Merge branches 'clk-qcom', 'clk-socfpga', 'clk-mediatek', 'clk-lmk' and 'clk-x86...
[platform/kernel/linux-rpi.git] / drivers / gpu / drm / amd / amdkfd / kfd_process.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46
47 /*
48  * List of struct kfd_process (field kfd_process).
49  * Unique/indexed by mm_struct*
50  */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60  * processes. Restoring multiple processes concurrently under memory
61  * pressure can lead to processes blocking each other from validating
62  * their BOs and result in a live-lock situation where processes
63  * remain evicted indefinitely.
64  */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread);
68 static void kfd_process_ref_release(struct kref *ref);
69 static struct kfd_process *create_process(const struct task_struct *thread);
70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 struct kfd_procfs_tree {
76         struct kobject *kobj;
77 };
78
79 static struct kfd_procfs_tree procfs;
80
81 /*
82  * Structure for SDMA activity tracking
83  */
84 struct kfd_sdma_activity_handler_workarea {
85         struct work_struct sdma_activity_work;
86         struct kfd_process_device *pdd;
87         uint64_t sdma_activity_counter;
88 };
89
90 struct temp_sdma_queue_list {
91         uint64_t __user *rptr;
92         uint64_t sdma_val;
93         unsigned int queue_id;
94         struct list_head list;
95 };
96
97 static void kfd_sdma_activity_worker(struct work_struct *work)
98 {
99         struct kfd_sdma_activity_handler_workarea *workarea;
100         struct kfd_process_device *pdd;
101         uint64_t val;
102         struct mm_struct *mm;
103         struct queue *q;
104         struct qcm_process_device *qpd;
105         struct device_queue_manager *dqm;
106         int ret = 0;
107         struct temp_sdma_queue_list sdma_q_list;
108         struct temp_sdma_queue_list *sdma_q, *next;
109
110         workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
111                                 sdma_activity_work);
112
113         pdd = workarea->pdd;
114         if (!pdd)
115                 return;
116         dqm = pdd->dev->dqm;
117         qpd = &pdd->qpd;
118         if (!dqm || !qpd)
119                 return;
120         /*
121          * Total SDMA activity is current SDMA activity + past SDMA activity
122          * Past SDMA count is stored in pdd.
123          * To get the current activity counters for all active SDMA queues,
124          * we loop over all SDMA queues and get their counts from user-space.
125          *
126          * We cannot call get_user() with dqm_lock held as it can cause
127          * a circular lock dependency situation. To read the SDMA stats,
128          * we need to do the following:
129          *
130          * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
131          *    with dqm_lock/dqm_unlock().
132          * 2. Call get_user() for each node in temporary list without dqm_lock.
133          *    Save the SDMA count for each node and also add the count to the total
134          *    SDMA count counter.
135          *    Its possible, during this step, a few SDMA queue nodes got deleted
136          *    from the qpd->queues_list.
137          * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
138          *    If any node got deleted, its SDMA count would be captured in the sdma
139          *    past activity counter. So subtract the SDMA counter stored in step 2
140          *    for this node from the total SDMA count.
141          */
142         INIT_LIST_HEAD(&sdma_q_list.list);
143
144         /*
145          * Create the temp list of all SDMA queues
146          */
147         dqm_lock(dqm);
148
149         list_for_each_entry(q, &qpd->queues_list, list) {
150                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
151                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
152                         continue;
153
154                 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
155                 if (!sdma_q) {
156                         dqm_unlock(dqm);
157                         goto cleanup;
158                 }
159
160                 INIT_LIST_HEAD(&sdma_q->list);
161                 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
162                 sdma_q->queue_id = q->properties.queue_id;
163                 list_add_tail(&sdma_q->list, &sdma_q_list.list);
164         }
165
166         /*
167          * If the temp list is empty, then no SDMA queues nodes were found in
168          * qpd->queues_list. Return the past activity count as the total sdma
169          * count
170          */
171         if (list_empty(&sdma_q_list.list)) {
172                 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
173                 dqm_unlock(dqm);
174                 return;
175         }
176
177         dqm_unlock(dqm);
178
179         /*
180          * Get the usage count for each SDMA queue in temp_list.
181          */
182         mm = get_task_mm(pdd->process->lead_thread);
183         if (!mm)
184                 goto cleanup;
185
186         kthread_use_mm(mm);
187
188         list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
189                 val = 0;
190                 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
191                 if (ret) {
192                         pr_debug("Failed to read SDMA queue active counter for queue id: %d",
193                                  sdma_q->queue_id);
194                 } else {
195                         sdma_q->sdma_val = val;
196                         workarea->sdma_activity_counter += val;
197                 }
198         }
199
200         kthread_unuse_mm(mm);
201         mmput(mm);
202
203         /*
204          * Do a second iteration over qpd_queues_list to check if any SDMA
205          * nodes got deleted while fetching SDMA counter.
206          */
207         dqm_lock(dqm);
208
209         workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
210
211         list_for_each_entry(q, &qpd->queues_list, list) {
212                 if (list_empty(&sdma_q_list.list))
213                         break;
214
215                 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
216                     (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
217                         continue;
218
219                 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
220                         if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
221                              (sdma_q->queue_id == q->properties.queue_id)) {
222                                 list_del(&sdma_q->list);
223                                 kfree(sdma_q);
224                                 break;
225                         }
226                 }
227         }
228
229         dqm_unlock(dqm);
230
231         /*
232          * If temp list is not empty, it implies some queues got deleted
233          * from qpd->queues_list during SDMA usage read. Subtract the SDMA
234          * count for each node from the total SDMA count.
235          */
236         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
237                 workarea->sdma_activity_counter -= sdma_q->sdma_val;
238                 list_del(&sdma_q->list);
239                 kfree(sdma_q);
240         }
241
242         return;
243
244 cleanup:
245         list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
246                 list_del(&sdma_q->list);
247                 kfree(sdma_q);
248         }
249 }
250
251 /**
252  * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
253  * by current process. Translates acquired wave count into number of compute units
254  * that are occupied.
255  *
256  * @atr: Handle of attribute that allows reporting of wave count. The attribute
257  * handle encapsulates GPU device it is associated with, thereby allowing collection
258  * of waves in flight, etc
259  *
260  * @buffer: Handle of user provided buffer updated with wave count
261  *
262  * Return: Number of bytes written to user buffer or an error value
263  */
264 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
265 {
266         int cu_cnt;
267         int wave_cnt;
268         int max_waves_per_cu;
269         struct kfd_dev *dev = NULL;
270         struct kfd_process *proc = NULL;
271         struct kfd_process_device *pdd = NULL;
272
273         pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
274         dev = pdd->dev;
275         if (dev->kfd2kgd->get_cu_occupancy == NULL)
276                 return -EINVAL;
277
278         cu_cnt = 0;
279         proc = pdd->process;
280         if (pdd->qpd.queue_count == 0) {
281                 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
282                          dev->id, proc->pasid);
283                 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
284         }
285
286         /* Collect wave count from device if it supports */
287         wave_cnt = 0;
288         max_waves_per_cu = 0;
289         dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
290                         &max_waves_per_cu);
291
292         /* Translate wave count to number of compute units */
293         cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
294         return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
295 }
296
297 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
298                                char *buffer)
299 {
300         if (strcmp(attr->name, "pasid") == 0) {
301                 struct kfd_process *p = container_of(attr, struct kfd_process,
302                                                      attr_pasid);
303
304                 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
305         } else if (strncmp(attr->name, "vram_", 5) == 0) {
306                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
307                                                               attr_vram);
308                 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
309         } else if (strncmp(attr->name, "sdma_", 5) == 0) {
310                 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
311                                                               attr_sdma);
312                 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
313
314                 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
315                                         kfd_sdma_activity_worker);
316
317                 sdma_activity_work_handler.pdd = pdd;
318                 sdma_activity_work_handler.sdma_activity_counter = 0;
319
320                 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
321
322                 flush_work(&sdma_activity_work_handler.sdma_activity_work);
323
324                 return snprintf(buffer, PAGE_SIZE, "%llu\n",
325                                 (sdma_activity_work_handler.sdma_activity_counter)/
326                                  SDMA_ACTIVITY_DIVISOR);
327         } else {
328                 pr_err("Invalid attribute");
329                 return -EINVAL;
330         }
331
332         return 0;
333 }
334
335 static void kfd_procfs_kobj_release(struct kobject *kobj)
336 {
337         kfree(kobj);
338 }
339
340 static const struct sysfs_ops kfd_procfs_ops = {
341         .show = kfd_procfs_show,
342 };
343
344 static struct kobj_type procfs_type = {
345         .release = kfd_procfs_kobj_release,
346         .sysfs_ops = &kfd_procfs_ops,
347 };
348
349 void kfd_procfs_init(void)
350 {
351         int ret = 0;
352
353         procfs.kobj = kfd_alloc_struct(procfs.kobj);
354         if (!procfs.kobj)
355                 return;
356
357         ret = kobject_init_and_add(procfs.kobj, &procfs_type,
358                                    &kfd_device->kobj, "proc");
359         if (ret) {
360                 pr_warn("Could not create procfs proc folder");
361                 /* If we fail to create the procfs, clean up */
362                 kfd_procfs_shutdown();
363         }
364 }
365
366 void kfd_procfs_shutdown(void)
367 {
368         if (procfs.kobj) {
369                 kobject_del(procfs.kobj);
370                 kobject_put(procfs.kobj);
371                 procfs.kobj = NULL;
372         }
373 }
374
375 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
376                                      struct attribute *attr, char *buffer)
377 {
378         struct queue *q = container_of(kobj, struct queue, kobj);
379
380         if (!strcmp(attr->name, "size"))
381                 return snprintf(buffer, PAGE_SIZE, "%llu",
382                                 q->properties.queue_size);
383         else if (!strcmp(attr->name, "type"))
384                 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
385         else if (!strcmp(attr->name, "gpuid"))
386                 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
387         else
388                 pr_err("Invalid attribute");
389
390         return 0;
391 }
392
393 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
394                                      struct attribute *attr, char *buffer)
395 {
396         if (strcmp(attr->name, "evicted_ms") == 0) {
397                 struct kfd_process_device *pdd = container_of(attr,
398                                 struct kfd_process_device,
399                                 attr_evict);
400                 uint64_t evict_jiffies;
401
402                 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
403
404                 return snprintf(buffer,
405                                 PAGE_SIZE,
406                                 "%llu\n",
407                                 jiffies64_to_msecs(evict_jiffies));
408
409         /* Sysfs handle that gets CU occupancy is per device */
410         } else if (strcmp(attr->name, "cu_occupancy") == 0) {
411                 return kfd_get_cu_occupancy(attr, buffer);
412         } else {
413                 pr_err("Invalid attribute");
414         }
415
416         return 0;
417 }
418
419 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
420                                        struct attribute *attr, char *buf)
421 {
422         struct kfd_process_device *pdd;
423
424         if (!strcmp(attr->name, "faults")) {
425                 pdd = container_of(attr, struct kfd_process_device,
426                                    attr_faults);
427                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
428         }
429         if (!strcmp(attr->name, "page_in")) {
430                 pdd = container_of(attr, struct kfd_process_device,
431                                    attr_page_in);
432                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
433         }
434         if (!strcmp(attr->name, "page_out")) {
435                 pdd = container_of(attr, struct kfd_process_device,
436                                    attr_page_out);
437                 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
438         }
439         return 0;
440 }
441
442 static struct attribute attr_queue_size = {
443         .name = "size",
444         .mode = KFD_SYSFS_FILE_MODE
445 };
446
447 static struct attribute attr_queue_type = {
448         .name = "type",
449         .mode = KFD_SYSFS_FILE_MODE
450 };
451
452 static struct attribute attr_queue_gpuid = {
453         .name = "gpuid",
454         .mode = KFD_SYSFS_FILE_MODE
455 };
456
457 static struct attribute *procfs_queue_attrs[] = {
458         &attr_queue_size,
459         &attr_queue_type,
460         &attr_queue_gpuid,
461         NULL
462 };
463
464 static const struct sysfs_ops procfs_queue_ops = {
465         .show = kfd_procfs_queue_show,
466 };
467
468 static struct kobj_type procfs_queue_type = {
469         .sysfs_ops = &procfs_queue_ops,
470         .default_attrs = procfs_queue_attrs,
471 };
472
473 static const struct sysfs_ops procfs_stats_ops = {
474         .show = kfd_procfs_stats_show,
475 };
476
477 static struct kobj_type procfs_stats_type = {
478         .sysfs_ops = &procfs_stats_ops,
479         .release = kfd_procfs_kobj_release,
480 };
481
482 static const struct sysfs_ops sysfs_counters_ops = {
483         .show = kfd_sysfs_counters_show,
484 };
485
486 static struct kobj_type sysfs_counters_type = {
487         .sysfs_ops = &sysfs_counters_ops,
488         .release = kfd_procfs_kobj_release,
489 };
490
491 int kfd_procfs_add_queue(struct queue *q)
492 {
493         struct kfd_process *proc;
494         int ret;
495
496         if (!q || !q->process)
497                 return -EINVAL;
498         proc = q->process;
499
500         /* Create proc/<pid>/queues/<queue id> folder */
501         if (!proc->kobj_queues)
502                 return -EFAULT;
503         ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
504                         proc->kobj_queues, "%u", q->properties.queue_id);
505         if (ret < 0) {
506                 pr_warn("Creating proc/<pid>/queues/%u failed",
507                         q->properties.queue_id);
508                 kobject_put(&q->kobj);
509                 return ret;
510         }
511
512         return 0;
513 }
514
515 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
516                                  char *name)
517 {
518         int ret;
519
520         if (!kobj || !attr || !name)
521                 return;
522
523         attr->name = name;
524         attr->mode = KFD_SYSFS_FILE_MODE;
525         sysfs_attr_init(attr);
526
527         ret = sysfs_create_file(kobj, attr);
528         if (ret)
529                 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
530 }
531
532 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
533 {
534         int ret;
535         int i;
536         char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
537
538         if (!p || !p->kobj)
539                 return;
540
541         /*
542          * Create sysfs files for each GPU:
543          * - proc/<pid>/stats_<gpuid>/
544          * - proc/<pid>/stats_<gpuid>/evicted_ms
545          * - proc/<pid>/stats_<gpuid>/cu_occupancy
546          */
547         for (i = 0; i < p->n_pdds; i++) {
548                 struct kfd_process_device *pdd = p->pdds[i];
549
550                 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
551                                 "stats_%u", pdd->dev->id);
552                 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
553                 if (!pdd->kobj_stats)
554                         return;
555
556                 ret = kobject_init_and_add(pdd->kobj_stats,
557                                            &procfs_stats_type,
558                                            p->kobj,
559                                            stats_dir_filename);
560
561                 if (ret) {
562                         pr_warn("Creating KFD proc/stats_%s folder failed",
563                                 stats_dir_filename);
564                         kobject_put(pdd->kobj_stats);
565                         pdd->kobj_stats = NULL;
566                         return;
567                 }
568
569                 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
570                                       "evicted_ms");
571                 /* Add sysfs file to report compute unit occupancy */
572                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
573                         kfd_sysfs_create_file(pdd->kobj_stats,
574                                               &pdd->attr_cu_occupancy,
575                                               "cu_occupancy");
576         }
577 }
578
579 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
580 {
581         int ret = 0;
582         int i;
583         char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
584
585         if (!p || !p->kobj)
586                 return;
587
588         /*
589          * Create sysfs files for each GPU which supports SVM
590          * - proc/<pid>/counters_<gpuid>/
591          * - proc/<pid>/counters_<gpuid>/faults
592          * - proc/<pid>/counters_<gpuid>/page_in
593          * - proc/<pid>/counters_<gpuid>/page_out
594          */
595         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
596                 struct kfd_process_device *pdd = p->pdds[i];
597                 struct kobject *kobj_counters;
598
599                 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
600                         "counters_%u", pdd->dev->id);
601                 kobj_counters = kfd_alloc_struct(kobj_counters);
602                 if (!kobj_counters)
603                         return;
604
605                 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
606                                            p->kobj, counters_dir_filename);
607                 if (ret) {
608                         pr_warn("Creating KFD proc/%s folder failed",
609                                 counters_dir_filename);
610                         kobject_put(kobj_counters);
611                         return;
612                 }
613
614                 pdd->kobj_counters = kobj_counters;
615                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
616                                       "faults");
617                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
618                                       "page_in");
619                 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
620                                       "page_out");
621         }
622 }
623
624 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
625 {
626         int i;
627
628         if (!p || !p->kobj)
629                 return;
630
631         /*
632          * Create sysfs files for each GPU:
633          * - proc/<pid>/vram_<gpuid>
634          * - proc/<pid>/sdma_<gpuid>
635          */
636         for (i = 0; i < p->n_pdds; i++) {
637                 struct kfd_process_device *pdd = p->pdds[i];
638
639                 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
640                          pdd->dev->id);
641                 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
642                                       pdd->vram_filename);
643
644                 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
645                          pdd->dev->id);
646                 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
647                                             pdd->sdma_filename);
648         }
649 }
650
651 void kfd_procfs_del_queue(struct queue *q)
652 {
653         if (!q)
654                 return;
655
656         kobject_del(&q->kobj);
657         kobject_put(&q->kobj);
658 }
659
660 int kfd_process_create_wq(void)
661 {
662         if (!kfd_process_wq)
663                 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
664         if (!kfd_restore_wq)
665                 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
666
667         if (!kfd_process_wq || !kfd_restore_wq) {
668                 kfd_process_destroy_wq();
669                 return -ENOMEM;
670         }
671
672         return 0;
673 }
674
675 void kfd_process_destroy_wq(void)
676 {
677         if (kfd_process_wq) {
678                 destroy_workqueue(kfd_process_wq);
679                 kfd_process_wq = NULL;
680         }
681         if (kfd_restore_wq) {
682                 destroy_workqueue(kfd_restore_wq);
683                 kfd_restore_wq = NULL;
684         }
685 }
686
687 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
688                         struct kfd_process_device *pdd)
689 {
690         struct kfd_dev *dev = pdd->dev;
691
692         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
693         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
694                                                NULL);
695 }
696
697 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
698  *      This function should be only called right after the process
699  *      is created and when kfd_processes_mutex is still being held
700  *      to avoid concurrency. Because of that exclusiveness, we do
701  *      not need to take p->mutex.
702  */
703 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
704                                    uint64_t gpu_va, uint32_t size,
705                                    uint32_t flags, void **kptr)
706 {
707         struct kfd_dev *kdev = pdd->dev;
708         struct kgd_mem *mem = NULL;
709         int handle;
710         int err;
711
712         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
713                                                  pdd->drm_priv, &mem, NULL, flags);
714         if (err)
715                 goto err_alloc_mem;
716
717         err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
718         if (err)
719                 goto err_map_mem;
720
721         err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
722         if (err) {
723                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
724                 goto sync_memory_failed;
725         }
726
727         /* Create an obj handle so kfd_process_device_remove_obj_handle
728          * will take care of the bo removal when the process finishes.
729          * We do not need to take p->mutex, because the process is just
730          * created and the ioctls have not had the chance to run.
731          */
732         handle = kfd_process_device_create_obj_handle(pdd, mem);
733
734         if (handle < 0) {
735                 err = handle;
736                 goto free_gpuvm;
737         }
738
739         if (kptr) {
740                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
741                                 (struct kgd_mem *)mem, kptr, NULL);
742                 if (err) {
743                         pr_debug("Map GTT BO to kernel failed\n");
744                         goto free_obj_handle;
745                 }
746         }
747
748         return err;
749
750 free_obj_handle:
751         kfd_process_device_remove_obj_handle(pdd, handle);
752 free_gpuvm:
753 sync_memory_failed:
754         kfd_process_free_gpuvm(mem, pdd);
755         return err;
756
757 err_map_mem:
758         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
759                                                NULL);
760 err_alloc_mem:
761         *kptr = NULL;
762         return err;
763 }
764
765 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
766  *      process for IB usage The memory reserved is for KFD to submit
767  *      IB to AMDGPU from kernel.  If the memory is reserved
768  *      successfully, ib_kaddr will have the CPU/kernel
769  *      address. Check ib_kaddr before accessing the memory.
770  */
771 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
772 {
773         struct qcm_process_device *qpd = &pdd->qpd;
774         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
775                         KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
776                         KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
777                         KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
778         void *kaddr;
779         int ret;
780
781         if (qpd->ib_kaddr || !qpd->ib_base)
782                 return 0;
783
784         /* ib_base is only set for dGPU */
785         ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
786                                       &kaddr);
787         if (ret)
788                 return ret;
789
790         qpd->ib_kaddr = kaddr;
791
792         return 0;
793 }
794
795 struct kfd_process *kfd_create_process(struct file *filep)
796 {
797         struct kfd_process *process;
798         struct task_struct *thread = current;
799         int ret;
800
801         if (!thread->mm)
802                 return ERR_PTR(-EINVAL);
803
804         /* Only the pthreads threading model is supported. */
805         if (thread->group_leader->mm != thread->mm)
806                 return ERR_PTR(-EINVAL);
807
808         /*
809          * take kfd processes mutex before starting of process creation
810          * so there won't be a case where two threads of the same process
811          * create two kfd_process structures
812          */
813         mutex_lock(&kfd_processes_mutex);
814
815         /* A prior open of /dev/kfd could have already created the process. */
816         process = find_process(thread);
817         if (process) {
818                 pr_debug("Process already found\n");
819         } else {
820                 process = create_process(thread);
821                 if (IS_ERR(process))
822                         goto out;
823
824                 ret = kfd_process_init_cwsr_apu(process, filep);
825                 if (ret)
826                         goto out_destroy;
827
828                 if (!procfs.kobj)
829                         goto out;
830
831                 process->kobj = kfd_alloc_struct(process->kobj);
832                 if (!process->kobj) {
833                         pr_warn("Creating procfs kobject failed");
834                         goto out;
835                 }
836                 ret = kobject_init_and_add(process->kobj, &procfs_type,
837                                            procfs.kobj, "%d",
838                                            (int)process->lead_thread->pid);
839                 if (ret) {
840                         pr_warn("Creating procfs pid directory failed");
841                         kobject_put(process->kobj);
842                         goto out;
843                 }
844
845                 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
846                                       "pasid");
847
848                 process->kobj_queues = kobject_create_and_add("queues",
849                                                         process->kobj);
850                 if (!process->kobj_queues)
851                         pr_warn("Creating KFD proc/queues folder failed");
852
853                 kfd_procfs_add_sysfs_stats(process);
854                 kfd_procfs_add_sysfs_files(process);
855                 kfd_procfs_add_sysfs_counters(process);
856         }
857 out:
858         if (!IS_ERR(process))
859                 kref_get(&process->ref);
860         mutex_unlock(&kfd_processes_mutex);
861
862         return process;
863
864 out_destroy:
865         hash_del_rcu(&process->kfd_processes);
866         mutex_unlock(&kfd_processes_mutex);
867         synchronize_srcu(&kfd_processes_srcu);
868         /* kfd_process_free_notifier will trigger the cleanup */
869         mmu_notifier_put(&process->mmu_notifier);
870         return ERR_PTR(ret);
871 }
872
873 struct kfd_process *kfd_get_process(const struct task_struct *thread)
874 {
875         struct kfd_process *process;
876
877         if (!thread->mm)
878                 return ERR_PTR(-EINVAL);
879
880         /* Only the pthreads threading model is supported. */
881         if (thread->group_leader->mm != thread->mm)
882                 return ERR_PTR(-EINVAL);
883
884         process = find_process(thread);
885         if (!process)
886                 return ERR_PTR(-EINVAL);
887
888         return process;
889 }
890
891 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
892 {
893         struct kfd_process *process;
894
895         hash_for_each_possible_rcu(kfd_processes_table, process,
896                                         kfd_processes, (uintptr_t)mm)
897                 if (process->mm == mm)
898                         return process;
899
900         return NULL;
901 }
902
903 static struct kfd_process *find_process(const struct task_struct *thread)
904 {
905         struct kfd_process *p;
906         int idx;
907
908         idx = srcu_read_lock(&kfd_processes_srcu);
909         p = find_process_by_mm(thread->mm);
910         srcu_read_unlock(&kfd_processes_srcu, idx);
911
912         return p;
913 }
914
915 void kfd_unref_process(struct kfd_process *p)
916 {
917         kref_put(&p->ref, kfd_process_ref_release);
918 }
919
920
921 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
922 {
923         struct kfd_process *p = pdd->process;
924         void *mem;
925         int id;
926         int i;
927
928         /*
929          * Remove all handles from idr and release appropriate
930          * local memory object
931          */
932         idr_for_each_entry(&pdd->alloc_idr, mem, id) {
933
934                 for (i = 0; i < p->n_pdds; i++) {
935                         struct kfd_process_device *peer_pdd = p->pdds[i];
936
937                         if (!peer_pdd->drm_priv)
938                                 continue;
939                         amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
940                                 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
941                 }
942
943                 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
944                                                        pdd->drm_priv, NULL);
945                 kfd_process_device_remove_obj_handle(pdd, id);
946         }
947 }
948
949 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
950 {
951         int i;
952
953         for (i = 0; i < p->n_pdds; i++)
954                 kfd_process_device_free_bos(p->pdds[i]);
955 }
956
957 static void kfd_process_destroy_pdds(struct kfd_process *p)
958 {
959         int i;
960
961         for (i = 0; i < p->n_pdds; i++) {
962                 struct kfd_process_device *pdd = p->pdds[i];
963
964                 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
965                                 pdd->dev->id, p->pasid);
966
967                 if (pdd->drm_file) {
968                         amdgpu_amdkfd_gpuvm_release_process_vm(
969                                         pdd->dev->kgd, pdd->drm_priv);
970                         fput(pdd->drm_file);
971                 }
972
973                 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
974                         free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
975                                 get_order(KFD_CWSR_TBA_TMA_SIZE));
976
977                 kfree(pdd->qpd.doorbell_bitmap);
978                 idr_destroy(&pdd->alloc_idr);
979
980                 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
981
982                 /*
983                  * before destroying pdd, make sure to report availability
984                  * for auto suspend
985                  */
986                 if (pdd->runtime_inuse) {
987                         pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
988                         pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
989                         pdd->runtime_inuse = false;
990                 }
991
992                 kfree(pdd);
993                 p->pdds[i] = NULL;
994         }
995         p->n_pdds = 0;
996 }
997
998 static void kfd_process_remove_sysfs(struct kfd_process *p)
999 {
1000         struct kfd_process_device *pdd;
1001         int i;
1002
1003         if (!p->kobj)
1004                 return;
1005
1006         sysfs_remove_file(p->kobj, &p->attr_pasid);
1007         kobject_del(p->kobj_queues);
1008         kobject_put(p->kobj_queues);
1009         p->kobj_queues = NULL;
1010
1011         for (i = 0; i < p->n_pdds; i++) {
1012                 pdd = p->pdds[i];
1013
1014                 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015                 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017                 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018                 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019                         sysfs_remove_file(pdd->kobj_stats,
1020                                           &pdd->attr_cu_occupancy);
1021                 kobject_del(pdd->kobj_stats);
1022                 kobject_put(pdd->kobj_stats);
1023                 pdd->kobj_stats = NULL;
1024         }
1025
1026         for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027                 pdd = p->pdds[i];
1028
1029                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031                 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032                 kobject_del(pdd->kobj_counters);
1033                 kobject_put(pdd->kobj_counters);
1034                 pdd->kobj_counters = NULL;
1035         }
1036
1037         kobject_del(p->kobj);
1038         kobject_put(p->kobj);
1039         p->kobj = NULL;
1040 }
1041
1042 /* No process locking is needed in this function, because the process
1043  * is not findable any more. We must assume that no other thread is
1044  * using it any more, otherwise we couldn't safely free the process
1045  * structure in the end.
1046  */
1047 static void kfd_process_wq_release(struct work_struct *work)
1048 {
1049         struct kfd_process *p = container_of(work, struct kfd_process,
1050                                              release_work);
1051         kfd_process_remove_sysfs(p);
1052         kfd_iommu_unbind_process(p);
1053
1054         kfd_process_free_outstanding_kfd_bos(p);
1055         svm_range_list_fini(p);
1056
1057         kfd_process_destroy_pdds(p);
1058         dma_fence_put(p->ef);
1059
1060         kfd_event_free_process(p);
1061
1062         kfd_pasid_free(p->pasid);
1063         mutex_destroy(&p->mutex);
1064
1065         put_task_struct(p->lead_thread);
1066
1067         kfree(p);
1068 }
1069
1070 static void kfd_process_ref_release(struct kref *ref)
1071 {
1072         struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074         INIT_WORK(&p->release_work, kfd_process_wq_release);
1075         queue_work(kfd_process_wq, &p->release_work);
1076 }
1077
1078 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079 {
1080         int idx = srcu_read_lock(&kfd_processes_srcu);
1081         struct kfd_process *p = find_process_by_mm(mm);
1082
1083         srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085         return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086 }
1087
1088 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089 {
1090         kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091 }
1092
1093 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094                                         struct mm_struct *mm)
1095 {
1096         struct kfd_process *p;
1097         int i;
1098
1099         /*
1100          * The kfd_process structure can not be free because the
1101          * mmu_notifier srcu is read locked
1102          */
1103         p = container_of(mn, struct kfd_process, mmu_notifier);
1104         if (WARN_ON(p->mm != mm))
1105                 return;
1106
1107         mutex_lock(&kfd_processes_mutex);
1108         hash_del_rcu(&p->kfd_processes);
1109         mutex_unlock(&kfd_processes_mutex);
1110         synchronize_srcu(&kfd_processes_srcu);
1111
1112         cancel_delayed_work_sync(&p->eviction_work);
1113         cancel_delayed_work_sync(&p->restore_work);
1114         cancel_delayed_work_sync(&p->svms.restore_work);
1115
1116         mutex_lock(&p->mutex);
1117
1118         /* Iterate over all process device data structures and if the
1119          * pdd is in debug mode, we should first force unregistration,
1120          * then we will be able to destroy the queues
1121          */
1122         for (i = 0; i < p->n_pdds; i++) {
1123                 struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125                 mutex_lock(kfd_get_dbgmgr_mutex());
1126                 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127                         if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128                                 kfd_dbgmgr_destroy(dev->dbgmgr);
1129                                 dev->dbgmgr = NULL;
1130                         }
1131                 }
1132                 mutex_unlock(kfd_get_dbgmgr_mutex());
1133         }
1134
1135         kfd_process_dequeue_from_all_devices(p);
1136         pqm_uninit(&p->pqm);
1137
1138         /* Indicate to other users that MM is no longer valid */
1139         p->mm = NULL;
1140         /* Signal the eviction fence after user mode queues are
1141          * destroyed. This allows any BOs to be freed without
1142          * triggering pointless evictions or waiting for fences.
1143          */
1144         dma_fence_signal(p->ef);
1145
1146         mutex_unlock(&p->mutex);
1147
1148         mmu_notifier_put(&p->mmu_notifier);
1149 }
1150
1151 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152         .release = kfd_process_notifier_release,
1153         .alloc_notifier = kfd_process_alloc_notifier,
1154         .free_notifier = kfd_process_free_notifier,
1155 };
1156
1157 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158 {
1159         unsigned long  offset;
1160         int i;
1161
1162         for (i = 0; i < p->n_pdds; i++) {
1163                 struct kfd_dev *dev = p->pdds[i]->dev;
1164                 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166                 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167                         continue;
1168
1169                 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170                 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171                         KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172                         MAP_SHARED, offset);
1173
1174                 if (IS_ERR_VALUE(qpd->tba_addr)) {
1175                         int err = qpd->tba_addr;
1176
1177                         pr_err("Failure to set tba address. error %d.\n", err);
1178                         qpd->tba_addr = 0;
1179                         qpd->cwsr_kaddr = NULL;
1180                         return err;
1181                 }
1182
1183                 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184
1185                 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186                 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187                         qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188         }
1189
1190         return 0;
1191 }
1192
1193 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194 {
1195         struct kfd_dev *dev = pdd->dev;
1196         struct qcm_process_device *qpd = &pdd->qpd;
1197         uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198                         | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199                         | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1200         void *kaddr;
1201         int ret;
1202
1203         if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204                 return 0;
1205
1206         /* cwsr_base is only set for dGPU */
1207         ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208                                       KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209         if (ret)
1210                 return ret;
1211
1212         qpd->cwsr_kaddr = kaddr;
1213         qpd->tba_addr = qpd->cwsr_base;
1214
1215         memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216
1217         qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218         pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219                  qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221         return 0;
1222 }
1223
1224 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225                                   uint64_t tba_addr,
1226                                   uint64_t tma_addr)
1227 {
1228         if (qpd->cwsr_kaddr) {
1229                 /* KFD trap handler is bound, record as second-level TBA/TMA
1230                  * in first-level TMA. First-level trap will jump to second.
1231                  */
1232                 uint64_t *tma =
1233                         (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234                 tma[0] = tba_addr;
1235                 tma[1] = tma_addr;
1236         } else {
1237                 /* No trap handler bound, bind as first-level TBA/TMA. */
1238                 qpd->tba_addr = tba_addr;
1239                 qpd->tma_addr = tma_addr;
1240         }
1241 }
1242
1243 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244 {
1245         int i;
1246
1247         /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248          * boot time retry setting. Mixing processes with different
1249          * XNACK/retry settings can hang the GPU.
1250          *
1251          * Different GPUs can have different noretry settings depending
1252          * on HW bugs or limitations. We need to find at least one
1253          * XNACK mode for this process that's compatible with all GPUs.
1254          * Fortunately GPUs with retry enabled (noretry=0) can run code
1255          * built for XNACK-off. On GFXv9 it may perform slower.
1256          *
1257          * Therefore applications built for XNACK-off can always be
1258          * supported and will be our fallback if any GPU does not
1259          * support retry.
1260          */
1261         for (i = 0; i < p->n_pdds; i++) {
1262                 struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264                 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265                  * support the SVM APIs and don't need to be considered
1266                  * for the XNACK mode selection.
1267                  */
1268                 if (dev->device_info->asic_family < CHIP_VEGA10)
1269                         continue;
1270                 /* Aldebaran can always support XNACK because it can support
1271                  * per-process XNACK mode selection. But let the dev->noretry
1272                  * setting still influence the default XNACK mode.
1273                  */
1274                 if (supported &&
1275                     dev->device_info->asic_family == CHIP_ALDEBARAN)
1276                         continue;
1277
1278                 /* GFXv10 and later GPUs do not support shader preemption
1279                  * during page faults. This can lead to poor QoS for queue
1280                  * management and memory-manager-related preemptions or
1281                  * even deadlocks.
1282                  */
1283                 if (dev->device_info->asic_family >= CHIP_NAVI10)
1284                         return false;
1285
1286                 if (dev->noretry)
1287                         return false;
1288         }
1289
1290         return true;
1291 }
1292
1293 /*
1294  * On return the kfd_process is fully operational and will be freed when the
1295  * mm is released
1296  */
1297 static struct kfd_process *create_process(const struct task_struct *thread)
1298 {
1299         struct kfd_process *process;
1300         struct mmu_notifier *mn;
1301         int err = -ENOMEM;
1302
1303         process = kzalloc(sizeof(*process), GFP_KERNEL);
1304         if (!process)
1305                 goto err_alloc_process;
1306
1307         kref_init(&process->ref);
1308         mutex_init(&process->mutex);
1309         process->mm = thread->mm;
1310         process->lead_thread = thread->group_leader;
1311         process->n_pdds = 0;
1312         INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313         INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314         process->last_restore_timestamp = get_jiffies_64();
1315         kfd_event_init_process(process);
1316         process->is_32bit_user_mode = in_compat_syscall();
1317
1318         process->pasid = kfd_pasid_alloc();
1319         if (process->pasid == 0)
1320                 goto err_alloc_pasid;
1321
1322         err = pqm_init(&process->pqm, process);
1323         if (err != 0)
1324                 goto err_process_pqm_init;
1325
1326         /* init process apertures*/
1327         err = kfd_init_apertures(process);
1328         if (err != 0)
1329                 goto err_init_apertures;
1330
1331         /* Check XNACK support after PDDs are created in kfd_init_apertures */
1332         process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333
1334         err = svm_range_list_init(process);
1335         if (err)
1336                 goto err_init_svm_range_list;
1337
1338         /* alloc_notifier needs to find the process in the hash table */
1339         hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340                         (uintptr_t)process->mm);
1341
1342         /* MMU notifier registration must be the last call that can fail
1343          * because after this point we cannot unwind the process creation.
1344          * After this point, mmu_notifier_put will trigger the cleanup by
1345          * dropping the last process reference in the free_notifier.
1346          */
1347         mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348         if (IS_ERR(mn)) {
1349                 err = PTR_ERR(mn);
1350                 goto err_register_notifier;
1351         }
1352         BUG_ON(mn != &process->mmu_notifier);
1353
1354         get_task_struct(process->lead_thread);
1355
1356         return process;
1357
1358 err_register_notifier:
1359         hash_del_rcu(&process->kfd_processes);
1360         svm_range_list_fini(process);
1361 err_init_svm_range_list:
1362         kfd_process_free_outstanding_kfd_bos(process);
1363         kfd_process_destroy_pdds(process);
1364 err_init_apertures:
1365         pqm_uninit(&process->pqm);
1366 err_process_pqm_init:
1367         kfd_pasid_free(process->pasid);
1368 err_alloc_pasid:
1369         mutex_destroy(&process->mutex);
1370         kfree(process);
1371 err_alloc_process:
1372         return ERR_PTR(err);
1373 }
1374
1375 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376                         struct kfd_dev *dev)
1377 {
1378         unsigned int i;
1379         int range_start = dev->shared_resources.non_cp_doorbells_start;
1380         int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382         if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383                 return 0;
1384
1385         qpd->doorbell_bitmap =
1386                 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387                                      BITS_PER_BYTE), GFP_KERNEL);
1388         if (!qpd->doorbell_bitmap)
1389                 return -ENOMEM;
1390
1391         /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392         pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393         pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394                         range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395                         range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397         for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398                 if (i >= range_start && i <= range_end) {
1399                         set_bit(i, qpd->doorbell_bitmap);
1400                         set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401                                 qpd->doorbell_bitmap);
1402                 }
1403         }
1404
1405         return 0;
1406 }
1407
1408 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409                                                         struct kfd_process *p)
1410 {
1411         int i;
1412
1413         for (i = 0; i < p->n_pdds; i++)
1414                 if (p->pdds[i]->dev == dev)
1415                         return p->pdds[i];
1416
1417         return NULL;
1418 }
1419
1420 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421                                                         struct kfd_process *p)
1422 {
1423         struct kfd_process_device *pdd = NULL;
1424
1425         if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426                 return NULL;
1427         pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428         if (!pdd)
1429                 return NULL;
1430
1431         if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432                 pr_err("Failed to alloc doorbell for pdd\n");
1433                 goto err_free_pdd;
1434         }
1435
1436         if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437                 pr_err("Failed to init doorbell for process\n");
1438                 goto err_free_pdd;
1439         }
1440
1441         pdd->dev = dev;
1442         INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443         INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444         pdd->qpd.dqm = dev->dqm;
1445         pdd->qpd.pqm = &p->pqm;
1446         pdd->qpd.evicted = 0;
1447         pdd->qpd.mapped_gws_queue = false;
1448         pdd->process = p;
1449         pdd->bound = PDD_UNBOUND;
1450         pdd->already_dequeued = false;
1451         pdd->runtime_inuse = false;
1452         pdd->vram_usage = 0;
1453         pdd->sdma_past_activity_counter = 0;
1454         atomic64_set(&pdd->evict_duration_counter, 0);
1455         p->pdds[p->n_pdds++] = pdd;
1456
1457         /* Init idr used for memory handle translation */
1458         idr_init(&pdd->alloc_idr);
1459
1460         return pdd;
1461
1462 err_free_pdd:
1463         kfree(pdd);
1464         return NULL;
1465 }
1466
1467 /**
1468  * kfd_process_device_init_vm - Initialize a VM for a process-device
1469  *
1470  * @pdd: The process-device
1471  * @drm_file: Optional pointer to a DRM file descriptor
1472  *
1473  * If @drm_file is specified, it will be used to acquire the VM from
1474  * that file descriptor. If successful, the @pdd takes ownership of
1475  * the file descriptor.
1476  *
1477  * If @drm_file is NULL, a new VM is created.
1478  *
1479  * Returns 0 on success, -errno on failure.
1480  */
1481 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482                                struct file *drm_file)
1483 {
1484         struct kfd_process *p;
1485         struct kfd_dev *dev;
1486         int ret;
1487
1488         if (!drm_file)
1489                 return -EINVAL;
1490
1491         if (pdd->drm_priv)
1492                 return -EBUSY;
1493
1494         p = pdd->process;
1495         dev = pdd->dev;
1496
1497         ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498                 dev->kgd, drm_file, p->pasid,
1499                 &p->kgd_process_info, &p->ef);
1500         if (ret) {
1501                 pr_err("Failed to create process VM object\n");
1502                 return ret;
1503         }
1504         pdd->drm_priv = drm_file->private_data;
1505
1506         ret = kfd_process_device_reserve_ib_mem(pdd);
1507         if (ret)
1508                 goto err_reserve_ib_mem;
1509         ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510         if (ret)
1511                 goto err_init_cwsr;
1512
1513         pdd->drm_file = drm_file;
1514
1515         return 0;
1516
1517 err_init_cwsr:
1518 err_reserve_ib_mem:
1519         kfd_process_device_free_bos(pdd);
1520         pdd->drm_priv = NULL;
1521
1522         return ret;
1523 }
1524
1525 /*
1526  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527  * to the device.
1528  * Unbinding occurs when the process dies or the device is removed.
1529  *
1530  * Assumes that the process lock is held.
1531  */
1532 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533                                                         struct kfd_process *p)
1534 {
1535         struct kfd_process_device *pdd;
1536         int err;
1537
1538         pdd = kfd_get_process_device_data(dev, p);
1539         if (!pdd) {
1540                 pr_err("Process device data doesn't exist\n");
1541                 return ERR_PTR(-ENOMEM);
1542         }
1543
1544         if (!pdd->drm_priv)
1545                 return ERR_PTR(-ENODEV);
1546
1547         /*
1548          * signal runtime-pm system to auto resume and prevent
1549          * further runtime suspend once device pdd is created until
1550          * pdd is destroyed.
1551          */
1552         if (!pdd->runtime_inuse) {
1553                 err = pm_runtime_get_sync(dev->ddev->dev);
1554                 if (err < 0) {
1555                         pm_runtime_put_autosuspend(dev->ddev->dev);
1556                         return ERR_PTR(err);
1557                 }
1558         }
1559
1560         err = kfd_iommu_bind_process_to_device(pdd);
1561         if (err)
1562                 goto out;
1563
1564         /*
1565          * make sure that runtime_usage counter is incremented just once
1566          * per pdd
1567          */
1568         pdd->runtime_inuse = true;
1569
1570         return pdd;
1571
1572 out:
1573         /* balance runpm reference count and exit with error */
1574         if (!pdd->runtime_inuse) {
1575                 pm_runtime_mark_last_busy(dev->ddev->dev);
1576                 pm_runtime_put_autosuspend(dev->ddev->dev);
1577         }
1578
1579         return ERR_PTR(err);
1580 }
1581
1582 /* Create specific handle mapped to mem from process local memory idr
1583  * Assumes that the process lock is held.
1584  */
1585 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586                                         void *mem)
1587 {
1588         return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589 }
1590
1591 /* Translate specific handle from process local memory idr
1592  * Assumes that the process lock is held.
1593  */
1594 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595                                         int handle)
1596 {
1597         if (handle < 0)
1598                 return NULL;
1599
1600         return idr_find(&pdd->alloc_idr, handle);
1601 }
1602
1603 /* Remove specific handle from process local memory idr
1604  * Assumes that the process lock is held.
1605  */
1606 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607                                         int handle)
1608 {
1609         if (handle >= 0)
1610                 idr_remove(&pdd->alloc_idr, handle);
1611 }
1612
1613 /* This increments the process->ref counter. */
1614 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615 {
1616         struct kfd_process *p, *ret_p = NULL;
1617         unsigned int temp;
1618
1619         int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622                 if (p->pasid == pasid) {
1623                         kref_get(&p->ref);
1624                         ret_p = p;
1625                         break;
1626                 }
1627         }
1628
1629         srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631         return ret_p;
1632 }
1633
1634 /* This increments the process->ref counter. */
1635 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636 {
1637         struct kfd_process *p;
1638
1639         int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641         p = find_process_by_mm(mm);
1642         if (p)
1643                 kref_get(&p->ref);
1644
1645         srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647         return p;
1648 }
1649
1650 /* kfd_process_evict_queues - Evict all user queues of a process
1651  *
1652  * Eviction is reference-counted per process-device. This means multiple
1653  * evictions from different sources can be nested safely.
1654  */
1655 int kfd_process_evict_queues(struct kfd_process *p)
1656 {
1657         int r = 0;
1658         int i;
1659         unsigned int n_evicted = 0;
1660
1661         for (i = 0; i < p->n_pdds; i++) {
1662                 struct kfd_process_device *pdd = p->pdds[i];
1663
1664                 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665                                                             &pdd->qpd);
1666                 if (r) {
1667                         pr_err("Failed to evict process queues\n");
1668                         goto fail;
1669                 }
1670                 n_evicted++;
1671         }
1672
1673         return r;
1674
1675 fail:
1676         /* To keep state consistent, roll back partial eviction by
1677          * restoring queues
1678          */
1679         for (i = 0; i < p->n_pdds; i++) {
1680                 struct kfd_process_device *pdd = p->pdds[i];
1681
1682                 if (n_evicted == 0)
1683                         break;
1684                 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685                                                               &pdd->qpd))
1686                         pr_err("Failed to restore queues\n");
1687
1688                 n_evicted--;
1689         }
1690
1691         return r;
1692 }
1693
1694 /* kfd_process_restore_queues - Restore all user queues of a process */
1695 int kfd_process_restore_queues(struct kfd_process *p)
1696 {
1697         int r, ret = 0;
1698         int i;
1699
1700         for (i = 0; i < p->n_pdds; i++) {
1701                 struct kfd_process_device *pdd = p->pdds[i];
1702
1703                 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704                                                               &pdd->qpd);
1705                 if (r) {
1706                         pr_err("Failed to restore process queues\n");
1707                         if (!ret)
1708                                 ret = r;
1709                 }
1710         }
1711
1712         return ret;
1713 }
1714
1715 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716 {
1717         int i;
1718
1719         for (i = 0; i < p->n_pdds; i++)
1720                 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721                         return i;
1722         return -EINVAL;
1723 }
1724
1725 int
1726 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727                            uint32_t *gpuid, uint32_t *gpuidx)
1728 {
1729         struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730         int i;
1731
1732         for (i = 0; i < p->n_pdds; i++)
1733                 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734                         *gpuid = p->pdds[i]->dev->id;
1735                         *gpuidx = i;
1736                         return 0;
1737                 }
1738         return -EINVAL;
1739 }
1740
1741 static void evict_process_worker(struct work_struct *work)
1742 {
1743         int ret;
1744         struct kfd_process *p;
1745         struct delayed_work *dwork;
1746
1747         dwork = to_delayed_work(work);
1748
1749         /* Process termination destroys this worker thread. So during the
1750          * lifetime of this thread, kfd_process p will be valid
1751          */
1752         p = container_of(dwork, struct kfd_process, eviction_work);
1753         WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754                   "Eviction fence mismatch\n");
1755
1756         /* Narrow window of overlap between restore and evict work
1757          * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758          * unreserves KFD BOs, it is possible to evicted again. But
1759          * restore has few more steps of finish. So lets wait for any
1760          * previous restore work to complete
1761          */
1762         flush_delayed_work(&p->restore_work);
1763
1764         pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765         ret = kfd_process_evict_queues(p);
1766         if (!ret) {
1767                 dma_fence_signal(p->ef);
1768                 dma_fence_put(p->ef);
1769                 p->ef = NULL;
1770                 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771                                 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772
1773                 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774         } else
1775                 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776 }
1777
1778 static void restore_process_worker(struct work_struct *work)
1779 {
1780         struct delayed_work *dwork;
1781         struct kfd_process *p;
1782         int ret = 0;
1783
1784         dwork = to_delayed_work(work);
1785
1786         /* Process termination destroys this worker thread. So during the
1787          * lifetime of this thread, kfd_process p will be valid
1788          */
1789         p = container_of(dwork, struct kfd_process, restore_work);
1790         pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791
1792         /* Setting last_restore_timestamp before successful restoration.
1793          * Otherwise this would have to be set by KGD (restore_process_bos)
1794          * before KFD BOs are unreserved. If not, the process can be evicted
1795          * again before the timestamp is set.
1796          * If restore fails, the timestamp will be set again in the next
1797          * attempt. This would mean that the minimum GPU quanta would be
1798          * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799          * functions)
1800          */
1801
1802         p->last_restore_timestamp = get_jiffies_64();
1803         ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804                                                      &p->ef);
1805         if (ret) {
1806                 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807                          p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808                 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809                                 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810                 WARN(!ret, "reschedule restore work failed\n");
1811                 return;
1812         }
1813
1814         ret = kfd_process_restore_queues(p);
1815         if (!ret)
1816                 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817         else
1818                 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819 }
1820
1821 void kfd_suspend_all_processes(void)
1822 {
1823         struct kfd_process *p;
1824         unsigned int temp;
1825         int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827         WARN(debug_evictions, "Evicting all processes");
1828         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829                 cancel_delayed_work_sync(&p->eviction_work);
1830                 cancel_delayed_work_sync(&p->restore_work);
1831
1832                 if (kfd_process_evict_queues(p))
1833                         pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834                 dma_fence_signal(p->ef);
1835                 dma_fence_put(p->ef);
1836                 p->ef = NULL;
1837         }
1838         srcu_read_unlock(&kfd_processes_srcu, idx);
1839 }
1840
1841 int kfd_resume_all_processes(void)
1842 {
1843         struct kfd_process *p;
1844         unsigned int temp;
1845         int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848                 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849                         pr_err("Restore process %d failed during resume\n",
1850                                p->pasid);
1851                         ret = -EFAULT;
1852                 }
1853         }
1854         srcu_read_unlock(&kfd_processes_srcu, idx);
1855         return ret;
1856 }
1857
1858 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859                           struct vm_area_struct *vma)
1860 {
1861         struct kfd_process_device *pdd;
1862         struct qcm_process_device *qpd;
1863
1864         if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865                 pr_err("Incorrect CWSR mapping size.\n");
1866                 return -EINVAL;
1867         }
1868
1869         pdd = kfd_get_process_device_data(dev, process);
1870         if (!pdd)
1871                 return -EINVAL;
1872         qpd = &pdd->qpd;
1873
1874         qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875                                         get_order(KFD_CWSR_TBA_TMA_SIZE));
1876         if (!qpd->cwsr_kaddr) {
1877                 pr_err("Error allocating per process CWSR buffer.\n");
1878                 return -ENOMEM;
1879         }
1880
1881         vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882                 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883         /* Mapping pages to user process */
1884         return remap_pfn_range(vma, vma->vm_start,
1885                                PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886                                KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887 }
1888
1889 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890 {
1891         struct kfd_dev *dev = pdd->dev;
1892
1893         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894                 /* Nothing to flush until a VMID is assigned, which
1895                  * only happens when the first queue is created.
1896                  */
1897                 if (pdd->qpd.vmid)
1898                         amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899                                                         pdd->qpd.vmid);
1900         } else {
1901                 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902                                         pdd->process->pasid, type);
1903         }
1904 }
1905
1906 #if defined(CONFIG_DEBUG_FS)
1907
1908 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909 {
1910         struct kfd_process *p;
1911         unsigned int temp;
1912         int r = 0;
1913
1914         int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916         hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917                 seq_printf(m, "Process %d PASID 0x%x:\n",
1918                            p->lead_thread->tgid, p->pasid);
1919
1920                 mutex_lock(&p->mutex);
1921                 r = pqm_debugfs_mqds(m, &p->pqm);
1922                 mutex_unlock(&p->mutex);
1923
1924                 if (r)
1925                         break;
1926         }
1927
1928         srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930         return r;
1931 }
1932
1933 #endif
1934