Merge tag 'tty-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / display / dc / core / dc.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27
28 #include "dm_services.h"
29
30 #include "dc.h"
31
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36
37 #include "resource.h"
38
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "dce/dmub_hw_lock_mgr.h"
72
73 #define CTX \
74         dc->ctx
75
76 #define DC_LOGGER \
77         dc->ctx->logger
78
79 static const char DC_BUILD_ID[] = "production-build";
80
81 /**
82  * DOC: Overview
83  *
84  * DC is the OS-agnostic component of the amdgpu DC driver.
85  *
86  * DC maintains and validates a set of structs representing the state of the
87  * driver and writes that state to AMD hardware
88  *
89  * Main DC HW structs:
90  *
91  * struct dc - The central struct.  One per driver.  Created on driver load,
92  * destroyed on driver unload.
93  *
94  * struct dc_context - One per driver.
95  * Used as a backpointer by most other structs in dc.
96  *
97  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98  * plugpoints).  Created on driver load, destroyed on driver unload.
99  *
100  * struct dc_sink - One per display.  Created on boot or hotplug.
101  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
102  * (the display directly attached).  It may also have one or more remote
103  * sinks (in the Multi-Stream Transport case)
104  *
105  * struct resource_pool - One per driver.  Represents the hw blocks not in the
106  * main pipeline.  Not directly accessible by dm.
107  *
108  * Main dc state structs:
109  *
110  * These structs can be created and destroyed as needed.  There is a full set of
111  * these structs in dc->current_state representing the currently programmed state.
112  *
113  * struct dc_state - The global DC state to track global state information,
114  * such as bandwidth values.
115  *
116  * struct dc_stream_state - Represents the hw configuration for the pipeline from
117  * a framebuffer to a display.  Maps one-to-one with dc_sink.
118  *
119  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
120  * and may have more in the Multi-Plane Overlay case.
121  *
122  * struct resource_context - Represents the programmable state of everything in
123  * the resource_pool.  Not directly accessible by dm.
124  *
125  * struct pipe_ctx - A member of struct resource_context.  Represents the
126  * internal hardware pipeline components.  Each dc_plane_state has either
127  * one or two (in the pipe-split case).
128  */
129
130 /*******************************************************************************
131  * Private functions
132  ******************************************************************************/
133
134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136         if (new > *original)
137                 *original = new;
138 }
139
140 static void destroy_links(struct dc *dc)
141 {
142         uint32_t i;
143
144         for (i = 0; i < dc->link_count; i++) {
145                 if (NULL != dc->links[i])
146                         link_destroy(&dc->links[i]);
147         }
148 }
149
150 static bool create_links(
151                 struct dc *dc,
152                 uint32_t num_virtual_links)
153 {
154         int i;
155         int connectors_num;
156         struct dc_bios *bios = dc->ctx->dc_bios;
157
158         dc->link_count = 0;
159
160         connectors_num = bios->funcs->get_connectors_number(bios);
161
162         if (connectors_num > ENUM_ID_COUNT) {
163                 dm_error(
164                         "DC: Number of connectors %d exceeds maximum of %d!\n",
165                         connectors_num,
166                         ENUM_ID_COUNT);
167                 return false;
168         }
169
170         dm_output_to_console(
171                 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
172                 __func__,
173                 connectors_num,
174                 num_virtual_links);
175
176         for (i = 0; i < connectors_num; i++) {
177                 struct link_init_data link_init_params = {0};
178                 struct dc_link *link;
179
180                 link_init_params.ctx = dc->ctx;
181                 /* next BIOS object table connector */
182                 link_init_params.connector_index = i;
183                 link_init_params.link_index = dc->link_count;
184                 link_init_params.dc = dc;
185                 link = link_create(&link_init_params);
186
187                 if (link) {
188                         bool should_destory_link = false;
189
190                         if (link->connector_signal == SIGNAL_TYPE_EDP) {
191                                 if (dc->config.edp_not_connected) {
192                                         if (!IS_DIAG_DC(dc->ctx->dce_environment))
193                                                 should_destory_link = true;
194                                 } else {
195                                         enum dc_connection_type type;
196                                         dc_link_detect_sink(link, &type);
197                                         if (type == dc_connection_none)
198                                                 should_destory_link = true;
199                                 }
200                         }
201
202                         if (dc->config.force_enum_edp || !should_destory_link) {
203                                 dc->links[dc->link_count] = link;
204                                 link->dc = dc;
205                                 ++dc->link_count;
206                         } else {
207                                 link_destroy(&link);
208                         }
209                 }
210         }
211
212         for (i = 0; i < num_virtual_links; i++) {
213                 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214                 struct encoder_init_data enc_init = {0};
215
216                 if (link == NULL) {
217                         BREAK_TO_DEBUGGER();
218                         goto failed_alloc;
219                 }
220
221                 link->link_index = dc->link_count;
222                 dc->links[dc->link_count] = link;
223                 dc->link_count++;
224
225                 link->ctx = dc->ctx;
226                 link->dc = dc;
227                 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228                 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229                 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230                 link->link_id.enum_id = ENUM_ID_1;
231                 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233                 if (!link->link_enc) {
234                         BREAK_TO_DEBUGGER();
235                         goto failed_alloc;
236                 }
237
238                 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240                 enc_init.ctx = dc->ctx;
241                 enc_init.channel = CHANNEL_ID_UNKNOWN;
242                 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243                 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244                 enc_init.connector = link->link_id;
245                 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246                 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247                 enc_init.encoder.enum_id = ENUM_ID_1;
248                 virtual_link_encoder_construct(link->link_enc, &enc_init);
249         }
250
251         return true;
252
253 failed_alloc:
254         return false;
255 }
256
257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259         return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264         kfree(*perf_trace);
265         *perf_trace = NULL;
266 }
267
268 /**
269  *****************************************************************************
270  *  Function: dc_stream_adjust_vmin_vmax
271  *
272  *  @brief
273  *     Looks up the pipe context of dc_stream_state and updates the
274  *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275  *     Rate, which is a power-saving feature that targets reducing panel
276  *     refresh rate while the screen is static
277  *
278  *  @param [in] dc: dc reference
279  *  @param [in] stream: Initial dc stream state
280  *  @param [in] adjust: Updated parameters for vertical_total_min and
281  *  vertical_total_max
282  *****************************************************************************
283  */
284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285                 struct dc_stream_state *stream,
286                 struct dc_crtc_timing_adjust *adjust)
287 {
288         int i = 0;
289         bool ret = false;
290
291         stream->adjust = *adjust;
292
293         for (i = 0; i < MAX_PIPES; i++) {
294                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295
296                 if (pipe->stream == stream && pipe->stream_res.tg) {
297                         dc->hwss.set_drr(&pipe,
298                                         1,
299                                         adjust->v_total_min,
300                                         adjust->v_total_max,
301                                         adjust->v_total_mid,
302                                         adjust->v_total_mid_frame_num);
303
304                         ret = true;
305                 }
306         }
307         return ret;
308 }
309
310 bool dc_stream_get_crtc_position(struct dc *dc,
311                 struct dc_stream_state **streams, int num_streams,
312                 unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314         /* TODO: Support multiple streams */
315         const struct dc_stream_state *stream = streams[0];
316         int i = 0;
317         bool ret = false;
318         struct crtc_position position;
319
320         for (i = 0; i < MAX_PIPES; i++) {
321                 struct pipe_ctx *pipe =
322                                 &dc->current_state->res_ctx.pipe_ctx[i];
323
324                 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325                         dc->hwss.get_position(&pipe, 1, &position);
326
327                         *v_pos = position.vertical_count;
328                         *nom_v_pos = position.nominal_vcount;
329                         ret = true;
330                 }
331         }
332         return ret;
333 }
334
335 /**
336  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337  * @dc: DC Object
338  * @stream: The stream to configure CRC on.
339  * @enable: Enable CRC if true, disable otherwise.
340  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341  *              once.
342  *
343  * By default, only CRC0 is configured, and the entire frame is used to
344  * calculate the crc.
345  */
346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347                              bool enable, bool continuous)
348 {
349         int i;
350         struct pipe_ctx *pipe;
351         struct crc_params param;
352         struct timing_generator *tg;
353
354         for (i = 0; i < MAX_PIPES; i++) {
355                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356                 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357                         break;
358         }
359         /* Stream not found */
360         if (i == MAX_PIPES)
361                 return false;
362
363         /* Always capture the full frame */
364         param.windowa_x_start = 0;
365         param.windowa_y_start = 0;
366         param.windowa_x_end = pipe->stream->timing.h_addressable;
367         param.windowa_y_end = pipe->stream->timing.v_addressable;
368         param.windowb_x_start = 0;
369         param.windowb_y_start = 0;
370         param.windowb_x_end = pipe->stream->timing.h_addressable;
371         param.windowb_y_end = pipe->stream->timing.v_addressable;
372
373         param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374         param.odm_mode = pipe->next_odm_pipe ? 1:0;
375
376         /* Default to the union of both windows */
377         param.selection = UNION_WINDOW_A_B;
378         param.continuous_mode = continuous;
379         param.enable = enable;
380
381         tg = pipe->stream_res.tg;
382
383         /* Only call if supported */
384         if (tg->funcs->configure_crc)
385                 return tg->funcs->configure_crc(tg, &param);
386         DC_LOG_WARNING("CRC capture not supported.");
387         return false;
388 }
389
390 /**
391  * dc_stream_get_crc() - Get CRC values for the given stream.
392  * @dc: DC object
393  * @stream: The DC stream state of the stream to get CRCs from.
394  * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395  *
396  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397  * Return false if stream is not found, or if CRCs are not enabled.
398  */
399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400                        uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402         int i;
403         struct pipe_ctx *pipe;
404         struct timing_generator *tg;
405
406         for (i = 0; i < MAX_PIPES; i++) {
407                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408                 if (pipe->stream == stream)
409                         break;
410         }
411         /* Stream not found */
412         if (i == MAX_PIPES)
413                 return false;
414
415         tg = pipe->stream_res.tg;
416
417         if (tg->funcs->get_crc)
418                 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419         DC_LOG_WARNING("CRC capture not supported.");
420         return false;
421 }
422
423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424                 enum dc_dynamic_expansion option)
425 {
426         /* OPP FMT dyn expansion updates*/
427         int i = 0;
428         struct pipe_ctx *pipe_ctx;
429
430         for (i = 0; i < MAX_PIPES; i++) {
431                 if (dc->current_state->res_ctx.pipe_ctx[i].stream
432                                 == stream) {
433                         pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434                         pipe_ctx->stream_res.opp->dyn_expansion = option;
435                         pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436                                         pipe_ctx->stream_res.opp,
437                                         COLOR_SPACE_YCBCR601,
438                                         stream->timing.display_color_depth,
439                                         stream->signal);
440                 }
441         }
442 }
443
444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445                 enum dc_dither_option option)
446 {
447         struct bit_depth_reduction_params params;
448         struct dc_link *link = stream->link;
449         struct pipe_ctx *pipes = NULL;
450         int i;
451
452         for (i = 0; i < MAX_PIPES; i++) {
453                 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454                                 stream) {
455                         pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456                         break;
457                 }
458         }
459
460         if (!pipes)
461                 return;
462         if (option > DITHER_OPTION_MAX)
463                 return;
464
465         stream->dither_option = option;
466
467         memset(&params, 0, sizeof(params));
468         resource_build_bit_depth_reduction_params(stream, &params);
469         stream->bit_depth_params = params;
470
471         if (pipes->plane_res.xfm &&
472             pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473                 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474                         pipes->plane_res.xfm,
475                         pipes->plane_res.scl_data.lb_params.depth,
476                         &stream->bit_depth_params);
477         }
478
479         pipes->stream_res.opp->funcs->
480                 opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
481 }
482
483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485         int i = 0;
486         bool ret = false;
487         struct pipe_ctx *pipes;
488
489         for (i = 0; i < MAX_PIPES; i++) {
490                 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492                         dc->hwss.program_gamut_remap(pipes);
493                         ret = true;
494                 }
495         }
496
497         return ret;
498 }
499
500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502         int i = 0;
503         bool ret = false;
504         struct pipe_ctx *pipes;
505
506         for (i = 0; i < MAX_PIPES; i++) {
507                 if (dc->current_state->res_ctx.pipe_ctx[i].stream
508                                 == stream) {
509
510                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511                         dc->hwss.program_output_csc(dc,
512                                         pipes,
513                                         stream->output_color_space,
514                                         stream->csc_color_matrix.matrix,
515                                         pipes->stream_res.opp->inst);
516                         ret = true;
517                 }
518         }
519
520         return ret;
521 }
522
523 void dc_stream_set_static_screen_params(struct dc *dc,
524                 struct dc_stream_state **streams,
525                 int num_streams,
526                 const struct dc_static_screen_params *params)
527 {
528         int i = 0;
529         int j = 0;
530         struct pipe_ctx *pipes_affected[MAX_PIPES];
531         int num_pipes_affected = 0;
532
533         for (i = 0; i < num_streams; i++) {
534                 struct dc_stream_state *stream = streams[i];
535
536                 for (j = 0; j < MAX_PIPES; j++) {
537                         if (dc->current_state->res_ctx.pipe_ctx[j].stream
538                                         == stream) {
539                                 pipes_affected[num_pipes_affected++] =
540                                                 &dc->current_state->res_ctx.pipe_ctx[j];
541                         }
542                 }
543         }
544
545         dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547
548 static void dc_destruct(struct dc *dc)
549 {
550         if (dc->current_state) {
551                 dc_release_state(dc->current_state);
552                 dc->current_state = NULL;
553         }
554
555         destroy_links(dc);
556
557         if (dc->clk_mgr) {
558                 dc_destroy_clk_mgr(dc->clk_mgr);
559                 dc->clk_mgr = NULL;
560         }
561
562         dc_destroy_resource_pool(dc);
563
564         if (dc->ctx->gpio_service)
565                 dal_gpio_service_destroy(&dc->ctx->gpio_service);
566
567         if (dc->ctx->created_bios)
568                 dal_bios_parser_destroy(&dc->ctx->dc_bios);
569
570         dc_perf_trace_destroy(&dc->ctx->perf_trace);
571
572         kfree(dc->ctx);
573         dc->ctx = NULL;
574
575         kfree(dc->bw_vbios);
576         dc->bw_vbios = NULL;
577
578         kfree(dc->bw_dceip);
579         dc->bw_dceip = NULL;
580
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582         kfree(dc->dcn_soc);
583         dc->dcn_soc = NULL;
584
585         kfree(dc->dcn_ip);
586         dc->dcn_ip = NULL;
587
588 #endif
589         kfree(dc->vm_helper);
590         dc->vm_helper = NULL;
591
592 }
593
594 static bool dc_construct_ctx(struct dc *dc,
595                 const struct dc_init_data *init_params)
596 {
597         struct dc_context *dc_ctx;
598         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599
600         dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601         if (!dc_ctx)
602                 return false;
603
604         dc_ctx->cgs_device = init_params->cgs_device;
605         dc_ctx->driver_context = init_params->driver;
606         dc_ctx->dc = dc;
607         dc_ctx->asic_id = init_params->asic_id;
608         dc_ctx->dc_sink_id_count = 0;
609         dc_ctx->dc_stream_id_count = 0;
610         dc_ctx->dce_environment = init_params->dce_environment;
611
612         /* Create logger */
613
614         dc_version = resource_parse_asic_id(init_params->asic_id);
615         dc_ctx->dce_version = dc_version;
616
617         dc_ctx->perf_trace = dc_perf_trace_create();
618         if (!dc_ctx->perf_trace) {
619                 ASSERT_CRITICAL(false);
620                 return false;
621         }
622
623         dc->ctx = dc_ctx;
624
625         return true;
626 }
627
628 static bool dc_construct(struct dc *dc,
629                 const struct dc_init_data *init_params)
630 {
631         struct dc_context *dc_ctx;
632         struct bw_calcs_dceip *dc_dceip;
633         struct bw_calcs_vbios *dc_vbios;
634 #ifdef CONFIG_DRM_AMD_DC_DCN
635         struct dcn_soc_bounding_box *dcn_soc;
636         struct dcn_ip_params *dcn_ip;
637 #endif
638
639         dc->config = init_params->flags;
640
641         // Allocate memory for the vm_helper
642         dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
643         if (!dc->vm_helper) {
644                 dm_error("%s: failed to create dc->vm_helper\n", __func__);
645                 goto fail;
646         }
647
648         memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
649
650         dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
651         if (!dc_dceip) {
652                 dm_error("%s: failed to create dceip\n", __func__);
653                 goto fail;
654         }
655
656         dc->bw_dceip = dc_dceip;
657
658         dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
659         if (!dc_vbios) {
660                 dm_error("%s: failed to create vbios\n", __func__);
661                 goto fail;
662         }
663
664         dc->bw_vbios = dc_vbios;
665 #ifdef CONFIG_DRM_AMD_DC_DCN
666         dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
667         if (!dcn_soc) {
668                 dm_error("%s: failed to create dcn_soc\n", __func__);
669                 goto fail;
670         }
671
672         dc->dcn_soc = dcn_soc;
673
674         dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
675         if (!dcn_ip) {
676                 dm_error("%s: failed to create dcn_ip\n", __func__);
677                 goto fail;
678         }
679
680         dc->dcn_ip = dcn_ip;
681         dc->soc_bounding_box = init_params->soc_bounding_box;
682 #endif
683
684         if (!dc_construct_ctx(dc, init_params)) {
685                 dm_error("%s: failed to create ctx\n", __func__);
686                 goto fail;
687         }
688
689         dc_ctx = dc->ctx;
690
691         /* Resource should construct all asic specific resources.
692          * This should be the only place where we need to parse the asic id
693          */
694         if (init_params->vbios_override)
695                 dc_ctx->dc_bios = init_params->vbios_override;
696         else {
697                 /* Create BIOS parser */
698                 struct bp_init_data bp_init_data;
699
700                 bp_init_data.ctx = dc_ctx;
701                 bp_init_data.bios = init_params->asic_id.atombios_base_address;
702
703                 dc_ctx->dc_bios = dal_bios_parser_create(
704                                 &bp_init_data, dc_ctx->dce_version);
705
706                 if (!dc_ctx->dc_bios) {
707                         ASSERT_CRITICAL(false);
708                         goto fail;
709                 }
710
711                 dc_ctx->created_bios = true;
712         }
713
714         dc->vendor_signature = init_params->vendor_signature;
715
716         /* Create GPIO service */
717         dc_ctx->gpio_service = dal_gpio_service_create(
718                         dc_ctx->dce_version,
719                         dc_ctx->dce_environment,
720                         dc_ctx);
721
722         if (!dc_ctx->gpio_service) {
723                 ASSERT_CRITICAL(false);
724                 goto fail;
725         }
726
727         dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
728         if (!dc->res_pool)
729                 goto fail;
730
731         dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
732         if (!dc->clk_mgr)
733                 goto fail;
734 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
735         dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
736 #endif
737
738         dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
739
740         if (dc->res_pool->funcs->update_bw_bounding_box)
741                 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
742
743         /* Creation of current_state must occur after dc->dml
744          * is initialized in dc_create_resource_pool because
745          * on creation it copies the contents of dc->dml
746          */
747
748         dc->current_state = dc_create_state(dc);
749
750         if (!dc->current_state) {
751                 dm_error("%s: failed to create validate ctx\n", __func__);
752                 goto fail;
753         }
754
755         dc_resource_state_construct(dc, dc->current_state);
756
757         if (!create_links(dc, init_params->num_virtual_links))
758                 goto fail;
759
760         return true;
761
762 fail:
763         return false;
764 }
765
766 static bool disable_all_writeback_pipes_for_stream(
767                 const struct dc *dc,
768                 struct dc_stream_state *stream,
769                 struct dc_state *context)
770 {
771         int i;
772
773         for (i = 0; i < stream->num_wb_info; i++)
774                 stream->writeback_info[i].wb_enabled = false;
775
776         return true;
777 }
778
779 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
780 {
781         int i = 0;
782
783         /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
784         if (dc->hwss.interdependent_update_lock)
785                 dc->hwss.interdependent_update_lock(dc, context, lock);
786         else {
787                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
788                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
789                         struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
790
791                         // Copied conditions that were previously in dce110_apply_ctx_for_surface
792                         if (stream == pipe_ctx->stream) {
793                                 if (!pipe_ctx->top_pipe &&
794                                         (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
795                                         dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
796                         }
797                 }
798         }
799 }
800
801 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
802 {
803         int i, j;
804         struct dc_state *dangling_context = dc_create_state(dc);
805         struct dc_state *current_ctx;
806
807         if (dangling_context == NULL)
808                 return;
809
810         dc_resource_state_copy_construct(dc->current_state, dangling_context);
811
812         for (i = 0; i < dc->res_pool->pipe_count; i++) {
813                 struct dc_stream_state *old_stream =
814                                 dc->current_state->res_ctx.pipe_ctx[i].stream;
815                 bool should_disable = true;
816
817                 for (j = 0; j < context->stream_count; j++) {
818                         if (old_stream == context->streams[j]) {
819                                 should_disable = false;
820                                 break;
821                         }
822                 }
823                 if (should_disable && old_stream) {
824                         dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
825                         disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
826
827                         if (dc->hwss.apply_ctx_for_surface) {
828                                 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
829                                 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
830                                 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
831                                 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
832                         }
833                         if (dc->hwss.program_front_end_for_ctx) {
834                                 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
835                                 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
836                                 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
837                                 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
838                         }
839                 }
840         }
841
842         current_ctx = dc->current_state;
843         dc->current_state = dangling_context;
844         dc_release_state(current_ctx);
845 }
846
847 static void disable_vbios_mode_if_required(
848                 struct dc *dc,
849                 struct dc_state *context)
850 {
851         unsigned int i, j;
852
853         /* check if timing_changed, disable stream*/
854         for (i = 0; i < dc->res_pool->pipe_count; i++) {
855                 struct dc_stream_state *stream = NULL;
856                 struct dc_link *link = NULL;
857                 struct pipe_ctx *pipe = NULL;
858
859                 pipe = &context->res_ctx.pipe_ctx[i];
860                 stream = pipe->stream;
861                 if (stream == NULL)
862                         continue;
863
864                 if (stream->link->local_sink &&
865                         stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
866                         link = stream->link;
867                 }
868
869                 if (link != NULL) {
870                         unsigned int enc_inst, tg_inst = 0;
871                         unsigned int pix_clk_100hz;
872
873                         enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
874                         if (enc_inst != ENGINE_ID_UNKNOWN) {
875                                 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
876                                         if (dc->res_pool->stream_enc[j]->id == enc_inst) {
877                                                 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
878                                                         dc->res_pool->stream_enc[j]);
879                                                 break;
880                                         }
881                                 }
882
883                                 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
884                                         dc->res_pool->dp_clock_source,
885                                         tg_inst, &pix_clk_100hz);
886
887                                 if (link->link_status.link_active) {
888                                         uint32_t requested_pix_clk_100hz =
889                                                 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
890
891                                         if (pix_clk_100hz != requested_pix_clk_100hz) {
892                                                 core_link_disable_stream(pipe);
893                                                 pipe->stream->dpms_off = false;
894                                         }
895                                 }
896                         }
897                 }
898         }
899 }
900
901 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
902 {
903         int i;
904         PERF_TRACE();
905         for (i = 0; i < MAX_PIPES; i++) {
906                 int count = 0;
907                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
908
909                 if (!pipe->plane_state)
910                         continue;
911
912                 /* Timeout 100 ms */
913                 while (count < 100000) {
914                         /* Must set to false to start with, due to OR in update function */
915                         pipe->plane_state->status.is_flip_pending = false;
916                         dc->hwss.update_pending_status(pipe);
917                         if (!pipe->plane_state->status.is_flip_pending)
918                                 break;
919                         udelay(1);
920                         count++;
921                 }
922                 ASSERT(!pipe->plane_state->status.is_flip_pending);
923         }
924         PERF_TRACE();
925 }
926
927 /*******************************************************************************
928  * Public functions
929  ******************************************************************************/
930
931 struct dc *dc_create(const struct dc_init_data *init_params)
932 {
933         struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
934         unsigned int full_pipe_count;
935
936         if (NULL == dc)
937                 goto alloc_fail;
938
939         if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
940                 if (false == dc_construct_ctx(dc, init_params)) {
941                         dc_destruct(dc);
942                         goto construct_fail;
943                 }
944         } else {
945                 if (false == dc_construct(dc, init_params)) {
946                         dc_destruct(dc);
947                         goto construct_fail;
948                 }
949
950                 full_pipe_count = dc->res_pool->pipe_count;
951                 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
952                         full_pipe_count--;
953                 dc->caps.max_streams = min(
954                                 full_pipe_count,
955                                 dc->res_pool->stream_enc_count);
956
957                 dc->optimize_seamless_boot_streams = 0;
958                 dc->caps.max_links = dc->link_count;
959                 dc->caps.max_audios = dc->res_pool->audio_count;
960                 dc->caps.linear_pitch_alignment = 64;
961
962                 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
963
964                 if (dc->res_pool->dmcu != NULL)
965                         dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
966         }
967
968         /* Populate versioning information */
969         dc->versions.dc_ver = DC_VER;
970
971         dc->build_id = DC_BUILD_ID;
972
973         DC_LOG_DC("Display Core initialized\n");
974
975
976
977         return dc;
978
979 construct_fail:
980         kfree(dc);
981
982 alloc_fail:
983         return NULL;
984 }
985
986 void dc_hardware_init(struct dc *dc)
987 {
988         if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
989                 dc->hwss.init_hw(dc);
990 }
991
992 void dc_init_callbacks(struct dc *dc,
993                 const struct dc_callback_init *init_params)
994 {
995 #ifdef CONFIG_DRM_AMD_DC_HDCP
996         dc->ctx->cp_psp = init_params->cp_psp;
997 #endif
998 }
999
1000 void dc_deinit_callbacks(struct dc *dc)
1001 {
1002 #ifdef CONFIG_DRM_AMD_DC_HDCP
1003         memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1004 #endif
1005 }
1006
1007 void dc_destroy(struct dc **dc)
1008 {
1009         dc_destruct(*dc);
1010         kfree(*dc);
1011         *dc = NULL;
1012 }
1013
1014 static void enable_timing_multisync(
1015                 struct dc *dc,
1016                 struct dc_state *ctx)
1017 {
1018         int i = 0, multisync_count = 0;
1019         int pipe_count = dc->res_pool->pipe_count;
1020         struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1021
1022         for (i = 0; i < pipe_count; i++) {
1023                 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1024                                 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1025                         continue;
1026                 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1027                         continue;
1028                 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1029                 multisync_count++;
1030         }
1031
1032         if (multisync_count > 0) {
1033                 dc->hwss.enable_per_frame_crtc_position_reset(
1034                         dc, multisync_count, multisync_pipes);
1035         }
1036 }
1037
1038 static void program_timing_sync(
1039                 struct dc *dc,
1040                 struct dc_state *ctx)
1041 {
1042         int i, j, k;
1043         int group_index = 0;
1044         int num_group = 0;
1045         int pipe_count = dc->res_pool->pipe_count;
1046         struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1047
1048         for (i = 0; i < pipe_count; i++) {
1049                 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1050                         continue;
1051
1052                 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1053         }
1054
1055         for (i = 0; i < pipe_count; i++) {
1056                 int group_size = 1;
1057                 struct pipe_ctx *pipe_set[MAX_PIPES];
1058
1059                 if (!unsynced_pipes[i])
1060                         continue;
1061
1062                 pipe_set[0] = unsynced_pipes[i];
1063                 unsynced_pipes[i] = NULL;
1064
1065                 /* Add tg to the set, search rest of the tg's for ones with
1066                  * same timing, add all tgs with same timing to the group
1067                  */
1068                 for (j = i + 1; j < pipe_count; j++) {
1069                         if (!unsynced_pipes[j])
1070                                 continue;
1071
1072                         if (resource_are_streams_timing_synchronizable(
1073                                         unsynced_pipes[j]->stream,
1074                                         pipe_set[0]->stream)) {
1075                                 pipe_set[group_size] = unsynced_pipes[j];
1076                                 unsynced_pipes[j] = NULL;
1077                                 group_size++;
1078                         }
1079                 }
1080
1081                 /* set first unblanked pipe as master */
1082                 for (j = 0; j < group_size; j++) {
1083                         bool is_blanked;
1084
1085                         if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1086                                 is_blanked =
1087                                         pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1088                         else
1089                                 is_blanked =
1090                                         pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1091                         if (!is_blanked) {
1092                                 if (j == 0)
1093                                         break;
1094
1095                                 swap(pipe_set[0], pipe_set[j]);
1096                                 break;
1097                         }
1098                 }
1099
1100
1101                 for (k = 0; k < group_size; k++) {
1102                         struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1103
1104                         status->timing_sync_info.group_id = num_group;
1105                         status->timing_sync_info.group_size = group_size;
1106                         if (k == 0)
1107                                 status->timing_sync_info.master = true;
1108                         else
1109                                 status->timing_sync_info.master = false;
1110
1111                 }
1112                 /* remove any other unblanked pipes as they have already been synced */
1113                 for (j = j + 1; j < group_size; j++) {
1114                         bool is_blanked;
1115
1116                         if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1117                                 is_blanked =
1118                                         pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1119                         else
1120                                 is_blanked =
1121                                         pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1122                         if (!is_blanked) {
1123                                 group_size--;
1124                                 pipe_set[j] = pipe_set[group_size];
1125                                 j--;
1126                         }
1127                 }
1128
1129                 if (group_size > 1) {
1130                         dc->hwss.enable_timing_synchronization(
1131                                 dc, group_index, group_size, pipe_set);
1132                         group_index++;
1133                 }
1134                 num_group++;
1135         }
1136 }
1137
1138 static bool context_changed(
1139                 struct dc *dc,
1140                 struct dc_state *context)
1141 {
1142         uint8_t i;
1143
1144         if (context->stream_count != dc->current_state->stream_count)
1145                 return true;
1146
1147         for (i = 0; i < dc->current_state->stream_count; i++) {
1148                 if (dc->current_state->streams[i] != context->streams[i])
1149                         return true;
1150         }
1151
1152         return false;
1153 }
1154
1155 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1156                                 const struct dc_sink *sink,
1157                                 struct dc_crtc_timing *crtc_timing)
1158 {
1159         struct timing_generator *tg;
1160         struct stream_encoder *se = NULL;
1161
1162         struct dc_crtc_timing hw_crtc_timing = {0};
1163
1164         struct dc_link *link = sink->link;
1165         unsigned int i, enc_inst, tg_inst = 0;
1166
1167         // Seamless port only support single DP and EDP so far
1168         if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1169                 sink->sink_signal != SIGNAL_TYPE_EDP)
1170                 return false;
1171
1172         /* Check for enabled DIG to identify enabled display */
1173         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1174                 return false;
1175
1176         enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1177
1178         if (enc_inst == ENGINE_ID_UNKNOWN)
1179                 return false;
1180
1181         for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1182                 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1183
1184                         se = dc->res_pool->stream_enc[i];
1185
1186                         tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1187                                 dc->res_pool->stream_enc[i]);
1188                         break;
1189                 }
1190         }
1191
1192         // tg_inst not found
1193         if (i == dc->res_pool->stream_enc_count)
1194                 return false;
1195
1196         if (tg_inst >= dc->res_pool->timing_generator_count)
1197                 return false;
1198
1199         tg = dc->res_pool->timing_generators[tg_inst];
1200
1201         if (!tg->funcs->get_hw_timing)
1202                 return false;
1203
1204         if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1205                 return false;
1206
1207         if (crtc_timing->h_total != hw_crtc_timing.h_total)
1208                 return false;
1209
1210         if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1211                 return false;
1212
1213         if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1214                 return false;
1215
1216         if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1217                 return false;
1218
1219         if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1220                 return false;
1221
1222         if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1223                 return false;
1224
1225         if (crtc_timing->v_total != hw_crtc_timing.v_total)
1226                 return false;
1227
1228         if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1229                 return false;
1230
1231         if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1232                 return false;
1233
1234         if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1235                 return false;
1236
1237         if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1238                 return false;
1239
1240         if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1241                 return false;
1242
1243         if (dc_is_dp_signal(link->connector_signal)) {
1244                 unsigned int pix_clk_100hz;
1245
1246                 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247                         dc->res_pool->dp_clock_source,
1248                         tg_inst, &pix_clk_100hz);
1249
1250                 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1251                         return false;
1252
1253                 if (!se->funcs->dp_get_pixel_format)
1254                         return false;
1255
1256                 if (!se->funcs->dp_get_pixel_format(
1257                         se,
1258                         &hw_crtc_timing.pixel_encoding,
1259                         &hw_crtc_timing.display_color_depth))
1260                         return false;
1261
1262                 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1263                         return false;
1264
1265                 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1266                         return false;
1267         }
1268
1269         return true;
1270 }
1271
1272 bool dc_enable_stereo(
1273         struct dc *dc,
1274         struct dc_state *context,
1275         struct dc_stream_state *streams[],
1276         uint8_t stream_count)
1277 {
1278         bool ret = true;
1279         int i, j;
1280         struct pipe_ctx *pipe;
1281
1282         for (i = 0; i < MAX_PIPES; i++) {
1283                 if (context != NULL)
1284                         pipe = &context->res_ctx.pipe_ctx[i];
1285                 else
1286                         pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1287                 for (j = 0 ; pipe && j < stream_count; j++)  {
1288                         if (streams[j] && streams[j] == pipe->stream &&
1289                                 dc->hwss.setup_stereo)
1290                                 dc->hwss.setup_stereo(pipe, dc);
1291                 }
1292         }
1293
1294         return ret;
1295 }
1296
1297 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1298 {
1299         if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1300                 enable_timing_multisync(dc, context);
1301                 program_timing_sync(dc, context);
1302         }
1303 }
1304
1305 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1306 {
1307         int i;
1308         unsigned int stream_mask = 0;
1309
1310         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1311                 if (context->res_ctx.pipe_ctx[i].stream)
1312                         stream_mask |= 1 << i;
1313         }
1314
1315         return stream_mask;
1316 }
1317
1318 /*
1319  * Applies given context to HW and copy it into current context.
1320  * It's up to the user to release the src context afterwards.
1321  */
1322 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1323 {
1324         struct dc_bios *dcb = dc->ctx->dc_bios;
1325         enum dc_status result = DC_ERROR_UNEXPECTED;
1326         struct pipe_ctx *pipe;
1327         int i, k, l;
1328         struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1329
1330 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1331         dc_allow_idle_optimizations(dc, false);
1332 #endif
1333
1334         for (i = 0; i < context->stream_count; i++)
1335                 dc_streams[i] =  context->streams[i];
1336
1337         if (!dcb->funcs->is_accelerated_mode(dcb)) {
1338                 disable_vbios_mode_if_required(dc, context);
1339                 dc->hwss.enable_accelerated_mode(dc, context);
1340         }
1341
1342         for (i = 0; i < context->stream_count; i++)
1343                 if (context->streams[i]->apply_seamless_boot_optimization)
1344                         dc->optimize_seamless_boot_streams++;
1345
1346         if (context->stream_count > dc->optimize_seamless_boot_streams ||
1347                 context->stream_count == 0)
1348                 dc->hwss.prepare_bandwidth(dc, context);
1349
1350         disable_dangling_plane(dc, context);
1351         /* re-program planes for existing stream, in case we need to
1352          * free up plane resource for later use
1353          */
1354         if (dc->hwss.apply_ctx_for_surface) {
1355                 for (i = 0; i < context->stream_count; i++) {
1356                         if (context->streams[i]->mode_changed)
1357                                 continue;
1358                         apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1359                         dc->hwss.apply_ctx_for_surface(
1360                                 dc, context->streams[i],
1361                                 context->stream_status[i].plane_count,
1362                                 context); /* use new pipe config in new context */
1363                         apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1364                         dc->hwss.post_unlock_program_front_end(dc, context);
1365                 }
1366         }
1367
1368         /* Program hardware */
1369         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1370                 pipe = &context->res_ctx.pipe_ctx[i];
1371                 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1372         }
1373
1374         result = dc->hwss.apply_ctx_to_hw(dc, context);
1375
1376         if (result != DC_OK)
1377                 return result;
1378
1379         dc_trigger_sync(dc, context);
1380
1381         /* Program all planes within new context*/
1382         if (dc->hwss.program_front_end_for_ctx) {
1383                 dc->hwss.interdependent_update_lock(dc, context, true);
1384                 dc->hwss.program_front_end_for_ctx(dc, context);
1385                 dc->hwss.interdependent_update_lock(dc, context, false);
1386                 dc->hwss.post_unlock_program_front_end(dc, context);
1387         }
1388         for (i = 0; i < context->stream_count; i++) {
1389                 const struct dc_link *link = context->streams[i]->link;
1390
1391                 if (!context->streams[i]->mode_changed)
1392                         continue;
1393
1394                 if (dc->hwss.apply_ctx_for_surface) {
1395                         apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1396                         dc->hwss.apply_ctx_for_surface(
1397                                         dc, context->streams[i],
1398                                         context->stream_status[i].plane_count,
1399                                         context);
1400                         apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1401                         dc->hwss.post_unlock_program_front_end(dc, context);
1402                 }
1403
1404                 /*
1405                  * enable stereo
1406                  * TODO rework dc_enable_stereo call to work with validation sets?
1407                  */
1408                 for (k = 0; k < MAX_PIPES; k++) {
1409                         pipe = &context->res_ctx.pipe_ctx[k];
1410
1411                         for (l = 0 ; pipe && l < context->stream_count; l++)  {
1412                                 if (context->streams[l] &&
1413                                         context->streams[l] == pipe->stream &&
1414                                         dc->hwss.setup_stereo)
1415                                         dc->hwss.setup_stereo(pipe, dc);
1416                         }
1417                 }
1418
1419                 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1420                                 context->streams[i]->timing.h_addressable,
1421                                 context->streams[i]->timing.v_addressable,
1422                                 context->streams[i]->timing.h_total,
1423                                 context->streams[i]->timing.v_total,
1424                                 context->streams[i]->timing.pix_clk_100hz / 10);
1425         }
1426
1427         dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1428
1429         if (context->stream_count > dc->optimize_seamless_boot_streams ||
1430                 context->stream_count == 0) {
1431                 /* Must wait for no flips to be pending before doing optimize bw */
1432                 wait_for_no_pipes_pending(dc, context);
1433                 /* pplib is notified if disp_num changed */
1434                 dc->hwss.optimize_bandwidth(dc, context);
1435         }
1436
1437         context->stream_mask = get_stream_mask(dc, context);
1438
1439         if (context->stream_mask != dc->current_state->stream_mask)
1440                 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1441
1442         for (i = 0; i < context->stream_count; i++)
1443                 context->streams[i]->mode_changed = false;
1444
1445         dc_release_state(dc->current_state);
1446
1447         dc->current_state = context;
1448
1449         dc_retain_state(dc->current_state);
1450
1451         return result;
1452 }
1453
1454 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1455 {
1456         enum dc_status result = DC_ERROR_UNEXPECTED;
1457         int i;
1458
1459         if (false == context_changed(dc, context))
1460                 return DC_OK;
1461
1462         DC_LOG_DC("%s: %d streams\n",
1463                                 __func__, context->stream_count);
1464
1465         for (i = 0; i < context->stream_count; i++) {
1466                 struct dc_stream_state *stream = context->streams[i];
1467
1468                 dc_stream_log(dc, stream);
1469         }
1470
1471         result = dc_commit_state_no_check(dc, context);
1472
1473         return (result == DC_OK);
1474 }
1475
1476 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1477 bool dc_acquire_release_mpc_3dlut(
1478                 struct dc *dc, bool acquire,
1479                 struct dc_stream_state *stream,
1480                 struct dc_3dlut **lut,
1481                 struct dc_transfer_func **shaper)
1482 {
1483         int pipe_idx;
1484         bool ret = false;
1485         bool found_pipe_idx = false;
1486         const struct resource_pool *pool = dc->res_pool;
1487         struct resource_context *res_ctx = &dc->current_state->res_ctx;
1488         int mpcc_id = 0;
1489
1490         if (pool && res_ctx) {
1491                 if (acquire) {
1492                         /*find pipe idx for the given stream*/
1493                         for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1494                                 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1495                                         found_pipe_idx = true;
1496                                         mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1497                                         break;
1498                                 }
1499                         }
1500                 } else
1501                         found_pipe_idx = true;/*for release pipe_idx is not required*/
1502
1503                 if (found_pipe_idx) {
1504                         if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1505                                 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1506                         else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1507                                 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1508                 }
1509         }
1510         return ret;
1511 }
1512 #endif
1513 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1514 {
1515         int i;
1516         struct pipe_ctx *pipe;
1517
1518         for (i = 0; i < MAX_PIPES; i++) {
1519                 pipe = &context->res_ctx.pipe_ctx[i];
1520
1521                 if (!pipe->plane_state)
1522                         continue;
1523
1524                 /* Must set to false to start with, due to OR in update function */
1525                 pipe->plane_state->status.is_flip_pending = false;
1526                 dc->hwss.update_pending_status(pipe);
1527                 if (pipe->plane_state->status.is_flip_pending)
1528                         return true;
1529         }
1530         return false;
1531 }
1532
1533 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1534 {
1535         int i;
1536         struct dc_state *context = dc->current_state;
1537
1538         if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1539                 return true;
1540
1541         post_surface_trace(dc);
1542
1543         if (is_flip_pending_in_pipes(dc, context))
1544                 return true;
1545
1546         for (i = 0; i < dc->res_pool->pipe_count; i++)
1547                 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1548                     context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1549                         context->res_ctx.pipe_ctx[i].pipe_idx = i;
1550                         dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1551                 }
1552
1553         dc->hwss.optimize_bandwidth(dc, context);
1554
1555         dc->optimized_required = false;
1556         dc->wm_optimized_required = false;
1557
1558         return true;
1559 }
1560
1561 static void init_state(struct dc *dc, struct dc_state *context)
1562 {
1563         /* Each context must have their own instance of VBA and in order to
1564          * initialize and obtain IP and SOC the base DML instance from DC is
1565          * initially copied into every context
1566          */
1567 #ifdef CONFIG_DRM_AMD_DC_DCN
1568         memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1569 #endif
1570 }
1571
1572 struct dc_state *dc_create_state(struct dc *dc)
1573 {
1574         struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1575                                             GFP_KERNEL);
1576
1577         if (!context)
1578                 return NULL;
1579
1580         init_state(dc, context);
1581
1582         kref_init(&context->refcount);
1583
1584         return context;
1585 }
1586
1587 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1588 {
1589         int i, j;
1590         struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1591
1592         if (!new_ctx)
1593                 return NULL;
1594         memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1595
1596         for (i = 0; i < MAX_PIPES; i++) {
1597                         struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1598
1599                         if (cur_pipe->top_pipe)
1600                                 cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1601
1602                         if (cur_pipe->bottom_pipe)
1603                                 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1604
1605                         if (cur_pipe->prev_odm_pipe)
1606                                 cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1607
1608                         if (cur_pipe->next_odm_pipe)
1609                                 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1610
1611         }
1612
1613         for (i = 0; i < new_ctx->stream_count; i++) {
1614                         dc_stream_retain(new_ctx->streams[i]);
1615                         for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1616                                 dc_plane_state_retain(
1617                                         new_ctx->stream_status[i].plane_states[j]);
1618         }
1619
1620         kref_init(&new_ctx->refcount);
1621
1622         return new_ctx;
1623 }
1624
1625 void dc_retain_state(struct dc_state *context)
1626 {
1627         kref_get(&context->refcount);
1628 }
1629
1630 static void dc_state_free(struct kref *kref)
1631 {
1632         struct dc_state *context = container_of(kref, struct dc_state, refcount);
1633         dc_resource_state_destruct(context);
1634         kvfree(context);
1635 }
1636
1637 void dc_release_state(struct dc_state *context)
1638 {
1639         kref_put(&context->refcount, dc_state_free);
1640 }
1641
1642 bool dc_set_generic_gpio_for_stereo(bool enable,
1643                 struct gpio_service *gpio_service)
1644 {
1645         enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1646         struct gpio_pin_info pin_info;
1647         struct gpio *generic;
1648         struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1649                            GFP_KERNEL);
1650
1651         if (!config)
1652                 return false;
1653         pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1654
1655         if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1656                 kfree(config);
1657                 return false;
1658         } else {
1659                 generic = dal_gpio_service_create_generic_mux(
1660                         gpio_service,
1661                         pin_info.offset,
1662                         pin_info.mask);
1663         }
1664
1665         if (!generic) {
1666                 kfree(config);
1667                 return false;
1668         }
1669
1670         gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1671
1672         config->enable_output_from_mux = enable;
1673         config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1674
1675         if (gpio_result == GPIO_RESULT_OK)
1676                 gpio_result = dal_mux_setup_config(generic, config);
1677
1678         if (gpio_result == GPIO_RESULT_OK) {
1679                 dal_gpio_close(generic);
1680                 dal_gpio_destroy_generic_mux(&generic);
1681                 kfree(config);
1682                 return true;
1683         } else {
1684                 dal_gpio_close(generic);
1685                 dal_gpio_destroy_generic_mux(&generic);
1686                 kfree(config);
1687                 return false;
1688         }
1689 }
1690
1691 static bool is_surface_in_context(
1692                 const struct dc_state *context,
1693                 const struct dc_plane_state *plane_state)
1694 {
1695         int j;
1696
1697         for (j = 0; j < MAX_PIPES; j++) {
1698                 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1699
1700                 if (plane_state == pipe_ctx->plane_state) {
1701                         return true;
1702                 }
1703         }
1704
1705         return false;
1706 }
1707
1708 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1709 {
1710         union surface_update_flags *update_flags = &u->surface->update_flags;
1711         enum surface_update_type update_type = UPDATE_TYPE_FAST;
1712
1713         if (!u->plane_info)
1714                 return UPDATE_TYPE_FAST;
1715
1716         if (u->plane_info->color_space != u->surface->color_space) {
1717                 update_flags->bits.color_space_change = 1;
1718                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1719         }
1720
1721         if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1722                 update_flags->bits.horizontal_mirror_change = 1;
1723                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1724         }
1725
1726         if (u->plane_info->rotation != u->surface->rotation) {
1727                 update_flags->bits.rotation_change = 1;
1728                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1729         }
1730
1731         if (u->plane_info->format != u->surface->format) {
1732                 update_flags->bits.pixel_format_change = 1;
1733                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1734         }
1735
1736         if (u->plane_info->stereo_format != u->surface->stereo_format) {
1737                 update_flags->bits.stereo_format_change = 1;
1738                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1739         }
1740
1741         if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1742                 update_flags->bits.per_pixel_alpha_change = 1;
1743                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1744         }
1745
1746         if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1747                 update_flags->bits.global_alpha_change = 1;
1748                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1749         }
1750
1751         if (u->plane_info->dcc.enable != u->surface->dcc.enable
1752                         || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1753                         || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1754                 update_flags->bits.dcc_change = 1;
1755                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1756         }
1757
1758         if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1759                         resource_pixel_format_to_bpp(u->surface->format)) {
1760                 /* different bytes per element will require full bandwidth
1761                  * and DML calculation
1762                  */
1763                 update_flags->bits.bpp_change = 1;
1764                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1765         }
1766
1767         if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1768                         || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1769                 update_flags->bits.plane_size_change = 1;
1770                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1771         }
1772
1773
1774         if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1775                         sizeof(union dc_tiling_info)) != 0) {
1776                 update_flags->bits.swizzle_change = 1;
1777                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1778
1779                 /* todo: below are HW dependent, we should add a hook to
1780                  * DCE/N resource and validated there.
1781                  */
1782                 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1783                         /* swizzled mode requires RQ to be setup properly,
1784                          * thus need to run DML to calculate RQ settings
1785                          */
1786                         update_flags->bits.bandwidth_change = 1;
1787                         elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1788                 }
1789         }
1790
1791         /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1792         return update_type;
1793 }
1794
1795 static enum surface_update_type get_scaling_info_update_type(
1796                 const struct dc_surface_update *u)
1797 {
1798         union surface_update_flags *update_flags = &u->surface->update_flags;
1799
1800         if (!u->scaling_info)
1801                 return UPDATE_TYPE_FAST;
1802
1803         if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1804                         || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1805                         || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1806                         || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1807                         || u->scaling_info->scaling_quality.integer_scaling !=
1808                                 u->surface->scaling_quality.integer_scaling
1809                         ) {
1810                 update_flags->bits.scaling_change = 1;
1811
1812                 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1813                         || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1814                                 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1815                                         || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1816                         /* Making dst rect smaller requires a bandwidth change */
1817                         update_flags->bits.bandwidth_change = 1;
1818         }
1819
1820         if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1821                 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1822
1823                 update_flags->bits.scaling_change = 1;
1824                 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1825                                 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1826                         /* Making src rect bigger requires a bandwidth change */
1827                         update_flags->bits.clock_change = 1;
1828         }
1829
1830         if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1831                         || u->scaling_info->src_rect.y != u->surface->src_rect.y
1832                         || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1833                         || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1834                         || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1835                         || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1836                 update_flags->bits.position_change = 1;
1837
1838         if (update_flags->bits.clock_change
1839                         || update_flags->bits.bandwidth_change
1840                         || update_flags->bits.scaling_change)
1841                 return UPDATE_TYPE_FULL;
1842
1843         if (update_flags->bits.position_change)
1844                 return UPDATE_TYPE_MED;
1845
1846         return UPDATE_TYPE_FAST;
1847 }
1848
1849 static enum surface_update_type det_surface_update(const struct dc *dc,
1850                 const struct dc_surface_update *u)
1851 {
1852         const struct dc_state *context = dc->current_state;
1853         enum surface_update_type type;
1854         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1855         union surface_update_flags *update_flags = &u->surface->update_flags;
1856
1857         if (u->flip_addr)
1858                 update_flags->bits.addr_update = 1;
1859
1860         if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1861                 update_flags->raw = 0xFFFFFFFF;
1862                 return UPDATE_TYPE_FULL;
1863         }
1864
1865         update_flags->raw = 0; // Reset all flags
1866
1867         type = get_plane_info_update_type(u);
1868         elevate_update_type(&overall_type, type);
1869
1870         type = get_scaling_info_update_type(u);
1871         elevate_update_type(&overall_type, type);
1872
1873         if (u->flip_addr)
1874                 update_flags->bits.addr_update = 1;
1875
1876         if (u->in_transfer_func)
1877                 update_flags->bits.in_transfer_func_change = 1;
1878
1879         if (u->input_csc_color_matrix)
1880                 update_flags->bits.input_csc_change = 1;
1881
1882         if (u->coeff_reduction_factor)
1883                 update_flags->bits.coeff_reduction_change = 1;
1884
1885         if (u->gamut_remap_matrix)
1886                 update_flags->bits.gamut_remap_change = 1;
1887
1888         if (u->gamma) {
1889                 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1890
1891                 if (u->plane_info)
1892                         format = u->plane_info->format;
1893                 else if (u->surface)
1894                         format = u->surface->format;
1895
1896                 if (dce_use_lut(format))
1897                         update_flags->bits.gamma_change = 1;
1898         }
1899
1900         if (u->hdr_mult.value)
1901                 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1902                         update_flags->bits.hdr_mult = 1;
1903                         elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1904                 }
1905
1906         if (update_flags->bits.in_transfer_func_change) {
1907                 type = UPDATE_TYPE_MED;
1908                 elevate_update_type(&overall_type, type);
1909         }
1910
1911         if (update_flags->bits.input_csc_change
1912                         || update_flags->bits.coeff_reduction_change
1913                         || update_flags->bits.gamma_change
1914                         || update_flags->bits.gamut_remap_change) {
1915                 type = UPDATE_TYPE_FULL;
1916                 elevate_update_type(&overall_type, type);
1917         }
1918
1919         return overall_type;
1920 }
1921
1922 static enum surface_update_type check_update_surfaces_for_stream(
1923                 struct dc *dc,
1924                 struct dc_surface_update *updates,
1925                 int surface_count,
1926                 struct dc_stream_update *stream_update,
1927                 const struct dc_stream_status *stream_status)
1928 {
1929         int i;
1930         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1931
1932 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1933         if (dc->idle_optimizations_allowed)
1934                 overall_type = UPDATE_TYPE_FULL;
1935
1936 #endif
1937         if (stream_status == NULL || stream_status->plane_count != surface_count)
1938                 overall_type = UPDATE_TYPE_FULL;
1939
1940         /* some stream updates require passive update */
1941         if (stream_update) {
1942                 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1943
1944                 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1945                         (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1946                         stream_update->integer_scaling_update)
1947                         su_flags->bits.scaling = 1;
1948
1949                 if (stream_update->out_transfer_func)
1950                         su_flags->bits.out_tf = 1;
1951
1952                 if (stream_update->abm_level)
1953                         su_flags->bits.abm_level = 1;
1954
1955                 if (stream_update->dpms_off)
1956                         su_flags->bits.dpms_off = 1;
1957
1958                 if (stream_update->gamut_remap)
1959                         su_flags->bits.gamut_remap = 1;
1960
1961                 if (stream_update->wb_update)
1962                         su_flags->bits.wb_update = 1;
1963
1964                 if (stream_update->dsc_config)
1965                         su_flags->bits.dsc_changed = 1;
1966
1967                 if (su_flags->raw != 0)
1968                         overall_type = UPDATE_TYPE_FULL;
1969
1970                 if (stream_update->output_csc_transform || stream_update->output_color_space)
1971                         su_flags->bits.out_csc = 1;
1972         }
1973
1974         for (i = 0 ; i < surface_count; i++) {
1975                 enum surface_update_type type =
1976                                 det_surface_update(dc, &updates[i]);
1977
1978                 elevate_update_type(&overall_type, type);
1979         }
1980
1981         return overall_type;
1982 }
1983
1984 /**
1985  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1986  *
1987  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1988  */
1989 enum surface_update_type dc_check_update_surfaces_for_stream(
1990                 struct dc *dc,
1991                 struct dc_surface_update *updates,
1992                 int surface_count,
1993                 struct dc_stream_update *stream_update,
1994                 const struct dc_stream_status *stream_status)
1995 {
1996         int i;
1997         enum surface_update_type type;
1998
1999         if (stream_update)
2000                 stream_update->stream->update_flags.raw = 0;
2001         for (i = 0; i < surface_count; i++)
2002                 updates[i].surface->update_flags.raw = 0;
2003
2004         type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2005         if (type == UPDATE_TYPE_FULL) {
2006                 if (stream_update) {
2007                         uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2008                         stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2009                         stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2010                 }
2011                 for (i = 0; i < surface_count; i++)
2012                         updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2013         }
2014
2015         if (type == UPDATE_TYPE_FAST) {
2016                 // If there's an available clock comparator, we use that.
2017                 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2018                         if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2019                                 dc->optimized_required = true;
2020                 // Else we fallback to mem compare.
2021                 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2022                         dc->optimized_required = true;
2023                 }
2024
2025                 dc->optimized_required |= dc->wm_optimized_required;
2026         }
2027
2028         return type;
2029 }
2030
2031 static struct dc_stream_status *stream_get_status(
2032         struct dc_state *ctx,
2033         struct dc_stream_state *stream)
2034 {
2035         uint8_t i;
2036
2037         for (i = 0; i < ctx->stream_count; i++) {
2038                 if (stream == ctx->streams[i]) {
2039                         return &ctx->stream_status[i];
2040                 }
2041         }
2042
2043         return NULL;
2044 }
2045
2046 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2047
2048 static void copy_surface_update_to_plane(
2049                 struct dc_plane_state *surface,
2050                 struct dc_surface_update *srf_update)
2051 {
2052         if (srf_update->flip_addr) {
2053                 surface->address = srf_update->flip_addr->address;
2054                 surface->flip_immediate =
2055                         srf_update->flip_addr->flip_immediate;
2056                 surface->time.time_elapsed_in_us[surface->time.index] =
2057                         srf_update->flip_addr->flip_timestamp_in_us -
2058                                 surface->time.prev_update_time_in_us;
2059                 surface->time.prev_update_time_in_us =
2060                         srf_update->flip_addr->flip_timestamp_in_us;
2061                 surface->time.index++;
2062                 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2063                         surface->time.index = 0;
2064
2065                 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2066         }
2067
2068         if (srf_update->scaling_info) {
2069                 surface->scaling_quality =
2070                                 srf_update->scaling_info->scaling_quality;
2071                 surface->dst_rect =
2072                                 srf_update->scaling_info->dst_rect;
2073                 surface->src_rect =
2074                                 srf_update->scaling_info->src_rect;
2075                 surface->clip_rect =
2076                                 srf_update->scaling_info->clip_rect;
2077         }
2078
2079         if (srf_update->plane_info) {
2080                 surface->color_space =
2081                                 srf_update->plane_info->color_space;
2082                 surface->format =
2083                                 srf_update->plane_info->format;
2084                 surface->plane_size =
2085                                 srf_update->plane_info->plane_size;
2086                 surface->rotation =
2087                                 srf_update->plane_info->rotation;
2088                 surface->horizontal_mirror =
2089                                 srf_update->plane_info->horizontal_mirror;
2090                 surface->stereo_format =
2091                                 srf_update->plane_info->stereo_format;
2092                 surface->tiling_info =
2093                                 srf_update->plane_info->tiling_info;
2094                 surface->visible =
2095                                 srf_update->plane_info->visible;
2096                 surface->per_pixel_alpha =
2097                                 srf_update->plane_info->per_pixel_alpha;
2098                 surface->global_alpha =
2099                                 srf_update->plane_info->global_alpha;
2100                 surface->global_alpha_value =
2101                                 srf_update->plane_info->global_alpha_value;
2102                 surface->dcc =
2103                                 srf_update->plane_info->dcc;
2104                 surface->layer_index =
2105                                 srf_update->plane_info->layer_index;
2106         }
2107
2108         if (srf_update->gamma &&
2109                         (surface->gamma_correction !=
2110                                         srf_update->gamma)) {
2111                 memcpy(&surface->gamma_correction->entries,
2112                         &srf_update->gamma->entries,
2113                         sizeof(struct dc_gamma_entries));
2114                 surface->gamma_correction->is_identity =
2115                         srf_update->gamma->is_identity;
2116                 surface->gamma_correction->num_entries =
2117                         srf_update->gamma->num_entries;
2118                 surface->gamma_correction->type =
2119                         srf_update->gamma->type;
2120         }
2121
2122         if (srf_update->in_transfer_func &&
2123                         (surface->in_transfer_func !=
2124                                 srf_update->in_transfer_func)) {
2125                 surface->in_transfer_func->sdr_ref_white_level =
2126                         srf_update->in_transfer_func->sdr_ref_white_level;
2127                 surface->in_transfer_func->tf =
2128                         srf_update->in_transfer_func->tf;
2129                 surface->in_transfer_func->type =
2130                         srf_update->in_transfer_func->type;
2131                 memcpy(&surface->in_transfer_func->tf_pts,
2132                         &srf_update->in_transfer_func->tf_pts,
2133                         sizeof(struct dc_transfer_func_distributed_points));
2134         }
2135
2136         if (srf_update->func_shaper &&
2137                         (surface->in_shaper_func !=
2138                         srf_update->func_shaper))
2139                 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2140                 sizeof(*surface->in_shaper_func));
2141
2142         if (srf_update->lut3d_func &&
2143                         (surface->lut3d_func !=
2144                         srf_update->lut3d_func))
2145                 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2146                 sizeof(*surface->lut3d_func));
2147
2148         if (srf_update->hdr_mult.value)
2149                 surface->hdr_mult =
2150                                 srf_update->hdr_mult;
2151
2152         if (srf_update->blend_tf &&
2153                         (surface->blend_tf !=
2154                         srf_update->blend_tf))
2155                 memcpy(surface->blend_tf, srf_update->blend_tf,
2156                 sizeof(*surface->blend_tf));
2157
2158         if (srf_update->input_csc_color_matrix)
2159                 surface->input_csc_color_matrix =
2160                         *srf_update->input_csc_color_matrix;
2161
2162         if (srf_update->coeff_reduction_factor)
2163                 surface->coeff_reduction_factor =
2164                         *srf_update->coeff_reduction_factor;
2165
2166         if (srf_update->gamut_remap_matrix)
2167                 surface->gamut_remap_matrix =
2168                         *srf_update->gamut_remap_matrix;
2169 }
2170
2171 static void copy_stream_update_to_stream(struct dc *dc,
2172                                          struct dc_state *context,
2173                                          struct dc_stream_state *stream,
2174                                          struct dc_stream_update *update)
2175 {
2176         struct dc_context *dc_ctx = dc->ctx;
2177
2178         if (update == NULL || stream == NULL)
2179                 return;
2180
2181         if (update->src.height && update->src.width)
2182                 stream->src = update->src;
2183
2184         if (update->dst.height && update->dst.width)
2185                 stream->dst = update->dst;
2186
2187         if (update->out_transfer_func &&
2188             stream->out_transfer_func != update->out_transfer_func) {
2189                 stream->out_transfer_func->sdr_ref_white_level =
2190                         update->out_transfer_func->sdr_ref_white_level;
2191                 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2192                 stream->out_transfer_func->type =
2193                         update->out_transfer_func->type;
2194                 memcpy(&stream->out_transfer_func->tf_pts,
2195                        &update->out_transfer_func->tf_pts,
2196                        sizeof(struct dc_transfer_func_distributed_points));
2197         }
2198
2199         if (update->hdr_static_metadata)
2200                 stream->hdr_static_metadata = *update->hdr_static_metadata;
2201
2202         if (update->abm_level)
2203                 stream->abm_level = *update->abm_level;
2204
2205         if (update->periodic_interrupt0)
2206                 stream->periodic_interrupt0 = *update->periodic_interrupt0;
2207
2208         if (update->periodic_interrupt1)
2209                 stream->periodic_interrupt1 = *update->periodic_interrupt1;
2210
2211         if (update->gamut_remap)
2212                 stream->gamut_remap_matrix = *update->gamut_remap;
2213
2214         /* Note: this being updated after mode set is currently not a use case
2215          * however if it arises OCSC would need to be reprogrammed at the
2216          * minimum
2217          */
2218         if (update->output_color_space)
2219                 stream->output_color_space = *update->output_color_space;
2220
2221         if (update->output_csc_transform)
2222                 stream->csc_color_matrix = *update->output_csc_transform;
2223
2224         if (update->vrr_infopacket)
2225                 stream->vrr_infopacket = *update->vrr_infopacket;
2226
2227         if (update->dpms_off)
2228                 stream->dpms_off = *update->dpms_off;
2229
2230         if (update->vsc_infopacket)
2231                 stream->vsc_infopacket = *update->vsc_infopacket;
2232
2233         if (update->vsp_infopacket)
2234                 stream->vsp_infopacket = *update->vsp_infopacket;
2235
2236         if (update->dither_option)
2237                 stream->dither_option = *update->dither_option;
2238         /* update current stream with writeback info */
2239         if (update->wb_update) {
2240                 int i;
2241
2242                 stream->num_wb_info = update->wb_update->num_wb_info;
2243                 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2244                 for (i = 0; i < stream->num_wb_info; i++)
2245                         stream->writeback_info[i] =
2246                                 update->wb_update->writeback_info[i];
2247         }
2248         if (update->dsc_config) {
2249                 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2250                 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2251                 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2252                                        update->dsc_config->num_slices_v != 0);
2253
2254                 /* Use temporarry context for validating new DSC config */
2255                 struct dc_state *dsc_validate_context = dc_create_state(dc);
2256
2257                 if (dsc_validate_context) {
2258                         dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2259
2260                         stream->timing.dsc_cfg = *update->dsc_config;
2261                         stream->timing.flags.DSC = enable_dsc;
2262                         if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2263                                 stream->timing.dsc_cfg = old_dsc_cfg;
2264                                 stream->timing.flags.DSC = old_dsc_enabled;
2265                                 update->dsc_config = NULL;
2266                         }
2267
2268                         dc_release_state(dsc_validate_context);
2269                 } else {
2270                         DC_ERROR("Failed to allocate new validate context for DSC change\n");
2271                         update->dsc_config = NULL;
2272                 }
2273         }
2274 }
2275
2276 static void commit_planes_do_stream_update(struct dc *dc,
2277                 struct dc_stream_state *stream,
2278                 struct dc_stream_update *stream_update,
2279                 enum surface_update_type update_type,
2280                 struct dc_state *context)
2281 {
2282         int j;
2283         bool should_program_abm;
2284
2285         // Stream updates
2286         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2287                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2288
2289                 if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2290
2291                         if (stream_update->periodic_interrupt0 &&
2292                                         dc->hwss.setup_periodic_interrupt)
2293                                 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0);
2294
2295                         if (stream_update->periodic_interrupt1 &&
2296                                         dc->hwss.setup_periodic_interrupt)
2297                                 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1);
2298
2299                         if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2300                                         stream_update->vrr_infopacket ||
2301                                         stream_update->vsc_infopacket ||
2302                                         stream_update->vsp_infopacket) {
2303                                 resource_build_info_frame(pipe_ctx);
2304                                 dc->hwss.update_info_frame(pipe_ctx);
2305                         }
2306
2307                         if (stream_update->hdr_static_metadata &&
2308                                         stream->use_dynamic_meta &&
2309                                         dc->hwss.set_dmdata_attributes &&
2310                                         pipe_ctx->stream->dmdata_address.quad_part != 0)
2311                                 dc->hwss.set_dmdata_attributes(pipe_ctx);
2312
2313                         if (stream_update->gamut_remap)
2314                                 dc_stream_set_gamut_remap(dc, stream);
2315
2316                         if (stream_update->output_csc_transform)
2317                                 dc_stream_program_csc_matrix(dc, stream);
2318
2319                         if (stream_update->dither_option) {
2320                                 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2321                                 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2322                                                                         &pipe_ctx->stream->bit_depth_params);
2323                                 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2324                                                 &stream->bit_depth_params,
2325                                                 &stream->clamping);
2326                                 while (odm_pipe) {
2327                                         odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2328                                                         &stream->bit_depth_params,
2329                                                         &stream->clamping);
2330                                         odm_pipe = odm_pipe->next_odm_pipe;
2331                                 }
2332                         }
2333
2334                         /* Full fe update*/
2335                         if (update_type == UPDATE_TYPE_FAST)
2336                                 continue;
2337
2338                         if (stream_update->dsc_config)
2339                                 dp_update_dsc_config(pipe_ctx);
2340
2341                         if (stream_update->dpms_off) {
2342                                 if (*stream_update->dpms_off) {
2343                                         core_link_disable_stream(pipe_ctx);
2344                                         /* for dpms, keep acquired resources*/
2345                                         if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2346                                                 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2347
2348                                         dc->hwss.optimize_bandwidth(dc, dc->current_state);
2349                                 } else {
2350                                         if (dc->optimize_seamless_boot_streams == 0)
2351                                                 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2352
2353                                         core_link_enable_stream(dc->current_state, pipe_ctx);
2354                                 }
2355                         }
2356
2357                         if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2358                                 should_program_abm = true;
2359
2360                                 // if otg funcs defined check if blanked before programming
2361                                 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2362                                         if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2363                                                 should_program_abm = false;
2364
2365                                 if (should_program_abm) {
2366                                         if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2367                                                 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2368                                         } else {
2369                                                 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2370                                                         pipe_ctx->stream_res.abm, stream->abm_level);
2371                                         }
2372                                 }
2373                         }
2374                 }
2375         }
2376 }
2377
2378 static void commit_planes_for_stream(struct dc *dc,
2379                 struct dc_surface_update *srf_updates,
2380                 int surface_count,
2381                 struct dc_stream_state *stream,
2382                 struct dc_stream_update *stream_update,
2383                 enum surface_update_type update_type,
2384                 struct dc_state *context)
2385 {
2386         bool mpcc_disconnected = false;
2387         int i, j;
2388         struct pipe_ctx *top_pipe_to_program = NULL;
2389
2390         if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2391                 /* Optimize seamless boot flag keeps clocks and watermarks high until
2392                  * first flip. After first flip, optimization is required to lower
2393                  * bandwidth. Important to note that it is expected UEFI will
2394                  * only light up a single display on POST, therefore we only expect
2395                  * one stream with seamless boot flag set.
2396                  */
2397                 if (stream->apply_seamless_boot_optimization) {
2398                         stream->apply_seamless_boot_optimization = false;
2399                         dc->optimize_seamless_boot_streams--;
2400
2401                         if (dc->optimize_seamless_boot_streams == 0)
2402                                 dc->optimized_required = true;
2403                 }
2404         }
2405
2406         if (update_type == UPDATE_TYPE_FULL) {
2407 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2408                 dc_allow_idle_optimizations(dc, false);
2409
2410 #endif
2411                 if (dc->optimize_seamless_boot_streams == 0)
2412                         dc->hwss.prepare_bandwidth(dc, context);
2413
2414                 context_clock_trace(dc, context);
2415         }
2416
2417         if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2418                 dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2419                 dc->hwss.interdependent_update_lock(dc, context, true);
2420                 mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2421                 dc->hwss.interdependent_update_lock(dc, context, false);
2422                 if (mpcc_disconnected)
2423                         dc->hwss.wait_for_pending_cleared(dc, context);
2424         }
2425
2426         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2427                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2428
2429                 if (!pipe_ctx->top_pipe &&
2430                         !pipe_ctx->prev_odm_pipe &&
2431                         pipe_ctx->stream &&
2432                         pipe_ctx->stream == stream) {
2433                         top_pipe_to_program = pipe_ctx;
2434                 }
2435         }
2436
2437         if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2438                 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2439                         if (should_use_dmub_lock(stream->link)) {
2440                                 union dmub_hw_lock_flags hw_locks = { 0 };
2441                                 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2442
2443                                 hw_locks.bits.lock_dig = 1;
2444                                 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2445
2446                                 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2447                                                         true,
2448                                                         &hw_locks,
2449                                                         &inst_flags);
2450                         } else
2451                                 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2452                                                 top_pipe_to_program->stream_res.tg);
2453                 }
2454
2455         if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2456                 dc->hwss.interdependent_update_lock(dc, context, true);
2457         else
2458                 /* Lock the top pipe while updating plane addrs, since freesync requires
2459                  *  plane addr update event triggers to be synchronized.
2460                  *  top_pipe_to_program is expected to never be NULL
2461                  */
2462                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2463
2464
2465         // Stream updates
2466         if (stream_update)
2467                 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2468
2469         if (surface_count == 0) {
2470                 /*
2471                  * In case of turning off screen, no need to program front end a second time.
2472                  * just return after program blank.
2473                  */
2474                 if (dc->hwss.apply_ctx_for_surface)
2475                         dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2476                 if (dc->hwss.program_front_end_for_ctx)
2477                         dc->hwss.program_front_end_for_ctx(dc, context);
2478
2479                 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2480                         dc->hwss.interdependent_update_lock(dc, context, false);
2481                 else
2482                         dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2483
2484                 dc->hwss.post_unlock_program_front_end(dc, context);
2485                 return;
2486         }
2487
2488         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2489                 for (i = 0; i < surface_count; i++) {
2490                         struct dc_plane_state *plane_state = srf_updates[i].surface;
2491                         /*set logical flag for lock/unlock use*/
2492                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2493                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2494                                 if (!pipe_ctx->plane_state)
2495                                         continue;
2496                                 if (pipe_ctx->plane_state != plane_state)
2497                                         continue;
2498                                 plane_state->triplebuffer_flips = false;
2499                                 if (update_type == UPDATE_TYPE_FAST &&
2500                                         dc->hwss.program_triplebuffer != NULL &&
2501                                         !plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2502                                                 /*triple buffer for VUpdate  only*/
2503                                                 plane_state->triplebuffer_flips = true;
2504                                 }
2505                         }
2506                 }
2507         }
2508
2509         // Update Type FULL, Surface updates
2510         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2511                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2512
2513                 if (!pipe_ctx->top_pipe &&
2514                         !pipe_ctx->prev_odm_pipe &&
2515                         pipe_ctx->stream &&
2516                         pipe_ctx->stream == stream) {
2517                         struct dc_stream_status *stream_status = NULL;
2518
2519                         if (!pipe_ctx->plane_state)
2520                                 continue;
2521
2522                         /* Full fe update*/
2523                         if (update_type == UPDATE_TYPE_FAST)
2524                                 continue;
2525
2526                         ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2527
2528                         if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2529                                 /*turn off triple buffer for full update*/
2530                                 dc->hwss.program_triplebuffer(
2531                                         dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2532                         }
2533                         stream_status =
2534                                 stream_get_status(context, pipe_ctx->stream);
2535
2536                         if (dc->hwss.apply_ctx_for_surface)
2537                                 dc->hwss.apply_ctx_for_surface(
2538                                         dc, pipe_ctx->stream, stream_status->plane_count, context);
2539                 }
2540         }
2541         if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2542                 dc->hwss.program_front_end_for_ctx(dc, context);
2543 #ifdef CONFIG_DRM_AMD_DC_DCN
2544                 if (dc->debug.validate_dml_output) {
2545                         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2546                                 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2547                                 if (cur_pipe.stream == NULL)
2548                                         continue;
2549
2550                                 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2551                                                 cur_pipe.plane_res.hubp, dc->ctx,
2552                                                 &context->res_ctx.pipe_ctx[i].rq_regs,
2553                                                 &context->res_ctx.pipe_ctx[i].dlg_regs,
2554                                                 &context->res_ctx.pipe_ctx[i].ttu_regs);
2555                         }
2556                 }
2557 #endif
2558         }
2559
2560         // Update Type FAST, Surface updates
2561         if (update_type == UPDATE_TYPE_FAST) {
2562                 if (dc->hwss.set_flip_control_gsl)
2563                         for (i = 0; i < surface_count; i++) {
2564                                 struct dc_plane_state *plane_state = srf_updates[i].surface;
2565
2566                                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2567                                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2568
2569                                         if (pipe_ctx->stream != stream)
2570                                                 continue;
2571
2572                                         if (pipe_ctx->plane_state != plane_state)
2573                                                 continue;
2574
2575                                         // GSL has to be used for flip immediate
2576                                         dc->hwss.set_flip_control_gsl(pipe_ctx,
2577                                                         plane_state->flip_immediate);
2578                                 }
2579                         }
2580                 /* Perform requested Updates */
2581                 for (i = 0; i < surface_count; i++) {
2582                         struct dc_plane_state *plane_state = srf_updates[i].surface;
2583
2584                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2585                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2586
2587                                 if (pipe_ctx->stream != stream)
2588                                         continue;
2589
2590                                 if (pipe_ctx->plane_state != plane_state)
2591                                         continue;
2592                                 /*program triple buffer after lock based on flip type*/
2593                                 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2594                                         /*only enable triplebuffer for  fast_update*/
2595                                         dc->hwss.program_triplebuffer(
2596                                                 dc, pipe_ctx, plane_state->triplebuffer_flips);
2597                                 }
2598                                 if (srf_updates[i].flip_addr)
2599                                         dc->hwss.update_plane_addr(dc, pipe_ctx);
2600                         }
2601                 }
2602         }
2603
2604         if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2605                 dc->hwss.interdependent_update_lock(dc, context, false);
2606         else
2607                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2608
2609         if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2610                 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2611                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2612                                         top_pipe_to_program->stream_res.tg,
2613                                         CRTC_STATE_VACTIVE);
2614                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2615                                         top_pipe_to_program->stream_res.tg,
2616                                         CRTC_STATE_VBLANK);
2617                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2618                                         top_pipe_to_program->stream_res.tg,
2619                                         CRTC_STATE_VACTIVE);
2620
2621                         if (stream && should_use_dmub_lock(stream->link)) {
2622                                 union dmub_hw_lock_flags hw_locks = { 0 };
2623                                 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2624
2625                                 hw_locks.bits.lock_dig = 1;
2626                                 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2627
2628                                 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2629                                                         false,
2630                                                         &hw_locks,
2631                                                         &inst_flags);
2632                         } else
2633                                 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2634                                         top_pipe_to_program->stream_res.tg);
2635                 }
2636
2637         if (update_type != UPDATE_TYPE_FAST)
2638                 dc->hwss.post_unlock_program_front_end(dc, context);
2639
2640         // Fire manual trigger only when bottom plane is flipped
2641         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2642                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2643
2644                 if (pipe_ctx->bottom_pipe ||
2645                                 !pipe_ctx->stream ||
2646                                 pipe_ctx->stream != stream ||
2647                                 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2648                         continue;
2649
2650                 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2651                         pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2652         }
2653 }
2654
2655 void dc_commit_updates_for_stream(struct dc *dc,
2656                 struct dc_surface_update *srf_updates,
2657                 int surface_count,
2658                 struct dc_stream_state *stream,
2659                 struct dc_stream_update *stream_update,
2660                 struct dc_state *state)
2661 {
2662         const struct dc_stream_status *stream_status;
2663         enum surface_update_type update_type;
2664         struct dc_state *context;
2665         struct dc_context *dc_ctx = dc->ctx;
2666         int i, j;
2667
2668         stream_status = dc_stream_get_status(stream);
2669         context = dc->current_state;
2670
2671         update_type = dc_check_update_surfaces_for_stream(
2672                                 dc, srf_updates, surface_count, stream_update, stream_status);
2673
2674         if (update_type >= update_surface_trace_level)
2675                 update_surface_trace(dc, srf_updates, surface_count);
2676
2677
2678         if (update_type >= UPDATE_TYPE_FULL) {
2679
2680                 /* initialize scratch memory for building context */
2681                 context = dc_create_state(dc);
2682                 if (context == NULL) {
2683                         DC_ERROR("Failed to allocate new validate context!\n");
2684                         return;
2685                 }
2686
2687                 dc_resource_state_copy_construct(state, context);
2688
2689                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2690                         struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2691                         struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2692
2693                         if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2694                                 new_pipe->plane_state->force_full_update = true;
2695                 }
2696         }
2697
2698
2699         for (i = 0; i < surface_count; i++) {
2700                 struct dc_plane_state *surface = srf_updates[i].surface;
2701
2702                 copy_surface_update_to_plane(surface, &srf_updates[i]);
2703
2704                 if (update_type >= UPDATE_TYPE_MED) {
2705                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
2706                                 struct pipe_ctx *pipe_ctx =
2707                                         &context->res_ctx.pipe_ctx[j];
2708
2709                                 if (pipe_ctx->plane_state != surface)
2710                                         continue;
2711
2712                                 resource_build_scaling_params(pipe_ctx);
2713                         }
2714                 }
2715         }
2716
2717         copy_stream_update_to_stream(dc, context, stream, stream_update);
2718
2719         if (update_type >= UPDATE_TYPE_FULL) {
2720                 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2721                         DC_ERROR("Mode validation failed for stream update!\n");
2722                         dc_release_state(context);
2723                         return;
2724                 }
2725         }
2726
2727         commit_planes_for_stream(
2728                                 dc,
2729                                 srf_updates,
2730                                 surface_count,
2731                                 stream,
2732                                 stream_update,
2733                                 update_type,
2734                                 context);
2735         /*update current_State*/
2736         if (dc->current_state != context) {
2737
2738                 struct dc_state *old = dc->current_state;
2739
2740                 dc->current_state = context;
2741                 dc_release_state(old);
2742
2743                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2744                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2745
2746                         if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2747                                 pipe_ctx->plane_state->force_full_update = false;
2748                 }
2749         }
2750         /*let's use current_state to update watermark etc*/
2751         if (update_type >= UPDATE_TYPE_FULL)
2752                 dc_post_update_surfaces_to_stream(dc);
2753
2754         return;
2755
2756 }
2757
2758 uint8_t dc_get_current_stream_count(struct dc *dc)
2759 {
2760         return dc->current_state->stream_count;
2761 }
2762
2763 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2764 {
2765         if (i < dc->current_state->stream_count)
2766                 return dc->current_state->streams[i];
2767         return NULL;
2768 }
2769
2770 enum dc_irq_source dc_interrupt_to_irq_source(
2771                 struct dc *dc,
2772                 uint32_t src_id,
2773                 uint32_t ext_id)
2774 {
2775         return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2776 }
2777
2778 /**
2779  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2780  */
2781 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2782 {
2783
2784         if (dc == NULL)
2785                 return false;
2786
2787         return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2788 }
2789
2790 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2791 {
2792         dal_irq_service_ack(dc->res_pool->irqs, src);
2793 }
2794
2795 void dc_power_down_on_boot(struct dc *dc)
2796 {
2797         if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2798                         dc->hwss.power_down_on_boot)
2799                 dc->hwss.power_down_on_boot(dc);
2800 }
2801
2802 void dc_set_power_state(
2803         struct dc *dc,
2804         enum dc_acpi_cm_power_state power_state)
2805 {
2806         struct kref refcount;
2807         struct display_mode_lib *dml;
2808
2809         switch (power_state) {
2810         case DC_ACPI_CM_POWER_STATE_D0:
2811                 dc_resource_state_construct(dc, dc->current_state);
2812
2813                 if (dc->ctx->dmub_srv)
2814                         dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2815
2816                 dc->hwss.init_hw(dc);
2817
2818                 if (dc->hwss.init_sys_ctx != NULL &&
2819                         dc->vm_pa_config.valid) {
2820                         dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2821                 }
2822
2823                 break;
2824         default:
2825                 ASSERT(dc->current_state->stream_count == 0);
2826                 /* Zero out the current context so that on resume we start with
2827                  * clean state, and dc hw programming optimizations will not
2828                  * cause any trouble.
2829                  */
2830                 dml = kzalloc(sizeof(struct display_mode_lib),
2831                                 GFP_KERNEL);
2832
2833                 ASSERT(dml);
2834                 if (!dml)
2835                         return;
2836
2837                 /* Preserve refcount */
2838                 refcount = dc->current_state->refcount;
2839                 /* Preserve display mode lib */
2840                 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2841
2842                 dc_resource_state_destruct(dc->current_state);
2843                 memset(dc->current_state, 0,
2844                                 sizeof(*dc->current_state));
2845
2846                 dc->current_state->refcount = refcount;
2847                 dc->current_state->bw_ctx.dml = *dml;
2848
2849                 kfree(dml);
2850
2851                 break;
2852         }
2853 }
2854
2855 void dc_resume(struct dc *dc)
2856 {
2857         uint32_t i;
2858
2859         for (i = 0; i < dc->link_count; i++)
2860                 core_link_resume(dc->links[i]);
2861 }
2862
2863 bool dc_is_dmcu_initialized(struct dc *dc)
2864 {
2865         struct dmcu *dmcu = dc->res_pool->dmcu;
2866
2867         if (dmcu)
2868                 return dmcu->funcs->is_dmcu_initialized(dmcu);
2869         return false;
2870 }
2871
2872 bool dc_submit_i2c(
2873                 struct dc *dc,
2874                 uint32_t link_index,
2875                 struct i2c_command *cmd)
2876 {
2877
2878         struct dc_link *link = dc->links[link_index];
2879         struct ddc_service *ddc = link->ddc;
2880         return dce_i2c_submit_command(
2881                 dc->res_pool,
2882                 ddc->ddc_pin,
2883                 cmd);
2884 }
2885
2886 bool dc_submit_i2c_oem(
2887                 struct dc *dc,
2888                 struct i2c_command *cmd)
2889 {
2890         struct ddc_service *ddc = dc->res_pool->oem_device;
2891         return dce_i2c_submit_command(
2892                 dc->res_pool,
2893                 ddc->ddc_pin,
2894                 cmd);
2895 }
2896
2897 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2898 {
2899         if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2900                 BREAK_TO_DEBUGGER();
2901                 return false;
2902         }
2903
2904         dc_sink_retain(sink);
2905
2906         dc_link->remote_sinks[dc_link->sink_count] = sink;
2907         dc_link->sink_count++;
2908
2909         return true;
2910 }
2911
2912 /**
2913  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2914  *
2915  * EDID length is in bytes
2916  */
2917 struct dc_sink *dc_link_add_remote_sink(
2918                 struct dc_link *link,
2919                 const uint8_t *edid,
2920                 int len,
2921                 struct dc_sink_init_data *init_data)
2922 {
2923         struct dc_sink *dc_sink;
2924         enum dc_edid_status edid_status;
2925
2926         if (len > DC_MAX_EDID_BUFFER_SIZE) {
2927                 dm_error("Max EDID buffer size breached!\n");
2928                 return NULL;
2929         }
2930
2931         if (!init_data) {
2932                 BREAK_TO_DEBUGGER();
2933                 return NULL;
2934         }
2935
2936         if (!init_data->link) {
2937                 BREAK_TO_DEBUGGER();
2938                 return NULL;
2939         }
2940
2941         dc_sink = dc_sink_create(init_data);
2942
2943         if (!dc_sink)
2944                 return NULL;
2945
2946         memmove(dc_sink->dc_edid.raw_edid, edid, len);
2947         dc_sink->dc_edid.length = len;
2948
2949         if (!link_add_remote_sink_helper(
2950                         link,
2951                         dc_sink))
2952                 goto fail_add_sink;
2953
2954         edid_status = dm_helpers_parse_edid_caps(
2955                         link->ctx,
2956                         &dc_sink->dc_edid,
2957                         &dc_sink->edid_caps);
2958
2959         /*
2960          * Treat device as no EDID device if EDID
2961          * parsing fails
2962          */
2963         if (edid_status != EDID_OK) {
2964                 dc_sink->dc_edid.length = 0;
2965                 dm_error("Bad EDID, status%d!\n", edid_status);
2966         }
2967
2968         return dc_sink;
2969
2970 fail_add_sink:
2971         dc_sink_release(dc_sink);
2972         return NULL;
2973 }
2974
2975 /**
2976  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2977  *
2978  * Note that this just removes the struct dc_sink - it doesn't
2979  * program hardware or alter other members of dc_link
2980  */
2981 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2982 {
2983         int i;
2984
2985         if (!link->sink_count) {
2986                 BREAK_TO_DEBUGGER();
2987                 return;
2988         }
2989
2990         for (i = 0; i < link->sink_count; i++) {
2991                 if (link->remote_sinks[i] == sink) {
2992                         dc_sink_release(sink);
2993                         link->remote_sinks[i] = NULL;
2994
2995                         /* shrink array to remove empty place */
2996                         while (i < link->sink_count - 1) {
2997                                 link->remote_sinks[i] = link->remote_sinks[i+1];
2998                                 i++;
2999                         }
3000                         link->remote_sinks[i] = NULL;
3001                         link->sink_count--;
3002                         return;
3003                 }
3004         }
3005 }
3006
3007 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3008 {
3009         info->displayClock                              = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3010         info->engineClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3011         info->memoryClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3012         info->maxSupportedDppClock              = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3013         info->dppClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3014         info->socClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3015         info->dcfClockDeepSleep                 = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3016         info->fClock                                    = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3017         info->phyClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3018 }
3019 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3020 {
3021         if (dc->hwss.set_clock)
3022                 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3023         return DC_ERROR_UNEXPECTED;
3024 }
3025 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3026 {
3027         if (dc->hwss.get_clock)
3028                 dc->hwss.get_clock(dc, clock_type, clock_cfg);
3029 }
3030
3031 /* enable/disable eDP PSR without specify stream for eDP */
3032 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3033 {
3034         int i;
3035
3036         for (i = 0; i < dc->current_state->stream_count ; i++) {
3037                 struct dc_link *link;
3038                 struct dc_stream_state *stream = dc->current_state->streams[i];
3039
3040                 link = stream->link;
3041                 if (!link)
3042                         continue;
3043
3044                 if (link->psr_settings.psr_feature_enabled) {
3045                         if (enable && !link->psr_settings.psr_allow_active)
3046                                 return dc_link_set_psr_allow_active(link, true, false);
3047                         else if (!enable && link->psr_settings.psr_allow_active)
3048                                 return dc_link_set_psr_allow_active(link, false, true);
3049                 }
3050         }
3051
3052         return true;
3053 }
3054
3055 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3056
3057 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3058 {
3059         if (dc->debug.disable_idle_power_optimizations)
3060                 return;
3061
3062         if (allow == dc->idle_optimizations_allowed)
3063                 return;
3064
3065         if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3066                 dc->idle_optimizations_allowed = allow;
3067 }
3068
3069 /*
3070  * blank all streams, and set min and max memory clock to
3071  * lowest and highest DPM level, respectively
3072  */
3073 void dc_unlock_memory_clock_frequency(struct dc *dc)
3074 {
3075         unsigned int i;
3076
3077         for (i = 0; i < MAX_PIPES; i++)
3078                 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3079                         core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3080
3081         dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3082         dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3083 }
3084
3085 /*
3086  * set min memory clock to the min required for current mode,
3087  * max to maxDPM, and unblank streams
3088  */
3089 void dc_lock_memory_clock_frequency(struct dc *dc)
3090 {
3091         unsigned int i;
3092
3093         dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3094         dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3095         dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3096
3097         for (i = 0; i < MAX_PIPES; i++)
3098                 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3099                         core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3100 }
3101
3102 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3103                                                  struct dc_plane_state *plane)
3104 {
3105         return false;
3106 }
3107 #endif