Merge tag 'drm-misc-next-fixes-2023-09-01' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / display / dc / dcn20 / dcn20_resource.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3  * Copyright 2019 Raptor Engineering, LLC
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26
27 #include <linux/slab.h>
28
29 #include "dm_services.h"
30 #include "dc.h"
31
32 #include "dcn20_init.h"
33
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37
38 #include "dml/dcn20/dcn20_fpu.h"
39
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52
53 #include "dcn20_dsc.h"
54
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dce/dce_panel_cntl.h"
66
67 #include "navi10_ip_offset.h"
68
69 #include "dcn/dcn_2_0_0_offset.h"
70 #include "dcn/dcn_2_0_0_sh_mask.h"
71 #include "dpcs/dpcs_2_0_0_offset.h"
72 #include "dpcs/dpcs_2_0_0_sh_mask.h"
73
74 #include "nbio/nbio_2_3_offset.h"
75
76 #include "dcn20/dcn20_dwb.h"
77 #include "dcn20/dcn20_mmhubbub.h"
78
79 #include "mmhub/mmhub_2_0_0_offset.h"
80 #include "mmhub/mmhub_2_0_0_sh_mask.h"
81
82 #include "reg_helper.h"
83 #include "dce/dce_abm.h"
84 #include "dce/dce_dmcu.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 #include "vm_helper.h"
88 #include "link_enc_cfg.h"
89
90 #include "amdgpu_socbb.h"
91
92 #include "link.h"
93 #define DC_LOGGER_INIT(logger)
94
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96         #define mmDP0_DP_DPHY_INTERNAL_CTRL             0x210f
97         #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
98         #define mmDP1_DP_DPHY_INTERNAL_CTRL             0x220f
99         #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
100         #define mmDP2_DP_DPHY_INTERNAL_CTRL             0x230f
101         #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
102         #define mmDP3_DP_DPHY_INTERNAL_CTRL             0x240f
103         #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
104         #define mmDP4_DP_DPHY_INTERNAL_CTRL             0x250f
105         #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
106         #define mmDP5_DP_DPHY_INTERNAL_CTRL             0x260f
107         #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
108         #define mmDP6_DP_DPHY_INTERNAL_CTRL             0x270f
109         #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
110 #endif
111
112
113 enum dcn20_clk_src_array_id {
114         DCN20_CLK_SRC_PLL0,
115         DCN20_CLK_SRC_PLL1,
116         DCN20_CLK_SRC_PLL2,
117         DCN20_CLK_SRC_PLL3,
118         DCN20_CLK_SRC_PLL4,
119         DCN20_CLK_SRC_PLL5,
120         DCN20_CLK_SRC_TOTAL
121 };
122
123 /* begin *********************
124  * macros to expend register list macro defined in HW object header file */
125
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128
129 #define BASE(seg) BASE_INNER(seg)
130
131 #define SR(reg_name)\
132                 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
133                                         mm ## reg_name
134
135 #define SRI(reg_name, block, id)\
136         .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137                                         mm ## block ## id ## _ ## reg_name
138
139 #define SRI2_DWB(reg_name, block, id)\
140         .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141                                         mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143         .field_name = reg_name ## __ ## field_name ## post_fix
144
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix)      \
146         .field_name = reg_name ## __ ## field_name ## post_fix
147
148 #define SRIR(var_name, reg_name, block, id)\
149         .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150                                         mm ## block ## id ## _ ## reg_name
151
152 #define SRII(reg_name, block, id)\
153         .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154                                         mm ## block ## id ## _ ## reg_name
155
156 #define DCCG_SRII(reg_name, block, id)\
157         .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158                                         mm ## block ## id ## _ ## reg_name
159
160 #define VUPDATE_SRII(reg_name, block, id)\
161         .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162                                         mm ## reg_name ## _ ## block ## id
163
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166         NBIO_BASE__INST0_SEG ## seg
167
168 #define NBIO_BASE(seg) \
169         NBIO_BASE_INNER(seg)
170
171 #define NBIO_SR(reg_name)\
172                 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173                                         mm ## reg_name
174
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177         MMHUB_BASE__INST0_SEG ## seg
178
179 #define MMHUB_BASE(seg) \
180         MMHUB_BASE_INNER(seg)
181
182 #define MMHUB_SR(reg_name)\
183                 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184                                         mmMM ## reg_name
185
186 static const struct bios_registers bios_regs = {
187                 NBIO_SR(BIOS_SCRATCH_3),
188                 NBIO_SR(BIOS_SCRATCH_6)
189 };
190
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193         CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197         clk_src_regs(0, A),
198         clk_src_regs(1, B),
199         clk_src_regs(2, C),
200         clk_src_regs(3, D),
201         clk_src_regs(4, E),
202         clk_src_regs(5, F)
203 };
204
205 static const struct dce110_clk_src_shift cs_shift = {
206                 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208
209 static const struct dce110_clk_src_mask cs_mask = {
210                 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212
213 static const struct dce_dmcu_registers dmcu_regs = {
214                 DMCU_DCN10_REG_LIST()
215 };
216
217 static const struct dce_dmcu_shift dmcu_shift = {
218                 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220
221 static const struct dce_dmcu_mask dmcu_mask = {
222                 DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224
225 static const struct dce_abm_registers abm_regs = {
226                 ABM_DCN20_REG_LIST()
227 };
228
229 static const struct dce_abm_shift abm_shift = {
230                 ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232
233 static const struct dce_abm_mask abm_mask = {
234                 ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236
237 #define audio_regs(id)\
238 [id] = {\
239                 AUD_COMMON_REG_LIST(id)\
240 }
241
242 static const struct dce_audio_registers audio_regs[] = {
243         audio_regs(0),
244         audio_regs(1),
245         audio_regs(2),
246         audio_regs(3),
247         audio_regs(4),
248         audio_regs(5),
249         audio_regs(6),
250 };
251
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255                 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256
257 static const struct dce_audio_shift audio_shift = {
258                 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260
261 static const struct dce_audio_mask audio_mask = {
262                 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264
265 #define stream_enc_regs(id)\
266 [id] = {\
267         SE_DCN2_REG_LIST(id)\
268 }
269
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271         stream_enc_regs(0),
272         stream_enc_regs(1),
273         stream_enc_regs(2),
274         stream_enc_regs(3),
275         stream_enc_regs(4),
276         stream_enc_regs(5),
277 };
278
279 static const struct dcn10_stream_encoder_shift se_shift = {
280                 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282
283 static const struct dcn10_stream_encoder_mask se_mask = {
284                 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286
287
288 #define aux_regs(id)\
289 [id] = {\
290         DCN2_AUX_REG_LIST(id)\
291 }
292
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294                 aux_regs(0),
295                 aux_regs(1),
296                 aux_regs(2),
297                 aux_regs(3),
298                 aux_regs(4),
299                 aux_regs(5)
300 };
301
302 #define hpd_regs(id)\
303 [id] = {\
304         HPD_REG_LIST(id)\
305 }
306
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308                 hpd_regs(0),
309                 hpd_regs(1),
310                 hpd_regs(2),
311                 hpd_regs(3),
312                 hpd_regs(4),
313                 hpd_regs(5)
314 };
315
316 #define link_regs(id, phyid)\
317 [id] = {\
318         LE_DCN10_REG_LIST(id), \
319         UNIPHY_DCN2_REG_LIST(phyid), \
320         DPCS_DCN2_REG_LIST(id), \
321         SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325         link_regs(0, A),
326         link_regs(1, B),
327         link_regs(2, C),
328         link_regs(3, D),
329         link_regs(4, E),
330         link_regs(5, F)
331 };
332
333 static const struct dcn10_link_enc_shift le_shift = {
334         LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335         DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337
338 static const struct dcn10_link_enc_mask le_mask = {
339         LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340         DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344         { DCN_PANEL_CNTL_REG_LIST() }
345 };
346
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348         DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352         DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354
355 #define ipp_regs(id)\
356 [id] = {\
357         IPP_REG_LIST_DCN20(id),\
358 }
359
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361         ipp_regs(0),
362         ipp_regs(1),
363         ipp_regs(2),
364         ipp_regs(3),
365         ipp_regs(4),
366         ipp_regs(5),
367 };
368
369 static const struct dcn10_ipp_shift ipp_shift = {
370                 IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372
373 static const struct dcn10_ipp_mask ipp_mask = {
374                 IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376
377 #define opp_regs(id)\
378 [id] = {\
379         OPP_REG_LIST_DCN20(id),\
380 }
381
382 static const struct dcn20_opp_registers opp_regs[] = {
383         opp_regs(0),
384         opp_regs(1),
385         opp_regs(2),
386         opp_regs(3),
387         opp_regs(4),
388         opp_regs(5),
389 };
390
391 static const struct dcn20_opp_shift opp_shift = {
392                 OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394
395 static const struct dcn20_opp_mask opp_mask = {
396                 OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398
399 #define aux_engine_regs(id)\
400 [id] = {\
401         AUX_COMMON_REG_LIST0(id), \
402         .AUXN_IMPCAL = 0, \
403         .AUXP_IMPCAL = 0, \
404         .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408                 aux_engine_regs(0),
409                 aux_engine_regs(1),
410                 aux_engine_regs(2),
411                 aux_engine_regs(3),
412                 aux_engine_regs(4),
413                 aux_engine_regs(5)
414 };
415
416 #define tf_regs(id)\
417 [id] = {\
418         TF_REG_LIST_DCN20(id),\
419         TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421
422 static const struct dcn2_dpp_registers tf_regs[] = {
423         tf_regs(0),
424         tf_regs(1),
425         tf_regs(2),
426         tf_regs(3),
427         tf_regs(4),
428         tf_regs(5),
429 };
430
431 static const struct dcn2_dpp_shift tf_shift = {
432                 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433                 TF_DEBUG_REG_LIST_SH_DCN20
434 };
435
436 static const struct dcn2_dpp_mask tf_mask = {
437                 TF_REG_LIST_SH_MASK_DCN20(_MASK),
438                 TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443         DWBC_COMMON_REG_LIST_DCN2_0(id),\
444                 }
445
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447         dwbc_regs_dcn2(0),
448 };
449
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451         DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455         DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460         MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461                 }
462
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464         mcif_wb_regs_dcn2(0),
465 };
466
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468         MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472         MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474
475 static const struct dcn20_mpc_registers mpc_regs = {
476                 MPC_REG_LIST_DCN2_0(0),
477                 MPC_REG_LIST_DCN2_0(1),
478                 MPC_REG_LIST_DCN2_0(2),
479                 MPC_REG_LIST_DCN2_0(3),
480                 MPC_REG_LIST_DCN2_0(4),
481                 MPC_REG_LIST_DCN2_0(5),
482                 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483                 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484                 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485                 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486                 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487                 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488                 MPC_DBG_REG_LIST_DCN2_0()
489 };
490
491 static const struct dcn20_mpc_shift mpc_shift = {
492         MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493         MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495
496 static const struct dcn20_mpc_mask mpc_mask = {
497         MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498         MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503
504
505 static const struct dcn_optc_registers tg_regs[] = {
506         tg_regs(0),
507         tg_regs(1),
508         tg_regs(2),
509         tg_regs(3),
510         tg_regs(4),
511         tg_regs(5)
512 };
513
514 static const struct dcn_optc_shift tg_shift = {
515         TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517
518 static const struct dcn_optc_mask tg_mask = {
519         TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521
522 #define hubp_regs(id)\
523 [id] = {\
524         HUBP_REG_LIST_DCN20(id)\
525 }
526
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528                 hubp_regs(0),
529                 hubp_regs(1),
530                 hubp_regs(2),
531                 hubp_regs(3),
532                 hubp_regs(4),
533                 hubp_regs(5)
534 };
535
536 static const struct dcn_hubp2_shift hubp_shift = {
537                 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539
540 static const struct dcn_hubp2_mask hubp_mask = {
541                 HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543
544 static const struct dcn_hubbub_registers hubbub_reg = {
545                 HUBBUB_REG_LIST_DCN20(0)
546 };
547
548 static const struct dcn_hubbub_shift hubbub_shift = {
549                 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551
552 static const struct dcn_hubbub_mask hubbub_mask = {
553                 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555
556 #define vmid_regs(id)\
557 [id] = {\
558                 DCN20_VMID_REG_LIST(id)\
559 }
560
561 static const struct dcn_vmid_registers vmid_regs[] = {
562         vmid_regs(0),
563         vmid_regs(1),
564         vmid_regs(2),
565         vmid_regs(3),
566         vmid_regs(4),
567         vmid_regs(5),
568         vmid_regs(6),
569         vmid_regs(7),
570         vmid_regs(8),
571         vmid_regs(9),
572         vmid_regs(10),
573         vmid_regs(11),
574         vmid_regs(12),
575         vmid_regs(13),
576         vmid_regs(14),
577         vmid_regs(15)
578 };
579
580 static const struct dcn20_vmid_shift vmid_shifts = {
581                 DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583
584 static const struct dcn20_vmid_mask vmid_masks = {
585                 DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587
588 static const struct dce110_aux_registers_shift aux_shift = {
589                 DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591
592 static const struct dce110_aux_registers_mask aux_mask = {
593                 DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595
596 static int map_transmitter_id_to_phy_instance(
597         enum transmitter transmitter)
598 {
599         switch (transmitter) {
600         case TRANSMITTER_UNIPHY_A:
601                 return 0;
602         break;
603         case TRANSMITTER_UNIPHY_B:
604                 return 1;
605         break;
606         case TRANSMITTER_UNIPHY_C:
607                 return 2;
608         break;
609         case TRANSMITTER_UNIPHY_D:
610                 return 3;
611         break;
612         case TRANSMITTER_UNIPHY_E:
613                 return 4;
614         break;
615         case TRANSMITTER_UNIPHY_F:
616                 return 5;
617         break;
618         default:
619                 ASSERT(0);
620                 return 0;
621         }
622 }
623
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626         DSC_REG_LIST_DCN20(id)\
627 }
628
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630         dsc_regsDCN20(0),
631         dsc_regsDCN20(1),
632         dsc_regsDCN20(2),
633         dsc_regsDCN20(3),
634         dsc_regsDCN20(4),
635         dsc_regsDCN20(5)
636 };
637
638 static const struct dcn20_dsc_shift dsc_shift = {
639         DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641
642 static const struct dcn20_dsc_mask dsc_mask = {
643         DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645
646 static const struct dccg_registers dccg_regs = {
647                 DCCG_REG_LIST_DCN2()
648 };
649
650 static const struct dccg_shift dccg_shift = {
651                 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653
654 static const struct dccg_mask dccg_mask = {
655                 DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657
658 static const struct resource_caps res_cap_nv10 = {
659                 .num_timing_generator = 6,
660                 .num_opp = 6,
661                 .num_video_plane = 6,
662                 .num_audio = 7,
663                 .num_stream_encoder = 6,
664                 .num_pll = 6,
665                 .num_dwb = 1,
666                 .num_ddc = 6,
667                 .num_vmid = 16,
668                 .num_dsc = 6,
669 };
670
671 static const struct dc_plane_cap plane_cap = {
672         .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673         .per_pixel_alpha = true,
674
675         .pixel_format_support = {
676                         .argb8888 = true,
677                         .nv12 = true,
678                         .fp16 = true,
679                         .p010 = true
680         },
681
682         .max_upscale_factor = {
683                         .argb8888 = 16000,
684                         .nv12 = 16000,
685                         .fp16 = 1
686         },
687
688         .max_downscale_factor = {
689                         .argb8888 = 250,
690                         .nv12 = 250,
691                         .fp16 = 1
692         },
693         16,
694         16
695 };
696 static const struct resource_caps res_cap_nv14 = {
697                 .num_timing_generator = 5,
698                 .num_opp = 5,
699                 .num_video_plane = 5,
700                 .num_audio = 6,
701                 .num_stream_encoder = 5,
702                 .num_pll = 5,
703                 .num_dwb = 1,
704                 .num_ddc = 5,
705                 .num_vmid = 16,
706                 .num_dsc = 5,
707 };
708
709 static const struct dc_debug_options debug_defaults_drv = {
710                 .disable_dmcu = false,
711                 .force_abm_enable = false,
712                 .timing_trace = false,
713                 .clock_trace = true,
714                 .disable_pplib_clock_request = true,
715                 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
716                 .force_single_disp_pipe_split = false,
717                 .disable_dcc = DCC_ENABLE,
718                 .vsr_support = true,
719                 .performance_trace = false,
720                 .max_downscale_src_width = 5120,/*upto 5K*/
721                 .disable_pplib_wm_range = false,
722                 .scl_reset_length10 = true,
723                 .sanity_checks = false,
724                 .underflow_assert_delay_us = 0xFFFFFFFF,
725                 .enable_legacy_fast_update = true,
726 };
727
728 void dcn20_dpp_destroy(struct dpp **dpp)
729 {
730         kfree(TO_DCN20_DPP(*dpp));
731         *dpp = NULL;
732 }
733
734 struct dpp *dcn20_dpp_create(
735         struct dc_context *ctx,
736         uint32_t inst)
737 {
738         struct dcn20_dpp *dpp =
739                 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
740
741         if (!dpp)
742                 return NULL;
743
744         if (dpp2_construct(dpp, ctx, inst,
745                         &tf_regs[inst], &tf_shift, &tf_mask))
746                 return &dpp->base;
747
748         BREAK_TO_DEBUGGER();
749         kfree(dpp);
750         return NULL;
751 }
752
753 struct input_pixel_processor *dcn20_ipp_create(
754         struct dc_context *ctx, uint32_t inst)
755 {
756         struct dcn10_ipp *ipp =
757                 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
758
759         if (!ipp) {
760                 BREAK_TO_DEBUGGER();
761                 return NULL;
762         }
763
764         dcn20_ipp_construct(ipp, ctx, inst,
765                         &ipp_regs[inst], &ipp_shift, &ipp_mask);
766         return &ipp->base;
767 }
768
769
770 struct output_pixel_processor *dcn20_opp_create(
771         struct dc_context *ctx, uint32_t inst)
772 {
773         struct dcn20_opp *opp =
774                 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
775
776         if (!opp) {
777                 BREAK_TO_DEBUGGER();
778                 return NULL;
779         }
780
781         dcn20_opp_construct(opp, ctx, inst,
782                         &opp_regs[inst], &opp_shift, &opp_mask);
783         return &opp->base;
784 }
785
786 struct dce_aux *dcn20_aux_engine_create(
787         struct dc_context *ctx,
788         uint32_t inst)
789 {
790         struct aux_engine_dce110 *aux_engine =
791                 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
792
793         if (!aux_engine)
794                 return NULL;
795
796         dce110_aux_engine_construct(aux_engine, ctx, inst,
797                                     SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
798                                     &aux_engine_regs[inst],
799                                         &aux_mask,
800                                         &aux_shift,
801                                         ctx->dc->caps.extended_aux_timeout_support);
802
803         return &aux_engine->base;
804 }
805 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
806
807 static const struct dce_i2c_registers i2c_hw_regs[] = {
808                 i2c_inst_regs(1),
809                 i2c_inst_regs(2),
810                 i2c_inst_regs(3),
811                 i2c_inst_regs(4),
812                 i2c_inst_regs(5),
813                 i2c_inst_regs(6),
814 };
815
816 static const struct dce_i2c_shift i2c_shifts = {
817                 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
818 };
819
820 static const struct dce_i2c_mask i2c_masks = {
821                 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
822 };
823
824 struct dce_i2c_hw *dcn20_i2c_hw_create(
825         struct dc_context *ctx,
826         uint32_t inst)
827 {
828         struct dce_i2c_hw *dce_i2c_hw =
829                 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
830
831         if (!dce_i2c_hw)
832                 return NULL;
833
834         dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
835                                     &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
836
837         return dce_i2c_hw;
838 }
839 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
840 {
841         struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
842                                           GFP_ATOMIC);
843
844         if (!mpc20)
845                 return NULL;
846
847         dcn20_mpc_construct(mpc20, ctx,
848                         &mpc_regs,
849                         &mpc_shift,
850                         &mpc_mask,
851                         6);
852
853         return &mpc20->base;
854 }
855
856 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
857 {
858         int i;
859         struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
860                                           GFP_ATOMIC);
861
862         if (!hubbub)
863                 return NULL;
864
865         hubbub2_construct(hubbub, ctx,
866                         &hubbub_reg,
867                         &hubbub_shift,
868                         &hubbub_mask);
869
870         for (i = 0; i < res_cap_nv10.num_vmid; i++) {
871                 struct dcn20_vmid *vmid = &hubbub->vmid[i];
872
873                 vmid->ctx = ctx;
874
875                 vmid->regs = &vmid_regs[i];
876                 vmid->shifts = &vmid_shifts;
877                 vmid->masks = &vmid_masks;
878         }
879
880         return &hubbub->base;
881 }
882
883 struct timing_generator *dcn20_timing_generator_create(
884                 struct dc_context *ctx,
885                 uint32_t instance)
886 {
887         struct optc *tgn10 =
888                 kzalloc(sizeof(struct optc), GFP_ATOMIC);
889
890         if (!tgn10)
891                 return NULL;
892
893         tgn10->base.inst = instance;
894         tgn10->base.ctx = ctx;
895
896         tgn10->tg_regs = &tg_regs[instance];
897         tgn10->tg_shift = &tg_shift;
898         tgn10->tg_mask = &tg_mask;
899
900         dcn20_timing_generator_init(tgn10);
901
902         return &tgn10->base;
903 }
904
905 static const struct encoder_feature_support link_enc_feature = {
906                 .max_hdmi_deep_color = COLOR_DEPTH_121212,
907                 .max_hdmi_pixel_clock = 600000,
908                 .hdmi_ycbcr420_supported = true,
909                 .dp_ycbcr420_supported = true,
910                 .fec_supported = true,
911                 .flags.bits.IS_HBR2_CAPABLE = true,
912                 .flags.bits.IS_HBR3_CAPABLE = true,
913                 .flags.bits.IS_TPS3_CAPABLE = true,
914                 .flags.bits.IS_TPS4_CAPABLE = true
915 };
916
917 struct link_encoder *dcn20_link_encoder_create(
918         struct dc_context *ctx,
919         const struct encoder_init_data *enc_init_data)
920 {
921         struct dcn20_link_encoder *enc20 =
922                 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
923         int link_regs_id;
924
925         if (!enc20)
926                 return NULL;
927
928         link_regs_id =
929                 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
930
931         dcn20_link_encoder_construct(enc20,
932                                       enc_init_data,
933                                       &link_enc_feature,
934                                       &link_enc_regs[link_regs_id],
935                                       &link_enc_aux_regs[enc_init_data->channel - 1],
936                                       &link_enc_hpd_regs[enc_init_data->hpd_source],
937                                       &le_shift,
938                                       &le_mask);
939
940         return &enc20->enc10.base;
941 }
942
943 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
944 {
945         struct dce_panel_cntl *panel_cntl =
946                 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
947
948         if (!panel_cntl)
949                 return NULL;
950
951         dce_panel_cntl_construct(panel_cntl,
952                         init_data,
953                         &panel_cntl_regs[init_data->inst],
954                         &panel_cntl_shift,
955                         &panel_cntl_mask);
956
957         return &panel_cntl->base;
958 }
959
960 static struct clock_source *dcn20_clock_source_create(
961         struct dc_context *ctx,
962         struct dc_bios *bios,
963         enum clock_source_id id,
964         const struct dce110_clk_src_regs *regs,
965         bool dp_clk_src)
966 {
967         struct dce110_clk_src *clk_src =
968                 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
969
970         if (!clk_src)
971                 return NULL;
972
973         if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
974                         regs, &cs_shift, &cs_mask)) {
975                 clk_src->base.dp_clk_src = dp_clk_src;
976                 return &clk_src->base;
977         }
978
979         kfree(clk_src);
980         BREAK_TO_DEBUGGER();
981         return NULL;
982 }
983
984 static void read_dce_straps(
985         struct dc_context *ctx,
986         struct resource_straps *straps)
987 {
988         generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
989                 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
990 }
991
992 static struct audio *dcn20_create_audio(
993                 struct dc_context *ctx, unsigned int inst)
994 {
995         return dce_audio_create(ctx, inst,
996                         &audio_regs[inst], &audio_shift, &audio_mask);
997 }
998
999 struct stream_encoder *dcn20_stream_encoder_create(
1000         enum engine_id eng_id,
1001         struct dc_context *ctx)
1002 {
1003         struct dcn10_stream_encoder *enc1 =
1004                 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1005
1006         if (!enc1)
1007                 return NULL;
1008
1009         if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1010                 if (eng_id >= ENGINE_ID_DIGD)
1011                         eng_id++;
1012         }
1013
1014         dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1015                                         &stream_enc_regs[eng_id],
1016                                         &se_shift, &se_mask);
1017
1018         return &enc1->base;
1019 }
1020
1021 static const struct dce_hwseq_registers hwseq_reg = {
1022                 HWSEQ_DCN2_REG_LIST()
1023 };
1024
1025 static const struct dce_hwseq_shift hwseq_shift = {
1026                 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1027 };
1028
1029 static const struct dce_hwseq_mask hwseq_mask = {
1030                 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1031 };
1032
1033 struct dce_hwseq *dcn20_hwseq_create(
1034         struct dc_context *ctx)
1035 {
1036         struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1037
1038         if (hws) {
1039                 hws->ctx = ctx;
1040                 hws->regs = &hwseq_reg;
1041                 hws->shifts = &hwseq_shift;
1042                 hws->masks = &hwseq_mask;
1043         }
1044         return hws;
1045 }
1046
1047 static const struct resource_create_funcs res_create_funcs = {
1048         .read_dce_straps = read_dce_straps,
1049         .create_audio = dcn20_create_audio,
1050         .create_stream_encoder = dcn20_stream_encoder_create,
1051         .create_hwseq = dcn20_hwseq_create,
1052 };
1053
1054 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1055
1056 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1057 {
1058         kfree(TO_DCE110_CLK_SRC(*clk_src));
1059         *clk_src = NULL;
1060 }
1061
1062
1063 struct display_stream_compressor *dcn20_dsc_create(
1064         struct dc_context *ctx, uint32_t inst)
1065 {
1066         struct dcn20_dsc *dsc =
1067                 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1068
1069         if (!dsc) {
1070                 BREAK_TO_DEBUGGER();
1071                 return NULL;
1072         }
1073
1074         dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1075         return &dsc->base;
1076 }
1077
1078 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1079 {
1080         kfree(container_of(*dsc, struct dcn20_dsc, base));
1081         *dsc = NULL;
1082 }
1083
1084
1085 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1086 {
1087         unsigned int i;
1088
1089         for (i = 0; i < pool->base.stream_enc_count; i++) {
1090                 if (pool->base.stream_enc[i] != NULL) {
1091                         kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1092                         pool->base.stream_enc[i] = NULL;
1093                 }
1094         }
1095
1096         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1097                 if (pool->base.dscs[i] != NULL)
1098                         dcn20_dsc_destroy(&pool->base.dscs[i]);
1099         }
1100
1101         if (pool->base.mpc != NULL) {
1102                 kfree(TO_DCN20_MPC(pool->base.mpc));
1103                 pool->base.mpc = NULL;
1104         }
1105         if (pool->base.hubbub != NULL) {
1106                 kfree(pool->base.hubbub);
1107                 pool->base.hubbub = NULL;
1108         }
1109         for (i = 0; i < pool->base.pipe_count; i++) {
1110                 if (pool->base.dpps[i] != NULL)
1111                         dcn20_dpp_destroy(&pool->base.dpps[i]);
1112
1113                 if (pool->base.ipps[i] != NULL)
1114                         pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1115
1116                 if (pool->base.hubps[i] != NULL) {
1117                         kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1118                         pool->base.hubps[i] = NULL;
1119                 }
1120
1121                 if (pool->base.irqs != NULL) {
1122                         dal_irq_service_destroy(&pool->base.irqs);
1123                 }
1124         }
1125
1126         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1127                 if (pool->base.engines[i] != NULL)
1128                         dce110_engine_destroy(&pool->base.engines[i]);
1129                 if (pool->base.hw_i2cs[i] != NULL) {
1130                         kfree(pool->base.hw_i2cs[i]);
1131                         pool->base.hw_i2cs[i] = NULL;
1132                 }
1133                 if (pool->base.sw_i2cs[i] != NULL) {
1134                         kfree(pool->base.sw_i2cs[i]);
1135                         pool->base.sw_i2cs[i] = NULL;
1136                 }
1137         }
1138
1139         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1140                 if (pool->base.opps[i] != NULL)
1141                         pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1142         }
1143
1144         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1145                 if (pool->base.timing_generators[i] != NULL)    {
1146                         kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1147                         pool->base.timing_generators[i] = NULL;
1148                 }
1149         }
1150
1151         for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1152                 if (pool->base.dwbc[i] != NULL) {
1153                         kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1154                         pool->base.dwbc[i] = NULL;
1155                 }
1156                 if (pool->base.mcif_wb[i] != NULL) {
1157                         kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1158                         pool->base.mcif_wb[i] = NULL;
1159                 }
1160         }
1161
1162         for (i = 0; i < pool->base.audio_count; i++) {
1163                 if (pool->base.audios[i])
1164                         dce_aud_destroy(&pool->base.audios[i]);
1165         }
1166
1167         for (i = 0; i < pool->base.clk_src_count; i++) {
1168                 if (pool->base.clock_sources[i] != NULL) {
1169                         dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1170                         pool->base.clock_sources[i] = NULL;
1171                 }
1172         }
1173
1174         if (pool->base.dp_clock_source != NULL) {
1175                 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1176                 pool->base.dp_clock_source = NULL;
1177         }
1178
1179
1180         if (pool->base.abm != NULL)
1181                 dce_abm_destroy(&pool->base.abm);
1182
1183         if (pool->base.dmcu != NULL)
1184                 dce_dmcu_destroy(&pool->base.dmcu);
1185
1186         if (pool->base.dccg != NULL)
1187                 dcn_dccg_destroy(&pool->base.dccg);
1188
1189         if (pool->base.pp_smu != NULL)
1190                 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1191
1192         if (pool->base.oem_device != NULL) {
1193                 struct dc *dc = pool->base.oem_device->ctx->dc;
1194
1195                 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1196         }
1197 }
1198
1199 struct hubp *dcn20_hubp_create(
1200         struct dc_context *ctx,
1201         uint32_t inst)
1202 {
1203         struct dcn20_hubp *hubp2 =
1204                 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1205
1206         if (!hubp2)
1207                 return NULL;
1208
1209         if (hubp2_construct(hubp2, ctx, inst,
1210                         &hubp_regs[inst], &hubp_shift, &hubp_mask))
1211                 return &hubp2->base;
1212
1213         BREAK_TO_DEBUGGER();
1214         kfree(hubp2);
1215         return NULL;
1216 }
1217
1218 static void get_pixel_clock_parameters(
1219         struct pipe_ctx *pipe_ctx,
1220         struct pixel_clk_params *pixel_clk_params)
1221 {
1222         const struct dc_stream_state *stream = pipe_ctx->stream;
1223         struct pipe_ctx *odm_pipe;
1224         int opp_cnt = 1;
1225         struct dc_link *link = stream->link;
1226         struct link_encoder *link_enc = NULL;
1227         struct dc *dc = pipe_ctx->stream->ctx->dc;
1228         struct dce_hwseq *hws = dc->hwseq;
1229
1230         for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1231                 opp_cnt++;
1232
1233         pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1234
1235         link_enc = link_enc_cfg_get_link_enc(link);
1236         if (link_enc)
1237                 pixel_clk_params->encoder_object_id = link_enc->id;
1238
1239         pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1240         pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1241         /* TODO: un-hardcode*/
1242         /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1243         pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1244                 LINK_RATE_REF_FREQ_IN_KHZ;
1245         pixel_clk_params->flags.ENABLE_SS = 0;
1246         pixel_clk_params->color_depth =
1247                 stream->timing.display_color_depth;
1248         pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1249         pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1250
1251         if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1252                 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1253
1254         if (opp_cnt == 4)
1255                 pixel_clk_params->requested_pix_clk_100hz /= 4;
1256         else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1257                 pixel_clk_params->requested_pix_clk_100hz /= 2;
1258         else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1259                 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1260                         pixel_clk_params->requested_pix_clk_100hz /= 2;
1261         }
1262
1263         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1264                 pixel_clk_params->requested_pix_clk_100hz *= 2;
1265
1266 }
1267
1268 static void build_clamping_params(struct dc_stream_state *stream)
1269 {
1270         stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1271         stream->clamping.c_depth = stream->timing.display_color_depth;
1272         stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1273 }
1274
1275 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1276 {
1277
1278         get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1279
1280         pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1281                 pipe_ctx->clock_source,
1282                 &pipe_ctx->stream_res.pix_clk_params,
1283                 &pipe_ctx->pll_settings);
1284
1285         pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1286
1287         resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1288                                         &pipe_ctx->stream->bit_depth_params);
1289         build_clamping_params(pipe_ctx->stream);
1290
1291         return DC_OK;
1292 }
1293
1294 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1295 {
1296         enum dc_status status = DC_OK;
1297         struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
1298
1299         if (!pipe_ctx)
1300                 return DC_ERROR_UNEXPECTED;
1301
1302
1303         status = build_pipe_hw_param(pipe_ctx);
1304
1305         return status;
1306 }
1307
1308
1309 void dcn20_acquire_dsc(const struct dc *dc,
1310                         struct resource_context *res_ctx,
1311                         struct display_stream_compressor **dsc,
1312                         int pipe_idx)
1313 {
1314         int i;
1315         const struct resource_pool *pool = dc->res_pool;
1316         struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1317
1318         ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1319         *dsc = NULL;
1320
1321         /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1322         if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1323                 *dsc = pool->dscs[pipe_idx];
1324                 res_ctx->is_dsc_acquired[pipe_idx] = true;
1325                 return;
1326         }
1327
1328         /* Return old DSC to avoid the need for re-programming */
1329         if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1330                 *dsc = dsc_old;
1331                 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1332                 return ;
1333         }
1334
1335         /* Find first free DSC */
1336         for (i = 0; i < pool->res_cap->num_dsc; i++)
1337                 if (!res_ctx->is_dsc_acquired[i]) {
1338                         *dsc = pool->dscs[i];
1339                         res_ctx->is_dsc_acquired[i] = true;
1340                         break;
1341                 }
1342 }
1343
1344 void dcn20_release_dsc(struct resource_context *res_ctx,
1345                         const struct resource_pool *pool,
1346                         struct display_stream_compressor **dsc)
1347 {
1348         int i;
1349
1350         for (i = 0; i < pool->res_cap->num_dsc; i++)
1351                 if (pool->dscs[i] == *dsc) {
1352                         res_ctx->is_dsc_acquired[i] = false;
1353                         *dsc = NULL;
1354                         break;
1355                 }
1356 }
1357
1358
1359
1360 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1361                 struct dc_state *dc_ctx,
1362                 struct dc_stream_state *dc_stream)
1363 {
1364         enum dc_status result = DC_OK;
1365         int i;
1366
1367         /* Get a DSC if required and available */
1368         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1369                 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1370
1371                 if (pipe_ctx->top_pipe)
1372                         continue;
1373
1374                 if (pipe_ctx->stream != dc_stream)
1375                         continue;
1376
1377                 if (pipe_ctx->stream_res.dsc)
1378                         continue;
1379
1380                 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1381
1382                 /* The number of DSCs can be less than the number of pipes */
1383                 if (!pipe_ctx->stream_res.dsc) {
1384                         result = DC_NO_DSC_RESOURCE;
1385                 }
1386
1387                 break;
1388         }
1389
1390         return result;
1391 }
1392
1393
1394 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1395                 struct dc_state *new_ctx,
1396                 struct dc_stream_state *dc_stream)
1397 {
1398         struct pipe_ctx *pipe_ctx = NULL;
1399         int i;
1400
1401         for (i = 0; i < MAX_PIPES; i++) {
1402                 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1403                         pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1404
1405                         if (pipe_ctx->stream_res.dsc)
1406                                 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1407                 }
1408         }
1409
1410         if (!pipe_ctx)
1411                 return DC_ERROR_UNEXPECTED;
1412         else
1413                 return DC_OK;
1414 }
1415
1416
1417 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1418 {
1419         enum dc_status result = DC_ERROR_UNEXPECTED;
1420
1421         result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1422
1423         if (result == DC_OK)
1424                 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1425
1426         /* Get a DSC if required and available */
1427         if (result == DC_OK && dc_stream->timing.flags.DSC)
1428                 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1429
1430         if (result == DC_OK)
1431                 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1432
1433         return result;
1434 }
1435
1436
1437 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1438 {
1439         enum dc_status result = DC_OK;
1440
1441         result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1442
1443         return result;
1444 }
1445
1446 /**
1447  * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1448  *
1449  * @dc: DC object with resource pool info required for pipe split
1450  * @res_ctx: Persistent state of resources
1451  * @prev_odm_pipe: Reference to the previous ODM pipe
1452  * @next_odm_pipe: Reference to the next ODM pipe
1453  *
1454  * This function takes a logically active pipe and a logically free pipe and
1455  * halves all the scaling parameters that need to be halved while populating
1456  * the free pipe with the required resources and configuring the next/previous
1457  * ODM pipe pointers.
1458  *
1459  * Return:
1460  * Return true if split stream for ODM is possible, otherwise, return false.
1461  */
1462 bool dcn20_split_stream_for_odm(
1463                 const struct dc *dc,
1464                 struct resource_context *res_ctx,
1465                 struct pipe_ctx *prev_odm_pipe,
1466                 struct pipe_ctx *next_odm_pipe)
1467 {
1468         int pipe_idx = next_odm_pipe->pipe_idx;
1469         const struct resource_pool *pool = dc->res_pool;
1470
1471         *next_odm_pipe = *prev_odm_pipe;
1472
1473         next_odm_pipe->pipe_idx = pipe_idx;
1474         next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1475         next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1476         next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1477         next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1478         next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1479         next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1480         next_odm_pipe->stream_res.dsc = NULL;
1481         if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1482                 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1483                 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1484         }
1485         if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1486                 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1487                 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1488         }
1489         if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1490                 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1491                 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1492         }
1493         prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1494         next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1495
1496         if (prev_odm_pipe->plane_state) {
1497                 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1498                 int new_width;
1499
1500                 /* HACTIVE halved for odm combine */
1501                 sd->h_active /= 2;
1502                 /* Calculate new vp and recout for left pipe */
1503                 /* Need at least 16 pixels width per side */
1504                 if (sd->recout.x + 16 >= sd->h_active)
1505                         return false;
1506                 new_width = sd->h_active - sd->recout.x;
1507                 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1508                                 sd->ratios.horz, sd->recout.width - new_width));
1509                 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1510                                 sd->ratios.horz_c, sd->recout.width - new_width));
1511                 sd->recout.width = new_width;
1512
1513                 /* Calculate new vp and recout for right pipe */
1514                 sd = &next_odm_pipe->plane_res.scl_data;
1515                 /* HACTIVE halved for odm combine */
1516                 sd->h_active /= 2;
1517                 /* Need at least 16 pixels width per side */
1518                 if (new_width <= 16)
1519                         return false;
1520                 new_width = sd->recout.width + sd->recout.x - sd->h_active;
1521                 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1522                                 sd->ratios.horz, sd->recout.width - new_width));
1523                 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1524                                 sd->ratios.horz_c, sd->recout.width - new_width));
1525                 sd->recout.width = new_width;
1526                 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1527                                 sd->ratios.horz, sd->h_active - sd->recout.x));
1528                 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1529                                 sd->ratios.horz_c, sd->h_active - sd->recout.x));
1530                 sd->recout.x = 0;
1531         }
1532         if (!next_odm_pipe->top_pipe)
1533                 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1534         else
1535                 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1536         if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1537                 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1538                 ASSERT(next_odm_pipe->stream_res.dsc);
1539                 if (next_odm_pipe->stream_res.dsc == NULL)
1540                         return false;
1541         }
1542
1543         return true;
1544 }
1545
1546 void dcn20_split_stream_for_mpc(
1547                 struct resource_context *res_ctx,
1548                 const struct resource_pool *pool,
1549                 struct pipe_ctx *primary_pipe,
1550                 struct pipe_ctx *secondary_pipe)
1551 {
1552         int pipe_idx = secondary_pipe->pipe_idx;
1553         struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1554
1555         *secondary_pipe = *primary_pipe;
1556         secondary_pipe->bottom_pipe = sec_bot_pipe;
1557
1558         secondary_pipe->pipe_idx = pipe_idx;
1559         secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1560         secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1561         secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1562         secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1563         secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1564         secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1565         secondary_pipe->stream_res.dsc = NULL;
1566         if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1567                 ASSERT(!secondary_pipe->bottom_pipe);
1568                 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1569                 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1570         }
1571         primary_pipe->bottom_pipe = secondary_pipe;
1572         secondary_pipe->top_pipe = primary_pipe;
1573
1574         ASSERT(primary_pipe->plane_state);
1575 }
1576
1577 unsigned int dcn20_calc_max_scaled_time(
1578                 unsigned int time_per_pixel,
1579                 enum mmhubbub_wbif_mode mode,
1580                 unsigned int urgent_watermark)
1581 {
1582         unsigned int time_per_byte = 0;
1583         unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1584         unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1585         unsigned int small_free_entry, max_free_entry;
1586         unsigned int buf_lh_capability;
1587         unsigned int max_scaled_time;
1588
1589         if (mode == PACKED_444) /* packed mode */
1590                 time_per_byte = time_per_pixel/4;
1591         else if (mode == PLANAR_420_8BPC)
1592                 time_per_byte  = time_per_pixel;
1593         else if (mode == PLANAR_420_10BPC) /* p010 */
1594                 time_per_byte  = time_per_pixel * 819/1024;
1595
1596         if (time_per_byte == 0)
1597                 time_per_byte = 1;
1598
1599         small_free_entry  = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1600         max_free_entry    = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1601         buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1602         max_scaled_time   = buf_lh_capability - urgent_watermark;
1603         return max_scaled_time;
1604 }
1605
1606 void dcn20_set_mcif_arb_params(
1607                 struct dc *dc,
1608                 struct dc_state *context,
1609                 display_e2e_pipe_params_st *pipes,
1610                 int pipe_cnt)
1611 {
1612         enum mmhubbub_wbif_mode wbif_mode;
1613         struct mcif_arb_params *wb_arb_params;
1614         int i, j, dwb_pipe;
1615
1616         /* Writeback MCIF_WB arbitration parameters */
1617         dwb_pipe = 0;
1618         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1619
1620                 if (!context->res_ctx.pipe_ctx[i].stream)
1621                         continue;
1622
1623                 for (j = 0; j < MAX_DWB_PIPES; j++) {
1624                         if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1625                                 continue;
1626
1627                         //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1628                         wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1629
1630                         if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1631                                 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1632                                         wbif_mode = PLANAR_420_8BPC;
1633                                 else
1634                                         wbif_mode = PLANAR_420_10BPC;
1635                         } else
1636                                 wbif_mode = PACKED_444;
1637
1638                         DC_FP_START();
1639                         dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1640                         DC_FP_END();
1641
1642                         wb_arb_params->slice_lines = 32;
1643                         wb_arb_params->arbitration_slice = 2;
1644                         wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1645                                 wbif_mode,
1646                                 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1647
1648                         dwb_pipe++;
1649
1650                         if (dwb_pipe >= MAX_DWB_PIPES)
1651                                 return;
1652                 }
1653                 if (dwb_pipe >= MAX_DWB_PIPES)
1654                         return;
1655         }
1656 }
1657
1658 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1659 {
1660         int i;
1661
1662         /* Validate DSC config, dsc count validation is already done */
1663         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1664                 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1665                 struct dc_stream_state *stream = pipe_ctx->stream;
1666                 struct dsc_config dsc_cfg;
1667                 struct pipe_ctx *odm_pipe;
1668                 int opp_cnt = 1;
1669
1670                 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1671                         opp_cnt++;
1672
1673                 /* Only need to validate top pipe */
1674                 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1675                         continue;
1676
1677                 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1678                                 + stream->timing.h_border_right) / opp_cnt;
1679                 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1680                                 + stream->timing.v_border_bottom;
1681                 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1682                 dsc_cfg.color_depth = stream->timing.display_color_depth;
1683                 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1684                 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1685                 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1686
1687                 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1688                         return false;
1689         }
1690         return true;
1691 }
1692
1693 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1694                 struct resource_context *res_ctx,
1695                 const struct resource_pool *pool,
1696                 const struct pipe_ctx *primary_pipe)
1697 {
1698         struct pipe_ctx *secondary_pipe = NULL;
1699
1700         if (dc && primary_pipe) {
1701                 int j;
1702                 int preferred_pipe_idx = 0;
1703
1704                 /* first check the prev dc state:
1705                  * if this primary pipe has a bottom pipe in prev. state
1706                  * and if the bottom pipe is still available (which it should be),
1707                  * pick that pipe as secondary
1708                  * Same logic applies for ODM pipes
1709                  */
1710                 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1711                         preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1712                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1713                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1714                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1715                         }
1716                 }
1717                 if (secondary_pipe == NULL &&
1718                                 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1719                         preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1720                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1721                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1722                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1723                         }
1724                 }
1725
1726                 /*
1727                  * if this primary pipe does not have a bottom pipe in prev. state
1728                  * start backward and find a pipe that did not used to be a bottom pipe in
1729                  * prev. dc state. This way we make sure we keep the same assignment as
1730                  * last state and will not have to reprogram every pipe
1731                  */
1732                 if (secondary_pipe == NULL) {
1733                         for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1734                                 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1735                                                 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1736                                         preferred_pipe_idx = j;
1737
1738                                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1739                                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1740                                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1741                                                 break;
1742                                         }
1743                                 }
1744                         }
1745                 }
1746                 /*
1747                  * We should never hit this assert unless assignments are shuffled around
1748                  * if this happens we will prob. hit a vsync tdr
1749                  */
1750                 ASSERT(secondary_pipe);
1751                 /*
1752                  * search backwards for the second pipe to keep pipe
1753                  * assignment more consistent
1754                  */
1755                 if (secondary_pipe == NULL) {
1756                         for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1757                                 preferred_pipe_idx = j;
1758
1759                                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1760                                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1761                                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1762                                         break;
1763                                 }
1764                         }
1765                 }
1766         }
1767
1768         return secondary_pipe;
1769 }
1770
1771 void dcn20_merge_pipes_for_validate(
1772                 struct dc *dc,
1773                 struct dc_state *context)
1774 {
1775         int i;
1776
1777         /* merge previously split odm pipes since mode support needs to make the decision */
1778         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1779                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1780                 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1781
1782                 if (pipe->prev_odm_pipe)
1783                         continue;
1784
1785                 pipe->next_odm_pipe = NULL;
1786                 while (odm_pipe) {
1787                         struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1788
1789                         odm_pipe->plane_state = NULL;
1790                         odm_pipe->stream = NULL;
1791                         odm_pipe->top_pipe = NULL;
1792                         odm_pipe->bottom_pipe = NULL;
1793                         odm_pipe->prev_odm_pipe = NULL;
1794                         odm_pipe->next_odm_pipe = NULL;
1795                         if (odm_pipe->stream_res.dsc)
1796                                 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1797                         /* Clear plane_res and stream_res */
1798                         memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1799                         memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1800                         odm_pipe = next_odm_pipe;
1801                 }
1802                 if (pipe->plane_state)
1803                         resource_build_scaling_params(pipe);
1804         }
1805
1806         /* merge previously mpc split pipes since mode support needs to make the decision */
1807         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1808                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1809                 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1810
1811                 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1812                         continue;
1813
1814                 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1815                 if (hsplit_pipe->bottom_pipe)
1816                         hsplit_pipe->bottom_pipe->top_pipe = pipe;
1817                 hsplit_pipe->plane_state = NULL;
1818                 hsplit_pipe->stream = NULL;
1819                 hsplit_pipe->top_pipe = NULL;
1820                 hsplit_pipe->bottom_pipe = NULL;
1821
1822                 /* Clear plane_res and stream_res */
1823                 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1824                 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1825                 if (pipe->plane_state)
1826                         resource_build_scaling_params(pipe);
1827         }
1828 }
1829
1830 int dcn20_validate_apply_pipe_split_flags(
1831                 struct dc *dc,
1832                 struct dc_state *context,
1833                 int vlevel,
1834                 int *split,
1835                 bool *merge)
1836 {
1837         int i, pipe_idx, vlevel_split;
1838         int plane_count = 0;
1839         bool force_split = false;
1840         bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1841         struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1842         int max_mpc_comb = v->maxMpcComb;
1843
1844         if (context->stream_count > 1) {
1845                 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1846                         avoid_split = true;
1847         } else if (dc->debug.force_single_disp_pipe_split)
1848                         force_split = true;
1849
1850         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1851                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1852
1853                 /**
1854                  * Workaround for avoiding pipe-split in cases where we'd split
1855                  * planes that are too small, resulting in splits that aren't
1856                  * valid for the scaler.
1857                  */
1858                 if (pipe->plane_state &&
1859                     (pipe->plane_state->dst_rect.width <= 16 ||
1860                      pipe->plane_state->dst_rect.height <= 16 ||
1861                      pipe->plane_state->src_rect.width <= 16 ||
1862                      pipe->plane_state->src_rect.height <= 16))
1863                         avoid_split = true;
1864
1865                 /* TODO: fix dc bugs and remove this split threshold thing */
1866                 if (pipe->stream && !pipe->prev_odm_pipe &&
1867                                 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1868                         ++plane_count;
1869         }
1870         if (plane_count > dc->res_pool->pipe_count / 2)
1871                 avoid_split = true;
1872
1873         /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1874         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1875                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1876                 struct dc_crtc_timing timing;
1877
1878                 if (!pipe->stream)
1879                         continue;
1880                 else {
1881                         timing = pipe->stream->timing;
1882                         if (timing.h_border_left + timing.h_border_right
1883                                         + timing.v_border_top + timing.v_border_bottom > 0) {
1884                                 avoid_split = true;
1885                                 break;
1886                         }
1887                 }
1888         }
1889
1890         /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1891         if (avoid_split) {
1892                 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1893                         if (!context->res_ctx.pipe_ctx[i].stream)
1894                                 continue;
1895
1896                         for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1897                                 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1898                                                 v->ModeSupport[vlevel][0])
1899                                         break;
1900                         /* Impossible to not split this pipe */
1901                         if (vlevel > context->bw_ctx.dml.soc.num_states)
1902                                 vlevel = vlevel_split;
1903                         else
1904                                 max_mpc_comb = 0;
1905                         pipe_idx++;
1906                 }
1907                 v->maxMpcComb = max_mpc_comb;
1908         }
1909
1910         /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1911         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1912                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1913                 int pipe_plane = v->pipe_plane[pipe_idx];
1914                 bool split4mpc = context->stream_count == 1 && plane_count == 1
1915                                 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1916
1917                 if (!context->res_ctx.pipe_ctx[i].stream)
1918                         continue;
1919
1920                 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1921                         split[i] = 4;
1922                 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1923                                 split[i] = 2;
1924
1925                 if ((pipe->stream->view_format ==
1926                                 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1927                                 pipe->stream->view_format ==
1928                                 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1929                                 (pipe->stream->timing.timing_3d_format ==
1930                                 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1931                                  pipe->stream->timing.timing_3d_format ==
1932                                 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1933                         split[i] = 2;
1934                 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1935                         split[i] = 2;
1936                         v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1937                 }
1938                 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1939                         split[i] = 4;
1940                         v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1941                 }
1942                 /*420 format workaround*/
1943                 if (pipe->stream->timing.h_addressable > 7680 &&
1944                                 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1945                         split[i] = 4;
1946                 }
1947                 v->ODMCombineEnabled[pipe_plane] =
1948                         v->ODMCombineEnablePerState[vlevel][pipe_plane];
1949
1950                 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1951                         if (resource_get_num_mpc_splits(pipe) == 1) {
1952                                 /*If need split for mpc but 2 way split already*/
1953                                 if (split[i] == 4)
1954                                         split[i] = 2; /* 2 -> 4 MPC */
1955                                 else if (split[i] == 2)
1956                                         split[i] = 0; /* 2 -> 2 MPC */
1957                                 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1958                                         merge[i] = true; /* 2 -> 1 MPC */
1959                         } else if (resource_get_num_mpc_splits(pipe) == 3) {
1960                                 /*If need split for mpc but 4 way split already*/
1961                                 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1962                                                 || !pipe->bottom_pipe)) {
1963                                         merge[i] = true; /* 4 -> 2 MPC */
1964                                 } else if (split[i] == 0 && pipe->top_pipe &&
1965                                                 pipe->top_pipe->plane_state == pipe->plane_state)
1966                                         merge[i] = true; /* 4 -> 1 MPC */
1967                                 split[i] = 0;
1968                         } else if (resource_get_num_odm_splits(pipe)) {
1969                                 /* ODM -> MPC transition */
1970                                 if (pipe->prev_odm_pipe) {
1971                                         split[i] = 0;
1972                                         merge[i] = true;
1973                                 }
1974                         }
1975                 } else {
1976                         if (resource_get_num_odm_splits(pipe) == 1) {
1977                                 /*If need split for odm but 2 way split already*/
1978                                 if (split[i] == 4)
1979                                         split[i] = 2; /* 2 -> 4 ODM */
1980                                 else if (split[i] == 2)
1981                                         split[i] = 0; /* 2 -> 2 ODM */
1982                                 else if (pipe->prev_odm_pipe) {
1983                                         ASSERT(0); /* NOT expected yet */
1984                                         merge[i] = true; /* exit ODM */
1985                                 }
1986                         } else if (resource_get_num_odm_splits(pipe) == 3) {
1987                                 /*If need split for odm but 4 way split already*/
1988                                 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1989                                                 || !pipe->next_odm_pipe)) {
1990                                         merge[i] = true; /* 4 -> 2 ODM */
1991                                 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
1992                                         ASSERT(0); /* NOT expected yet */
1993                                         merge[i] = true; /* exit ODM */
1994                                 }
1995                                 split[i] = 0;
1996                         } else if (resource_get_num_mpc_splits(pipe)) {
1997                                 /* MPC -> ODM transition */
1998                                 ASSERT(0); /* NOT expected yet */
1999                                 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2000                                         split[i] = 0;
2001                                         merge[i] = true;
2002                                 }
2003                         }
2004                 }
2005
2006                 /* Adjust dppclk when split is forced, do not bother with dispclk */
2007                 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2008                         DC_FP_START();
2009                         dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2010                         DC_FP_END();
2011                 }
2012                 pipe_idx++;
2013         }
2014
2015         return vlevel;
2016 }
2017
2018 bool dcn20_fast_validate_bw(
2019                 struct dc *dc,
2020                 struct dc_state *context,
2021                 display_e2e_pipe_params_st *pipes,
2022                 int *pipe_cnt_out,
2023                 int *pipe_split_from,
2024                 int *vlevel_out,
2025                 bool fast_validate)
2026 {
2027         bool out = false;
2028         int split[MAX_PIPES] = { 0 };
2029         int pipe_cnt, i, pipe_idx, vlevel;
2030
2031         ASSERT(pipes);
2032         if (!pipes)
2033                 return false;
2034
2035         dcn20_merge_pipes_for_validate(dc, context);
2036
2037         DC_FP_START();
2038         pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2039         DC_FP_END();
2040
2041         *pipe_cnt_out = pipe_cnt;
2042
2043         if (!pipe_cnt) {
2044                 out = true;
2045                 goto validate_out;
2046         }
2047
2048         vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2049
2050         if (vlevel > context->bw_ctx.dml.soc.num_states)
2051                 goto validate_fail;
2052
2053         vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2054
2055         /*initialize pipe_just_split_from to invalid idx*/
2056         for (i = 0; i < MAX_PIPES; i++)
2057                 pipe_split_from[i] = -1;
2058
2059         for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2060                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2061                 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2062
2063                 if (!pipe->stream || pipe_split_from[i] >= 0)
2064                         continue;
2065
2066                 pipe_idx++;
2067
2068                 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2069                         hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2070                         ASSERT(hsplit_pipe);
2071                         if (!dcn20_split_stream_for_odm(
2072                                         dc, &context->res_ctx,
2073                                         pipe, hsplit_pipe))
2074                                 goto validate_fail;
2075                         pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2076                         dcn20_build_mapped_resource(dc, context, pipe->stream);
2077                 }
2078
2079                 if (!pipe->plane_state)
2080                         continue;
2081                 /* Skip 2nd half of already split pipe */
2082                 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2083                         continue;
2084
2085                 /* We do not support mpo + odm at the moment */
2086                 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2087                                 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2088                         goto validate_fail;
2089
2090                 if (split[i] == 2) {
2091                         if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2092                                 /* pipe not split previously needs split */
2093                                 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2094                                 ASSERT(hsplit_pipe);
2095                                 if (!hsplit_pipe) {
2096                                         DC_FP_START();
2097                                         dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2098                                         DC_FP_END();
2099                                         continue;
2100                                 }
2101                                 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2102                                         if (!dcn20_split_stream_for_odm(
2103                                                         dc, &context->res_ctx,
2104                                                         pipe, hsplit_pipe))
2105                                                 goto validate_fail;
2106                                         dcn20_build_mapped_resource(dc, context, pipe->stream);
2107                                 } else {
2108                                         dcn20_split_stream_for_mpc(
2109                                                         &context->res_ctx, dc->res_pool,
2110                                                         pipe, hsplit_pipe);
2111                                         resource_build_scaling_params(pipe);
2112                                         resource_build_scaling_params(hsplit_pipe);
2113                                 }
2114                                 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2115                         }
2116                 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2117                         /* merge should already have been done */
2118                         ASSERT(0);
2119                 }
2120         }
2121         /* Actual dsc count per stream dsc validation*/
2122         if (!dcn20_validate_dsc(dc, context)) {
2123                 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2124                                 DML_FAIL_DSC_VALIDATION_FAILURE;
2125                 goto validate_fail;
2126         }
2127
2128         *vlevel_out = vlevel;
2129
2130         out = true;
2131         goto validate_out;
2132
2133 validate_fail:
2134         out = false;
2135
2136 validate_out:
2137         return out;
2138 }
2139
2140 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2141                 bool fast_validate)
2142 {
2143         bool voltage_supported;
2144         DC_FP_START();
2145         voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2146         DC_FP_END();
2147         return voltage_supported;
2148 }
2149
2150 struct pipe_ctx *dcn20_acquire_free_pipe_for_layer(
2151                 const struct dc_state *cur_ctx,
2152                 struct dc_state *new_ctx,
2153                 const struct resource_pool *pool,
2154                 const struct pipe_ctx *opp_head)
2155 {
2156         struct resource_context *res_ctx = &new_ctx->res_ctx;
2157         struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream);
2158         struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master);
2159
2160         ASSERT(otg_master);
2161
2162         if (!sec_dpp_pipe)
2163                 return NULL;
2164
2165         sec_dpp_pipe->stream = opp_head->stream;
2166         sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg;
2167         sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp;
2168
2169         sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx];
2170         sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx];
2171         sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx];
2172         sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst;
2173
2174         return sec_dpp_pipe;
2175 }
2176
2177 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2178                 const struct dc_dcc_surface_param *input,
2179                 struct dc_surface_dcc_cap *output)
2180 {
2181         return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2182                         dc->res_pool->hubbub,
2183                         input,
2184                         output);
2185 }
2186
2187 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2188 {
2189         struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2190
2191         dcn20_resource_destruct(dcn20_pool);
2192         kfree(dcn20_pool);
2193         *pool = NULL;
2194 }
2195
2196
2197 static struct dc_cap_funcs cap_funcs = {
2198         .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2199 };
2200
2201
2202 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2203 {
2204         enum surface_pixel_format surf_pix_format = plane_state->format;
2205         unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2206
2207         plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2208         if (bpp == 64)
2209                 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2210
2211         return DC_OK;
2212 }
2213
2214 static const struct resource_funcs dcn20_res_pool_funcs = {
2215         .destroy = dcn20_destroy_resource_pool,
2216         .link_enc_create = dcn20_link_encoder_create,
2217         .panel_cntl_create = dcn20_panel_cntl_create,
2218         .validate_bandwidth = dcn20_validate_bandwidth,
2219         .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2220         .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2221         .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2222         .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2223         .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2224         .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2225         .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2226         .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2227         .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2228 };
2229
2230 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2231 {
2232         int i;
2233         uint32_t pipe_count = pool->res_cap->num_dwb;
2234
2235         for (i = 0; i < pipe_count; i++) {
2236                 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2237                                                     GFP_KERNEL);
2238
2239                 if (!dwbc20) {
2240                         dm_error("DC: failed to create dwbc20!\n");
2241                         return false;
2242                 }
2243                 dcn20_dwbc_construct(dwbc20, ctx,
2244                                 &dwbc20_regs[i],
2245                                 &dwbc20_shift,
2246                                 &dwbc20_mask,
2247                                 i);
2248                 pool->dwbc[i] = &dwbc20->base;
2249         }
2250         return true;
2251 }
2252
2253 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2254 {
2255         int i;
2256         uint32_t pipe_count = pool->res_cap->num_dwb;
2257
2258         ASSERT(pipe_count > 0);
2259
2260         for (i = 0; i < pipe_count; i++) {
2261                 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2262                                                     GFP_KERNEL);
2263
2264                 if (!mcif_wb20) {
2265                         dm_error("DC: failed to create mcif_wb20!\n");
2266                         return false;
2267                 }
2268
2269                 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2270                                 &mcif_wb20_regs[i],
2271                                 &mcif_wb20_shift,
2272                                 &mcif_wb20_mask,
2273                                 i);
2274
2275                 pool->mcif_wb[i] = &mcif_wb20->base;
2276         }
2277         return true;
2278 }
2279
2280 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2281 {
2282         struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2283
2284         if (!pp_smu)
2285                 return pp_smu;
2286
2287         dm_pp_get_funcs(ctx, pp_smu);
2288
2289         if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2290                 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2291
2292         return pp_smu;
2293 }
2294
2295 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2296 {
2297         if (pp_smu && *pp_smu) {
2298                 kfree(*pp_smu);
2299                 *pp_smu = NULL;
2300         }
2301 }
2302
2303 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2304         uint32_t hw_internal_rev)
2305 {
2306         if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2307                 return &dcn2_0_nv14_soc;
2308
2309         if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2310                 return &dcn2_0_nv12_soc;
2311
2312         return &dcn2_0_soc;
2313 }
2314
2315 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2316         uint32_t hw_internal_rev)
2317 {
2318         /* NV14 */
2319         if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2320                 return &dcn2_0_nv14_ip;
2321
2322         /* NV12 and NV10 */
2323         return &dcn2_0_ip;
2324 }
2325
2326 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2327 {
2328         return DML_PROJECT_NAVI10v2;
2329 }
2330
2331 static bool init_soc_bounding_box(struct dc *dc,
2332                                   struct dcn20_resource_pool *pool)
2333 {
2334         struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2335                         get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2336         struct _vcs_dpi_ip_params_st *loaded_ip =
2337                         get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2338
2339         DC_LOGGER_INIT(dc->ctx->logger);
2340
2341         if (pool->base.pp_smu) {
2342                 struct pp_smu_nv_clock_table max_clocks = {0};
2343                 unsigned int uclk_states[8] = {0};
2344                 unsigned int num_states = 0;
2345                 enum pp_smu_status status;
2346                 bool clock_limits_available = false;
2347                 bool uclk_states_available = false;
2348
2349                 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2350                         status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2351                                 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2352
2353                         uclk_states_available = (status == PP_SMU_RESULT_OK);
2354                 }
2355
2356                 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2357                         status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2358                                         (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2359                         /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2360                          */
2361                         if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2362                                 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2363                         clock_limits_available = (status == PP_SMU_RESULT_OK);
2364                 }
2365
2366                 if (clock_limits_available && uclk_states_available && num_states) {
2367                         DC_FP_START();
2368                         dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2369                         DC_FP_END();
2370                 } else if (clock_limits_available) {
2371                         DC_FP_START();
2372                         dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2373                         DC_FP_END();
2374                 }
2375         }
2376
2377         loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2378         loaded_ip->max_num_dpp = pool->base.pipe_count;
2379         DC_FP_START();
2380         dcn20_patch_bounding_box(dc, loaded_bb);
2381         DC_FP_END();
2382         return true;
2383 }
2384
2385 static bool dcn20_resource_construct(
2386         uint8_t num_virtual_links,
2387         struct dc *dc,
2388         struct dcn20_resource_pool *pool)
2389 {
2390         int i;
2391         struct dc_context *ctx = dc->ctx;
2392         struct irq_service_init_data init_data;
2393         struct ddc_service_init_data ddc_init_data = {0};
2394         struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2395                         get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2396         struct _vcs_dpi_ip_params_st *loaded_ip =
2397                         get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2398         enum dml_project dml_project_version =
2399                         get_dml_project_version(ctx->asic_id.hw_internal_rev);
2400
2401         ctx->dc_bios->regs = &bios_regs;
2402         pool->base.funcs = &dcn20_res_pool_funcs;
2403
2404         if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2405                 pool->base.res_cap = &res_cap_nv14;
2406                 pool->base.pipe_count = 5;
2407                 pool->base.mpcc_count = 5;
2408         } else {
2409                 pool->base.res_cap = &res_cap_nv10;
2410                 pool->base.pipe_count = 6;
2411                 pool->base.mpcc_count = 6;
2412         }
2413         /*************************************************
2414          *  Resource + asic cap harcoding                *
2415          *************************************************/
2416         pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2417
2418         dc->caps.max_downscale_ratio = 200;
2419         dc->caps.i2c_speed_in_khz = 100;
2420         dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2421         dc->caps.max_cursor_size = 256;
2422         dc->caps.min_horizontal_blanking_period = 80;
2423         dc->caps.dmdata_alloc_size = 2048;
2424
2425         dc->caps.max_slave_planes = 1;
2426         dc->caps.max_slave_yuv_planes = 1;
2427         dc->caps.max_slave_rgb_planes = 1;
2428         dc->caps.post_blend_color_processing = true;
2429         dc->caps.force_dp_tps4_for_cp2520 = true;
2430         dc->caps.extended_aux_timeout_support = true;
2431
2432         /* Color pipeline capabilities */
2433         dc->caps.color.dpp.dcn_arch = 1;
2434         dc->caps.color.dpp.input_lut_shared = 0;
2435         dc->caps.color.dpp.icsc = 1;
2436         dc->caps.color.dpp.dgam_ram = 1;
2437         dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2438         dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2439         dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2440         dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2441         dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2442         dc->caps.color.dpp.post_csc = 0;
2443         dc->caps.color.dpp.gamma_corr = 0;
2444         dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2445
2446         dc->caps.color.dpp.hw_3d_lut = 1;
2447         dc->caps.color.dpp.ogam_ram = 1;
2448         // no OGAM ROM on DCN2, only MPC ROM
2449         dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2450         dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2451         dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2452         dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2453         dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2454         dc->caps.color.dpp.ocsc = 0;
2455
2456         dc->caps.color.mpc.gamut_remap = 0;
2457         dc->caps.color.mpc.num_3dluts = 0;
2458         dc->caps.color.mpc.shared_3d_lut = 0;
2459         dc->caps.color.mpc.ogam_ram = 1;
2460         dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2461         dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2462         dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2463         dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2464         dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2465         dc->caps.color.mpc.ocsc = 1;
2466
2467         dc->caps.dp_hdmi21_pcon_support = true;
2468
2469         if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2470                 dc->debug = debug_defaults_drv;
2471
2472         //dcn2.0x
2473         dc->work_arounds.dedcn20_305_wa = true;
2474
2475         // Init the vm_helper
2476         if (dc->vm_helper)
2477                 vm_helper_init(dc->vm_helper, 16);
2478
2479         /*************************************************
2480          *  Create resources                             *
2481          *************************************************/
2482
2483         pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2484                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2485                                 CLOCK_SOURCE_COMBO_PHY_PLL0,
2486                                 &clk_src_regs[0], false);
2487         pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2488                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2489                                 CLOCK_SOURCE_COMBO_PHY_PLL1,
2490                                 &clk_src_regs[1], false);
2491         pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2492                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2493                                 CLOCK_SOURCE_COMBO_PHY_PLL2,
2494                                 &clk_src_regs[2], false);
2495         pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2496                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2497                                 CLOCK_SOURCE_COMBO_PHY_PLL3,
2498                                 &clk_src_regs[3], false);
2499         pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2500                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2501                                 CLOCK_SOURCE_COMBO_PHY_PLL4,
2502                                 &clk_src_regs[4], false);
2503         pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2504                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2505                                 CLOCK_SOURCE_COMBO_PHY_PLL5,
2506                                 &clk_src_regs[5], false);
2507         pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2508         /* todo: not reuse phy_pll registers */
2509         pool->base.dp_clock_source =
2510                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2511                                 CLOCK_SOURCE_ID_DP_DTO,
2512                                 &clk_src_regs[0], true);
2513
2514         for (i = 0; i < pool->base.clk_src_count; i++) {
2515                 if (pool->base.clock_sources[i] == NULL) {
2516                         dm_error("DC: failed to create clock sources!\n");
2517                         BREAK_TO_DEBUGGER();
2518                         goto create_fail;
2519                 }
2520         }
2521
2522         pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2523         if (pool->base.dccg == NULL) {
2524                 dm_error("DC: failed to create dccg!\n");
2525                 BREAK_TO_DEBUGGER();
2526                 goto create_fail;
2527         }
2528
2529         pool->base.dmcu = dcn20_dmcu_create(ctx,
2530                         &dmcu_regs,
2531                         &dmcu_shift,
2532                         &dmcu_mask);
2533         if (pool->base.dmcu == NULL) {
2534                 dm_error("DC: failed to create dmcu!\n");
2535                 BREAK_TO_DEBUGGER();
2536                 goto create_fail;
2537         }
2538
2539         pool->base.abm = dce_abm_create(ctx,
2540                         &abm_regs,
2541                         &abm_shift,
2542                         &abm_mask);
2543         if (pool->base.abm == NULL) {
2544                 dm_error("DC: failed to create abm!\n");
2545                 BREAK_TO_DEBUGGER();
2546                 goto create_fail;
2547         }
2548
2549         pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2550
2551
2552         if (!init_soc_bounding_box(dc, pool)) {
2553                 dm_error("DC: failed to initialize soc bounding box!\n");
2554                 BREAK_TO_DEBUGGER();
2555                 goto create_fail;
2556         }
2557
2558         dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2559
2560         if (!dc->debug.disable_pplib_wm_range) {
2561                 struct pp_smu_wm_range_sets ranges = {0};
2562                 int i = 0;
2563
2564                 ranges.num_reader_wm_sets = 0;
2565
2566                 if (loaded_bb->num_states == 1) {
2567                         ranges.reader_wm_sets[0].wm_inst = i;
2568                         ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2569                         ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2570                         ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2571                         ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2572
2573                         ranges.num_reader_wm_sets = 1;
2574                 } else if (loaded_bb->num_states > 1) {
2575                         for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2576                                 ranges.reader_wm_sets[i].wm_inst = i;
2577                                 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2578                                 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2579                                 DC_FP_START();
2580                                 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2581                                 DC_FP_END();
2582
2583                                 ranges.num_reader_wm_sets = i + 1;
2584                         }
2585
2586                         ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2587                         ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2588                 }
2589
2590                 ranges.num_writer_wm_sets = 1;
2591
2592                 ranges.writer_wm_sets[0].wm_inst = 0;
2593                 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2594                 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2595                 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2596                 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2597
2598                 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2599                 if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2600                         pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2601         }
2602
2603         init_data.ctx = dc->ctx;
2604         pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2605         if (!pool->base.irqs)
2606                 goto create_fail;
2607
2608         /* mem input -> ipp -> dpp -> opp -> TG */
2609         for (i = 0; i < pool->base.pipe_count; i++) {
2610                 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2611                 if (pool->base.hubps[i] == NULL) {
2612                         BREAK_TO_DEBUGGER();
2613                         dm_error(
2614                                 "DC: failed to create memory input!\n");
2615                         goto create_fail;
2616                 }
2617
2618                 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2619                 if (pool->base.ipps[i] == NULL) {
2620                         BREAK_TO_DEBUGGER();
2621                         dm_error(
2622                                 "DC: failed to create input pixel processor!\n");
2623                         goto create_fail;
2624                 }
2625
2626                 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2627                 if (pool->base.dpps[i] == NULL) {
2628                         BREAK_TO_DEBUGGER();
2629                         dm_error(
2630                                 "DC: failed to create dpps!\n");
2631                         goto create_fail;
2632                 }
2633         }
2634         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2635                 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2636                 if (pool->base.engines[i] == NULL) {
2637                         BREAK_TO_DEBUGGER();
2638                         dm_error(
2639                                 "DC:failed to create aux engine!!\n");
2640                         goto create_fail;
2641                 }
2642                 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2643                 if (pool->base.hw_i2cs[i] == NULL) {
2644                         BREAK_TO_DEBUGGER();
2645                         dm_error(
2646                                 "DC:failed to create hw i2c!!\n");
2647                         goto create_fail;
2648                 }
2649                 pool->base.sw_i2cs[i] = NULL;
2650         }
2651
2652         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2653                 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2654                 if (pool->base.opps[i] == NULL) {
2655                         BREAK_TO_DEBUGGER();
2656                         dm_error(
2657                                 "DC: failed to create output pixel processor!\n");
2658                         goto create_fail;
2659                 }
2660         }
2661
2662         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2663                 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2664                                 ctx, i);
2665                 if (pool->base.timing_generators[i] == NULL) {
2666                         BREAK_TO_DEBUGGER();
2667                         dm_error("DC: failed to create tg!\n");
2668                         goto create_fail;
2669                 }
2670         }
2671
2672         pool->base.timing_generator_count = i;
2673
2674         pool->base.mpc = dcn20_mpc_create(ctx);
2675         if (pool->base.mpc == NULL) {
2676                 BREAK_TO_DEBUGGER();
2677                 dm_error("DC: failed to create mpc!\n");
2678                 goto create_fail;
2679         }
2680
2681         pool->base.hubbub = dcn20_hubbub_create(ctx);
2682         if (pool->base.hubbub == NULL) {
2683                 BREAK_TO_DEBUGGER();
2684                 dm_error("DC: failed to create hubbub!\n");
2685                 goto create_fail;
2686         }
2687
2688         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2689                 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2690                 if (pool->base.dscs[i] == NULL) {
2691                         BREAK_TO_DEBUGGER();
2692                         dm_error("DC: failed to create display stream compressor %d!\n", i);
2693                         goto create_fail;
2694                 }
2695         }
2696
2697         if (!dcn20_dwbc_create(ctx, &pool->base)) {
2698                 BREAK_TO_DEBUGGER();
2699                 dm_error("DC: failed to create dwbc!\n");
2700                 goto create_fail;
2701         }
2702         if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2703                 BREAK_TO_DEBUGGER();
2704                 dm_error("DC: failed to create mcif_wb!\n");
2705                 goto create_fail;
2706         }
2707
2708         if (!resource_construct(num_virtual_links, dc, &pool->base,
2709                         &res_create_funcs))
2710                 goto create_fail;
2711
2712         dcn20_hw_sequencer_construct(dc);
2713
2714         // IF NV12, set PG function pointer to NULL. It's not that
2715         // PG isn't supported for NV12, it's that we don't want to
2716         // program the registers because that will cause more power
2717         // to be consumed. We could have created dcn20_init_hw to get
2718         // the same effect by checking ASIC rev, but there was a
2719         // request at some point to not check ASIC rev on hw sequencer.
2720         if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2721                 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2722                 dc->debug.disable_dpp_power_gate = true;
2723                 dc->debug.disable_hubp_power_gate = true;
2724         }
2725
2726
2727         dc->caps.max_planes =  pool->base.pipe_count;
2728
2729         for (i = 0; i < dc->caps.max_planes; ++i)
2730                 dc->caps.planes[i] = plane_cap;
2731
2732         dc->cap_funcs = cap_funcs;
2733
2734         if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2735                 ddc_init_data.ctx = dc->ctx;
2736                 ddc_init_data.link = NULL;
2737                 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2738                 ddc_init_data.id.enum_id = 0;
2739                 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2740                 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2741         } else {
2742                 pool->base.oem_device = NULL;
2743         }
2744
2745         return true;
2746
2747 create_fail:
2748
2749         dcn20_resource_destruct(pool);
2750
2751         return false;
2752 }
2753
2754 struct resource_pool *dcn20_create_resource_pool(
2755                 const struct dc_init_data *init_data,
2756                 struct dc *dc)
2757 {
2758         struct dcn20_resource_pool *pool =
2759                 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2760
2761         if (!pool)
2762                 return NULL;
2763
2764         if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2765                 return &pool->base;
2766
2767         BREAK_TO_DEBUGGER();
2768         kfree(pool);
2769         return NULL;
2770 }