scsi: ufs: mcq: Use active_reqs to check busy in clock scaling
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn301 / vg_clk_mgr.c
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34
35 // For DML FPU code
36 #include "dml/dcn20/dcn20_fpu.h"
37
38 #include "vg_clk_mgr.h"
39 #include "dcn301_smu.h"
40 #include "reg_helper.h"
41 #include "core_types.h"
42 #include "dm_helpers.h"
43
44 #include "atomfirmware.h"
45 #include "vangogh_ip_offset.h"
46 #include "clk/clk_11_5_0_offset.h"
47 #include "clk/clk_11_5_0_sh_mask.h"
48
49 /* Constants */
50
51 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
52
53 /* Macros */
54
55 #define TO_CLK_MGR_VGH(clk_mgr)\
56         container_of(clk_mgr, struct clk_mgr_vgh, base)
57
58 #define REG(reg_name) \
59         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
60
61 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
62 static int vg_get_active_display_cnt_wa(
63                 struct dc *dc,
64                 struct dc_state *context)
65 {
66         int i, display_count;
67         bool tmds_present = false;
68
69         display_count = 0;
70         for (i = 0; i < context->stream_count; i++) {
71                 const struct dc_stream_state *stream = context->streams[i];
72
73                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
74                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
75                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
76                         tmds_present = true;
77         }
78
79         for (i = 0; i < dc->link_count; i++) {
80                 const struct dc_link *link = dc->links[i];
81
82                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
83                 if (link->link_enc->funcs->is_dig_enabled &&
84                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
85                         display_count++;
86         }
87
88         /* WA for hang on HDMI after display off back back on*/
89         if (display_count == 0 && tmds_present)
90                 display_count = 1;
91
92         return display_count;
93 }
94
95 static void vg_update_clocks(struct clk_mgr *clk_mgr_base,
96                              struct dc_state *context,
97                              bool safe_to_lower)
98 {
99         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
101         struct dc *dc = clk_mgr_base->ctx->dc;
102         int display_count;
103         bool update_dppclk = false;
104         bool update_dispclk = false;
105         bool dpp_clock_lowered = false;
106
107         if (dc->work_arounds.skip_clock_update)
108                 return;
109
110         /*
111          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
112          * also if safe to lower is false, we just go in the higher state
113          */
114         if (safe_to_lower) {
115                 /* check that we're not already in lower */
116                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
117
118                         display_count = vg_get_active_display_cnt_wa(dc, context);
119                         /* if we can go lower, go lower */
120                         if (display_count == 0 && !IS_DIAG_DC(dc->ctx->dce_environment)) {
121                                 union display_idle_optimization_u idle_info = { 0 };
122
123                                 idle_info.idle_info.df_request_disabled = 1;
124                                 idle_info.idle_info.phy_ref_clk_off = 1;
125
126                                 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
127                                 /* update power state */
128                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
129                         }
130                 }
131         } else {
132                 /* check that we're not already in D0 */
133                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
134                         union display_idle_optimization_u idle_info = { 0 };
135
136                         dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
137                         /* update power state */
138                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
139                 }
140         }
141
142         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
143                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
144                 dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
145         }
146
147         if (should_set_clock(safe_to_lower,
148                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
149                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
150                 dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
151         }
152
153         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
154         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
155                 if (new_clocks->dppclk_khz < 100000)
156                         new_clocks->dppclk_khz = 100000;
157         }
158
159         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
160                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
161                         dpp_clock_lowered = true;
162                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
163                 update_dppclk = true;
164         }
165
166         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
167                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
168                 dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
169
170                 update_dispclk = true;
171         }
172
173         if (dpp_clock_lowered) {
174                 // increase per DPP DTO before lowering global dppclk
175                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
176                 dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
177         } else {
178                 // increase global DPPCLK before lowering per DPP DTO
179                 if (update_dppclk || update_dispclk)
180                         dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
181                 // always update dtos unless clock is lowered and not safe to lower
182                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
183         }
184 }
185
186
187 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
188 {
189         /* get FbMult value */
190         struct fixed31_32 pll_req;
191         unsigned int fbmult_frac_val = 0;
192         unsigned int fbmult_int_val = 0;
193
194
195         /*
196          * Register value of fbmult is in 8.16 format, we are converting to 31.32
197          * to leverage the fix point operations available in driver
198          */
199
200         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
201         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
202
203         pll_req = dc_fixpt_from_int(fbmult_int_val);
204
205         /*
206          * since fractional part is only 16 bit in register definition but is 32 bit
207          * in our fix point definiton, need to shift left by 16 to obtain correct value
208          */
209         pll_req.value |= fbmult_frac_val << 16;
210
211         /* multiply by REFCLK period */
212         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
213
214         /* integer part is now VCO frequency in kHz */
215         return dc_fixpt_floor(pll_req);
216 }
217
218 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
219 {
220         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
221
222         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
223         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
224
225         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);       //dcf deep sleep divider
226         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
227
228         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
229         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
230
231         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
232         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
233
234         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
235         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
236 }
237
238 /* This function collect raw clk register values */
239 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
240                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
241 {
242         struct dcn301_clk_internal internal = {0};
243         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
244         unsigned int chars_printed = 0;
245         unsigned int remaining_buffer = log_info->bufSize;
246
247         vg_dump_clk_registers_internal(&internal, clk_mgr_base);
248
249         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
250         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
251         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
252         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
253         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
254         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
255
256         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
257         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
258                 regs_and_bypass->dppclk_bypass = 0;
259         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
260         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
261                 regs_and_bypass->dcfclk_bypass = 0;
262         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
263         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
264                 regs_and_bypass->dispclk_bypass = 0;
265         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
266         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
267                 regs_and_bypass->dprefclk_bypass = 0;
268
269         if (log_info->enabled) {
270                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
271                 remaining_buffer -= chars_printed;
272                 *log_info->sum_chars_printed += chars_printed;
273                 log_info->pBuf += chars_printed;
274
275                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
276                         regs_and_bypass->dcfclk,
277                         regs_and_bypass->dcf_deep_sleep_divider,
278                         regs_and_bypass->dcf_deep_sleep_allow,
279                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
280                 remaining_buffer -= chars_printed;
281                 *log_info->sum_chars_printed += chars_printed;
282                 log_info->pBuf += chars_printed;
283
284                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
285                         regs_and_bypass->dprefclk,
286                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
287                 remaining_buffer -= chars_printed;
288                 *log_info->sum_chars_printed += chars_printed;
289                 log_info->pBuf += chars_printed;
290
291                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
292                         regs_and_bypass->dispclk,
293                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
294                 remaining_buffer -= chars_printed;
295                 *log_info->sum_chars_printed += chars_printed;
296                 log_info->pBuf += chars_printed;
297
298                 //split
299                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
300                 remaining_buffer -= chars_printed;
301                 *log_info->sum_chars_printed += chars_printed;
302                 log_info->pBuf += chars_printed;
303
304                 // REGISTER VALUES
305                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
306                 remaining_buffer -= chars_printed;
307                 *log_info->sum_chars_printed += chars_printed;
308                 log_info->pBuf += chars_printed;
309
310                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
311                                 internal.CLK1_CLK3_CURRENT_CNT);
312                 remaining_buffer -= chars_printed;
313                 *log_info->sum_chars_printed += chars_printed;
314                 log_info->pBuf += chars_printed;
315
316                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
317                                         internal.CLK1_CLK3_DS_CNTL);
318                 remaining_buffer -= chars_printed;
319                 *log_info->sum_chars_printed += chars_printed;
320                 log_info->pBuf += chars_printed;
321
322                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
323                                         internal.CLK1_CLK3_ALLOW_DS);
324                 remaining_buffer -= chars_printed;
325                 *log_info->sum_chars_printed += chars_printed;
326                 log_info->pBuf += chars_printed;
327
328                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
329                                         internal.CLK1_CLK2_CURRENT_CNT);
330                 remaining_buffer -= chars_printed;
331                 *log_info->sum_chars_printed += chars_printed;
332                 log_info->pBuf += chars_printed;
333
334                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
335                                         internal.CLK1_CLK0_CURRENT_CNT);
336                 remaining_buffer -= chars_printed;
337                 *log_info->sum_chars_printed += chars_printed;
338                 log_info->pBuf += chars_printed;
339
340                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
341                                         internal.CLK1_CLK1_CURRENT_CNT);
342                 remaining_buffer -= chars_printed;
343                 *log_info->sum_chars_printed += chars_printed;
344                 log_info->pBuf += chars_printed;
345
346                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
347                                         internal.CLK1_CLK3_BYPASS_CNTL);
348                 remaining_buffer -= chars_printed;
349                 *log_info->sum_chars_printed += chars_printed;
350                 log_info->pBuf += chars_printed;
351
352                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
353                                         internal.CLK1_CLK2_BYPASS_CNTL);
354                 remaining_buffer -= chars_printed;
355                 *log_info->sum_chars_printed += chars_printed;
356                 log_info->pBuf += chars_printed;
357
358                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
359                                         internal.CLK1_CLK0_BYPASS_CNTL);
360                 remaining_buffer -= chars_printed;
361                 *log_info->sum_chars_printed += chars_printed;
362                 log_info->pBuf += chars_printed;
363
364                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
365                                         internal.CLK1_CLK1_BYPASS_CNTL);
366                 remaining_buffer -= chars_printed;
367                 *log_info->sum_chars_printed += chars_printed;
368                 log_info->pBuf += chars_printed;
369         }
370 }
371
372 static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
373 {
374         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
375
376         dcn301_smu_enable_pme_wa(clk_mgr);
377 }
378
379 static void vg_init_clocks(struct clk_mgr *clk_mgr)
380 {
381         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
382         // Assumption is that boot state always supports pstate
383         clk_mgr->clks.p_state_change_support = true;
384         clk_mgr->clks.prev_p_state_change_support = true;
385         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
386 }
387
388 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
389 {
390         int i, num_valid_sets;
391
392         num_valid_sets = 0;
393
394         for (i = 0; i < WM_SET_COUNT; i++) {
395                 /* skip empty entries, the smu array has no holes*/
396                 if (!bw_params->wm_table.entries[i].valid)
397                         continue;
398
399                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
400                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
401                 /* We will not select WM based on fclk, so leave it as unconstrained */
402                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
403                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
404
405                 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
406                         if (i == 0)
407                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
408                         else {
409                                 /* add 1 to make it non-overlapping with next lvl */
410                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
411                                                 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
412                         }
413                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
414                                         bw_params->clk_table.entries[i].dcfclk_mhz;
415
416                 } else {
417                         /* unconstrained for memory retraining */
418                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
419                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
420
421                         /* Modify previous watermark range to cover up to max */
422                         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
423                 }
424                 num_valid_sets++;
425         }
426
427         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
428
429         /* modify the min and max to make sure we cover the whole range*/
430         table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
431         table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
432         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
433         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
434
435         /* This is for writeback only, does not matter currently as no writeback support*/
436         table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
437         table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
438         table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
439         table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
440         table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
441 }
442
443
444 static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
445 {
446         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
447         struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
448         struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
449
450         if (!clk_mgr->smu_ver)
451                 return;
452
453         if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
454                 return;
455
456         memset(table, 0, sizeof(*table));
457
458         vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
459
460         dcn301_smu_set_dram_addr_high(clk_mgr,
461                         clk_mgr_vgh->smu_wm_set.mc_address.high_part);
462         dcn301_smu_set_dram_addr_low(clk_mgr,
463                         clk_mgr_vgh->smu_wm_set.mc_address.low_part);
464         dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
465 }
466
467 static bool vg_are_clock_states_equal(struct dc_clocks *a,
468                 struct dc_clocks *b)
469 {
470         if (a->dispclk_khz != b->dispclk_khz)
471                 return false;
472         else if (a->dppclk_khz != b->dppclk_khz)
473                 return false;
474         else if (a->dcfclk_khz != b->dcfclk_khz)
475                 return false;
476         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
477                 return false;
478
479         return true;
480 }
481
482
483 static struct clk_mgr_funcs vg_funcs = {
484         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
485         .update_clocks = vg_update_clocks,
486         .init_clocks = vg_init_clocks,
487         .enable_pme_wa = vg_enable_pme_wa,
488         .are_clock_states_equal = vg_are_clock_states_equal,
489         .notify_wm_ranges = vg_notify_wm_ranges
490 };
491
492 static struct clk_bw_params vg_bw_params = {
493         .vram_type = Ddr4MemType,
494         .num_channels = 1,
495         .clk_table = {
496                 .entries = {
497                         {
498                                 .voltage = 0,
499                                 .dcfclk_mhz = 400,
500                                 .fclk_mhz = 400,
501                                 .memclk_mhz = 800,
502                                 .socclk_mhz = 0,
503                         },
504                         {
505                                 .voltage = 0,
506                                 .dcfclk_mhz = 483,
507                                 .fclk_mhz = 800,
508                                 .memclk_mhz = 1600,
509                                 .socclk_mhz = 0,
510                         },
511                         {
512                                 .voltage = 0,
513                                 .dcfclk_mhz = 602,
514                                 .fclk_mhz = 1067,
515                                 .memclk_mhz = 1067,
516                                 .socclk_mhz = 0,
517                         },
518                         {
519                                 .voltage = 0,
520                                 .dcfclk_mhz = 738,
521                                 .fclk_mhz = 1333,
522                                 .memclk_mhz = 1600,
523                                 .socclk_mhz = 0,
524                         },
525                 },
526
527                 .num_entries = 4,
528         },
529
530 };
531
532 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
533                 unsigned int voltage)
534 {
535         int i;
536
537         for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
538                 if (clock_table->SocVoltage[i] == voltage)
539                         return clock_table->DcfClocks[i];
540         }
541
542         ASSERT(0);
543         return 0;
544 }
545
546 static void vg_clk_mgr_helper_populate_bw_params(
547                 struct clk_mgr_internal *clk_mgr,
548                 struct integrated_info *bios_info,
549                 const struct vg_dpm_clocks *clock_table)
550 {
551         int i, j;
552         struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
553
554         j = -1;
555
556         ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
557
558         /* Find lowest DPM, FCLK is filled in reverse order*/
559
560         for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
561                 if (clock_table->DfPstateTable[i].fclk != 0) {
562                         j = i;
563                         break;
564                 }
565         }
566
567         if (j == -1) {
568                 /* clock table is all 0s, just use our own hardcode */
569                 ASSERT(0);
570                 return;
571         }
572
573         bw_params->clk_table.num_entries = j + 1;
574
575         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
576                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
577                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
578                 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
579                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
580         }
581
582         bw_params->vram_type = bios_info->memory_type;
583         bw_params->num_channels = bios_info->ma_channel_number;
584
585         for (i = 0; i < WM_SET_COUNT; i++) {
586                 bw_params->wm_table.entries[i].wm_inst = i;
587
588                 if (i >= bw_params->clk_table.num_entries) {
589                         bw_params->wm_table.entries[i].valid = false;
590                         continue;
591                 }
592
593                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
594                 bw_params->wm_table.entries[i].valid = true;
595         }
596
597         if (bw_params->vram_type == LpDdr4MemType) {
598                 /*
599                  * WM set D will be re-purposed for memory retraining
600                  */
601                 DC_FP_START();
602                 dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
603                 DC_FP_END();
604         }
605
606 }
607
608 /* Temporary Place holder until we can get them from fuse */
609 static struct vg_dpm_clocks dummy_clocks = {
610                 .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
611                 .SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
612                 .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
613                 .DfPstateTable = {
614                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
615                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
616                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
617                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 }
618                 }
619 };
620
621 static struct watermarks dummy_wms = { 0 };
622
623 static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
624                 struct smu_dpm_clks *smu_dpm_clks)
625 {
626         struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
627
628         if (!clk_mgr->smu_ver)
629                 return;
630
631         if (!table || smu_dpm_clks->mc_address.quad_part == 0)
632                 return;
633
634         memset(table, 0, sizeof(*table));
635
636         dcn301_smu_set_dram_addr_high(clk_mgr,
637                         smu_dpm_clks->mc_address.high_part);
638         dcn301_smu_set_dram_addr_low(clk_mgr,
639                         smu_dpm_clks->mc_address.low_part);
640         dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
641 }
642
643 void vg_clk_mgr_construct(
644                 struct dc_context *ctx,
645                 struct clk_mgr_vgh *clk_mgr,
646                 struct pp_smu_funcs *pp_smu,
647                 struct dccg *dccg)
648 {
649         struct smu_dpm_clks smu_dpm_clks = { 0 };
650
651         clk_mgr->base.base.ctx = ctx;
652         clk_mgr->base.base.funcs = &vg_funcs;
653
654         clk_mgr->base.pp_smu = pp_smu;
655
656         clk_mgr->base.dccg = dccg;
657         clk_mgr->base.dfs_bypass_disp_clk = 0;
658
659         clk_mgr->base.dprefclk_ss_percentage = 0;
660         clk_mgr->base.dprefclk_ss_divider = 1000;
661         clk_mgr->base.ss_on_dprefclk = false;
662         clk_mgr->base.dfs_ref_freq_khz = 48000;
663
664         clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
665                                 clk_mgr->base.base.ctx,
666                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
667                                 sizeof(struct watermarks),
668                                 &clk_mgr->smu_wm_set.mc_address.quad_part);
669
670         if (!clk_mgr->smu_wm_set.wm_set) {
671                 clk_mgr->smu_wm_set.wm_set = &dummy_wms;
672                 clk_mgr->smu_wm_set.mc_address.quad_part = 0;
673         }
674         ASSERT(clk_mgr->smu_wm_set.wm_set);
675
676         smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
677                                 clk_mgr->base.base.ctx,
678                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
679                                 sizeof(struct vg_dpm_clocks),
680                                 &smu_dpm_clks.mc_address.quad_part);
681
682         if (smu_dpm_clks.dpm_clks == NULL) {
683                 smu_dpm_clks.dpm_clks = &dummy_clocks;
684                 smu_dpm_clks.mc_address.quad_part = 0;
685         }
686
687         ASSERT(smu_dpm_clks.dpm_clks);
688
689         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
690                 vg_funcs.update_clocks = dcn2_update_clocks_fpga;
691                 clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
692         } else {
693                 struct clk_log_info log_info = {0};
694
695                 clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base);
696
697                 if (clk_mgr->base.smu_ver)
698                         clk_mgr->base.smu_present = true;
699
700                 /* TODO: Check we get what we expect during bringup */
701                 clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
702
703                 /* in case we don't get a value from the register, use default */
704                 if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
705                         clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
706
707                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
708                         vg_bw_params.wm_table = lpddr5_wm_table;
709                 } else {
710                         vg_bw_params.wm_table = ddr4_wm_table;
711                 }
712                 /* Saved clocks configured at boot for debug purposes */
713                 vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
714         }
715
716         clk_mgr->base.base.dprefclk_khz = 600000;
717         dce_clock_read_ss_info(&clk_mgr->base);
718
719         clk_mgr->base.base.bw_params = &vg_bw_params;
720
721         vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
722         if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
723                 vg_clk_mgr_helper_populate_bw_params(
724                                 &clk_mgr->base,
725                                 ctx->dc_bios->integrated_info,
726                                 smu_dpm_clks.dpm_clks);
727         }
728
729         if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
730                 dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
731                                 smu_dpm_clks.dpm_clks);
732 /*
733         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->base.smu_ver) {
734                  enable powerfeatures when displaycount goes to 0
735                 dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
736         }
737 */
738 }
739
740 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
741 {
742         struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
743
744         if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
745                 dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
746                                 clk_mgr->smu_wm_set.wm_set);
747 }