powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_hw_sequencer.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36
37 #include "dce110_compressor.h"
38
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "link.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "dpcd_defs.h"
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62
63 #include "atomfirmware.h"
64
65 #include "dcn10/dcn10_hw_sequencer.h"
66
67 #include "dce110_hw_sequencer.h"
68
69 #define GAMMA_HW_POINTS_NUM 256
70
71 /*
72  * All values are in milliseconds;
73  * For eDP, after power-up/power/down,
74  * 300/500 msec max. delay from LCDVCC to black video generation
75  */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81
82 #define CTX \
83         hws->ctx
84
85 #define DC_LOGGER_INIT()
86
87 #define REG(reg)\
88         hws->regs->reg
89
90 #undef FN
91 #define FN(reg_name, field_name) \
92         hws->shifts->field_name, hws->masks->field_name
93
94 struct dce110_hw_seq_reg_offsets {
95         uint32_t crtc;
96 };
97
98 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
99 {
100         .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 },
102 {
103         .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106         .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109         .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 }
111 };
112
113 #define HW_REG_BLND(reg, id)\
114         (reg + reg_offsets[id].blnd)
115
116 #define HW_REG_CRTC(reg, id)\
117         (reg + reg_offsets[id].crtc)
118
119 #define MAX_WATERMARK 0xFFFF
120 #define SAFE_NBP_MARK 0x7FFF
121
122 /*******************************************************************************
123  * Private definitions
124  ******************************************************************************/
125 /***************************PIPE_CONTROL***********************************/
126 static void dce110_init_pte(struct dc_context *ctx)
127 {
128         uint32_t addr;
129         uint32_t value = 0;
130         uint32_t chunk_int = 0;
131         uint32_t chunk_mul = 0;
132
133         addr = mmUNP_DVMM_PTE_CONTROL;
134         value = dm_read_reg(ctx, addr);
135
136         set_reg_field_value(
137                 value,
138                 0,
139                 DVMM_PTE_CONTROL,
140                 DVMM_USE_SINGLE_PTE);
141
142         set_reg_field_value(
143                 value,
144                 1,
145                 DVMM_PTE_CONTROL,
146                 DVMM_PTE_BUFFER_MODE0);
147
148         set_reg_field_value(
149                 value,
150                 1,
151                 DVMM_PTE_CONTROL,
152                 DVMM_PTE_BUFFER_MODE1);
153
154         dm_write_reg(ctx, addr, value);
155
156         addr = mmDVMM_PTE_REQ;
157         value = dm_read_reg(ctx, addr);
158
159         chunk_int = get_reg_field_value(
160                 value,
161                 DVMM_PTE_REQ,
162                 HFLIP_PTEREQ_PER_CHUNK_INT);
163
164         chunk_mul = get_reg_field_value(
165                 value,
166                 DVMM_PTE_REQ,
167                 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
168
169         if (chunk_int != 0x4 || chunk_mul != 0x4) {
170
171                 set_reg_field_value(
172                         value,
173                         255,
174                         DVMM_PTE_REQ,
175                         MAX_PTEREQ_TO_ISSUE);
176
177                 set_reg_field_value(
178                         value,
179                         4,
180                         DVMM_PTE_REQ,
181                         HFLIP_PTEREQ_PER_CHUNK_INT);
182
183                 set_reg_field_value(
184                         value,
185                         4,
186                         DVMM_PTE_REQ,
187                         HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
188
189                 dm_write_reg(ctx, addr, value);
190         }
191 }
192 /**************************************************************************/
193
194 static void enable_display_pipe_clock_gating(
195         struct dc_context *ctx,
196         bool clock_gating)
197 {
198         /*TODO*/
199 }
200
201 static bool dce110_enable_display_power_gating(
202         struct dc *dc,
203         uint8_t controller_id,
204         struct dc_bios *dcb,
205         enum pipe_gating_control power_gating)
206 {
207         enum bp_result bp_result = BP_RESULT_OK;
208         enum bp_pipe_control_action cntl;
209         struct dc_context *ctx = dc->ctx;
210         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
211
212         if (power_gating == PIPE_GATING_CONTROL_INIT)
213                 cntl = ASIC_PIPE_INIT;
214         else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
215                 cntl = ASIC_PIPE_ENABLE;
216         else
217                 cntl = ASIC_PIPE_DISABLE;
218
219         if (controller_id == underlay_idx)
220                 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
221
222         if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
223
224                 bp_result = dcb->funcs->enable_disp_power_gating(
225                                                 dcb, controller_id + 1, cntl);
226
227                 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
228                  * by default when command table is called
229                  *
230                  * Bios parser accepts controller_id = 6 as indicative of
231                  * underlay pipe in dce110. But we do not support more
232                  * than 3.
233                  */
234                 if (controller_id < CONTROLLER_ID_MAX - 1)
235                         dm_write_reg(ctx,
236                                 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
237                                 0);
238         }
239
240         if (power_gating != PIPE_GATING_CONTROL_ENABLE)
241                 dce110_init_pte(ctx);
242
243         if (bp_result == BP_RESULT_OK)
244                 return true;
245         else
246                 return false;
247 }
248
249 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
250                 const struct dc_plane_state *plane_state)
251 {
252         prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
253
254         switch (plane_state->format) {
255         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
256                 prescale_params->scale = 0x2082;
257                 break;
258         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
259         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
260                 prescale_params->scale = 0x2020;
261                 break;
262         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
263         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
264                 prescale_params->scale = 0x2008;
265                 break;
266         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
267         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
268         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269                 prescale_params->scale = 0x2000;
270                 break;
271         default:
272                 ASSERT(false);
273                 break;
274         }
275 }
276
277 static bool
278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279                                const struct dc_plane_state *plane_state)
280 {
281         struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282         const struct dc_transfer_func *tf = NULL;
283         struct ipp_prescale_params prescale_params = { 0 };
284         bool result = true;
285
286         if (ipp == NULL)
287                 return false;
288
289         if (plane_state->in_transfer_func)
290                 tf = plane_state->in_transfer_func;
291
292         build_prescale_params(&prescale_params, plane_state);
293         ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294
295         if (plane_state->gamma_correction &&
296                         !plane_state->gamma_correction->is_identity &&
297                         dce_use_lut(plane_state->format))
298                 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299
300         if (tf == NULL) {
301                 /* Default case if no input transfer function specified */
302                 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303         } else if (tf->type == TF_TYPE_PREDEFINED) {
304                 switch (tf->tf) {
305                 case TRANSFER_FUNCTION_SRGB:
306                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307                         break;
308                 case TRANSFER_FUNCTION_BT709:
309                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310                         break;
311                 case TRANSFER_FUNCTION_LINEAR:
312                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313                         break;
314                 case TRANSFER_FUNCTION_PQ:
315                 default:
316                         result = false;
317                         break;
318                 }
319         } else if (tf->type == TF_TYPE_BYPASS) {
320                 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321         } else {
322                 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323                 result = false;
324         }
325
326         return result;
327 }
328
329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330                                     struct curve_points *arr_points,
331                                     uint32_t hw_points_num)
332 {
333         struct custom_float_format fmt;
334
335         struct pwl_result_data *rgb = rgb_resulted;
336
337         uint32_t i = 0;
338
339         fmt.exponenta_bits = 6;
340         fmt.mantissa_bits = 12;
341         fmt.sign = true;
342
343         if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344                                             &arr_points[0].custom_float_x)) {
345                 BREAK_TO_DEBUGGER();
346                 return false;
347         }
348
349         if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350                                             &arr_points[0].custom_float_offset)) {
351                 BREAK_TO_DEBUGGER();
352                 return false;
353         }
354
355         if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356                                             &arr_points[0].custom_float_slope)) {
357                 BREAK_TO_DEBUGGER();
358                 return false;
359         }
360
361         fmt.mantissa_bits = 10;
362         fmt.sign = false;
363
364         if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365                                             &arr_points[1].custom_float_x)) {
366                 BREAK_TO_DEBUGGER();
367                 return false;
368         }
369
370         if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371                                             &arr_points[1].custom_float_y)) {
372                 BREAK_TO_DEBUGGER();
373                 return false;
374         }
375
376         if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377                                             &arr_points[1].custom_float_slope)) {
378                 BREAK_TO_DEBUGGER();
379                 return false;
380         }
381
382         fmt.mantissa_bits = 12;
383         fmt.sign = true;
384
385         while (i != hw_points_num) {
386                 if (!convert_to_custom_float_format(rgb->red, &fmt,
387                                                     &rgb->red_reg)) {
388                         BREAK_TO_DEBUGGER();
389                         return false;
390                 }
391
392                 if (!convert_to_custom_float_format(rgb->green, &fmt,
393                                                     &rgb->green_reg)) {
394                         BREAK_TO_DEBUGGER();
395                         return false;
396                 }
397
398                 if (!convert_to_custom_float_format(rgb->blue, &fmt,
399                                                     &rgb->blue_reg)) {
400                         BREAK_TO_DEBUGGER();
401                         return false;
402                 }
403
404                 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405                                                     &rgb->delta_red_reg)) {
406                         BREAK_TO_DEBUGGER();
407                         return false;
408                 }
409
410                 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411                                                     &rgb->delta_green_reg)) {
412                         BREAK_TO_DEBUGGER();
413                         return false;
414                 }
415
416                 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417                                                     &rgb->delta_blue_reg)) {
418                         BREAK_TO_DEBUGGER();
419                         return false;
420                 }
421
422                 ++rgb;
423                 ++i;
424         }
425
426         return true;
427 }
428
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432
433 static bool
434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435                                       struct pwl_params *regamma_params)
436 {
437         struct curve_points *arr_points;
438         struct pwl_result_data *rgb_resulted;
439         struct pwl_result_data *rgb;
440         struct pwl_result_data *rgb_plus_1;
441         struct fixed31_32 y_r;
442         struct fixed31_32 y_g;
443         struct fixed31_32 y_b;
444         struct fixed31_32 y1_min;
445         struct fixed31_32 y3_max;
446
447         int32_t region_start, region_end;
448         uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449
450         if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451                 return false;
452
453         arr_points = regamma_params->arr_points;
454         rgb_resulted = regamma_params->rgb_resulted;
455         hw_points = 0;
456
457         memset(regamma_params, 0, sizeof(struct pwl_params));
458
459         if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460                 /* 16 segments
461                  * segments are from 2^-11 to 2^5
462                  */
463                 region_start = -11;
464                 region_end = region_start + NUMBER_REGIONS;
465
466                 for (i = 0; i < NUMBER_REGIONS; i++)
467                         seg_distr[i] = 4;
468
469         } else {
470                 /* 10 segments
471                  * segment is from 2^-10 to 2^1
472                  * We include an extra segment for range [2^0, 2^1). This is to
473                  * ensure that colors with normalized values of 1 don't miss the
474                  * LUT.
475                  */
476                 region_start = -10;
477                 region_end = 1;
478
479                 seg_distr[0] = 4;
480                 seg_distr[1] = 4;
481                 seg_distr[2] = 4;
482                 seg_distr[3] = 4;
483                 seg_distr[4] = 4;
484                 seg_distr[5] = 4;
485                 seg_distr[6] = 4;
486                 seg_distr[7] = 4;
487                 seg_distr[8] = 4;
488                 seg_distr[9] = 4;
489                 seg_distr[10] = 0;
490                 seg_distr[11] = -1;
491                 seg_distr[12] = -1;
492                 seg_distr[13] = -1;
493                 seg_distr[14] = -1;
494                 seg_distr[15] = -1;
495         }
496
497         for (k = 0; k < 16; k++) {
498                 if (seg_distr[k] != -1)
499                         hw_points += (1 << seg_distr[k]);
500         }
501
502         j = 0;
503         for (k = 0; k < (region_end - region_start); k++) {
504                 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505                 start_index = (region_start + k + MAX_LOW_POINT) *
506                                 NUMBER_SW_SEGMENTS;
507                 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508                                 i += increment) {
509                         if (j == hw_points - 1)
510                                 break;
511                         rgb_resulted[j].red = output_tf->tf_pts.red[i];
512                         rgb_resulted[j].green = output_tf->tf_pts.green[i];
513                         rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514                         j++;
515                 }
516         }
517
518         /* last point */
519         start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520         rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521         rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522         rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523
524         arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525                                              dc_fixpt_from_int(region_start));
526         arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527                                              dc_fixpt_from_int(region_end));
528
529         y_r = rgb_resulted[0].red;
530         y_g = rgb_resulted[0].green;
531         y_b = rgb_resulted[0].blue;
532
533         y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534
535         arr_points[0].y = y1_min;
536         arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537                                                  arr_points[0].x);
538
539         y_r = rgb_resulted[hw_points - 1].red;
540         y_g = rgb_resulted[hw_points - 1].green;
541         y_b = rgb_resulted[hw_points - 1].blue;
542
543         /* see comment above, m_arrPoints[1].y should be the Y value for the
544          * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545          */
546         y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547
548         arr_points[1].y = y3_max;
549
550         arr_points[1].slope = dc_fixpt_zero;
551
552         if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553                 /* for PQ, we want to have a straight line from last HW X point,
554                  * and the slope to be such that we hit 1.0 at 10000 nits.
555                  */
556                 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557
558                 arr_points[1].slope = dc_fixpt_div(
559                                 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560                                 dc_fixpt_sub(end_value, arr_points[1].x));
561         }
562
563         regamma_params->hw_points_num = hw_points;
564
565         k = 0;
566         for (i = 1; i < 16; i++) {
567                 if (seg_distr[k] != -1) {
568                         regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569                         regamma_params->arr_curve_points[i].offset =
570                                         regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571                 }
572                 k++;
573         }
574
575         if (seg_distr[k] != -1)
576                 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577
578         rgb = rgb_resulted;
579         rgb_plus_1 = rgb_resulted + 1;
580
581         i = 1;
582
583         while (i != hw_points + 1) {
584                 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585                         rgb_plus_1->red = rgb->red;
586                 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587                         rgb_plus_1->green = rgb->green;
588                 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589                         rgb_plus_1->blue = rgb->blue;
590
591                 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592                 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593                 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594
595                 ++rgb_plus_1;
596                 ++rgb;
597                 ++i;
598         }
599
600         convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601
602         return true;
603 }
604
605 static bool
606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607                                 const struct dc_stream_state *stream)
608 {
609         struct transform *xfm = pipe_ctx->plane_res.xfm;
610
611         xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612         xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613
614         if (stream->out_transfer_func &&
615             stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616             stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618         } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619                                                          &xfm->regamma_params)) {
620                 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622         } else {
623                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624         }
625
626         xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627
628         return true;
629 }
630
631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633         bool is_hdmi_tmds;
634         bool is_dp;
635
636         ASSERT(pipe_ctx->stream);
637
638         if (pipe_ctx->stream_res.stream_enc == NULL)
639                 return;  /* this is not root pipe */
640
641         is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642         is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643
644         if (!is_hdmi_tmds && !is_dp)
645                 return;
646
647         if (is_hdmi_tmds)
648                 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649                         pipe_ctx->stream_res.stream_enc,
650                         &pipe_ctx->stream_res.encoder_info_frame);
651         else {
652                 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
653                         pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
654                                 pipe_ctx->stream_res.stream_enc,
655                                 &pipe_ctx->stream_res.encoder_info_frame);
656
657                 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658                         pipe_ctx->stream_res.stream_enc,
659                         &pipe_ctx->stream_res.encoder_info_frame);
660         }
661 }
662
663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665         enum dc_lane_count lane_count =
666                 pipe_ctx->stream->link->cur_link_settings.lane_count;
667         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668         struct dc_link *link = pipe_ctx->stream->link;
669         const struct dc *dc = link->dc;
670         const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
671         uint32_t active_total_with_borders;
672         uint32_t early_control = 0;
673         struct timing_generator *tg = pipe_ctx->stream_res.tg;
674
675         link_hwss->setup_stream_encoder(pipe_ctx);
676
677         dc->hwss.update_info_frame(pipe_ctx);
678
679         /* enable early control to avoid corruption on DP monitor*/
680         active_total_with_borders =
681                         timing->h_addressable
682                                 + timing->h_border_left
683                                 + timing->h_border_right;
684
685         if (lane_count != 0)
686                 early_control = active_total_with_borders % lane_count;
687
688         if (early_control == 0)
689                 early_control = lane_count;
690
691         tg->funcs->set_early_control(tg, early_control);
692 }
693
694 static enum bp_result link_transmitter_control(
695                 struct dc_bios *bios,
696         struct bp_transmitter_control *cntl)
697 {
698         enum bp_result result;
699
700         result = bios->funcs->transmitter_control(bios, cntl);
701
702         return result;
703 }
704
705 /*
706  * @brief
707  * eDP only.
708  */
709 void dce110_edp_wait_for_hpd_ready(
710                 struct dc_link *link,
711                 bool power_up)
712 {
713         struct dc_context *ctx = link->ctx;
714         struct graphics_object_id connector = link->link_enc->connector;
715         struct gpio *hpd;
716         bool edp_hpd_high = false;
717         uint32_t time_elapsed = 0;
718         uint32_t timeout = power_up ?
719                 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
720
721         if (dal_graphics_object_id_get_connector_id(connector)
722                         != CONNECTOR_ID_EDP) {
723                 BREAK_TO_DEBUGGER();
724                 return;
725         }
726
727         if (!power_up)
728                 /*
729                  * From KV, we will not HPD low after turning off VCC -
730                  * instead, we will check the SW timer in power_up().
731                  */
732                 return;
733
734         /*
735          * When we power on/off the eDP panel,
736          * we need to wait until SENSE bit is high/low.
737          */
738
739         /* obtain HPD */
740         /* TODO what to do with this? */
741         hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
742
743         if (!hpd) {
744                 BREAK_TO_DEBUGGER();
745                 return;
746         }
747
748         if (link != NULL) {
749                 if (link->panel_config.pps.extra_t3_ms > 0) {
750                         int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
751
752                         msleep(extra_t3_in_ms);
753                 }
754         }
755
756         dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
757
758         /* wait until timeout or panel detected */
759
760         do {
761                 uint32_t detected = 0;
762
763                 dal_gpio_get_value(hpd, &detected);
764
765                 if (!(detected ^ power_up)) {
766                         edp_hpd_high = true;
767                         break;
768                 }
769
770                 msleep(HPD_CHECK_INTERVAL);
771
772                 time_elapsed += HPD_CHECK_INTERVAL;
773         } while (time_elapsed < timeout);
774
775         dal_gpio_close(hpd);
776
777         dal_gpio_destroy_irq(&hpd);
778
779         /* ensure that the panel is detected */
780         if (!edp_hpd_high)
781                 DC_LOG_DC("%s: wait timed out!\n", __func__);
782 }
783
784 void dce110_edp_power_control(
785                 struct dc_link *link,
786                 bool power_up)
787 {
788         struct dc_context *ctx = link->ctx;
789         struct bp_transmitter_control cntl = { 0 };
790         enum bp_result bp_result;
791         uint8_t panel_instance;
792
793
794         if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
795                         != CONNECTOR_ID_EDP) {
796                 BREAK_TO_DEBUGGER();
797                 return;
798         }
799
800         if (!link->panel_cntl)
801                 return;
802         if (power_up !=
803                 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804
805                 unsigned long long current_ts = dm_get_timestamp(ctx);
806                 unsigned long long time_since_edp_poweroff_ms =
807                                 div64_u64(dm_get_elapse_time_in_ns(
808                                                 ctx,
809                                                 current_ts,
810                                                 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
811                 unsigned long long time_since_edp_poweron_ms =
812                                 div64_u64(dm_get_elapse_time_in_ns(
813                                                 ctx,
814                                                 current_ts,
815                                                 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
816                 DC_LOG_HW_RESUME_S3(
817                                 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
818                                 __func__,
819                                 power_up,
820                                 current_ts,
821                                 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
822                                 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
823                                 time_since_edp_poweroff_ms,
824                                 time_since_edp_poweron_ms);
825
826                 /* Send VBIOS command to prompt eDP panel power */
827                 if (power_up) {
828                         /* edp requires a min of 500ms from LCDVDD off to on */
829                         unsigned long long remaining_min_edp_poweroff_time_ms = 500;
830
831                         /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
832                         if (link->local_sink != NULL)
833                                 remaining_min_edp_poweroff_time_ms +=
834                                         link->panel_config.pps.extra_t12_ms;
835
836                         /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
837                         if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
838                                 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
839                                         remaining_min_edp_poweroff_time_ms =
840                                                 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
841                                 else
842                                         remaining_min_edp_poweroff_time_ms = 0;
843                         }
844
845                         if (remaining_min_edp_poweroff_time_ms) {
846                                 DC_LOG_HW_RESUME_S3(
847                                                 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
848                                                 __func__, remaining_min_edp_poweroff_time_ms);
849                                 msleep(remaining_min_edp_poweroff_time_ms);
850                                 DC_LOG_HW_RESUME_S3(
851                                                 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
852                                                 __func__, remaining_min_edp_poweroff_time_ms);
853                                 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
854                                                 __func__, remaining_min_edp_poweroff_time_ms);
855                         } else {
856                                 DC_LOG_HW_RESUME_S3(
857                                                 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
858                                                 __func__, remaining_min_edp_poweroff_time_ms);
859                         }
860                 }
861
862                 DC_LOG_HW_RESUME_S3(
863                                 "%s: BEGIN: Panel Power action: %s\n",
864                                 __func__, (power_up ? "On":"Off"));
865
866                 cntl.action = power_up ?
867                         TRANSMITTER_CONTROL_POWER_ON :
868                         TRANSMITTER_CONTROL_POWER_OFF;
869                 cntl.transmitter = link->link_enc->transmitter;
870                 cntl.connector_obj_id = link->link_enc->connector;
871                 cntl.coherent = false;
872                 cntl.lanes_number = LANE_COUNT_FOUR;
873                 cntl.hpd_sel = link->link_enc->hpd_source;
874                 panel_instance = link->panel_cntl->inst;
875
876                 if (ctx->dc->ctx->dmub_srv &&
877                                 ctx->dc->debug.dmub_command_table) {
878
879                         if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
880                                 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881                                                 LVTMA_CONTROL_POWER_ON,
882                                                 panel_instance, link->link_powered_externally);
883                         } else {
884                                 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
885                                                 LVTMA_CONTROL_POWER_OFF,
886                                                 panel_instance, link->link_powered_externally);
887                         }
888                 }
889
890                 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
891
892                 DC_LOG_HW_RESUME_S3(
893                                 "%s: END: Panel Power action: %s bp_result=%u\n",
894                                 __func__, (power_up ? "On":"Off"),
895                                 bp_result);
896
897                 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
898
899                 DC_LOG_HW_RESUME_S3(
900                                 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
901                                 __func__,
902                                 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
903                                 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
904
905                 if (bp_result != BP_RESULT_OK)
906                         DC_LOG_ERROR(
907                                         "%s: Panel Power bp_result: %d\n",
908                                         __func__, bp_result);
909         } else {
910                 DC_LOG_HW_RESUME_S3(
911                                 "%s: Skipping Panel Power action: %s\n",
912                                 __func__, (power_up ? "On":"Off"));
913         }
914 }
915
916 void dce110_edp_wait_for_T12(
917                 struct dc_link *link)
918 {
919         struct dc_context *ctx = link->ctx;
920
921         if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
922                         != CONNECTOR_ID_EDP) {
923                 BREAK_TO_DEBUGGER();
924                 return;
925         }
926
927         if (!link->panel_cntl)
928                 return;
929
930         if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
931                         ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
932                 unsigned int t12_duration = 500; // Default T12 as per spec
933                 unsigned long long current_ts = dm_get_timestamp(ctx);
934                 unsigned long long time_since_edp_poweroff_ms =
935                                 div64_u64(dm_get_elapse_time_in_ns(
936                                                 ctx,
937                                                 current_ts,
938                                                 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
939
940                 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
941
942                 if (time_since_edp_poweroff_ms < t12_duration)
943                         msleep(t12_duration - time_since_edp_poweroff_ms);
944         }
945 }
946 /*todo: cloned in stream enc, fix*/
947 /*
948  * @brief
949  * eDP only. Control the backlight of the eDP panel
950  */
951 void dce110_edp_backlight_control(
952                 struct dc_link *link,
953                 bool enable)
954 {
955         struct dc_context *ctx = link->ctx;
956         struct bp_transmitter_control cntl = { 0 };
957         uint8_t panel_instance;
958         unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
959         unsigned int post_T7_delay = OLED_POST_T7_DELAY;
960
961         if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
962                 != CONNECTOR_ID_EDP) {
963                 BREAK_TO_DEBUGGER();
964                 return;
965         }
966
967         if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
968                 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
969                 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
970                 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
971
972                 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
973                         DC_LOG_HW_RESUME_S3(
974                                 "%s: panel already powered up/off. Do nothing.\n",
975                                 __func__);
976                         return;
977                 }
978         }
979
980         /* Send VBIOS command to control eDP panel backlight */
981
982         DC_LOG_HW_RESUME_S3(
983                         "%s: backlight action: %s\n",
984                         __func__, (enable ? "On":"Off"));
985
986         cntl.action = enable ?
987                 TRANSMITTER_CONTROL_BACKLIGHT_ON :
988                 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
989
990         /*cntl.engine_id = ctx->engine;*/
991         cntl.transmitter = link->link_enc->transmitter;
992         cntl.connector_obj_id = link->link_enc->connector;
993         /*todo: unhardcode*/
994         cntl.lanes_number = LANE_COUNT_FOUR;
995         cntl.hpd_sel = link->link_enc->hpd_source;
996         cntl.signal = SIGNAL_TYPE_EDP;
997
998         /* For eDP, the following delays might need to be considered
999          * after link training completed:
1000          * idle period - min. accounts for required BS-Idle pattern,
1001          * max. allows for source frame synchronization);
1002          * 50 msec max. delay from valid video data from source
1003          * to video on dislpay or backlight enable.
1004          *
1005          * Disable the delay for now.
1006          * Enable it in the future if necessary.
1007          */
1008         /* dc_service_sleep_in_milliseconds(50); */
1009                 /*edp 1.2*/
1010         panel_instance = link->panel_cntl->inst;
1011
1012         if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1013                 if (!link->dc->config.edp_no_power_sequencing)
1014                 /*
1015                  * Sometimes, DP receiver chip power-controlled externally by an
1016                  * Embedded Controller could be treated and used as eDP,
1017                  * if it drives mobile display. In this case,
1018                  * we shouldn't be doing power-sequencing, hence we can skip
1019                  * waiting for T7-ready.
1020                  */
1021                         ctx->dc->link_srv->edp_receiver_ready_T7(link);
1022                 else
1023                         DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1024         }
1025
1026         /* Setting link_powered_externally will bypass delays in the backlight
1027          * as they are not required if the link is being powered by a different
1028          * source.
1029          */
1030         if (ctx->dc->ctx->dmub_srv &&
1031                         ctx->dc->debug.dmub_command_table) {
1032                 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1033                         ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1034                                         LVTMA_CONTROL_LCD_BLON,
1035                                         panel_instance, link->link_powered_externally);
1036                 else
1037                         ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038                                         LVTMA_CONTROL_LCD_BLOFF,
1039                                         panel_instance, link->link_powered_externally);
1040         }
1041
1042         link_transmitter_control(ctx->dc_bios, &cntl);
1043
1044         if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1045                 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046                 msleep(post_T7_delay);
1047         }
1048
1049         if (link->dpcd_sink_ext_caps.bits.oled ||
1050                 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051                 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052                 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053
1054         /*edp 1.2*/
1055         if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056                 if (!link->dc->config.edp_no_power_sequencing)
1057                 /*
1058                  * Sometimes, DP receiver chip power-controlled externally by an
1059                  * Embedded Controller could be treated and used as eDP,
1060                  * if it drives mobile display. In this case,
1061                  * we shouldn't be doing power-sequencing, hence we can skip
1062                  * waiting for T9-ready.
1063                  */
1064                         ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065                 else
1066                         DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067         }
1068
1069         if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1070                 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1071                 msleep(pre_T11_delay);
1072         }
1073 }
1074
1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077         /* notify audio driver for audio modes of monitor */
1078         struct dc *dc;
1079         struct clk_mgr *clk_mgr;
1080         unsigned int i, num_audio = 1;
1081         const struct link_hwss *link_hwss;
1082
1083         if (!pipe_ctx->stream)
1084                 return;
1085
1086         dc = pipe_ctx->stream->ctx->dc;
1087         clk_mgr = dc->clk_mgr;
1088         link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1089
1090         if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1091                 return;
1092
1093         if (pipe_ctx->stream_res.audio) {
1094                 for (i = 0; i < MAX_PIPES; i++) {
1095                         /*current_state not updated yet*/
1096                         if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1097                                 num_audio++;
1098                 }
1099
1100                 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1101
1102                 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1103                         /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1104                         clk_mgr->funcs->enable_pme_wa(clk_mgr);
1105
1106                 link_hwss->enable_audio_packet(pipe_ctx);
1107
1108                 if (pipe_ctx->stream_res.audio)
1109                         pipe_ctx->stream_res.audio->enabled = true;
1110         }
1111 }
1112
1113 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1114 {
1115         struct dc *dc;
1116         struct clk_mgr *clk_mgr;
1117         const struct link_hwss *link_hwss;
1118
1119         if (!pipe_ctx || !pipe_ctx->stream)
1120                 return;
1121
1122         dc = pipe_ctx->stream->ctx->dc;
1123         clk_mgr = dc->clk_mgr;
1124         link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1125
1126         if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1127                 return;
1128
1129         link_hwss->disable_audio_packet(pipe_ctx);
1130
1131         if (pipe_ctx->stream_res.audio) {
1132                 pipe_ctx->stream_res.audio->enabled = false;
1133
1134                 if (clk_mgr->funcs->enable_pme_wa)
1135                         /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1136                         clk_mgr->funcs->enable_pme_wa(clk_mgr);
1137
1138                 /* TODO: notify audio driver for if audio modes list changed
1139                  * add audio mode list change flag */
1140                 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1141                  * stream->stream_engine_id);
1142                  */
1143         }
1144 }
1145
1146 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1147 {
1148         struct dc_stream_state *stream = pipe_ctx->stream;
1149         struct dc_link *link = stream->link;
1150         struct dc *dc = pipe_ctx->stream->ctx->dc;
1151         const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1152         struct dccg *dccg = dc->res_pool->dccg;
1153         struct timing_generator *tg = pipe_ctx->stream_res.tg;
1154         struct dtbclk_dto_params dto_params = {0};
1155         int dp_hpo_inst;
1156         struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1157         struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1158
1159         if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1160                 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1161                         pipe_ctx->stream_res.stream_enc);
1162                 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1163                         pipe_ctx->stream_res.stream_enc);
1164         }
1165
1166         if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1167                 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1168                                         pipe_ctx->stream_res.hpo_dp_stream_enc);
1169         } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170                 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171                         pipe_ctx->stream_res.stream_enc);
1172
1173         dc->hwss.disable_audio_stream(pipe_ctx);
1174
1175         link_hwss->reset_stream_encoder(pipe_ctx);
1176
1177         if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1178                 dto_params.otg_inst = tg->inst;
1179                 dto_params.timing = &pipe_ctx->stream->timing;
1180                 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1181                 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1182                 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1183                 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1184         } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST && dccg->funcs->disable_symclk_se)
1185                 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1186                                 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1187
1188         if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1189                 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1190                  * we are just disabling a single HPO stream. Shouldn't we disable HPO
1191                  * HW control only when HPOs for all streams are disabled?
1192                  */
1193                 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1194                         pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1195                                         pipe_ctx->stream->ctx->dc->hwseq, false);
1196         }
1197 }
1198
1199 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1200                 struct dc_link_settings *link_settings)
1201 {
1202         struct encoder_unblank_param params = { { 0 } };
1203         struct dc_stream_state *stream = pipe_ctx->stream;
1204         struct dc_link *link = stream->link;
1205         struct dce_hwseq *hws = link->dc->hwseq;
1206
1207         /* only 3 items below are used by unblank */
1208         params.timing = pipe_ctx->stream->timing;
1209         params.link_settings.link_rate = link_settings->link_rate;
1210
1211         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1212                 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1213
1214         if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1215                 hws->funcs.edp_backlight_control(link, true);
1216         }
1217 }
1218
1219 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1220 {
1221         struct dc_stream_state *stream = pipe_ctx->stream;
1222         struct dc_link *link = stream->link;
1223         struct dce_hwseq *hws = link->dc->hwseq;
1224
1225         if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1226                 if (!stream->skip_edp_power_down)
1227                         hws->funcs.edp_backlight_control(link, false);
1228                 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1229         }
1230
1231         if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1232                 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1233                 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1234                                 pipe_ctx->stream_res.hpo_dp_stream_enc);
1235         } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1236                 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1237
1238                 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1239                         /*
1240                          * After output is idle pattern some sinks need time to recognize the stream
1241                          * has changed or they enter protection state and hang.
1242                          */
1243                         msleep(60);
1244                 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1245                         if (!link->dc->config.edp_no_power_sequencing) {
1246                                 /*
1247                                  * Sometimes, DP receiver chip power-controlled externally by an
1248                                  * Embedded Controller could be treated and used as eDP,
1249                                  * if it drives mobile display. In this case,
1250                                  * we shouldn't be doing power-sequencing, hence we can skip
1251                                  * waiting for T9-ready.
1252                                  */
1253                                 link->dc->link_srv->edp_receiver_ready_T9(link);
1254                         }
1255                 }
1256         }
1257
1258 }
1259
1260
1261 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1262 {
1263         if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1264                 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1265 }
1266
1267 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1268 {
1269         switch (crtc_id) {
1270         case CONTROLLER_ID_D0:
1271                 return DTO_SOURCE_ID0;
1272         case CONTROLLER_ID_D1:
1273                 return DTO_SOURCE_ID1;
1274         case CONTROLLER_ID_D2:
1275                 return DTO_SOURCE_ID2;
1276         case CONTROLLER_ID_D3:
1277                 return DTO_SOURCE_ID3;
1278         case CONTROLLER_ID_D4:
1279                 return DTO_SOURCE_ID4;
1280         case CONTROLLER_ID_D5:
1281                 return DTO_SOURCE_ID5;
1282         default:
1283                 return DTO_SOURCE_UNKNOWN;
1284         }
1285 }
1286
1287 static void build_audio_output(
1288         struct dc_state *state,
1289         const struct pipe_ctx *pipe_ctx,
1290         struct audio_output *audio_output)
1291 {
1292         const struct dc_stream_state *stream = pipe_ctx->stream;
1293         audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1294
1295         audio_output->signal = pipe_ctx->stream->signal;
1296
1297         /* audio_crtc_info  */
1298
1299         audio_output->crtc_info.h_total =
1300                 stream->timing.h_total;
1301
1302         /*
1303          * Audio packets are sent during actual CRTC blank physical signal, we
1304          * need to specify actual active signal portion
1305          */
1306         audio_output->crtc_info.h_active =
1307                         stream->timing.h_addressable
1308                         + stream->timing.h_border_left
1309                         + stream->timing.h_border_right;
1310
1311         audio_output->crtc_info.v_active =
1312                         stream->timing.v_addressable
1313                         + stream->timing.v_border_top
1314                         + stream->timing.v_border_bottom;
1315
1316         audio_output->crtc_info.pixel_repetition = 1;
1317
1318         audio_output->crtc_info.interlaced =
1319                         stream->timing.flags.INTERLACE;
1320
1321         audio_output->crtc_info.refresh_rate =
1322                 (stream->timing.pix_clk_100hz*100)/
1323                 (stream->timing.h_total*stream->timing.v_total);
1324
1325         audio_output->crtc_info.color_depth =
1326                 stream->timing.display_color_depth;
1327
1328         audio_output->crtc_info.requested_pixel_clock_100Hz =
1329                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1330
1331         audio_output->crtc_info.calculated_pixel_clock_100Hz =
1332                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1333
1334 /*for HDMI, audio ACR is with deep color ratio factor*/
1335         if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1336                 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1337                                 (stream->timing.pix_clk_100hz)) {
1338                 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1339                         audio_output->crtc_info.requested_pixel_clock_100Hz =
1340                                         audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1341                         audio_output->crtc_info.calculated_pixel_clock_100Hz =
1342                                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1343
1344                 }
1345         }
1346
1347         if (state->clk_mgr &&
1348                 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1349                         pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1350                 audio_output->pll_info.dp_dto_source_clock_in_khz =
1351                                 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1352                                                 state->clk_mgr);
1353         }
1354
1355         audio_output->pll_info.feed_back_divider =
1356                         pipe_ctx->pll_settings.feedback_divider;
1357
1358         audio_output->pll_info.dto_source =
1359                 translate_to_dto_source(
1360                         pipe_ctx->stream_res.tg->inst + 1);
1361
1362         /* TODO hard code to enable for now. Need get from stream */
1363         audio_output->pll_info.ss_enabled = true;
1364
1365         audio_output->pll_info.ss_percentage =
1366                         pipe_ctx->pll_settings.ss_percentage;
1367 }
1368
1369 static void program_scaler(const struct dc *dc,
1370                 const struct pipe_ctx *pipe_ctx)
1371 {
1372         struct tg_color color = {0};
1373
1374         /* TOFPGA */
1375         if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1376                 return;
1377
1378         if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1379                 get_surface_visual_confirm_color(pipe_ctx, &color);
1380         else
1381                 color_space_to_black_color(dc,
1382                                 pipe_ctx->stream->output_color_space,
1383                                 &color);
1384
1385         pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1386                 pipe_ctx->plane_res.xfm,
1387                 pipe_ctx->plane_res.scl_data.lb_params.depth,
1388                 &pipe_ctx->stream->bit_depth_params);
1389
1390         if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1391                 /*
1392                  * The way 420 is packed, 2 channels carry Y component, 1 channel
1393                  * alternate between Cb and Cr, so both channels need the pixel
1394                  * value for Y
1395                  */
1396                 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1397                         color.color_r_cr = color.color_g_y;
1398
1399                 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1400                                 pipe_ctx->stream_res.tg,
1401                                 &color);
1402         }
1403
1404         pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1405                 &pipe_ctx->plane_res.scl_data);
1406 }
1407
1408 static enum dc_status dce110_enable_stream_timing(
1409                 struct pipe_ctx *pipe_ctx,
1410                 struct dc_state *context,
1411                 struct dc *dc)
1412 {
1413         struct dc_stream_state *stream = pipe_ctx->stream;
1414         struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1415                         pipe_ctx[pipe_ctx->pipe_idx];
1416         struct tg_color black_color = {0};
1417
1418         if (!pipe_ctx_old->stream) {
1419
1420                 /* program blank color */
1421                 color_space_to_black_color(dc,
1422                                 stream->output_color_space, &black_color);
1423                 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1424                                 pipe_ctx->stream_res.tg,
1425                                 &black_color);
1426
1427                 /*
1428                  * Must blank CRTC after disabling power gating and before any
1429                  * programming, otherwise CRTC will be hung in bad state
1430                  */
1431                 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1432
1433                 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1434                                 pipe_ctx->clock_source,
1435                                 &pipe_ctx->stream_res.pix_clk_params,
1436                                 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1437                                 &pipe_ctx->pll_settings)) {
1438                         BREAK_TO_DEBUGGER();
1439                         return DC_ERROR_UNEXPECTED;
1440                 }
1441
1442                 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1443                         stream->link->phy_state.symclk_ref_cnts.otg = 1;
1444                         if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1445                                 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1446                         else
1447                                 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1448                 }
1449
1450                 pipe_ctx->stream_res.tg->funcs->program_timing(
1451                                 pipe_ctx->stream_res.tg,
1452                                 &stream->timing,
1453                                 0,
1454                                 0,
1455                                 0,
1456                                 0,
1457                                 pipe_ctx->stream->signal,
1458                                 true);
1459         }
1460
1461         if (!pipe_ctx_old->stream) {
1462                 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1463                                 pipe_ctx->stream_res.tg)) {
1464                         BREAK_TO_DEBUGGER();
1465                         return DC_ERROR_UNEXPECTED;
1466                 }
1467         }
1468
1469         return DC_OK;
1470 }
1471
1472 static enum dc_status apply_single_controller_ctx_to_hw(
1473                 struct pipe_ctx *pipe_ctx,
1474                 struct dc_state *context,
1475                 struct dc *dc)
1476 {
1477         struct dc_stream_state *stream = pipe_ctx->stream;
1478         struct dc_link *link = stream->link;
1479         struct drr_params params = {0};
1480         unsigned int event_triggers = 0;
1481         struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1482         struct dce_hwseq *hws = dc->hwseq;
1483         const struct link_hwss *link_hwss = get_link_hwss(
1484                         link, &pipe_ctx->link_res);
1485
1486
1487         if (hws->funcs.disable_stream_gating) {
1488                 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1489         }
1490
1491         if (pipe_ctx->stream_res.audio != NULL) {
1492                 struct audio_output audio_output;
1493
1494                 build_audio_output(context, pipe_ctx, &audio_output);
1495
1496                 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1497                                 pipe_ctx->stream_res.audio->inst);
1498
1499                 pipe_ctx->stream_res.audio->funcs->az_configure(
1500                                 pipe_ctx->stream_res.audio,
1501                                 pipe_ctx->stream->signal,
1502                                 &audio_output.crtc_info,
1503                                 &pipe_ctx->stream->audio_info);
1504         }
1505
1506         /* make sure no pipes syncd to the pipe being enabled */
1507         if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1508                 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1509
1510         pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1511                 pipe_ctx->stream_res.opp,
1512                 &stream->bit_depth_params,
1513                 &stream->clamping);
1514
1515         pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1516                         pipe_ctx->stream_res.opp,
1517                         COLOR_SPACE_YCBCR601,
1518                         stream->timing.display_color_depth,
1519                         stream->signal);
1520
1521         while (odm_pipe) {
1522                 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1523                                 odm_pipe->stream_res.opp,
1524                                 COLOR_SPACE_YCBCR601,
1525                                 stream->timing.display_color_depth,
1526                                 stream->signal);
1527
1528                 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1529                                 odm_pipe->stream_res.opp,
1530                                 &stream->bit_depth_params,
1531                                 &stream->clamping);
1532                 odm_pipe = odm_pipe->next_odm_pipe;
1533         }
1534
1535         /* DCN3.1 FPGA Workaround
1536          * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1537          * To do so, move calling function enable_stream_timing to only be done AFTER calling
1538          * function core_link_enable_stream
1539          */
1540         if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1541                 /*  */
1542                 /* Do not touch stream timing on seamless boot optimization. */
1543                 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1544                         hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1545
1546         if (hws->funcs.setup_vupdate_interrupt)
1547                 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1548
1549         params.vertical_total_min = stream->adjust.v_total_min;
1550         params.vertical_total_max = stream->adjust.v_total_max;
1551         if (pipe_ctx->stream_res.tg->funcs->set_drr)
1552                 pipe_ctx->stream_res.tg->funcs->set_drr(
1553                         pipe_ctx->stream_res.tg, &params);
1554
1555         // DRR should set trigger event to monitor surface update event
1556         if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1557                 event_triggers = 0x80;
1558         /* Event triggers and num frames initialized for DRR, but can be
1559          * later updated for PSR use. Note DRR trigger events are generated
1560          * regardless of whether num frames met.
1561          */
1562         if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1563                 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1564                                 pipe_ctx->stream_res.tg, event_triggers, 2);
1565
1566         if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1567                 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1568                         pipe_ctx->stream_res.stream_enc,
1569                         pipe_ctx->stream_res.tg->inst);
1570
1571         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1572                 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1573
1574         if (!stream->dpms_off)
1575                 dc->link_srv->set_dpms_on(context, pipe_ctx);
1576
1577         /* DCN3.1 FPGA Workaround
1578          * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1579          * To do so, move calling function enable_stream_timing to only be done AFTER calling
1580          * function core_link_enable_stream
1581          */
1582         if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1583                 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1584                         hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1585         }
1586
1587         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1588
1589         /* Phantom and main stream share the same link (because the stream
1590          * is constructed with the same sink). Make sure not to override
1591          * and link programming on the main.
1592          */
1593         if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1594                 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1595                 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1596         }
1597         return DC_OK;
1598 }
1599
1600 /******************************************************************************/
1601
1602 static void power_down_encoders(struct dc *dc)
1603 {
1604         int i;
1605
1606         for (i = 0; i < dc->link_count; i++) {
1607                 enum signal_type signal = dc->links[i]->connector_signal;
1608
1609                 dc->link_srv->blank_dp_stream(dc->links[i], false);
1610
1611                 if (signal != SIGNAL_TYPE_EDP)
1612                         signal = SIGNAL_TYPE_NONE;
1613
1614                 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1615                         dc->links[i]->link_enc->funcs->disable_output(
1616                                         dc->links[i]->link_enc, signal);
1617
1618                 dc->links[i]->link_status.link_active = false;
1619                 memset(&dc->links[i]->cur_link_settings, 0,
1620                                 sizeof(dc->links[i]->cur_link_settings));
1621         }
1622 }
1623
1624 static void power_down_controllers(struct dc *dc)
1625 {
1626         int i;
1627
1628         for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1629                 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1630                                 dc->res_pool->timing_generators[i]);
1631         }
1632 }
1633
1634 static void power_down_clock_sources(struct dc *dc)
1635 {
1636         int i;
1637
1638         if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1639                 dc->res_pool->dp_clock_source) == false)
1640                 dm_error("Failed to power down pll! (dp clk src)\n");
1641
1642         for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1643                 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1644                                 dc->res_pool->clock_sources[i]) == false)
1645                         dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1646         }
1647 }
1648
1649 static void power_down_all_hw_blocks(struct dc *dc)
1650 {
1651         power_down_encoders(dc);
1652
1653         power_down_controllers(dc);
1654
1655         power_down_clock_sources(dc);
1656
1657         if (dc->fbc_compressor)
1658                 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1659 }
1660
1661 static void disable_vga_and_power_gate_all_controllers(
1662                 struct dc *dc)
1663 {
1664         int i;
1665         struct timing_generator *tg;
1666         struct dc_context *ctx = dc->ctx;
1667
1668         for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1669                 tg = dc->res_pool->timing_generators[i];
1670
1671                 if (tg->funcs->disable_vga)
1672                         tg->funcs->disable_vga(tg);
1673         }
1674         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1675                 /* Enable CLOCK gating for each pipe BEFORE controller
1676                  * powergating. */
1677                 enable_display_pipe_clock_gating(ctx,
1678                                 true);
1679
1680                 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1681                 dc->hwss.disable_plane(dc,
1682                         &dc->current_state->res_ctx.pipe_ctx[i]);
1683         }
1684 }
1685
1686
1687 static void get_edp_streams(struct dc_state *context,
1688                 struct dc_stream_state **edp_streams,
1689                 int *edp_stream_num)
1690 {
1691         int i;
1692
1693         *edp_stream_num = 0;
1694         for (i = 0; i < context->stream_count; i++) {
1695                 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1696                         edp_streams[*edp_stream_num] = context->streams[i];
1697                         if (++(*edp_stream_num) == MAX_NUM_EDP)
1698                                 return;
1699                 }
1700         }
1701 }
1702
1703 static void get_edp_links_with_sink(
1704                 struct dc *dc,
1705                 struct dc_link **edp_links_with_sink,
1706                 int *edp_with_sink_num)
1707 {
1708         int i;
1709
1710         /* check if there is an eDP panel not in use */
1711         *edp_with_sink_num = 0;
1712         for (i = 0; i < dc->link_count; i++) {
1713                 if (dc->links[i]->local_sink &&
1714                         dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1715                         edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1716                         if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1717                                 return;
1718                 }
1719         }
1720 }
1721
1722 /*
1723  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1724  *  1. Power down all DC HW blocks
1725  *  2. Disable VGA engine on all controllers
1726  *  3. Enable power gating for controller
1727  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1728  */
1729 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1730 {
1731         struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1732         struct dc_link *edp_links[MAX_NUM_EDP];
1733         struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1734         struct dc_link *edp_link_with_sink = NULL;
1735         struct dc_link *edp_link = NULL;
1736         struct dce_hwseq *hws = dc->hwseq;
1737         int edp_with_sink_num;
1738         int edp_num;
1739         int edp_stream_num;
1740         int i;
1741         bool can_apply_edp_fast_boot = false;
1742         bool can_apply_seamless_boot = false;
1743         bool keep_edp_vdd_on = false;
1744         DC_LOGGER_INIT();
1745
1746
1747         get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1748         dc_get_edp_links(dc, edp_links, &edp_num);
1749
1750         if (hws->funcs.init_pipes)
1751                 hws->funcs.init_pipes(dc, context);
1752
1753         get_edp_streams(context, edp_streams, &edp_stream_num);
1754
1755         // Check fastboot support, disable on DCE8 because of blank screens
1756         if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1757                     dc->ctx->dce_version != DCE_VERSION_8_1 &&
1758                     dc->ctx->dce_version != DCE_VERSION_8_3) {
1759                 for (i = 0; i < edp_num; i++) {
1760                         edp_link = edp_links[i];
1761                         if (edp_link != edp_streams[0]->link)
1762                                 continue;
1763                         // enable fastboot if backend is enabled on eDP
1764                         if (edp_link->link_enc->funcs->is_dig_enabled &&
1765                             edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1766                             edp_link->link_status.link_active) {
1767                                 struct dc_stream_state *edp_stream = edp_streams[0];
1768
1769                                 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1770                                         edp_stream->sink, &edp_stream->timing);
1771                                 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1772                                 if (can_apply_edp_fast_boot)
1773                                         DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1774
1775                                 break;
1776                         }
1777                 }
1778                 // We are trying to enable eDP, don't power down VDD
1779                 if (can_apply_edp_fast_boot)
1780                         keep_edp_vdd_on = true;
1781         }
1782
1783         // Check seamless boot support
1784         for (i = 0; i < context->stream_count; i++) {
1785                 if (context->streams[i]->apply_seamless_boot_optimization) {
1786                         can_apply_seamless_boot = true;
1787                         break;
1788                 }
1789         }
1790
1791         /* eDP should not have stream in resume from S4 and so even with VBios post
1792          * it should get turned off
1793          */
1794         if (edp_with_sink_num)
1795                 edp_link_with_sink = edp_links_with_sink[0];
1796
1797         if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1798                 if (edp_link_with_sink && !keep_edp_vdd_on) {
1799                         /*turn off backlight before DP_blank and encoder powered down*/
1800                         hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1801                 }
1802                 /*resume from S3, no vbios posting, no need to power down again*/
1803                 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1804
1805                 power_down_all_hw_blocks(dc);
1806                 disable_vga_and_power_gate_all_controllers(dc);
1807                 if (edp_link_with_sink && !keep_edp_vdd_on)
1808                         dc->hwss.edp_power_control(edp_link_with_sink, false);
1809                 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1810         }
1811         bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1812 }
1813
1814 static uint32_t compute_pstate_blackout_duration(
1815         struct bw_fixed blackout_duration,
1816         const struct dc_stream_state *stream)
1817 {
1818         uint32_t total_dest_line_time_ns;
1819         uint32_t pstate_blackout_duration_ns;
1820
1821         pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1822
1823         total_dest_line_time_ns = 1000000UL *
1824                 (stream->timing.h_total * 10) /
1825                 stream->timing.pix_clk_100hz +
1826                 pstate_blackout_duration_ns;
1827
1828         return total_dest_line_time_ns;
1829 }
1830
1831 static void dce110_set_displaymarks(
1832         const struct dc *dc,
1833         struct dc_state *context)
1834 {
1835         uint8_t i, num_pipes;
1836         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1837
1838         for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1839                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1840                 uint32_t total_dest_line_time_ns;
1841
1842                 if (pipe_ctx->stream == NULL)
1843                         continue;
1844
1845                 total_dest_line_time_ns = compute_pstate_blackout_duration(
1846                         dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1847                 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1848                         pipe_ctx->plane_res.mi,
1849                         context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1850                         context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1851                         context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1852                         context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1853                         total_dest_line_time_ns);
1854                 if (i == underlay_idx) {
1855                         num_pipes++;
1856                         pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1857                                 pipe_ctx->plane_res.mi,
1858                                 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1859                                 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1860                                 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1861                                 total_dest_line_time_ns);
1862                 }
1863                 num_pipes++;
1864         }
1865 }
1866
1867 void dce110_set_safe_displaymarks(
1868                 struct resource_context *res_ctx,
1869                 const struct resource_pool *pool)
1870 {
1871         int i;
1872         int underlay_idx = pool->underlay_pipe_index;
1873         struct dce_watermarks max_marks = {
1874                 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1875         struct dce_watermarks nbp_marks = {
1876                 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1877         struct dce_watermarks min_marks = { 0, 0, 0, 0};
1878
1879         for (i = 0; i < MAX_PIPES; i++) {
1880                 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1881                         continue;
1882
1883                 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1884                                 res_ctx->pipe_ctx[i].plane_res.mi,
1885                                 nbp_marks,
1886                                 max_marks,
1887                                 min_marks,
1888                                 max_marks,
1889                                 MAX_WATERMARK);
1890
1891                 if (i == underlay_idx)
1892                         res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1893                                 res_ctx->pipe_ctx[i].plane_res.mi,
1894                                 nbp_marks,
1895                                 max_marks,
1896                                 max_marks,
1897                                 MAX_WATERMARK);
1898
1899         }
1900 }
1901
1902 /*******************************************************************************
1903  * Public functions
1904  ******************************************************************************/
1905
1906 static void set_drr(struct pipe_ctx **pipe_ctx,
1907                 int num_pipes, struct dc_crtc_timing_adjust adjust)
1908 {
1909         int i = 0;
1910         struct drr_params params = {0};
1911         // DRR should set trigger event to monitor surface update event
1912         unsigned int event_triggers = 0x80;
1913         // Note DRR trigger events are generated regardless of whether num frames met.
1914         unsigned int num_frames = 2;
1915
1916         params.vertical_total_max = adjust.v_total_max;
1917         params.vertical_total_min = adjust.v_total_min;
1918
1919         /* TODO: If multiple pipes are to be supported, you need
1920          * some GSL stuff. Static screen triggers may be programmed differently
1921          * as well.
1922          */
1923         for (i = 0; i < num_pipes; i++) {
1924                 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1925                         pipe_ctx[i]->stream_res.tg, &params);
1926
1927                 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1928                         pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1929                                         pipe_ctx[i]->stream_res.tg,
1930                                         event_triggers, num_frames);
1931         }
1932 }
1933
1934 static void get_position(struct pipe_ctx **pipe_ctx,
1935                 int num_pipes,
1936                 struct crtc_position *position)
1937 {
1938         int i = 0;
1939
1940         /* TODO: handle pipes > 1
1941          */
1942         for (i = 0; i < num_pipes; i++)
1943                 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1944 }
1945
1946 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1947                 int num_pipes, const struct dc_static_screen_params *params)
1948 {
1949         unsigned int i;
1950         unsigned int triggers = 0;
1951
1952         if (params->triggers.overlay_update)
1953                 triggers |= 0x100;
1954         if (params->triggers.surface_update)
1955                 triggers |= 0x80;
1956         if (params->triggers.cursor_update)
1957                 triggers |= 0x2;
1958         if (params->triggers.force_trigger)
1959                 triggers |= 0x1;
1960
1961         if (num_pipes) {
1962                 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1963
1964                 if (dc->fbc_compressor)
1965                         triggers |= 0x84;
1966         }
1967
1968         for (i = 0; i < num_pipes; i++)
1969                 pipe_ctx[i]->stream_res.tg->funcs->
1970                         set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1971                                         triggers, params->num_frames);
1972 }
1973
1974 /*
1975  *  Check if FBC can be enabled
1976  */
1977 static bool should_enable_fbc(struct dc *dc,
1978                 struct dc_state *context,
1979                 uint32_t *pipe_idx)
1980 {
1981         uint32_t i;
1982         struct pipe_ctx *pipe_ctx = NULL;
1983         struct resource_context *res_ctx = &context->res_ctx;
1984         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1985
1986
1987         ASSERT(dc->fbc_compressor);
1988
1989         /* FBC memory should be allocated */
1990         if (!dc->ctx->fbc_gpu_addr)
1991                 return false;
1992
1993         /* Only supports single display */
1994         if (context->stream_count != 1)
1995                 return false;
1996
1997         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1998                 if (res_ctx->pipe_ctx[i].stream) {
1999
2000                         pipe_ctx = &res_ctx->pipe_ctx[i];
2001
2002                         if (!pipe_ctx)
2003                                 continue;
2004
2005                         /* fbc not applicable on underlay pipe */
2006                         if (pipe_ctx->pipe_idx != underlay_idx) {
2007                                 *pipe_idx = i;
2008                                 break;
2009                         }
2010                 }
2011         }
2012
2013         if (i == dc->res_pool->pipe_count)
2014                 return false;
2015
2016         if (!pipe_ctx->stream->link)
2017                 return false;
2018
2019         /* Only supports eDP */
2020         if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2021                 return false;
2022
2023         /* PSR should not be enabled */
2024         if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2025                 return false;
2026
2027         /* Replay should not be enabled */
2028         if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2029                 return false;
2030
2031         /* Nothing to compress */
2032         if (!pipe_ctx->plane_state)
2033                 return false;
2034
2035         /* Only for non-linear tiling */
2036         if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2037                 return false;
2038
2039         return true;
2040 }
2041
2042 /*
2043  *  Enable FBC
2044  */
2045 static void enable_fbc(
2046                 struct dc *dc,
2047                 struct dc_state *context)
2048 {
2049         uint32_t pipe_idx = 0;
2050
2051         if (should_enable_fbc(dc, context, &pipe_idx)) {
2052                 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2053                 struct compr_addr_and_pitch_params params = {0, 0, 0};
2054                 struct compressor *compr = dc->fbc_compressor;
2055                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2056
2057                 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2058                 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2059                 params.inst = pipe_ctx->stream_res.tg->inst;
2060                 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2061
2062                 compr->funcs->surface_address_and_pitch(compr, &params);
2063                 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2064
2065                 compr->funcs->enable_fbc(compr, &params);
2066         }
2067 }
2068
2069 static void dce110_reset_hw_ctx_wrap(
2070                 struct dc *dc,
2071                 struct dc_state *context)
2072 {
2073         int i;
2074
2075         /* Reset old context */
2076         /* look up the targets that have been removed since last commit */
2077         for (i = 0; i < MAX_PIPES; i++) {
2078                 struct pipe_ctx *pipe_ctx_old =
2079                         &dc->current_state->res_ctx.pipe_ctx[i];
2080                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2081
2082                 /* Note: We need to disable output if clock sources change,
2083                  * since bios does optimization and doesn't apply if changing
2084                  * PHY when not already disabled.
2085                  */
2086
2087                 /* Skip underlay pipe since it will be handled in commit surface*/
2088                 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2089                         continue;
2090
2091                 if (!pipe_ctx->stream ||
2092                                 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2093                         struct clock_source *old_clk = pipe_ctx_old->clock_source;
2094
2095                         /* Disable if new stream is null. O/w, if stream is
2096                          * disabled already, no need to disable again.
2097                          */
2098                         if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2099                                 dc->link_srv->set_dpms_off(pipe_ctx_old);
2100
2101                                 /* free acquired resources*/
2102                                 if (pipe_ctx_old->stream_res.audio) {
2103                                         /*disable az_endpoint*/
2104                                         pipe_ctx_old->stream_res.audio->funcs->
2105                                                         az_disable(pipe_ctx_old->stream_res.audio);
2106
2107                                         /*free audio*/
2108                                         if (dc->caps.dynamic_audio == true) {
2109                                                 /*we have to dynamic arbitrate the audio endpoints*/
2110                                                 /*we free the resource, need reset is_audio_acquired*/
2111                                                 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2112                                                                 pipe_ctx_old->stream_res.audio, false);
2113                                                 pipe_ctx_old->stream_res.audio = NULL;
2114                                         }
2115                                 }
2116                         }
2117
2118                         pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2119                         if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2120                                 dm_error("DC: failed to blank crtc!\n");
2121                                 BREAK_TO_DEBUGGER();
2122                         }
2123                         pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2124                         pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2125                         pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2126                                         pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2127
2128                         if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2129                                                                                 dc->res_pool,
2130                                                                                 old_clk))
2131                                 old_clk->funcs->cs_power_down(old_clk);
2132
2133                         dc->hwss.disable_plane(dc, pipe_ctx_old);
2134
2135                         pipe_ctx_old->stream = NULL;
2136                 }
2137         }
2138 }
2139
2140 static void dce110_setup_audio_dto(
2141                 struct dc *dc,
2142                 struct dc_state *context)
2143 {
2144         int i;
2145
2146         /* program audio wall clock. use HDMI as clock source if HDMI
2147          * audio active. Otherwise, use DP as clock source
2148          * first, loop to find any HDMI audio, if not, loop find DP audio
2149          */
2150         /* Setup audio rate clock source */
2151         /* Issue:
2152         * Audio lag happened on DP monitor when unplug a HDMI monitor
2153         *
2154         * Cause:
2155         * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2156         * is set to either dto0 or dto1, audio should work fine.
2157         * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2158         * set to dto0 will cause audio lag.
2159         *
2160         * Solution:
2161         * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2162         * find first available pipe with audio, setup audio wall DTO per topology
2163         * instead of per pipe.
2164         */
2165         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2166                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2167
2168                 if (pipe_ctx->stream == NULL)
2169                         continue;
2170
2171                 if (pipe_ctx->top_pipe)
2172                         continue;
2173                 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2174                         continue;
2175                 if (pipe_ctx->stream_res.audio != NULL) {
2176                         struct audio_output audio_output;
2177
2178                         build_audio_output(context, pipe_ctx, &audio_output);
2179
2180                         if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2181                                 struct dtbclk_dto_params dto_params = {0};
2182
2183                                 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2184                                         dc->res_pool->dccg, &dto_params);
2185
2186                                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2187                                                 pipe_ctx->stream_res.audio,
2188                                                 pipe_ctx->stream->signal,
2189                                                 &audio_output.crtc_info,
2190                                                 &audio_output.pll_info);
2191                         } else
2192                                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2193                                         pipe_ctx->stream_res.audio,
2194                                         pipe_ctx->stream->signal,
2195                                         &audio_output.crtc_info,
2196                                         &audio_output.pll_info);
2197                         break;
2198                 }
2199         }
2200
2201         /* no HDMI audio is found, try DP audio */
2202         if (i == dc->res_pool->pipe_count) {
2203                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2204                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2205
2206                         if (pipe_ctx->stream == NULL)
2207                                 continue;
2208
2209                         if (pipe_ctx->top_pipe)
2210                                 continue;
2211
2212                         if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2213                                 continue;
2214
2215                         if (pipe_ctx->stream_res.audio != NULL) {
2216                                 struct audio_output audio_output;
2217
2218                                 build_audio_output(context, pipe_ctx, &audio_output);
2219
2220                                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2221                                         pipe_ctx->stream_res.audio,
2222                                         pipe_ctx->stream->signal,
2223                                         &audio_output.crtc_info,
2224                                         &audio_output.pll_info);
2225                                 break;
2226                         }
2227                 }
2228         }
2229 }
2230
2231 enum dc_status dce110_apply_ctx_to_hw(
2232                 struct dc *dc,
2233                 struct dc_state *context)
2234 {
2235         struct dce_hwseq *hws = dc->hwseq;
2236         struct dc_bios *dcb = dc->ctx->dc_bios;
2237         enum dc_status status;
2238         int i;
2239
2240         /* reset syncd pipes from disabled pipes */
2241         if (dc->config.use_pipe_ctx_sync_logic)
2242                 reset_syncd_pipes_from_disabled_pipes(dc, context);
2243
2244         /* Reset old context */
2245         /* look up the targets that have been removed since last commit */
2246         hws->funcs.reset_hw_ctx_wrap(dc, context);
2247
2248         /* Skip applying if no targets */
2249         if (context->stream_count <= 0)
2250                 return DC_OK;
2251
2252         /* Apply new context */
2253         dcb->funcs->set_scratch_critical_state(dcb, true);
2254
2255         /* below is for real asic only */
2256         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2257                 struct pipe_ctx *pipe_ctx_old =
2258                                         &dc->current_state->res_ctx.pipe_ctx[i];
2259                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2260
2261                 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2262                         continue;
2263
2264                 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2265                         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2266                                 dce_crtc_switch_to_clk_src(dc->hwseq,
2267                                                 pipe_ctx->clock_source, i);
2268                         continue;
2269                 }
2270
2271                 hws->funcs.enable_display_power_gating(
2272                                 dc, i, dc->ctx->dc_bios,
2273                                 PIPE_GATING_CONTROL_DISABLE);
2274         }
2275
2276         if (dc->fbc_compressor)
2277                 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2278
2279         dce110_setup_audio_dto(dc, context);
2280
2281         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2282                 struct pipe_ctx *pipe_ctx_old =
2283                                         &dc->current_state->res_ctx.pipe_ctx[i];
2284                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2285
2286                 if (pipe_ctx->stream == NULL)
2287                         continue;
2288
2289                 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2290                         pipe_ctx->stream->link->link_state_valid) {
2291                         continue;
2292                 }
2293
2294                 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2295                         continue;
2296
2297                 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2298                         continue;
2299
2300                 status = apply_single_controller_ctx_to_hw(
2301                                 pipe_ctx,
2302                                 context,
2303                                 dc);
2304
2305                 if (DC_OK != status)
2306                         return status;
2307
2308 #ifdef CONFIG_DRM_AMD_DC_FP
2309                 if (hws->funcs.resync_fifo_dccg_dio)
2310                         hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2311 #endif
2312         }
2313
2314         if (dc->fbc_compressor)
2315                 enable_fbc(dc, dc->current_state);
2316
2317         dcb->funcs->set_scratch_critical_state(dcb, false);
2318
2319         return DC_OK;
2320 }
2321
2322 /*******************************************************************************
2323  * Front End programming
2324  ******************************************************************************/
2325 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2326 {
2327         struct default_adjustment default_adjust = { 0 };
2328
2329         default_adjust.force_hw_default = false;
2330         default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2331         default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2332         default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2333         default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2334
2335         /* display color depth */
2336         default_adjust.color_depth =
2337                 pipe_ctx->stream->timing.display_color_depth;
2338
2339         /* Lb color depth */
2340         default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2341
2342         pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2343                                         pipe_ctx->plane_res.xfm, &default_adjust);
2344 }
2345
2346
2347 /*******************************************************************************
2348  * In order to turn on/off specific surface we will program
2349  * Blender + CRTC
2350  *
2351  * In case that we have two surfaces and they have a different visibility
2352  * we can't turn off the CRTC since it will turn off the entire display
2353  *
2354  * |----------------------------------------------- |
2355  * |bottom pipe|curr pipe  |              |         |
2356  * |Surface    |Surface    | Blender      |  CRCT   |
2357  * |visibility |visibility | Configuration|         |
2358  * |------------------------------------------------|
2359  * |   off     |    off    | CURRENT_PIPE | blank   |
2360  * |   off     |    on     | CURRENT_PIPE | unblank |
2361  * |   on      |    off    | OTHER_PIPE   | unblank |
2362  * |   on      |    on     | BLENDING     | unblank |
2363  * -------------------------------------------------|
2364  *
2365  ******************************************************************************/
2366 static void program_surface_visibility(const struct dc *dc,
2367                 struct pipe_ctx *pipe_ctx)
2368 {
2369         enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2370         bool blank_target = false;
2371
2372         if (pipe_ctx->bottom_pipe) {
2373
2374                 /* For now we are supporting only two pipes */
2375                 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2376
2377                 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2378                         if (pipe_ctx->plane_state->visible)
2379                                 blender_mode = BLND_MODE_BLENDING;
2380                         else
2381                                 blender_mode = BLND_MODE_OTHER_PIPE;
2382
2383                 } else if (!pipe_ctx->plane_state->visible)
2384                         blank_target = true;
2385
2386         } else if (!pipe_ctx->plane_state->visible)
2387                 blank_target = true;
2388
2389         dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2390         pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2391
2392 }
2393
2394 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2395 {
2396         int i = 0;
2397         struct xfm_grph_csc_adjustment adjust;
2398         memset(&adjust, 0, sizeof(adjust));
2399         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2400
2401
2402         if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2403                 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2404
2405                 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2406                         adjust.temperature_matrix[i] =
2407                                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2408         }
2409
2410         pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2411 }
2412 static void update_plane_addr(const struct dc *dc,
2413                 struct pipe_ctx *pipe_ctx)
2414 {
2415         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2416
2417         if (plane_state == NULL)
2418                 return;
2419
2420         pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2421                         pipe_ctx->plane_res.mi,
2422                         &plane_state->address,
2423                         plane_state->flip_immediate);
2424
2425         plane_state->status.requested_address = plane_state->address;
2426 }
2427
2428 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2429 {
2430         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2431
2432         if (plane_state == NULL)
2433                 return;
2434
2435         plane_state->status.is_flip_pending =
2436                         pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2437                                         pipe_ctx->plane_res.mi);
2438
2439         if (plane_state->status.is_flip_pending && !plane_state->visible)
2440                 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2441
2442         plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2443         if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2444                         pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2445                 plane_state->status.is_right_eye =\
2446                                 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2447         }
2448 }
2449
2450 void dce110_power_down(struct dc *dc)
2451 {
2452         power_down_all_hw_blocks(dc);
2453         disable_vga_and_power_gate_all_controllers(dc);
2454 }
2455
2456 static bool wait_for_reset_trigger_to_occur(
2457         struct dc_context *dc_ctx,
2458         struct timing_generator *tg)
2459 {
2460         bool rc = false;
2461
2462         /* To avoid endless loop we wait at most
2463          * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2464         const uint32_t frames_to_wait_on_triggered_reset = 10;
2465         uint32_t i;
2466
2467         for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2468
2469                 if (!tg->funcs->is_counter_moving(tg)) {
2470                         DC_ERROR("TG counter is not moving!\n");
2471                         break;
2472                 }
2473
2474                 if (tg->funcs->did_triggered_reset_occur(tg)) {
2475                         rc = true;
2476                         /* usually occurs at i=1 */
2477                         DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2478                                         i);
2479                         break;
2480                 }
2481
2482                 /* Wait for one frame. */
2483                 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2484                 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2485         }
2486
2487         if (false == rc)
2488                 DC_ERROR("GSL: Timeout on reset trigger!\n");
2489
2490         return rc;
2491 }
2492
2493 /* Enable timing synchronization for a group of Timing Generators. */
2494 static void dce110_enable_timing_synchronization(
2495                 struct dc *dc,
2496                 int group_index,
2497                 int group_size,
2498                 struct pipe_ctx *grouped_pipes[])
2499 {
2500         struct dc_context *dc_ctx = dc->ctx;
2501         struct dcp_gsl_params gsl_params = { 0 };
2502         int i;
2503
2504         DC_SYNC_INFO("GSL: Setting-up...\n");
2505
2506         /* Designate a single TG in the group as a master.
2507          * Since HW doesn't care which one, we always assign
2508          * the 1st one in the group. */
2509         gsl_params.gsl_group = 0;
2510         gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2511
2512         for (i = 0; i < group_size; i++)
2513                 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2514                                         grouped_pipes[i]->stream_res.tg, &gsl_params);
2515
2516         /* Reset slave controllers on master VSync */
2517         DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2518
2519         for (i = 1 /* skip the master */; i < group_size; i++)
2520                 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2521                                 grouped_pipes[i]->stream_res.tg,
2522                                 gsl_params.gsl_group);
2523
2524         for (i = 1 /* skip the master */; i < group_size; i++) {
2525                 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2526                 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2527                 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2528                                 grouped_pipes[i]->stream_res.tg);
2529         }
2530
2531         /* GSL Vblank synchronization is a one time sync mechanism, assumption
2532          * is that the sync'ed displays will not drift out of sync over time*/
2533         DC_SYNC_INFO("GSL: Restoring register states.\n");
2534         for (i = 0; i < group_size; i++)
2535                 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2536
2537         DC_SYNC_INFO("GSL: Set-up complete.\n");
2538 }
2539
2540 static void dce110_enable_per_frame_crtc_position_reset(
2541                 struct dc *dc,
2542                 int group_size,
2543                 struct pipe_ctx *grouped_pipes[])
2544 {
2545         struct dc_context *dc_ctx = dc->ctx;
2546         struct dcp_gsl_params gsl_params = { 0 };
2547         int i;
2548
2549         gsl_params.gsl_group = 0;
2550         gsl_params.gsl_master = 0;
2551
2552         for (i = 0; i < group_size; i++)
2553                 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2554                                         grouped_pipes[i]->stream_res.tg, &gsl_params);
2555
2556         DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2557
2558         for (i = 1; i < group_size; i++)
2559                 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2560                                 grouped_pipes[i]->stream_res.tg,
2561                                 gsl_params.gsl_master,
2562                                 &grouped_pipes[i]->stream->triggered_crtc_reset);
2563
2564         DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2565         for (i = 1; i < group_size; i++)
2566                 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2567
2568         for (i = 0; i < group_size; i++)
2569                 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2570
2571 }
2572
2573 static void init_pipes(struct dc *dc, struct dc_state *context)
2574 {
2575         // Do nothing
2576 }
2577
2578 static void init_hw(struct dc *dc)
2579 {
2580         int i;
2581         struct dc_bios *bp;
2582         struct transform *xfm;
2583         struct abm *abm;
2584         struct dmcu *dmcu;
2585         struct dce_hwseq *hws = dc->hwseq;
2586         uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2587
2588         bp = dc->ctx->dc_bios;
2589         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2590                 xfm = dc->res_pool->transforms[i];
2591                 xfm->funcs->transform_reset(xfm);
2592
2593                 hws->funcs.enable_display_power_gating(
2594                                 dc, i, bp,
2595                                 PIPE_GATING_CONTROL_INIT);
2596                 hws->funcs.enable_display_power_gating(
2597                                 dc, i, bp,
2598                                 PIPE_GATING_CONTROL_DISABLE);
2599                 hws->funcs.enable_display_pipe_clock_gating(
2600                         dc->ctx,
2601                         true);
2602         }
2603
2604         dce_clock_gating_power_up(dc->hwseq, false);
2605         /***************************************/
2606
2607         for (i = 0; i < dc->link_count; i++) {
2608                 /****************************************/
2609                 /* Power up AND update implementation according to the
2610                  * required signal (which may be different from the
2611                  * default signal on connector). */
2612                 struct dc_link *link = dc->links[i];
2613
2614                 link->link_enc->funcs->hw_init(link->link_enc);
2615         }
2616
2617         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2618                 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2619
2620                 tg->funcs->disable_vga(tg);
2621
2622                 /* Blank controller using driver code instead of
2623                  * command table. */
2624                 tg->funcs->set_blank(tg, true);
2625                 hwss_wait_for_blank_complete(tg);
2626         }
2627
2628         for (i = 0; i < dc->res_pool->audio_count; i++) {
2629                 struct audio *audio = dc->res_pool->audios[i];
2630                 audio->funcs->hw_init(audio);
2631         }
2632
2633         for (i = 0; i < dc->link_count; i++) {
2634                 struct dc_link *link = dc->links[i];
2635
2636                 if (link->panel_cntl)
2637                         backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2638         }
2639
2640         abm = dc->res_pool->abm;
2641         if (abm != NULL)
2642                 abm->funcs->abm_init(abm, backlight);
2643
2644         dmcu = dc->res_pool->dmcu;
2645         if (dmcu != NULL && abm != NULL)
2646                 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2647
2648         if (dc->fbc_compressor)
2649                 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2650
2651 }
2652
2653
2654 void dce110_prepare_bandwidth(
2655                 struct dc *dc,
2656                 struct dc_state *context)
2657 {
2658         struct clk_mgr *dccg = dc->clk_mgr;
2659
2660         dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2661
2662         dccg->funcs->update_clocks(
2663                         dccg,
2664                         context,
2665                         false);
2666 }
2667
2668 void dce110_optimize_bandwidth(
2669                 struct dc *dc,
2670                 struct dc_state *context)
2671 {
2672         struct clk_mgr *dccg = dc->clk_mgr;
2673
2674         dce110_set_displaymarks(dc, context);
2675
2676         dccg->funcs->update_clocks(
2677                         dccg,
2678                         context,
2679                         true);
2680 }
2681
2682 static void dce110_program_front_end_for_pipe(
2683                 struct dc *dc, struct pipe_ctx *pipe_ctx)
2684 {
2685         struct mem_input *mi = pipe_ctx->plane_res.mi;
2686         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2687         struct xfm_grph_csc_adjustment adjust;
2688         struct out_csc_color_matrix tbl_entry;
2689         unsigned int i;
2690         struct dce_hwseq *hws = dc->hwseq;
2691
2692         DC_LOGGER_INIT();
2693         memset(&tbl_entry, 0, sizeof(tbl_entry));
2694
2695         memset(&adjust, 0, sizeof(adjust));
2696         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2697
2698         dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2699
2700         set_default_colors(pipe_ctx);
2701         if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2702                         == true) {
2703                 tbl_entry.color_space =
2704                         pipe_ctx->stream->output_color_space;
2705
2706                 for (i = 0; i < 12; i++)
2707                         tbl_entry.regval[i] =
2708                         pipe_ctx->stream->csc_color_matrix.matrix[i];
2709
2710                 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2711                                 (pipe_ctx->plane_res.xfm, &tbl_entry);
2712         }
2713
2714         if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2715                 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2716
2717                 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2718                         adjust.temperature_matrix[i] =
2719                                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2720         }
2721
2722         pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2723
2724         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2725
2726         program_scaler(dc, pipe_ctx);
2727
2728         mi->funcs->mem_input_program_surface_config(
2729                         mi,
2730                         plane_state->format,
2731                         &plane_state->tiling_info,
2732                         &plane_state->plane_size,
2733                         plane_state->rotation,
2734                         NULL,
2735                         false);
2736         if (mi->funcs->set_blank)
2737                 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2738
2739         if (dc->config.gpu_vm_support)
2740                 mi->funcs->mem_input_program_pte_vm(
2741                                 pipe_ctx->plane_res.mi,
2742                                 plane_state->format,
2743                                 &plane_state->tiling_info,
2744                                 plane_state->rotation);
2745
2746         /* Moved programming gamma from dc to hwss */
2747         if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2748                         pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2749                         pipe_ctx->plane_state->update_flags.bits.gamma_change)
2750                 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2751
2752         if (pipe_ctx->plane_state->update_flags.bits.full_update)
2753                 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2754
2755         DC_LOG_SURFACE(
2756                         "Pipe:%d %p: addr hi:0x%x, "
2757                         "addr low:0x%x, "
2758                         "src: %d, %d, %d,"
2759                         " %d; dst: %d, %d, %d, %d;"
2760                         "clip: %d, %d, %d, %d\n",
2761                         pipe_ctx->pipe_idx,
2762                         (void *) pipe_ctx->plane_state,
2763                         pipe_ctx->plane_state->address.grph.addr.high_part,
2764                         pipe_ctx->plane_state->address.grph.addr.low_part,
2765                         pipe_ctx->plane_state->src_rect.x,
2766                         pipe_ctx->plane_state->src_rect.y,
2767                         pipe_ctx->plane_state->src_rect.width,
2768                         pipe_ctx->plane_state->src_rect.height,
2769                         pipe_ctx->plane_state->dst_rect.x,
2770                         pipe_ctx->plane_state->dst_rect.y,
2771                         pipe_ctx->plane_state->dst_rect.width,
2772                         pipe_ctx->plane_state->dst_rect.height,
2773                         pipe_ctx->plane_state->clip_rect.x,
2774                         pipe_ctx->plane_state->clip_rect.y,
2775                         pipe_ctx->plane_state->clip_rect.width,
2776                         pipe_ctx->plane_state->clip_rect.height);
2777
2778         DC_LOG_SURFACE(
2779                         "Pipe %d: width, height, x, y\n"
2780                         "viewport:%d, %d, %d, %d\n"
2781                         "recout:  %d, %d, %d, %d\n",
2782                         pipe_ctx->pipe_idx,
2783                         pipe_ctx->plane_res.scl_data.viewport.width,
2784                         pipe_ctx->plane_res.scl_data.viewport.height,
2785                         pipe_ctx->plane_res.scl_data.viewport.x,
2786                         pipe_ctx->plane_res.scl_data.viewport.y,
2787                         pipe_ctx->plane_res.scl_data.recout.width,
2788                         pipe_ctx->plane_res.scl_data.recout.height,
2789                         pipe_ctx->plane_res.scl_data.recout.x,
2790                         pipe_ctx->plane_res.scl_data.recout.y);
2791 }
2792
2793 static void dce110_apply_ctx_for_surface(
2794                 struct dc *dc,
2795                 const struct dc_stream_state *stream,
2796                 int num_planes,
2797                 struct dc_state *context)
2798 {
2799         int i;
2800
2801         if (num_planes == 0)
2802                 return;
2803
2804         if (dc->fbc_compressor)
2805                 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2806
2807         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2808                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2809
2810                 if (pipe_ctx->stream != stream)
2811                         continue;
2812
2813                 /* Need to allocate mem before program front end for Fiji */
2814                 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2815                                 pipe_ctx->plane_res.mi,
2816                                 pipe_ctx->stream->timing.h_total,
2817                                 pipe_ctx->stream->timing.v_total,
2818                                 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2819                                 context->stream_count);
2820
2821                 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2822
2823                 dc->hwss.update_plane_addr(dc, pipe_ctx);
2824
2825                 program_surface_visibility(dc, pipe_ctx);
2826
2827         }
2828
2829         if (dc->fbc_compressor)
2830                 enable_fbc(dc, context);
2831 }
2832
2833 static void dce110_post_unlock_program_front_end(
2834                 struct dc *dc,
2835                 struct dc_state *context)
2836 {
2837 }
2838
2839 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2840 {
2841         struct dce_hwseq *hws = dc->hwseq;
2842         int fe_idx = pipe_ctx->plane_res.mi ?
2843                 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2844
2845         /* Do not power down fe when stream is active on dce*/
2846         if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2847                 return;
2848
2849         hws->funcs.enable_display_power_gating(
2850                 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2851
2852         dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2853                                 dc->res_pool->transforms[fe_idx]);
2854 }
2855
2856 static void dce110_wait_for_mpcc_disconnect(
2857                 struct dc *dc,
2858                 struct resource_pool *res_pool,
2859                 struct pipe_ctx *pipe_ctx)
2860 {
2861         /* do nothing*/
2862 }
2863
2864 static void program_output_csc(struct dc *dc,
2865                 struct pipe_ctx *pipe_ctx,
2866                 enum dc_color_space colorspace,
2867                 uint16_t *matrix,
2868                 int opp_id)
2869 {
2870         int i;
2871         struct out_csc_color_matrix tbl_entry;
2872
2873         if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2874                 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2875
2876                 for (i = 0; i < 12; i++)
2877                         tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2878
2879                 tbl_entry.color_space = color_space;
2880
2881                 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2882                                 pipe_ctx->plane_res.xfm, &tbl_entry);
2883         }
2884 }
2885
2886 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2887 {
2888         struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2889         struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2890         struct mem_input *mi = pipe_ctx->plane_res.mi;
2891         struct dc_cursor_mi_param param = {
2892                 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2893                 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2894                 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2895                 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2896                 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2897                 .rotation = pipe_ctx->plane_state->rotation,
2898                 .mirror = pipe_ctx->plane_state->horizontal_mirror
2899         };
2900
2901         /**
2902          * If the cursor's source viewport is clipped then we need to
2903          * translate the cursor to appear in the correct position on
2904          * the screen.
2905          *
2906          * This translation isn't affected by scaling so it needs to be
2907          * done *after* we adjust the position for the scale factor.
2908          *
2909          * This is only done by opt-in for now since there are still
2910          * some usecases like tiled display that might enable the
2911          * cursor on both streams while expecting dc to clip it.
2912          */
2913         if (pos_cpy.translate_by_source) {
2914                 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2915                 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2916         }
2917
2918         if (pipe_ctx->plane_state->address.type
2919                         == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2920                 pos_cpy.enable = false;
2921
2922         if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2923                 pos_cpy.enable = false;
2924
2925         if (ipp->funcs->ipp_cursor_set_position)
2926                 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2927         if (mi->funcs->set_cursor_position)
2928                 mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2929 }
2930
2931 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2932 {
2933         struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2934
2935         if (pipe_ctx->plane_res.ipp &&
2936             pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2937                 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2938                                 pipe_ctx->plane_res.ipp, attributes);
2939
2940         if (pipe_ctx->plane_res.mi &&
2941             pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2942                 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2943                                 pipe_ctx->plane_res.mi, attributes);
2944
2945         if (pipe_ctx->plane_res.xfm &&
2946             pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2947                 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2948                                 pipe_ctx->plane_res.xfm, attributes);
2949 }
2950
2951 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2952                 uint32_t backlight_pwm_u16_16,
2953                 uint32_t frame_ramp)
2954 {
2955         struct dc_link *link = pipe_ctx->stream->link;
2956         struct dc  *dc = link->ctx->dc;
2957         struct abm *abm = pipe_ctx->stream_res.abm;
2958         struct panel_cntl *panel_cntl = link->panel_cntl;
2959         struct dmcu *dmcu = dc->res_pool->dmcu;
2960         bool fw_set_brightness = true;
2961         /* DMCU -1 for all controller id values,
2962          * therefore +1 here
2963          */
2964         uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2965
2966         if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2967                 return false;
2968
2969         if (dmcu)
2970                 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2971
2972         if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2973                 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2974         else
2975                 abm->funcs->set_backlight_level_pwm(
2976                                 abm,
2977                                 backlight_pwm_u16_16,
2978                                 frame_ramp,
2979                                 controller_id,
2980                                 link->panel_cntl->inst);
2981
2982         return true;
2983 }
2984
2985 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2986 {
2987         struct abm *abm = pipe_ctx->stream_res.abm;
2988         struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2989
2990         if (abm)
2991                 abm->funcs->set_abm_immediate_disable(abm,
2992                                 pipe_ctx->stream->link->panel_cntl->inst);
2993
2994         if (panel_cntl)
2995                 panel_cntl->funcs->store_backlight_level(panel_cntl);
2996 }
2997
2998 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2999 {
3000         struct abm *abm = pipe_ctx->stream_res.abm;
3001         struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3002         uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3003
3004         if (abm && panel_cntl)
3005                 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3006 }
3007
3008 void dce110_enable_lvds_link_output(struct dc_link *link,
3009                 const struct link_resource *link_res,
3010                 enum clock_source_id clock_source,
3011                 uint32_t pixel_clock)
3012 {
3013         link->link_enc->funcs->enable_lvds_output(
3014                         link->link_enc,
3015                         clock_source,
3016                         pixel_clock);
3017         link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3018 }
3019
3020 void dce110_enable_tmds_link_output(struct dc_link *link,
3021                 const struct link_resource *link_res,
3022                 enum signal_type signal,
3023                 enum clock_source_id clock_source,
3024                 enum dc_color_depth color_depth,
3025                 uint32_t pixel_clock)
3026 {
3027         link->link_enc->funcs->enable_tmds_output(
3028                         link->link_enc,
3029                         clock_source,
3030                         color_depth,
3031                         signal,
3032                         pixel_clock);
3033         link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3034 }
3035
3036 void dce110_enable_dp_link_output(
3037                 struct dc_link *link,
3038                 const struct link_resource *link_res,
3039                 enum signal_type signal,
3040                 enum clock_source_id clock_source,
3041                 const struct dc_link_settings *link_settings)
3042 {
3043         struct dc  *dc = link->ctx->dc;
3044         struct dmcu *dmcu = dc->res_pool->dmcu;
3045         struct pipe_ctx *pipes =
3046                         link->dc->current_state->res_ctx.pipe_ctx;
3047         struct clock_source *dp_cs =
3048                         link->dc->res_pool->dp_clock_source;
3049         const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3050         unsigned int i;
3051
3052         /*
3053          * Add the logic to extract BOTH power up and power down sequences
3054          * from enable/disable link output and only call edp panel control
3055          * in enable_link_dp and disable_link_dp once.
3056          */
3057         if (link->connector_signal == SIGNAL_TYPE_EDP) {
3058                 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3059         }
3060
3061         /* If the current pixel clock source is not DTO(happens after
3062          * switching from HDMI passive dongle to DP on the same connector),
3063          * switch the pixel clock source to DTO.
3064          */
3065
3066         for (i = 0; i < MAX_PIPES; i++) {
3067                 if (pipes[i].stream != NULL &&
3068                                 pipes[i].stream->link == link) {
3069                         if (pipes[i].clock_source != NULL &&
3070                                         pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3071                                 pipes[i].clock_source = dp_cs;
3072                                 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3073                                                 pipes[i].stream->timing.pix_clk_100hz;
3074                                 pipes[i].clock_source->funcs->program_pix_clk(
3075                                                 pipes[i].clock_source,
3076                                                 &pipes[i].stream_res.pix_clk_params,
3077                                                 dc->link_srv->dp_get_encoding_format(link_settings),
3078                                                 &pipes[i].pll_settings);
3079                         }
3080                 }
3081         }
3082
3083         if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3084                 if (dc->clk_mgr->funcs->notify_link_rate_change)
3085                         dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3086         }
3087
3088         if (dmcu != NULL && dmcu->funcs->lock_phy)
3089                 dmcu->funcs->lock_phy(dmcu);
3090
3091         if (link_hwss->ext.enable_dp_link_output)
3092                 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3093                                 clock_source, link_settings);
3094
3095         link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3096
3097         if (dmcu != NULL && dmcu->funcs->unlock_phy)
3098                 dmcu->funcs->unlock_phy(dmcu);
3099
3100         dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3101 }
3102
3103 void dce110_disable_link_output(struct dc_link *link,
3104                 const struct link_resource *link_res,
3105                 enum signal_type signal)
3106 {
3107         struct dc *dc = link->ctx->dc;
3108         const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3109         struct dmcu *dmcu = dc->res_pool->dmcu;
3110
3111         if (signal == SIGNAL_TYPE_EDP &&
3112                         link->dc->hwss.edp_backlight_control)
3113                 link->dc->hwss.edp_backlight_control(link, false);
3114         else if (dmcu != NULL && dmcu->funcs->lock_phy)
3115                 dmcu->funcs->lock_phy(dmcu);
3116
3117         link_hwss->disable_link_output(link, link_res, signal);
3118         link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3119         /*
3120          * Add the logic to extract BOTH power up and power down sequences
3121          * from enable/disable link output and only call edp panel control
3122          * in enable_link_dp and disable_link_dp once.
3123          */
3124         if (dmcu != NULL && dmcu->funcs->lock_phy)
3125                 dmcu->funcs->unlock_phy(dmcu);
3126         dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3127 }
3128
3129 static const struct hw_sequencer_funcs dce110_funcs = {
3130         .program_gamut_remap = program_gamut_remap,
3131         .program_output_csc = program_output_csc,
3132         .init_hw = init_hw,
3133         .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3134         .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3135         .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3136         .update_plane_addr = update_plane_addr,
3137         .update_pending_status = dce110_update_pending_status,
3138         .enable_accelerated_mode = dce110_enable_accelerated_mode,
3139         .enable_timing_synchronization = dce110_enable_timing_synchronization,
3140         .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3141         .update_info_frame = dce110_update_info_frame,
3142         .enable_stream = dce110_enable_stream,
3143         .disable_stream = dce110_disable_stream,
3144         .unblank_stream = dce110_unblank_stream,
3145         .blank_stream = dce110_blank_stream,
3146         .enable_audio_stream = dce110_enable_audio_stream,
3147         .disable_audio_stream = dce110_disable_audio_stream,
3148         .disable_plane = dce110_power_down_fe,
3149         .pipe_control_lock = dce_pipe_control_lock,
3150         .interdependent_update_lock = NULL,
3151         .cursor_lock = dce_pipe_control_lock,
3152         .prepare_bandwidth = dce110_prepare_bandwidth,
3153         .optimize_bandwidth = dce110_optimize_bandwidth,
3154         .set_drr = set_drr,
3155         .get_position = get_position,
3156         .set_static_screen_control = set_static_screen_control,
3157         .setup_stereo = NULL,
3158         .set_avmute = dce110_set_avmute,
3159         .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3160         .edp_backlight_control = dce110_edp_backlight_control,
3161         .edp_power_control = dce110_edp_power_control,
3162         .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3163         .set_cursor_position = dce110_set_cursor_position,
3164         .set_cursor_attribute = dce110_set_cursor_attribute,
3165         .set_backlight_level = dce110_set_backlight_level,
3166         .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3167         .set_pipe = dce110_set_pipe,
3168         .enable_lvds_link_output = dce110_enable_lvds_link_output,
3169         .enable_tmds_link_output = dce110_enable_tmds_link_output,
3170         .enable_dp_link_output = dce110_enable_dp_link_output,
3171         .disable_link_output = dce110_disable_link_output,
3172 };
3173
3174 static const struct hwseq_private_funcs dce110_private_funcs = {
3175         .init_pipes = init_pipes,
3176         .update_plane_addr = update_plane_addr,
3177         .set_input_transfer_func = dce110_set_input_transfer_func,
3178         .set_output_transfer_func = dce110_set_output_transfer_func,
3179         .power_down = dce110_power_down,
3180         .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3181         .enable_display_power_gating = dce110_enable_display_power_gating,
3182         .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3183         .enable_stream_timing = dce110_enable_stream_timing,
3184         .disable_stream_gating = NULL,
3185         .enable_stream_gating = NULL,
3186         .edp_backlight_control = dce110_edp_backlight_control,
3187 };
3188
3189 void dce110_hw_sequencer_construct(struct dc *dc)
3190 {
3191         dc->hwss = dce110_funcs;
3192         dc->hwseq->funcs = dce110_private_funcs;
3193 }
3194