dc,
1146 struct dc_state *context,
1147 display_e2e_pipe_params_st *pipes,
1153 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1154 unsigned int dc_pipe_idx = 0;
1156 bool found_supported_config = false;
1158 dc_assert_fp_enabled();
1161 * DML favors voltage over p-state, but we're more interested in
1162 * supporting p-state over voltage. We can't support p-state in
1163 * prefetch mode > 0 so try capping the prefetch mode to start.
1164 * Override present for testing.
1166 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1167 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1168 dm_prefetch_support_uclk_fclk_and_stutter;
1170 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1171 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1173 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1174 /* This may adjust vlevel and maxMpcComb */
1175 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1176 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1177 vba->VoltageLevel = *vlevel;
1180 /* Conditions for setting up phantom pipes for SubVP:
1181 * 1. Not force disable SubVP
1182 * 2. Full update (i.e. !fast_validate)
1183 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1184 * 4. Display configuration passes validation
1185 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1187 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1188 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1189 (*vlevel == context->bw_ctx.dml.soc.num_states ||
1190 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1191 dc->debug.force_subvp_mclk_switch)) {
1193 dcn32_merge_pipes_for_subvp(dc, context);
1194 memset(merge, 0, MAX_PIPES * sizeof(bool));
1196 /* to re-initialize viewport after the pipe merge */
1197 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1198 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1200 if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1203 resource_build_scaling_params(pipe_ctx);
1206 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1207 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1208 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1209 * Adding phantom pipes won't change the validation result, so change the DML input param
1210 * for P-State support before adding phantom pipes and recalculating the DML result.
1211 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1212 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1213 * enough to support MCLK switching.
1215 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1216 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1217 dm_prefetch_support_uclk_fclk_and_stutter) {
1218 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1219 dm_prefetch_support_fclk_and_stutter;
1220 /* There are params (such as FabricClock) that need to be recalculated
1221 * after validation fails (otherwise it will be 0). Calculation for
1222 * phantom vactive requires call into DML, so we must ensure all the
1223 * vba params are valid otherwise we'll get incorrect phantom vactive.
1225 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1228 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1230 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1231 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1232 // so the phantom pipe DLG params can be assigned correctly.
1233 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1234 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1236 /* Check that vlevel requested supports pstate or not
1237 * if not, select the lowest vlevel that supports it
1239 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1240 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1246 if (*vlevel < context->bw_ctx.dml.soc.num_states
1247 && subvp_validate_static_schedulability(dc, context, *vlevel))
1248 found_supported_config = true;
1249 if (found_supported_config) {
1250 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1251 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1252 /* find lowest vlevel that supports the config */
1253 for (i = *vlevel; i >= 0; i--) {
1254 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1264 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1265 // remove phantom pipes and repopulate dml pipes
1266 if (!found_supported_config) {
1267 dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1268 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1269 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1271 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1272 /* This may adjust vlevel and maxMpcComb */
1273 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1274 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1275 vba->VoltageLevel = *vlevel;
1278 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1279 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1281 /* Call validate_apply_pipe_split flags after calling DML getters for
1282 * phantom dlg params, or some of the VBA params indicating pipe split
1283 * can be overwritten by the getters.
1285 * When setting up SubVP config, all pipes are merged before attempting to
1286 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1287 * and phantom pipes will be split in the regular pipe splitting sequence.
1289 memset(split, 0, MAX_PIPES * sizeof(int));
1290 memset(merge, 0, MAX_PIPES * sizeof(bool));
1291 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1292 vba->VoltageLevel = *vlevel;
1293 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1294 // until driver has acquired the DMCUB lock to do it safely.
1299 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1303 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1304 if (!context->res_ctx.pipe_ctx[i].stream)
1306 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1312 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1314 struct dc_crtc_timing patched_crtc_timing;
1315 uint32_t asic_blank_end = 0;
1316 uint32_t asic_blank_start = 0;
1317 uint32_t newVstartup = 0;
1319 patched_crtc_timing = *dc_crtc_timing;
1321 if (patched_crtc_timing.flags.INTERLACE == 1) {
1322 if (patched_crtc_timing.v_front_porch < 2)
1323 patched_crtc_timing.v_front_porch = 2;
1325 if (patched_crtc_timing.v_front_porch < 1)
1326 patched_crtc_timing.v_front_porch = 1;
1329 /* blank_start = frame end - front porch */
1330 asic_blank_start = patched_crtc_timing.v_total -
1331 patched_crtc_timing.v_front_porch;
1333 /* blank_end = blank_start - active */
1334 asic_blank_end = asic_blank_start -
1335 patched_crtc_timing.v_border_bottom -
1336 patched_crtc_timing.v_addressable -
1337 patched_crtc_timing.v_border_top;
1339 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1341 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1344 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1345 display_e2e_pipe_params_st *pipes,
1346 int pipe_cnt, int vlevel)
1348 int i, pipe_idx, active_hubp_count = 0;
1349 bool usr_retraining_support = false;
1350 bool unbounded_req_enabled = false;
1351 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1353 dc_assert_fp_enabled();
1355 /* Writeback MCIF_WB arbitration parameters */
1356 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1358 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1359 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1360 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1361 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1362 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1363 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1364 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1365 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1366 != dm_dram_clock_change_unsupported;
1368 /* Pstate change might not be supported by hardware, but it might be
1369 * possible with firmware driven vertical blank stretching.
1371 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1373 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1374 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1375 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1376 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1377 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1379 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1381 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1382 ASSERT(usr_retraining_support);
1384 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1385 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1387 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1389 if (unbounded_req_enabled && pipe_cnt > 1) {
1390 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1392 unbounded_req_enabled = false;
1395 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1396 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1397 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1399 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1400 if (!context->res_ctx.pipe_ctx[i].stream)
1402 if (context->res_ctx.pipe_ctx[i].plane_state)
1403 active_hubp_count++;
1404 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1406 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1408 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1410 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1413 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1414 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1415 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1416 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1418 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1420 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1423 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1424 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1425 if (context->res_ctx.pipe_ctx[i].plane_state)
1426 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1428 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1429 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1431 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1433 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1434 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1436 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1438 /* MALL Allocation Sizes */
1439 /* count from active, top pipes per plane only */
1440 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1441 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1442 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1443 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1444 /* SS: all active surfaces stored in MALL */
1445 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1446 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1448 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1449 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1450 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1453 /* SUBVP: phantom surfaces only stored in MALL */
1454 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1458 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1459 dcn20_adjust_freesync_v_startup(
1460 &context->res_ctx.pipe_ctx[i].stream->timing,
1461 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1465 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1466 if (!active_hubp_count) {
1467 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1468 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1469 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1470 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1471 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1472 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1473 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1474 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1476 /*save a original dppclock copy*/
1477 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1478 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1479 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1481 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1484 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1486 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1488 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1489 if (context->res_ctx.pipe_ctx[i].stream)
1490 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1493 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1495 if (!context->res_ctx.pipe_ctx[i].stream)
1498 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1499 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1500 pipe_cnt, pipe_idx);
1502 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1503 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1508 static struct pipe_ctx *dcn32_find_split_pipe(
1510 struct dc_state *context,
1513 struct pipe_ctx *pipe = NULL;
1516 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1517 pipe = &context->res_ctx.pipe_ctx[old_index];
1518 pipe->pipe_idx = old_index;
1522 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1523 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1524 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1525 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1526 pipe = &context->res_ctx.pipe_ctx[i];
1534 * May need to fix pipes getting tossed from 1 opp to another on flip
1535 * Add for debugging transient underflow during topology updates:
1539 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1540 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1541 pipe = &context->res_ctx.pipe_ctx[i];
1550 static bool dcn32_split_stream_for_mpc_or_odm(
1551 const struct dc *dc,
1552 struct resource_context *res_ctx,
1553 struct pipe_ctx *pri_pipe,
1554 struct pipe_ctx *sec_pipe,
1557 int pipe_idx = sec_pipe->pipe_idx;
1558 const struct resource_pool *pool = dc->res_pool;
1560 DC_LOGGER_INIT(dc->ctx->logger);
1562 if (odm && pri_pipe->plane_state) {
1563 /* ODM + window MPO, where MPO window is on left half only */
1564 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1565 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1567 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1569 pri_pipe->pipe_idx);
1573 /* ODM + window MPO, where MPO window is on right half only */
1574 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1576 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1578 pri_pipe->pipe_idx);
1583 *sec_pipe = *pri_pipe;
1585 sec_pipe->pipe_idx = pipe_idx;
1586 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1587 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1588 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1589 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1590 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1591 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1592 sec_pipe->stream_res.dsc = NULL;
1594 if (pri_pipe->next_odm_pipe) {
1595 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1596 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1597 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1599 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1600 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1601 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1603 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1604 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1605 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1607 pri_pipe->next_odm_pipe = sec_pipe;
1608 sec_pipe->prev_odm_pipe = pri_pipe;
1609 ASSERT(sec_pipe->top_pipe == NULL);
1611 if (!sec_pipe->top_pipe)
1612 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1614 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1615 if (sec_pipe->stream->timing.flags.DSC == 1) {
1616 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1617 ASSERT(sec_pipe->stream_res.dsc);
1618 if (sec_pipe->stream_res.dsc == NULL)
1622 if (pri_pipe->bottom_pipe) {
1623 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1624 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1625 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1627 pri_pipe->bottom_pipe = sec_pipe;
1628 sec_pipe->top_pipe = pri_pipe;
1630 ASSERT(pri_pipe->plane_state);
1636 bool dcn32_internal_validate_bw(struct dc *dc,
1637 struct dc_state *context,
1638 display_e2e_pipe_params_st *pipes,
1644 bool repopulate_pipes = false;
1645 int split[MAX_PIPES] = { 0 };
1646 bool merge[MAX_PIPES] = { false };
1647 bool newly_split[MAX_PIPES] = { false };
1648 int pipe_cnt, i, pipe_idx;
1649 int vlevel = context->bw_ctx.dml.soc.num_states;
1650 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1652 dc_assert_fp_enabled();
1658 // For each full update, remove all existing phantom pipes first
1659 dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1661 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1663 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1670 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1671 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1674 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1676 if (fast_validate ||
1677 (dc->debug.dml_disallow_alternate_prefetch_modes &&
1678 (vlevel == context->bw_ctx.dml.soc.num_states ||
1679 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1681 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1682 * tried alternate prefetch modes during full validation.
1684 * If mode is unsupported or there is no p-state support, then
1685 * fall back to favouring voltage.
1687 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1688 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1690 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1691 dm_prefetch_support_none;
1693 context->bw_ctx.dml.validate_max_state = fast_validate;
1694 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1696 context->bw_ctx.dml.validate_max_state = false;
1698 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1699 memset(split, 0, sizeof(split));
1700 memset(merge, 0, sizeof(merge));
1701 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1702 // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1703 vba->VoltageLevel = vlevel;
1707 dml_log_mode_support_params(&context->bw_ctx.dml);
1709 if (vlevel == context->bw_ctx.dml.soc.num_states)
1712 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1713 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1714 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1719 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1720 && !dc->config.enable_windowed_mpo_odm
1721 && pipe->plane_state && mpo_pipe
1722 && memcmp(&mpo_pipe->plane_res.scl_data.recout,
1723 &pipe->plane_res.scl_data.recout,
1724 sizeof(struct rect)) != 0) {
1725 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1731 /* merge pipes if necessary */
1732 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1733 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1735 /*skip pipes that don't need merging*/
1739 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1740 if (pipe->prev_odm_pipe) {
1741 /*split off odm pipe*/
1742 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1743 if (pipe->next_odm_pipe)
1744 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1746 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1747 if (pipe->bottom_pipe) {
1748 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1749 /*MPC split rules will handle this case*/
1750 pipe->bottom_pipe->top_pipe = NULL;
1752 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1753 * the previous ODM pipe and its associated stream assets
1755 if (pipe->prev_odm_pipe->bottom_pipe) {
1757 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1758 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1761 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1762 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1765 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1769 if (pipe->top_pipe) {
1770 pipe->top_pipe->bottom_pipe = NULL;
1773 pipe->bottom_pipe = NULL;
1774 pipe->next_odm_pipe = NULL;
1775 pipe->plane_state = NULL;
1776 pipe->stream = NULL;
1777 pipe->top_pipe = NULL;
1778 pipe->prev_odm_pipe = NULL;
1779 if (pipe->stream_res.dsc)
1780 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1781 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1782 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1783 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1784 repopulate_pipes = true;
1785 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1786 struct pipe_ctx *top_pipe = pipe->top_pipe;
1787 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1789 top_pipe->bottom_pipe = bottom_pipe;
1791 bottom_pipe->top_pipe = top_pipe;
1793 pipe->top_pipe = NULL;
1794 pipe->bottom_pipe = NULL;
1795 pipe->plane_state = NULL;
1796 pipe->stream = NULL;
1797 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1798 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1799 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1800 repopulate_pipes = true;
1802 ASSERT(0); /* Should never try to merge master pipe */
1806 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1807 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1808 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1809 struct pipe_ctx *hsplit_pipe = NULL;
1813 if (!pipe->stream || newly_split[i])
1817 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1819 if (!pipe->plane_state && !odm)
1824 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1825 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1826 else if (old_pipe->next_odm_pipe)
1827 old_index = old_pipe->next_odm_pipe->pipe_idx;
1829 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1830 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1831 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1832 else if (old_pipe->bottom_pipe &&
1833 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1834 old_index = old_pipe->bottom_pipe->pipe_idx;
1836 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1837 ASSERT(hsplit_pipe);
1841 if (!dcn32_split_stream_for_mpc_or_odm(
1842 dc, &context->res_ctx,
1843 pipe, hsplit_pipe, odm))
1846 newly_split[hsplit_pipe->pipe_idx] = true;
1847 repopulate_pipes = true;
1849 if (split[i] == 4) {
1850 struct pipe_ctx *pipe_4to1;
1852 if (odm && old_pipe->next_odm_pipe)
1853 old_index = old_pipe->next_odm_pipe->pipe_idx;
1854 else if (!odm && old_pipe->bottom_pipe &&
1855 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1856 old_index = old_pipe->bottom_pipe->pipe_idx;
1859 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1863 if (!dcn32_split_stream_for_mpc_or_odm(
1864 dc, &context->res_ctx,
1865 pipe, pipe_4to1, odm))
1867 newly_split[pipe_4to1->pipe_idx] = true;
1869 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1870 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1871 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1872 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1873 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1874 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1875 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1878 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1882 if (!dcn32_split_stream_for_mpc_or_odm(
1883 dc, &context->res_ctx,
1884 hsplit_pipe, pipe_4to1, odm))
1886 newly_split[pipe_4to1->pipe_idx] = true;
1889 dcn20_build_mapped_resource(dc, context, pipe->stream);
1892 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1893 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1895 if (pipe->plane_state) {
1896 if (!resource_build_scaling_params(pipe))
1901 /* Actual dsc count per stream dsc validation*/
1902 if (!dcn20_validate_dsc(dc, context)) {
1903 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1907 if (repopulate_pipes) {
1908 int flag_max_mpc_comb = vba->maxMpcComb;
1909 int flag_vlevel = vlevel;
1912 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1914 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1915 * we have to re-calculate the DET allocation and run through DML once more to
1916 * ensure all the params are calculated correctly. We do not need to run the
1917 * pipe split check again after this call (pipes are already split / merged).
1919 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1920 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1921 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1922 if (vlevel == context->bw_ctx.dml.soc.num_states) {
1923 /* failed after DET size changes */
1925 } else if (flag_max_mpc_comb == 0 &&
1926 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1927 /* check the context constructed with pipe split flags is still valid*/
1928 bool flags_valid = false;
1929 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1930 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1931 vba->maxMpcComb = flag_max_mpc_comb;
1932 vba->VoltageLevel = i;
1938 /* this should never happen */
1943 *vlevel_out = vlevel;
1944 *pipe_cnt_out = pipe_cnt;
1957 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1958 display_e2e_pipe_params_st *pipes,
1962 int i, pipe_idx, vlevel_temp = 0;
1963 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1964 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1965 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1966 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1967 dm_dram_clock_change_unsupported;
1968 unsigned int dummy_latency_index = 0;
1969 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1970 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1971 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1972 unsigned int min_dram_speed_mts_margin;
1973 bool need_fclk_lat_as_dummy = false;
1974 bool is_subvp_p_drr = false;
1975 struct dc_stream_state *fpo_candidate_stream = NULL;
1977 dc_assert_fp_enabled();
1979 /* need to find dummy latency index for subvp */
1981 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1983 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1984 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1986 is_subvp_p_drr = true;
1988 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1989 context, pipes, pipe_cnt, vlevel);
1991 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1992 * scheduled correctly to account for dummy pstate.
1994 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1995 need_fclk_lat_as_dummy = true;
1996 context->bw_ctx.dml.soc.fclk_change_latency_us =
1997 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1999 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2000 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2001 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2002 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2003 if (is_subvp_p_drr) {
2004 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2008 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2009 for (i = 0; i < context->stream_count; i++) {
2010 if (context->streams[i])
2011 context->streams[i]->fpo_in_use = false;
2014 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2015 pstate_en && vlevel != 0)) {
2016 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2017 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2018 if (fpo_candidate_stream) {
2019 fpo_candidate_stream->fpo_in_use = true;
2020 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2023 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2024 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2025 context, pipes, pipe_cnt, vlevel);
2027 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2028 * we reinstate the original dram_clock_change_latency_us on the context
2029 * and all variables that may have changed up to this point, except the
2030 * newly found dummy_latency_index
2032 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2033 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2034 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2035 * prefetch is scheduled correctly to account for dummy pstate.
2037 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2038 need_fclk_lat_as_dummy = true;
2039 context->bw_ctx.dml.soc.fclk_change_latency_us =
2040 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2042 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2043 if (vlevel_temp < vlevel) {
2044 vlevel = vlevel_temp;
2045 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2046 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2048 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2050 /* Restore FCLK latency and re-run validation to go back to original validation
2051 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2054 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2055 for (i = 0; i < context->stream_count; i++) {
2056 if (context->streams[i])
2057 context->streams[i]->fpo_in_use = false;
2059 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2060 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2066 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2067 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2068 * calculations to cover bootup clocks.
2069 * DCFCLK: soc.clock_limits[2] when available
2070 * UCLK: soc.clock_limits[2] when available
2072 if (dcn3_2_soc.num_states > 2) {
2074 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2076 dcfclk = 615; //DCFCLK Vmin_lv
2078 pipes[0].clks_cfg.voltage = vlevel_temp;
2079 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2080 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2082 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2083 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2084 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2085 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2086 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2088 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2089 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2090 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2091 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2092 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2101 * DCFCLK: Min, as reported by PM FW when available
2102 * UCLK : Min, as reported by PM FW when available
2103 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2107 if (dcn3_2_soc.num_states > 2) {
2109 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2111 dcfclk = 615; //DCFCLK Vmin_lv
2113 pipes[0].clks_cfg.voltage = vlevel_temp;
2114 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2115 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2117 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2118 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2119 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2120 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2121 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2123 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2124 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2125 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2126 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2127 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2135 /* Set C, for Dummy P-State:
2137 * DCFCLK: Min, as reported by PM FW, when available
2138 * UCLK : Min, as reported by PM FW, when available
2139 * pstate latency as per UCLK state dummy pstate latency
2142 // For Set A and Set C use values from validation
2143 pipes[0].clks_cfg.voltage = vlevel;
2144 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2145 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2147 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2148 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2151 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2152 min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2153 min_dram_speed_mts_margin = 160;
2155 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2156 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2158 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2159 dm_dram_clock_change_unsupported) {
2160 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2162 min_dram_speed_mts =
2163 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2166 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2167 /* find largest table entry that is lower than dram speed,
2168 * but lower than DPM0 still uses DPM0
2170 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2171 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2172 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2176 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2177 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2179 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2180 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2181 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2184 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2185 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2186 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2187 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2188 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2192 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2193 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2196 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2197 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2199 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2200 /* The only difference between A and C is p-state latency, if p-state is not supported
2201 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2202 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2204 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2205 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2206 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2207 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2209 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2213 * DCFCLK: Min, as reported by PM FW, when available
2214 * UCLK: Min, as reported by PM FW, when available
2217 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2219 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2220 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2221 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2223 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2224 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2225 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2226 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2227 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 /* Make set D = set A since we do not optimized watermarks for MALL */
2236 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2238 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2239 if (!context->res_ctx.pipe_ctx[i].stream)
2242 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2243 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2245 if (dc->config.forced_clocks) {
2246 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2247 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2249 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2250 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2251 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2252 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2257 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2259 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2260 if (need_fclk_lat_as_dummy)
2261 context->bw_ctx.dml.soc.fclk_change_latency_us =
2262 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2264 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2267 /* Restore full p-state latency */
2268 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2269 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2271 /* revert fclk lat changes if required */
2272 if (need_fclk_lat_as_dummy)
2273 context->bw_ctx.dml.soc.fclk_change_latency_us =
2274 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2277 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2278 unsigned int *optimal_dcfclk,
2279 unsigned int *optimal_fclk)
2281 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2283 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2284 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2285 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2286 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2288 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2291 *optimal_fclk = bw_from_dram /
2292 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2295 *optimal_dcfclk = bw_from_dram /
2296 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2299 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2304 if (*num_entries == 0)
2307 for (i = index; i < *num_entries - 1; i++) {
2308 table[i] = table[i + 1];
2310 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2313 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2316 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2317 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2319 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2320 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2321 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2322 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2323 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2324 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2325 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2326 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2327 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2328 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2329 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2330 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2331 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2332 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2333 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2336 /* Scan through clock values we currently have and if they are 0,
2337 * then populate it with dcn3_2_soc.clock_limits[] value.
2339 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2340 * 0, will cause it to skip building the clock table.
2342 if (max_dcfclk_mhz == 0)
2343 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2344 if (max_dispclk_mhz == 0)
2345 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2346 if (max_dtbclk_mhz == 0)
2347 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2348 if (max_uclk_mhz == 0)
2349 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2353 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2355 * max_clk_limit - struct containing the desired clock timings
2357 * curr_clk_limit - struct containing the timings that need to be overwritten
2358 * Return: 0 upon success, non-zero for failure
2360 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2361 struct clk_limit_table_entry *curr_clk_limit)
2363 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2364 return -1; //invalid parameters
2366 //only overwrite if desired max clock frequency is initialized
2367 if (max_clk_limit->dcfclk_mhz != 0)
2368 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2370 if (max_clk_limit->fclk_mhz != 0)
2371 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2373 if (max_clk_limit->memclk_mhz != 0)
2374 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2376 if (max_clk_limit->socclk_mhz != 0)
2377 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2379 if (max_clk_limit->dtbclk_mhz != 0)
2380 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2382 if (max_clk_limit->dispclk_mhz != 0)
2383 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2388 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2389 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2392 struct _vcs_dpi_voltage_scaling_st entry = {0};
2393 struct clk_limit_table_entry max_clk_data = {0};
2395 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2397 static const unsigned int num_dcfclk_stas = 5;
2398 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2400 unsigned int num_uclk_dpms = 0;
2401 unsigned int num_fclk_dpms = 0;
2402 unsigned int num_dcfclk_dpms = 0;
2404 unsigned int num_dc_uclk_dpms = 0;
2405 unsigned int num_dc_fclk_dpms = 0;
2406 unsigned int num_dc_dcfclk_dpms = 0;
2408 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2409 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2410 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2411 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2412 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2413 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2414 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2415 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2416 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2417 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2418 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2419 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2420 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2421 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2422 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2424 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2426 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2429 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2431 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2434 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2436 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2437 num_dc_dcfclk_dpms++;
2441 if (!disable_dc_mode_overwrite) {
2442 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2443 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2444 num_uclk_dpms = num_dc_uclk_dpms;
2445 num_fclk_dpms = num_dc_fclk_dpms;
2446 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2447 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2448 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2451 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2452 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2454 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2457 if (max_clk_data.dppclk_mhz == 0)
2458 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2460 if (max_clk_data.fclk_mhz == 0)
2461 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2462 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2463 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2465 if (max_clk_data.phyclk_mhz == 0)
2466 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2469 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2470 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2471 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2472 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2473 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2474 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2475 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2477 // Insert all the DCFCLK STAs
2478 for (i = 0; i < num_dcfclk_stas; i++) {
2479 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2480 entry.fabricclk_mhz = 0;
2481 entry.dram_speed_mts = 0;
2483 insert_entry_into_table_sorted(table, num_entries, &entry);
2486 // Insert the max DCFCLK
2487 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2488 entry.fabricclk_mhz = 0;
2489 entry.dram_speed_mts = 0;
2491 insert_entry_into_table_sorted(table, num_entries, &entry);
2493 // Insert the UCLK DPMS
2494 for (i = 0; i < num_uclk_dpms; i++) {
2495 entry.dcfclk_mhz = 0;
2496 entry.fabricclk_mhz = 0;
2497 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2499 insert_entry_into_table_sorted(table, num_entries, &entry);
2502 // If FCLK is coarse grained, insert individual DPMs.
2503 if (num_fclk_dpms > 2) {
2504 for (i = 0; i < num_fclk_dpms; i++) {
2505 entry.dcfclk_mhz = 0;
2506 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2507 entry.dram_speed_mts = 0;
2509 insert_entry_into_table_sorted(table, num_entries, &entry);
2512 // If FCLK fine grained, only insert max
2514 entry.dcfclk_mhz = 0;
2515 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2516 entry.dram_speed_mts = 0;
2518 insert_entry_into_table_sorted(table, num_entries, &entry);
2521 // At this point, the table contains all "points of interest" based on
2522 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2523 // ratios (by derate, are exact).
2525 // Remove states that require higher clocks than are supported
2526 for (i = *num_entries - 1; i >= 0 ; i--) {
2527 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2528 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2529 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2530 remove_entry_from_table_at_index(table, num_entries, i);
2533 // At this point, the table only contains supported points of interest
2534 // it could be used as is, but some states may be redundant due to
2535 // coarse grained nature of some clocks, so we want to round up to
2536 // coarse grained DPMs and remove duplicates.
2539 for (i = *num_entries - 1; i >= 0 ; i--) {
2540 for (j = 0; j < num_uclk_dpms; j++) {
2541 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2542 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2548 // If FCLK is coarse grained, round up to next DPMs
2549 if (num_fclk_dpms > 2) {
2550 for (i = *num_entries - 1; i >= 0 ; i--) {
2551 for (j = 0; j < num_fclk_dpms; j++) {
2552 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2553 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2559 // Otherwise, round up to minimum.
2561 for (i = *num_entries - 1; i >= 0 ; i--) {
2562 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2563 table[i].fabricclk_mhz = min_fclk_mhz;
2568 // Round DCFCLKs up to minimum
2569 for (i = *num_entries - 1; i >= 0 ; i--) {
2570 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2571 table[i].dcfclk_mhz = min_dcfclk_mhz;
2575 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2577 while (i < *num_entries - 1) {
2578 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2579 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2580 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2581 remove_entry_from_table_at_index(table, num_entries, i + 1);
2586 // Fix up the state indicies
2587 for (i = *num_entries - 1; i >= 0 ; i--) {
2595 * dcn32_update_bw_bounding_box
2597 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2598 * spreadsheet with actual values as per dGPU SKU:
2599 * - with passed few options from dc->config
2600 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2601 * need to get it from PM FW)
2602 * - with passed latency values (passed in ns units) in dc-> bb override for
2603 * debugging purposes
2604 * - with passed latencies from VBIOS (in 100_ns units) if available for
2606 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2608 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2609 * FW for different clocks (which might differ for certain dGPU SKU of the
2612 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2614 dc_assert_fp_enabled();
2616 /* Overrides from dc->config options */
2617 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2619 /* Override from passed dc->bb_overrides if available*/
2620 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2621 && dc->bb_overrides.sr_exit_time_ns) {
2622 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2625 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2626 != dc->bb_overrides.sr_enter_plus_exit_time_ns
2627 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2628 dcn3_2_soc.sr_enter_plus_exit_time_us =
2629 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2632 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2633 && dc->bb_overrides.urgent_latency_ns) {
2634 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2635 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2638 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2639 != dc->bb_overrides.dram_clock_change_latency_ns
2640 && dc->bb_overrides.dram_clock_change_latency_ns) {
2641 dcn3_2_soc.dram_clock_change_latency_us =
2642 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2645 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2646 != dc->bb_overrides.fclk_clock_change_latency_ns
2647 && dc->bb_overrides.fclk_clock_change_latency_ns) {
2648 dcn3_2_soc.fclk_change_latency_us =
2649 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2652 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2653 != dc->bb_overrides.dummy_clock_change_latency_ns
2654 && dc->bb_overrides.dummy_clock_change_latency_ns) {
2655 dcn3_2_soc.dummy_pstate_latency_us =
2656 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2659 /* Override from VBIOS if VBIOS bb_info available */
2660 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2661 struct bp_soc_bb_info bb_info = {0};
2663 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2664 if (bb_info.dram_clock_change_latency_100ns > 0)
2665 dcn3_2_soc.dram_clock_change_latency_us =
2666 bb_info.dram_clock_change_latency_100ns * 10;
2668 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2669 dcn3_2_soc.sr_enter_plus_exit_time_us =
2670 bb_info.dram_sr_enter_exit_latency_100ns * 10;
2672 if (bb_info.dram_sr_exit_latency_100ns > 0)
2673 dcn3_2_soc.sr_exit_time_us =
2674 bb_info.dram_sr_exit_latency_100ns * 10;
2678 /* Override from VBIOS for num_chan */
2679 if (dc->ctx->dc_bios->vram_info.num_chans) {
2680 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2681 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2682 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2685 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2686 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2688 /* DML DSC delay factor workaround */
2689 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2691 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2693 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2694 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2695 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2697 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2698 if (bw_params->clk_table.entries[0].memclk_mhz) {
2699 if (dc->debug.use_legacy_soc_bb_mechanism) {
2700 unsigned int i = 0, j = 0, num_states = 0;
2702 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2703 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2704 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2705 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2706 unsigned int min_dcfclk = UINT_MAX;
2707 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2708 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2709 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2710 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2711 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2713 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2714 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2715 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2716 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2717 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2718 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2719 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2720 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2721 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2722 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2723 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2724 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2726 if (min_dcfclk > dcfclk_sta_targets[0])
2727 dcfclk_sta_targets[0] = min_dcfclk;
2728 if (!max_dcfclk_mhz)
2729 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2730 if (!max_dispclk_mhz)
2731 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2732 if (!max_dppclk_mhz)
2733 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2734 if (!max_phyclk_mhz)
2735 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2737 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2738 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2739 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2740 num_dcfclk_sta_targets++;
2741 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2742 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2743 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2744 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2745 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2749 // Update size of array since we "removed" duplicates
2750 num_dcfclk_sta_targets = i + 1;
2753 num_uclk_states = bw_params->clk_table.num_entries;
2755 // Calculate optimal dcfclk for each uclk
2756 for (i = 0; i < num_uclk_states; i++) {
2757 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2758 &optimal_dcfclk_for_uclk[i], NULL);
2759 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2760 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2764 // Calculate optimal uclk for each dcfclk sta target
2765 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2766 for (j = 0; j < num_uclk_states; j++) {
2767 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2768 optimal_uclk_for_dcfclk_sta_targets[i] =
2769 bw_params->clk_table.entries[j].memclk_mhz * 16;
2777 // create the final dcfclk and uclk table
2778 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2779 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2780 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2781 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2783 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2784 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2785 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2787 j = num_uclk_states;
2792 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2793 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2794 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2797 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2798 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2799 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2800 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2803 dcn3_2_soc.num_states = num_states;
2804 for (i = 0; i < dcn3_2_soc.num_states; i++) {
2805 dcn3_2_soc.clock_limits[i].state = i;
2806 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2807 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2809 /* Fill all states with max values of all these clocks */
2810 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2811 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2812 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2813 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
2815 /* Populate from bw_params for DTBCLK, SOCCLK */
2817 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2818 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2820 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2822 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2823 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2826 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2827 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2829 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2831 if (!dram_speed_mts[i] && i > 0)
2832 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2834 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2836 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2837 /* PHYCLK_D18, PHYCLK_D32 */
2838 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2839 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2842 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2843 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2846 /* Re-init DML with updated bb */
2847 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2848 if (dc->current_state)
2849 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2853 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2856 dc_assert_fp_enabled();
2858 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2859 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2862 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2865 uint32_t refresh_rate = 0;
2867 /* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2868 * only for now. There must be no scaling as well.
2870 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2871 * for p-state switching.
2873 if (pipe->stream && pipe->plane_state) {
2874 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2875 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2876 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2877 if (pipe->stream->timing.v_addressable == 1440 &&
2878 pipe->stream->timing.h_addressable == 2560 &&
2879 refresh_rate >= 55 && refresh_rate <= 65 &&
2880 pipe->plane_state->src_rect.height == 1440 &&
2881 pipe->plane_state->src_rect.width == 2560 &&
2882 pipe->plane_state->dst_rect.height == 1440 &&
2883 pipe->plane_state->dst_rect.width == 2560)
2890 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2892 * @dc: Current DC state
2893 * @context: New DC state to be programmed
2894 * @pipe: Pipe to be considered for use in subvp
2896 * On high refresh rate display configs, we will allow subvp under the following conditions:
2897 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2898 * 2. Refresh rate is between 120hz - 165hz
2900 * 4. Freesync is inactive
2901 * 5. For single display cases, freesync must be disabled
2903 * Return: True if pipe can be used for subvp, false otherwise
2905 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
2908 uint32_t refresh_rate = 0;
2909 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
2910 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
2911 uint32_t min_refresh = subvp_max_refresh;
2914 /* Only allow SubVP on high refresh displays if all connected displays
2915 * are considered "high refresh" (i.e. >= 120hz). We do not want to
2916 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
2918 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2919 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2921 if (!pipe_ctx->stream)
2923 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
2924 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
2925 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
2927 if (refresh_rate < min_refresh)
2928 min_refresh = refresh_rate;
2931 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
2932 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
2933 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2934 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2935 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2936 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
2937 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
2938 uint32_t width = subvp_high_refresh_list.res[i].width;
2939 uint32_t height = subvp_high_refresh_list.res[i].height;
2941 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
2942 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
2954 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
2956 * @dc: Current DC state
2957 * @context: New DC state to be programmed
2959 * Return: Max vratio for prefetch
2961 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
2963 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
2966 /* For single display MPO configs, allow the max vratio to be 8
2967 * if any plane is YUV420 format
2969 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
2970 for (i = 0; i < context->stream_status[0].plane_count; i++) {
2971 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
2972 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
2973 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
2977 return max_vratio_pre;
2981 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
2983 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
2984 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
2985 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
2986 * ActiveMargin <= 0 to be the FPO stream candidate if found.
2989 * @dc: current dc state
2990 * @context: new dc state
2991 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
2995 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
2997 unsigned int i, pipe_idx;
2998 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3000 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3001 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3006 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3007 *fpo_candidate_stream = pipe->stream;
3015 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3017 * @dc: current dc state
3018 * @context: new dc state
3019 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3021 * Return: True if VACTIVE display is found, false otherwise
3023 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3025 unsigned int i, pipe_idx;
3026 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3027 bool vactive_found = false;
3028 unsigned int blank_us = 0;
3030 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3031 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3036 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3037 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3038 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3039 !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3040 vactive_found = true;
3045 return vactive_found;
3048 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3050 dc_assert_fp_enabled();
3051 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3054 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3056 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3057 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3058 dc->dml.soc.num_chans <= 8) {
3059 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3061 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3062 num_mclk_levels > 1) {
3063 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3064 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;