drm/amdkfd: Confirm list is non-empty before utilizing list_first_entry in kfd_topology.c
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / amdkfd / kfd_topology.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_svm.h"
40 #include "kfd_debug.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51
52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53                                                 uint32_t proximity_domain)
54 {
55         struct kfd_topology_device *top_dev;
56         struct kfd_topology_device *device = NULL;
57
58         list_for_each_entry(top_dev, &topology_device_list, list)
59                 if (top_dev->proximity_domain == proximity_domain) {
60                         device = top_dev;
61                         break;
62                 }
63
64         return device;
65 }
66
67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68                                                 uint32_t proximity_domain)
69 {
70         struct kfd_topology_device *device = NULL;
71
72         down_read(&topology_lock);
73
74         device = kfd_topology_device_by_proximity_domain_no_lock(
75                                                         proximity_domain);
76         up_read(&topology_lock);
77
78         return device;
79 }
80
81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83         struct kfd_topology_device *top_dev = NULL;
84         struct kfd_topology_device *ret = NULL;
85
86         down_read(&topology_lock);
87
88         list_for_each_entry(top_dev, &topology_device_list, list)
89                 if (top_dev->gpu_id == gpu_id) {
90                         ret = top_dev;
91                         break;
92                 }
93
94         up_read(&topology_lock);
95
96         return ret;
97 }
98
99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100 {
101         struct kfd_topology_device *top_dev;
102
103         top_dev = kfd_topology_device_by_id(gpu_id);
104         if (!top_dev)
105                 return NULL;
106
107         return top_dev->gpu;
108 }
109
110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112         struct kfd_topology_device *top_dev;
113         struct kfd_node *device = NULL;
114
115         down_read(&topology_lock);
116
117         list_for_each_entry(top_dev, &topology_device_list, list)
118                 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119                         device = top_dev->gpu;
120                         break;
121                 }
122
123         up_read(&topology_lock);
124
125         return device;
126 }
127
128 /* Called with write topology_lock acquired */
129 static void kfd_release_topology_device(struct kfd_topology_device *dev)
130 {
131         struct kfd_mem_properties *mem;
132         struct kfd_cache_properties *cache;
133         struct kfd_iolink_properties *iolink;
134         struct kfd_iolink_properties *p2plink;
135         struct kfd_perf_properties *perf;
136
137         list_del(&dev->list);
138
139         while (dev->mem_props.next != &dev->mem_props) {
140                 mem = container_of(dev->mem_props.next,
141                                 struct kfd_mem_properties, list);
142                 list_del(&mem->list);
143                 kfree(mem);
144         }
145
146         while (dev->cache_props.next != &dev->cache_props) {
147                 cache = container_of(dev->cache_props.next,
148                                 struct kfd_cache_properties, list);
149                 list_del(&cache->list);
150                 kfree(cache);
151         }
152
153         while (dev->io_link_props.next != &dev->io_link_props) {
154                 iolink = container_of(dev->io_link_props.next,
155                                 struct kfd_iolink_properties, list);
156                 list_del(&iolink->list);
157                 kfree(iolink);
158         }
159
160         while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161                 p2plink = container_of(dev->p2p_link_props.next,
162                                 struct kfd_iolink_properties, list);
163                 list_del(&p2plink->list);
164                 kfree(p2plink);
165         }
166
167         while (dev->perf_props.next != &dev->perf_props) {
168                 perf = container_of(dev->perf_props.next,
169                                 struct kfd_perf_properties, list);
170                 list_del(&perf->list);
171                 kfree(perf);
172         }
173
174         kfree(dev);
175 }
176
177 void kfd_release_topology_device_list(struct list_head *device_list)
178 {
179         struct kfd_topology_device *dev;
180
181         while (!list_empty(device_list)) {
182                 dev = list_first_entry(device_list,
183                                        struct kfd_topology_device, list);
184                 kfd_release_topology_device(dev);
185         }
186 }
187
188 static void kfd_release_live_view(void)
189 {
190         kfd_release_topology_device_list(&topology_device_list);
191         memset(&sys_props, 0, sizeof(sys_props));
192 }
193
194 struct kfd_topology_device *kfd_create_topology_device(
195                                 struct list_head *device_list)
196 {
197         struct kfd_topology_device *dev;
198
199         dev = kfd_alloc_struct(dev);
200         if (!dev) {
201                 pr_err("No memory to allocate a topology device");
202                 return NULL;
203         }
204
205         INIT_LIST_HEAD(&dev->mem_props);
206         INIT_LIST_HEAD(&dev->cache_props);
207         INIT_LIST_HEAD(&dev->io_link_props);
208         INIT_LIST_HEAD(&dev->p2p_link_props);
209         INIT_LIST_HEAD(&dev->perf_props);
210
211         list_add_tail(&dev->list, device_list);
212
213         return dev;
214 }
215
216
217 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)             \
218                 (offs += snprintf(buffer+offs, PAGE_SIZE-offs,  \
219                                   fmt, __VA_ARGS__))
220 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
221                 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
223                 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224 #define sysfs_show_32bit_val(buffer, offs, value) \
225                 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226 #define sysfs_show_str_val(buffer, offs, value) \
227                 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228
229 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230                 char *buffer)
231 {
232         int offs = 0;
233
234         /* Making sure that the buffer is an empty string */
235         buffer[0] = 0;
236
237         if (attr == &sys_props.attr_genid) {
238                 sysfs_show_32bit_val(buffer, offs,
239                                      sys_props.generation_count);
240         } else if (attr == &sys_props.attr_props) {
241                 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242                                       sys_props.platform_oem);
243                 sysfs_show_64bit_prop(buffer, offs, "platform_id",
244                                       sys_props.platform_id);
245                 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246                                       sys_props.platform_rev);
247         } else {
248                 offs = -EINVAL;
249         }
250
251         return offs;
252 }
253
254 static void kfd_topology_kobj_release(struct kobject *kobj)
255 {
256         kfree(kobj);
257 }
258
259 static const struct sysfs_ops sysprops_ops = {
260         .show = sysprops_show,
261 };
262
263 static const struct kobj_type sysprops_type = {
264         .release = kfd_topology_kobj_release,
265         .sysfs_ops = &sysprops_ops,
266 };
267
268 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269                 char *buffer)
270 {
271         int offs = 0;
272         struct kfd_iolink_properties *iolink;
273
274         /* Making sure that the buffer is an empty string */
275         buffer[0] = 0;
276
277         iolink = container_of(attr, struct kfd_iolink_properties, attr);
278         if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279                 return -EPERM;
280         sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281         sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282         sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283         sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284         sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285         sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286         sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287         sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288         sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289                               iolink->min_bandwidth);
290         sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291                               iolink->max_bandwidth);
292         sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293                               iolink->rec_transfer_size);
294         sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295
296         return offs;
297 }
298
299 static const struct sysfs_ops iolink_ops = {
300         .show = iolink_show,
301 };
302
303 static const struct kobj_type iolink_type = {
304         .release = kfd_topology_kobj_release,
305         .sysfs_ops = &iolink_ops,
306 };
307
308 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309                 char *buffer)
310 {
311         int offs = 0;
312         struct kfd_mem_properties *mem;
313
314         /* Making sure that the buffer is an empty string */
315         buffer[0] = 0;
316
317         mem = container_of(attr, struct kfd_mem_properties, attr);
318         if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319                 return -EPERM;
320         sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321         sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322                               mem->size_in_bytes);
323         sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324         sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325         sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326                               mem->mem_clk_max);
327
328         return offs;
329 }
330
331 static const struct sysfs_ops mem_ops = {
332         .show = mem_show,
333 };
334
335 static const struct kobj_type mem_type = {
336         .release = kfd_topology_kobj_release,
337         .sysfs_ops = &mem_ops,
338 };
339
340 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341                 char *buffer)
342 {
343         int offs = 0;
344         uint32_t i, j;
345         struct kfd_cache_properties *cache;
346
347         /* Making sure that the buffer is an empty string */
348         buffer[0] = 0;
349         cache = container_of(attr, struct kfd_cache_properties, attr);
350         if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351                 return -EPERM;
352         sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353                         cache->processor_id_low);
354         sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355         sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356         sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357                               cache->cacheline_size);
358         sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359                               cache->cachelines_per_tag);
360         sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361         sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362         sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363
364         offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365         for (i = 0; i < cache->sibling_map_size; i++)
366                 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367                         /* Check each bit */
368                         offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369                                                 (cache->sibling_map[i] >> j) & 1);
370
371         /* Replace the last "," with end of line */
372         buffer[offs-1] = '\n';
373         return offs;
374 }
375
376 static const struct sysfs_ops cache_ops = {
377         .show = kfd_cache_show,
378 };
379
380 static const struct kobj_type cache_type = {
381         .release = kfd_topology_kobj_release,
382         .sysfs_ops = &cache_ops,
383 };
384
385 /****** Sysfs of Performance Counters ******/
386
387 struct kfd_perf_attr {
388         struct kobj_attribute attr;
389         uint32_t data;
390 };
391
392 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393                         char *buf)
394 {
395         int offs = 0;
396         struct kfd_perf_attr *attr;
397
398         buf[0] = 0;
399         attr = container_of(attrs, struct kfd_perf_attr, attr);
400         if (!attr->data) /* invalid data for PMC */
401                 return 0;
402         else
403                 return sysfs_show_32bit_val(buf, offs, attr->data);
404 }
405
406 #define KFD_PERF_DESC(_name, _data)                     \
407 {                                                       \
408         .attr  = __ATTR(_name, 0444, perf_show, NULL),  \
409         .data = _data,                                  \
410 }
411
412 static struct kfd_perf_attr perf_attr_iommu[] = {
413         KFD_PERF_DESC(max_concurrent, 0),
414         KFD_PERF_DESC(num_counters, 0),
415         KFD_PERF_DESC(counter_ids, 0),
416 };
417 /****************************************/
418
419 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420                 char *buffer)
421 {
422         int offs = 0;
423         struct kfd_topology_device *dev;
424         uint32_t log_max_watch_addr;
425
426         /* Making sure that the buffer is an empty string */
427         buffer[0] = 0;
428
429         if (strcmp(attr->name, "gpu_id") == 0) {
430                 dev = container_of(attr, struct kfd_topology_device,
431                                 attr_gpuid);
432                 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433                         return -EPERM;
434                 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435         }
436
437         if (strcmp(attr->name, "name") == 0) {
438                 dev = container_of(attr, struct kfd_topology_device,
439                                 attr_name);
440
441                 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442                         return -EPERM;
443                 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444         }
445
446         dev = container_of(attr, struct kfd_topology_device,
447                         attr_props);
448         if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449                 return -EPERM;
450         sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451                               dev->node_props.cpu_cores_count);
452         sysfs_show_32bit_prop(buffer, offs, "simd_count",
453                               dev->gpu ? dev->node_props.simd_count : 0);
454         sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
455                               dev->node_props.mem_banks_count);
456         sysfs_show_32bit_prop(buffer, offs, "caches_count",
457                               dev->node_props.caches_count);
458         sysfs_show_32bit_prop(buffer, offs, "io_links_count",
459                               dev->node_props.io_links_count);
460         sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
461                               dev->node_props.p2p_links_count);
462         sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
463                               dev->node_props.cpu_core_id_base);
464         sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
465                               dev->node_props.simd_id_base);
466         sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
467                               dev->node_props.max_waves_per_simd);
468         sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
469                               dev->node_props.lds_size_in_kb);
470         sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
471                               dev->node_props.gds_size_in_kb);
472         sysfs_show_32bit_prop(buffer, offs, "num_gws",
473                               dev->node_props.num_gws);
474         sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
475                               dev->node_props.wave_front_size);
476         sysfs_show_32bit_prop(buffer, offs, "array_count",
477                               dev->gpu ? (dev->node_props.array_count *
478                                           NUM_XCC(dev->gpu->xcc_mask)) : 0);
479         sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
480                               dev->node_props.simd_arrays_per_engine);
481         sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
482                               dev->node_props.cu_per_simd_array);
483         sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
484                               dev->node_props.simd_per_cu);
485         sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
486                               dev->node_props.max_slots_scratch_cu);
487         sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
488                               dev->node_props.gfx_target_version);
489         sysfs_show_32bit_prop(buffer, offs, "vendor_id",
490                               dev->node_props.vendor_id);
491         sysfs_show_32bit_prop(buffer, offs, "device_id",
492                               dev->node_props.device_id);
493         sysfs_show_32bit_prop(buffer, offs, "location_id",
494                               dev->node_props.location_id);
495         sysfs_show_32bit_prop(buffer, offs, "domain",
496                               dev->node_props.domain);
497         sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
498                               dev->node_props.drm_render_minor);
499         sysfs_show_64bit_prop(buffer, offs, "hive_id",
500                               dev->node_props.hive_id);
501         sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
502                               dev->node_props.num_sdma_engines);
503         sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
504                               dev->node_props.num_sdma_xgmi_engines);
505         sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
506                               dev->node_props.num_sdma_queues_per_engine);
507         sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
508                               dev->node_props.num_cp_queues);
509
510         if (dev->gpu) {
511                 log_max_watch_addr =
512                         __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
513
514                 if (log_max_watch_addr) {
515                         dev->node_props.capability |=
516                                         HSA_CAP_WATCH_POINTS_SUPPORTED;
517
518                         dev->node_props.capability |=
519                                 ((log_max_watch_addr <<
520                                         HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
521                                 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
522                 }
523
524                 if (dev->gpu->adev->asic_type == CHIP_TONGA)
525                         dev->node_props.capability |=
526                                         HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
527
528                 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
529                         dev->node_props.max_engine_clk_fcompute);
530
531                 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
532
533                 sysfs_show_32bit_prop(buffer, offs, "fw_version",
534                                       dev->gpu->kfd->mec_fw_version);
535                 sysfs_show_32bit_prop(buffer, offs, "capability",
536                                       dev->node_props.capability);
537                 sysfs_show_64bit_prop(buffer, offs, "debug_prop",
538                                       dev->node_props.debug_prop);
539                 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
540                                       dev->gpu->kfd->sdma_fw_version);
541                 sysfs_show_64bit_prop(buffer, offs, "unique_id",
542                                       dev->gpu->adev->unique_id);
543                 sysfs_show_32bit_prop(buffer, offs, "num_xcc",
544                                       NUM_XCC(dev->gpu->xcc_mask));
545         }
546
547         return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
548                                      cpufreq_quick_get_max(0)/1000);
549 }
550
551 static const struct sysfs_ops node_ops = {
552         .show = node_show,
553 };
554
555 static const struct kobj_type node_type = {
556         .release = kfd_topology_kobj_release,
557         .sysfs_ops = &node_ops,
558 };
559
560 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
561 {
562         sysfs_remove_file(kobj, attr);
563         kobject_del(kobj);
564         kobject_put(kobj);
565 }
566
567 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
568 {
569         struct kfd_iolink_properties *p2plink;
570         struct kfd_iolink_properties *iolink;
571         struct kfd_cache_properties *cache;
572         struct kfd_mem_properties *mem;
573         struct kfd_perf_properties *perf;
574
575         if (dev->kobj_iolink) {
576                 list_for_each_entry(iolink, &dev->io_link_props, list)
577                         if (iolink->kobj) {
578                                 kfd_remove_sysfs_file(iolink->kobj,
579                                                         &iolink->attr);
580                                 iolink->kobj = NULL;
581                         }
582                 kobject_del(dev->kobj_iolink);
583                 kobject_put(dev->kobj_iolink);
584                 dev->kobj_iolink = NULL;
585         }
586
587         if (dev->kobj_p2plink) {
588                 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
589                         if (p2plink->kobj) {
590                                 kfd_remove_sysfs_file(p2plink->kobj,
591                                                         &p2plink->attr);
592                                 p2plink->kobj = NULL;
593                         }
594                 kobject_del(dev->kobj_p2plink);
595                 kobject_put(dev->kobj_p2plink);
596                 dev->kobj_p2plink = NULL;
597         }
598
599         if (dev->kobj_cache) {
600                 list_for_each_entry(cache, &dev->cache_props, list)
601                         if (cache->kobj) {
602                                 kfd_remove_sysfs_file(cache->kobj,
603                                                         &cache->attr);
604                                 cache->kobj = NULL;
605                         }
606                 kobject_del(dev->kobj_cache);
607                 kobject_put(dev->kobj_cache);
608                 dev->kobj_cache = NULL;
609         }
610
611         if (dev->kobj_mem) {
612                 list_for_each_entry(mem, &dev->mem_props, list)
613                         if (mem->kobj) {
614                                 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
615                                 mem->kobj = NULL;
616                         }
617                 kobject_del(dev->kobj_mem);
618                 kobject_put(dev->kobj_mem);
619                 dev->kobj_mem = NULL;
620         }
621
622         if (dev->kobj_perf) {
623                 list_for_each_entry(perf, &dev->perf_props, list) {
624                         kfree(perf->attr_group);
625                         perf->attr_group = NULL;
626                 }
627                 kobject_del(dev->kobj_perf);
628                 kobject_put(dev->kobj_perf);
629                 dev->kobj_perf = NULL;
630         }
631
632         if (dev->kobj_node) {
633                 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
634                 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
635                 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
636                 kobject_del(dev->kobj_node);
637                 kobject_put(dev->kobj_node);
638                 dev->kobj_node = NULL;
639         }
640 }
641
642 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
643                 uint32_t id)
644 {
645         struct kfd_iolink_properties *p2plink;
646         struct kfd_iolink_properties *iolink;
647         struct kfd_cache_properties *cache;
648         struct kfd_mem_properties *mem;
649         struct kfd_perf_properties *perf;
650         int ret;
651         uint32_t i, num_attrs;
652         struct attribute **attrs;
653
654         if (WARN_ON(dev->kobj_node))
655                 return -EEXIST;
656
657         /*
658          * Creating the sysfs folders
659          */
660         dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
661         if (!dev->kobj_node)
662                 return -ENOMEM;
663
664         ret = kobject_init_and_add(dev->kobj_node, &node_type,
665                         sys_props.kobj_nodes, "%d", id);
666         if (ret < 0) {
667                 kobject_put(dev->kobj_node);
668                 return ret;
669         }
670
671         dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
672         if (!dev->kobj_mem)
673                 return -ENOMEM;
674
675         dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
676         if (!dev->kobj_cache)
677                 return -ENOMEM;
678
679         dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
680         if (!dev->kobj_iolink)
681                 return -ENOMEM;
682
683         dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
684         if (!dev->kobj_p2plink)
685                 return -ENOMEM;
686
687         dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
688         if (!dev->kobj_perf)
689                 return -ENOMEM;
690
691         /*
692          * Creating sysfs files for node properties
693          */
694         dev->attr_gpuid.name = "gpu_id";
695         dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
696         sysfs_attr_init(&dev->attr_gpuid);
697         dev->attr_name.name = "name";
698         dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
699         sysfs_attr_init(&dev->attr_name);
700         dev->attr_props.name = "properties";
701         dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
702         sysfs_attr_init(&dev->attr_props);
703         ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
704         if (ret < 0)
705                 return ret;
706         ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
707         if (ret < 0)
708                 return ret;
709         ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
710         if (ret < 0)
711                 return ret;
712
713         i = 0;
714         list_for_each_entry(mem, &dev->mem_props, list) {
715                 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
716                 if (!mem->kobj)
717                         return -ENOMEM;
718                 ret = kobject_init_and_add(mem->kobj, &mem_type,
719                                 dev->kobj_mem, "%d", i);
720                 if (ret < 0) {
721                         kobject_put(mem->kobj);
722                         return ret;
723                 }
724
725                 mem->attr.name = "properties";
726                 mem->attr.mode = KFD_SYSFS_FILE_MODE;
727                 sysfs_attr_init(&mem->attr);
728                 ret = sysfs_create_file(mem->kobj, &mem->attr);
729                 if (ret < 0)
730                         return ret;
731                 i++;
732         }
733
734         i = 0;
735         list_for_each_entry(cache, &dev->cache_props, list) {
736                 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
737                 if (!cache->kobj)
738                         return -ENOMEM;
739                 ret = kobject_init_and_add(cache->kobj, &cache_type,
740                                 dev->kobj_cache, "%d", i);
741                 if (ret < 0) {
742                         kobject_put(cache->kobj);
743                         return ret;
744                 }
745
746                 cache->attr.name = "properties";
747                 cache->attr.mode = KFD_SYSFS_FILE_MODE;
748                 sysfs_attr_init(&cache->attr);
749                 ret = sysfs_create_file(cache->kobj, &cache->attr);
750                 if (ret < 0)
751                         return ret;
752                 i++;
753         }
754
755         i = 0;
756         list_for_each_entry(iolink, &dev->io_link_props, list) {
757                 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
758                 if (!iolink->kobj)
759                         return -ENOMEM;
760                 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
761                                 dev->kobj_iolink, "%d", i);
762                 if (ret < 0) {
763                         kobject_put(iolink->kobj);
764                         return ret;
765                 }
766
767                 iolink->attr.name = "properties";
768                 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
769                 sysfs_attr_init(&iolink->attr);
770                 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
771                 if (ret < 0)
772                         return ret;
773                 i++;
774         }
775
776         i = 0;
777         list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
778                 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
779                 if (!p2plink->kobj)
780                         return -ENOMEM;
781                 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
782                                 dev->kobj_p2plink, "%d", i);
783                 if (ret < 0) {
784                         kobject_put(p2plink->kobj);
785                         return ret;
786                 }
787
788                 p2plink->attr.name = "properties";
789                 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
790                 sysfs_attr_init(&p2plink->attr);
791                 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
792                 if (ret < 0)
793                         return ret;
794                 i++;
795         }
796
797         /* All hardware blocks have the same number of attributes. */
798         num_attrs = ARRAY_SIZE(perf_attr_iommu);
799         list_for_each_entry(perf, &dev->perf_props, list) {
800                 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
801                         * num_attrs + sizeof(struct attribute_group),
802                         GFP_KERNEL);
803                 if (!perf->attr_group)
804                         return -ENOMEM;
805
806                 attrs = (struct attribute **)(perf->attr_group + 1);
807                 if (!strcmp(perf->block_name, "iommu")) {
808                 /* Information of IOMMU's num_counters and counter_ids is shown
809                  * under /sys/bus/event_source/devices/amd_iommu. We don't
810                  * duplicate here.
811                  */
812                         perf_attr_iommu[0].data = perf->max_concurrent;
813                         for (i = 0; i < num_attrs; i++)
814                                 attrs[i] = &perf_attr_iommu[i].attr.attr;
815                 }
816                 perf->attr_group->name = perf->block_name;
817                 perf->attr_group->attrs = attrs;
818                 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
819                 if (ret < 0)
820                         return ret;
821         }
822
823         return 0;
824 }
825
826 /* Called with write topology lock acquired */
827 static int kfd_build_sysfs_node_tree(void)
828 {
829         struct kfd_topology_device *dev;
830         int ret;
831         uint32_t i = 0;
832
833         list_for_each_entry(dev, &topology_device_list, list) {
834                 ret = kfd_build_sysfs_node_entry(dev, i);
835                 if (ret < 0)
836                         return ret;
837                 i++;
838         }
839
840         return 0;
841 }
842
843 /* Called with write topology lock acquired */
844 static void kfd_remove_sysfs_node_tree(void)
845 {
846         struct kfd_topology_device *dev;
847
848         list_for_each_entry(dev, &topology_device_list, list)
849                 kfd_remove_sysfs_node_entry(dev);
850 }
851
852 static int kfd_topology_update_sysfs(void)
853 {
854         int ret;
855
856         if (!sys_props.kobj_topology) {
857                 sys_props.kobj_topology =
858                                 kfd_alloc_struct(sys_props.kobj_topology);
859                 if (!sys_props.kobj_topology)
860                         return -ENOMEM;
861
862                 ret = kobject_init_and_add(sys_props.kobj_topology,
863                                 &sysprops_type,  &kfd_device->kobj,
864                                 "topology");
865                 if (ret < 0) {
866                         kobject_put(sys_props.kobj_topology);
867                         return ret;
868                 }
869
870                 sys_props.kobj_nodes = kobject_create_and_add("nodes",
871                                 sys_props.kobj_topology);
872                 if (!sys_props.kobj_nodes)
873                         return -ENOMEM;
874
875                 sys_props.attr_genid.name = "generation_id";
876                 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
877                 sysfs_attr_init(&sys_props.attr_genid);
878                 ret = sysfs_create_file(sys_props.kobj_topology,
879                                 &sys_props.attr_genid);
880                 if (ret < 0)
881                         return ret;
882
883                 sys_props.attr_props.name = "system_properties";
884                 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
885                 sysfs_attr_init(&sys_props.attr_props);
886                 ret = sysfs_create_file(sys_props.kobj_topology,
887                                 &sys_props.attr_props);
888                 if (ret < 0)
889                         return ret;
890         }
891
892         kfd_remove_sysfs_node_tree();
893
894         return kfd_build_sysfs_node_tree();
895 }
896
897 static void kfd_topology_release_sysfs(void)
898 {
899         kfd_remove_sysfs_node_tree();
900         if (sys_props.kobj_topology) {
901                 sysfs_remove_file(sys_props.kobj_topology,
902                                 &sys_props.attr_genid);
903                 sysfs_remove_file(sys_props.kobj_topology,
904                                 &sys_props.attr_props);
905                 if (sys_props.kobj_nodes) {
906                         kobject_del(sys_props.kobj_nodes);
907                         kobject_put(sys_props.kobj_nodes);
908                         sys_props.kobj_nodes = NULL;
909                 }
910                 kobject_del(sys_props.kobj_topology);
911                 kobject_put(sys_props.kobj_topology);
912                 sys_props.kobj_topology = NULL;
913         }
914 }
915
916 /* Called with write topology_lock acquired */
917 static void kfd_topology_update_device_list(struct list_head *temp_list,
918                                         struct list_head *master_list)
919 {
920         while (!list_empty(temp_list)) {
921                 list_move_tail(temp_list->next, master_list);
922                 sys_props.num_devices++;
923         }
924 }
925
926 static void kfd_debug_print_topology(void)
927 {
928         struct kfd_topology_device *dev;
929
930         down_read(&topology_lock);
931
932         dev = list_last_entry(&topology_device_list,
933                         struct kfd_topology_device, list);
934         if (dev) {
935                 if (dev->node_props.cpu_cores_count &&
936                                 dev->node_props.simd_count) {
937                         pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
938                                 dev->node_props.device_id,
939                                 dev->node_props.vendor_id);
940                 } else if (dev->node_props.cpu_cores_count)
941                         pr_info("Topology: Add CPU node\n");
942                 else if (dev->node_props.simd_count)
943                         pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
944                                 dev->node_props.device_id,
945                                 dev->node_props.vendor_id);
946         }
947         up_read(&topology_lock);
948 }
949
950 /* Helper function for intializing platform_xx members of
951  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
952  */
953 static void kfd_update_system_properties(void)
954 {
955         struct kfd_topology_device *dev;
956
957         down_read(&topology_lock);
958         dev = list_last_entry(&topology_device_list,
959                         struct kfd_topology_device, list);
960         if (dev) {
961                 sys_props.platform_id =
962                         (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
963                 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
964                 sys_props.platform_rev = dev->oem_revision;
965         }
966         up_read(&topology_lock);
967 }
968
969 static void find_system_memory(const struct dmi_header *dm,
970         void *private)
971 {
972         struct kfd_mem_properties *mem;
973         u16 mem_width, mem_clock;
974         struct kfd_topology_device *kdev =
975                 (struct kfd_topology_device *)private;
976         const u8 *dmi_data = (const u8 *)(dm + 1);
977
978         if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
979                 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
980                 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
981                 list_for_each_entry(mem, &kdev->mem_props, list) {
982                         if (mem_width != 0xFFFF && mem_width != 0)
983                                 mem->width = mem_width;
984                         if (mem_clock != 0)
985                                 mem->mem_clk_max = mem_clock;
986                 }
987         }
988 }
989
990 /* kfd_add_non_crat_information - Add information that is not currently
991  *      defined in CRAT but is necessary for KFD topology
992  * @dev - topology device to which addition info is added
993  */
994 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
995 {
996         /* Check if CPU only node. */
997         if (!kdev->gpu) {
998                 /* Add system memory information */
999                 dmi_walk(find_system_memory, kdev);
1000         }
1001         /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002 }
1003
1004 int kfd_topology_init(void)
1005 {
1006         void *crat_image = NULL;
1007         size_t image_size = 0;
1008         int ret;
1009         struct list_head temp_topology_device_list;
1010         int cpu_only_node = 0;
1011         struct kfd_topology_device *kdev;
1012         int proximity_domain;
1013
1014         /* topology_device_list - Master list of all topology devices
1015          * temp_topology_device_list - temporary list created while parsing CRAT
1016          * or VCRAT. Once parsing is complete the contents of list is moved to
1017          * topology_device_list
1018          */
1019
1020         /* Initialize the head for the both the lists */
1021         INIT_LIST_HEAD(&topology_device_list);
1022         INIT_LIST_HEAD(&temp_topology_device_list);
1023         init_rwsem(&topology_lock);
1024
1025         memset(&sys_props, 0, sizeof(sys_props));
1026
1027         /* Proximity domains in ACPI CRAT tables start counting at
1028          * 0. The same should be true for virtual CRAT tables created
1029          * at this stage. GPUs added later in kfd_topology_add_device
1030          * use a counter.
1031          */
1032         proximity_domain = 0;
1033
1034         ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035                                             COMPUTE_UNIT_CPU, NULL,
1036                                             proximity_domain);
1037         cpu_only_node = 1;
1038         if (ret) {
1039                 pr_err("Error creating VCRAT table for CPU\n");
1040                 return ret;
1041         }
1042
1043         ret = kfd_parse_crat_table(crat_image,
1044                                    &temp_topology_device_list,
1045                                    proximity_domain);
1046         if (ret) {
1047                 pr_err("Error parsing VCRAT table for CPU\n");
1048                 goto err;
1049         }
1050
1051         kdev = list_first_entry(&temp_topology_device_list,
1052                                 struct kfd_topology_device, list);
1053
1054         down_write(&topology_lock);
1055         kfd_topology_update_device_list(&temp_topology_device_list,
1056                                         &topology_device_list);
1057         topology_crat_proximity_domain = sys_props.num_devices-1;
1058         ret = kfd_topology_update_sysfs();
1059         up_write(&topology_lock);
1060
1061         if (!ret) {
1062                 sys_props.generation_count++;
1063                 kfd_update_system_properties();
1064                 kfd_debug_print_topology();
1065         } else
1066                 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068         /* For nodes with GPU, this information gets added
1069          * when GPU is detected (kfd_topology_add_device).
1070          */
1071         if (cpu_only_node) {
1072                 /* Add additional information to CPU only node created above */
1073                 down_write(&topology_lock);
1074                 kdev = list_first_entry(&topology_device_list,
1075                                 struct kfd_topology_device, list);
1076                 up_write(&topology_lock);
1077                 kfd_add_non_crat_information(kdev);
1078         }
1079
1080 err:
1081         kfd_destroy_crat_image(crat_image);
1082         return ret;
1083 }
1084
1085 void kfd_topology_shutdown(void)
1086 {
1087         down_write(&topology_lock);
1088         kfd_topology_release_sysfs();
1089         kfd_release_live_view();
1090         up_write(&topology_lock);
1091 }
1092
1093 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094 {
1095         uint32_t hashout;
1096         uint32_t buf[8];
1097         uint64_t local_mem_size;
1098         int i;
1099
1100         if (!gpu)
1101                 return 0;
1102
1103         local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104                         gpu->local_mem_info.local_mem_size_public;
1105         buf[0] = gpu->adev->pdev->devfn;
1106         buf[1] = gpu->adev->pdev->subsystem_vendor |
1107                 (gpu->adev->pdev->subsystem_device << 16);
1108         buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109         buf[3] = gpu->adev->pdev->device;
1110         buf[4] = gpu->adev->pdev->bus->number;
1111         buf[5] = lower_32_bits(local_mem_size);
1112         buf[6] = upper_32_bits(local_mem_size);
1113         buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115         for (i = 0, hashout = 0; i < 8; i++)
1116                 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118         return hashout;
1119 }
1120 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121  *              the GPU device is not already present in the topology device
1122  *              list then return NULL. This means a new topology device has to
1123  *              be created for this GPU.
1124  */
1125 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126 {
1127         struct kfd_topology_device *dev;
1128         struct kfd_topology_device *out_dev = NULL;
1129         struct kfd_mem_properties *mem;
1130         struct kfd_cache_properties *cache;
1131         struct kfd_iolink_properties *iolink;
1132         struct kfd_iolink_properties *p2plink;
1133
1134         list_for_each_entry(dev, &topology_device_list, list) {
1135                 /* Discrete GPUs need their own topology device list
1136                  * entries. Don't assign them to CPU/APU nodes.
1137                  */
1138                 if (dev->node_props.cpu_cores_count)
1139                         continue;
1140
1141                 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142                         dev->gpu = gpu;
1143                         out_dev = dev;
1144
1145                         list_for_each_entry(mem, &dev->mem_props, list)
1146                                 mem->gpu = dev->gpu;
1147                         list_for_each_entry(cache, &dev->cache_props, list)
1148                                 cache->gpu = dev->gpu;
1149                         list_for_each_entry(iolink, &dev->io_link_props, list)
1150                                 iolink->gpu = dev->gpu;
1151                         list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152                                 p2plink->gpu = dev->gpu;
1153                         break;
1154                 }
1155         }
1156         return out_dev;
1157 }
1158
1159 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160 {
1161         /*
1162          * TODO: Generate an event for thunk about the arrival/removal
1163          * of the GPU
1164          */
1165 }
1166
1167 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168  *              patch this after CRAT parsing.
1169  */
1170 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171 {
1172         struct kfd_mem_properties *mem;
1173         struct kfd_local_mem_info local_mem_info;
1174
1175         if (!dev)
1176                 return;
1177
1178         /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179          * single bank of VRAM local memory.
1180          * for dGPUs - VCRAT reports only one bank of Local Memory
1181          * for APUs - If CRAT from ACPI reports more than one bank, then
1182          *      all the banks will report the same mem_clk_max information
1183          */
1184         amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185                                          dev->gpu->xcp);
1186
1187         list_for_each_entry(mem, &dev->mem_props, list)
1188                 mem->mem_clk_max = local_mem_info.mem_clk_max;
1189 }
1190
1191 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192                                         struct kfd_topology_device *target_gpu_dev,
1193                                         struct kfd_iolink_properties *link)
1194 {
1195         /* xgmi always supports atomics between links. */
1196         if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197                 return;
1198
1199         /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200         if (target_gpu_dev) {
1201                 uint32_t cap;
1202
1203                 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204                                 PCI_EXP_DEVCAP2, &cap);
1205
1206                 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207                              PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208                         link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209                                 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210         /* set gpu (dev) flags. */
1211         } else {
1212                 if (!dev->gpu->kfd->pci_atomic_requested ||
1213                                 dev->gpu->adev->asic_type == CHIP_HAWAII)
1214                         link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215                                 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216         }
1217 }
1218
1219 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220                 struct kfd_iolink_properties *outbound_link,
1221                 struct kfd_iolink_properties *inbound_link)
1222 {
1223         /* CPU -> GPU with PCIe */
1224         if (!to_dev->gpu &&
1225             inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226                 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228         if (to_dev->gpu) {
1229                 /* GPU <-> GPU with PCIe and
1230                  * Vega20 with XGMI
1231                  */
1232                 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233                     (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234                     KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235                         outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236                         inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237                 }
1238         }
1239 }
1240
1241 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242 {
1243         struct kfd_iolink_properties *link, *inbound_link;
1244         struct kfd_topology_device *peer_dev;
1245
1246         if (!dev || !dev->gpu)
1247                 return;
1248
1249         /* GPU only creates direct links so apply flags setting to all */
1250         list_for_each_entry(link, &dev->io_link_props, list) {
1251                 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252                 kfd_set_iolink_no_atomics(dev, NULL, link);
1253                 peer_dev = kfd_topology_device_by_proximity_domain(
1254                                 link->node_to);
1255
1256                 if (!peer_dev)
1257                         continue;
1258
1259                 /* Include the CPU peer in GPU hive if connected over xGMI. */
1260                 if (!peer_dev->gpu &&
1261                     link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262                         /*
1263                          * If the GPU is not part of a GPU hive, use its pci
1264                          * device location as the hive ID to bind with the CPU.
1265                          */
1266                         if (!dev->node_props.hive_id)
1267                                 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268                         peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269                 }
1270
1271                 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272                                                                         list) {
1273                         if (inbound_link->node_to != link->node_from)
1274                                 continue;
1275
1276                         inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277                         kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278                         kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1279                 }
1280         }
1281
1282         /* Create indirect links so apply flags setting to all */
1283         list_for_each_entry(link, &dev->p2p_link_props, list) {
1284                 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285                 kfd_set_iolink_no_atomics(dev, NULL, link);
1286                 peer_dev = kfd_topology_device_by_proximity_domain(
1287                                 link->node_to);
1288
1289                 if (!peer_dev)
1290                         continue;
1291
1292                 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293                                                                         list) {
1294                         if (inbound_link->node_to != link->node_from)
1295                                 continue;
1296
1297                         inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298                         kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299                         kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300                 }
1301         }
1302 }
1303
1304 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305                                 struct kfd_iolink_properties *p2plink)
1306 {
1307         int ret;
1308
1309         p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310         if (!p2plink->kobj)
1311                 return -ENOMEM;
1312
1313         ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314                         dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315         if (ret < 0) {
1316                 kobject_put(p2plink->kobj);
1317                 return ret;
1318         }
1319
1320         p2plink->attr.name = "properties";
1321         p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322         sysfs_attr_init(&p2plink->attr);
1323         ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324         if (ret < 0)
1325                 return ret;
1326
1327         return 0;
1328 }
1329
1330 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331 {
1332         struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333         struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334         struct kfd_topology_device *cpu_dev;
1335         int ret = 0;
1336         int i, num_cpu;
1337
1338         num_cpu = 0;
1339         list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340                 if (cpu_dev->gpu)
1341                         break;
1342                 num_cpu++;
1343         }
1344
1345         if (list_empty(&kdev->io_link_props))
1346                 return -ENODATA;
1347
1348         gpu_link = list_first_entry(&kdev->io_link_props,
1349                                     struct kfd_iolink_properties, list);
1350
1351         for (i = 0; i < num_cpu; i++) {
1352                 /* CPU <--> GPU */
1353                 if (gpu_link->node_to == i)
1354                         continue;
1355
1356                 /* find CPU <-->  CPU links */
1357                 cpu_link = NULL;
1358                 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359                 if (cpu_dev) {
1360                         list_for_each_entry(tmp_link,
1361                                         &cpu_dev->io_link_props, list) {
1362                                 if (tmp_link->node_to == gpu_link->node_to) {
1363                                         cpu_link = tmp_link;
1364                                         break;
1365                                 }
1366                         }
1367                 }
1368
1369                 if (!cpu_link)
1370                         return -ENOMEM;
1371
1372                 /* CPU <--> CPU <--> GPU, GPU node*/
1373                 props = kfd_alloc_struct(props);
1374                 if (!props)
1375                         return -ENOMEM;
1376
1377                 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378                 props->weight = gpu_link->weight + cpu_link->weight;
1379                 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380                 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381                 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382                 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384                 props->node_from = gpu_node;
1385                 props->node_to = i;
1386                 kdev->node_props.p2p_links_count++;
1387                 list_add_tail(&props->list, &kdev->p2p_link_props);
1388                 ret = kfd_build_p2p_node_entry(kdev, props);
1389                 if (ret < 0)
1390                         return ret;
1391
1392                 /* for small Bar, no CPU --> GPU in-direct links */
1393                 if (kfd_dev_is_large_bar(kdev->gpu)) {
1394                         /* CPU <--> CPU <--> GPU, CPU node*/
1395                         props2 = kfd_alloc_struct(props2);
1396                         if (!props2)
1397                                 return -ENOMEM;
1398
1399                         memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400                         props2->node_from = i;
1401                         props2->node_to = gpu_node;
1402                         props2->kobj = NULL;
1403                         cpu_dev->node_props.p2p_links_count++;
1404                         list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405                         ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406                         if (ret < 0)
1407                                 return ret;
1408                 }
1409         }
1410         return ret;
1411 }
1412
1413 #if defined(CONFIG_HSA_AMD_P2P)
1414 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415                 struct kfd_topology_device *peer, int from, int to)
1416 {
1417         struct kfd_iolink_properties *props = NULL;
1418         struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419         struct kfd_topology_device *cpu_dev;
1420         int ret = 0;
1421
1422         if (!amdgpu_device_is_peer_accessible(
1423                                 kdev->gpu->adev,
1424                                 peer->gpu->adev))
1425                 return ret;
1426
1427         if (list_empty(&kdev->io_link_props))
1428                 return -ENODATA;
1429
1430         iolink1 = list_first_entry(&kdev->io_link_props,
1431                                    struct kfd_iolink_properties, list);
1432
1433         if (list_empty(&peer->io_link_props))
1434                 return -ENODATA;
1435
1436         iolink2 = list_first_entry(&peer->io_link_props,
1437                                    struct kfd_iolink_properties, list);
1438
1439         props = kfd_alloc_struct(props);
1440         if (!props)
1441                 return -ENOMEM;
1442
1443         memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445         props->weight = iolink1->weight + iolink2->weight;
1446         props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447         props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448         props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449         props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451         if (iolink1->node_to != iolink2->node_to) {
1452                 /* CPU->CPU  link*/
1453                 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454                 if (cpu_dev) {
1455                         list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1456                                 if (iolink3->node_to == iolink2->node_to)
1457                                         break;
1458
1459                         props->weight += iolink3->weight;
1460                         props->min_latency += iolink3->min_latency;
1461                         props->max_latency += iolink3->max_latency;
1462                         props->min_bandwidth = min(props->min_bandwidth,
1463                                                         iolink3->min_bandwidth);
1464                         props->max_bandwidth = min(props->max_bandwidth,
1465                                                         iolink3->max_bandwidth);
1466                 } else {
1467                         WARN(1, "CPU node not found");
1468                 }
1469         }
1470
1471         props->node_from = from;
1472         props->node_to = to;
1473         peer->node_props.p2p_links_count++;
1474         list_add_tail(&props->list, &peer->p2p_link_props);
1475         ret = kfd_build_p2p_node_entry(peer, props);
1476
1477         return ret;
1478 }
1479 #endif
1480
1481 static int kfd_dev_create_p2p_links(void)
1482 {
1483         struct kfd_topology_device *dev;
1484         struct kfd_topology_device *new_dev;
1485 #if defined(CONFIG_HSA_AMD_P2P)
1486         uint32_t i;
1487 #endif
1488         uint32_t k;
1489         int ret = 0;
1490
1491         k = 0;
1492         list_for_each_entry(dev, &topology_device_list, list)
1493                 k++;
1494         if (k < 2)
1495                 return 0;
1496
1497         new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1498         if (WARN_ON(!new_dev->gpu))
1499                 return 0;
1500
1501         k--;
1502
1503         /* create in-direct links */
1504         ret = kfd_create_indirect_link_prop(new_dev, k);
1505         if (ret < 0)
1506                 goto out;
1507
1508         /* create p2p links */
1509 #if defined(CONFIG_HSA_AMD_P2P)
1510         i = 0;
1511         list_for_each_entry(dev, &topology_device_list, list) {
1512                 if (dev == new_dev)
1513                         break;
1514                 if (!dev->gpu || !dev->gpu->adev ||
1515                     (dev->gpu->kfd->hive_id &&
1516                      dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1517                         goto next;
1518
1519                 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1520                 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1521                 if (ret < 0)
1522                         goto out;
1523
1524                 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1525                 if (ret < 0)
1526                         goto out;
1527 next:
1528                 i++;
1529         }
1530 #endif
1531
1532 out:
1533         return ret;
1534 }
1535
1536 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1537 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1538                                 struct kfd_gpu_cache_info *pcache_info,
1539                                 struct kfd_cu_info *cu_info,
1540                                 int cu_bitmask,
1541                                 int cache_type, unsigned int cu_processor_id,
1542                                 int cu_block)
1543 {
1544         unsigned int cu_sibling_map_mask;
1545         int first_active_cu;
1546         struct kfd_cache_properties *pcache = NULL;
1547
1548         cu_sibling_map_mask = cu_bitmask;
1549         cu_sibling_map_mask >>= cu_block;
1550         cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1551         first_active_cu = ffs(cu_sibling_map_mask);
1552
1553         /* CU could be inactive. In case of shared cache find the first active
1554          * CU. and incase of non-shared cache check if the CU is inactive. If
1555          * inactive active skip it
1556          */
1557         if (first_active_cu) {
1558                 pcache = kfd_alloc_struct(pcache);
1559                 if (!pcache)
1560                         return -ENOMEM;
1561
1562                 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1563                 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1564                 pcache->cache_level = pcache_info[cache_type].cache_level;
1565                 pcache->cache_size = pcache_info[cache_type].cache_size;
1566
1567                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1568                         pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1569                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1570                         pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1571                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1572                         pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1573                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1574                         pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1575
1576                 /* Sibling map is w.r.t processor_id_low, so shift out
1577                  * inactive CU
1578                  */
1579                 cu_sibling_map_mask =
1580                         cu_sibling_map_mask >> (first_active_cu - 1);
1581
1582                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1583                 pcache->sibling_map[1] =
1584                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1585                 pcache->sibling_map[2] =
1586                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1587                 pcache->sibling_map[3] =
1588                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1589
1590                 pcache->sibling_map_size = 4;
1591                 *props_ext = pcache;
1592
1593                 return 0;
1594         }
1595         return 1;
1596 }
1597
1598 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1599 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1600                                 struct kfd_gpu_cache_info *pcache_info,
1601                                 struct kfd_cu_info *cu_info,
1602                                 int cache_type, unsigned int cu_processor_id,
1603                                 struct kfd_node *knode)
1604 {
1605         unsigned int cu_sibling_map_mask;
1606         int first_active_cu;
1607         int i, j, k, xcc, start, end;
1608         struct kfd_cache_properties *pcache = NULL;
1609
1610         start = ffs(knode->xcc_mask) - 1;
1611         end = start + NUM_XCC(knode->xcc_mask);
1612         cu_sibling_map_mask = cu_info->cu_bitmap[start][0][0];
1613         cu_sibling_map_mask &=
1614                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1615         first_active_cu = ffs(cu_sibling_map_mask);
1616
1617         /* CU could be inactive. In case of shared cache find the first active
1618          * CU. and incase of non-shared cache check if the CU is inactive. If
1619          * inactive active skip it
1620          */
1621         if (first_active_cu) {
1622                 pcache = kfd_alloc_struct(pcache);
1623                 if (!pcache)
1624                         return -ENOMEM;
1625
1626                 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1627                 pcache->processor_id_low = cu_processor_id
1628                                         + (first_active_cu - 1);
1629                 pcache->cache_level = pcache_info[cache_type].cache_level;
1630                 pcache->cache_size = pcache_info[cache_type].cache_size;
1631
1632                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1633                         pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1634                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1635                         pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1636                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1637                         pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1638                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1639                         pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1640
1641                 /* Sibling map is w.r.t processor_id_low, so shift out
1642                  * inactive CU
1643                  */
1644                 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1645                 k = 0;
1646
1647                 for (xcc = start; xcc < end; xcc++) {
1648                         for (i = 0; i < cu_info->num_shader_engines; i++) {
1649                                 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1650                                         pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1651                                         pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1652                                         pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1653                                         pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1654                                         k += 4;
1655
1656                                         cu_sibling_map_mask = cu_info->cu_bitmap[xcc][i % 4][j + i / 4];
1657                                         cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1658                                 }
1659                         }
1660                 }
1661                 pcache->sibling_map_size = k;
1662                 *props_ext = pcache;
1663                 return 0;
1664         }
1665         return 1;
1666 }
1667
1668 #define KFD_MAX_CACHE_TYPES 6
1669
1670 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1671  * tables
1672  */
1673 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1674 {
1675         struct kfd_gpu_cache_info *pcache_info = NULL;
1676         int i, j, k, xcc, start, end;
1677         int ct = 0;
1678         unsigned int cu_processor_id;
1679         int ret;
1680         unsigned int num_cu_shared;
1681         struct kfd_cu_info cu_info;
1682         struct kfd_cu_info *pcu_info;
1683         int gpu_processor_id;
1684         struct kfd_cache_properties *props_ext;
1685         int num_of_entries = 0;
1686         int num_of_cache_types = 0;
1687         struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1688
1689         amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1690         pcu_info = &cu_info;
1691
1692         gpu_processor_id = dev->node_props.simd_id_base;
1693
1694         pcache_info = cache_info;
1695         num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1696         if (!num_of_cache_types) {
1697                 pr_warn("no cache info found\n");
1698                 return;
1699         }
1700
1701         /* For each type of cache listed in the kfd_gpu_cache_info table,
1702          * go through all available Compute Units.
1703          * The [i,j,k] loop will
1704          *              if kfd_gpu_cache_info.num_cu_shared = 1
1705          *                      will parse through all available CU
1706          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
1707          *                      then it will consider only one CU from
1708          *                      the shared unit
1709          */
1710         start = ffs(kdev->xcc_mask) - 1;
1711         end = start + NUM_XCC(kdev->xcc_mask);
1712
1713         for (ct = 0; ct < num_of_cache_types; ct++) {
1714                 cu_processor_id = gpu_processor_id;
1715                 if (pcache_info[ct].cache_level == 1) {
1716                         for (xcc = start; xcc < end; xcc++) {
1717                                 for (i = 0; i < pcu_info->num_shader_engines; i++) {
1718                                         for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1719                                                 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1720
1721                                                         ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1722                                                                                 pcu_info->cu_bitmap[xcc][i % 4][j + i / 4], ct,
1723                                                                                 cu_processor_id, k);
1724
1725                                                         if (ret < 0)
1726                                                                 break;
1727
1728                                                         if (!ret) {
1729                                                                 num_of_entries++;
1730                                                                 list_add_tail(&props_ext->list, &dev->cache_props);
1731                                                         }
1732
1733                                                         /* Move to next CU block */
1734                                                         num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1735                                                                 pcu_info->num_cu_per_sh) ?
1736                                                                 pcache_info[ct].num_cu_shared :
1737                                                                 (pcu_info->num_cu_per_sh - k);
1738                                                         cu_processor_id += num_cu_shared;
1739                                                 }
1740                                         }
1741                                 }
1742                         }
1743                 } else {
1744                         ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1745                                         pcu_info, ct, cu_processor_id, kdev);
1746
1747                         if (ret < 0)
1748                                 break;
1749
1750                         if (!ret) {
1751                                 num_of_entries++;
1752                                 list_add_tail(&props_ext->list, &dev->cache_props);
1753                         }
1754                 }
1755         }
1756         dev->node_props.caches_count += num_of_entries;
1757         pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1758 }
1759
1760 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1761                                           struct kfd_topology_device **dev)
1762 {
1763         int proximity_domain = ++topology_crat_proximity_domain;
1764         struct list_head temp_topology_device_list;
1765         void *crat_image = NULL;
1766         size_t image_size = 0;
1767         int res;
1768
1769         res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1770                                             COMPUTE_UNIT_GPU, gpu,
1771                                             proximity_domain);
1772         if (res) {
1773                 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1774                        gpu_id);
1775                 topology_crat_proximity_domain--;
1776                 goto err;
1777         }
1778
1779         INIT_LIST_HEAD(&temp_topology_device_list);
1780
1781         res = kfd_parse_crat_table(crat_image,
1782                                    &temp_topology_device_list,
1783                                    proximity_domain);
1784         if (res) {
1785                 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1786                        gpu_id);
1787                 topology_crat_proximity_domain--;
1788                 goto err;
1789         }
1790
1791         kfd_topology_update_device_list(&temp_topology_device_list,
1792                                         &topology_device_list);
1793
1794         *dev = kfd_assign_gpu(gpu);
1795         if (WARN_ON(!*dev)) {
1796                 res = -ENODEV;
1797                 goto err;
1798         }
1799
1800         /* Fill the cache affinity information here for the GPUs
1801          * using VCRAT
1802          */
1803         kfd_fill_cache_non_crat_info(*dev, gpu);
1804
1805         /* Update the SYSFS tree, since we added another topology
1806          * device
1807          */
1808         res = kfd_topology_update_sysfs();
1809         if (!res)
1810                 sys_props.generation_count++;
1811         else
1812                 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1813                        gpu_id, res);
1814
1815 err:
1816         kfd_destroy_crat_image(crat_image);
1817         return res;
1818 }
1819
1820 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1821 {
1822         bool firmware_supported = true;
1823
1824         if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1825                         KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1826                 uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1827                                                 AMDGPU_MES_API_VERSION_MASK) >>
1828                                                 AMDGPU_MES_API_VERSION_SHIFT;
1829                 uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1830                                                 AMDGPU_MES_VERSION_MASK;
1831
1832                 firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1833                 goto out;
1834         }
1835
1836         /*
1837          * Note: Any unlisted devices here are assumed to support exception handling.
1838          * Add additional checks here as needed.
1839          */
1840         switch (KFD_GC_VERSION(dev->gpu)) {
1841         case IP_VERSION(9, 0, 1):
1842                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1843                 break;
1844         case IP_VERSION(9, 1, 0):
1845         case IP_VERSION(9, 2, 1):
1846         case IP_VERSION(9, 2, 2):
1847         case IP_VERSION(9, 3, 0):
1848         case IP_VERSION(9, 4, 0):
1849                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1850                 break;
1851         case IP_VERSION(9, 4, 1):
1852                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1853                 break;
1854         case IP_VERSION(9, 4, 2):
1855                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1856                 break;
1857         case IP_VERSION(10, 1, 10):
1858         case IP_VERSION(10, 1, 2):
1859         case IP_VERSION(10, 1, 1):
1860                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1861                 break;
1862         case IP_VERSION(10, 3, 0):
1863         case IP_VERSION(10, 3, 2):
1864         case IP_VERSION(10, 3, 1):
1865         case IP_VERSION(10, 3, 4):
1866         case IP_VERSION(10, 3, 5):
1867                 firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1868                 break;
1869         case IP_VERSION(10, 1, 3):
1870         case IP_VERSION(10, 3, 3):
1871                 firmware_supported = false;
1872                 break;
1873         default:
1874                 break;
1875         }
1876
1877 out:
1878         if (firmware_supported)
1879                 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1880 }
1881
1882 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1883 {
1884         dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1885                                 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1886                                 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1887
1888         dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1889                         HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1890                         HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1891
1892         if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1893                 dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1894
1895         if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1896                 if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1897                         dev->node_props.debug_prop |=
1898                                 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1899                                 HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1900                 else
1901                         dev->node_props.debug_prop |=
1902                                 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1903                                 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1904
1905                 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1906                         dev->node_props.capability |=
1907                                 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1908         } else {
1909                 dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1910                                         HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1911
1912                 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1913                         dev->node_props.capability |=
1914                                 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1915         }
1916
1917         kfd_topology_set_dbg_firmware_support(dev);
1918 }
1919
1920 int kfd_topology_add_device(struct kfd_node *gpu)
1921 {
1922         uint32_t gpu_id;
1923         struct kfd_topology_device *dev;
1924         struct kfd_cu_info cu_info;
1925         int res = 0;
1926         int i;
1927         const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1928
1929         gpu_id = kfd_generate_gpu_id(gpu);
1930         if (gpu->xcp && !gpu->xcp->ddev) {
1931                 dev_warn(gpu->adev->dev,
1932                 "Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1933                 gpu_id);
1934                 return 0;
1935         } else {
1936                 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1937         }
1938
1939         /* Check to see if this gpu device exists in the topology_device_list.
1940          * If so, assign the gpu to that device,
1941          * else create a Virtual CRAT for this gpu device and then parse that
1942          * CRAT to create a new topology device. Once created assign the gpu to
1943          * that topology device
1944          */
1945         down_write(&topology_lock);
1946         dev = kfd_assign_gpu(gpu);
1947         if (!dev)
1948                 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1949         up_write(&topology_lock);
1950         if (res)
1951                 return res;
1952
1953         dev->gpu_id = gpu_id;
1954         gpu->id = gpu_id;
1955
1956         kfd_dev_create_p2p_links();
1957
1958         /* TODO: Move the following lines to function
1959          *      kfd_add_non_crat_information
1960          */
1961
1962         /* Fill-in additional information that is not available in CRAT but
1963          * needed for the topology
1964          */
1965
1966         amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1967
1968         for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1969                 dev->node_props.name[i] = __tolower(asic_name[i]);
1970                 if (asic_name[i] == '\0')
1971                         break;
1972         }
1973         dev->node_props.name[i] = '\0';
1974
1975         dev->node_props.simd_arrays_per_engine =
1976                 cu_info.num_shader_arrays_per_engine;
1977
1978         dev->node_props.gfx_target_version =
1979                                 gpu->kfd->device_info.gfx_target_version;
1980         dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1981         dev->node_props.device_id = gpu->adev->pdev->device;
1982         dev->node_props.capability |=
1983                 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1984                         HSA_CAP_ASIC_REVISION_MASK);
1985
1986         dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1987         if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
1988                 dev->node_props.location_id |= dev->gpu->node_id;
1989
1990         dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1991         dev->node_props.max_engine_clk_fcompute =
1992                 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1993         dev->node_props.max_engine_clk_ccompute =
1994                 cpufreq_quick_get_max(0) / 1000;
1995
1996         if (gpu->xcp)
1997                 dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
1998         else
1999                 dev->node_props.drm_render_minor =
2000                                 gpu->kfd->shared_resources.drm_render_minor;
2001
2002         dev->node_props.hive_id = gpu->kfd->hive_id;
2003         dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2004         dev->node_props.num_sdma_xgmi_engines =
2005                                         kfd_get_num_xgmi_sdma_engines(gpu);
2006         dev->node_props.num_sdma_queues_per_engine =
2007                                 gpu->kfd->device_info.num_sdma_queues_per_engine -
2008                                 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2009         dev->node_props.num_gws = (dev->gpu->gws &&
2010                 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2011                 dev->gpu->adev->gds.gws_size : 0;
2012         dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2013
2014         kfd_fill_mem_clk_max_info(dev);
2015         kfd_fill_iolink_non_crat_info(dev);
2016
2017         switch (dev->gpu->adev->asic_type) {
2018         case CHIP_KAVERI:
2019         case CHIP_HAWAII:
2020         case CHIP_TONGA:
2021                 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2022                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2023                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2024                 break;
2025         case CHIP_CARRIZO:
2026         case CHIP_FIJI:
2027         case CHIP_POLARIS10:
2028         case CHIP_POLARIS11:
2029         case CHIP_POLARIS12:
2030         case CHIP_VEGAM:
2031                 pr_debug("Adding doorbell packet type capability\n");
2032                 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2033                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2034                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2035                 break;
2036         default:
2037                 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2038                         WARN(1, "Unexpected ASIC family %u",
2039                              dev->gpu->adev->asic_type);
2040                 else
2041                         kfd_topology_set_capabilities(dev);
2042         }
2043
2044         /*
2045          * Overwrite ATS capability according to needs_iommu_device to fix
2046          * potential missing corresponding bit in CRAT of BIOS.
2047          */
2048         dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2049
2050         /* Fix errors in CZ CRAT.
2051          * simd_count: Carrizo CRAT reports wrong simd_count, probably
2052          *              because it doesn't consider masked out CUs
2053          * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2054          */
2055         if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2056                 dev->node_props.simd_count =
2057                         cu_info.simd_per_cu * cu_info.cu_active_number;
2058                 dev->node_props.max_waves_per_simd = 10;
2059         }
2060
2061         /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2062         dev->node_props.capability |=
2063                 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2064                 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2065         dev->node_props.capability |=
2066                 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2067                 HSA_CAP_MEM_EDCSUPPORTED : 0;
2068
2069         if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2070                 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2071                         HSA_CAP_RASEVENTNOTIFY : 0;
2072
2073         if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2074                 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2075
2076         if (dev->gpu->adev->gmc.is_app_apu ||
2077                 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2078                 dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2079
2080         kfd_debug_print_topology();
2081
2082         kfd_notify_gpu_change(gpu_id, 1);
2083
2084         return 0;
2085 }
2086
2087 /**
2088  * kfd_topology_update_io_links() - Update IO links after device removal.
2089  * @proximity_domain: Proximity domain value of the dev being removed.
2090  *
2091  * The topology list currently is arranged in increasing order of
2092  * proximity domain.
2093  *
2094  * Two things need to be done when a device is removed:
2095  * 1. All the IO links to this device need to be removed.
2096  * 2. All nodes after the current device node need to move
2097  *    up once this device node is removed from the topology
2098  *    list. As a result, the proximity domain values for
2099  *    all nodes after the node being deleted reduce by 1.
2100  *    This would also cause the proximity domain values for
2101  *    io links to be updated based on new proximity domain
2102  *    values.
2103  *
2104  * Context: The caller must hold write topology_lock.
2105  */
2106 static void kfd_topology_update_io_links(int proximity_domain)
2107 {
2108         struct kfd_topology_device *dev;
2109         struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2110
2111         list_for_each_entry(dev, &topology_device_list, list) {
2112                 if (dev->proximity_domain > proximity_domain)
2113                         dev->proximity_domain--;
2114
2115                 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2116                         /*
2117                          * If there is an io link to the dev being deleted
2118                          * then remove that IO link also.
2119                          */
2120                         if (iolink->node_to == proximity_domain) {
2121                                 list_del(&iolink->list);
2122                                 dev->node_props.io_links_count--;
2123                         } else {
2124                                 if (iolink->node_from > proximity_domain)
2125                                         iolink->node_from--;
2126                                 if (iolink->node_to > proximity_domain)
2127                                         iolink->node_to--;
2128                         }
2129                 }
2130
2131                 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2132                         /*
2133                          * If there is a p2p link to the dev being deleted
2134                          * then remove that p2p link also.
2135                          */
2136                         if (p2plink->node_to == proximity_domain) {
2137                                 list_del(&p2plink->list);
2138                                 dev->node_props.p2p_links_count--;
2139                         } else {
2140                                 if (p2plink->node_from > proximity_domain)
2141                                         p2plink->node_from--;
2142                                 if (p2plink->node_to > proximity_domain)
2143                                         p2plink->node_to--;
2144                         }
2145                 }
2146         }
2147 }
2148
2149 int kfd_topology_remove_device(struct kfd_node *gpu)
2150 {
2151         struct kfd_topology_device *dev, *tmp;
2152         uint32_t gpu_id;
2153         int res = -ENODEV;
2154         int i = 0;
2155
2156         down_write(&topology_lock);
2157
2158         list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2159                 if (dev->gpu == gpu) {
2160                         gpu_id = dev->gpu_id;
2161                         kfd_remove_sysfs_node_entry(dev);
2162                         kfd_release_topology_device(dev);
2163                         sys_props.num_devices--;
2164                         kfd_topology_update_io_links(i);
2165                         topology_crat_proximity_domain = sys_props.num_devices-1;
2166                         sys_props.generation_count++;
2167                         res = 0;
2168                         if (kfd_topology_update_sysfs() < 0)
2169                                 kfd_topology_release_sysfs();
2170                         break;
2171                 }
2172                 i++;
2173         }
2174
2175         up_write(&topology_lock);
2176
2177         if (!res)
2178                 kfd_notify_gpu_change(gpu_id, 0);
2179
2180         return res;
2181 }
2182
2183 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2184  *      topology. If GPU device is found @idx, then valid kfd_dev pointer is
2185  *      returned through @kdev
2186  * Return -     0: On success (@kdev will be NULL for non GPU nodes)
2187  *              -1: If end of list
2188  */
2189 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2190 {
2191
2192         struct kfd_topology_device *top_dev;
2193         uint8_t device_idx = 0;
2194
2195         *kdev = NULL;
2196         down_read(&topology_lock);
2197
2198         list_for_each_entry(top_dev, &topology_device_list, list) {
2199                 if (device_idx == idx) {
2200                         *kdev = top_dev->gpu;
2201                         up_read(&topology_lock);
2202                         return 0;
2203                 }
2204
2205                 device_idx++;
2206         }
2207
2208         up_read(&topology_lock);
2209
2210         return -1;
2211
2212 }
2213
2214 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2215 {
2216         int first_cpu_of_numa_node;
2217
2218         if (!cpumask || cpumask == cpu_none_mask)
2219                 return -1;
2220         first_cpu_of_numa_node = cpumask_first(cpumask);
2221         if (first_cpu_of_numa_node >= nr_cpu_ids)
2222                 return -1;
2223 #ifdef CONFIG_X86_64
2224         return cpu_data(first_cpu_of_numa_node).apicid;
2225 #else
2226         return first_cpu_of_numa_node;
2227 #endif
2228 }
2229
2230 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2231  *      of the given NUMA node (numa_node_id)
2232  * Return -1 on failure
2233  */
2234 int kfd_numa_node_to_apic_id(int numa_node_id)
2235 {
2236         if (numa_node_id == -1) {
2237                 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2238                 return kfd_cpumask_to_apic_id(cpu_online_mask);
2239         }
2240         return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2241 }
2242
2243 #if defined(CONFIG_DEBUG_FS)
2244
2245 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2246 {
2247         struct kfd_topology_device *dev;
2248         unsigned int i = 0;
2249         int r = 0;
2250
2251         down_read(&topology_lock);
2252
2253         list_for_each_entry(dev, &topology_device_list, list) {
2254                 if (!dev->gpu) {
2255                         i++;
2256                         continue;
2257                 }
2258
2259                 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2260                 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2261                 if (r)
2262                         break;
2263         }
2264
2265         up_read(&topology_lock);
2266
2267         return r;
2268 }
2269
2270 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2271 {
2272         struct kfd_topology_device *dev;
2273         unsigned int i = 0;
2274         int r = 0;
2275
2276         down_read(&topology_lock);
2277
2278         list_for_each_entry(dev, &topology_device_list, list) {
2279                 if (!dev->gpu) {
2280                         i++;
2281                         continue;
2282                 }
2283
2284                 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2285                 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2286                 if (r)
2287                         break;
2288         }
2289
2290         up_read(&topology_lock);
2291
2292         return r;
2293 }
2294
2295 #endif